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ABSTRACT 

The combustion of NH C 1 0  composite p r o p e l l a n t s  has been s tudied  4 between 15 and 3000 p s i .  he emphasis i n  the  prdgram has been on 
determining the  mechanisms by which the  f u e l  components in f luence  
the  burning rate of t he  composites. In  o rde r  t o  have f l e x i b i l i t y  I n  
t he  choice and concent ra t ion  of t he  f u e l  component a l l  combustion 
experiments were performed wi th  pressed powder s t r ands .  The f u e l s  
s tud ied  included those  which a f f e c t e d  the  combustion mechanism of 
t h e  composite p r imar i ly  through t h e i r  e f f e c t  on (1) t h e  cixidizer 
decomposition mechanism and (2) t h e  composite su r face  temperature.  
The combustion of pure and doped NH4C10 
pressed powder s t r a n d s  and pressed end t u r n i n g  motor g ra ins .  
experimental  approach has  been e s s e n t i a l l y  a chemical one with 
emphasis on pe r tu rb ing  those  r e a c t i o n s  which occur on or immediately 
adjacent  t o  the  s u r f a c e  (zone of i n f luence )  of t he  composite. 
A hypothesis  is of fe red  t o  expla in  how the  var ious  phys ica l  and 
chemical p r o p e r t i e s  of the  f u e l  a f f e c t  the combustion of an NH4C10 
composite p rope l l an t .  I n  add i t ion ,  t he  isothermal  decomposition o 
phosphate and c h l o r a t e  doped AP w a s  s tud ied ,  between 200 and 300°C, 
using thermogravimetric techniques.  

w a s  s tud ied  us ing  both 
The 
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THE EFFECT OF SOLID PHASE REACTIONS ON THE 
BALLISTIC PROPERTIES OF PROPELLANTS 

Wil l f red  G. Schmidt 
Aero je t  So l id  Propuls ion  Company, Sacramento, C a l i f o r n i a  

SUMMARY 

An i n v e s t i g a t i o n  i n t o  t h e  combustion mechanisms of ammonium perchlora te -  
f u e l  composites (pressed powder s t r a n d s ,  12  cm 
conclus ion  t h a t  t h e  rate determining r e a c t i o n s  occur i n  a narrow zone n e a r ,  
and includirlg,  t h e  s u r f a c e  of t h e  composite. The r e a c t i o n  rates i n  t h i s  zone 
of i n f luence '  are a f u n c t i o n  of t h e  temperature i n  t h i s  r eg ion ,  w h i c h  i n  t u r n  
is a f u n c t i o n  of t h e  sum o f  t h e  hea t  f l u x  t o  t h e  s u r f a c e ,  t h e  heat l o s s e s  from 
t h e  s u r f a c e  and t h e  n e t  hea t  fram a l l  r e a c t i o n s ,  both endothermic and exo- 
thermic,  occur r ing  i n  t h i s  reg ion .  There are several ways i n  which t h e  f u e l  
component may a f f e c t  t h e  combustion rate of t h e  composite. If t h e  f u e l  o r  i ts  
products  do  no t  react wi th  t h e  o x i d i z e r  o r  its products  i n  t h i s  zone of 
i n f luence  t h e  f u e l  w i l l  still  a f f e c t  t he  temperature i n  t h i s  reg ion  by t h e  n e t  
endothermici ty  o r  exothermic i ty  of i ts degrada t ion  and v o l a t i l i z a t i o n  mechanisms. 
The f u e l  may decompose t o  form products ,  such as hydrogen o r  a carbon char,  which 
can f u r t h e r  react c l o s e  t o  t h e  s u r f a c e  of t h e  composite r a t h e r  than i n  t h e  gas  
phase a t  a s i g n i f i c a n t  d i s t a n c e  from t h e  s u r f a c e .  
form products  such as ammonia o r  vater which may pe r tu rb  t h e  NH4C104 decomposi- 
t i o n  mechanism, o r  t h e  f u e l  may d i r e c t l y  react wi th  t h e  o x i d i z e r  i n  a 
condensed phase o r  heterogeneous r e a c t i o n .  The va r ious  ways by which t h e  f u e l  
can a f f e c t  combustion are no t  mutual ly  exc lus ive  bu t  r a t h e r  several of t h e s e  
e f f e c t s  may be ope ra t ing  i n  any g iven  composite. 

'- cm2)  has  l e d  t o  t h e  

9 

The f u e l  can decompose t o  

Using 38 mm diameter  pressed end burning g r a i n s ,  it was shown t h a t  
t h e  burning rate p r e s s u r e  exponent f o r  pure  AP was p o s i t i v e  and cons t an t  
between 1200 and 3000 p s i .  
pha te  nega t ive ly  c a t a l y z e s  t h e  low temperature  NH4C104 decomposition w h i l e  
c h l o r a t e  is a p o s i t i v e  c a t a l y s t  f o r  t h i s  decomposition. 
s i g n i f i c a n t  changes i n  t h e  rate of t h e  low temperature  decompositions t h e s e  
materials have only  a l i m i t e d  e f f e c t  on t h e  NH4C104 combustion ra te .  

Isothermal  k i n e t i c  s t u d i e s  have shown t h a t  phos- 

Despi te  causing 

INTRODUCTION 

This  program was undertaken t o  i n v e s t i g a t e  t h e  r e a c t i o n s  and mechanisms 
of decomposition which occur i n  t h e  s u b s t r a t e  a t  o r  below t h e  burning s u r f a c e  
of perchlora te -conta in ing  p r o p e l l a n t s  i n  o rde r  t o  determine t h e i r  c o n t r i b u t i o n  
t o  t h e  o v e r a l l  p rocesses  involved i n  t h e  d e f l a g r a t i o n  and combustion of s o l i d  
p r o p e l l a n t s .  The work has  been c a r r i e d  ou t  a long two parallel  but  i n t e r -  
dependent pa ths ,  (1) t o  determine which s o l i d  phase r e a c t i o n s  c o n t r i b u t e  t o  
t h e  rate of t h e  o v e r a l l  combustion process ,  and (2) t o  determine mechanisms 
f o r  t h o s e  r e a c t i o n s  which a f f e c t  t h e  rate of t h e  combustion process .  The 
primay emphasis has been on e s t a b l i s h i n g  r e l a t i o n s h i p s  between t h e  p r o p e r t i e s  
of t h e  f u e l  component and t h e  combustion c h a r a c t e r l s t i c s  of N H q C l O 4  - f u e l  



composites. I n  t h e  previous i n v e s t i g a t i o n s ,  NASI-6323 and NAS1-7816, t h e  
f u e l  component was held cons tan t  whi le  changes i n  t h e  combustion cha rac t e r -  
i s t ics  of composites were a f f e c t e d  by modifying t h e  p r a p e r t i e s  of t h e  
ox id ize r .  I n  a d d i t i o n  t o  t h i s  major object ive,work h a s  continued on t h e  
decomposition dnd combustion of both pure and doped NH4C10k. 

Three  r e c e n t  reviews (References 32, 33 and 34) have covered much of 
t h e  d a t a  no t  only on AP decomposition bu t  a l s o  on t h e  combustion of AP and 
AP-fuel composites. There is v i r t u a l l y  no sys temat ic  work repor ted  i n  t h e  
area of f u e l  p y r o l y s i s ,  under combustion cond i t ions ,  and i ts  e f f e c t  on t h e  
combustion of AP composites.  The work of Powling (Reference 30) does show 
t h a t  t h e  n a t u r e  and t h e  amount of t h e  ice1 component has  a s t rong  e f f ec t ,  
e s p e c i a l l y  a t  h igher  p re s su res ,  on t h e  combustion rate of a n  AP composite. 
However, t h e r e  was no s imple r e l a t i o n s h i p  between a g iven  proper ty  of t h e  
f u e l ,  such as v o l a t i l i t y ,  and its a f f e c t  on t h e  combustion rate. 

Since previous work (Reference 6) has  l e d  t o  t h e  conclusion t h a t  con- 
densed phase, inc luding  s u r f a c e ,  r e a c t i o n s  are important i n  t h e  combustion 
of KH4ClO4 a n  a t tempt  t o  understand t h e  e f f e c t  of t h e  f u e l  component r e q u i r e s  
t h a t  a t t e n t i o n  be  focused on those  r e a c t i o n s  occurr ing  c l o s e  t o  o r  on t h e  
s u r f a c e  of t h e  composites.  Th i s  zone, "zone of in f laence"  (Reference 29) is 
r e l a t i v e l y  narrow and does not  lend i t s e l f  t o  d i r e c t  measurements but  m u s t  
be probed by chemical means. 
t e s t e d ,  and modified when necessary ,  by us ing  chemical means t o  pe r tu rb  
r e a c t i o n s  i n  t h e  'zone of i n f l u e n c e ' .  
combustion i n  an  i n d i r e c t  manner such as a l t e r i n g  t h e  temperature  i n  t h e  
r e a c t i o n  zone whi le  a t  o t h e r  times they may d i r e c t l y  cause a p e r t u r b a t i o n  i n  
t h e  rate c o n t r o l l i n g  decomposition process .  

That i s ,  a hypothes is  f o r  combustion is  c o n t i n u a l l y  

Sometimes these chemical changes a f f e c t  

Although a g r e a t  many s t u d i e s  have been undertaken, as ind ica t ed  i n  
t h e  t h r e e  reviews (References 32,  33 and 3 4 ) ,  t h e r e  i s  s t i l l  no g e n e r a l  agree- 
ment on t h e  AP decomposition o r  combustion mechanisms. The low temperature  
AP decomposition has  been i n v e s t i g a t e d  i n  t h i s  program w i t h  t h e  idea  of making 
comparisons wi th  previous work on t h e  b a s i s  of t h e  d i r e c t l y  measured 
decomposition rates rather than  on t h e  b a s i s  of such der ived  values as ac t i -  
v a t i o n  energy. 
ca t a lyz ing  t h e  AP l o w  temperature  decomposition mechanisms w a s  i n v e s t i g a t e d  
us ing  pressed powder s t r a n d s .  The work i n  a l l  areas was d iv ided  i n t o  two 
s e c t i o n s ,  (1) decomposition s t u d i e s  which i n v e s t i g a t e d  t h e  p r o p e r t i e s  of t h e  
materials as hea t  is app l i ed  t o  them, and (2)  s t u d i e s  of t h e  materials under 
a c t u a l  combustion cond i t ions  (no e x t e r n a l  energy added t o  the  s y s t e m ) .  The  
two s t u d i e s  are complimentary and r e l a t i o n s h i p s  (both p o s i t i v e  and negacive) 
were determined between t h e  decomposition and t h e  combustion processes .  

The  e f f e c t  on combustion of both p o s i t i v e l y  and nega t ive ly  

When necessary ,  materials were synthes ized  t o  meet t h e  demands of t h e  
program. The experimental  work u t i l i z e d  v e r a 1  d i f f e r e n t  thermogravimetric 
ba lances ,  d i f f e r e n t i a l  thermal and scanni.-, c a l o r i m e t r i c  equipment. A p re s su re  
v e s s e l  p rev ious ly  cons t ruc ted  (Reference 1) allowed d i f f e r e n t i a l  thermal 
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a n a l y s i s  t o  b e  run a t  pressures  up t o  2000 p s i .  
of d i e s  w a s  used to  o b t a i n  pressed powder s t r a n d s  and during the  course of 
t h i s  program a set  of d i e s  was cons t ruc ted  which made i t  poss ib l e  t o  compact 
pressed powder g r a i n s  38mm i n  diameter.  
obtained by t h e  use of p re s su re  t i m e  ins t rumenta t ion .  

A previously cons t ruc ted  se t  

A l l  burning rate measurements were 

PROCEDURES, RESULTS AND DISCUSSION 

I. EXPERIMENTAL 

A. EQUIPMENT 

A l l  ambient p re s su re  d i f f e r e n t i a l  t he rma l  ana lyses  (DTA) were 

P r e s s u r e  DTA work used 
performed wi th  a commercial instrument (duPont 900). An attachment also 
allowed i so thermal  d i f f e r e n t i a l  thermal a n a l y s i s .  
t h e  c o n t r o l s  and recording s e c t i o n  of t h e  above instrument i n  a d d i t i o n  t o  a 
remote cab le  which c a r r i e d  t h e  electrical l eads  t o  a p res su re  vessel (Reference 1). 
S u e  to  hea t  losses t o  t h e  pressur ized  atmosphere, hea t ing  rates a t  p re s su res  
above 1000 p s i  were maintained by t h e  use  of an  a u x i l i a r y  h e a t e r ,  which c o n s i s t s  
of a nichrome w i r e  wound i n t o  a n  a sbes tos  j a c k e t ,  around t h e  sample block. 
Quan t i t a t ive  d a t a  a t  ambient p re s su re  were obtained wi th  a d i f f e r e n t i a l  
scanning ca lo r ime te r  (Perkin-Elmer DSC-1B). 

Thermogravimetric work w a s  performed on t h r e e  d i f f e r e n t  instruments .  
For co r ros ive  gas  atmospheres, a n  appara tus  w a s  used which cons is ted  of a 
qua r t z  sp r ing  i n  an  oven heated tube; measurements were made w i t h  a cathetometc-. 
Isothermal measurerents under a i r  o r  n i t r .  :en atmospheres were made w i t h  a 
commercial automatic  recording thermogravimetric balance (Ainsworth). Non- 
isothermal measurements were made wi th  an  attachment t o  t h e  DTA (duPont 950). 
Temperature c o n t r o l  wj th  t h e  Ainsworth balance is 22OC a t  3OO0C w i t h  t h e  
temperature being measured by a Pt-Pt*lO% RH thermocouple loca ted  immediately 
below t h e  g l a s s  wool sample holder .  

Burning rates were obtained wi th  pressed powder s t r a n d s  and pressed 
powder end burning g r a i n s .  
a t  Aeroje t  w a s  used i n  compressing t h e  materials f o r  t h e  s t r a n d s .  To minimize 
t h e  dens i ty  g rad ien t  i n  t h e  s t r a n d ,  t h e  s t r a n d  is pressed perpendicular  t o  t h e  
long a x i s ,  i .e .  t h e  powder depth is less than one cent imeter .  The dimensions 
of t h e  compacted s t r a n d , a r e  0.95 c m  x 0.95 cm x 12.2 c m ,  From t h i s ,  four  
i nd iv idua l  burning rate versus  p re s su re  po in t s  were obtained by c u t t i n g  t h e  
s t r a n d  i n t o  f o u r  approximately equal  lengths ;  t e s t i n g  was done i n  a closed 
bomb using pressure-time ins t rumenta t ion .  
by compaction i n  a 3 9 cm diameter c i r c u l a r  d i e .  The depth of t h e  g r a i n  covld 
be var i ed ;  however, i t  was gene ra l ly  maintained a t  $1.2 c m  t o  minimize t h e  
d e n s i t y  g rad ien t .  The compacted grains were t e s t e d  i n  a n  end burning motor 
conf igu ra t ion  and t h e  burniilg rate, determined with pressure  time ins t rumenta t ion .  

A s t r a n d  d i e  and press frame, designed and b u i l t  

The end burning g r a i n s  were obtained 
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B. SAMPLE PREPARATICN OF €dl ANALYSIS 

The ammonium p e r c h l o r a t e  (AP) used i n  t h e  i so thermal  s t u d i e s  was 
material t h a t  had been twice r e c r y s t a l l i z e d  from water. Th i s  r e c r y s t a l l i z e d  
AP w a s  a l s o  used as t h e  s t a r t i n g  m a t e r i a l  f o r  t h e  doped AP c r y s t a l s .  

1. Doped AP 

a.  AP Containing Phosphate 

The fol lowing is  t h e  procedure used i n  the  p repa ra t ion  
of AP conta in ing  a small percentage of 7hosphate.  I n  t h i s  r e p o r t  phosphate 
is  taken t o  mean t h e  sum of H2PO4', HpG4', and PO4' s i n c e  t h e  exac t  form i n  
t h e  c r y s t a l  is not  known. AP is  d i s so lved  i n  water a t  * L ~ O O C  (AP t o  H20 3~1:2) 
and (NH4)$@04 is added and s t i r r i n g  continued u n t i l  a l l  sa l t s  are d i s so lved .  
The temperature is kept  between 50 and 60°C whi le  t h e  s o l u t i o n  is f i l t e r e d  af ter  
which t h e  f i l t r a t e  is cooled t o  % 5 O C  i n  a n  i c e  ba th .  
by f i l t r a t i o n  and d r i e d  i n  a vacuum oven a t  5OoC overn ight .  
analyzed f o r  by t h e  method of Gee and D e i t z  (Reference 2 ) .  It was experimental ly  
determined t h a t  t h e  AP d i d  no t  a f f e c t  t h i s  method of a n a l y s i s  which i s  a 
spectrophotometr ic  one u t i l i z i n g  a mixed molybdatemetavanadate s o l u t i o n  t o  
develop t h e  coldr. Measuremeiits are made i n  t h e  r eg ion  of 350-40Omp. The 
a n a l y s i s  is s e n s i t i v e  t o  t h e  a c i d  concen t r a t ion  which must be reproducib ly  
con t ro l l ed .  A c a l i b r a t i o n  curve was e s t a b l i s h e d  wi th  known amounts of 
(NH4)2IiP04. 
procedure f o r  making AP con ta in ing  phosphate r e s u l t s  i n  a c r y s t a l  whose concen- 
t r a t i o n  of phosphate is approximately 10% of t h e  concen t r a t ion  of phosphate i n  
t h e  aqueous s o l u t i o n  (e .g . ,  a 5% phosphate s o l u t i o n  g ives  c r y s t a l s  which con ta in  
%0.5% phosphate).  I n  r e l a t e d  experiments Pellett  and Cofer (Reference 3) found 
t h a t  6.8% of t h e  phosphate i n  t h e  o r i g i n a l  s o l u t i o n  was c o p r e c i p i t a t e d  w i t h  t h e  
AP . 

The c r y s t h l s  a re  removed 
Phosphate is 

From t h i s  curve i t  was determined t h a t  t h e  prev ious ly  descr ibed  

b. AP Containing Ch lo ra t e  

The r equ i r ed  amount of AP is  d i s so lved  i n  water a t  %6OoC. 
The d e s i r e d  amount of K C 1 0 3  is then  added and t h e  s o l u t i o n  taken  t o  dryness 
under vacuum a t  %5OoC. 
(Reference 4 ) .  
as a reducing agent .  
s u l f u r i c  a c i d  medium a t  30Omp. 

Chlo ra t e  is analyzed f o r  by t h e  method of Chen 
Th i s  i s  a spec t rophotometr ic  method i n  which f e r r o u s  i o n  is  used 

The q u a n t i t y  of ferr ic  i o n  produced is measured i n  a 

2. Phenol ic  Resins  

A number of phenol ic  r e s i n s  were prepared;  however, m l y  two 
of t h e s e  were used i n  t h e  combustion experiments.  Both of t h e s e  polymers, 
novalak and r e s o l e ,  are condensat ion polymers obtained from t h e  r e a c t i o n  of 
pheliol w i th  formaldehyde. 
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a, Resole 

Resole (Reference 5 )  was made w i t h  an excess  of 
formaldehyde (1 mole phenol t o  1.5 male of HCHO). The e x t e n t  o t  
c r o s s l i n k i n g  depends on t h e  p r e p a r a t i v e  cond i t ions ,  e s p e c i a l l y  temperature. 
The material used i n  t h i s  program was only s l i g h t l y  c ros s l inked  and 
contained hydroxymethyl groups which were a v a i l a b l e  f o r  f u r t h e r  
condensation, Reaction (1).  

OR 

On f u r t h e r  hea t ing ,  t h e  material becomes inc reas ing ly  c ros s l inked  and t h e r e f o r e  
less d u c t i l e .  

b. Novalak 

In this prepa ra t ion  (Reference 5 ) ,  t h e  phenol was i n  
excess (1.4 mole phenol t o  1.0 mole BCHO) of t h e  formaldehyde, Reaction ( 2 ) .  

