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1. INTRODUCTION

The concept of composite materials and structures appears to be as
old as mankind; but it is only in recent years that the true technological poten-
tial of such materials has begun to be recognized and exploited. The following
lines are an admirable summary of the meaning and significance of the modern
composite material concept:
"More important than any one new material or any one new application
is the new "materials" concept itself. It marks a shift from concern with
substances to concern with structures, a shift from artisan to scientist as
man's artificer, a shift from chemistry to physics as the basic discipline,
and a shift, above all, from the concrete experience of the workshop to
abstract mathematics, a shift from starting with what nature provides to what
man wants to accomplish.” - Peter F. Drucker = The Age of Discontinuity(*)
From the engineering point of view the most important type of composites
at the present time are Fiber Reinforced Materials (from now on abbreviated FRM).
The idea behind this kind of material is simple and the results are startling.
The very high strength of various kinds of fibers of minute cross sections is
exploited by embedding them in a relatively soft matrix. It thus becomes pos-
sible to manufacture materials whose strength and stiffness is comparable to that

of the strongest metals and whose specific weight is as low as one third of

that of steel.

(*)I am indebted to Harper and Row, Publishers, for permission to quote
this material.



This combination of high stiffness and strength with low weight makes
these materials natural candidates for aerospace applications. Such applica-
tions have been the chief motivation for the intense research and development
activity concerning FRM in the last decade.

If the engineer is to use these new materials with confidence , he must
have detailed and reliable knowledge of their physical properties. While
for conventional engineering materials, such as metals and plastics, physical
properties are almost exclusively determined by experiment, such an approach
is impractical for FRM because of their great structural and physical variety.
Typical aspects of internal structure of FRM are: volumes occupied by fibers
and matrix, directions of fiber reinforcement, shapes of fiber cross sections
and the relative positions of fibers. Variation of these geometrical parameters
alone leads to an enormous number of possibilities.

Additional variety is introduced by choice of constituents. At the

present time fibers are chiefly made of Glass, Carbon, and Boron while matrices

in use are plastics such as epoxy and lightweight metals such as Aluminum
and Magnesium.

More variety is introduced by the scope of physical properties which
must be studied. Of primary interest are: elasticity, time dependence (e.g.
viscoelasticity), thermal and electrical conduction, dielectric and magnetic
properties, thermomechanical behavior, yielding and strength, fatigue and

dynamical characteristics.




Finally, it should be noted that FRM are anisotropic, which requires
in each case the determination of a whole set of physical constants to account
for properties in different directions.

It is seen that a purely experimental program to study physical properties
would call for a stupendous number of experiments. Even if such experiments
were carried out it is hardly likely that the resulting multitude of experimental
data could lead to guide lines for the engineer.

A more hopeful avenue of approach is to construct a theory of FRM
whose predictions shall have to be verified by experiment. Not only is such a
theory necessary to determine the properties of materials in use. More
important, it is indispensable as a guide to design materials with required

properties, which is the ultimate goal of materials engineering.

rh
rry

Theory of composite materials, in general, and of FRM, in particular,
has been the subject of a very large number of papers and reports, most of
which have been written in recent years. Many different approaches to the

very difficult problems involved have been proposed, some of which are rigorous
while others are based on assumptions and approximations whose validity is
hard to assess. It is not the purpose of the present report to review the
voluminous existing literature (*); it is an attempt to present a theory of FRM

which is reasonably rigorous and is at the same time oriented towards the

engineering uses of such materials.

(*) References [1.1-1.127 which are, except for [1.4], collections of
papers and chapters by different authors cover a great variety of important aspects
of modern composite materials research.



The most basic FRM is uniaxially reinforced (or may be so idealized),
that is to say, the fibers are all in one and the same direction. This report
is primarily.concerned with such materials. Engineering applications frequently
make it necessary to lay the fibers in two or more different directions , thus
producing biaxially or multiaxially reinforced materials. Such materials
mostly consist of laminated layers of uniaxially reinforced material and
are thus called laminates . Once the properties of the uniaxial laminae
are known, laminate theory serves to analyze laminated structures. Examples
of this approach are discussed in this report,

The presentation of theory of FRM in this report begins with description
of geometry of FRM, Part. 2. Part 3 is devoted to elastic analysis of FRM;

Part 4 deals with viscoelastic static and dynamic properties; Part 5 is

concemed with thermal and electrical conduction, dielectrics and magnetics.

In Part 6 there is given a theory of thermoelastic behavior. Part 7 discusses
the very difficult problem of strength prediction. This material is to be regarded
primarily as qualitative, as work to date in this area has not reached the quan=-
titative analytical level of the material given in Parts 3-6.

An important and satisfying aspect of the theories presented is the close
mathematical interrelationship between elastic theory and theories of other
physical behavior. Thus it will be seen that viscoelastic properties of FRM
are directly related to elastic properties by simple mathematical analogies.
Thermal and electrical conduction, dielectrics and magnetics present one and

the same mathematical problem which is found to be analogous to a certain elastic




problem arising in shearing of FRM. Finally, the thermal expansion coefficients
of composites can be expressed in terms of their elastic properties. It is
thus seen that theory of elastic properties of FRM is of pivotal importance

in the whole development.



2.1  FIBROUS AND FIRER REINFORCED MATERIAL

Consider a two phase material whose phases are of cylindrical shape,
with all generatdrs oriented in one and the same direction. For convenience
and without loss of generality we shall mostly be concerned with ma-
terial specimens of cylindrical shape with generators parallel to phase region
generators, figure 2.1.1. It shall be also assumed that phase cylindrical
regions continue without interruption from base to base of the cylindrical
specimen. The material thus described is called a fiﬁrous material thence-
forth abbreviated FM). Its geometry is completely described by the plane
geometry of any transverse cross section.

The cylindrical specimen is referred to a cartesian system of axes

X., X,, X, where x

. is in generator direction and x,, x
i 2 3 1 FA

3 are in the plane of

the transverse cross section. The two phases are arbitrarily assigned the
numbers 1 and 2. The cross section area is denoted A and is bounded by

a plane curve C. The phase partial areas are A_, A,,respectively,and the

1 720
aggregate of arcs common to both phase regions is denoted C12 .

In the three dimensional description of such a specimen of height H,
the specimen volume is denoted by V with phase volumes Vl and V2 , occupy-

ing regions R1 and R.. The specimen is bounded by the surface S which is

2
composed of the curved cylindrical surface Sc and the lower and upper faces
AO and AH . The aggregate of phase cylindrical interfaces is denoted S12 .

Fig. 2.1.1.



The phase volume fractions vys Vv, are given by

2
v1=—\\lll = ];—1- 2.1.1)
A
2 v A
Obviously
v1+v2=1 (2.1.3)

In the most general kind of fibrous material there is no specific geo-
metrical distinction between the two phases. If we impose the topological
restriction that one of the phases is in the form of cylinders which are com-
pletely embedded in the other phase, we shall call the embedded cylinders
the fibers and the embedding phase the matrix. The two phase material in

that case is called a fiber reinforced material henceforward abbreviated FRM.

See figure 2.1.2 for an example of such a material.

As a further restriction it may now be assumed that the fibers are of
specified shapes, e.g. circular, elliptical or diamond shaped, however,
their locations within the cross section are random. The resulting geometry
has deterministic as well as random features and is therefore called semi-
random.

We shall now consider a certain semi-random FRM which is of funda-
mental importance in theory of FRM. We construct composite circular
cylinders each of which is made of a circular cylindrical fiber and a concentric

matrix shell. In the nth composite cylinder the fiber radius is an and the

2.1.2)



composite cylinder radius is bn' In all composite cylinders the ratios an/bn
are identical and the cylinders are all of equal height H. Now a cylindrical
specimen of height H and cross section A is progressively filled out with non-
overlapping composite cylinders. This is done by first placing a number of
such composite cylinders into the specimen and then filling out the remaining
spaces by smaller and smaller composite cylinders. At each stage of filling,
the volume V consists of Vc' tfle volume filled out by composite cylinders,
and the remaining volume V'. At the same time , a portion AC of the section
ig filled out by composite circles and there remains the area A', fig. 2.1.3.
Since composite cylinders are assumed to be available in all sizes, the
remaining volume V' can be made indefinitely small by progressive filling
and in the limit the volume V consists entirely of non-overlapping composite
cylinders. The resulting material is semi-random and is called composite

cylinder assemblage. It has been introduced as a FRM model in [3.10] and

its detailed analysis for various kinds of physical properties will be given
in subsequent chapters.

Finally we may consider a FRM whose geometry is specified in all
details. While in principle any of the previous kinds of geometrig s may be
completely specified, such minute specifications would be completely
useless from any practical point of view. Complete specification of geometry
is practically feasible only when this can be done in terms of a small number
of geometrical parameters. The most important cases of deterministic geo-

metry are, therefore regular arrays of identical fibers. Figures 2.1.4,
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2.1.5,2.1.6 show rectangular, square and hexagonal arrays, respectively
of identical circular fibers.

The arrays listed above are important examples of materials which
exhibit various geometrical symmetries. It is to be noted in this respect that
by definition the transverse x2 x3 plane is a plane of geometrical symmetry
in any fibrous material or uniaxially FRM. The rectangular array has two
additional planes of symmetry, namely the X, X, and X, Xq coordinate
planes, thus in all three mutually perpendicular planes of symmetry. Such
a material is called geometrically orthotropic.

The square array is a special case of the rectangular array. The
additional symmetry is in that the Xy axis is an axis of two fold symmetry,
by which is meant that the x2 x3 plane geometry has the two perpendicular

axesof symmetry x2 and x3 - A material having this kind of symmetry is

here called geometrically square symmetric.

The hexagonal array has an X, axis of three fold symmetry as it is
seen that there are now three angularly equally spaced axes of symmetry in

the x plane.

2 %3
The various symmetries of FRM are a most important aspect of the
subject and we shall return to them later on in relation to the concept of
material symmetry.
Frequently, technological applications require biaxially or multiaxially
FRM. Such materials are usually produced as laminates of uniaxially reinforced
parallel layers, the reinforcement direction being different in adjacent layers.

A short discussion of such FRM is given later in chap. 3.10. For geometrical

examples the reader is referred to fig. 3.10.1.
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*
2.2 STATISTICAL GEOMETRY( )

As will be seen later on, the physical properties of a FRM depend in
general upon all the details of the phase geometry. Specification of random
or semi-random geometry in minute detail is, however, a hopeless task.
Even if this were done for one specimen not much would be achieved, for
another specimen would have different phase geometry details . Unless the
geometry is simply deterministic as in a regular array, the details cannot
be controlled by the FRM manufacturer. It is therefore necessary to consider
global geometrical information rather than detailed one, and this is best
done by means of statistics and theory of random processes.

Consider a collection of N fiber reinforced (or fibrous) cylindrical
specimens. The specimens have the same external geometry, however,
their phase geometries, i.e. internal geometries may be quite different.

Each specimen is referred to the cartesian system of axes, Xl' xz ’ x3 des-
cribed in 2.1.1 and moreover, the origin of the system of axes is at the

same point in each specimen. In the language of theory of random processes,
such a collection of specimens is called an ensemble and each specimen

is a member of the ensemble.

We now consider the same point B with position vector x in all
members of the ensemble and we pose the question: what is the probability

that the point is in either one of the phases? To answer this question we

(*) This chapter is not absolutely required for most of subsequent development.
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perform in our minds a counting experiment. We denote by N 1 the number

of specimens in which B is in phase 1 and by N, the number of specimens

2

in which B is in phase 2. Then the probabilities Pl' P2 that B is in R1

or R2 respectively are defined by

Ny
P(B:Rl) =P, &) = 4m ~
N~ @
(2.2.1)
NZ
P(B=R2)=P2 &®) = 2im T
N - =

The existence of the limits in the extreme right sides of (2.2.1) is a
question of fundamental importance in probability theory and in order to avoid
this difficulty modern probability theory has been based on set theory. Such
discussions are not within the scope of the present treatment and the in-
terested reader is referred, for example, to [2.1] .

The probabilities (2.2.1) are known as one point probabilities.

Similarly two point, three point and multipoint probabilities may be defined.
Consider two points, B1 R B2 in each specimen member of the ensemble,

. . 1 2
which have the same position vectors X and x in each specimen. There

are now four two point probabilities which are defined as follows:-

Nll

1
P(B2R), By > R)) =P (', x*) = tim

i

Nis

_ r 2 .
P(Blel, B2 =) RZ) = P12(>_<_ , X )= Lim
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N
1 2 21
= = £i e
P(B1== RZ' B2 = Rl) P21(>$ , X)) im —
N
= 1 2y o pym —22 :
P(Blo RZ’ B2 > RZ) Pzz(é , X)) Lim N 2.2.2)

N~ =
Here Nll is the number of times that both points fall simultaneously into
phase 1, with analogous interpretations for le . N21j sz.

It is to be carefully noted that while it is theoretically possible for
a point to be on the phase interface such a possibility can be ignored since
the number of points inside the phases is infinitely larger than the number
of points on the interfaces. Inthe language of probability theory, the pro-

bability of a point falling on the interface is assigned zero value.

There are similarly eight three point probabilities and in general Zn,

ol

n point probabilities. Such n-point probabilities may be written in the form

»

P, , 1 2 n
11,12,...1n(g<_,§....§) (2.2.3)

where each of the subscripts i., i,,.. 'in assumes either one of the phase

1’ "2
numbers 1, 2 and its position in the subscript sequence is attached to that
of the corresponding position vector within the parenthesis.

There is, of course, no difficulty to define the same kind of multi-
point probabilities when there are more than two phases.

The probability functions defined above obey the obvious relations

P () + Py () = 1 @

S SN SR Ny ®)



Pyt x) +py, &, x) =, ) ©

z P, «!, x%) = 1 @ 2.2.4)

Again similar relations are easily established for any number of points
and any number of phases.

The reader will have noticed that the preceding discussion has not
really been concerned with the specific case of fibrous materials but ap plied
to any kind of heterogeneous material. The distinctive feature of the fibrous
material is that its phase geometry is independent of the longitudinal X,
coordinate. Hence for such a material all the multipoint probabilities are
independent of the X, coordinate and it is therefore sufficient to consider
points which lie in the same cross section. Therefore, the ensemble of
cylindrical specimens may be replaced by an ensemble of two phase cross
sections, each of which is referred to a plane cartesian system Xo 1 x:),

and all position vectors are in the x2 » X, plane. Thus all vector variables

3

in (2.2.4) lie in the X, X, plane.

It may in general be safely assumed thr 1 multipoint probability
functions are continuous functions of position, Because of the smoothening
out effect of the, in theory, infinite number of ensemble members.

We now proceed to define the very important concept of statistical
homegeneity, henceforward abbreviated as SH. For this purpose, the system

of n points entering into (2.2.3) may be considered as a rigid body which

is described by the vector differences
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1 -1 -1
I =>_<_1—§n,_£2=§2-xn,..._x_'_n =)_<_n -x" (2.2.5)

Suppose that any multipoint probability such as (2.2.3) depends only
on the relative configuration of the points and not on their absolute position
with respect to the coordinate system; then the ensemble is called statisti~
cally homogeneous. Mathematically this means

I O IR P ¢, 2,0 2.2.6)
1 2 n 1 72 n

The meaning of this statement is that in the counting experiments to deter-

mine probabilities which were described above, it is not important where

the n point system is located within the ensemble members.

Statistical homogeneity is a theoretical assumption which is funda-
mental in theory of heterogeneous media. It plays the same role as the
assumption of homogeneity {constant properties) in classical continuum
theories. Neither one of these assumptions is ever literally satisfied but
in their absence theories become hopelessly difficult.

A most important aspect of SH is expressed by an ergodic type
hypothesis. It is assumed that ina SH ensemble the counting experiment
for the determination of any n point probabilities may be performed by moving
the rigid n point system through a large number of positions within any one
member of the ensemble. This hypothesis is fundamental for the actual ex-
perimental determination of a probability function. It is hardly possible

for the experimenter to make a large enough ensemble. Instead he simply

considers one typical case.
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We now consider the consequence of the SH assumption for the pro-
bability functions (2.2.1). The one point probabilities (2.2.1) cannot be
functions of position and are therefore constant. Furthermore, in view of
the ergodic hypothesis, the one point probabilities can be obtained by ran-
domly throwing a point into one specimen a very large number of times and
counting N1 and N2 . @s defined in (2.2.1). It is, therefore, clear that the

one point probabilities are just the volume fractions (2.2.1-2) , so

P =v 2.2.7)

In view of (2.2.6) the two point probabilities (2.2.2) now assume

the form
P o', x) =P (r) @2.2.8)
lj ¢ X i] I A
where
r=r2 .t 2.2.9)

The two point probabilities do not have as simple an interpretation as the
one point probabilities. They have in general to be found by a scanning
experiment or on the basis of plausible theoretical assumptions. However,
some important general aspects of these quantities are readily deduced.

We first consider the case when the two points coincide, i.e. r vanishes

Then
P, =P =v, (@)
Pyl =B, =v, (b)
P,,00=P,, () =0 ()

2.2.10)
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The first two results stem from the fact that since the points coincide
the two point probability becomes a one point probability. The result
(2.2.10c) is due to the neglect of the probability of a point falling on
an interface.

Next, we consider the case when the two points are infinitely
apart, i.e. r= || - . Inthis event we make the assumption that
whatever happens at one point is independent of what happens at the other
point. This situation is expressed in statistical language as statistical

independence. If two events are statistically independent the probability

of their simultaneous occurrence is simply the product of the probabilities
of their individual occurrences, see e.g. [2.1]. The events are in the

present case the falling of points into a certain phase. We thus conclude

that
P (r)=P &) P &) =vv @.2.11)
ij = i j Vi ta
r —» @«
The last equality in(2.2.11) follows from (2.2.7). In detail (2.2.11) are:
P =vZ P =vz P..=P.,, TV, V 2.2.12)
11 1 722 2 '"12 21 172

It is seen that the sum of these probabilities (2.2.12) obeys (2.2.4d), as

it should, because of (2.1.3).
A typical plot of a two point probability function is shown in fig. 2.2.1.
Another fundamentally important feature is statistical symmetry. In

chapter 2.1 we have discussed certain geometrical symmetries and all of
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these have statistical counterparts. From the practical point of view only

statistical transverse isotropy is of importance since this kind of symmetry

is frequently obtained when the fibers are randomly placed. Orthotropy and
square symmetry appear for the deterministic periodic geometries described
in chapter 2. 1. It is hard to imagine a random geometry with this kind of
statistical symmetry.

It will be recalled that in a fibrous material the position vectors
appearing as arguments in the probability functions can without loss of
generality be taken as plane vectors in a transverse plane. Statistical
transverse isotropy (abbreviated STI) requires that all multipoint probability
funct ions be not affected by rigid body rotations of the plane point system with
which they are associated. The simplest example is a one point probability
function P(x). In the case.of STI

P (x) = P(x) (2.2.13)
where x is the magnitude of the vector x.

It should be carefully noted that SH and STI are independent properties.
We shall, however, not be concerned with STI geometry which is not SH.

If the geometry fulfills both requirements we conclude that the values of
the one point probabilities remain as given by (2.27).

The only difference in the two point probabilities is that now

Pier_)=Pij(r) 2.2.14)
where r is the magnitude of r. The results (2.2 .10) and (2.2.11-12) remain,
of course, the same. For further discussion of statistical geometry the reader

is referredto e.g. [2.2-3].
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FIG. 2.1.1 - FIBROUS CYLINDER
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FIG. 212 - FIBER REINFORCED MATERIAL. TRANSVERSE CUT
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FIG. 2.1.3 - COMPOSITE CYLINDER ASSEMBLAGE
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FIG. 2.1.6 - HEXAGONAL ARRAY
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FIG. 2.2.| - TWO POINT PROBABILITY FUNCTION
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3.1 TENSORIAL AVERAGE THEOREMS

We shall here be concerned with the derivation of some theorems for
second rank tensor averages, which are fundamental in the theory of hetero-
geneous materials. It is emphasized in advance that these are general con-
tinuum mechanics theorents ard do not presuppose any kind of specific
mechanical behavior of the material. The theorems hold for homogeneous as
well as multiphase bodies. For the sake of simplicity they will be derived
for the specific case of a two phase body.

It is assumed that the reader has some knowledge of continuum
mechanics and cartesian tensors. Subscripts used range over 1,2 .3, repeated
subscripts denote summation over their range and a comma before a subscript
denotes partial differentiation with respect to the space coordinate associated
with the subscript. A position vector with cartesian components x1 ,x2 ,x3 is

denoted x.

3.1.1 Average Strain and Strain Rate Theorems

Consider a two phase body with phases occupying regions R, and R

1 2°
The displacement fields in the phases are ui(l) x,t) and ui(z)(}i,t) where t is

(2

the time . Associated with these are velocity fields vi(l)(;_c_,t) and v, )()i,t) where

du,
i

vi= 31 =ui (3.1.1)

The volume V of the two phase body, the phase volumes V., and Vz ; the

1

bounding surface S, and the interface S12 may all be time dependent. The

velocities are prescribed on S ,i.e.
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o

v, (S) =v, (3.1.2)

Also the velocities are continuous within the phases and at the interface, the
last condition being expressed by

vi(l) = vi(z) on S12 {t) . (3.1.3)

Define the strain rate tensor Y by
=L v, +v, ) (3.1.4)
Yij 2 Vi g o

The volume average Qij of Yij is given by

- 1
@ =y J vy wo o @.1.5

The average strain rate theorem is expressed by the statement

- 1 f o o .
= — + .1 .r~\
Y i {t) 7V A (vi nj vj ni) ds (3.1.06)

It should be noted that the components of the normal, ni, in (3.1.6) are time
dependent since S is time dependent
Proof: Substitute (3.1.4) into (3.1.5) and use the extended divergence

theorem (see appendix of chap. 3.1). Then

= -1 (1) (1) 2) @)
ZYij (t) = v [ 'é(vi nj +v)_ ni) ds + { (vi nj+ vj ni) dS] (3.1.7)
1 2

where Sl(t) and S2 (t) are the bounding surfaces of the phase regions R1 and R2 .

Now each of Sl and S2 is at most composed of part of the external surface S

and the interface S12 . Therefore (3.1.7) may be rewritten
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2§ij(t)=—;/1— [/; v, n +v n)dS+ 's/‘ (vi(l) nj+vj(l) ni) ds
12

+ f (v.(z) n +v,(2) n,) ds ] (3.1.8)
i j j i

$12

It is to be carefully noted that in the divergence theorem ni is always the

outward normal, At the interface S., the outward normal reverses sign accord~

12
ing to whether it is taken from the inside of R1 or R2 . Therefore at each point
on Slz the ni in the second and third integrals in (3.1.8) are of opposite
signs. This in conjunction with (3.1.3) makes Slzsurface integrals in (3.1.8)

cancel one another and consequently the result 3.1.6 follows.

We now proceed to prove an important corollary of (3.1.6): If

A (S) =Yij (t) xj (3.1.9)
then
V. ® =% (3.1.10)
ij Yij T
Proof: Substitute (3.1.9) into 3.1.6). Then
:/ (t) -1l [yo (t)fx n. ds + > (t) fx n, dS ] (3.1.11)
ij 2V ik Tk Yik A

By the divergence theorem

/anjds=/xk J,dV=V6k],

S \' ’

_S/xk nidS=‘V/xk’i dV=V6ki” (3.1,12)
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where 8§ ., 6  are Kronecker delta.
ki’ ki

Substitution of (3.1.12) into (3.1.11) immediately leads to (3.1.10)
Average small strain theorems may be derived in a completely

analogous fashion. The strains eij are defined by

=1
e, B0 T 5y Gt Fuy )

If the displacements are prescribed on S, i.e.

u s, t) =u’
i i
and
(1) _ ()
u, u, on Slz(t)
ther
- 1 o
e (t) = —— f(u, n +u n)ds
ij Y i i
S
Also if
0
u,1 S, t) =, () x].
then
- _ o
sy 0= 0
It should, however, be carefully noted that while
B = ¢ o
Vi x.,t) €4 x,t)
in general

vt Fe . @)

1) 1j

(3.1.13)

(3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)
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The reason for the inequality is clearly seen when (3.1.16) is differentiated
with respect to time. Because of the time dependence of V, S and n, in (3.1.186)
the time derivative of the right hand side is not equal to (3.1.6). Equality

occurs in (3.1.20) if,and only if,the geometry of the body is time independent .

3.1.2 Average Stress and Stress Rate Theorems

Next we consider average stress and stress rate theorems. Let the
stress field inside the body be oij (x, t) and the body force field per unit
volume be Pi x, t). The body is assumed to be in quasi-static equilibrium,
so that at every point

o, . .+tF =0 (3.1.21)
13,) 1

and also
6, +F =0 (3.1.22)
1},] 1
On the external surface S the tractions are prescribed

T (S,t)=o0, . n =T (3.1.23)
1 1} ] 1

At the interface the tractions are continuous

T(_l) = 0(1)n =T.(2) = 0,(_2) nj on S1

.1,
i ij i ij (3 24)

2

Equation (3.1.24) involves a tacit sign convention with respect to the
normal at the interface, which should be clarified. It is customary to take a
normal at a surface in the outward direction. While "outward" is clearly
defined at the external surface S, this is not the case at the interface for

what is outward with respect to Rl is inward with respect to R It is

9
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understood in (3.1.24) that the normal components on both sides refer to the

same vector, outward into Rl' say, and consequently inward into R, (or

2
vice versa). If it is desired to preserve the outward sense of the normal
with respect to both phases at the same time, then one of the sides of (3.1.24)

must be given a minus sign.

The average stress is defined by
o (t)=1—fo &, t) dv (3.1.25)
%;j R e

Then the average stress theorem asserts that

L= 1

; ..(t)=—[f x, T, dS + f x.F.dVJ (3.1.26)
5 i} A% 3 j i joi

! )

@]

\%

Proof: We first prove the identity

c..={c + 1.2
i ( ikxj),k Fin (3 7)

Evidently

(

+ 0 6 ==-F x +o0
1] 1)

o =
5 e T % S T %k Ok
where the last step follows from (3.1.21). This establishes (3.1.27). Now

(3.1.27) is introduced into {3.1.25) and the divergence theorem is applied. Then

- =L 1) (1) 2) @)
oy == [js‘ X, Oh Dy dS+{xjoiknk dS+{FixjdVJ

ool 2 (3.1.28)

which may be rewritten in the form
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1 f f 1y (1)
= +
o © =5 [ ¢ 1%k "k ds 5% " ds
12
+ f x 0% n® g5+ f F, X, dv] (3.1.29)
j ik 'k . 1)
51, v

The superscripts on the normals indicate component of outward normals
with respect to surfaces enclosing Rl and R2 . because of the application
of the divergence theorem. Because of (3.1.24) and the normal sign convention,
as explained above, the integrands of the interface surface integrals in (3.1.29)
cancel one another at each interface point and thus the two interface surface
integrals cancel. Then in view of the traction definition (3.1.23), (3.1.29)
immediately reduces to (3.1.26).

Also, since

o, &) =0, G, t)

it follows that

0. (t) =0 () (3.1.30)
ij ji

Therefore (3.1.26) can be symmetrized in the form

50 =25 | S S
Oij(t) ZV[S (XjTi+xiTj)ds+ V(XjFi+xiFj)dv]

(3.1.31)

TR §

Precisely the same result holds for stress rates when (3.1.22) is fulfilled,(3.1.24)

is replaced by traction rate continuity and {3.1.23) - by prescribed traction rates.

Then,
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. o . .
°ij t) = [f xj TidS+ ij 1—“i dV]

'
5 v

_ 1 . . . .
=3V [! (iji+xiTj)dS+ .{;(iji+xiFj)dv]

(3.1.32)

Again it should be noted that because of the time dependence of V, S and S12 '

(3.1.32) is not the time derivative of (3.1.31). This becomes true if, and only

if, the geometry is time independent.

We now prove an important corollary which is similar to (3.1.17 - 18).

If
_ 0
Ti (S,t) Oij (t) nj
Pi x,t)=0
then
o ) =0, @
ij ij
Proof: Substitute (3.1.33-34) into (3.1.29). Then
o (t)=—1-—cro (t)fx n, dS
ij \% ik 3 j k

and (3.1.35) follows immediately by use of (3.1.12).

By precisely the same proof we also have: If
. o
Tl (Sl t) - Oij (t) nj

F, x,t)=0

(3.1.33)

(3.1.34)

(3.1.35)

(3.1.36)

(3.1.37)
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then

5 (1) = oS (3.1.38)

3.1.3 Average Virtual Work Theorems

The third class of theorems to be proved are virtual work type theorems.
We shall prove such theorems in detail for stresses and strains and then we
shall write down corresponding theorems for stress and strain rates by analogy.
Suppose that within a two phase body the displacement field U, x, t)
is continuous and obeys (3.1.15). The associated strain field is given by
(3.1.13). Also consider a stress field Oij (x, t) within the same two phase
body which may be unrelated to the strain field. The stress field obeys
(3.1.21) with vanishing body forces and also the continuity condition (3.1.24).

The strains and stresses at each point are split into averages and

deviations from the average, thus

2 x,t) = 45 (t) + e'ij &, t) (3.1.39)

o. x,t =8,, t) + o (x,t 3.1.40
yED =0, 00 &) (3.1.40)
It follows from the definition of the volume average and (3.1.39-40) that

fe'. &, t)dy = fOT. x,t)dv=0 (3.1.41)
7 1 v Y

It then follows from (3.1.39-41) that

= o e . dV=g0,, €. V + f v 1.
7 {//- i ot \ 01] i / Oij eij dv (3 42)
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The strain field ;ij (t) is derivable from a displacement field

wW=5. 0 x (3.1.43)
i i j

Therefore the displacement at each point in the body may be written as

u, &, t)=uc;+u;.L &, t) (3.1.44)

where

1
' = — ' + 4
€ 5 (ui,j uj’i) (3.1.45)

Now aij (t) is not space dependent and it therefore trivially satisfies equilibrium
without body forces. Since Gij also satisfies equilibrium it follows from (3.1.40)
that

5l =0 (3.1.46)
In view of (3.1.45-46) the theorem of virtual work (see appendix to chap. 3.1)

is applicable to the second integral in the right side of (3.1.42). Thus

po=fo & av= S/ o Un Mt g [ 2@ ,@ 0

ij j ij j i
Y sl s2

which may be rewritten as

v o ' (1) (1) (1)
I _S/-Gi]_ nj uidS+ ! Oij n ui ds

12
+ f 0'.(?) n(.z) u‘.(z) ds (3.1.47)
3 ij j i

12
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In view of (3.1.43-44) and (3.1.15), the displacements ui are

continuous across S12 . Also in view of (3.1.40) and (3.1.24) the tractions

on_ nj are continuous across the interface S12 . Thus the integrands in the
S12 surface integrals in (3.1.47) cancel at each point because of difference

in normal sign convections involved in (3.1.24) and the divergence theorem,

respectively . Therefore, we have the result,
= p - . J + / ! ' . 1 .
] Gij € v Oij nj u ds (3.1.48)

The result (3.1.48) leads to the following two theorems
@) If on the bounding surface of the heterogeneous body the displacements are

ui(S, t) = e?j (t) xj ! (3.1.17)

then

] =5ij ) e_i]. t) v =8 ) e RORY | (3.1.49)

(b) If on the boundmg surface of the heterogeneous body

T, (S t)‘ ij (t) n (3.1.33)

sy

a 7=o, ;© ) OV =00 e ;O v (3.1.50)

These theocrems w111 be called the average theorems of virtual work.

Proof: Consider first (3.1.17). In view of (3.1.43-44) , (3.1. 17-18),
ui (S) = 0, and consequently the second integral on the right side of (3.1.48)

vanishes. This establishes (3.1.49).
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Next consider (3.1.33). Because of {3.1.40) and (3.1.35) we hawe

cij nj = 0 on § and therefore again the second integral in (3.1.48) vanishes,

establishing (3.1.50). By precisely the same method average rate theorems

of virtual work may be established. If e?j and/or o(;j are replaced by strain

rates and/or stress rates, (3.1.49) and/or (3.1.50) hold with corresponding

rate replacement.
For example: if

—_ vo
vi(S, t) = L (t) xj (3.1.51)

then

. _ - - _ - .0
'(I.Oij °ij dv= Gij (t) €45 t)v= Gij (t) &5 (AR (3.1.52)
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APPENDIX

Divergence Theorem

The usual divergence theorem for a vector Fi asserts that

/F, dv= f F. n ds (1)
1,1 g 1 1

\'

The extended divergence theorem asserts that
fP_ ., dV = f F, n, dS 2)
1,) S 1 ]

Note that (2) is more general than (1), since (1) follows from (2) by contraction
(summation over equal values of i and j).

A more general result than (2) is

d = / 3
faij,k v aij n ds (3)

\'% S

with obvious further generalizations.

Theorem of Virtual Work

This extremely important theorem may be summarized as follows. Iet
Oij (xX) be a stress field in a body of volume V and bounding surface S, which

satisfies static equilibrium everywhere, i.e.
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Let &5 (x) be a compatible strain system defined throughout the
same body , but completely unrelated to the previously considered stresses.
The theorem of virtual work asserts that

fo,. e, dv= fT u, ds + fP u, dv
i) i A ii ii
5 v

v

where

and ui are the displacements from which the a1j are derived.

It cannot be too strongly emphasized that the theorem of virtual
work has no physical meaning in its present form. It becomes physically
meaningful when it is considered in the special case of stresses which are
related to the strains such as in elasticity. In that latter case it becomes
Clapeyron's theorem which states that inan elastic body the intemal work
(strain energy) equals the external work.

The theorem of virtual work in its above form remains valid for a
multiphase body if the tractions Uij n, and the displacements u are

j

continuous across phase interfaces.
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THE EIASTICITY PROBLEM FOR HOMOGENEOUS AND HETEROGENEOUS
BODIES

3.2.1 Homogeneous and Continuously Nonhomogeneous Bodies

We consider in this chapter the formulation of classical elasticity

problems for homogeneous and heterogeneous bodies.

Let u, (x) be the small displacement field in an elastic body. The

small strain tensor ¢ . (x) is defined by

1)

1
eij_T (ui,]'+uj,i) (3.2.1)

The symmetric stress tensor Oij (x) is related to the strain tensor

by Hooke's law which for the general anisotropic case has the form

_ (3.2.2)
%4 T Ciikl &1

The components of the fourth rank tensor Cij are known as the elastic moduli.

kl

They obey the symmetry relations

ikt = Skt T Cijie = G 8.2.3)
As a consequence of (3.2.3) there remain at most 21 different cijkl'

The inversion of (3.2.2) is written in the form

€ i = Sijkl Okl (3.2.4)




41

where Siijl are known as the elastic compliances. The Sijkl also obey
symmetry relations of type (3.2.3), i.e.
Skt = Skt~ Sijik T Sk 3.2.5)

The relationship between Cijkl and Sijkl may be written compactly
in the form
Sijes C sk lijkl (3.2.6)

1
= 5 ) +6 6 AN
Ii]'kl 2 ( ik jl il jk) 3.2.7)

where 6” is the Kronecker delta and Iijkl is a symmetric fourth rank unit tensor.