OH 
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Novalak, un l ike  r e s o l e ,  con ta ins  very few hydroxymethyl groups and cannot 
condense f u r t h e r  on hea t ing .  

3. Other Organic Fuels  

The organic  compounds?. f u e l  components, l i s t e d  i n  Table 1 
were a l l  reagent  grade chemicals and were used as received from t h e  manufac- 
t u r e r .  The only t reatment  rece ived  by t h e s e  materials was dry ing ,  e i t h e r  by 
temperature, vacuum or a combination of temperature and vacuum. 

TABLE 1 

PROPERTIES OF THE ORGANIC FUEL CCMPONENTS 

Compound 

Acetamide 

Benzamide 

Benzoic a c i d  

hydroquinone 

I s o p h t h a l o n i t r i l e  

CH3CONH2 

0- coNH2 
W O O H  

4 , 4  ' I sopropyl idenediphenol  

Melting Poin t  Boi l ing  Poin t  
O C  O C  

69 222 

130 

122 

171 

161 

157 

29 0 

249 

286 

8 

4 0 0  

Paraf omaldehyde (CH20)n 64  8 
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TABLE 1 (Cont.) 

Compound 

;;;;2 
Phthalamic a c i d  

Ph t ha lamide 

Phthalimide 

S ta rch  

S t e a r i c  a c i d  

Succinamide 

Sucrose 

CH3 (CH2) 16COOH 

H2C-CONH2 

H2C-COHN2 

c12H22011 

C28H38019 Sucroseoctaacetg-e 

s = sublimes 
d = decomposes 
a = see Resu l t s  Sec t ion  

C. PRESSED AP STRANDS AND GRAINS 

Melting Point  Boi l ing Poin t  
O C  O C  

148 8 

220 

238 

a 

70 

240 

160 

83 

d 

8 

a 

383 

d 

a 

~ 2 8 0  

It was found experimentai ly  t h a t  t h e  forming p res su re  must be 
ad jus t ed  f o r  each material or mixture  of materials pressed., 
is too low poros i ty  r e s u l t s  and i f  i t  is too h igh  laminary f r a c t u r e s  occur.  

I f  t h e  p re s su re  
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These mi id i t i ons  cculd not  always be de t ec t ed  v i s u a l l y  nor by d e n s i t y  
measurements. However, t h e  p re s sd re  t i m e  trace obtained duying combustion 
was a va luab le  t o o l  i n  i d e n t i f y i n g  t h e s e  problems. We feel  t h a t  t h i s  method 
of measurement a l lows  u s  t o  d e t e c t  and t h e r e f o r e  c o r r e c t  problems t h a t  are 
not  d e t e c t a b l e  when burning rates are aeasured by elapsed t i m e  between two 
wires. 
fol lows.  The forming p res su re  w a s  a r r i v e d  a t  by t r ia l ,  s t a r t i n g  from a high 
pressure  and decreas ing  t h e  p re s su re  3n success ive  s t r a n d s  u n t i l  a s t r a n d  
without laminary f r a c t u r e s  w a s  f omed . 
c l o s e  to t h e o r e t i c a l l y  dens i ty  as could be achieved by press ing .  
were pressed a t  d i e  temperatures of 4OoC t o  50°C. 
were sanded to  remove any traces of d i e  l u b r i c a n t  and then  c u t  i n t o  segnents  
which were coated w i t h  a p o l y s u l f i d e  rubber  f o r  a r e s t r i c t i o n .  Even iKni t ion  
w a s  achieved by a JPN disk which i n  t u r n  w a s  i g n i t e d  by a hot  w i r e .  
rates were determined from p res su re  t i m e  traces and t h e  length  of t h e  s t r a n d s  
burned. 
mixture,  t h e  use of t h e  above procedures r e s u l t s  i n  very  reproducib le  r e s u l t s .  

The gene ra l  procedures and cond i t ions  used f o r  p r e s s i n g  were as 

This  procedure produced s t r a n d s  as 
All s t r a n d s  

Af t e r  p re s s ing ,  t h e  s t r a n d s  

The  burning 

Once t h e  proper set of condi t ions  w a s  determined f o r  a material o r  

Bas i ca l ly  t h e  procedure f o r  p re s s ing  t h e  38mm c i r c u l a r  g r a i n s  w a s  
t h e  same as t h a t  used foz t h e  s t r a n d s .  However, t h e  a c t u a l  forming p res su res  
were d i f f e r e n t  i n  t h e  two systems, f o r  i d e n t i c a l m a t e r i a l s ,  due to  d i f fe rer - :es  
i n  d i e  w a l l  f r i c t i o n .  
was then placed i n  t h e  motor hardware. 
ing a c r o s s  t h e  f a c e  of t h e  g r a i n  and t h e  burning rate obtained from p r e s s u r e  
t i m e  traces. 

The pressed g r a i n  w a s  a t t ached  t o  a phenol ic  p l a t e  ,nich 
I g n i t i o n  w a s  achieved by hot gases  sweep- 

These procedures have r e s u l t e d  i n  reproducib le  r e s u l t s .  

11. RESULTS 

The c u r r e n t  yea r ' s  e f f o r t  is based on t h e  framework of t h e  previous 
y e a r ' s  conclusions (Reference 6)  wi th  t h e  primary emphasis placed on t h e  r o l e  
of the f u e l  comporient i n  determining t h e  combustion rate of AP-fuel composites. 
I n  add i t ion ,  w e  have continued t h e  i n v e s t i g a t i o n  of t h e  c a t a l y t i c  e f f e c t  of 
both C l O 3  
decomposition of AP doped w i t h  these  c a t a l y s t s  has  been previous ly  s tud ied  
q u a l i t a t i v e l y  (References 1 and 6 ) .  

- 
i o n  and HzP04- i o n  on t h e  decomposition and combustion of AP. The 

A .  ISOTHERMAL THERMOGRAVIMETRIC AP DECOMPOSITION EXPERIMENTS 

I n  order  t o  minimize t h e  problem of s e l f  hea t ing  ( inhe ren t  i n  
s t u d i e s  of exothermic s o l i d  phase decomposition r e a c t i o n s )  t h e  sample was 
spread i n  e s s e n t i a l l y  a mono p a r t i c l e  l aye r  on a t h i n  sheet of g lass  wool 
suspended on an  aluminum screen. The s y s t e m  w a s  purged f o r  t e n  minutes wi th  
n i t rogen  a f t e r  which the  gas  w a s  turned of f  and t h e  decomposition allowed t o  
take  place under s t a t i c  condi t ions  (no e x t e r n a l  gas  flow).  

It w a s  found t h a t  t h e  rate of decomposition is a f f e c t e d  by t h e  
i n e r t  gas flow and t h e  geometry 
sample con ta ine r s  were tried under coridi t! 
One conf igu ra t ion  was t h a t  described PI, . 52cond was similar e x c e p t  t h a t  

t h e  sample con ta ine r .  Three d i f f e r e n t  
p i  : slow flow of n i t rogen  gas. 
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i n s t e a d  of an aluminum mesh a s o l i d  p i ece  of aluminum w a s  used, and t h e  
t h i r d  w a s  an aluminum cup. 
samples,  i n  the t h r e e  d i f f e r e n t  conf igu ra t ions ,  were as follows: 
mesh > s o l i d  p l a t e  > cup. 

The decomposition rates of c h l o r a t e  doped .4p 

The isothermal  s t u d i e s ,  u t i l i z i n g  the thermogravimetric 
balance,  were conducted over  two temperature ranges,  200 t o  235°C and 
250 to 300°C. 
temperature range of 2SO-300°C where AP has a cubic  c r y s t a l  s t r u c t u r e .  
T h i s  range was s e l e c t e d  so as not t o  be complicated by the crystsl nodifi- 
c a t i o n  which occurs  a t  ~ 2 4 0 ° C  or t h e  inc reas ing ly  high rate of subl imat ion 
a t  temperatures above 300°C. One particle s ize ,  140~ (range 105-175~) ,  
w a s  used f o r  a l l  t h e  decomposition experiments and t h e  e f f e c t  of varying 
p a r t i c l e  s i z e  was R C ~  i nves t iga t ed .  &ice r e c r y s t a l l i z e d  AP w a s  used as 
a c o n t r o l  f o r  t h e  p o s i t i v e l y  ca ta lyzed  AP (conta in ing  C10-) and for t he  
nega t ive ly  ca ta lyzed  AP (containing H2POi). 
samples wi th  d i f f e r e n t  levels of H PO6 The analyzed dopant 
l e v e l  i n  t hese  experiments was  0.0 1 5% for t h e  chzora te  doped AP and 0.0112 
and 0.052% f o r  t h e  phosphate doped AD. 

The major i ty  of t he  experimental  work w a s  done i n  t h e  

3 In  t h e  lat ter case, two 
w e r e  s tud ied .  

The i so rhenna l  TGA experiments produced sigmoid shaped p l o t s  
when t h e  weight f r a c t i o n  decomposed was p l o t t e d  a g a i n s t  time for t h e  four 
d i f f e r e n t  samples inves t iga t ed .  
a l though slower, weight loss after ~ 3 0 %  of t h e  o r i g i n a l  sample is consumed. 
These t w o  reg ions  were t r e a t e d  s e p a r a t e l y  i n  f i t t i n g  k i n e t i c  equat ions  
t o  the  data .  

Due to subl imat ion t h e r e  is a cont inuing,  

The s e l e c t i o n  of a rate equat ion f o r  t h e  reduct ion  of d a t a  
from s o l i d  phase r e a c t i o n s  is always somewhat a r b i t r a r y  and involves  
e s s e n t i a l l y  t h e  b e s t  empi r i ca l  f i t  to  one of several probable equat ions.  
A c o n t r a c t i n g  volume equat ion  has been used by Jacobs (Reference 7) to 
analyze t h e  subl imat ion of AP Over t h e  te r a t u r e  range covered in t h i s  

l o s s e s  occurr ing a f t e r  30% of t h e  sample w a s  consumed by decomposition. 
Figure 1 is a t y p i c a l  rate p l o t  of t h e  f o u r  d i f f e r e n t  samples a t  one 
temperature using t h e  c o n t r a c t i n g  cube equat ion.  Although the  samples 
v a r i e d  considerably i n  t h e  rate of t h e i r  l o w  temperature decomposition 
(discussed later), the  rate a t  which t h e  r e s idue  sublimed was e s s e n t i a l l y  
t h e  same f o r  a l l  f o u r  samples. 
temperatures are given i n  Table 2. 
Figure 2,  y i e l d i n g  t h e  equat ion  

study. We used t h e  same equat ion,  1-(1-a) Y73 = k t ,  t o  analyze the  weight 

The rate d a t a  f o r  subl imat ion a t  d i f f e r e n t  
These d a t a  f a l l  on a s i n g l e  l i n e ,  

log &/mi*-') = 7.84 - 28,850/4.576 T 
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TABLE 2 

RATE CONSTANTS FOR SUBLIMATION OF PRE-DECOMPOSED AP 

4 -Ua) 
-- 10 k min Temperature 

AP 0.011% Phosphate (b) 0.052% Phosphate(b) 0.025% Chlorate  (b ) - O C  

259 + 2 1.00 1.03 
268 T 2 1.22 1.67 
270 '7 - 2 
Z T Q  t z L . V /  2.32, 
286 2 3.52 3.08 
295 T 2 5.72 5.32 

1.57 
I ,- 

0.95 
1.50 

L . L I  

3.20 
5.17 

0.97 
1.62 

2. .*j 

3.33 
5.45 

(a) 
(b) 

Based on con t r ac t ing  volume equat ion  
Level of dopant i n  AP 

A prel iminary examination of t h e  data on t h e  ' l o w  temperature '  
decomposition ind ica t ed  that t h e  results from a l l  f o u r  samples could no t  
b e  f i t t e d  t o  t h e  same k i n e t i c  equat ion.  To reduce t h e  d a t a  from t h a t  
p a r t  of t h e  weight loss c u m e  corresponding p r imar i ly  t o  decomposition, 
a n  equat ion w a s  t r i e d  which is based on nucleus formation and growth. 
The d a t a  f o r  pure AP and AP conta in ing  phosphate f i t  t h e  Avrami-Erofeev 
equat ion,  E-ln ( l -a ) ] l /n  = k(t- to) ,  wi th  n = 2 for 0.1 < a < 0.9. 
e q m t i o n  f i ts  the data from the  AID smple conta in ing  shlorats over a s h ~ ~ i r i  
range (0.1 < a < 0.5). 

The same 

It w a s  noted t h a t  t h e  maximum rate of decomposition f o r  pure 
AP and AP conta in ing  phosphate occurred a t  a a . 5  while  f o r  AP conta in ing  
c h l o r a t e  t h e  maximum rate occurred at  a < 0.15. Since t h e  decomposition 
of t h e  AP conta in ing  c h l o r a t e  w a s  dece le ra to ry  a f t e r  t h e  i n i t i a l  10-15%, 
these d a t a  were more appropr i a t e ly  reduced by t h e  uninolecular  decay 
equat ion,  -In (1-a) = k t .  The r e s u l t s  f i t  t h i s  equat ion w e l l  from 
a = 0.1 t o  a b 0 .9 .  I n  a l l  of t he  d a t a  reduct ion  the  choice of a final.  
wefgk loss to d e f i n e  &ieie 3 = l w a s  Z ~ L ~ C X  t o  some e r r o r .  From 
p l o t s  of weight loss a g a i n s t  t i m e ,  e s p e c i a l l y  f o r  t he  c h l o r a t e  conta in ing  
AP, i t  w a s  p o s s i b l e  t o  approximate the end of t h e  decomposition r eac t ion .  
I n  reducing t h e  d a t a  from t h e  c h l o r a t e  conta in ing  AP, the  b e s t  f i t  was 
obtained f o r  a = 1 defined a t  30% and 31% of t o t a l  sample weight. For 
consis tency,  a lA rates f o r  th i s  material were obtained us ing  a = 1 a t  30% 
of t o t a l  sample weight. 
AP were obtained wi th  a = 1 at  33X of t o t a l  decomposition. 

The rates f o r  pure Ap and phosphate conta in ing  

Figure 3 is a t y p i c a l  p l o t  of t h e  low temperature decomposition 
rate d a t a  f o r  AP and AP conta in ing  phosphate using t h e  Avrami-Erofeev 
equation. The d a t a  were not cor rec ted  f o r  t h e  e f f e c t  of subl imat ion as t h e  
rate of subl imat ion w a s  from 10 t o  2 j  times slower than t h a t  of t h e  
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decomposition reac t ions .  
rate data from 255OC t o  300OC. 
decomposition y i e l d  t'ie equat ions ,  

Figure 4 i s  an Arrhenius p l o t  of t h e  decomposition 
Least mean square f i t s  of t h e  data f o r  

l o g  (k/min-') = 5.06 - 18,990/4.576 T 

log (k/min'') = 4.91 - 19,040/4.576 T 

and log (k/mii-') = 5.40 - 20,960/4.576 T 

FiSure 5 shows two rate p l o t s  for the  decomposition of 
conta in ing  0 . 0 ~ 5 %  chlorate us ing  the unimolecular decay equation. 
t h e  rate of deznxposi t ion w a s  %200 t i m e s  faster than the  subl imat ion rate, 
t h e  amount of Eublimation during decompositron is  n e g l i g i b l e .  
p o s s i b l e  tc cons t ruc t  a meaningful Arrhenius p l o t  from t h e  rate data 
obtained wi th  t h e  c h l o r a t e  doped AP. 
almost independent of t h e  temperature,  however above 275°C t h e  rate increas2d 
sharply wi th  temperature, Table 3. 

Since 

It w a s  not 

Between 250 and 275OC t h e  rate was 

RATE CONSTANTS 

Tempera u re ,  
O r :  (a 5 
208 
218 
228 
2 35 
252 
257 
259 
262 
268 
276 
286 
295 

FOR ISOTHERMAL DECOMPOSITION OF AE' CONTAINING 
0.025% ClO: 

3 

0.55 
0.37 
0.68 
0.98 
2.63 
2.78 
2.63 
2.78 
2.?3 
3.43 
5 13 
8.00 

% a t  which a = 1 

50 
38 
36 
30 
30 
30 
30 
30 
30 
30 
30 
30 

(b) Based on unimolecular decay rate equat ion 
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I n  t h e  temperature range of 200 t o  240°C t h e  decomposition of 
only t h r e e  materials, pure Ap, 0.025% c h l o r a t e  doped AP and 0.0119(: phosphate 
doped AP were s tud ied .  
i n  these  experiments t o  fo l low t h e  subl imat ion  r e a c t i o n .  A problem i n  
reducing and i n t e r p r e t a t i n g  t h e  d a t a  obta ined  i n  t h i s  temperature range w a s  
t h a t  t h e  percent  of AP consumed i n  t h e  low temperature decomposition w a s  
no t  t he  same at  every  temperature.  With AP con ta in ing  H2POI t he  r e a c t i o n  
tended t o  l e v e l  o f f  c l o s e  t o  30-33% of t o t a l  decomposition, however, wi th  
t h e  r e c r y s t a l l i z e d  AP t h e r e  w a s  some v a r i a t i o n ,  with the  percentage 
decomposition i n c r e a s i n g  s l i g h t l y  wi th  dec reas ing  temperature.  
v a r i a t i o n  w a s  more pronounced wi th  t h e  Ap conta in ing  c h l o r a t e  ion ,  where 
t h e  r e a c t i o n  consumed >50% of  t h e  t o t a l  AP a t  t h e  lower temperatures .  
Table 3 lists t h e  k i n e t i c  d a t a  on t h e  deCOmpSitiG5 of t h e  AP con ta in ing  

rw-..L uc w A A ~ ~ ~ ~  u = i w a s  aetermined f o r  each run and va r i ed  from 30 t o  50% 
of t h e  t o t a l  AP. While t h e  induct ion  t i m e  decreased wi th  inc reas ing  temperature.  
i h e  decomposition rate w a s  no t  a s imple func t ion  of t h e  temperature.  The 
data from t h e  AP and t h e  phosphated f P  were reduced again us ing  the  
Avrami-Erofeev equat ion ,  [-ln (1-a)] '* = k (t-t ) with  n = 2. 
square  f i t  of t h e s e  decomposition rate d a t a ,  fro: 200 to  2 4 O o C ,  y i e l d  t h e  
equa t ions  

Due t o  t h e  long  times involved no a t t e m p t  w a s  made 

This  

m x  _ _  ..._ ..- -. ..-- .- - - ~ h l  ?r?Fg.--,gs&gjz .the.. ~ ~ i i m i . , t . . ~ . l 1 !  ~ir. +e?y TQS*-&Z~-- .-ki --cl-. ;;i; - -.kc. iiir 
_.C.,.... . . I  

.-L~...C ..A - -1  ' 

A least  mean 

l o g  (k/min-l) = 7.59 - 26,600/4.576 T 

log (k/min-l) = 5.16 - 18,400/4.576 T 

f o r  pure AP and AP con ta in ing  0.011% phosphate r e s p e c t i v e l y .  
ob ta ined  near  t h e  t r a n s i t i o n  temperature ,  240 + 10°C, show a l a r g e r  
amount of scatter than d a t a  obtained above andbe low t h i s  t r a n s i t i o n  
and have not  been inc luded  i n  t h e  Arrhenius p l o t s .  
i s  somewfiat arbitrary t h e  decomposition of AP is complex enough without  
t r y i n g  to inc lude  measurements on t h e  material while  i t  i s  undergoing a 
c r y s t a l  t r a n s i t i o n .  
phase t r a n s i t i o n  temperature  is r e l a t i v e l y  h ighe r  than t h a t  above t h i s  
temperature  w i t h  t h e  rate a t  235°C being  approximately t h e  same as t h e  
rate a t  260OC. 