It should be noted that for an isotropic elastic body the Cijkl tensor
assumes the form

5 =6 b+
Ciik1 = 04y % T 3G L

where A is the usual Lamé modulus and G is the shear modulus.

The elastic moduli Cijk and the compliances Si are further

1 jkl

restricted by positive definiteness requirements of the elastic energy density.

This energy density is defined by
1
W = - o, € (3.2.8)

ij 1ij

Substitution of (3.2.2) into (3.2.8) yields the strain energy density

0 (3.2.9)
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Substitution of (3.2.4) into (3.2.6) yields the stress energy density

(*)

g

1
! = —_— b 2.1
N > Sijkl o i Okl 0 (3.2.10)
Equality to zero in (3.2.9-10) occurs if, and only if, eij =0 or Oij =0,
respectively.

In the static case the stresses obey the equilibrium equations

Oij,j+Pi=0 (3.2.11)
where Pi are the body forces per unit volume. Substitution of (3.2.1) into
(3.2.2) and the result into (3.2 .4) yields a set of differential equations for
displacements

(C ) +F =0 (3.2.12)

ikl Yk,17,5 75

where the symmetry relations (3.1.3) have been exploited. It has been
assumed in (3.2.12) that the Cijkl are continuously space variable. In the
important special case when Cijkl are constant, the elastic body is called

homogeneous. In that event (3.2.12) simplifies to

= 2.1
Cijkl uk,1j+Fi 0 (3.2.13)

For an isotropic elastic body (3.2.13) reduces to the well known

Navier equations

(A +G)u. .. T Gu, | +F =0
J./)1 1,75 i

(*) Strictly speaking (3.2.9-10) define positive semi-definite quadratic forms.
For reasons of compactness the expression positive definite will be used
throughout this work.
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The traction vector components Ti at a surface point where the normal
has the components ni with respect to some cartesian coordinate system,
are given by

T. =0, n, (3.2.14)

The tractions (3.2.14) are easily expressed in terms of displacement
gradients by substitution of (3.2.1 = 2) into (3.2.14). This yields

T, =C

2.1
i ikl Yk, (3.2.15)

where the symmetry (3.2.3) has been exploited.
In a typical boundary value problem the boundary conditions are

u, =u’ on S (3.2.16)
1 1 u

o
- = 2.1
Ti = Ciﬂ 1 Ll.l 1 nj =T i on ST (3 7)

That is to say, displacements are prescribed on the part Su of the boundary and
tractions on the part ST of the boundary.

If the system of differential equations (3.2.12) has a solution which
satisfies (3.2.16-17) then this solution is unique, apart from a possible rigid
body motion (in the event that tractions are prescribed over the entire boundary) .
For proof see e.g. 3.1 . Inany event, the strains and consequently the

stresses are always unique since a rigid body motion produces no strains.
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3.2.2 Exact Solutions for Homogeneous Bodies of Arbitrary Shape

We shall now consider two cases in which the elastic ity problem can be
solved for bodies of arbitrary shape. Iet the body be homogeneous and let
the body forces vanish. The differential equations (3.2.13) then assume

the form

Ciki%,15 = o0 (3.2.18)
In the first case linear boundary displacements are applied to the

entire surface S, i.e.

o
u () €55 xj (3.2.19)

o , .
where e i are symmetric constants and xj are the surface coordinates.

In that event the displacement field inside the body is given by

— o .
u, (g)—eij xj (3.2.20)

The proof of this statement is immediate: The displacements (3.2.20) obviously
satisfy (3.2.19) . Since they are linear in xj and all displacement deriva-
tives in (3.2.18) are of second order they also satisfy (3.2.18), trivially.

By the previously mentioned uniqueness theorem it follows that (3.2.20) is

the unique solution.

Insertion of (3.2.20) into (3.2.1) shows that the strains in the body

are given by

o}

e, (x)=¢, (3.2.21)
ij ij
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and they are thus constant. Insertion of (3.2.21) into (3.2.2) shows that

the stresses are also constant and are given by

o
= 2.2
% T ikl G 3.2.22)

Next we consider a body which has tractions prescribed over its entire
surface, in the form
o]

T,1 ©) = oij nj (3.2.23)

(o}
where Gij are symmetric constants and nj are the components of the outward

normal to the surface. To find a solution first define the constants aij by

_ o
% Sijkl k1 (3.2.24)
The solution is then
u, (x) =a. x, ‘ (3.2.25)
i i

To prove this statement it is again noted that, by its structure,(3.2.25)
trivially satisfies (3.2.18). Insertion of (3.2.25) into (3.2.15) shows in
view of (3.2.24), (3.1.6) and (3.2.7), that the boundary conditions (3.2.23)
are satisfied. By the uniqueness theorem (3.2.25) is the displacement, apart
from rigid body motion. It follows that the strains are constant and are given
by (3.2.24) and the stresses are also constant and are given by

(o]

Gi]. (x) =0y (3.2.26)

Since either one of the boundary conditions (3.2.19) or (3.2.23) leads to

homogeneous (constant) fields of strain and stress in homogeneous elastic



46

bodies of arbitrary shape, such boundary conditions will from now on be

. *
called homogeneous boundary conditions . (*)

It is to be carefully noted that the elementary solutions derived do
not hold for bodies with variable elastic moduli.

The preceding solutions illuminate the significance of homogeneous
boundary conditions. It was seen that when such boundary conditions are
applied to homogeneous elastic bodies the fields of strain and stress through-
out are uniform. Thus important cases such as isotropic (hydrostatic) stress
and strain, uniaxial stress and pure shearing and straining are all covered
as special cases.

When such boundary conditions are applied to the surface of a hetero-
geneous body the fields inside are no longer uniform. However, the surface
is deformed or loaded &s if the body were homogeneous with homogeneous
strain and stress inside. Thus these boundary conditions express mathe-
matically the fundamental tests of material behavior such as simple extension,
biaxial stressing, pure shearing and hydrostatic stress which are performed
in the laboratory on heterogeneous specimens. The forms of the e?l, and
oioj matrices for such cases are given below

Isotropic Deformation

(*} This should not be confused with the meaning of homogeneous boundary
conditions in theory of differential equations.
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Isotropic (Hydrostatic) Stress

r
3 ! oo 0 0
100,? = i 0 oo 0
L 11‘ [

LO 0 g

Pure Shear Deformation in x1 x . Plane

2
o 47
_ 0 3120
o o
Ful = |"12 0 0
-
0 0 0

Pure Shear Stress in x, x, Plane

172
r o
0 012 0
o _ o}
,[Oiil 012 0 0‘
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3.2.3 Heterogeneous Bodies

We shall now discuss typical elasticity problems for heterogeneous
bodies. For simplicity only two phase bodies shall be considered, extension
to multiphase bodies being a straightforward matter.

The body of volume V and surface S is now composed of two phases,

one occupying the domain R, with volume V., the other occupying the

1 1
domain R2 with volume V2 . The phases are assumed to be homogeneous
with elastic moduli C(ilj)kl and C(fj)kl’ respectively. The interface between
the two phases is denocted S12 . The elasticity problem is then formulated
as follows
(1) (1) (1) .
-+ =
C ijk1 u K, 1j F i 0 in R1
(3.2.27)
(2) (2) (2)
+ =0 i
Cluikl Y TF in R,

where superscripts define fields in the respective phases,

The boundary conditions (3.2.16 - 17) remain unchanged with the added

2)

i

1
provision that they apply to both displacement fields ui( ) and u on boundary

parts composed of respective phase materials. There are added the interface

conditions
u .(1) =u(.2) ’} @)
i i ons (3.2.28)
1V @ J' &

These interface conditions assume perfect bonding. The first assures that
there is no separation between the phase materials and the second assures

equilibrium at a bonded interface.
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In the event of interface separation, voids appear which may be regarded
as a third phase. The continuity conditions are then replaced by zero traction
conditions on that part of S12 which is separated.

It is of interest to consider two extreme cases of two phase bodies.

In the first case one phase, say 2, is considered as perfectly rigid. In

that event (3.2.28) is replaced by

i on S12 (3.2.29)

In the second case phase 2 is composed of voids. Inthat event

1) _
TV, =0 ons,, (3.2.30)

Problems for two phase bodies are by an order of magnitude more
difficult than problems for homogeneous bodies. In particular, the simple
results given above for homogeneous bodies under homogeneous boundary
conditions are not valid any more because of the appearance of the interface
conditions (3.2.28).

It is important to note that the uniqueness theorem is easily extended
to two phase and multiphase bodies. It now asserts that if fields can be
found which satisfy (3.2.27), (3.2.28) and (3.2.16-17) there is no other
solution which satisfies the same equations (apart from arbitrary rigid body

motions for Su = 0).



50

3.3 EFFECTIVE STRESS-STRAIN RELATIONS OF GENERAL COMPOSITES

3.3.1 Heterogeneous Bodies with Homogeneous Boundary Conditions

In the present chapter the concept of effective elastic moduli (EEM)

will be defined and discussed for general SH composite elastic materials
without particular reference to the more special case of fibrous or fiber
reinforced materials. The present paragraph is concerned with some
general theorems which hold for any elastic body, homogeneous or
nonhomogeneous.

Let a composite body with no body forces be subjected to the

homogeneous boundary condition

u, (S) = e .. X (3.3.1)

The formulation of the mathematical problem for determination of the
displacements ui at every point has been given in chapter 3.2. It is here

desired to establish a relationship between field averages and the eoij

The eoi], matrix can be separated into 6 matrices in each of which

fols o ,
there occurs only one non-vanishing ¢ i strain. Thus

5, 0 o o o o 0 o o
o1 ; » o 5
= .0 0 ; i |

[eij_j | 0 ey 0 00 °
: 0 | | '

0 0 0 0 0 0 0 ,¢33_:I

[0 &0 ]'0 o o o o &

+ 'e°12 0 o + o o e°z3j +]0 0 o

o : o

o 0 o 0 . !

- - ; 23 0 U €13 OJ
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To these comrespond six boundary displacement vectors which for conven-

ience are also written in matrix form

R
iell Xy

: O
1; 0 ;+!€Z
o o
- 4k
.
B
i€z3X3 *
Q2 x
“23 ™2
[ 4

€13 %1

-

(3.3.2)

Because of the superposition principle of the linear theory of elasticity the

elastic field which is produced by (3.3.1) is equal to the sum of the six

fields which are produced by the application of each of (3.3.2), sevarately,

on the boundary. Consider for example the application of the first displace-

ment on the right side of (3.3.2). Suppose that eoll = 1 and let the resulting

displacement field be denoted u(lil) (x) . Then when e:ol1 # 1 the field

is by linearity

O
€

11 u(lli)(i)

Similar considerations for each of the

displacements on the right side of (3.3.2) and superpos ition show that the

displacement field in the body due to (3.3.1) on the boundary can be

written in the form.

ui(>_<_)=

° u(kp (x)

€kl i -

(3.3.3)
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Here kl is summed. By (3.2.1) and (3.3.3) the strain at any point is

given by
1
ey (x) =60 e(‘i‘j) &) (3.3.4)
where
0 = W, 3.3.5)

Finally, the stress at any point is given in view of (3.3.4) and (3.2.2) by

(k1)
ekl ijmn (x) e mn

Gij(§)= x) (3.3.6)

where the Cijmn are the space dependent elastic moduli of the heterogeneous

body. Inthe case of a two phase body they assume only the two values

(1 c @)

C' . and
1jmn 1]mn
Now let (3.3.6) be volume averaged. The result is written in the form
% = 3.3.7
i~ Cik Cwl ( )
where
=1 (k1)
1]k1 v / ijmn (£) e (x) av (3.3.8)
A

It is thus seen that a field quantity at any point and its average are linearly
o)
related to ¢ iy It should be borne in mind that this property is solely a

consequence of the linearity of the governing equations.
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In view of the average strain theorem (3.1.17 - 18), eqn. (3.3.7)

can be written in the important form.

- * -

=C.

Oi)‘ k1 €] (3.3.9)

Since 511, and Eij are tensors of second rank it follows by the quotient law
of tensor analysis (see e.g. [3.2] ) that C:jkl is a tensor of fourth rank.

If a composite elastic body is subjected to the homogeneous traction
boundary conditions

T. §) =05, n, (3.3.10)

then it can be shown by arguments completely analogous to the ones given
o
above that all field quantities now are linearly related to Oij . In

particular the average strains can be written as

- * o
=3 .3.11
€4 Skl T k1 3 )

In view of the average stress theorem (3.1.33 - 35), equation (3.3.11) can be re-

written in the important form

- —
= 3.1
\eij 8 i1 %kl (3.3.12)

*
It follows again by the quotient law that S k1 is a tensor of fourth rank.

The average theorems of virtual work which have been derived in
chapter 3.1 are now recalled. Obviously these theorems apply as a special
case to the elastic energy of a composite body subjected to the homogeneous

boundary conditions (3.3.1) or (3.3.10). The elastic energy U is defined by
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U=L f o.(x)e, (x)dv (3.3.13)
2 ij ij
\%

When (3.3.1) is applied to the boundary we have

I — o) 1 * fo) fo)
o e— E e— . .l
U 5 O'i], eij \% 2 Cijkl € i ekl \% (3.3.14)

where the last equality follows from 3.3.7).
When (3.3.10) is applied to the boundary we have

o - * o} (o]

1 1
- L =L o 3.3.1
Us g 9%V 3 S k1 %45 %k V (3.3.15)

where the last equality follows from (3.3.11). Expressions (3.3. 14) and

(3.3.15) may be called the strain and stress energies, respectively. The

notation used will be

1 * o o 1 s« - .
U = < = —_—
2 Ciikl 5V 37C ikl €45 SV @)
(3.3.16)
o) 1 =* o) o} 1 * - -
= — = —_— V
U S 855k % Y 2 Sijk1 % %1 ®)

* *
It is easily shown that both C ikl and S k1 obey the symmetry
relations of elastic moduli, (3.2.3), Symmetry With respect to i,j and k,1
interchange follows from (3.3.7) and (3.3. 11) by stress and strain symmetry.

To show symmetry with respect to ij, k!l interchange we proceed by writing

(3.3.9) in the form

- * -

% T Cijrr ® g ®) = C ikl Skl

(3.3.17)
ij
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where Cijkl (x ) denote the space variable (piecewise constant) elastic

moduli of the heterogeneous body. It follows from (3.3.17) that

* * -

ikl " C ) s~ €

(C )e =0 (3.3.18)

k1~ Ckiij! k1

where the right side of (3.3.18) vanishes because of the last equality in

(3.2.3). Therefore the left side of (3.3.18) also vanishes and since e

kl
is an arbitrary tensor it follows that each coefficient of gkl must vanish.
* *
Therefore C k1 =C Klij
In summary,then
e —
= = = 3.3.19
Gkl Cyik1~ Cajik T Ok ( )
| a
st =gt =gt =gt (3.3.20)
Sk TSk T Sk Sk AR

which leads to at most 21 independent C:jkl or S:jkl . Note that (3.3.19 - 20)
are entirely analogous to the classical relations (3.2 .3) and (3.2.5).

It should be carefully noted that all of the results established so
far in this chapter are rigorous results for any heterogeneous elastic body
which is subjected to homogeneous boundary conditions. They apply to
bodies containing one foreign inclusion as well as to bodies containing

an immense number of inclusions.
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3.3.2 Statistically Homogeneous Bodies

We now consider the special class of heterogeneous bodies which are
statistically homogeneous. The concept of the statistically homogeneous body
has been discussed in chapter 2.2. We shall now need another concept which
is that of the statistically homogeneous field. The precise definition of the
SH field must be given in probabilistic terms as was done with the SH body.

We shall here discuss statistical field homogeneity in elementary fashion.
For detailed statistical discussion the reader is referred to 2 2:]

Consider a volume element AV which is a small part of an heterogeneous
body yet large enough to represent its structure. In a composite which consists
of particles and matrix such an element must contain many particles. Ina FRM
we may choose a cylindrical element whose generators are parallel to the
cylindrical composite specimen and whose cross section contains many fibers.,

We shall call such a volume element a representative volume element, hence-

forward abbreviated RVE. If the field is statistically homogeneous then the
volume average taken over RVE approaches the whole body average, wherever
the RVE may be located. Cons idering for example a SH stress field Oij (x)

" we have

ij ij

=Ti_/‘ (x)dvzﬁ o, (x)dv (3.3.21)
\ AV

Suppose for illustrative purposes that the volume element is of circular

cylindrical shape and its centroid is located at the point x. The cylinder is now
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expanded radially and the volume average is continuously taken. The average
starts out with the value Oij( x ) at the point x and converges asymptotically
to the body average Bij . A schematic plot of average stress as function of AV
is shown in fig. 3.2.1. Also fig. 3.2.2 shows a schematic variation of

SH Gij (x ) along a line taken through the composite. In contrast fig. 3.2.3

shows the variation of statistically non-homogeneous oij along a line taken
through the composite.

Similar considerations apply to surface averages over large surface
elements AA.

The statistical definition of SH involves ensemble averages. Such
averages have been defined in chap. 2.2 ina geometrical context and there
is no difficulty to give similar definitions in the present case. Thus <Gij Y.
the ensemble average of 0ij , is defined as the average of oij at the same
identical point taken over all the infinity of members of an ensemble of heter-
ogeneous specimens. In general <oij Y is a function of position, but if o i
is SH this average is space independent and by the ergodic hypothesis equal
to the body average or RVE average.

SH in the strict sense requires that the infinite set of n point averages
be independent of the position of the point system within the ensemble members.
For example

1 2 _ 2 1
<Gij(§)okl(§)>~R

( o,, (&1) okl(ﬁz)omn(zc_s)) =Rijklmn(§ -x ,x -x)

For detailed discussion the reader is referred to [2 2]
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It is to be noted that in a composite of periodic geometry the RVE
is simply the repeating element. Thus in the FRM shown in fig. 2.1.5 the
RVE is a composite cylinder of square section containing a symmetrically
located circular fiber.