Rate d a t a  

While t h i s  procedure 

For pure  AP t h e  rate of decomposition below t h e  

B.  COMBUSTION OF PRESSED OXIDIZER STRANDS 

1. Ap, Chlora te  and Phosphate Doped Ap 
_I_ 

R e c r y s t a l l i z e d  AP of a s i n g l e  pa r t i c l e  s i z e ,  1401.1 

To 
(105-175~) ,  w a s  used i n  a l l  of t hese  experiments.  
analyzed by t h e  procedures l i s t e d  i n  t h e  experimental  s e c t i o n .  
determine the  effect  of p o s i t i v e  and nega t ive  c a t a l y s i s  of t h e  AP 
low temperature decomposition on combustion, t h e  fol lowing materials, 
Ap , A€' (0.13% H 2 P O i ) ,  AP (0.64% H Poi) ,  and AP (0.1% Cl.O;), were 
pressed and burned. Although b e t 8  t h e  chl.orate and phosphate ions 
had a cons iderable  effect on t h e  low temperature decomposition r a t e  
of AP, as desc r ibed  earlier, they had only a l i m i t e d  e f f e c t  on t h e  

AP was doped and 
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burning rate of a pressed AF' s t r and .  
burning rate appeared t o  be i n  t h e  pressure  region of 900 t o  1500 p s i ,  
Although the  r e p r o d u c i b i l i t y  of burning rates w a s  good f o r  a l l  f o u r  
of t h e s e  systems below 900 p s i  and above 1500 p s i ,  t h e r e  was a degree 
(+IO%) of d a t a  scatter i n  the  in te rmedia te  pressure  region.  
wgs g r e a t e r  w i t h  the AP conta in ing  c h l o r a t e  ion  than wi th  t h e  p u r e  AP, 
and t h e  least wi th  t h e  AP containing phosphate. A p l o t  of t h e  d a t a ,  
Figure 6 ,  f o r  pure AP shows a change i n  the burning rate p r e s s u r e  
exponent i n  the  900-1500 p s i  region. The results with t h e  0.1% 
chlora ted  AP, Figure 6 ,  show a similar slope change but w i t h  d a t a  
s c a t t e r  over a l a r g e r  pressure  region than wi th  pure AP. AP containing 
0.13% H PO- 

i nves t iga t ed .  When the  phosphate concent ra t ion  w a s  increased t o  0 .64%,  
t h e r e  w a s  a change i n  the  burning rates and a reduct ion i n  the  d a t a  
s c a t t e r .  
the  same burning rate as t h e  o the r  samples; however, t h e r e  w a s  a 
smaller change i n  p re s su re  exponent between the  l o w  and high pressure  
areas, Figure 7 ,  than found wi th  the  o t h e r  t h r e e  samples. The l a r g e s t  
d i f f e r e n c e  i n  burning rates between pure AP and the  AP conta in ing  0.64% 
phosphate occurred i n  the  in te rmedia te  pressure  range of ~ 1 0 0 0  P A .  

what e f f e c t  they d i d  e x e r t  on t h e  

The s c a t t e r  

had approximately t h e  same burning r a t e ,  F i g u r e  7 ,  as d i d  

3 -.-- pure AP2an$ t h e  AP rnntninin_o 0 . 1 Z  C l n -  --+--- *t.- -..L --- , A G ; ~ ~ U L C  ~ a k i g c  

A t  t h e  low pressures ,  t h e  0.64% phosphated AP had approximately 

2. AP Catalyzed by KMn04 

The decomposition and combustion of AP containing 
isomorphously s u b s t i t u t e d  KMn04 has  been previous ly  s tud ied .  
Peterson (Reference 8 )  noted t h a t  t he  combustion of AP mechanically 
mixed wi th  KMnO was similar t o  t h a t  of AP c o c r y s t a l l i z e d  wi th  KMn04, 4 t h a t  is, i f  the  s t r a n d  is  no t  r e s t r i c t e d  i t  w i l l  no t  s u s t a i n  combustion 
a t  any p res su re  up t o  3000 p s i  (pressure l i m i t  of t h e  experiments).  
The combustion of mechanical mixtures  of these  two materials - has been 
f u r t h e r  i nves t iga t ed  i n  t h e  cu r ren t  program. When AP ( 1 4 0 ~ )  mechanically 
mixed with ~ 6 2 ~  KMnO 
s t r a n d s  i t  would no t  burn without a r e s t r i c t i v e  coat ing.  
r e s t r i c t i o n  w a s  appl ied ,  sus t a ined  burning occurred but a t  a rate lower 
than t h a t  of pure AP, Figure 8. It was noted i n  q u a l i t a t i v e  experiments,  
a t  atmospheric p re s su re ,  t h a t  almost any form of a coat ing o r  s h i e l d ,  
such as aluminum f o i l ,  would make i t  poss ib l e  f o r  the material to  "burn", 
however, without  t h i s  r e s t r i c t i o n ,  the  composite would not  s u s t a i n  combustion. 
In  the  case where a r e s t r i c t i o n  w a s  used, at  atmospheric p re s su re ,  there 
was no s i g n  of a flame and the  material decomposes i n  a condensed phase 
r eac t ion .  DTA traces of t h e s e  mechanical mixtures are d i f f e r e n t  from 
t r a c e s  of AP isomorphously s u b s t i t u t e d  wi th  KMn04, Figure 9. 
shows t h e  start of an exothermic r e a c t i o n  p r i o r  t o  t h e  AP phase t r a n s i t i o n  
temperature and depending on sample s i z e  and p a r t i c l e  size, may d e f l a g r a t e  
r i g h t  a t  t h e  phase t r a n s i t i o n  temperature. 
t hese  materials behave as most AP-catalyst mixtures do with decomposition 
occurr ing above ~325'C. 

Recently 

(0.4 and 2.0 mole percent )  w a s  pressed i n t o  4 When a 

The la t te r  

The mechanical mixtures of 

13 



3 .  Pressed Powder AP Grains  

AP was pressed  i n t o  38mm diameter  c i r c u l a r  g r a i n s  which 
were %12m i n  depth. 
Due t o  the  r e l a t i v e l y  low flame temperature of pure AP, compared t o  t h a t  
of  composites, and t h e  f a c t  t h a t  t h e s e  g r a i n s  were t e s t e d  i n  e x i s t i n g  
hardware having a f a i r l y  l a r g e  volume, t h e  burning rate p res su re  traces 
were progress ive ,  That is, i t  took a s i g n i f i c a n t  p a r t  of t h e  burning 
t i m e  t o  get t h e  motor up t o  t h e  d e s i r e d  p res su re .  
t h e r e f o r e ,  t e s t e d  under cond i t ions  i n  which n i t r o g e n  w a s  used t o  o b t a i n  
p a r t  of t h e  d e s i r e d  p res su re .  
overs ized  nozzle  w a s  used and t h e  motor obta ined  the  des i r ed  pressure  on 
i g n i t i o n .  Work has  s i n c e  been i n i t i a t e d  on har?"-~~-c whose conf igu ra t ion  
is s ~ c h  as t o  allow tlts end burning motor f i r i n g  witbout  supplemental  
p ressure .  The burning rates obta ined  us ing  t h e  supplemental  n i t rogen  
p res su re  method are shown i n  F igure  10. 
well with  those obtained wi th  pure  AP pressed  s t r a n d s  t h a t  have been 
r e s t r i c t e d  w i t h  a polymeric r e s i n .  
lowest p r e s s u r e s  where t h e  motors burned somewhat slower than t h e  s t r a n d s .  
The i n t e r e s t i n g  areas t o  n o t e  are t h e  burning rlites above 2000 p s i  where 
t h e r e  i s  no i n d i c a t i o n  of a nega t ive  p re s su re  exponent and the  rate 
a t  . ~ 2 2 5  p s i .  The lat ter p r e s s u r e  is below what is  gene ra l ly  taken as 
t h e  low p res su re  d e f l a g r a t i o n  l i m i t  f o r  AP a t  t h i s  temperature (26OC). 
However, i t  should be noted t h a t  t h e r e  w e r e  s i g n s  of uns t ab le  burning 
a t  t h i s  lower pressure .  

These samples were then t e s t e d  as end burning motors. 

The AP gra ins  were, 

I n  t h i s  t e s t i n g  conf igu ra t ion  a ~ 2 5 %  

These burning rates agree  

The only d i f f e r e n c e s  are a t  t h e  

C. AP-FUEL DECOMPOSITION AND COMBUSTION STUDIES 

There are a l a r g e  number of d a t a  which show t h a t  t h e  n a t u r e  
of t h e  f u e l  component has a s i g n i f i c a n t  e f f e c t  on t h e  combustion rate of 
an AP composite p r o p e l l a n t .  General  r e l a t i o n s h i p s  between f u e l  p r o p e r t i e s  
and combustion rates have not  y e t  been s a t i s f a c t o r i l y  e s t a b l i s h e d .  I t  
w a s  t h e  a i m  of t h e  c u r r e n t  program t o  proceed exper imenta l ly  i n  a manner 
such t h a t  the  r e s u l t s  would allow some g e n e r a l i z a t i o n  t o  be made about 
which p r o p e r t i e s  of  D f u e l  are important  i n  in f luenc ing  t h e  combustion 
of a composite p r o p e l l a n t .  One of t h e  most d i f f i c u l t  experimental  
problems i n  t h i s  area is t o  i s o l a t e  t he  v a r i a b l e s .  For example, changing 
t h e  chemical composition of a f u e l  gene ra l ly  changes i t s  phys ica l  
p r o p e r t i e s  (mel t ing,  etc.) ,  s i m i l a r l y  keeping a s to i ch iomet r i c  r a t i o  
between f u e l  and o x i d i z e r  may involve  s i g n i f i c a n t  d i f f e r e n c e s  i n  t h e  
weight o r  vol-me of t h e  va r ious  f u e l s  needed. 

For t h e  ma jo r i ty  of experiments t h e  p a r t i c l  s i z e  of both t h e  
f u e l  and the o x i d i z e r  w a s  he ld  cons tan t .  
was 14011 (range 1 0 5 ~  t o  1 7 5 ~ )  which i s  t h e  same p a r t i c l e  s i z e  used i n  
a l l  t h e  o t h e r  decomposition and combustion experiments.  
d i f f i c u l t  t o  s c reen  the  f u e l s  t o  a given p a r t i c l e  s i z e .  A l l  f u e l s  

The AP p a r t i c l e  s i z e  s e l e c t e d  - 
It was more 
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were passed through a 621~ screen  and caught on a 43p screen.  
a g g l c ~ r a t f s n  imre tharr p a r t i c l e  size pre-;entad aUch of the  material 
from going through the  4 3 ~  screen.  Therefore,  un less  otherwise noted 
t h e  f u e l  par t ic le  s i z e  l i m i t s  are given as ~ 6 2 ~ .  Experiments with 
s e v e r a l  f u e l s  showed no d i f f e rence  i n  burning rates between composites 
made w i t h  r e c r y s t a l l i z e d  AP and a s p e c i f i c  l o t  of "as received" AP. 
Therefore ,  a l l  t h e  experimental  combustion work with composites, i n  t h i s  
program, was done w i t h  one l o t  of "as received" AP. 
i nves t iga t ed ,  t h e  s toichiometry of t h e  fuel-oxidizer  mixture i s  based 
on the  f i n a l  f u e l  products being CO and H20. 

Often 

For a l l  systems 

1. Fuel V o l a t i l i t v  

Two hydrocarbon f u e l s  polyethylene (PE) and s t e a r i c  

Polyethylene and s tear ic  ac id  are both 
a c i d  (SA) were s e l e c t e d  t o  determine t h e  e f f e c t  of f u e l  v c l a t i l i t y  
on AP composite combustion. 
e s s e n t i a l l y  s a t u r a t e d  hydrocarbons (with the  except ion of the  terminal  
COOH group on SA) which m e l t  a t  a r e l a t i v e l y  low temperature,  <lOO°C. 
They d i f f e r  p r imar i ly  i n  t h e i r  v o l a t i l i t y  wi th  t h e  polymeric P z  being 
r e l a t i v e l y  s t a b l e  up t o  %4OO0C while stearic a c i d  v o l a t i l i z e s  (under 
our  experimental  condi t ions)  by 3OO0C, Figure 11. 
d i f f e r e n t i a l  i n  t h e i r  bo i l i ng  p o i n t s  w i l l  decrease with inc reas ing  
p res su re ,  some d i f f e r e n t i a l  w i l l  remain, e s p e c i a l l y  a t  the  lower pressures.  
Figure 12 compares the  burning rates of pressed composites of AP-poly- 
e thylene  (89.4/10.6) and AP-stearic a c i d  (87.4/12.6). It can b e  seen 
t h a t  t h e  burning rate of t h e  PE composite is s l i g h t l y  lower a t  t h e  
lower p re s su res ;  however, due t o  a s l i g h t l y  h igher  p re s su re  exponent 
i t  has  approximately t h e  same burning rate as the  SA composite above 

While t h e  tempersture 

Q1000 p s i .  

Melting and Charring of Fuels 

a. Sucrose, Sucrose Octaacetate and S ta rch  

Sucrose, sucrose  o c t a a c e t a t e ,  and s t a r c h  were 
s e l e c t e d  t o  s tudy t h e  e f f e c t s  of mel t ing  and char r ing  on combustion. 
These t h r e e  compounds make poss ib l e  a comparison betweer. a f u e l  which 
melts wfthsut  chs-iring, a f u e l  which melts wi th  char r ing ,  apd a f u e l  
which chars  without metling. While these  compounds d i f f e r  i n  these  
c k a r a c t e r i s t i c s ,  they are similar i n  composition (carbon, hydrogen, and 
oxygen) and s t r u c t u r e .  TGA and DTA d a t a ,  Figures 1 3  and 14, i l l u s t r a t e  
the  thermal characteristics of these  compounds. Sucrose o c t a a c e t a t e  
melts at 83OC and is r e l a t i v e l y  s t a b l e  up t o  %28OoC, a f t e r  which po in t  
i t  v o l a t i l i z e s  leav ing  no res idue .  
then  begins t o  b o i l  and cha r  between 210-240°C and is followed by gradual  
decomposition t o  a char  r e s idue  of ~ 3 0 %  a t  400OC. 
compounds, s t a r c h ,  begins  t o  char  between 210-240°C without f i r s t  going 

Sucrose melts a t  sl6O0C, t h e  melt 

The l a s t  of these  
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a r o u g h  a m e l t .  
t h a t  f o r  sucrose  (~30%). 
of  cha r  r e s idue  are a func t ion  of such parameters  as hea t ing  rate 
and must t h e r e f o r e  be considered i n  conjunct ion wi th  t h e  experimental  
cond i t ions  under which tney are obtained.  
were performed under a n i t r o g e n  atmosphere, similar resu l t s  were obtained 
i n  a3 oxygen atmosphere. 

The char  r e s i d u e  at 4OOOC is approximately the  same as 
The chdr r ing  temperature ranges and t h e  amount 

While t h e  experiments shown 

T::A experiments w i t h  mixtures  of AP and t h e s e  f u e l s  
i nd ica t ed  t h a t ,  a t  least under the cond i t ions  of t h i s  experiment (sample 
is not  confined and h e a t  is  r e l a t i v e l y  e a s i l y  d i s s i p a t e d  t o  t h e  sur roundings) ,  
t h e  f u e l  and t h e  o x i d i z e r  decomposed without  i n t e r a c t i n g .  
of  t he  f u e l  decomposition i s  p r imar i ly  a dehytii-etion, however t h e  percentage 
of cha r  r e s idue  formed i n  t h e s e  experiments i n d i c a t e d  tirz.+ some carbon 
w a s  a l s o  l o s t .  Figure 15 shows t h a t  i n  t h e  .W f u e l  mixtures  tiia..fu\71 
dehydrat ion occurs  be fo re  t h e  AP decomposes. 
t h e r e  w a s  a cha r  r e s i d u e  even i n  t h e  presence of t h e  AP. 

The f i r s t  s t e p  

A t  t h e  end of t h e  r&?-c-k?n .. -.-".. 

The t h r e e  materials were pressed  i n  composites wi th  
AP t o  form mixtures  conta in ing  32.8%, 31.6%, and 29.28% sucrose ,  s t a r c h ,  
and sucrose  o c t a a c e t a t e ,  r e s p e c t i v e l y .  All materials were d r i e d  a t  100°C 
f o r  24 hours be fo re  blending w i t h  t h e  Ap. It was not  p o s s i b l e  t o  get  a 
cohesive s t r a n d  w i t h  t h e  starch-AP composite u n t i l  G!.5% water had been 
added t o  the  powder blend.  The burning rates of these composites were 
measured a t  p re s su res  of 100 t o  3000 p s i  and t h e s e  d a t a  are summarized i n  
Figure 16. There are e s s e n t i a l l y  no d i f f e r e n c e s  i n  burning rates between 
the s t a r c h  and t h e  sucrose  composites,  except  a small v a r i a t i o n  a t  tile 
h ighes t  p re s su res .  
lower a t  a l l  p re s su res  above 200 p s i .  It  should a l s o  be noted t h e  l a t t e r  
composite had a maximum i n  its p res su re  burning rate curve a t  ~800 p s i ,  
f e l l  t o  a minimum a t  ri.1800 p s i ,  a f t e r  which t h e  burning rate increased  
up t o  t h e  h i g h e s t  p re s su re  t e s t e d ,  3000 p s i .  

The sucrose  o c t a a c e t a t e ,  however, burned s i g n i f i c a n t l y  

b. Phenol ic  Resins ,  Paraformaldehyde and Carbon 

It was not  p o s s i b l e  t o  form a pressed  s t r a n d  w i t h  
a composite conta in ing  a h igh ly  c ros s l inked  phenolic-formaldehyd? 
polymer, even i f  several percent  water were introduced i n t o  t h e  blend. 
To overcome t h i s  problem, two less c ross l inked  phenol ic  polymers, novalak 
and r e s o l e ,  were synthes ized .  Novalak is  e s s e n t i a l l y  a l inear polymer 
wi th  an excess  of phenol which cannot polymerize f u r t h e r  on hea t ing  while 
r e s o l e ,  which is made wi th  an excess  of formaldehyde, can c r o s s l i n k  
f u r t h e r  on hea t ing .  Resole used in t h i s  s tudy  w a s  on ly  s l i g h t l y  c ross -  
l i nked  and was s t i l l  f u s i b l e .  Whether a d d i t i o n a l  c r o s s l i n k i n g  occurs  
i n  t h e  a c t u a l  combustion s i t u a t i o n  i s  no t  known. Both of these polymers 
thermally decompose so as t o  leaye a r e s i d u a l  c h a r  a t  tempt'.J,:-:!res 
up t o  650*C (which was t h e  h i g h e s t  temperature reached i n  the  t e s t ) ,  
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Figure 17 .  The percentage r e s idue  i n d i c a t e s  t h a t  i n  a d d i t i o n  t o  
dehydrogenation some of the  carbon i s  lost  ( the res idue  found is 
~ 4 0 %  as compared t o  t h e  carbon content  of ~ 7 0 % ) .  P-cresole (melting 
poin t  ~35'C) was i n i t i a l l y  s e l e c t e d  as a f u e l  i n  t h i s  series as i t  is 
es , en t i a l ly  a monomeric u n i t  of t h e  phenolformaldehyde polymer. However, 
i t  w a s  d i f f i c u l t  t o  handle,  p a r t i a l l y  due t o  contamination by the  lower 
melt ing o r tho  and meta isomers; thus  a higher  b o i l i n g  compound was 
se l ec t ed  as the  f u e l  f o r  t h e  c o n t r o l  formulation. 
isopropyidenediphenol (bisphenol A) which i s  s i m i l a r  t o  a dimeric u n i t  
of t h e  phenolic r e s i n s ,  
paraformaldehyde and carbon black were selected as f u e l s  i n  t h i s  series. 
The paraformaldehyde composites p re s sed  e a s i l y  while  t h e  carbon could 
not  be pressed without t h e  a d d i t i o n  of ~ 3 %  moisture.  

This is 4 , 4 '  

I n  add i t ion  t o  these  t h r e e  phenolic materials, 

Stoichiometry t o  give CO arid H20 as f i n a l  products 
requi red  t h e  following f u e l  percentages;  r e s o l e  - 18.9%, m v a l a k  - 16.8%, 
bisphenol  A - 15,6%, paraformaldehyde - 33.9%, and carbon - 17%. 
18 shows t h a t  near  4OO0C novalak reac ted  with AP and t h e  material 
de f l ag ra t ed .  S imi l a r ly ,  t h e  carbon AP mixture de f l ag ra t ed  a t  ~400OC. 
I n  the  mixtures of AP with  the  more v o l a t i l e  f u e l s ,  paraformaldehyde 
and bisphenol  A,  t h e  f u e l  v o l a t i l i z e d  leaving  t h e  AP which thzn 
decomposed a t  e s s e n t i a l l y  the  same rate as pure AP, Figure 19. 
20 and 2 1  summarize the  burning rate d a t a  obtained with these  composites 
over  t h e  pressure  range of 100 t o  3000 p s i .  
made with r e s o l e  and novalak with t h a t  conta in ing  bisphenol  A,  i t  i s  
seen  t h a t  t h e  bisphenol  A composite had a lower burning ra te  at a l l  
pressures .  I n  t h i s  series t h e r e  w a s  l e s a  of a f u e l  component than i n  t h e  
sucrose  series, y e t  t h e  d i f f e r e n c e s  i n  burning rates between those 
composites whose f u e l  cha r s  on decomposition and those which leave no 
r e s idue  are about t he  same i n  each series. I n  l i n e  wi th  t h i s ,  the  
composite with paraformaldehyde had a low burning rate compared t o  t h a t  
with t h e  non-volat i le  carbon. 
of the  carbon is  2000 A. 

Figure 

Figures 

Comparing t h e  composites 

In  the  l a t t e r  system, the  p a r t i c l e  s i z e  

3. Chemical Reac t iv i ty  

a. Benzoic Acid, Hydroquinone and I s o p h t h a l o n i t r i l e  

Benzoic a c i d  was taken f o r  t h e  b a s i c  formtilation 
of t h i s  series of f u e l s ,  
series i t  is poss ib l e  t o  make l i m i t e d  comparisons with a l i p h a t i c  compounds 
such as s tear ic  ac id .  
than s tear ic  a c i d  formed a composite with AP which had a lower burning 
rate, e s p e c i a l l y  a t  p re s su res  above %lo00 p s i ,  than t h e  comparable s tear ic  
acid-AP composite (Figure 23 versus  12) .  

I n  a d d i t i o n  t o  the  comparisons wi th in  the  

Benzoic a c i d  which is thermally more stable 

Since an area of i n t e r e s t  i n  t he  combustion of A' 
composites has  been t h e  p o s s i b i l i t y  of a f u e l  ox id i ze r  r e a c t i o n  i n  the  
condensed phase o r  of gas-solid (or l i q u i d )  su r face  r e a c t i o n s ,  hydro- 
quinone was compared t o  benzoic a c i d  on t h e  suppos i t ion  t h a t  t h e  
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hydroquinone would be more reactive toward ox id iz ing  s p e c i e s  than would 
benzoic  ac id .  This was borne ou t  i n  DTA work wi th  mixtures  of Ap and these  
f u e l s ,  Figure 22. The b o i l i n g  p o i n t s  of t h e s e  two compounds are very 
n e a r l y  t h e  same, however, i t  can be seen  tha.t t h e  hydroquinone caused 
a d e f l a g r a t i o n ,  i n  t h e  DTA, a t  ~380°C whi le  t h e  benzoic a c i d  appeared 
t o  v o l a t i l i z e  without  i n t e r a c t i n g  wi th  the  AP. 
wi th  AP composites using t h e s e  f u e l s  were e s s e n t i a l l y  t h e  same over t h z  
pressure  range s tud ied  (300-3000), Figure  23. 

The burning rates obta ined  

It is i n t e r e s t i n g  t o  n o t e  t h a t  a t  p re s su res  above 
$1000 p s i  t he  burning ratcs of t h e  benzoic a c i d  and hydroquinone cozpos i t e s  
were lower than  those  of AP without  a f u e l  component. As p a r t  of both 
t h i s  and a la te r  series, t h e  burning rate of an Ap composite wi th  
i s o p h t h z l o n i t r i l e  as t h e  f u e l  was obtained.  The burning rates of an AP 
composite wi th  t h i s  f u e l ,  which is thermally q u i t e  s t a b l e ,  are comparable 
wi th  those  of t h e  hydroquinone and benzoic ac id  :omposites up t o  pressures 
of $2000 p s i .  Above 2000 p s i  t h e r e  w a s  a s i g n i f i c a n t  d i f f e r e n c e  between 
t h e  combustion rates of t h e  n i i r i l e  composite and those of t he  o t h e r  two 
aromatic  f u e l  composites. The burning ra te  pressure exponent of t h e  
n i t r i l e  composite changed a t  $2000 p s i  above which p res su re  i t  is  more 
p o s i t i v e  than  t h e  o t h e r  two formula t ions ,  Figure 25. 

b. Triphenylmethane 

It i s  d i f f i c u l t  t o  f i t  t h i s  compound i n  any given 

The a b s t r a c t i o n  of a hydrogen from t h i s  compound 
category.  While i t  is  a s u b s t i t u t e d  a l i p h a t i c  hydrocarbon, t h e  s u b s t i t u e n t s  
are aromatic  groups. 
w i l l  y i e l d  t h e  r e l a t i v e l y  s t a b l e  t r iphenylmethyl  r a d i c a l .  I f  t h i s  
r a d i c a l  were produced i t  would be  expected t o  react a i  o r  nea r  t h e  
p o i n t  where i t  w a s  formed. For example, i f  t h e  r a d i c a l  w a s  formed n e a r  
t h e  s u r f a c e  i t  would be expected t o  react f u r t h e r  a t  t h a t  po in t  r a t h e r  
than d i f f u s e  unr.tailted into the  secondary flame, DTA shows t h a t  t h e  
f u e l  does react exothermally wi th  AP below 400°C, however, t he  r e a c t i o n  
does not  consume the  e n t i r e  sample a t  t h a t  temperature (unl ike  t h e  AP- 
hydroquinone r e a c t i o n ) .  The burning rates Obtained wi th  the  composite 
conta in ing  triphenylmethaire as a f u e l  e x h i b i t  an unusual p re s su re  
dependence. Figure 24 shows t h a t  t h e  burning rate increased  r a p i d l y  
wi th  inc reas ing  p res su re  up t o  # b 2 0 0  p s i .  
p r e s s u r e  exponc't: was e s s e n t i a l l y  zero  while above 550 p s i  t h e r e  was 
aga in  a po?itiv.-: p re s su re  exponent which gradual ly  decreased t o  zero  
a t  ~ 2 2 0 0  p s i .  The unique f e a t u r e  wi th  t h i s  composite is  t h e  p l a t e a u  
i n  t h e  reg ion  from 200 t o  550 p s i .  This  is t h e  p re s su re  reg ion  i n  
which the  f u e l  component may a f f e c t  t h e  burning rate but  u sua l ly  does 
not  a f f e c t  t h e  p re s su re  exponent. 

From 200 t o  $550 p s i  t he  

c. Aluminum 

Aluminum vas chosen as a f u e l  which imuld not  easily 
v o l a t i l i z e  and t h e r e f o r e  would either r e a c t  a t  t h e  s u r f a c e  o r  be e j e c t e d  
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i n t o  t h e  gas  phase. 
and had a p a r t i c l e  s i z e  range of 20 t o  3011. Burning rates wei-e obtained 
wi th  t h e  AP-A1 composite only between 800 and 3000 p s i  as i t  was not 
p o s s i b l e  t o  achieve i g n i t i o n  below 800 p s i  w i th  t h e  nor.,ral i g n i t e r  system, 
Figure 24.  Using an  e x t r a  l a r g e  zitand-off i g n i t e r  i t  WGS p o s s i b l e  t o  
o b t a i n  i g n i t i o n  and burning a t  600 p s i .  However, i t  was not  poss iLle  t o  
measure t h e  burning rate i n  the  lat ter case as t h e  s i ze  of t h e  i g n i t e r  
made i t  impossible  t o  reduce t h e  p re s su re  t r a c e  da t a .  A t  atmospheric 
p re s su re  i t  was no t  p o s s i b l e  t o  ob ta in  i g n i t i o n  of t h e  AP-A1 composite 
even when using a gas  oxygen flame from a g l a s s  blower's to rch .  

The aluminum used i n  these  experiments was s p h e r i c a l  

4 .  Fuels  Producing NH3 and/or H20 

a. Benzamide and Acetamide 

These compounds were s e l e c t e d  on t h e  b a s i s  t h a t  
one of t h e i r  decomposition products ,  ammonia o r  water ,  could a f f e c t  t h e  
n a t u r e  o r  rate of t h e  AF' combustion r e a c t i o c .  Acetamide can pyrol;.?e 
l n t o  t h r e e  d i f f e r e n t  sets of products .  

CH3CONH2 -> 

CH3CONH2 -> 

CH3CONH2 > 

CH3CN + 1120 

HNCO t C H ,  

P y r o l y s i s  gene ra l ly  occurs  by a l l  t h r e e  mechanisms. 
produces t h e  ketene and ammonia is optimized at  '\.5OO0C which is  
c l o s e  t o  t h e  temperature gene ra l ly  accepted as tLie s u r f a c e  temperature 
of an AP composite p r o p e l l a n t .  
relative c o n t r i b u t i o n  of t h e  t h r e e  p a t h s  va ry  w i * . h  y i s s u r e .  Benzamide 

The pa th  which 

There is no a v a i l a 5 i e  d a t a  on how t h e  

is gene ra l ly  considered t o  decompose i n t o  

C6H5CONH2 > 

however, a decomposition i n t o  an uns t ab le  

t h e  n i t r i l e  iind water, 

C6H5CN + H20 

aromatic  and ammonia is p o s s i b l e .  

DTX s t u d i e s  w i t h  mixtures of AP and kefizamide or 
acetamide showed t h a t  a r e a c t i o n  occurred at ~350°C bu t  t h a t  t h e  sample 
w a s  n o t  consumed at  t h i s  temperature ,  Figures  26 and 27. 
a t  atmospheric p re s su re ,  does n o t  occur  u n t i l  temperatures  i n  excess  
of 45OOC are reached. Mixtures of t h e s e  materials wi th  AP r e s u l t e d  i v  
a s l i g h t  i n c r e a s e  i n  t h e  DTA d e f l a g r a t i o n  temperature of the mixture over  
that of pure AP (Reference 6 )  a t  SO0 p s i .  

F i n a l  decomposition, 

The combustion r e s u l t s  ob ta ined  w i t h  composites 
u t i l i z i n g  t h e s e  materials as f u e l  are q u i t e  interesting. The s l o p e  of 
t h e  p l o t  of l o g  p res su re  vs log burning rate f o r  t h e  AP-benzamide composite 
is r e l a t i v e l y  f l a t  between 200 and 2000 ?si (burning rates of 0.19 and 
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0.27 inches/sec at 200 and 2000 p s i ,  r e spec t ive ly ) .  
a change i n  t h e  pressure  exponent with a r e l a t i v e l y  rapid increase i n  
burning r a t e  gofng from 2000 t o  3000 p s i ,  Figure 25. 
exponent below 2000 p s i  w a s  due not  only t o  a depression i n  burning rate 
a t  t h e  higher  pressures  but  an i nc rease  i n  burning rate a t  t he  lower 
pressures .  The combustion d a t a  from the  AP-acetamide composite wzre 
less reproducible  than those from the  AP-benzamide composite. The 
burning of t he  AP acetamide can be q u a l i t a t i v e l y  descr ibed as being 
very slow burning a t  atmospheric pressure ,  not  s u s t a i n i n g  burning 
between 200 and %600 p s i ,  r d a t i v e l y  slow burning between 600 and 
2000 p s i  wi th  a g r e a t  d e a l  of scatter i n  t h e  d a t a  and e x h i b i t i n g  e 
rap id  inc rease  i n  burning rate above 2000 p s i ,  Figure 25. 

A t  2OUO p s i  t he re  is  

The l o w  p r e s s u r c  

b. Succinamide 

The mechanism f o r  t he  thermal decomposition of 
succinamide, a t  least at  atmospheric p re s su re ,  is  less ambiguous 
than t h a t  f o r  acetamide. The pririary ther;r,r;l & z i x i i , p ~ ~ i t i u ~ i  p a t h  ior 
succinamide y i e l d s  succinimide and ammonia, (Reference 9). 

H2C - COW2 H2C-CO’ 

Succinamide does not  reach a b o i l i n g  po in t  as i t  decomposes at its 
mel t ing  po in t  t o  form t h e  imide and ammonia, however, t h e  succinimlde 
does b o i l  a t  ~288OC. 
succinamide composite was not  consumed, i n  the  DTA, u n t i l  the temperature 
gets above 450OC. A t  both atmospheric and e l eva ted  pressure  a r e s i d u a l  
char  w a s  found a t  the  end of the  DTA r m .  Under combustion condi t ions  
i t  w a s  not poss ib l e  t o  o b t a i n  sus ta ined  burning wi th  the  AP-succinamide 
composite between 100 and 1500 p s i .  Even when e x t r a  boos te r  i g n i t e r s  
were used t h e  compccite e i t h e r  d id  not  i g n i t e  o r  ext inguished s h o r t l y  
a f t e r  i g n i t i o n .  
burning although there w a s  a tendency for t h e  composite t o  ex t inguish .  
The burning rates a t  atmospheric pressure  were between 0.01 and 0.02 
inches/sec.  Sustained combustion (using only the s tandard i g n i t e r )  
w a s  obtained between 150O-?OCO p s i .  A t  1500 p s i  combustion w a s  erratic 
and extinguishment occas iona l ly  occurs.  The burning rates i n  the  p r e s s u r e  
range of 1500-3000 p s i  were between 0.05 and 0.07 inches/scc.  This is 
approximately an order  of magnitude slower than rnost compmites and a 
f a c t o r  of four  slower than t h e  next  slcwest burnipg composites. When 
2% copper chromite (Cu 0202) was added t o  t h e  succinamide composite t he  
combustion r e s u l t s  were d r a s t i c a l l y  a l t e r e d .  Sotably,  combustion was 
sus ta ined  a t  a l l  p re s su res  t e s t e d  and the  burning rate was increased 
(over t h a t  of t he  uncatalyzed composite) by a f a c t o r  of 2 or 3 a t  

An atmospheric pressure  DTA sliwe2 iliat the 

A t  atmospheric pressure  i t  was poss ib l e  t o  ob ta in  
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-_ 
t h e  lowest pressures  and a f a c t o r  of %15 a t  t h e  h ighe r  p re s su res .  
p re s su re  exponent v a s  positive wi th  a value of W.6-0.7 between 300 
and 3000 p s i ,  Figure 28. 

The 

C .  Phthalamide and Phthalamic Acid 

Phthalamide decomposes by a mechanism which is similar 
t o  t h a t  of t h e  thermal decomposition of succinamide to form 2hthal imide 
and ammonia. The thermal decomposition mechanism of phthalamic a c i d  is 
similar t o  t h a t  of t h e  diamides wi th  t h e  primary d i f f e r e n c e  being t h a t  
5 0  r a t h e r  than NH is formed a l o r g  wi th  t h e  imide. 3 

As wi th  t h e  succinamide the decomposition t o  t h e  imide p l u s  MI3 or 5 0  
begins  a t  t h e  me l t ing  p o i n t  temperature  of t hese  compounds, however, 
unlike t h e  succinimide product  the phthal imide formed can f u r t h e r  decompose 
( s t a r t i n g  a t  ~350°C) for form t h e  thermal ly  s t a b l e  n i t r i l e ,  (Reference 10). - 

The combustion results from t h e  AP-phthalamic a c i d  
composite w e r e  very  similar to  those  obta ined  with t h e  AP-benzamide 
composite. 
e s s e n t i a l l y  zero  from 300 t o  1500 psi above which pressure the exponent 
was W.9. 
%30% lower than those  obta ined  wi th  the  benzamide composite, Figure 29. 
The burning rates obta ined  with t h e  AP-phthalamide composite were aga in  
relatively low, however, t h e  p r e s s u r e  exponent was unique f o r  t h i s  series. 
The p r e s s u r e  exponent w a s  p o s i t i v e  between 150 and 800 psi above which i t  
became nega t ive  such t h a t  t h e  burning rates a t  1500 and 250 psi were 
approximately equal ,  Figure 29. It w a s  no t  p o s s i b l e  (for reasons y e t  
undetermined) t o  o b t a i n  burning rates between 1500 and 3000 p s i  wirh 
t h I s  fcrm?r.fstic?r, (there were z z y  =Z?SCS fii ~%i& tha scinipirsik Z&ird 
t o  i g n i t e  and a few i n  which i g n i t i o n  occurred bu t  was  innnediately 
followed by a p res su re  surge) .  

With t h e  phthalamic a c i d  composite t h e  p re s su re  exponent w a s  

In  t h e  reg ion  of pres su re  independence t h e  burning rates were 
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C. REACTIONS OF FUELS AND CATALYSTS WITH PERCHLORATE I O N  

I . t  has been repor ted  t h a t  potassium pe rch lo ra t e  (KP) does not  
decompose between 300-400°C, while KP pressed wi th  carbon does decompose 
i n  t h i s  temperature range a t  an apprec iab le  rate (Reference 11). This 
sugges ts  the p o s s i b i l i t y  of a d i r e c t  pe rch lo ra t e  ion-fuel r eac t ion .  A 
similar experiment w a s  t r i e d  i n  t h i s  program wi th  KP and polyethylene 
(PE). Thermogravimetric r e s u l t s  show t h a t  €'E is r e l a t i v e l y  s t a b l e  up 
t o  %4OO0C. 
between the  PE and KP; however, as t h e  DTA i n  Figure 30 shows, t h e r e  
w a s  no obvious i n t e r a c t i o n  between these  two materials. This w a s  
confirmed by isothermal  TGA rms a t  %4OO0C. 
two f u e l s  (carbon and PE) i t  is concluded t h a t  not only must the  r eac t ion  
between an ox id ize r ,  si ich a s  KP, rrnd 1- fzel he rhermcdgnczically fezsibit: 
i t  must proceed a t  a reasonable  k i n e t i c  rate. To further investigate 
t h i s  l i n e  of reasoning, some ' f u e l s '  which have the  thermodynamic p o t e n t i a l  
t o  reduce pe rch lo ra t e  ion  were t e s t e d .  These inc lyde  the  following sa l t s ,  
KCN, KSCN, KCNO, and K,S,O,,. Some redox p o t e n t i a l s  for the air?imf; *if 
t h e s e  salts  are: 

Since PE m e l t s  a t  %lOO°C, good phys ica l  contac t  i s  e s t ab l i shed  

From a comparison of t hese  

L L J  

CNS- > 1 /2  (CNS)2 -0.77 

s20; > so3 
- > C N  

2 2  HCN 

-0.40 

-0.37 

-0.33 

The exo thcms  noted i~ Figcres 31 and 32 show t h a t  a i l  IOUL co~-p.~?ttnds 
reac ted  with KC1C4,  this 2espite  the fact t h a t  KCN ani! K ? S O  do Got x d t  
o r  decompose at temperatures <6GOoC. 
t h e  lowest temperature and w a s  t he  most vigorous is t h a t  between KC104 
and KSCN (which melts a t  173'C). 
a c t u a l l y  de tona t ing  immediately above the  phase t r a n s i t i o n  temperature 
(3OOOC) of K C 1 3 .  A 1 1  f o u r  of t he  reducing agents  reac ted  exothermical ly  
w i t h  KC104  by 
i n  a detonat ion.  