The question which now arises is under what circumstances are SH
stress and strain fields produced in SH bodies? The answer to this
question is contained in what shall be called the fundamental postulate
of the theory of elasticity of heterogeneous media:

The stress and strain fields in a very large SH heterogeneous body,

subjected to homogeneous boundary conditions, are SH, except in a narrow

boundary layer near the external surface.

While the validity of this postulate is not in doubt, a general proof
does not seem to be available. By way of some explanation it should be
noted that homogeneity is certainly a special, albeit trivial, case of
statistical homogeneity. Now it has been shown in par. 3.2.2 that the
fields of stress and strain in homogeneous elastic bodies are homogeneous
if the boundary conditions are homogeneous. Thus the present postulate
extrapolates this rather simple state of affairs to the much more complicated
case of heterogeneous SH bodies. It is clear that near the surface there
must be a boundary layer where SH is not fulfilled. For a SH field looks roughly
as the one shown in fig. 3.2.2 and the homogeneous boundary conditions (3.3.1)

and (3.3.10) impose a constraint which does not permit the random fluctuation
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to fully develop near the surface. The surface effact , however, diminishes
very rapidly at points removed from the surface.

It is instructive to note that if the strain field is SH the displacement
field is statistically nonhomogeneous. This is certainly to be expected,
for if the strain field in a homogeneous body is uniform, eoij , say, then
the displacement field is linear and has the form

o

u = X
i(&) €4 %

It may be shown that for a SH strain field with average Eij the ensemble

average (ui> of the displacement field is given by

which is thus space variable. Therefore u,1 (x) is not SH.

We now return to the results (3.3.9) and (3.3.12) which give the
relations between stress and strain averages in heterogeneous bodies which
are subjected to homogeneous boundary conditions. Evidently,the results
remain valid for the present case of large SH bodies. The new significance

*
of the results is inthat,the coefficients C,

ikl in (3.3.9) and

as”
and s i1

(3.3.12) are now related. One matrix is the inverse of the other, which is

mathematically expressed by

* * _ I
ijmn Smnkl ijkl
(3.3.22)

1
1 +6 6 b
Lt = 2 Cue b ¥ Oy ) ()
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A general proof of this assertion does not seem to be available but its validity
can hardly be in doubt. For in any large SH body in which the fields of stress
and strain are statistically homogeneous, the imposition of average strains
;ij leads to average stresses 5” via (3.3.9). It is quite clear that imposi-
tion of the same c_Iij first, will lead to the same Eij which were imposed

initially. This implies that (3.3.9) can be substituted into the right side of

(3.3.12) to yield

- * * -
“ii ~° ijmn ¥ mnkl k1 (3.3.23)

where ¢ i and ;kl are by hypothesis the same average strain system.

Recalling Iij as defined by (3.3.22b) we can write

kl
— < .3.24
ey Lk ki (3.3.24)
Subtraction of (3.3.24) from (3.3.23) gives
* * S =0 3.3.25)
(s ijmn C mnkl Iijkl) k1~ (3.3.

Since e:—kl is an arbitrary tensor the parenthesis in (3.3.25) must vanish which
leads to the desired reciprocity relation (3.3.22a)..
Note that such reciprocity is by no means valid for an arbitrary hetero-
geneous body such as one containing only two or three inclusions or fibers.
On the basis of the preceding discussion the C*ijkl are defined as the
effective elastic moduli (EEM) of the SH heterogeneous body while the S*ijkl

are defined as the effective elastic compliances (EEC). Equations (3.3.9)
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and (3.3.12) are called the effective stregs-strain relations of the hetero-

geneous body. Because of the relations (3.3.20) a SH elastic body has at
most 21 independent EEM or EEC.

*
and S k1 tensors means that it does

not matter whether homogeneous displacement or traction boundary conditions

The reciprocity of the C*ijkl
are used in effective elastic properties determination. So the choice can
be made on the basis of convenience alone.

Moreover, it is sometimes necessary to use mixed homogeneous
boundary conditions, i.e. (3.3.1) ona part Su of S and (3.3.10) on a pait
ST of S. This is permissible if croij in (3.3.10) on ST is given by (3.3.7)
or dually eoij in (3.3.1) on Su is given by (3.3.11).

Furthermore, it is sometimes necessary to prescribe one or two
traction components of form (3.3.10) in one or two directions and two or one
displacement components of form (3.3.1) in the remaining direction(s), over
the entire surface. This is again permissible under similar conditions, i.e.
if the Goij and eoij in the boundary conditions are related by (3.3.9)
or (3.3.11).

It is intuitively clear (again there is no proof available) that the
elastic energy stored within a RVE of a SH heterogeneous body, subjected to
homogeneous boundary conditions, does not depend upon the RVE location
within the body. If the RVE is arbitrarily defined as unit volume then it

follows from (3.3.16) and the preceding that the strain energy W stored in

a RVE is given by
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. =§1— 5. 3. (3.3.26)

and it follows also that the stress energy within a RVE is given by

- ‘1 * - - _ 1 -
w *Tsijkl Gij Okl 3 g, e (3.3.27)

The expressions (3.3.26 - 27) may thus be called the strain and stress

energy densities, respectively.

The procedure of computation of EEM is now outlined. A large hetero-
geneous body of some convenient shape is subjected to homogeneous boundary
conditions of type (3.3.1). The average strains are then known and the
average stresses have to be computed. To do this the elasticity problem
of the heterogeneous body, as described in par. 3.2.3 , has to be solved in
detail, the stresses have to be found throughout the body and have then
to be averaged. To isolate different EEM, boundary displacements of type

(3.3.2) have to be applied separately. Thus, the first of these is

0 (3.3.28)

o _ o
ellxl,uz(s)—u3(S)

In that case the only nonvanishing average strain is e according

_ o
11 ¢ 11
to (3.1.18). 1If the average stresses in the body subjected to (3.3.28) are

known, then we have because of (3.3.7)

% "€ 411
* *

* * * *
which defines the EEM C 1111° C 2011" C 3311, C 1211, C 2311" C 31111
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By application of each of the displacements in the right side of (3.3.2),
separately, all EEM are given similarly as ratios between an average stress
and an average strain.

The procedure for computation of EEC is precisely the same, via
homogeneous traction boundary conditions of type (3.3.10).

It should now be clear that the actual computation of EEM or EEC
is an extremely difficult problem, since it is necessary to solve in detail
an elasticity problem for a heterogeneous body. Because of the interface
conditions (3.2.28) the solution depends upon all the details of the phase
geometry and therefore also the EEM and EEC depend upon the entire phase
geometry and of course also upon the phase elastic moduli. The dependence
upon the entire phase geometry must be strongly emphasized for it has been
frequently assumed in the literature that such simple geometrical information
as volume fractions is sufficient for computation of EEM. This is, of course,
in general incorrect and is true only in some very limited and special cases,

It should also be realized that if the phase geometry is not known in
all detail there is in general not sufficient information available to solve the
boundary value problem and thus there is also insufficient information for com-

putation of the EEM. This immediately leads to the conclugion that actual com-

putation of EEM must be limited to simple geometries.

3.3.3 Effective Elastic Properties in Terms of Phase Averages

Consider the effective stress-strain relation (3.3.9) for a two phase
SH body, subjected to (3.3.1). Then
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- o _=- (1) - (2)
= = +
€1] ¢ ij ¢ ij V1 ij ) @
(3.3.29
- -1 -
o,. = o__( ) v, + o’..(z) v (b)
ij ij 1 ij 2
- {1

where v, and v, are the phase volume fractions and quantities as eij( ) etc.

are averages over phase volumes, thus

::,,(1)= ! [ ei].(l) (x)dv etc

1
1 14

Vi

The phases -are elastic homogeneous and anisotropic and their stress-strain

relations are

(1) (1)

iy - % 4k ¢ ok @)

(3.3.30)

2) _ @) (2) (b)
i " C k1Kl

Equations (3.3.30) may be averaged over the respective phase volumes and

then become

- (1)

ORI

ijkl ¢ ki (@)
(3.3.31)

S0 _ 0 -0

i ijkl ¢ Kkl (b)
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Now (3.3.9), (3.3.29) and (3.3.31) are five equations, from which we
_(l,)_ , 0 (2) and E(.l.)
ij ij

choose to eliminate the four quantities Bij Pe) i

The result is

* o (1) ° @2 _ 0 ,=-@)
Cikt k1= C k1 Sk T C 7O gkl € w1 V2 8.3.32)
Evidently e( ) could have been eliminated instead of €5 ( ) The result

for this case can be written down at sight by interchange of 1 with 2 and
2 with 1 in (3.3.32).

*

An explicit result for C 1kl

Because of the linearity of the problem the average e

can be obtained in the following fashion:
(_,) must be

° .
linearly related to the ¢ i in the boundary conditions. (A similar argument

has been given in detail in par. 3.3.1). Write

-(2) _A(z) o

3.3.
ij ijkl € 1 ( 33)
where A(fj)kl is a strain average influence tensor for phase 2. Introducing

(3.3.33) into (3.3.32) we obtain

C:ikl - ]' (li))'kl * (C(zi)jmn - C(ilj)mn) (zninkl Z}J’EO 0 (3.3.34)
Since eokl are arbitrary strains, the parenthesis in (3.3.34) must vanish.
Thus
C* =c® + (C @) - C(l) @) v (3.3.35)

ijkl ijkl ijmn ijmn mnkl "2
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The whole preceding development may be easily repeated for homogeneous
traction boundary conditions (3.3.10). This leads to

* o) =(1) o

@ M 5

+ .3,
S k1 k1= % gk Tkt B Gkl TS k) Ok Yy (3.3.36)
or explicitly to
* (1) @) .1 @) "
= + - . .
Skl =% k1 % iimn TS ijmn ) Bankn V2 (3.3.37)
In (3'3'37)IB(2;r)mkl is the stress average influence tensor for phase 2,

which enters into the linear relationship

@) _ @ o

i] ijk1 k1 (3.3.38)

The proof of (3.3.37-38) is left as an exercise to the reader. Note that

insertion of (3.3.35) and (3.3.39) into (3.3.22) provides a relation between

(2) 2)
A @nd B
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3.4 EFFECTIVE STRESS-STRAIN REIATIONS OF FIBER REINFORCED MATERIALS

3.4.1 Elastic Symmetry

It has been seen in the previous chapter that a SH heterogeneous body
has at most 21 independent EEM in the most general anisotropic case. This
situation is entirely analogous to the one encountered in the case of the
general anisotropic homogeneous elastic body, par. 3.2.1. Fortunately,
various symmetry considerations reduce the number of independent EEM and
thus the effective stress-strain relations (3.3.9) or (3.3.12) can be
greatly simplified.

various kinds of geometrical symmetry have been briefly discussed in
chapter 2.1. Here, we shall be concerned with elastic symmetry, i.e.
symmetry considerations which are specifically tied to linear elastic stress -
strain relations. It is to be noted that other kinds of materials constitutive
relations would give rise to different symmetry properties. Thus elastic
symmetry is a certain aspect of the more general subject of material symmetry.
in the microscopic stress-strain law (3.2.2),

kil

x
as well as the effective elastic moduli C ikl in the macroscopic stress -

The elastic moduli Cij

strain law (3.3.9) are the components of fourth rank tensors. Their values
are therefore defined in reference to a coordinate system. If the coordinate
system is rotated the elastic moduli assume different values with respect to
the new coordinate system, the new values being connected to the old values

by the laws of tensor transformation. Elastic symmetry is expressed by the
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property that under certain coordinate changes the elastic moduli remain
unchanged. Basic coordinate changes are (a) Reflection in a plane, (b)
Rotation about an axis (c) Rotation about an axis combined with reflection

in a plane perpendicular tothe axis. ( 3.3, ., p. 152). If reflection in a
plane leaves the stress-strain law unchanged then the plane is called a

plane of elastic symmetry. If rotation of a coordinate direction about an

axis leaves elastic properties unchanged then the initial and final coordinate

directions, which are perpendicular to the axis, are equivalent elastic

directions. 1If all rotations about a fixed axis do not change elastic properties,

the axis is one of rotational elastic symmetry, in short an axis of symmetry.

In a heterogeneous body the symmetry may be microscopic, i.e. for
the elastic properties at a point, or the symmetry may be macroscopic in
terms of effective elastic moduli when the point is replaced by a RVE. For

example, in a fibrous material any transverse x., x_. plane is a plane of

2 3
microscopic as well as of macroscopic elastic symmetry (if it is also a plane
of elastic symmetry for the phase materials). If the fibers are randomly placed

in the cross section, then the x, axis may in many cases be assumed to be

1
an axis of macroscopic rotational symmetry but it is not in general an axis
of microscopic rotational symmetry.

Reductions of the stress-strain law (3.2.2) for various kinds of elastic
symmetry may be found in the literature in books such as Love [3.3] ’

Sokolnikoff (3.2 and Lekhnitski [3.4] . Since the macroscopic stress-strain

law (3.3.9) is the complete mathematical analogue of (3.2.2) it is evident




69
that symmetry reductions for the latter are mathematically identical to reduc-
tions for the former. Therefore there is no need to perform such reductions
here in detail.

Before proceeding further a comment about the concept of independent
elastic moduli is in order: The reduction of the number of independent moduli
from 21 to any lower number is based upon information which is available
to us about the elastic material., At present the only information to be used
is that of elastic symmetry. We shall see later on that information about
the structure of the material can also be used to reduce the number of

independent moduli.

3.4.2 Orthotropic Materials

The most complicated case to be considered in the present work is the
macroscopically orthotropic body. The orthotropic elastic body is one which
has three mutually perpendicular planes of elastic symmetry. An example for
such a material is provided by the rectangular array of identical circular
fibers shown in fig. 2.1.4. It is clear that the coordinate planes are planes
of geometrical symmetry, however, this in itself is not sufficient for we are
concerned here with elastic symmetry.

In order to ensure macroscopic elastic orthotropy the phases elastic
behaviour must obey certain conditions, which are of two kinds. The first
kind involves elastic symmetry of the phase materials and the second involves
the direction of the phase elastic axes with respect to fixed composite body

axes X0 Xy x3. It would be tedious and superfluous to list all the
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conditions under which macroscopic orthotropy is fulfilled for a geometrically
orthotropic body. Suffice it here to give some important examples: The
geometrically orthotropic FM or uniaxially FRM is elastically orthotropic if
the phase materials elastic symmetry is not less than orthotropic, with fixed
elastic axes parallel tothe x,, X, x, axes. On the other hand macroscopic

172773

elastic orthotropy is also fulfilled if in the fibers the x1 axes remain fixed,

while the other two axes are randomly oriented in the x2 , x3 plane.

The most important case is isotropic fibers and matrix which is of
course included as a special case in both examples. In that case there is
no directional effect of phase elastic axes.

The orthotropic form of the effective stress-strain laws (3.3.9) and

(3.3.12) involve only nine independent constants. Eqgns. (3.3.9) assume

the form
: - _ * - * - * - :
9117C 1111 7C 15 52 TC 13 €13 (@)
- %* - + * - * - 4 l
= +
92 = C12 €11 T Co2 €3 T Ca3 33 (b) 6.4.1)
833 ok - . * - . * -
=Ch3 €11 v Cp3 5 *C33 €43 ©
- * - %
912 52 C 4y c12 (a)
- _ 2 * —_ ‘
5,5 "2 C ;s (b) (3.4.2)
N . - :

931 =2 Cg6 €31 : ©

B o e o o 33 Mt £ L s S AN bt § b LIS Lk 94 b e
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The two subscript notations for the effective elastic moduli in (3.4.1 - 2)

is connected to the four subscript notation of (3.3.9) by

* * _ *
22 ©2222° ©33 “Ca333 @)

* _ * * _
C117C11117Cp, =

[
* *

* * * *
C =C , C =C , C =C

12 1122° Y23  ~2233° “31 3311 (3.4.3)

* _ * * _ * * _ *
447 C12127 %55 "C2323- Cg6 “C3131 ©
It is seen that (3.4.2) are shear moduli for shears taking place in
the coordinate planes. At times the following notation will be used for
these

* _ * * _ * * _ *
C _Glzlcs _'G 1066 G

44 5 Ca3 31 (3.4.4)

The inverse of (3.4.1 - 2), i.e. the form which corresponds to (3.3.12)

is written as

G.. +8 o @)

- - *
€, =S o,. +8 ., +8S o] (b) (3.4.5)

™
i
[92]
Qi
+
@]
Q|
+
wn
(o]

33 13 711 " %23 %2 T°33 %33 (c)
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I - * -
12T 2844 Y1 @)
s =28._0 | (b) (3.4.6)
23~ %555 %3 S
ey =28 0 )
%31 %S %31 ©

* *
where S i in (3.4.5 - 6) are connected to S ¥ in (3.3.12) by the same kind

ikl
of relations as (3.4.3).
* *
The S i in (3.4.5) are given in terms of C i in (3.4.1) by complicated
algebraic expressions which may be found in L3 .4] The relation between

the shear moduli in (3.4.2) and the shear compliances in (3.4.6) is,

however, rather simple and is obviously

s ,=——— S.,.=——— 8§, = —— (3.4.7)

"nT T So2 7 T+ 337 ¥ (8.4.8)
1 2 3
* *

* Y12 __ a1

S1277 T T @
E E,
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* v*
\YJ

*

S,y = -2 =- 2% ) (3.4.9)
B2 E3
* *
AY v

Va1 Vs

53177 = TR e)

E, E

* *
2" E 3 are effective Young's moduli associated with uniaxial

*
stresses in coordinate directions. A Vij appearing in (3.4.9) indicates an

*
Here, El' E

effective Poisson's ratio in which i is the direction of uniaxial stress,
producing transverse Poisson's strain in the j direction.