The r e a c t i o n  which occurred a t  

The r e a c t i o n  w a s  strorlgly exstheimic,  

OO°C and t h e  r e a c t i o n  wi th  KCN as w i t h  KSCN r e s u l t e d  

I n  a gene ra l  survey of a l l  t h e  compounds containing 
t r a n s i t i o n  elements t h a t  have been used as combustion c a t a l y s t s ,  only those 
containing copper or i r o n  have had any apprec iab le  e f f e c t  on t h e  burning 
rate. On the  suppos i t ion  t h a t  a poss ib l e  s t e p  i n  t h e  ca ta lyzed  decomposition 
of AP is the  reduct ion  of ClO, o r  HClO,,, a survey wag made of t h e  oxidat ion-  
A & I C : L ~ W ~  p o r e n t i a i s  01 metal systems r e l a t i v e  t o  the  p o t e n t i a l  of 
t h e  ch iora tn-perchlora te  couple. Although +he p o t e n t i a l s  used are f o r  
r e a c t i o n s  i n  s o l u t i o n ,  they are u s e f u l  f o r  xnnparison purposes. It i s  
immediately s t r i k i n g  t h a t  the  oxid iz ing  member of t h e  fol lowing redox 
couples are a l l  thermodynamically s t r o n g e r  oxid iz ing  agents  ( i n  the  
s p e c i f i c  r eac t ions  l i s t e d )  than pe rch lo ra t e  ion  o r  pe rch lo r i c  acid, 
The Eo re?ox values art: for acid condi t ions ,  (Reference 12) .  
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'3+ > co + e  -1.8 2+ 
co 

Mno2 > w0,- + 3e -1.7 

+ e  -1.6 +4 > Ce +3 Ce 

Mn+2 > Mn+3 

Pb+2 > Pb02 

+ Se -1.5 

+ e  -1.5 

+ 2e -1.46 
-2 

> 1/2 Cr207 + 3e -1.3 +3 Cr 

TI+  TI+^ + 2e -1.25 

+ 2e -1.23 h02 
m+2- 

c103- c104 + 2e -1.19 

This list contains transition metals which have been tried as AP composite 
combustion catalysts with little success. Notable in this group are Mn+2 

, and Cr3+ salts. On the other hand, perchlorate is a 
agent than the oxidizing member of the following couples. 

+ e  -0.77 3+ > Fe 2+ Fe 

crt > cu + e  -0.52 

+ e  -0.15 cu 

+ 
2+ cu + 

The salts of these metals have proved to be good combustion catalysts. 

In experiments to determine i f  the redox reaction being 
studied involves ClOi rather than the decomposition of perchloric acid, 
KC104 was used as the o x i d i z e r ,  
of the two valence states of copper (Cu+l and Cu'2) on the reaction of 
their oxides with KC1O4. 

Figure 33 a h u s  the difference in effect 

If the KC104-Cu 0 mixture is  reacted i n  the 
presence of an organic fuel, the decompos 2 tion of KC104 goes to completion. 
111. DISCUSSION 

AP Decomposition and Sublimation - There have been two mechanisms 
proposed to explain the uncatalyaed decomposition of AF between 200 
and '31)OOC. 
transfer process, 
tb.0 $ c c m p s f t f a c  af id? in inis temperature range involves a step in 
which HClO is formed by means of a proton transfer. In a recent paper 

One is an elertrnn transfer p r x e a a  thc st?-.cf: a proton 
Most of the evidence to date supports the  I d e e  t!xt 

4 
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(Reference 7 ) ,  a r e a c t i o n  scheme is presented i n  which a proton t r a n s f e r  
occurs  forming NH and H C l O  adsorbed t o  t h e  c r y s t a l .  These species then 
d i f f u s e  over  t h e  s u r f a c e  an e i t h e r  desorb (subl imat ion)  o r  r e a c t  
(decomposition). It  has  been argued t h a t  decomposition occurs  o r  a t  
least is i n i t i a t e d  on t h e  s u r f a c e  of t he  c r y s t a l ,  and t h a t  t h e  f i r s t  
s t e p  i n  t h e  decomposition may be  t h e  bimolecular  r e a c t i o n  of  HC104. 
l a t te r  p o s s i b i l i t y  has  also been suggested by Wise (Reference 13) i n  an  
ear l ie r  i n v e s t i g a t i o n .  The p resen t  work adds experimental  evidence 
t o  t h i s  b a s i c  scheme and a l s o  extends the  concepts t o  h e l p  exp la in  t h e  
d i f f e r e n c e s  i n  rates of decomposition determined by d i f f e r e n t  i n v e s t i g a t o r s .  

8 3 

The 

When t h e  concen t r a t ion  af NH i n  the  atmosphere surrounding t h e  

Wess. i--xits support  a 

and HC104, Equation 1. 

3 sample is s u f f i c i e n t l y  h igh  n e i t h e r  decomposition o r  subl imat ion of AP 
occurs  between 200 and 300°C (Reference 1 ) -  
r e a c t i o n  scheme which has  as one s t e p  i n  t h e  mechanism an  equ i l ib r ium 
between AP and its d i s s o c i a t i o n  products  NH 3 

Eq. 1 

That t h e  decomposition r e a c t i o n  t akes  p l ace  p r imar i ly  on the  c r y s t a l  
s u r f a c e  is  supported by t h e  r e s u l t s  from t h e  ho t  p l a t e  experiments wi th  
phys ica l  mix tures  of AP and N a  PO which show t h a t  t h e  AP decomposition 
is a f f e c t e d  no t  only when t h e  phosphate is c o c r y s t a l l i z e d  wi th  t h e  Ap bu t  
a l so  when i t  is mechanically mixed w i t h  the AP (Reference 6) .  The d a t a  
from Reference 6 sugges t  t h a t  once HC104 is formed on t h e  s u r f a c e  o f  
t h e  c r y s t a l  i t  can e i t h e r  desorb o r  by some mechanism decompose. I n  t h e  
presenrc. of t h e  phosphate t he re  is 3 s h i f t  i n  t h e  r e k t i v z  ContiiZutlons 
of these two pa ths  toward an i n c r e a s e  i n  deso rp t ion  relative t o  
decomposition a t  temperatures  between 330 and 378°C. Whether the former 
p a ~ i i  is a ided  o r  t h e  l a t t e r  r e t a r d e d  is not  clear from these experiments.  
However, t h e  c u r r e n t  i so thermal  decomposition experiiuen~s i nd icdc t t  t hat 
t h e  subl imat ion  rate is imaffec ted  (discusse; below) whi le  t he  deromposi tinn 
nechdnism is r e t a rded  b y  t n e  phosphate s a l t .  

3 4  

By fol lowing t h e  subl imat ion  process  a f t e r  t h e  low temperature 
decomposition i t  w a s  found that the subl imat ion  ra te  is essentially 
unzffec ted  by r e s i d u a l  a d d i t i v e s  which had per turbed t h e  rate of 
low temperature decomposition; i . e . ,  t h e  r e s i d u e s  from AP conta in ing  
c h l o r a t e  and from AP conta in ing  phosphate sublime a t  t h e  same rate,  
This i n d i c a t e s  t h a t  t h e  r e s i d i i e  i n  a l l  cases w a s  physiochcmically similar 
and t h a t  t h e  remaining i m p u r i t i e s ,  e .g . ,  H PO-, do not  a f f e c t  t h e  
subl imat ion process a t  least i n  the teiiiyeracure range of 259-295°C. 
The rate equat ion  used t o  reduce the  weight loss data is based on t h e  

d e s n r y t i s n  of mofscities fliriw. i i ~e  suriace of c r y s t a l s  t h i s  model appears  
t o  a t  least approximate t h e  process ,  
t hese  d a t a  is almost i d e n t i c a l  t o  t h a t  obtained by Jacobs (Reference 7 )  

2 4  

. - .  -i I ^ _ _ _  L--,L-.,- 7 t 
iura  u A  ~ u u ~ ~ a c - L L l l ~  ~ b u e  . S;~lct. the q l l D l l m = r  yrv.rp-rs ic-b~~iq~res 

The rate equat ion  obta ined  from 

24 



over  t h i s  tempera ture  range and f o r  a up t o  ~0.5. 
Jakobs (Reference 14)  and a d iscuss ion  of t h i s  work by Williams (Reference 
15) suggests  t h a t  a t  higher  temperatures and i f  the  r e a c t i o n  is followed 
f u r t h e r  than a = .5 ,  the  con t r ac t ing  cube equat ion is inadequate.  

Later work by 

It is important t o  remember t h a t  t h e  a c t u a l  measured rate is 
s e n s i t i v e  t o  the  condi t ions  of measurement and t h a t  t h e  rate determining 
s t e p  may w e l l  vary  depending on the  experimental condi t ion.  
l i k e l y  mechanism involves  an i n i t i a l  e q u i l i b r i i m ,  Eq. 1, followed by  
su r face  migrat ion and then desorpt ion.  
achieved between adsorbed and gas phase molecules of NH 

phase concent ra t ion  of NH and HClO , adjacent  t o  t h e  s u r f a c e ,  i n  t u r n  

as i n e r t  gas  flow and rate of t h e i r  recombination which can be inf luenced 
f o r  example by the  i n s e r t i o n  of a cold f i n g e r .  
t he  process  can be inf luenced by experimental  condi t ions ,  t h e  rate of 
sample consumption i s  much f a s t e r  i n  the  hot  p l a t e  experiments than i n  
the  isothermal  TGA experiments. 
is  driven forward by condensing t h e  subl imate  r a p i d l y  immediately above 
the  sample su r face .  
a c t i v a t i o n  energy f o r  subl imat ion t h e r e f o r e  may inc lude  s e v e r a l  equi l ibr ium 
cons tan ts  and without knowing these  i t  i s  d i f f i c u l t  t o  say anything about 
t h e  rate of a s p e c i f i c  r eac t ion .  

The most 

The r e l a t i v e  approach t o  equi l ibr ium 
and H C l O 4  is 

con t rove r s i a l  and probably varies wi th  experimental  con a i t i o n s .  

is a func t ion  of t h e i r  d i f  1 usion coe 4 f i c i e n t  arid such e x t e r n a l  parameters 

The gas 

As an example of how 

I n  the  former case t h e  o v e r a l l  r eac t ion  

The observed rate expression as w e l l  as the  der ived 

I f  t h e  proton t r a n s f e r  were rate determining, r a t h e r  than an equi l ibr ium,  
f a c t o r s  a i l e c t i n g  the r c ~ ~ v a l  02 gaseous s p e c i e s  should not  a f f e c t  t h e  
observed rate. Since these e x t e r n a l  f a c t o r s  do a f f e c t  t h e  ra te ,  the  
determining s t e p  may involve e i t h e r  the  desorpt ion of NH 
the sixfaze o r  t h e i r  d i f f u s i u n  away frGm the  surface. 
both spec ie s  desorb wi th  equal  f a c i l i t y ,  then d i f f u s i o n  may be rate 
controlling. In  this case XH 
than H C l O  making the  d i f f u s i z n  of t h e  latter the  rate determining s t ep .  
Xecogniizing these l i m i t a t i o n s  on t h e  meaning of t he  observed rate of 
weight l o s s ,  our  r e s u l t s  shown i n  Table 2 c h a r a c t e r i z e  the  d i s s o c i a t i v e  
evaporat ion process  f o r  g ranu la r  AP over the  temperature range of 250-300°C 
a t  one atmosphere pressure  with no e x t e r n a l  gas flow. 
p l o t  of t h e  rate cons tan ts  f o r  t hese  four  samples shows t h a t  w i th in  the  
acrirracy of our ineasureateuts, rrot only the d i s s o c i a t i v e  evaporat ion rate 
a t  a given temperature bu t  t h e  change of rate with temperature is 
independent of t h e  rate of t h e  earlier low temperature decomposition. 

o r  HC104  from 
I f  f o r  example, 

ziay be cxpccted t o  diffuse more r ap id ly  

4 

The Arrhenius 

Over the  temperature range of 200-300°C an NH atmosphere can s t o p  
t h e  AP decomposition a t  any po in t  i n  t h e  decomposi 2 ion  r e a c t i o n  
(Reference 1). 
an  equi l ibr ium s t e p  i n  t h e  decomposition mechanism i n  which NH, is  one 

Ti& equilibrium must e i t h e r  occui! before 
t he  rate determining s t e p s  o r  i t  must be t h e  rate determining s t e p .  In  
add i t ion ,  t he  nega t ive  - catalvaifi bv hssic a+!! t i v z c  2 ~ ~ 5  zc ~ ~ ~ ~ ~ h ~ ~ ~ ,  
anti.mony or  a r s e n i c  oxides. especially vhen mechanically N I ~ X W ~  w i  t h  the 

This effect of F?H3 on the reaction stiggests :!-are is 

- I  rn- nn.1-r I iL -2 . -  ----a - - - --- -.,UIILY.A...U u t r C . L l ~ a .  
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AP, suggests  an i n t e r f e r e n c e  with a process occurr ing on the  su r face  
of t he  c r y s t a l .  These two observa t ions  are i n  keeping w i t h  t h e  hypothesis  
of a proton t r a n s f e r  r e a c t i o n ,  Eq. 1, followed by su r face  migrat ion of 
t he  HC104 molecules. I f  decomposition r e s u l t s  from a bimolecular pe rch lo r i c  
ac id  r eac t ion  and t h i s  i s  the  r a t e  determining s t e p  the  observed r a t e  
would be a func t ion  of the  HC104 concent ra t ion .  
da ta  i n d i c a t e  t h a t  t h e  phosphate has l i t t l e  e f f e c t  on t h e  rate of 
d i s s o c i a t i v e  evaporat ion i t  appears t h a t  the  b a s i c  a d d i t i v e  a f f e c t s  
decomposition by i n t e r f e r i n g  wi th  su r face  d i f f u s i o n  r a t h e r  than by 
repress ing  the. proton t r a n s f e r  equi l ibr ium. I f  t h i s  is  a c o r r e c t  
i n t e r p r e t a t i o n  then conversely su r face  d i f f u s i o n  i s  not necessary f o r  
d i s s o c i a t i v e  evaporat ion,  o r  i t  i s  fas t  compared t o  t h e  r a t e  
determining s t e p .  These la t ter  conclusions are based on subl imat ion 
da ta  obtained w i t h  pre-decomposed AP and may not be v a l i d  during t h e  
time t h a t  t h e  AP is s t i l l  decomposing. 

Since the  subl imat ion 

The chemical p r o p e r t i e s  of t he  e f f e c t i v e  negat ive c a t a l y s t s  such 

2 3  a s  Sb 0 sugges ts  t h a t  t h e  slowing; down of surface d i f f u s i o n  may be due 
tc? some form of hydrogen bonding, Eq. 2 .  

NH4C lo4 

O\ P 
OH" 

0 / cl\ 

\ 
Sb 

I 
m e a 0  

I 

/ O  \ /  
Sb 
I 
0 

I 
,/ Sb\ 

H 

An a l t e r n a t e  mechanism which i s  mechanis t ica l ly  s i m i l a r ,  and which is 
compatible wi th  the  d a t a ,  would invoke t h e  occurrence of proton t r a n s f e r  
over t h e  e n t i r e  surface r a t h e r  than a c t u a l l y  having a mobile HC104 molecule. 
Another poss ib l e  mechanism would be t h e  unimolecular decomposition of the 
H C l O  molecule wi th  t h e  a d d i t i v e  s t a b i l i z i n g  the  decomposition by e f f e c t -  
i ng  the  s t a b i l i t y  of t h e  HO-C1 bond through some form of hydrogen bond. 
Neither t he  measured rate of homogeneous HClO 
temperature dependence of t h e  rate (Reference 16) a r e  compatible with 
t h e  d a t a  from t h i s  s tudy.  

4 

decomposition o r  t h e  4 

A r e a c t i o n  mechanism fo r  AP decomposition between 200-300°C is 
proposed which involves  proton t r a n s f e r  t o  form H C l O  
then d i f f u s e s  over t h e  su r face  u n t i l  i t  reacts wi th  a second HC104 
molecule a f t e r  which the  products  of t h i s  r e a c t i o n ,  a t  l e a s t  p a r t i a l l y ,  
ox id ize  the ammonia ~2 th:c Z G Y ~ G C ~  l b l i -  ' c ? ~  r q r c s e n r c d  as follL*.ws, 

The HC104 4' 

rnr 2 - 
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where (a) and (b) r e f e r  t o  d i f f e r e n t  c r y s t a l  sites and a l l  molecules 
involved i n  t h e  r e a c t i o n  are on t h e  c r y s t a l  sur face .  The observed 
rate (weight l o s s )  can then be descr ibed by 

o r  

2 kob s = k (HC104) 

K = k (-1 
NH3 obs k 

The concent ra t ion  term also inc ludes  t h e  rate of su r face  d i f fus ion .  
Decreasing the  rate of d i f f u s i o n  is e f f e c t i v e l y  the  same as decreasing 
t h e  concent ra t ion  of HC104 a v a i l a b l e  f o r  r eac t ion .  
cons tan t  i s  r e l a t e d  t o  t h e  t r u e  d i f f u s i o n  constant  by a r e l a t i o n s h i p  
which involves  t h e  concent ra t ion  of t h e  bas i c  a d d i t i v e  such a s  Eq. 7, 

The observed d i f f u s i o n  

kd = -  

@In kd (obs) (7 )  

where [B] is t h e  concent ra t ion  of t h e  b a s i c  add i t ive .  

Recent work has  shown t h a t  decomposition propagates by repea ted ly  
e s t a b l i s h i n g  nuc lea t ion  sites which then grow and t h a t  the  f i n a l  e x t e n t  
of growth of a l l  t h e  n u c l e i  are approximately t h e  same (Reference 17).  
I f  propagation i n i t i a l l y  occurs e s s e n t i a l l y  through t h e  establishmenc 
of n u c l e i  r a t h e r  than t h e  growth of t hese  nuc lea t ion  sites, t h e  i n i t i a l  
rate of decomposition may be represented  by the  ra te  of es tabl ishment  of 
nuc lea t ion  si tes.  These sites could r e s u l t  from the  bimolecular HC10, 
reaction. 
of H C l O  
r ap id  formation of nuc le i .  As t h e  amount of undecomposed AP a v a i l a b l e  
f o r  nuc lea t ion  decreases  the  rate of formation of new n u c l e i  decreases  
and the  o v e r a l l  r eac t ion  becomes dece le ra t a ry .  

The induct ion  period is t h e  t i m e -  during which t h e  concent ra t ion  
on t h e  su r face  is being b u i l t  up and i s  followed by a r e l a t i v e l y  4 

It is obvious t h a t  t h e  choice of t h e  rate equat ion used i n  reducing 
the  k i n e t i c  d a t a  from t h e  i so thermal  weight l o s s  experiments is sonewhat 
a r b i t r a r y .  
t h e  d a t a  for  t h e  decomposition of both t h e  AP and t h e  phosphate doped 
AI? samples. The j u s t i f i c a t i o n  for using t h i s  equation is t h a t  i t  is 
based on a model of nucleus formation and growth and t h a t  t h e  d a t a  f i t  
t h i s  equat ion over a wider range than they f i t  o the r  equat ions such 
as the Prrut-Tompkins. The decomposition rates determined i n  t h i s  s tudy  
using t h e  Avrami-Erofeev equat ion are much slower f o r  d ispersed  granular  
AP (226 t imes)  than the  rates obtained by Jacobs (Reference 7) for the 
same p r o w s q ,  wi th  conpressed pe?.?-clt.c ZP :.T, hDitig i i l e  8 a n e  equarion. 
T1xsd Laces are not  d i r e c t l y  comparable t o  those of many o t h e r  workers 
s i n c e  a wide variety of k i n e t i c  express ions  have Seen used t o  de r ive  
rates. In  some e a r l i e r  work a v a r i a t i o n  was noted i n  r e s u l t s  between 

The Avrami-Erofeev equat ion ,  wi th  n = 2 was used t o  reduce 
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pressed pel le ts  and powder AP (Reference 18) and Bircumshaw (Reference 19) 
q u a l i t a t i v e l y  noted a f a s t e r  ra te  of decomposition i f  t h e  AP w2.s i n  a 
mounl as opposed t o  ;he same sample s i z e  being spread over a larger  
su r face .  Rate cons t an t s  from the p resen t  s tudy  compare, w i th in  a f a c t o r  
of 2 ,  t o  those obtained by Bircumshaw. Since se l f  hea t ing  is inhe ren t  
i n  exothermic AP decomposition, i t  is  t o  be expected t h a t  t h e r e  would 
be v a r i a t i o n s  i n  t h e  rate due to non-isothermal cond i t ions  i n  the  sample, 
e s p e c i a l l y  i n  compressed p e l l e t s .  