We shall now discuss appropriate homogeneous boundary conditions which
are to be applied to an orthotropic specimen in order to determine the EEM
and Poisson's ratios in (3.4.4) and (3.4.8 - 8). The development is based
on the strain-stress relations (3.4.5 - 6) and the general theory of par. 3.2.2.
We shall establish for each EEM two dual sets of appropriate homogeneous
boundary conditions. It will be later seen that this is of crucial importance
for bounding methods of EEM.

From the technical point of view the important elastic properties are
the ones appearing in (3.4.4) and (3.4.8 - 9, for these enter into governing
equations of structures of orthotropic materials and are also the ones which
are measured in the laboratory.

We start by listing below homogeneous displacement boundary conditions



74

and corresponding average strain and stress matrices, for determination of the
three effective shear moduli. It is convenient, though not necessary, to
assume that the boundary conditions are applied to a cubical specimen whose

sides are parallel to coordinate planes.

*
G,
u, 8) = . x @) | ©) = ¢ (b) (S) =0 3.4.10
1 12 72 ) €12% Us =0 (c) (3.4.10)
- o q - ‘
0 €12 0'; i[‘O 91y 0!
= 7 fo) ‘ - b
= 0! o= i )
LCijJ €12 0 @) {Gij_j .l 9, 0 0 (b) (3.4.11)
9
0 0 0] !*0 0 o0
* 512
G2~ e (3.4.12)
€12
*
Gis
— = (o] _ o
u 8)=0 @ u, B)=e, x, b) u B =e,,x, () (3.4.13)
¥ he -
0o 0 o0 [’o 0 0
=1 o N ‘ .
e, = 0 0 A 1
o & -
.0 € 23 0 3 io 0.23 0 ‘
* 523
Gz~ 7% (3.4.15)
2¢
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*
Gi3
S)=¢".x, @ u, 8)=0 B u, 6)=¢c,x, ([
4 €13 73 2 3 €13™1
-! - -
o | -
EO 0 e13: 0 0 u13
] ;o 0 0 @) rET 0 0 0 (b)
| = . H t=
| &ij) { | [”J .
O ! -—
r_€l3 0 0 -. -0'13 0 0 |
&t - 13
13 2 o)
€13

(3.4.16)

(3.4.17)

(3.4.18)

It is seen that in each case it is necessary.to compute a single average

shear stress to determine the effective shear modulus.

Dually, we may subject the cubical specimen to homogeneous traction

boundary conditions. We list below the traction boundary conditions, the

corresponding average shear stresses and the resulting average shear strains.

*
Gy
T.68)=c".n @ T.6=0c..n @® T,6)=0 ()
1 12 M2 2 12 ™M 3
[ o 7 [ - ]
0 12 0 0 ey O
ol =1 0o o @) le.|=|e 0 0 (b)
%j 12 2y €12
_0 0 OJ 0 0 0
O_O
* 12
G ™ =
2¢

(3.4.19)

(3.4.20)

(3.4.21)
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*
Gos
(o] (o]
= = = 3.4.22
T, ©)=0 (@) T, (S) O3 M3 (b) T3 S) 953 My (c) ( )
0o 0 0 o 0o o0 |
. - |
- O - Ed i
= = b 3.4.23
011 0 0 %3 @) _eij_ 0 0 €93 (b) ( )
o -
“0 O'z3 0 ~0 623 0
GO
*
G = —=23 (3.4.24)
2e23
*
Gi;
) = o° @ T,6)=0 () T, =0.n (3.4.25)
T 013 %3 @ 2 3 13 ™M 2
- o 0 0 .
0 0 613 ; €133
- ~ ] |
c.'= 0 0 0 @ e.. = to 0 0 (b) (3.4.26
i iji ‘
O —
O_O
R p—_ (3.4.27)
13 -
®13

It is seen that now a single average shear strain has to be computed in
each case to determine an effective shear modulus. It is to be noted that dual
determination of the effective shear moduli by (3.4.12), (3.4.15), (3.4.18) and
(3.4.21), (3.4.24) , (3.4.27) is a direct consequence of the general assumption

* *
of reciprocity of C i and S i

tensors, which was discussed in par. (3.2.2).

kl kl
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For the determination of effective Young's moduli and Poisson's ratios
it is convenient to use cylindrical specimens each of whose axes is in the
direction associated with the Young's modulus to be determined. Fig. 3.4.1
shows such a specimen with axis in X, direction. We list below homogeneous
traction boundary conditions with associated average stress matrices and

resulting average strain matrices which define the effective properties.

* * *
Epr Vg Vg
_ 0 - =
T1 (S) = 011 n, @) T2 S) =0 (b) T3 S) =0 (c) (3.4.28)
F o “ . 1
011 0 0 ell 0 0
[oij]= 0 0 0| @) [cﬁ]= 0 6, O | ® (3.4.29)
0 0 0] K 0 ey,
o° € €
* T 11 * S92 * _ 33
E Tl @) Vg™ " C (b) \)13 — () (3.4.30)
11 €11 €11
* *
EZ' \)21, v23
— -— o —4
T1 S)=0 (@) T2 (S) 022 n2 (b) T3 S)=0 (c) (3.4.31)
[0 o0 o F 0 0]
11
- _ o — = ! -
[cij] = o 2,0 (a) [eijJ 0 G, O B (a4
| -
0 0 0] 0 0 e33j
o° ¢ €.
* 22 * ___11 * __ 33
E2 = - @) v21 - b) v23 - (©) (3.4.33)
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* * *
Eqr Vi) Vg
e}
= = = .4. 4
T, 8)=0 () T, 8)=0 (b) T, (s) SPPRLR (c) (3.4.34)
- .1 r_ -
0 0 o e, 0 0
[oij] = lo o o @) [eij] =lo 5, o | (3.4.35)
0 0 © 0 O €
k 33 ] £33
o® ¢ e
* 33 * _n x %22
E,= = (@) Vai - (b) Vao — (c) (3.4.36)
¢33 €33 €33

A dual determination in terms of homogeneous displacement boundary condi-
tions is not useful. Since such boundary conditions define average strains, it is
seen that (3.4.1) will have to be used and only Czj can be thus determined. The
complicated relations between the C:j and the Sz]_ make such an undertaking im-
practical, We can, however, obtain a simple dual formulation for the determina-
tion of effective Young's moduli and Poisson's ratios by use of mixed homogeneous
boundary conditions. Consider for example (3.4.28). We replace the traction

boundary conditions by the mixed boundary conditions

x, (@) T, 8)=T,()=0 (b (3.4.37)

_ 0
uy (8) =ep; x4 2

3

o —
where e .. may be interpreted as the ¢. . appearing in (3.4.29b). Then the

11 11

states of strain and stress in the specimen are still statistically homogeneous.
The components of the outward normal on the surface of the cylindrical

specimen shown in fig. 3.4.1 are subject to the following restrictions

=1 = =
n, n, =n, 0 on AH @)

=-=1 = =
n n, n3 0 on Ao (b) (3.4.38)
n, = 0 on SC (©)

Application of the average strain theorem (3.1.16) and of the average stress theorem
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(3.1.26),with zero body forces, for (3.4.37) with (3.4.38), easily gives the results

“11° ° 11 29 T 9337 %12 %3 % "0 (3.4.39)

o c ¢

* 11 Y * 33

El S @) Vg S (b) Vg S (c) (3.4.40)
€11 €11 €1

*

*
12 and v 13 which

requires the computation of 511 : ;22 and e—33 under boundary conditions

*
We have thus obtained a dual formulation for E 1 v

(3.4.37).

In a completely analogous fashion we can obtain similar results for the

other effective Young's moduli and Poisson's ratios, by using cylindrical

2

&

specimens with axes in x_, and X, directions, respectively. These results

are now listed

T, (S) =0 u, (S) = ¢ 22 % T3 S8)y=o0 @)
(3.4.41)
P G .=0..=o0._=0.=0 =0 (b)
22 %22 11 733 “12 23 Y31
5 P P
*_ 22 * 11 * _ 33
E, = Vol o Va3 5 (3.4.42)
€22 €22 €22
= = = po
T, (6) =0 T, 6) =0 uy ) = 4, %, @)
(3.4.43)
- ] o p -_ pu = o = p =— =
33 = €33 011 T %5 T ) T 379,70 (b)



* Y33 « 11 22
E3— S v31— S V32 S (3.4.44)
€33 €33 €33

It is emphasized again that all the problems listed are very difficult to
solve since the elastic fields in the specimen, which must satisfy phase
differential equations and phase interface continuity, have to be found in

order to compute the required stress and strain averages.

3.4.3 Square Symmetric and Transversely Isotropic Materials

A square symmetric material is an orthotropic material in which two

axes x2 and x3 say, are elastically equivalent. This means that the stress-

. L e o]
strain law is insensitive toa 90 rotation of the x2 ’ x3 axes around the xl

axis. As will be seen later the square symmetric material is in a certain

sense the two dimensional analogue of a cubic material.

A transversely isotropic material is one in which the x1 axis is an
axis of rotational elastic symmetry. This means that the elastic stress-
2" x3 axes around the x1

axis. This material is thus a special case of the square symmetric material.

strain law is insensitive to any rotation of the x

An example for a geometrically square symmetric material is the square
array of circular fibers, shown in fig. 2.1.5. The most important case in
which such a material is also elastically square symmetric is when the
phases elastic symmetry is not less than square, with fixed axes parallel
; X

to Xy X This, of course, includes transversely isotropic and

2' 73°
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completely isotropic phases as special cases.

The most important case of symmetry in a FM or FRM is transverse
isotropy, since it is applicable to random and semi-random geometries. Sup-
pose that the transverse plane geometry is of such nature and that the phases
are transversely isotropic, with fixed x1 axis, or completely isotropic.
Another case of some interest is transversely isotropic or isotropic matrix and

orthotropic fibers with fixed x. axes and the other two axes randomly oriented

1

in the x,, X

2" X3 plane. If the geometry has no directional bias in the statistical

sense, inthe Xy 1 X plane (statistically transversely isotropic geometry,

3
see chapter 2.2), then the material described cannot be expected to have any
directional bias in the Xy s x3 plane for its effective elastic behavior. It may
thus be assumed that the material is elastically transversely isotropic. This
is the most important kind of FRM since it is of such frequent occurrence.

Another example is the hexagonal array of identical fibers, fig. 2.1.6
with same restriction on phase elastic symmetry. The transverse isotropy of
this material is a consequence of the theorem that a material which has an n
fold axis of symmetry where n=3, 5, 6,.... is transversely isotropic , see e.qg.
Love [3.3]. In the present case n = 3.

It is easily shown that for square symmetry there are the following
relations among the EEM of (3.4.1 - 2).

*

o *
C —Cl

12 c,,=C c,,=C (3.4.45)

3 22 33 44 66
If the material is transversely isotropic there is added to (3.4.45) the relation

* 1 * *
Cece =5 c,, -C

55 22 ~ C33) (3.4.46)
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The effective stress strain relations of both materials are thus

- _ * — + * - + * -
911 7C 11 %117 C 12 85 TC 1 33 (@)
o =c % S b 4.47
%2 T C12 €11 ¥ Cgp %y T Co3 €33 (b) (3.4.47)
- _ * -— + * - * -
33 - C12 €11 7 C g3 €55 ¥ Cyy €33 | (c)
- * -
6, =20, " @)
12 44 °12 |
]
5, . =2C._ ¢ ®
% square symmetry Opg = C 55 €12 (b)
g (3.4.48)
' _ - s . o
5 transverse isotropy Opg = (C22 023) €53 (c)
{
- s |
; 913 T2C 44 °13 @

i
b

Itls seen that there are six independent EEM for square symmetry and five

for transverse isotropy.

Inversion of (3.4.47) shows that the normal strain-normal stress

relations have the form

i — _ * - + * -
ST Tty 9,
' - o x - . * -
227512 91 %55, 9%,
— * - * —
= +
337513 91178539,

* —
*815 a3 | (@)

* 3 3.4.49
+ . 4.

823 33 ! (b) ( )
+s° & |

S22 %33 ()

et
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where
* +C
x _ C9p7C9s @)
511 * *x 2 o 2 a
C1p B 7Cp9"2C
C*
- 12
Slz_ * * * ” * 2 (b)
C11©p*Ce9 2Cy,
(3.4.50)
x 2
x C11C2 "Cp
"2 ¢ vorz0] © ) ©
Lcll 22 23 12 | C42 " Ca3
T x 2
& - €113 % 1 @
23 T * O 7(‘*21(* r"*)
1C11 ©pp *C2a) "2C 15 | ©©a2 7 %23

The inversion of (3.4.48) is of course immediate and need not be written down.
It is seen that the effective strain-stress relations of the square symmetric
and trangversely isotropic materials have the same kind of symmetry as

their effective stress-strain relations, as they should.

The ij set of EEM while notationally convenient for writing stress-
strain relations is inconvenient for computation of EEM. We shall therefore
introduce a different set which is both analytically convenient and physically
significant. We first write down the new set and we shall then explain its

physical significance and list the boundary conditions which have to be
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applied to fiber reinforced specimens in order to compute them. The new

set is for transverse isotropy.

n=C11
' LI

T 22 23
* _ %*
Ca~Cuy

For square symmetry there is added

Fo_ ok
GT CSS

(3.4.

(3.4.

(3.4.

(3.4.

(3.4

(3.4

In order to define the boundary value problems which have to be

solved to compute these EEM it is convenient to consider a cylindrical

* *
specimen in which the fibers are parallel to the axis. For n and #

51)

52)

53)

54)

.55)

.56)

determination we apply the homogeneous displacement boundary condition.
o]
u B)=-e,, x, (@) u, ) = ug S)=0 (b) (3.4.57)

By the average strain theorem (3.1.18) the average strains are

11
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Then from (3.4.47) and (3.4.51 - 52)

- _ * o
917 Mgy (@)

(3.4.58)

=5, =4"¢° (b)
%92 %3~ % ¢,

It is seen that (3.4.57) corresponds to uniaxial straining with transverse
deformation prevented (by a smooth rigid enclosure, for example).

* *
Determination of n  and ¢ requires computation of axial and transverse

average stresses.

*
The modulus k is called effective transverse bulk modulus. To

obtain it we impose on the cylindrical specimen the homogeneous displace-

ment boundary conditions

u 6)=0 @ v, €)=¢%%, ® u, ) =%, ) (3.4.59

2 3 3
By the average strain theorem the average strains are then
0 o o0
f.ij' =0 & o (3.4.60)
0 0 ¢

which is an isotropic plane strain. Inserting (3.4.60) into (3.4.47) and using

(3.4.51), (3.4.53), the surviving average stresses are

oll=2 ) (@)

(3.4.61)
o =o._ =2k ¢
%2 " %3 " (b)
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We thus have isotropic average stress in the transverse plane and an axial
average stress which is due to the plane strain restraint (3.4.59%).
A dual formulation is obtained by use of mixed boundary conditions

in the form

Fig. 3.4.2 illustrates such a situation. Recalling (3.4.38), the avcrage
strain theorem (3.1.16) and the average stress theorem (3.1.26) (with no
body forces) yield for (3.4.62)

- — o pr— — —
= = = = = = O .4,
61170 9pp T 03 = 0 0y, T 0y5 =0y (3.4.63)

¢ = ¢ = (3.4.64)

*
2k

*

A
*
from (3.4.54 - 55) and (3.4.48) . It is seen that GT is involved in shearing

*
The EEM GT and G, are evidently effective shear moduli as is seen

in the transverse x2 , x3 plane; hence it is called effective transverse shear

*
modulus. On the cthar hand GA is involved in shearing in 3 x2 and X, x3

planes, which contain the axis i.e. fiber direction; hence it is called

effective axial shear modulus. The formulation of boundary value problems

to determine these EEM is just as .or the effective shear moduli in orthotropic

* *
FRM. GT is the analogue of G . eqns. (3.4.13 - 15) and (3.4.22 - 24);

23
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* *
GA is the analogue of either one of G 12 or G*13, eqns. (3.4.10 - 12),

(3.4.16 - 18), (3.4.19 -2, (3.4.25 -27). All these boundary conditions
may now be thought of as being applied to the present cylindrical specimen.

See fig. 3.4.3.
Discussion of the square symmetric material is almost identical.