If one examines the work of  o t h e r  i n v e s t i g a t o r s  on t h e  decomposition 
of Ap i n  t h e  cubic  modi f ica t ion ,  i t  is  found t h a t  most of t he  a c t i v a t i o n  
ene rg ie s  r epor t ed  are i n  t h e  r eg ion  of 17-22 Kcal (References 13, 19, 
20, 21). I n  Jacobs la ter  work (Reference 7 ) ,  h i s  va lue  f o r  t h e  a c t i v a t i o n  
energy f o r  t h i s  temperature reg ion  has  been rev ised  down t o  26 Kcal. 
S e l f  hea t ing  of t he  sample is  a r e l a t i v e l y  greater problem a t  t h e  
h igher  temperatures  which can l e a d  t o  apparent  a c t i v a t i o n  ene rg ie s  t h a t  
are h igher  than i f  t he  sample temperature had approached i so thermal  
condi t ions .  

The va lue  found i n  t h i s  s tudy  f o r  t h e  a c t i v a t i o n  e n e r g i e s  f o r  t he  AP 
samples conta in ing  phosphate w e r e  approximately t h e  same as t h a t  f o r  
pure AP, between 250-300°C. 
conta in ing  0.052% phosphate may be due t o  having neglec ted  t h e  r a t e  
of subl imat ion i n  t h e  c a l c u l a t i o n s  ( the  subl imat ion  rate i n c r e a s e s  fas ter  
w i t h  temperature  than  does t h e  decomposition r a t e ) .  In  t h e  case of 
t h e  r e l a t i v e l y  s lowly decomposing Ap/0.05% H PO- (rate o f  subl imat ion  

apparent  rate t h a t  is  somewhat f a s t e r  then the  real  decomposition rate 
a t  t h e  h ighe r  temperatures .  

The s l i g h t l y  h ighe r  value f o r  t h e  s a m p l e s  

%1/10 rate of decomposition),  neg lec t ing  sub g 4  imation could g ive  an  

For bo th  AP and AP conta in ing  phosphate t h e r e  i s  a d i s c o n t i n u i t y  
i n  t h e  Arrhenius p l o t  i n  t h e  r e g i o n  of t h e  AP phase t r a n s i t i o n  temperature.  
The AP decomposition rates h e l w  the p k s e  t r ~ n s i t l o r i  zrs. r e l a t i v e l y  
higher than those  j m t  above t h i s  temperature ,  
very simil-ar t o  t h a t  observed by Bircumshaw wi th  t h e  rate a t  235°C being  
approximately t h e  same as the  rate a t  260°C f o r  pure AP. 
reason d a t a  between 230 and 250°C were not  used i n  f i g u r i n g  a c t i v a t i o n  
e n e r g i e s  and frequency f a c t o r s .  The rate d a t a  f o r  AP decomposition 
between 200 and 230°C are not  as reproducib le  as those  obta ined  
above t h e  phase t r a n s i t i o n  temperature ,  I n  t h e  lower temperature range 
t h e  percentage of AP consumed i n  t h e  decomposition r e a c t i o n  is  n o t  t he  
same a t  every temperature.  With AP conta in ing  H PO- t h e  r e a c t i o n  tends 2 4  t o  level  o f f  c l o s e  t o  30-33% of t o t a l  decomposition. With r e c r y s t a l l i z e d  
AY t h e r e  is some v a r i a t i o n ,  wi th  t h e  percentage deFomposition gene ra l ly  
inc reas ing  wi th  decreas ing  temperature.  T h i s  v a r i a t i o n  is even more 
pronounced wi th  t h e  c h l o r a t e  doped AP, with  the  r e a c t i o n  consuming up 
to  >5OX of t h e  t o t a l  AP at  temperatures  around 2@OoC. The Ap and t h e  
phosphated AP decomposition d a t a ,  a t  these lower temperatures ,  were 
again reduced us ing  t h e  Avrami-Erofeev equat ion ,  wi th  n = 2.  

This  d i s c o n t i n u i t y  j s 

For t h i s  

Unlike 
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t h e  decomposition of AP when i t  is  i n  t h e  cublc c r y s t a l  modif icat ion 
t h e  a c t i v a t i o n  energy f o r  decomposition of t h e  r e c r y s t a l l i z e d  AP and 
the  phosphate doped AP are no t  the same when t h e  AP i s  i n  t h e  
orthorhombic c r y s t a l  form. The reason f o r  t h i s  is not c l e a r .  I t  is 
poss ib le  t h a t  t he  d i f f u s i o n  rate on t h e  su r face  of t h e  sing'e 
orthorhomibic c r y s t a l  is  s i g n i f i c a n t l y  d i f f e r e n t  from t h a t  i n  t h e  
cubic modif icat ion where the  o r i g i n a l  c r y s t a l  has  been broken down 
i n t o  smal le r  c r y s t a l l i t e s .  They may then r e s u l t  i n  a change i n  t h e  
r e l a t i v e  con t r ibu t ion  of t h e  su r face  d i f f u s i o n  term t o  the  observed 
rate i n  pure Ap and phosphate doped AP. Considering t h e  small 
temperature range covered and t h e  v a r i a b i l i t y  of a with  temperature 
i t  would be unwise t o  make too much of an i n t e r p r e t a t i o n  on an 
a c t i v a t i o n  energy change of 6 o r  7 Kcal. 

The e f f e c t  of C l O -  ion  on t h e  decomposition of Ap can be explained 
wi th in  t h e  same framework suggested f o r  AP and AP containing phosphate, 
It has previously been shown t h a t  t h e  decomposition of NH4C10 
be re ta rded  by NH 
t h a t  the  decomposition of Ap containing ClO; i s  a l s o  repressed by an 
NH atmosphere. This  sugges ts  t h a t  the  r e a c t i v e  species may not  be 
t h e  C10- i on  b u t  r a t h e r  HClO , f o m e d  by NH C10 d i s s o c i a t i o n ,  and t h a t  

3' The rate cons tan t  f o r  the  r e a c t i o n  of H C l O  with H C l O  may e 
considerably f a s t e r  than the  rate constant  f o r  the  bimolecular r e a c t i o n  
of p e r c h l o r i c  acid.  
d i r e c t l y  ox id i zes  NH forming a nuc lea t ion  site. 
the  decomposition of AP and AP containing phosphate occurred a t  CY $0.5 
while  f o r  AP containing c h l o r a t e  the  maximum rate occurred a t  a %0.1. 
This suggested t h a t  f o r  AP conta in ing  c h l o r a t e  the  unimolecular decay 
equat ion r a t h e r  than t h e  Avrami-Erofeev equat ion may provide the  b e s t  
f i t  f o r  t he  da ta .  The d a t a  do i n  f a c t  €i t  t h e  unimolecular decay equat ion 
well frosl a = 0.1 t o  c1 > C.9. The ratcs derived from t h i s  k i n e t i c  
express ion  when p l o t t e d  aga ins t  t h e  inverse  of t h e  temperature,  a t  
temperatures between 250-300°C, do not  give a s t r a i g h t  l i n e  over the  
e n t i r e  temperature range. IF. t he  region from ~250OC t o  27OoC, the  
s lope  is e s s e n t i a l l y  zero.  A t  temperatures > 2 7 O o C ,  t h e  rate cons tan ts  
increased a t  an a c c e l e r a t i n g  rate. Below 235OC the  unimolecular decay 
equat ion is  aga in  appropr i a t e  however, t h e  po in t  a t  which a = 1 had 
t o  be defined f o r  each run and va r i ed  from 30 t o  50% of t h e  t o t a l  AP. 
It can b e  seen t h a t  a t  t he  lower temperatures,  once decomposition begins ,  
t he  decomposition rate is  r e l a t i v e l y  independent of temperature.  

3 

can 
(Reference 221, and the  cu r ren t  s tudy  has a emonstrated 3 

3 

6 nuclea t ion  3 may r e s u l t  from tge bimolecular r e a c  4 2  ion of H C l O  and H C l O  

3 4 

An a l t e r n a t e  explana t ion  is  t h a t  the  HC103 
The maximum r a t e  during 3 

I f  t h e  decomposition proceeds by e s t a b l i s h i n g  nuc lea t ion  si tes 
t h e  ease of formation and the amount of these  sites would be expected 
t o  a f f e c t  t h e  general  shape c?f the decompositlon curve. The decrease 
i n  induct ion  time, wi th  AP containing chl.nratc ! X I S ,  could 'i due to 
t h e  lower concent ra t ion  of H C l O  necessary f o r  r eac t ion  t o  occur 
wi th  the  HC103. Addi t iona l ly  i h  t h e  r e a c t i o n  between HC104 and HC1U3 
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proceeds r e l a t i v e l y  r a p i d l y  a g r e a t  many nuc lea t ion  s i t e s  w i l l  be formed 
e a r l y  i n  t h e  decomposition l ead ing  t o  t h e  gene ra l ly  dcce le ra t a ry  
na tu re  of t h e  decomposition curve,  When Eq. 5 i s  rep laced  w i t h  Eq. 8 

kobs = kl (HC104)(HC103) 

2 i t  can be been why t h e  ra te  of decomposition is a func t ion  of IiC10 
concent ra t ion .  I'he lesser e f f e c t  of phosphate on the  AP decomposi i o n  
rate when both phosphate and c h l o r a t e  are p resen t  (Reference 3 ) ,  can 
a l s o  b e  understood i n  terms of Eqs. 5 and 8. I n  t h e  r e a c t i o n  w i t h  
H C l O  t he  rate is p ropor t iona l  t o  t h e  H C l O  concent ra t ion  while  i n  t h e  

t h e  HC104 concent ra t ion ,  
rate of weight l o s s  once decomposition begins  sugges ts  t h a t  t h e r e  is  
e i t h e r  a very  small a c t i v a t i o n  energy f o r  t h e  r e a c t i o n  of H C l O  w i t h  
HC104 o r  t h a t  nuc lea t ion  i s  e s s e n t i a l l y  complete i n  t h e  e a r l y  s t a g e s  
of decomposition and what i b  being observed i s  t h e  growth of  t h e  
nuc lea t ion  sites. The race determining s t e p  i n  the  mechanism of 
nuc lea t ion  sites growth may have a low temperature dependence. I t  
should be noted h e r e  t h a t  whi le  phosphate decreases  the  o v e r a l l  
decomposition r e a c t i o n  by a f a c t o r  of ~2 t h e  equiva len t  amount of 
c h l o r a t e  i n c r e a s e s  t h e  rate by an o rde r  of magnitude. The reason f o r  t h e  
r ap id  i n c r e a s e  i n  ch lo ra t ed  AP decomposition rates a t  temperatures  
above ~ 2 7 0 ° C  is no t  clear. 
s e l f  hea t ing  from t h e  exothermic decomposition can be a problem; 
however, s i n c e  t h e  r e a c t i o n  appears t o  have e s s e n t i d l y  a zero  a c t i v a t i o n  
energy between 250 and 270"C, a temperature i n c r e a s e  should not  apprec iab ly  
a f f e c t  t h e  rate. Even i r ?  t h i s  area of e s s e n t i a l l y  temperature independent 
r e a c t i o n  rates (AP conta in ing  c h l o r a t e ) ,  t h e r e  is a d i s c o n t i n u i t y  a t  t h e  
phase t r a n s i t i o n  wi th  t h e  rates above t h e  t r a n s i t i o n  %4 times as f a s t  
as those  below t h e  phase t r a n s i t i o n  temperature.  

4 bimo 3 e c u l a r  r e a c t i o n ,  Eq. 5 ,  the ra te  is p ropor t iona l  t o  the  square of 
The small temperature  dependence f o r  t he  

3 

I n  t h i s  r eg ion ,  based on DTA experiments ,  

AP Combustion - The combustion of AJ?, e i t h e r  i n  pressed s t r a n d s  o r  s i n g l e  
c r y s t a l s ,  has  been s t u d i e d  by a l a r g e  number of i n v e s t i g a t o r s .  
burning rate as a func t ion  of p re s su re ,  e s p e c i a l l y  a t  p re s su res  above 
2000 p s i ,  has been found t o  be s t r o n g l y  a f f e c t e d  by whether o r  not  t h e  
s t r a n d  was r e s t r i c t e d  by an 
s t r a n d s  were r e s t r i c t e d  wi th  a t h i n  l a y e r  of po lysu l f ide .  The burning 
ra te  of pure Ap as a func t ion  of p re s su re  was e s s e n t i a l l y  the  same as 
t h a t  found by o t h e r  i n v e s t i g a t o r s  over t he  raqge of 300-2000 p s i a .  Our  
r e s u l t s ,  i n  l i n e  w i t h  those  of o t h e r  i n v e s t i g a t o r s  who r e s t r i c t e d  t h e i r  
s t r a n d s ,  d id  not  show t h e  nega t ive  p re s su re  exponent between 2000-3000 
p s i  found by i n v e s t i g a t o r s  us ing  u n r e s t r i c t e d  s t r a n d s  o r  s i - ig l e  c r y s t a l s .  

The 

1 i n e r t '  material. I n  t h i s  s tudy ,  a l l  of t h e  

Glaskova (Reference 23) shobed t h a t  i nc reas ing  t h e  s i z e  of t h e  AP 
p e l l e t  d id  no t  e l i m i n a t e  t h e  nega t ive  p re s su re  exponent bu t  d id  s h i f t  
i t  t o  h igher  p re s su res .  We extended t h i s  approacil, making what could 
be descr ibed  as an end burning motor, by p res s ing  AF i n t o  a d i s c  38mm 
i n  diameter.  burning rates obtaiqed wi th  these  l a r g e  u n r e s t r i c t e d  d i s c s  
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were e s s e n t i a l l y  i d e n t i c a l  t o  those  obtained w i t h  r e s t r i c t e d  A P  s t r a n d s ,  
i . e . ,  t h e r e  was no nega t ive  p re s su re  exponent, a t  l eas t  below 3000 p s i .  
These moto;. r e s u l t s  are s i g n i f i c a n t  because the  experimental  condi t ions  
e l imina ted  t h e  ques t ion  of whether t h e  polymeric r e s t r i c t i o n  ;i.iso s e r v e s  
as a f u e l .  

I t  appears  t h a t  t he  nega t ive  s l o p e  found above 2000 p s i  is  an a r t i -  
f a c t  of t h e  s t r a n d  s i z e .  I n  f a c t ,  Friedman (Reference 2 4 )  has  shown 
earlier t h a t  i f  t h e  s t r a n d  is small enough < 4m, i t  w i l l  not burn a t  
any p res su re .  
between 2000 and 4300 p s i  may be f m n d  i n  t h e  observa t ions  of  Boggs 
(Reference 25) .  
speed movie s t u d i e s  of AP combustion over  t h i s  p re s su re  range is: 
(1) a por t ion  of t h e  s u r f a c e  i s  hea ted ,  (2 )  flame spreads  t o  heated 
area, (3) enhanced r eg res s ion  rate ensues due t o  ;I sme , ( 4 )  flame h e a t s  
ad jacent  areas, and (5) t h e  cyc le  r e p e a t s .  I f  t he  flame s p r e a d  i s ,  as 
Boggs sugges t s ,  dependent on t h e  hea t ing  of an ad jacent  area the  
perimeter t o  area r a t i o  would be important .  Thus, i n  t h c  very small 
samples <4m s e l f  d e f l a g r a t i o n  i s  n o t  sus t a ined  while  i n  t h e  l a r g e  
diameter  (38m) samples, t h e  burning rate has  a small p o s i t i v e  p re s su re  
exponent between 1000 and 3000 p s i .  The s i z e  of most of t he  o t h e r  
samples, s o  far t e s t e d  and repor ted  i n  t h e  l i t e r a t u r e ,  have been c l o s e r  
t o  t h e  4m than  t h e  38mm s i z e  and have nega t ive  p re s su re  exponents 
over t h i s  p re s su re  range. 
be expected t o  affect flame spreading a t  t h e  edges of t h e  s t r a n d  and 
thereby in f luence  t h e  combustion rate. A t  t h e  lower p re s su res  i t  i s  
i n t e r e s t i n g  t o  no te  t h e  large A? g r a i n  haF lowered the  low p res su re  
d e f l a g r a t i o n  l i m i t  of AP below cha t  found wi th  smaller s t r a n d s .  
t h e r e  is  s t i l l  evidence t h a t  a low p res su re  d e '  : r a t ion  l i m i t  e x i s t s ,  
as can be seen  by t h e  somewhat errs t ic  (pulsat i r ig)  burning obta ined  a t  
225 p s i  w i th  the  38mm AP gra in .  

An explana t ion  f o r  t h e  obseryed burning rates of AP 

The sequence of even t s  he descr ibed from h i s  bigh 

S imi l a r ly  i f  a r e s t r i c t i o n  i s  used i t  would 

However, 

The pure LIP pressed  s t r a n d  d a t a  are no t  g r e a t l y  a l t e r e d  when Ap 
conta in ing  c h l o r a t e  o r  phosphate is used even though t h e s e  materials 
have a s i g n i f i c a n t  e f q e c t  on the AP decomposition r e a c t i o n .  Base6 on 
earlier trork (Reference 6 )  t h i s  i s  not  an unexpected r e s u l t .  I t  has  
been shown t h a t  t h e  'low temperature '  dccomposition has l i t t l e  e f f e c t  
on t h e  burning rate and boLh of t h e s e  a d d i t i v e s  affcr':  t;iz 'low' but  no t  
t h e  'h igh '  temperature decomposition. There does,  however, appear t o  :e 
a small e f f e c t  o f  t h e s e  materials on combustion. The c o c r y s t a l l i z e d  
phosphate (0.13 and 0.64%) and c h l o r a t e  (0.10%) had: (1) v a r i a b l e  b u t  
s i g n i f i c a n t  r e t a r d i n g  and a c c e l e r a t i n g  e f f e c t s  (aboqit -6%,  -18% 
and +3%, r e s p e c t i v e l y )  on t h e  burning rates of pressed AP s t r a n d s  over 
t h e  range 900-1500 Fsi, and (2) somewhat smaller burning rate effects 
(about -5%, -12%, and +2%, r e s p e c t i v e l y )  over  t h e  range 350-900 p s i .  
Some d a t a  scat ter  w a s  found i n  t h e  p re s su re  range of 900-1200 p s i .  
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The scatter i n  t h e  burning rate d a t a  is g r e a t e r  f o r  s t r a n d s  of AP t h a t  
are doped with c h l o r a t e  than i t  is  ;or pure AP s t r ands .  The best burning 
rate r e p r o d u c i b i l i t y  was obtained wi th  s t r a n d s  of phosphate doped AP, 
e s p e c i a l l y  a t  t h e  h igher  phosphate concent ra t ion .  
region,  where t h e  d a t a  scatter occurs ,  t h a t  t h e  burning rate p res su re  
exponent of pure AP changes and t h a t  t he  d e f l a q r a t i n n  AP goes from a 
m e l t  t o  a 'dry' su r f ace  condi t ion  (Reference 25). 