* * * *
The EEM ¢£ , ™ ,k and GA are to be determined just as for transverse

* * %
isotropy and G'T is now the analogue of the orthotropic G,,. For G

23 T
determination, eqn. (3.4.54), the homogeneous displacement

o (o]

u, Sy =0 u, 8)=e¢ x u, 8)=-¢x (3.4.65)

3

may be applied to the specimen. This yields

Fij] = o & o (3.4.66)

- -

LO 0 -c
Then from (3.4.47) and (3.4.54)

022=-o33=2 GTe

(3.4.67)

011=o =0,..0,,=0

%*

T

shear strain in the system of axes x

It follows from (3.4.66 - 67) that G_, relates average shear stress to average

1 %90 %3

where (xz, xz) = (x3, x3) =45",
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It is of interest to note that both the transversely isotropic and
square symmetric materials are isotropic in axial shear. To see this suyppose

that the specimen is subjected to average pure shear

r
0 e 0
- = ( - !
feij | €19 0 OI!
o o o
Then
0 26" 0
Ca ‘12 ;
5. = 26" 0 0
% Cacia g’
- - !
0 0 0]
Now if the X, X, axes are rotated to new pos 1t10ns(x2 ' XZ) = (x3, x3) =9

then by tensor transformation

- - * =

clz=elzcose 012=2GA elZ cos 8

and so

which proves our assertion.
* *
The EEM k and GT are sufficient to describe transversely plane
states in transversely isotropic materials. Suppose that through application
of appropriate homogeneous boundary conditions the average state of strain

imposed is
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0O 0 0
[eij] - 0 %, 5 (3.4.68)
0 €3

It is convenient to split the strain system (3.4.68) into so-called isotropic

and deviatoric parts. The separation is given by

=cb _ +
€ag “Cap " Can @)

(3.4.69)

- 1 - 1
e"z'ew_z(ezz 33) (®)

where ¢ éas is the isotropic part and éas the deviatoric part. Here,
and from now on indices which have the range 2, 3 are denoted by Greek
letters o, ®# , etc. while i, j and other latin indices continue to range

over 1, 2, 3. If (3.4.68) is inserted into (3.4.47 b,c) and (3.4.48 c) these

three expressions can be written compactly as

- K -
o=2k ¢ @)
(3.4.70)
- = 2 * - (b)
saB- GTeaB
where
ocnf-‘s =0 6a_8 +sa9 @)
(3.4.71)
- 1 - 1 - -
T e = em— +
°F7 %y 2 (0,5 * 933 (b)
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It i seen that (3.4.70) is a two dimensional isotropic stress-strain relation
where k* plays the role of a two dimensional bulk modulus. Hence the
name transverse bulk modulus.

Note that the representation (3.4.70) fails for the square symmetric
material. In this case (3.4.70b) is valid only for a 8 = 11, 22 while for the
case a 8 =12 (3.4.70b) must be replaced by (3.4.48b). The resulting
stress-strain relation which involves k*, G; and Gz is the two dimensional
analogue of a cubic stress-strain relation.

We now consider other EEM which are primarily of engineering
importance, namely effective Young's moduli and effective Poisson's ratios.
Comparison of the strain-stress relation (3.4.49) with its general ortho-

tropic counterpart (3.4.5) shows that in the present case

* * *

*
812-813 822—823 (3.4.72)

It follows from (3.4.72) and (3.4.8 - 9) that

* _ * _
\)12—\)13 E_=E

* _ * * -
Vaz T Vag V31 Va1

* %
El-EA (3.4.73)
* % %

EZ—E3—ET (3.4.74)
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=yt =V (3.4.75)
\)12*\)13—VA P 3
* * *
A\

= = 4.7
23 Vap = Vo (3 6)

* *
where EA is the effective axial Young's modulus, EA - the effective

*
transverse Young's modulus, VA - the effective axial Poisson's ratio, and

*
\)T - the effective transverse Poisson's ratio.

The problems involved in the computation of (3.4.73 - 76) have been
* *
previously discussed for the orthotropic material. For EA and VA the
formulations (3.4.28 - 30) and (3.4.37) (3.4.39 - 40) are appropriate. For

* *
ET and VT we can use (3.4.31 - 33) or (3.4.41 - 42) or the other remaining set.

Note that it follows from (3.4.9¢c), and (3.4.73 - 75) that

E

* _ * _ T *

\)21—\)31 < VA (3.4.77)
EA

By use of (3.4.8 - 9) and (3.4.73 - 77) we can now rewrite (3.4.49)

in the form
* *
\Y) AY)
- 1 - YA - A -
1 = oo %2 = %3 (@)
A A A
* *
AY) v
- A - 1 - T -
= - + - .4,
22T x0Tt E %2 T Pa ®  6.4.78)
A T
* v*
AY)
- - A - _ - 1 -
"33 " SRR %32 F o 93 ()
A T




It is important for computational purposes to relate the EEM appearing

*
in (3.4.78) to previously defined EEM. Note that identification of the S i

in (3.4.49) with the coefficients in (3.4.78) , and use of (3.4.50) immediately

* * * * *
gives EA' E’I" vT and VA , in terms ofCi We have
* 2
% 2C,,
E.=C - @)
A 11 C* +C*
22 T Ca3
C*
* 1
v, = —— ®)
C22%Cy3
c* c* +c*)-2¢ ct -c*)
! *
| A YRR Y 22~ Z23
* . *
C11 %y
* * * 2
x 11 C23 12
\)T * * % (d)

C11 %22 ~Cpy

Introduction of (3.4.51 - 54) into (3.4.79) gives the results

* * * %2
EA— n -4k VA
l;* 2 * *

=2k vA

(3.4.79)

(3.4.80)

(3.4.81)
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4k* *
G
* T
ET= - * (3.4.82)
k +m G
k* G*
* -m g 2
\)T= * * =1" * * (3-4.83)
k +mG, l1+k /m G '
where
* %
4k \)AZ
m= 1+ ——a (3.4.84)
E

From (3.4.82) - 83) there follows the important relation

*

T
2(14v )
(vT

* E

(3.4.85)

which is identical to the well known relation in iscotropic elasticity.
For the square symmetric material (3.4.78 - 85) are still valid in the

Xy Xy X coordinate system. The difference between the square symmetric

273

and transversely isotropic materials appears when the Xy ¢ x3 axes are rotated

around the x_ axis to new positions x' , x' We may then define trans~

1 2’73 ¢

verse Young's modulus, Poisson's ratio and shear modulus with respect to the
new system of axes. In the transversely isotropic material these will have

the same values as in the x., X

1 , X, system but in the square symmetric

2° 3

material they will be different and will have to be found by tensor transfecrmation.
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To describe the effective elastic properties of a macroscopically

transversely isotropic or square symmetric material any convenient set of

five or six independent EEM, respectively, may be used. Care should be

* * *
taken that the EEM be independent. For example ET ’ GT' and VT are

related by (3.4.85) and thus count as two EEM.

Finally we list stress-strain relations of homogeneous transversely

isotropic and of completely isotropic phases, since we shall have frequent

occasion to refer to these.

can write transversely isotropic stress-strain relations as

11

22

33

n e

11+ y) (62

2

£ €1l+(k+GT)e

012=2 GA €12
%3 T2Gp &5
931 T2 Gy =5y

The strain-stress relations are

11

1
A EA

v

11

+

22

€

L e11+(k-GT) ezz+(k+GT)

23)

+(k-GT)e

€3

(G5 * 935

33

3

(b)

(c)

(d)

On the basis of the treatment given above we

(3.4.86)
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YA Yy
€. = - o,. + o) - o] §o)]
1
22 EA 1 ET 22 ET 33
v v
A T 1
€nm = ~ o, - O,,+t+>— © (c)
33 EA 11 ET 22 ET 33
(3.4.87)
o
12
€1n = @)
12 ZGA
o
23
€, = (e)
23 ZGT
0]
31
€., = —— ()
1
3 ZGA

All of the relations (3.4.80-85) are obviously valid for the elastic constants
in (3.4.86-87).
The isotropic stress-strain relations are written in the well known

compact form

=X\ 5§ +2 4.
% T Mokt TEG Sy (3.4.88)

Comparison of (3.4.86) with (3.4.88) shows that for an isotropic material

n=x+2¢G (@)
L o= A (b)
(3.4.89)
k =2+G (©)
;J'T=(:A=G @

The modulus k is called plane strain bulk modulus for the isotropic material.
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The moduli A and G are related to the Young's modulus E and the

Poisson's ratio v by

VE

M=) (22) @)
(3.4.90)
E
G= ™) (b)
For an isotropic material we thus have
E, =Ej =E (@)
\'}A= vT=v (b) (3.4.91)

T Z+v)(I-2v)  1-2v

3.4.4 Isotropic Materials

Finally, we consider the case of a statistically isotropic heterogeneous
material. Obviously a uniaxial fibrous or fiber reinforced material cannot be
isotropic. However, if the fibers are oriented in many different directions
in a completely random manner, fig. 3.4.4, the material may assumed to be
statistically isotropic. In that case the well known reduction of the general
anisotropic Hooke's law to the isotropic case (see e.g. [3.1)) is valid.

Eqns. (3.3.9) reduce to

- X -

* -
oij—k ekk61j+2G €4 (3.4.92)
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where 1 is the effective Lamé modulus and G* is the effective shear
modulus.

The three dimensional separation of BU and ¢ i into isotropic
and deviatoric parts is

= Ty 43
oij o i sij (@)
(3.4.93)
- 1 -
o= 3 Okk (b)
- _ - .o
eij € 6ij eij @)
(3.4.94)
-_ 1 =
€T 3 %k ®)
Introduction of (3.4.93 - 94) into (3.4.92) leads to
- * -
o= 3K ¢ (@)
(3.4.95)
5. =2G e (b)
sij G eij
*
where K is the effective bulk modulus given by
* * 2 *
K =\ + T G (3.4.96)

*
An effective Young's modulus E is defined by application of average

uniaxial stress in any direction, x, say. Then the average stress is (3.4.29)

1
*
and E is defined by
o
*
¥ = 11

(3.4.97)

€11



98

*
The effective Poisson's ratio v  ig defined by

€
v = - 22 - . ~33 (3.4.98)
€11 €11

Introduction of (3.4.29a) into (3.4.92) gives

* 9 * *

E =—-—I§-§-—*—- {(3.4.99)
3K +G

* * *

V. 3K-=2G (3.4.100)

*  *
23K +G

These results are, of course, the same as in classical elasticity theory

for homogeneous isotropic bodies.

3.4.5 Structural Relations for Effective Elastic Moduli

Classical procedures to find the number of independent effective
elastic moduli for various FRM have been exploited in the preceding paragraphs
of this chapter. It is necessary at the present time to re-examine the concept
of independence of elastic moduli.

Independence or non-independence of elastic moduli is based on

available information. Thus the generalized Hooke's law (3.2.2) contains




29

at first sight 81 elastic moduli. The information that the stress and strain
tensors are symmetric reduces the number to 36. The existence of an elastic
energy function further reduces the number to 21. So far nothing has been
said about internal structure of the material.

The existence of planes of elastic symmetry, axes of rotational
elastic symmetry and equivalent elastic directions is information which is
based on some knowledge of the internal structure of the material. Examples
of this kind have been given in paragraphs 3.4.3 - 4. However, the
information is expressed in @ macroscopic sense. From a formal theoretical
point of view one can very well consider elastic symmetry without knowledge
of its origin.

In the present paragraph we consider additional structural information
which is of purely microscopic nature and is peculiar to the heterogeneity
of the material. To give some conceptual examples consider the periodic
square and hexagonal arrays of equal circular fibers shown in figs. 2.1.5 = 6.
On the basis of the results given in par. 3.4.3 only, we know that in the
first case there are six independent EEM while in the second case there are
five. It is clear that in both cases the EEM are functions of the phase moduli
and the ratio a/d where a is fiber radius and d is the spacing. This may be

symbolically expressed in the form

* *
c.=C, (C,a/d
ij ij
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where C stands for phase moduli. In principle, a/d could be eliminated
between any two moduli which would result in a relation between these
moduli, involving only phase properties. We have thus reached the conclu-
sion that there is a relation between any two EEM in the cases considered
and thus each material has really only one independent EEM. The reduction
from six to one or five to one was based on detailed knowledge of the internal
geometry of the material. But it should be noted that the fact that there is
only one independent modulus is here of no usefulness since the relations
are not known for the materials under consideration. Surprisingly enough,
however, it is possible to establish some general relations between some
of the EEM of two phase fibrous or fiber reinforced material of arbitrary
phase geometry. These remarkable relations have been established by
Hill [3.5] and shall now be derived.

Suppose that a cylindrical specimen of the composite is subjected to

homogeneous displacement boundary conditions (3.3.1) with average strain

matrix
[ o
€11 0 0
{e(.).J = FJ = 0 L 0 (3.4.101)
ij ij
i 0 0 coj

The boundary displacements are then
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_ 0
u, (8) = e 11 ¥ (@)
u, ) = & X, (b) (3.4.102)
u, S) = © Xq (c)

This corresponds to average uniform straining in X direction and average
isotropic straining in the x2 ’ x3 plane. We insert the strains (3.4.101)

into the stress-strain relations (3.4.47) which are valid for square symmetric
and transversly isotropic materials. Adding (3.4.47b,c) and using the

notation (3.4.51 - 53) we obtain

- * * O
.. = n co” +2 0 e @)
11 11
(3.4.103)
- *
5 =4 O t2k € (b)

where o is defined by (3.4.71b).

The average stresses may be written in terms of phase averages as

was done in par. 3.3.3. Thus

- _=(1 - (2)
0159111 T Y (@)

(3.4.104)

5=8(113V1 +5(2)V2 (b)
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It is notationally convenient to assume that the phase materials are square
symmetric or transversely isotropic with elastic axes parallel to the
composite's 3% x2 ' x3 system. Then the phase stress - strain relations
are of the form (3.4.86) and it follows very simply that .phase averages

obey relations of the form (3.4.104). For example

= (1) - (1) - (1)
o = n, € +2 9. ¢
11 1 11 1
To continue we need a result which is of crucial importance here.

It will be shown later in par. 3.5.1 that for boundary conditions of type (3.4.102)

the strain €1 is uniform in both phases. (See eqs. (3.5.10a)) We thus

conclude that in the present case

- (1)

ey = @_;@_ o (3.4.105)

1 11 11

Consequently the phase stress averages assume the following forms

C_’1(11) =N eo11 t20) ¢ W @)

(3.4.106)
-1 -
0()=leeoll+2kle() (b)
51(12) P €011 *21, @ @)

(3.4.107)
—(>) = o = (2)
0(2) 1,2 ell+2 kz e (b)

Now substitute (3.4.106-107) into (3.4.104) and the resulting expression

into (3.4.103). After reamrangement we find
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1y  * - @) % A L -
(k kl) vy + ¢ k kz) v, + 7 11 (£ /&2 vy zlvl) 0 ()
(3.4.108)
- (L, * - (@) ,,* 1l o * - =
€ (2 -1,1)v1+e (L-zz)vz+2 €1 (n Ny Vs nlvl) 0 (b)
Egns. (3.4.108) determine e (1), K (2) in terms of effective moduli,

phase moduli and volume fractions. There is, however, a third equation

M v e @) v, = ¢’ (3.4.109)

from the average strain theorem. Consequently eqns (3.4.108-109) are not
independent. If any two linear equations in two unknown are the same,
their coefficients must be proportional. Nowit should be borne in mind that
6011 and e © are independent quantities. So assumption that (3.4. 109) is
identical to any of (3.4.108) would lead to specification of the ratio

eoll/ e® which is a contradiction. We thus conclude that (3.4.108a,b)

are the same. Therefore

k* k k* k z* ( + )
- - - L.V L.V
= = — Ll 2 2 (3.4.110)

- - - +
L=y A L A RAAPY

%* %* *
It thus follows that if any EEM of the groupk , £ , n is known, the other

two follow from (3.4.110).

It is easily shown that the first pair in (3.4.10 ) leads to
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k -k k -k k. -k
" = : 2 S — (3.4.111)

2 Lo ™ Hh

We see that each modulus is linearly related to another one. Thus

* *
k (zz—zl)—z(kz—kl)—z kl-zk @)

2 12

R N SRR RPR k,~k;) ()  (3.4.112)

R S L - T o
! kyk1 fh ™ 4y ky =Ky ™ Hh
H — e e e e e e e
where
nE oy vt o, v, @)
(3.4.113)
= .
) ¢ v1 zz v2 (b)

It is to be noted that for isotropic phases n, s, and k are given

by (3.4.89).

It is now seen that because of the relations (3.4.80-81) and (3.4.110),

*

*
E, and VA can also be related to z*

* *
A . N and k . This can of course

be done by simple algebra but the method given by Hill [3.5] is preferable.
For this purpose, eqns. (3.4.103) are rewritten in different form. If the

strains (3.4.101) are substituted into (3.4.70) it is easily seen that
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22 %3 ¢

Ql
]

Therefore (3.4 .78a) can be written as

[oW]
It

*
11 ZVA o} +EA €11 (3.4.114)

which is the equivalent of (3.4.103a). Alsouse of (3.4.81) in (3.4.103b)

trans forms this equation into

= — "V, e (3.4.115)

The same procedure previously used is now employed in (3.4.114-115).

This is 12ft as an exercise to the reader. The results are

11 1 1 11
&k &k N k. k
Vv = V.V.-V, V _
- Lo- — 2 . 171 22 -1 2 (34,116
v, =V v -V * v, =V
1 A 2 _ 1 _ _ 1 2
7 Ep7E v 7Epvy)

where the last equality follows directly from the first pair. If the phase
materials are square symmetric or transversely isotropic, then El’ E2 ' Yy and
vz are the axial Young's moduli and Poisson's ratios respectively of the phases.

For isotropic phases they are the usual Young's moduli and Poisson's ratios.

Eqns. (3.4.116) give the following linear relationships between the quantities
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1 * g *
— ,vA and E .
k
2
* 4(\)2—\)1) 1
E, =E+ _ <———— (3.4.117)
(_1_ B 1 ) k
k2 kl
. VIR r -
Vo= oy o4 4 = - - (X (3.4.118)
1 1 *
TR Lok k
2 1 {
1}
where
- _ N
E E, vy EZVZ @)
v = .4.11
v 2 v1+\)2 v, ) (3.4.119)

(c)

A numerical verification of one of the general relations between the

various EEM is shown in fig. 3.4.5.

hexagonal array of identical circular fibers (fig. 2.1.6)

with the aid of electronic computers in ref. [3.61] .

Numerical values of EEM of a regular

have been obtained

The numerical values of

* *
£ and k have been plotted for various fiber volume fractions while the

straight line represents (3.4. 112a) for the phase elastic properties used

in 13.6].