It -s  i n  t he  pressure  

The DTAts of mechanical mix tures  of AP and KMnO and KMnO isomorphously 
i? 4 s u b s t i t u t e d  i n  AP are s i g n i f i c a n t l y  However, i n  t e combustion 

s i t u a t i o n  the  two s y s t e m s  exhibi;: t he  same gene ra l  c h a r a c t e r i s t i c s .  I n  
both cases t h e  d i f f e r e n c e  between r e s t r i c t e d  and u n r e s t r i c t e d  s t r a n d s  is 
dramatic wi th  the  u n r e s t r i c t e d  s t r a n d  not  s u s t a i n i n g  combustion a t  any 
p r e s s u r e  up t o  3000 p s i  a t  concent ra t ions  o f  KMnO as low as 0.4 mole 
percent.  
r e s t r i c t e d  s ~ r a n d  t h e  burning rate is  lower than t h a t  of pure AP even 
thoukh t h e  KNnO lowers t h e  d e f l a g r a t i o n  temperature  (as measured by 
DTA) of AP t o  ?.$OO°C. Since earlier work has  shown t h e  decomposi t im 
of t h i s  material is i n s e n s i t i v e  t o  an  NH atmosphere i t  appears  t h a t  

pure AD. 
l i t t l e  evidence of H C l O  and NH g e t t i n g  i n t o  t h e  gas  phase (Reference 
26). These d a t a  i n  conjunct ion wi th  the visiial. observa t ion  of t h e  
atmospheric "burning" of a pressed  s t r a n d  of  t h i s  mixture  sugges t s  
t h a t  a l a r g e  amount of  t h e  decomposition occurs  i n  t h e  condensed phase. 
The lower burning rates obtained with the  mixture  of AP and KMn04 may 
be the  r e s u l t  of  a much lower flame, and t h e r e f o r e ,  su r f ace ,  temperature 
due t o  the  change i n  t h e  combustion mechanism of AP i n  t he  presence of 
KMn04. The f a c t  t h a t  combustion is sus t a ined  only  when t h e  s t r a n d s  are 
r e s t r i c t e d  i n d i c a t e s  t h a t  n e t  h e a t  balance a t  t h e  s u r f a c e  is c r i t i c a l  
i n  the s e l f  d e f l a g r a t i o n  of t h i s  composite. What Is s u r p r i s i n g  is t h a t  
KMnO h a s  t he  same e f f e c t  on combustion whether i t  is mechanicsilly mixc.' 
with o r  isomorphously s u b s t i t u t e d  i n  t h e  AP. 

4 It is i n t e r e s t i n g  t h a t  i n  t h e  case of the  KMn04 ca ta lyzed  

the  material decomposes Cy a mechanism w 2 i c h  is d i f f e r e n t  from t h a t  of 
This  is supported by m a s s  spectrometry r e s u l t s  which show 

4 3 

4 

Combustion of *-Fuel Composites - T t  ;nay be u s e f u l  t o  start wi th  a 
genera l  d i scuss ion  of N-composite burning rates. 
of the burning rate has gene ra l ly  been a s s o c i a t e d  wi th  gas phase r e a c t i o n s  
and/or d i f f u s i a  mechanism (Reference 27). For t h e  sake  o f  d i scuss ion ,  
let  us assume t h a t  a s i n g l e  condensed phase or  s u r f a c e  r e a c t i o n  is rate 
c o n t r o l l i n g  i n  t h e  burning process .  It is not  necessary t h a t  any 
s i g n i f i c a n t  amount of heat be r e l eased  i n  t h e  condensed phase; i n  f a c t ,  
t h e  o v e r a l l  r e a c t i o n  a t  t h i s  p o i n t  may be endothermic. 
hypo the t i ca l  r e a c t i o n  has a r a t i o n a l  frequency f a c r o r  and say  a n  a c t i v a t i o n  
energy between 20-50 Kcallmole, i t  can be e a s i l y  seen  t h a t  a 1O-2O0C 
temperature change would change the burning rate by a f a c t o r  of 2 o r  3. 
This magnitude of  temperature change is w i t h i n  the e r r o r  l i m i t s  of a l l  
t h e  d i r e c t  means of s u r f a c e  temperature measurement so fa r  attempted. 
An examination of AP and AP-composite burning rates between 300 and 
1000 p s i  shows t h a t  the i n c r e a s e  irj burxLtg rate over  t h i s  range is 

The p res su re  exponent 

If this 
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2 - d  or 3. 
c o n t r o l l i n g  i t  is not  unreasonable t o  expect t h e  burning rate to  be 
a f f e c t e d  by t h e  s u r f a c e  temperature of the  p r o p e l l a n t ,  which i n  t u r n  
is a func t ion  of the hea t  balance a t  the  su r face .  

If a s i n g l e  condensed phase or heterogeneous r e a c t i o n  is  rate 

lhe su r face  temperature is a func t ion  of s e v e r a l  v a r i a b l e s ,  t h e  
two whicb we are i n t e r e s t e d  i n  being,  flame temperature and t h e  su r face  
1 chemistry' .  
f u e l  i n  an  AP-composite is depicted b e l w .  

A r e p r e s e n t a t i v e  p l o t  of flame temperature a g a i n s t  percent  

Flame 
Temp b 

# 

b 
1 
I I 

I I . 
a b 

inc .  , X Fuel 

I f  t h e  flame temperature were t h e  only important parameter,  composites 
formulated a t  a and b should have i d e n t i c a l  burning rates. A t y p i c a l  
p l o t  of burning rate a g a i n s t  f u e l  u sua l ly  shows t h a t  formulat ions a and 
b do not have the same burning rates (Reference 2 8 ) .  
t h a t  while  on t h e  o x i d i z e r  r i c h  s i d e  of s to ich iometry  t h e r e  is some 
c o r r e l a t i o n  between flame temperature and burning rate, on t h e  f u e l  
r i c h  s i d e  t h i s  r e l a t i o n s h i p  does not  exist. It is on the  f u e l  r i c h  
s i d e  t h a t  p r a c t i c a l  composite p rope l l an t s  are fonculated and i t  is in 
t h i s  area t h a t  t h e  s tudy  of t h e  e f f e c t  of f u e l  on combustion can be 
expected t o  be the nost f r u i t f u l .  

It can be  seen  

The second cons idera t ion  i n  determining the hea t  'balance' a t  the  
su r face  is the  summation of a l l  t h e  chemical r e a c t i o n s  occurr ing  at  o r  
immediately ad jacent  to  t h e  surface. I n i t i a l l y ,  i f  i t  is assumed t h a t  
t h e  o x i d i z e r  and f u e l  do not  interact a t  t h i s  p o i n t ,  then the n e t  hea t  
at  t h e  s u r f a c e  is  simply the hea t  f l u x  from the  flame minus hea t  l o s s e s  
t o  the s*&strate arid surrouudings, + the sum of the heat of decomposition 
and vapor iza t ion  of t h e  f u e l  and oxTdizer. Most c a l c u l a t i o n s ,  such 
as I are concerned wi th  the t o t a l  combustion of t h e  system; however, 
f o r  t h e  p re sen t  arguments, what is important is t h e  n e t  heat of all 
reactions r i g h t  at t h e  su r face .  
vaporized before  r e a c t i n g  f u r t h e r  up i n  the  flame may consume more 
hea t  and the re fo re  cause a 'cooler' su r f ace  condi t ion  thap  a f u e l  which 
is dehydrogenated a t  t h e  sur face .  khile t he  flame temperature f o r  both 

of these  composites may be the  same, the  n e t  hea t  balance a t  t h e  s u r f a c e  
w i l l  be q u i t e  d i f f e r e n t .  Belzaev (Reference 2 9 )  r e f e r s  t o  the  s u r f a c e  

For example, a f u e l  t h a t  is t o t a l l y  
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and the region immediately ad jacent  t o  i t  as t h e  i n f l u e n c e  zone and 
expla ins  h i s  experimental  results on the  b a s i s  of t h e  inf luence  
("active combustion") zone concept. 

Lr? the prcsent work i w o  hydrocarbon rue i s ,  polyethylene and s t e a r i c  
ac id ,  were compared under combustion condi t ions.  These two materials 
d i f f e r  p r imar i ly  i n  t h e i r  thermal s t a b i l i t y ,  t h a t  is ,  the  temperature a t  
which they v o l a t i l i z e  a t  ambient pressure .  O the rwise ,  t h e i r  phys ica l  
p r o p e r t i e s  are q u i t e  comparable; both are l o w  mel t ing ,  r e l a t i v e l y  high 
b o i l i n g ,  n e i t h e r  goes through a char on decomposing, and both are 
e s s e n t i a l l y  s a t u r a t e d  hydrocarbons. The burning rates obtained w i t h  
s to i ch iomet r i c  mixtures  of these f u e l s  wi th  AP_.are not  g r e a t l y  d i f f e r e n t .  
L L W  burning rate obtained wi th  the  stearic a c i d  is  s l i g h t l y  f a s t e r  at  
the  lower pressures? however, t he  stearic ac id  par t ic le  s i z e  is also 
s l i g h t l y  sma l l e r  than t h a t  of the  polyethylene.  It  appears t h a t  t hc  
ambien: pressure  v o l a t i l i z a t i o n  temperature is a less important parameter 
than  some o t h e r  p r o p e r t i e s  of the  f u e l .  A t  e l eva ted  p res su res  i t  is 
l i k e l y  t h a t  the  energy requi red  f o r  v o l a t i l i z a t i o n  and t h e  r e a c t i v i t y  
of t:.e s p e c i e s  i n  the  in f luence  zone i s  more important i n  a f f e c t i n g  
combustion than s m a l l  d i f f e r e n c e s  i n  t h e  temperature a t  h*ich v o l a t i l i z a t i o n  
occurs.  

m1 - 

One experlwtital aeilesi oi I u e l s  cons is ted  of sucrose  which melts 
before  char r ing ,  s t a r c h  which cha r s  but does not m e l t ,  and sucrose 
octaacetate which v o l a t i l i z e s  l eav ing  no residue.  
from t h e  s t a r c h  and sucrose  composites are almost i d e n t i c 2 1  ( the re fo re ,  
a t  least i n  t h i s  case, t h e  effect of mel t ing  is smal l )  while  t h e  burning 
rate with sucrose  octaacetate is s i g n i f i c a n t l y  lower than t h e  o t h e r  
t w o  systems. Even i f  f u e l  and o x i d i z e r  i n t e r a c t i o n  Are ignored,  i t  is 
impossible t o  c a l c u l a t e  t he  exact n e t  energy r e l eased  o r  consumed 
at or near  t h e  s u r f a c e  without  a d e t a i l e d  knowledge of the  mechanisms 
involved. However, a rough approximation can be made by using a very 
s i m p l i s t i c  p i c t u r e .  
by a dehydrat ion,  t h e  r e a c t i o n  

The burning rates 

If t he  i n i t i a l  sucrose decomposition can be descr ibed 

would be  exothermic by 1.50 Kcal/mole (Reference 31) while  t h e  vapor i za t ion  
of sucrose octaacetate gives a n e t  endothermic value of several Kcal/mole. 
Poss ib ly  more important are t h e  r e a c t i o n s  subsequent t o  vapor i za t ion  
o r  dehydration. 
ai some diwtsnce rrdm the  s u r f a c e  while ox ida t ion  of the carbon res idue  
from t h e  sucrose  occurs  i n  close proximity t o  t h e  sur face .  The energy 
from these  r e a c t i o n s  and how e f f i c i e n t l y  i t  is f e d  back to  t h e  su r face  
would be a n  important f a c t o r  i n  determining the  temperature at  the  s u r f a c e .  
A t  t h i s  time i t  is impossib;.e t o  ascribe q u a n t i t a t i v e  va lues  t o  these  
e f f e c t s ,  however, a siumnation of the  approximations l e a d s  t o  an expected 

I n  t h e  case of t h e  sucrose  octaacetate, these may occur 
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g r e a t e r  n e t  hea t  a t  t h e  su r face  of t h e  sucrose and s t a r c h  composites than 
at  t h e  su r face  of t h e  sucrose  o c t a a c e t - t e  composite. 

The burning rates obtained w i t h  the  carbon and paraformaldehyde 
(CH20)x has t h e  composites can be explained by the same hypothesis.  

same elemental  composition as the  previous series. Like sucrose 
o c t a a c e t a t e ,  (CH20)X v o l a t i l i z e s  without r e a c t i n g  w i t h  t h e  AP, a t  least  
under  TCA condi t ions.  
decomposition may be modified i n  the  combustion s i t u a t i o n ,  however, w i t h  
f u e l s  containing a large percentage of oxygen t h i s  s imple  hypothesis  
may be a reasonable approximation. 
a t  any temperstti 
su r f ace  of t h e  
heat  being re leased  at :he s u r f a c e  than when (CH 0) 

found wi th  the  two char r ing  f u e l s ,  sucrose and s t a rch .  
Adams (Reference 28) t o  o b t a i n  pressed s t r a n d s  wi th  carbon w a s  most likely 
due t o  s t r a n d  press ing  technique r a t h e r  than anything inherent  i n  t h e  
sys  tern. 

The assumption of an independent f u e l  and ox id ize r  

Carbon, which w i l l  not v o l a t i l i z e  
s t t a i n e d  dur ing  combustion, would be oxidized a t  t h e  

jL;ite, aga in  r e s u l t i n g  i n  a l a r g e r  percentage of t h e  
is the  f u e l  component. 

The burning rates obtairri-d wi th  t h e  carbon composite 2 .  x are c lose  t o  those  
The f a i l u r e  of 

Another f u e l  series used t o  i n v e s t i g a t e  p r o p e r t i e s  similar t o  those 
descr ibed above cons is ted  of several phenolic r e s i n s .  Again, t h e  
composite made wi th  the  f u e l ,  b isphenol  A, t h i L  tidatiliirs r e a d i i y  i w i  
t he  lowest burning rate i n  t h e  series. 
polymers char  through a dehydrogenation process ,  which is endothermic 
(-30 Kcal/mole). However, t h i s  char  formation would aga in  r e s u l t  i n  
subsequent f u e l  ox ida t ion  r e a c t i o n s  occurr ing  near the  su r face .  
add i t ion ,  wi th  these  two polymers, t h e r e  is t he  p o s s i b i l i t y  for s t rong ly  
exothermic r e a c t i o n s  involving t h e  hydrogen generated i n  t h e  dehydrogenation 
process.  It is not  l i k e l y  t h a t  hydrogen would d i f f u s e  very  f a r  from the 
su r face  before  reac t ing .  The f a c t  t h a t  t h e  r e s o l e  composite burned 
slower than t h e  novalak composite may be r e l a t e d  t o  the  unreacted 
hydroxymethyl groups (CH OH)’ present  in t he  resole polymer. These 

fuel approached su r face  temperatures,  or a decomposition invulving the  
hydroxymethyl groups which is more endothermic than the  novalak dehydro- 

inves t iga t ed )  of t h e  e f f e c t  of t h e  char  formation on combustion is 
t h a t  t he  cha r  is a c a t a l y s t  f o r  AP decomposition. 

The novalak and t h e  r e s o l e  

I n  

could l ead  t o  f u r t h e r  PO 1 ymerizat ion,  an endothermic process ,  as the  

.*.. . 
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The working hypothesis  t h a t  w a s  used i n  designing the combustion 
experiments wi th  var ious  f u e l s  is t h a t  the rate c o n t r o l l i n g  r e a c t i o n s  
most likely occur at the surfacc cf ths “uiii-illng composite and t ha t  the  
rate of these  r eac t ions  i s  a f f e c t e d  by the  n e t  h e a t  release a t  the  
sur face .  It  is noted t h a t  a composite w i t h  an a l i p h a t i c  f u e l  such as 
stearic a c i d  burns f a s t e r ,  e s p e c i a l l y  at t h e  h igher  p re s su res ,  than one 
wi th  an aromatic  fuel such as benzoic ac id .  
be expected t o  be thermally reore s t a b l e  and less l i k e l y  t o  react a t  the 
surface of t h e  condensed phase than would the  a l i p h a t i c  compound. This 

The aromatic compound would 

3s 



would result i n  a "cooler" s u r f a c e  f o r  t he  aromatic  composite. 
burning rate p res su re  curves  f o r  the  AP composites wi th  aromatic f u e l s  
look very much l i k e  those of  pure  AP ( r e s t r i c t e d  s t r a n d s ) .  Here it  is  
i n t e r e s t i n g  t o  n o t e  t h a t  t h e  effect of t h e  aromatic  f u e l s  a t  p re s su res  
above r d O O O  p s i  is t o  lower t h e  burning rate of the  composite below t h a t  
of pure AP d e s p i t e  t h e  h ighe r  flame t e m p e r a t x e  a t t a i n e d  wi th  the  composite. 
These d a t a  are i n  agreement wi th  t h e  hypothes is  t h a t  t h e  n e t  h e a t  release 
a t  t h e  p r o p e l l a n t  s u r f a c e  is important i n  determining t h e  rate of combustion. 

The 

The v a r i a t i o n  i n  thermal and o x i d a t i v e  s t a b i l i t y  f o r  a series of 
aromatic  compounds (hydroquinone, benzoic a c i d  and i s o p h t h a l c n i t r i l e )  was 
not  s u f f i c i e n t  t o  apprec iab ly  a f f e c t  t h e  composite burning rate. The 
one zo tab le  d i f f e r e n c e  w a s  t he  i n c r e a s e  i n  the  burning rate p res su re  
exponent above 2000 p s i  w i t h  i s o p h t h a l o n i t r i l o  ac 9 f l ~ e 1 .  This k c r c z s c  
in pres su re  exponent above 2000 p s i  w i 1 . l  he Rote:! l a te r  with s e v e r a l  
o t h e r  f ue 1s. 

Triphenylmethane w a s  t h e  only f u e l  which s i g n i f i c a n t l y  a f f e c t e d  
t h e  p re s su re  e-xponent below %lo00 p s i  c x c - p t  f o r  those f u e l s  whose 
decomposition products  (e.g., H 0, NH ) would be expected t o  d i r e c t l y  
a f f e c t  t h e  AP combustion mechanism. Here it is  p o s s i b l e  that a re la t ive ly  
s t a b l e  free r a d i c a l  i s  genera ted  which can react wi th  t h e  AP i n  such a way 
as t o  i n t e r f e r e  w i t h  t h e  AP d i s s o c i a t i v e  evaporat ion mechanism. Whether 
t h i s  af fPr+  disqqxzrs  zt h i g k r  iii-ess~~cts clue iu a cnange i n  t h e  thermal 
decomposition of tr iphenylmethane o r  due t o  the  AP combustior, nechanisrn 
changing w i t h  p r e s s u r e  is n o t  known; however, a t  t h e  p r e s e n t  t i m e  w e  
p r e f e r  t h e  la t ter  explana t ion .  

2 3 

The remaining f u e l s  d i f f e r  from those a l r eady  d iscussed  i n  t h a t  they 
can decompose a t  temperatures  below t he  s u r f a c e  temperature of an AP 
composite i n t o  products  which could affect t h e  combustion mechanism of 
AP. In  t h e  p r e s e n t  s tudy  these  compounds were c e r t a i n  amides, diamides 
and a c i d  amides. O f  t h e  ainides both benzamide and acetamide can decompose 
t o  y i e l d  NH 
with  NH 
pres su res  below 1000 p s i ,  however, i t  w a s  never  clear whether t h i s  was 
due t o  a change i n  t he  AP combustion mechanism o r  t h e  fac t  t h a t  . t  t h e  

3' h+@?er prcsszrz S ~ G  izsrgzAc s z l t  zsz1G ZG: dfiisociaie i n w  nn 

and a ketone o r  H 0 and a n i t r i l e .  2 Previous work (Reference 6 )  
re?easing compounds snowed t h a t  t h e i r  e f f e c t  w a s  g r e a t e s t  a t  3 

.*.. 

The AP benzamide composite burns wi th  a very  low p res su re  exponent 
over a large p r e s s u r e  range (200-2000 p s i ) .  
rate depress ion  a t  t h e  h igher  p re s su res  and an i n c r e a s e  i n  rate a t  t h e  
lower pressures .  It has  been observed i n  t h e  ear l ier  work w i t h  XH, 
rclcasing sa l i s  iiiat tire Hi4 had very l i t t l e  ~ f f e c t  at  atmospheric p re s su re ,  
i n  fact  i t  seemed t o  a i d  i g n i t i o c  and r e s u l t  i n  a small i n c r e a s e  i n  
burning rates a t  t h e  l o w  p re s su res .  