It is seen that there is excellent agreement with (3.4.112a).
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3.4.6 Effective Elastic Moduli in Terms of Phase Averages

We shall here reduce the general results obtained in par. 3.3.3to
uniaxially FRM. This reduction must be performed with four subscript notation
for elastic moduli. We note in this respect the relations (3.4.3) for a macro-
scopically orthotropic FRM and we set down here similar relations for macro-
scopically square symmetric and transversely isotropic FRM. In view of

(3.4.3) and (3.4.45) we have

* * * * *

C1111=S11  ©3222 " C3333 7 C22 (@)
C* _ * _ * * * 4 120
1122 1133712 Ca233=%3 (b) (3.4.120)
C* —C* _ * * —C* (
1212 1313 - Caa  C2323 Yss )

for the square symmetric FRM, and all others vanish.

For the transversely isotropic FRM the last of (3.4. 120c) is replaced by

* * *

=L -
Coap3 =7 €42 "Cpd (3.4.121)

because of (3.4.46).

We also note that for isotropic phases

= = = +
Ci111 = Ca222 = Cazas ~ M 26 (a)

= = = . .]_
Cii22 = C2233 =C3311 = * (b) (3.4.122)
Cia12 ~C2323 = C3131 = C (c)
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We start with the transverse bulk modulus k* of a square symmetric
or transversely isotropic FRM, whose constituents have at least the same
symmetry. Appropriate homogeneous boundary displacements and associated
average strains are given by (3.4.59 - 60). Now consider (3.3.32) for the
present specific case. The relations are written out for ij =22, 33, taking
into account (3.4.60), (3.4.120) and the constituent symmetry, and are

then added together. The result is easily found to be

- (2)

* - £
k —k1+(k2 k) S v, (3.4.123)
-2 ., .
where e is given by

-@2)_ 1 /_1_ @), (@)
€ TN 5 (8gp+ eg3)dV

z y

2

and kl ’ kz are the transverse bulk moduli of the phases.

*
Next we consider the axial shear modulus GA'

strain system (3.4.11) and write out (3.3.32) for ij = 12. Taking into account

We apply the average

(3.4.120) it easily follows that

;(2)
* 12 )
G,=G, + (c;2 G, o~ Y, (3.4.124)
€12

A similar procedure for transverse shear, with the homogeneous displace-

ment system (3.4.13), yields
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- (2)
* €23 )
G,=G, + (G, G)) —=— v, (3.4.125)
€923

There is no difficulty whatsoever in finding similar expressicus for
other EEM such as n*, z* R E; etc. Howevei',the expressions are not as
simple as (3.4.55 - 57) , since they involve averages of several strain
components over phase 2. In this respect it should be recalled that if k*
can actually be computed by use of (3.4.123) , then n*, z*, E:\ and v;
can be found by use of (3.4.112), (3.4.117) and (3.4.118), respectively.

It is also possible to establish expressions for EEM in terms of phase

*
stress averages by use of (3.3.36). For k we apply (3.4.62) with

associated averages (3.4.63). We then obtain by a similar method

= (2)
k 1 2 1 o
-2) . 1 -
where © is the average of - (022 + 033) over phase 2. Similarly,

we find by use of (3.4.19 - 20) and (3.4.22 - 23)

=)

g

R e mp ——-lo—z—-vz (3.4.127)
Gy, & G, & 12

5(2)
Lol By (3.4.128)
Gr G Gy Gp 9y

Establishment of expressions for EEM in terms of averages over one

phase is also a straightforward affair for orthotropic FRM.
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3.5 EXACT SOLUTIONS

3.5.1 Formulation of Boundary Value Problems

As has been mentioned in chapter 3.3 the computation of EEM or EEC
calls in general for a detailed solution for the stress or strain fields in a
heterogeneous body, under homogeneous boundary conditions. Such
elasticity problems have been formulated in chapter 3.2 for the general two
phase body. In a uniaxially fibrous or fiber reinforced specimen the problem
is much simplified, though still formidable, because of the cylindrical
geometry. Therefore, such problems will now be discussed for the specific
case under consideration.

It is assumed that in any cylindrical fiber reinforced specimen the
fibers are continuous from base to base in the cylindrical specimen. In
practice there are always broken fibers and so the present analysis cannot
account for the state of stress near fiber breaks. The local stresses which
occur there are of great importance for failure considerations; they are,
however, of negligible importance for effective moduli calculations since,
as has been seen,such calculations involve averaging over a representative
volume. (It should be borne in mind that the problem of the state of stress
near a fiber break is of such complexity that it defies exact analysis at the

present time.)
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It will also be assumed that the cylindrical specimen's height is much
larger than a typical cross section dimension, so that Saint Venants principle
applies with respect to stress distribhtions on the end faces. It should be
noted that the boundary value problems to be formulated here apply for any
long two phase cylinder whose cross section geometry is invariant with
height.

Let the specimen be subjected to the homogeneous displacement boundary

condition
u, 8)=¢ x (3.5.1)
i ij 7}
For present purposes it is convenient to split the ‘oﬁ matrix in (3.5.1), thus
[ o ] r o o
¢ 000 0 &5, ¢13
(o] e} o] [»]
= + ey e
[e 11‘] 0 €00 So3 € g 0 0 (3.5.2)
o) (o} 0
0 €23 %33 ‘13 0 0

The boundary displacements associated with the first strain matrix in (3.5.2)

are
_ o
u, S) = ¢ llxl @)
o o
u, ) = €0y Xy T Eys Xy (b) (3.5.3)
_ o o
ug B) = ey3 %, tegy %y ()



while the boundary displacements associated with the second strain matrix

@)

(b)

(3.5.4)

If the specimen is subjected to homogeneous traction boundary

are
(0] (0]
uy 8) = ep, %) + €15 %,
o
u, 6)=e7, %,
O
(S) h ) 'l
J.J 1
conditions

T, 5) =0° n
1 ij

we proceed analogously. Thus

O
91 0
[o-T _ o)
) %
(@]
-0 993

(o]

%23

o

?33!

T, =0y,
_ 0 ©
T, 8) =0,y ny + 0,50y
_ o
3 © °23 2 79330,

12
12 0
13 0

@)

(b)

(c)

(3.5.5)
.
913
0 (3.5.6)
0

(3.5.7)
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and
_ o0 o
T) B)=0,,n+050 (a)
T, 8)=0". n (b) (3.5.8)
2 12 ™M "9
(0]
T3 (S) = 013 n1 (c)

The elasticity problems of the fibrous or fiber reinforced cylinder
with boundary conditions of type (3.5.3) or (3.5.7) are fundamentally dif-
ferent from those of the cylinder subjected to (3.5.4) or (3.5.6). We shall
begin with a discussion of the first type of problem and we shall afterwards
consider the second one. The cylinder geometry notation to be used is the
one amployed in chapter 2.2 and fig. 2.11.

We shall assume for simplicity that there are two phases only.
However, the present formulation applies just as well for any number of
phases. The phase: themselves are assumed transversely isotropic with
axes of elastic symmetry in X, direction. It will be seen that the formula-
tions developed are mathematically identical in the case of completely
isotropic phases.

The first problem may be conveniently formulated as one of plane
strain with uniform axial strain (see e.g. Love [3.3:] ). According to such

a formulation
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“1(1) &)= ul(Z) &) = €O11 ¥ @)
uz(l) (f_<) = uz(l) (x2, x3) uél)(&) = uél)(xz, x3) (b) (3.5.9)

0, @) =u by x) w20 e, x) @

Such a method of solution where some features of the solution are assumed

in advance, is known as semi-inverse in the theory of elasticity. The

justification of the assumptions is obtained if the problem which is formulated

on the basis of the assumptions is well defined and has a unique solution.
The strains associated with (3.5.9) are

H_ @ _o

1~ 11 T f11 @)
€(112) = 6513) B 61(2) - el%) =0 (b) (3.5.10)
€g; = Ggg (XZI X3) 3(5)8 = €(CZL)3 (Xz, XS) (©)

where it is recalled that greek indices such as a, 2 are confined to the

range 2, 3. Using the transversely isotropic Hooke's law (3.4.86) the

stresses are found to be

Ol(i) i eo11 4 (e(zlz) * e(;)s ) @)
(3.5.11)
01(21) ~ M €O11 4 (6(2:22) * e(gs) ) (b)
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. [ .° _ (1) (1)

Tas L’“l etk =G e 182G e . @

@ _ 1, O ) )] @)

Oup tfz ¢11+(k2 GZ) ¢y 5” +zc;2 Cad (b) (3.5.12)
(1 _ ) _ @)_ @) _

Oy =013 9127 %3 7O (c)

where GT has been denoted G for simplicity. It is seen that the stresses
(3.5.11-12)are not functions of X, In view of this and (3.5.12¢) the stress
equilibrium equations without body forces reduce to

%8 g~ 0 (3.5.13)

Inserting (3.5.12a,b) in terms of displacement derivatives into (3.5.13)

and using (3.4.89c) we obtain

(1) (1) _ .
klu B,ea+G1u @88 0 1nR1 (a)
(3.5.14)
) () _ .
kz u B,BG+ GZ u 0,8 B 0 in R2 (b)

where R1 and R2 are the plane phase regions of a cylinder section, as the

governing differential equations for the displacements u, and u3. The

boundary conditions for these displacements are (3.5.3b,c) on the contour C
of the section. Note that (3.5.3a) is automatically satisfied by the choice

(3.5.9a) for u, .

At the phase interface the continuity conditions (3.2.28a) must be

satisfied. Continuity for u, is already satisfied by the choice (3.5.9a).

1
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Hence, displacement continuity requires

u(;)=u((2l) on C12 (3.5.15)

To establish the traction continuity conditions (3.2 .28b) we note that
the interface S12 is cylindrical; hence the interface normal is in the xz ’ x3
plane and thus

n1=0 on S12 (3.5.16)

In view of (3.2.14), (3.5.13) and (3.5.16), the interface tractions have

the form
T1=0 (@)
T,=0.,.,n. +0..n (b) (3.5.17)

Therefore the traction continuity requirement is

(1) = 5@ on C (3.5.18)

oaB nB apg ne 12

In view of (3.5.12) this condition can be written in the form

ceu® o) @ , @ .
[0 =6 u®) k- s,sJ n * [6p 0 e )
M, W _ o
—G.1 (u a,r-_l+u B,G)] nB—(zl-/ZZ)ell ng onC.12 (3.5.19)
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This completes the mathematical formulation of the first problem. It is seen
that the initial three dimensional problem has been reduced to a two dimen-
sional problem for the displacements u, (x2 . x3) and u, (x2 ' x3).
Evidently the three dimensional uniqueness proof also applies to the present
two dimensional formulation.

We now turn to the case when the tractions (3.5.7) are applied. We
note that n vaﬁishes on the cylindrical boundary Sc and therefore T, also

1 1

vanishes there. On the other hand we have on the terminal sections Ao'AH

=1 = =
ny » Ny =Ny 0 on AH
(3.5.20)
n1=—1, n2=n3=0 onAo
Thus the traction boundary conditions may be written as
) =
01179 X, o, H @)
(3.5.21)
o
T =0 n b
a () w8 s (b)

In spite of the traction boundary conditions it is analytically
convenient to retain the displacement formulation of the problem. Thus the

tractions have to be expressed in terms of displacement gradients, as was

done in (3.5.19) and the results must be equated to the right side of (3.5.21b).

The problem for uz and u3 determination then again consists of (3.5.14)

with (3.5.15) and (3.5.19),and (3.5.3) is replaced by (3.5.21b). Again,
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the problem is unique for the determination of u2 and u3 in the specimen, but

here there arises a problem in the satisfaction of the boundary condition

(3.5.21a). The o, stress in the phases is given by (3.5.11) where &

11 11
is now unknown, while the (zoll dependent )strains 622 and %3 are determined
by the unique solution for uz and u3. In order to comply with (3.5.22)

rigorously, the expressions (3.5.11) must be equal to one and the same con-
stant 0011. This can in general not be expected. Therefore it is necessary
to appeal to Saint Venants principle for long cylinders and to make the
much less stringent requirement that the stress resultants on the end faces
Ao' AH be the same as the stress resultants produced by the applied tractions.
The stresses (3.5.21) produce only an axial force GC;IA on the end
faces. There are no shear forces, torques or bending moments. In view of
(3.5.13) the solution produces no shear force or torque on any section.

The expression for axial force on the section is in view of (3.5.11)

(o]

ojydA=0,, A

A

= {n A1+nzA)el

/(e(l) (1))dA+z /(eézz) +e:§23))dA

Ay

1
(3.5.22)

Equation (3.5.22) serves to determine the unknown strain ec;l .

To make the bending moments on the sections vanish we must have

/11 x, dA = f 0y, X4 dA =0 (3.5.23)
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These requirements may or may not be satisfied by the solution and must be
checked for each individual case. There are, however, two important cases
when (3.5.3) are known to be satisfied. Firstly , if the problem is such that

0. . is a symmetric function of x

11 and x_, i.e.

2 3

(—x ) =0, (x,,x,.)

11" "2 3

010y s X)) =0y

21 %3) = 0 &y g

then since X, and X, are odd functions, the integrands in (3.5.23) are also
odd functions. If also the section of the cylindrical specimen is chosen,
without loss of generality, as X, and x3 symmetric then (3.5.23) is evidently
satisfied.

Secondly, if the stress o, . is statistically homogeneous, then its

11
variation over the section is of the kind shown in fig. 3.2.2 and it is evident
that the associated bending moment is negligible.

Finally, it should be noted that plane strain analysis of a fiber rein-
forced cylinder is included in the preceding development as a special case.
The plane strain situation is obtained by setting

(o]

ell=0 (3.5.24)

in which event there is no axial displacement of the cylinder.

It is seen that in the plane strain case the only phase elastic moduli
which enter into the boundary value problem for the displacements and into
the expressions for OG.B are k and G. If the phases are completely isotropic,

nothing is changed. The moduli k and G have now merely to be interpreted

as plane strain bulk modulus and as usual shear modulus, respectively.
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There is thus complete mathematical analogy between the plane strain pro-
blems for transversely isotropic and for isotropic phases and solutions for
the latter case can be rewritten at once as solutions to the former case.
Care must be taken to first rewrite any elastic constant in the plane strain
isotropic phase solution in terms of k and G.

Corresponding elastic constants for the analogy are given below

Isotropic Phases Transversely Isotropic Phases

k k
G G

T (3.5.25)
by k -

GT
v La-a./k)

2 T

The analogy expressed in (3.5.25) is here called the first isotropy-transverse

isotropy analogy. It should be carefully noted that it applies only to the

case of plane strain and not directly to the stress ¢ as given in (3.5.11).

11
In the more general case of plane strain and axial strain, as previously
considered, there is no such direct analogy as (3.5.25) between the isotropic
and transversely isotropic phase solution since the modulus ¢ now also
enters into the problem through (3.5.19) and also through (3.5.7) in the
event that these are prescribed. Still, the transversely isotropic phase
problem is mathematically completely similar to the isotropic phase problem,
the difference between the two being merely in reinterpretation of constants.

Some consequences of the analogy described for EEM will be discussed

in the appendix to this paragraph.
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The present formulation of the problem is easily extended to the case
when both phases are orthotropic, provided that the elastic axes of the phases
are parallel to the cylinder axes. Let the orthotropic stress~strain laws
of the phases be given by

(m) (m) (m) (m) (m) (m) (m) @)

%11 TC11 f11 *C12 %2 *Ci3 €33
R TR R U R
ol o ey ro o3 @

(3.5.26)
off =20y o7 @

AT 2

(m) (m) (m)
931 ~2Cgs €3 (®

where m denotes the phase number, 1 or 2. Assuming again displacements

of form (3.5.9), the stresses in the phases become

(m) (m) (m) (m) (m) (m)

%1 =C11 €11 *C13 a2 *C13 ©33 (@)

(m) _ .(m) o (m) (m) (m) (m)

%, ~Ci1z €11 7C2 92 *Ca3 C33 ()

(m) C(m) o +C(m) (m) C(m) (m) ©) (3.5.27)

933 13 11" “23 °22 33 33
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(m) (m) _(m)

93 =2Cgs5 &3 @
(m) (m)
% T9; =0 (e)

The equilibrium equations (3.5.13) remain unchanged. Insertion of
(3.5.27) into (3.5.13) and expression of the strains in terms of displace~-
ment gradients, gives the differential equations

~m o m m (m) _, (m) _(m) (m)

_Nn
-V

Ca2 92,22 " ¥s5 ¥2,33 T Wa3 T Vg5 /U3 93 e
(3.5.28)
(m)  (m) (m) (m) (m) (m), (m) _
Css Y3,22 ¥ C33 Y3,33 7 Cp3 +Cg5 ) uy ,3=0 (@)

The continuity condition (3.5.15) remains unchanged while (3.5.19)

is replaced by

(2) @) (2) @) (1) (1) (1) (1)
[ 22 Y2,2 *C23 Y3,3 7 Cyp 4 5 ¥ O3 33)] ny

(2) (2) (2) (1) (1) (1) -
¥ [ Csg (U, 2) ~Cgs (uy 3+u )] Ry =
(1) (2) &0
=Gy, ~Cpp ey @)

(3.5.29)

@ @), @) (1) (1) (1)
[Css Uy, 3% 43,2 ) ~Csg (v “3,2{‘“

+ [Cm @Q,c.@ @ _ o 0, .0 (1)] ny =

23 Y2,2%C33 Y3,37 (Cy3 Yy 2+ Cq5 Uy )

= (1) (2) O
(G13 - Cy3) €1 My ()
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It is to be noted that the problem of the fiber reinforced cylinder under
boundary conditions (3.5.3) or (3.5.7) can also be formulated in terms of
Airy stress functions. However, this is analytically inconvenient for satis-
faction of displacement boundary or continuity conditions since representation
of displacements by Airy stress functions is only possible in terms of inde-
finite integrals of derivatives of stress functions (see e.g. [3.7] ).