This  involves  both  a hiurning 

J 

3 

The acetamide composite would not  s u s t a i n  combustion between ~ 1 0 0  
and 600 p s i .  As wi th  the  benzamide composite t h e  burning rate p res su re  
exponent is low from 1000 t o  2000 p s i  a f t e r  which t h e r e  is a r e l a t i v e l y  



r ap id  inc rease  i n  burning rate wi th  pressure .  
n o t e  t h a t  one p o s s i b l e  product of  decomposition for both t h e  benzarnide 
and the acetamide i s  a n i t r i l e  and t h a t  t h e  i s o p h t h a l o n i t r i l e  composite 
exh ib i t ed  the  same sharp  i n c r e a s e  i n  burning a t  p re s su res  above 2000 p s i .  

I t  i s  i n t e r e s t i n g  t o  

Unlike t h e  an ides  thei-e fs  e s s e n t i a l l y  only one thermal decomposition 
pa th  f o r  t he  diamides. The products  of t h i s  r e a c t i o n  are the  cor res -  
ponding imide and ammonia. The succinamide has  r e s u l t e d  i n  t h e  s lowes t  
burning AP composite so  f a r  t e s t e d .  
dramatic wi th  a change 01 almost  an o rde r  of magnitude over many composites 
(e.g. a . 0 1 5  inches /sec  a t  15 p s i  t o  ‘Lo.07 inches /sec  at  3000 p s i ) .  
The phthalamide composite has a h igher  burning rate than t h e  equ iva len t  
succinamide composite; however, t h e  burning ra te  is s i g n i f i c a n t l y  ? m e r  
than t h a t  of composites w i th  aromatic  f u e l s  such as benzoic ac id .  
Phthalamide is  unique i n  t h e  series of f u e l s  y i e l d i n g  NH 
decomposition i n  t h a t  t h e  maximum burning rate occurs  a t  G O O  p s i  
above which p r e s s u r e  the  burning rate has  a nega t ive  p re s su re  exponent. 
The results from t h e s e  last two composites i n d i c a t e  t h a t  NH r e l eased  
a t  t h e  r i g h t  p o i n t  i n  the temperature  p r o f i l e  h a s  a s i g n f i c i a n t  e f f e c t  
on t h e  burning late. The a d d i t i o n  of a Cu0202 c a t a l y s t  t o  t h e  succinamide 
composite d r a s t i c a l l y  a l t e r e d  its combustion c h a r a c t e r i s t i c s .  The burning 
ra te  increased  a t  a l l  p r e s s u r e s  and t h e  p re s su re  exponent w a s  p o s i t i v e  
31.-4 e ~ s e - t i d l y  t z x t z z t  S Y Z i  thc euiire pres su re  range t e s t e d .  These 
r e s u l t s  are c o n s i s t e n t  w i th  earlier l a b o r a t o r y  and combustion d a t a  which 
i n d i c a t e d  a n  ammonia atmosphere had no e f f e c t  on AP decomposition i f  
a copper c a t a l y s t  was p r e s e n t  (Reference 1). 

The reduct ion  i n  burning rate was 

or E! 0 on 3 2 

3 

The thermal decomposition of phthalamic a c i d  is similar t o  t h a t  of 
t h e  diamides i n  t h a t  an imide is formed; however, t h e  condensation produces 
H20 r a t h e r  than  NH3. The burning rate of t h e  phthalamic a c i d  composite 
i s  p res su re  independent from 300 t o  1500 p s i .  A t  p r e s s u r e s  above 1500 
p s i  t h e  burning rate of this composite i n c r e a s e s  r a p i d l y  wi th  pressure .  
This  burning rate p r e s s u r e  p r o f i l e  is similar t o  t h a t  found when 
benzamide is t h e  f u e l  and may i n d i c a t e  t h a t  the non-organic product i n  
both cases is H20. 

It is interegting t~ nnte thzt ell thc !.E’ c~iiipsiitetj cwiLiiiiiiiig 
f u e l s  which have a n i t r i l e  func t iona l  group o r  decompose t o  form 3 
product con ta in ing  a n i t r i l e  (acetamide, benzamide, phthalamic a c i d ,  
and i s o p h t h a l o n i t r i l e )  have a p o s i t i v e  break i n  the  burn ing  rate p res su re  
exponent a t  QOOO p s i .  The one except ion  appears  t o  be phthalamide 
which d id  no t  burn above ~ 1 5 0 0  p s i .  

3000 p s i  when t h e  i g n i t e r  s i z e  was increased.  A similar p o s i t i v e  break 
i n  the  p re s su re  exponent has been noted a t  t h e s e  p re s su res  wi th  composites 
con ta in ing  permanganated AP. The la t te r  system c l e a r l y  involves  condensed 
phase r e a c t i o n s .  S imi l a r ly ,  l a b o r a t o r y  work has shown that a condensed 
phase r e a c t i o n  can occur  between p e r c h l o r a t e  i o n  and CN- groups al though 
i t  has  no t  y e t  been shown whether such a r e a c t i o n  would occur under 
combustion cond i t ions .  

The problem may have been one of 
ig~ition as thcrc vere several p r r s s i i r s  au---- A e j C C r  ~ - 4 t h  V b L L b L  t h f s  ~ ~ ~ ~ ~ 5 ~ ~ r  at 
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Reduction of Pe rch lo ra t e  Ion and P e r c h l o r i c  Acid - I f  a s i g n i f i c a n t  s t e p  
i n  t h e  c a t a l y t i c  decomposition of AP, under combustion cond i t ions ,  is the 
reduct ion  of  p e r c h l o r a t e  ion  or  p e r c h l o r i c  a c i d  by the  catal 'ist,  then the  
thermodynamic p o t e n t i a l  f o r  t h i s  s t e p  may be an important f a c t o r .  
c n i s  c r i t e r i a ,  a g r e a t  many t r a n s i t i o n  metal compounds i n  t h e i r  more 
s t a b l e  ox ida t ion  states can be e l imina ted  as combustion catalysts.  The 
p o t e n t i a l  t o  reduce p e r c h l o r a t e  i o n  i s  not  a completely s u f f i c i e n t  
c r i t e r i o n  f o r  an AP combv-tion c a t a l y s t ,  however, i f  t h e  c a t a l y s t  does 
no t  have t h i s  p o t e n t i a l  i t s  l i k e l i h o o d  of being  a good combustion c a t a l y s t  
is g r e a t l y  diminished. This  s e l e c t i o n  r u l e  j s  not  con t r ad ic t ed  by any 
p r e s e n t l y  a v a i l a b l e  d a t a .  Using Figure  33, as an i l l u s t r a t i o n ,  an 
exothermic condensed phase r e a c t i o n  took p l ace  between Cu 0 and K C l O  2 bu t  I I O L  between CuO and KClO . In  t h i s  s i t u a t i o n  t h e  cuprous oxide 

L l l L  oxidaiil L U ~ L - U ~ ~ :  oxide a t t e r  i t  has  been oxiGiz-6 LU c u p r i c .  ir t'nr, 

had been AP, t h e  NH could reduce the  c u p r i c  iack t o  the cuprous s t a t e .  
For c a t a l y t i c  purposes t h e r e  must be a react- on i n  :.'hich t h e  c a t a l y s t  
can be reduced back t o  i t s  lower ox ida t ion  s t a t e .  

2 mixture i s  heated i n  t h e  presence of an organic  fuel ,  ti . Jzcomposition 
of t he  K C l O  goes t o  completion. 

- 

Using 

4 

- -  i s  a r e a c t a n t  and n o t  a cata I y s t  as t h e r e  is  no way t o  r egene ra t e  

3 
I f  tht. K l G 4  - Cu 0 

4 

It i s  i n t e r e s t i n g  t o  n o t e  t h a t  i f  t h e  thermodynamlc p o t e n t i a l  i s  

When K C l O  is reac t ed  
f avorab le  f o r  such a r e a c t i o n ,  non-metall ic sa l t s  w i l l  a lso redrice 
perch io ra t e  i o n  i n  a condensed phase r e a c t i o n .  
wi th  KCN, KSCN, and KOCN, the  r e a c t i o n  goes e s s e n t i a l l y  t o  completion. 
Since these  a d d i t i v e s  can a l s o  ac t  as a ' f u e l '  wi th  many reactive 
in t e rmed ia t e  p o s s i b l e ,  t h i s  i s  no t  p a r t i c u l a r l y  s u r p r i s i n g .  When 
t h e r e  i s  good phys ica l  con tac t  such as w i t h  KSCN, which m e l t s  below 
t h e  r e a c t i o n  temperature ,  t h e  decomposition r e a c t i o n  can go i n t o  a de tona t ion .  
It is  a l s o  i n t e r e s t i n g  t h a t  a l l  of t h e s e  r e a c t i o n s  occur  a f t e r  t h e  KC104 
phase t r a n s i t i o n  as which t h e  p e r c h l o r a t e  i o n  starts t o  r o t a t e .  
t h e s e  r e a c t i o n s  are s t r o n g l y  exothermic by %4OO0C which is the  t e m p e r a t u r e  
a t  which t h e  AP high  temperature r e a c t i o n  begins .  
r e a c t i o n  i s  important  dur ing  pornbustion depends both on t h e  k i n e t i c s  
and t h e  reaction pathways a v a i l a b l e .  Even i f  t h e  thermodynamic p o t e n t i a l  
f o r  such a r e a c t i o n  is  favorab le ,  t h e  r e a c t i o n  w i l l  no t  occur  i f  i t  
is not  k i n e t i c a l l y  f a s t  enough f o r  t h e  t i m e  per iods  involved i n  
cczkstisz.  Tc Jririuine chis  r e q u i r e s  f u r t h e r  experimental  work. 

4 

A l l  of 

Whether t h i s  redox 

The importance of t h e  r e a c t i o n  pa th  is w e l l  i l l u s t r a t e d  by the 
AP - KMnO system. 
is ,  i t  decomposes f a s t e r  and a t  lower temperatures  than AP, but  
dur ing  combustion i t  burns slower than  pure AP. This  i s  most l i k e l y  
due tn the nsturz sf the react icr !  p r ~ d ~ c t s  2nd t h e i r  e f f e c i  on Eiame 
temperature,  etc.  The area holds promise f o r  i n t e r e s t i i i g  ways t o  vary 
t h e  combustion rate of an AP composite p r o p e l l a n t .  

AP - Wn04 is  thermally less s t a b l e  than  AP, that 4 
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COSCLUSIONS 

An important gene ra l i za t ion  t h a t  can be made based on the  experimental  
r e s u l t s  obtained i n  t h e  cu r ren t  program is t h a t  t he  log pressure  log  
burning rate p l o t  for  most AP composites is  not  a s t r a i g h t  l i n e  over a 
very l a r g e  pressure  range. The Summerfield equat ion (Reference 27)  t u r n s  
out t o  apply t o  a very l imi t ed  number of f u e l s  over a r e l a t i v e l y  s h o r t  
p ressure  range (%200-1000 p s i ) .  I n  the  p a s t  t h i s  has  been adequate 
as t h e  f u e l s  used and t h e  pressure  range of i n t e r e s t  w a s  such t h a t  a 
f a i r  number of d a t a  f i t  t h i s  empir ica l  c o r r e l a t i o n .  However, a t  no 
poin t  was the  equat ion use fu l  as a p r e d i c t i v e  t o o l .  From the  experimental  
r e s u l t s ,  wi th  the  AP-fuel composites s t u d i e s  i n  t h i s  program, i t  is 
apparent t h a t  i t  w i l l  be d i f f i c u l t  i f  not  impossible t o  de r ive  a burning 
rate equat ion which w i l l  f i t  a Qreat v a r i e t y  of d i f f e r e n t  f u e l s  or  even 
one t h a t  w i l l  f i t  a given f u e l  o-rer a large p res su re  range. We have, 
t h e r e f o r e ,  attempted to  develop a q u a l i t a t i v e  explanat ion o r  d e s c r i p t i o n  
of the  combusticn of AP composites i n  such a manner t h a t  i t  w i l l  be 
poss ib l e  t o  make p r e d i c t i o n s  on what a given composite w i l l  do a t  a 
given p res su re  o r  maybe more important what p r o p e r t i e s  the f u e l  o r  
f u e l  c a t a l y s t  system must have t o  meet the  combustion requirements 
of a given mission. 

.a. L L 1 -  
n L  LLIAa i k  ir; wouici be premature to  assmilate these d a t a  i n t o  a 

un i f i ed  theory of Ap composite combustion, however, a g r e a t  d e a l  of the  
d a t a  does f i t  t h e  genera l  working hypothesis  f o r  combustion suggested a t  
the  end of t he  previous program. 
AP d i s s o c i a t i v e  evaporat ion process  have t h e i r  g r e a t e s t  e f f e c t  on t h e  
burning rate a t  t h e  lower p re s su res  while  those  which may involve 
condensed phase  r e a c t i o n s  have t h e i r  g r e a t e s t  e f f e c t  on t h e  r e a c t i o n  rate 
a t  the  higher  p re s su res .  
balance (zone of i n f luence )  a t  t h e  su r face  of a burning p rope l l an t  hold 
promise of developing i n t o  a u s e f u l  (p red ic t ive )  d e s c r i p t i o n  of the  
combustion process  i n  an AP composite p rope l l an t .  

Those f u e l s  which i n t e r f e r e  with the 

These ideas  added t o  t h e  concept of a n e t  h e a t  

It is d i f f i c u l t  t o  design combustion experiments f o r  a s p e c i f i c  
e f f e c t  of t h e  f u e l  component as very  l i t t l e  d a t a  e x i s t s  on t h e  py ro lys i s  
of most organic  compounds. 
determined a t  atmospheric and sub-atmospheric pressures .  Therefore ,  t h e r e  
is always doubt 
considered)  as t o  how t h e  organic  material behaves under combustion 
condi t ions.  This  does not  mean t h a t  one cannot c o r r e l a t e  t he  combustion 
d a t a  wi th  the  p r o p e r t i e s  of t h e  f u e l  b u t  i t  does mean t h a t  one has  t o  
be c a r e f u l  i n  e x t r a p o l a t i n g  d a t a  obtained f o r  example with a DTA t o  the  
combustion condi t ions .  

What d a t a  are a v a i l a b l e  gene ra l ly  have been 

( e spec ia l ly  when the v a r i a b l e  of hea t ing  rate i s  a l s o  
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The fol lowing is a summary of t h e  more important  experimental  r e su l t s  
observed i n  t h e  current program. 

1. The combustion rate of pure APT determined wi th  38m diameter  
pressed powder d i s c s ,  has  a cons tan t  p o s i t i v e  p re s su re  exponent between 
1200 and 3000 p s i ,  i . e . ,  t h e r e  is no evidence f o r  a negat ive  p re s su re  
exponent i n  t h i s  p r e s s u r e  region i f  t he  Ap s u r f a c e  area t o  perimeter r a t i o  
i s  large mough. 

2 .  The AP low temperature  decomposition, 200-3OO0C, is nega t ive ly  
ca ta lyzed  by phosphate and p o s i t i v e l y  ca ta lyzed  by ch lo ra t e .  
phosphate may a f f e c t  t h e  rate of s u r f a c e  d i f f u s i o n  of H C l O  and thereby 
t h e  bimolecular  r e a c t i o n  of HC104 t o  gaseous products .  
of AP conta in ing  0.025% c h l o r a t e  is approximately an  o rde r  of  magnitude 
fas ter  than  pure AP and the  decoinposition proceeds by 6 d i f f e r e n t ,  o r  
a t  least  modified,  r e a c t i o n  mechanism from t h a t  found wi th  pure AP. 

The 

4 The decomposition 

3. The phosphate and c h l o r a t e  or t h e i r  decomposition products  
do not  appear t o  a f f e c t  t h e  d i s s o c i a t i v e  evapora t ive  rate of t he  AP r e s idue  
which is  l e f t  a f t e r  t he  low temperature decomposition. 

4. Addi t ives ,  such as phosphate and c h l o r a t e ,  which c a t a l y z e  t h e  
Ap low temperature decomposition by as much as an o rde r  of magnitude 
h a w  only a limited effect (from 2 t o  ISX> sa the combustion rate of 
pressed  AP s t r a n d s .  Pressed AP s t r a n d s  conta in ing  a r e l a t i v e l y  h igh  
concen t r a t ion  of phosphate (0.64%) have a smaller change i n  t h e i r  
burning rate p r e s s u r e  exponent n e a r  1000 p s i  than s t r a n d s  of  pure AP. 

5. Those r e a c t i o n s  which a f f e c t  t h e  combustion rate of a composite 
p r o p e l l a n t  occur near  o r  on t h e  s u r f a c e  of t h e  composite, i . e . ,  i n  the  
zone of in f luence .  That is, the  s u r f a c e  temperature and t h e r e f o r e  the  
combustion rate is a func t ion  of t h e  sum of t h e  h e a t  f l u x  t o  t h e  s u r f a c e ,  
h e a t  l o s s e s  from t h e  s u r f a c e  and t h e  n e t  h e a t  from a l l  t h e  r e a c t i o n s  
(exothermic and endothermic) a t  t he  su r face .  

6 .  A composite w i t h  a r e l a t i v e l y  un reac t ive  f u e l  such as benzoic  
a c i d  has  a lower burning rate than a 5io;ilar composite w i t h  a more 
reactive a l i p h a t i c  a c i d  such as stearic ac id .  
p s i  t h e  burning rate of t h e  benzoic a c i d  composite i s  lowcr than  t h a t  
of  pure AP. 

A t  p re s su res  above ~~1000 

7. Composites with f u e l s  which char  on decomposition have 
h igher  burning rates than  composites wi th  similar f u A s  which v o l a t i l i z e  
without  cha r r ing .  This has been demonstrated both for a series of fuels 
i n  which cha r  occurs  by denydrzt ion and i n  a series of f u e l s  which char  
by dehydrogenation. 
poss ib l e :  (1) t h e  decomposition mechanism providing t h e  cha r ,  and 
subsequent ox ida t ive  consumption, i s  more exothermic i n  the"zone of 
i n f luence '  than v o l a t i l i z a t i o n  and (2) t h e  char  is a c a t a l y s t  f o r  AP 

A d u a l  and poss ib ly  cver lapping  exp lana t ion  i s  



decomposition. 

8. Fuels which thermally decompose, a t  temperatures below the  
composite su r face  temperature,  t o  form NH 

l i s t  of f u e l s  are amides, diamides and a c i d  amides. Generally these  
f u e l s  lower both the  burning rate and t h e  burning rate pressure  exponent. 

o r  H20 s i g n i f i c a n t l y  a f f e c t  
the  combustion rate of Ap composites a t  a i! 1 pressures .  Included i n  t h i s  

9. There are ions  which have both t h e  thermodynamic p o t e n t i a l  
and the k i n e t i c  r e a c t i v i t y  t o  reduce pe rch lo ra t e  ions  i n  a so l id - so l id  
o r  so l id - l iqu id  r eac t ion .  Such ions  as CNO-, CN- and SCN- all r e a c t  
with KC1O4, i n  a DTA, to  cause d e f l a g r a t i o n  and de tona t ion  above the 
temperature (3OOOC) a t  which t h e  C l o g  i on  begins  t o  f r e e l y  r o t a t e .  

10. Composites conta in ing  f u e l s  w i th  func t iona l  groups which have 
the  p o t e n t i a l  t o  reduce t h e  pe rch lo ra t e  ion  (e.g. n i t r i l e s )  gene ra l ly  
have r e l a t i v e l y  l a r g e  burning rate p res su re  exponents above ~2000 p s i ,  

11. Small amounts of KMn04, whether isomorphously s u b s t f t u t e d  i n  
the  Ap o r  mechanically mixed with the AP, d r a s t i c a l l y  a f f e c t  t h e  
combustion of AP. If t h e  pressed s t r a n d s  are not  r e s t r i c t e d ,  combustion 
cannot be sus t a ined  a t  any pressure  t e s t e d  (15-3000 psi). 
strand,combustion is sus t a ined  a t  a l l  p re s su res  t e s t e d ,  however, the  
combustion rates are lower than  those  f o r  pure Ap. 

With a restricted 
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