An Airy stress function formulation has, however, been used by
Pickett [3.6] for numerical analysis of periodic square and hexagonal
arrays of circular fibers.

We now consider the second kind of problem in which the fiber rein-
forced cylinder is subjected to boundary conditions of type (3.5.4) or (3.5.8).
The present problem is also treated by a semi-inverse method. The displace-

ments in the cylinder are assumed to be of the form

u(ll) (x) = uil) (xz. x3) @)

(3.5.30)
uiz) (x) = uiz) x, . x3) (b)
0 ) = () = 63, x, @

(3.5.31)
o =0 ) = % ®

A displacement field as the one given above is called anti-plane in the theory

of elasticity (see e.g. Milne-Thomson [3.8] ).
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@)

1
For reasons of convenience we define the functions <p( ) and ¢ ' by

(1) _ (1) o _ .0
U Te T o e X T e 3% )
(3.5.32)
@_ @ _ o _ _
Uy T €12%2 7 “13%3 (b)
The strains associated with (3.5.30 - 32) are then
e = 5 = g = g =0 fa\
11 22 33 23 =
(1) (1)
1)_1 2o (1) _ 1 3¢
12 2 9x 13 T 72 ax () 3.5.33)
2 3
(2} (2)
e(2) _ 1 99 . 2)_1 3o ©)
12 2 ox 13 2 93ax
2 3
The associated stresses are from (3.4.86)
%) = 9y T 033 = %3 = 0 (@)
(1) (1)
o) g e Mg 29
12 1 axz 13 1 Bx3 o)) (3.5.34)
2
o @) G, 22 @ 0@ G 2o v (c)
12 2 BXZ 13 2 BXS

where G now denotes the axial shear modulus GA'
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In view of (3.5.34) and the fact that the non-vanishing stresses are

not functions of Xy the only surviving equilibrium equation is

aclz 3013
3%, T T3x
2 3

=0 (3.5.35)

Inserting (3.5.34) into (3.5.35) we find

a2 (1) aZ (1)

D + 9 =0 in R @)
2 2 1
sz dx

(3.5.36)

a2 (2) a2‘. (2)
Q — + ‘PZ =0 in Rz (b)
axz ax3

(1 @)

Thus the functions '’ and ¢~ are plane harmonic (satisfy Iaplace equations)
within the phase areas.

The boundary conditions (3.5.4b,c) are identically satisfied by the
assumed solution. Boundary condition (3.5.4a) with (3.5.28) leads to

X +2e& X (3.5.37)

- o]
9 (C) =2¢, x, 13 %3

But note that it is also required that

o) o
= +
o (xz, x3) Zelzx 2¢ .. X onAo,A

2 13 %3 (3.5.38)

H

The last condition can obviously not be satisfied by the present two dimen-
sional formulation. For a long cylinder, however, nonsatisfaction of (3.5.38)

produces only insignificant end effects.
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Because of the form of (3.5.31), continuity of u, and uy at phase

interfaces is satisfied. Continuity of uy requires in view of (3.5.28) that

o1 =, @ on C, (3.5.39)

To set up the traction continuity conditions we recall that on the cylindrical

interface n, = 0. Furthermore, four stresses vanish according to (3.5.34a).

Thus the only nonvanishing traction component on the interface is
T,=0,,n,+0,.n (3.5.40)

1 Tn A ~
1 14 4 15 O

Inserting (3.5.30b,c) into (3.5.40) we find

e 3 o)
G1 3n —-Gz 3 on C12 (3.5.41)
where the normal derivative 22 is given by
B -9 ., 92 (3.5.42)
dn axz 2 Bx3 3

It is seen that the problem of axial shear is now defined in terms of the
functions e (1), 0 @) which must satisfy the Laplace equations (3.5.36), the
boundary condition (3.5.37) and the continuity conditions (3.5.39) and (3.5.41).
By a simple extension of the uniqueness proof for harmonic functions where
the function is prescribed on the boundary (Dirichlet problem; for uniqueness

proof see e.g. [ 3.91]) it follows that the functions @(1) . cp(z) are uniquely

defined by the present formulation.
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Next we consider the fiber reinforced cylinder with the traction boundary
conditions (3.5.8). On the cylindrical surface Sc (3.5.16) must be satisfied
and also (3.5.20 - 21) hold on the terminal sections. Therefore (3.5.8)

assumes the form

_ o o
Tl(Sc)—CJ12 n, + 0,0, (@)
T2 (Sc)= T3 (Sc) =0 (b) (3.5.43)
01150, 01y T 049 T3 T 03 ORA AL

The formulation (3.5.30 - 34) and its consequences also apply to the
solution of the present problem. The differential equations (3.5.36) and the
continuity conditions (3.5.39) and (3.5.41) remain unchanged. The boundary
condition (3.5.36) is now replaced by (3.5.43a) which, in view of (3.5.34)
and (3.5.42), can be written in the convenient form

o o

o)
c =2_=65"_n

+ .5.
™ 12 % 013 n3 on C (3.5.44)

In (3.5.44) G and » assume 1 and 2 values for parts of the boundary C which
are in the 1 and 2 phases respectively. Note that (3.5.43b) is identically
satisfied since the stress system (3.5.34) produces no T2 and T3 tractions

on any cylindrical surface.

The problem (3.5.36), (3.5.39), (3.5.41) and (3.5.44) is a plane

| harmonic problem in which the normal derivative is prescribed on the boundary.
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This is known in the literature as the Neumann problem. The uniqueness proof
for homogeneous domains is well known (see eg. [3.9]) and is easily ex-
tended to the present two phase case. Note that now o is uniquely defined

by the problem apart from an arbitrary additive constant. However, for strain
and stress calculation the arbitrary constant is immaterial since only deriva-
tives of » are involved. In view of (3.5.32) the arbitrary constant is merely
arigid b

isplacement of the whole cylinder in the xl direction.

igi

It is seen that the first of (3.5.43c¢) is identically satisfied while
the other two are generally not satisfied. For a long cylinder this non-
satisfaction produces only insignificant end effects.

Evidently, nothing is changed in the formulation if the phases are

isotropic. In that case GA merely becomes the isotropic G. This implies
that any axial shearing displacement, strain or stress field for isotropic phases
is also one for transversely isotropic phases with G ¢ GA equivalence.

This analogy is called the second isotropy-transverse isotropy analogy,

complementing the first one which was given above.

The preceding formulation of the axial shear problem is readily extended
to the case of orthotropic phases. Assuming again displacements of form
(3.5.30 - 31) and defining the functions © (1) and (p(z) by (3.5.32), it

follows from (3.5.33) and (3.5.26) that the only surviving stresses are




129

(m) _ . (m) 3o
912 =Cu4 5%, (@)
(3.5.45)
(m)
m) _ . (m) 3¢
913 %6 3x (b)
3
The equilibrium equation (3.5.35) now leads to
2 (m) 2 (m)
cm 3o L om 3 ° o, (3.5.46)
44 2 66 2
sz Bx3

as the governing differential equations for ¢ (m) The boundary condition
(3.5.37) and the displacement continuity condition (3.5.39) remain unchanged.

The traction continuity condition (3.5.41) now becomes

(1) (1) @) 2)
) n o+ 2, @ e, @230 44,y

) 4 23
44 axz 2 66 X, 3 4 X, 66 ax3
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3.5.2 Elementary Solutions for Fibrous Materials

We consider some simple cases in which the problem of the fibrous
cylinder of arbitrary transverse geometry, subjected to homogeneous bound-
ary conditions, can be solved in elementary fashion.

Suppose that the two phases are isotropic and have equal Poisson's ratios

v1=v =V (3.5.48)

while

E,#E

] 2 (3.5.49)

If the cylinder is macroscopically transversely isotropic or square
symmetric it follows at once from (3.5.118) and the general relations (3.4.117)

and (3.4.119) that

P
= + |
i[ EA E1 vy Ez v2 , (3.5.50)
¥ 3 51
SIRECRY| .5.
A (3.5.51)

It is alsoeasily realized that since the relations (3.4.117), (3.4.118) are
valid for transversely isotropic phases with parallel material axes of
symmetry in cylinder axis direction, the results remain valid if the Poisson's
ratios in (3.5.48) are replaced by axial phase Poisson's ratios while all other
phase elastic properties remain distinct. The result (3.5.50) is of utmost
importance as it will be shown later that it is an excellent approximation

*
for EA of any FM or FRM.
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We shall now show that under homogeneous boundary conditions appro-

priate for effective axial Young's modulus determination, the results (3.5.50 - 51)

remain valid for more general fibrous cylinders and the internal stress and
strain fields can also easily be obtained. Let a fibrous two phase cylinder
be subjected to the boundary conditions (3.4.28) which when written out in

detail for the cylinder are

o _ _ _
011—011,012—013 0 X, o,H (3.5.52)
Tl=0
= + =
T2 %4 n, 0'23 n3 0 onSc (3.5.53)
= + =
T3 = 0,30y * 0337370 |

It is seen that (3.5.53) are a special case of (3.5.21). Therefore,
if the phases are isotropic or transversely isotropic the par. 3.5.1 formulation

of plane strain with uniform axial strain applies. Consequently
u, (x)=e.. X (3.5.54)

in both phases, at sufficient distance from the terminal sections of the

. , . . o) ,
cylinder. The uniform axial strain ¢ is at present unknown.

11
The displacements u2 and u3 are guessed to be
= - ‘\o
uy (B)==Vey) %,
(3.5.55)
__ O
ug (£) == Ve xg
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in both phases. Then the strains associated with (3.5.54 - 55) are

1 11
= = - \) © (3 5 56)
%2~ %33 ‘11 2.

Il

I
®

Il
o

12~ %3 %31

1
0(1)1 =E) ey, 0(123”32 el (@)
(3.5.57)
=0, ,=0,.=0_=0.. =0 (b)

where El and Ez are axial Young's moduli for transversely isotropic phases
and are the usual Young's méduli for isotropic phases.
To vefify the solution it is noted that (3.5.55) trivially satisfy the
phase differential equations (3.5.14) and interface continuity (3.5.15). It
is also seen in view of (3.5.17) and and (3.5.57) that the interface tractions
vanish and thus interface traction coatinuity (3.5.18) is also trivially satisfied.

The unknown strain ¢, is determined by the condition (3.5.22) with

11
(3.5.57). This leads to
5©
€o - 11 3
11 E. v.+E_ v (3.5.58)

11722
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and so the denominator of (3.5.58) is recognized as the effective axial Young's
modulus, in accordance with (3.5.50). Furthermore, since it has been verified
that (3.5.55) aré the actual uniform strains in both phases it follows that v
is the effective axial Poisson's ratio, in accordance with (3.5.51).

It should be noted that the solution is subject to the further Saint

Venant restriction (3.5.23) which in view of (3.5.57a) assumes the form

+ =
EleZdA EZ/XZdA 0

A A
1 2 (3.5.59)
Elfx3dA+E2fx3dA=0
Ay Ay

Since E1 and ]E:Z are arbitrary the integrals in (3.5.59) must vanish separately.
This is the case if the geometry is symmetric with respect to the X, X, axes
and also, in the limit, if the geometry is statistically homogeneous.

Note that it was not necessary to assume any specific macroscopic
symmetry of the fibrous cylinder. Consequently (3.5.50 - 51) are valid for
any statistically homogeneous fibrous cylinder,if (3.5.59) is satisfied.

The solution is easily generalized to the case of any number N of

cylindrical phases which all have equal Poisson's ratios in which case

m=N
* _ —E (
Ep= E V.~ a)

m=1
* (b) (3.5.60)
vA =V .5.

o} E

(m) 11 ™m
11 * )
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The solution may also be generalized in another way. Suppose that the

phases are orthotropic with a common orthotropy axis x let the phase

(1) ()

1

Young's moduli in 3 direction be El , ]E:1 and the associated Poisson's
. (1) (2) (1) (2) . ‘
ratios v 12 v 12 and v13 , Vv 13 where superscripts now denote the
phases. If
(1 _ @) _
V2 T V12 T V12
(3.5.61)
Lo e
13~ 13 713
Then it follows easily that
* _ (1) (2)
EyTE v TRy
Y= 3 6
Vi, T Vi, (3.5.62)
* —
Y1z T V13

It is also of some interest to note that if one phase, 2 say, is empty

that is consists of parallel cylindrical voids, then it is rigorously true that

* * *
v VvV ,\)A=\)

12 13 1

(3.5.63)

* *_

This is easily proved by retracement of previous analysis.
Another special situation which can be analyzed is the case of
transversely isotropic phases in which

= = 4
g zz (3.5.64)
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which for isotropic phases assumes the form

)\1=)\2=)\ (3.5.65)

It follows from the general relations (3.4.112) and (3.5.64) that

*

L =14 (3.5.66)

n =n1v1+n2vz=n (3.5.67)

It is easily shown by direct analysis through application of the
boundary conditions (3.4.57) that the stresses in the phases are

W, © o(z)=n e
%11 1 %11 11 2 €11

o (3.5.68)
22 33 11
and that (3.5.66 - 68) are valid for any statistically homogeneous fibrous
cylinder as long' as (3.5.64) is fulfilled. The results are also easily
generalized to any number of phases in obvious fashion.
If the phases are orthotropic and

(1) . ~ @) _

Ciy=C1p =Cyy
(3.5.69)

(1) _ @) _

C13 “C13 =Cy3

all other phase moduli being distinct, then

* _ (D) (2)

C117C1 1 V1 *C11 v,
* —

G, =C1y (3.5.70)
*

c..=C

13 13
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3.5.3 Composite Cylinder Assemblages

The composite cylinder assemblage model for uniaxially FRM has been
described in chapter 2.1, fig. 2.1.3. We shall here be concerned with the
computation of EEM for this model.

The inner cylinders are assigned the role of fibers and their material
is labeled 2. The remaining material is the matrix which is labeled 1. If
the phase materials are transversely isotropic about an axis in fiber direction,
the assemblage is macroscopically transversely isotropic as will be explained
later on. There is thus a basic set of five different EEM. However, only
three are independent because of the general relations (3.4.112) and (3.4.117 - 118).

The fundamental importance of the present model is in that four EEM
can be exactly calculated in terms of simple closed form expressions. A fifth
EEM is bounded from below and above; however, recent work indicates that
the upper bound may actually be the correct result.

Most of the results which will be here obtained were first given by
Hashin and Rosen [3.10] where this model was introduced. A related model
is that of a composite sphere assemblage introduced previously by Hashin [3.11]
for isotropic composites. The method of analysis to be here employed is dif-
ferent and much simpler than the one used in [3.10].

We consider first the calculation of the transverse bulk modulus k*.

The homogeneous displacement boundary conditions to be applied to the surface

of a fiber reinforced cylinder are in this case given by (3.4.59).
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Consider first a single composite cylinder subjected to (3.4.59). The
inner circular cylindrical fiber is of radius a and the outer cylindrical matrix
shell has radius b, fig. 3.5.1. Using cylindrical coordinates the boundary

displacements (3.4.59) transform into

u, (S) = u, (b,8,2z) =0 @)
uél) (b,8,2) = 0 o) (3.5.71)
u(rl) (b,8,z) = ¢ b (c)

In view of (3.5.71a) the cylinder is in plane strain and moreover the cylinder

is in an axially symmetric state because of (3.5.71b). Consequently, we have

(ny _ @ _ (1) _ @) _
u u, =u, =

z "z 8 8 0 @)
(3.5.72)
1 1 2 2

O T R B - o)

r r

throughout the cylinder. As is well known

u=Br+C/r @)

o =2kB - zc.c/r2 (b)

r

0gq = 2KB + 2GC/t ) (3.5.73)
o =24B (d)

ZZ

c =0 _=0. =0 (e)
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for the axially symmetric cylinder in plane strain (see e.g. [3.6]). There
are here two different solutions, for fiber and matrix. In view of the first
transverse isotropy - isotropy analogy of par. 3.5.1 kand G in (3.5.73)
may be interpreted as transverse bulk and shear modulus respectively, of a
transversely isotropic material, or as their isotropic counterparts for an
isotropic material.

It is seen that in the fiber C must vanish in order to avoid infinite

displacement and stress at the center. Thus we may write

ut? - Byr + Cyf @)
Gr£1)= 2ky By - ZGlcl/rz (b) (3.5.74)
Gz(i)= 2218y (c)
a = pyr @)
or(i) =2k, B, (b) (3.5.75)
Oz(i) =21,8B, (c)

In view of (3.5.72) displacement continuity at fiber-matrix interface,

r =a, requires only

(1) 2)

u @) =u @) (3.5.76)
Because of the axial symmetry Ore = Orz = 0 throughout the cylinder and thus

traction continuity at r = a reduces to
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o1 ) = o @

o o @) (3.5.77)

Insertion of (3.5.74 - 75) into (3.5.71c) and (3.5.76 - 77) yields three linear

equations for the constants Bl' C1 and B For future use we record the

2"

value of B2 which is given by

k:1 +G'l o)
B, = 7 € (3.5.78)
k, + Gy - (kz-kl)(a/b)

For reasons which will become apparent we are at present interested
only in the tractions on the composite cylinder surface. Because of (3.5.73¢e)
the only surviving traction components areT =0 onr = band T =0 on

r r z zz
z = o, H, the terminal sections.

It follows from (3.5.74b) and the computed values of B1 , C1 that

e
rr

(b) = 2k _ e (3.5.79)

where

_ kl(kz + Gl)[ 1-(a/b)2] + %k, (k1+Gl)(a/b)2

k
© (kZ + Gl)El - (a/b)2] + (k1+G1) (a/1o)2

(3.5.80)

In view of (3.5.74c) and (3.5.75c), GZZ assumes different constant values
in the fiber and matrix shell. We compute the average of OZZ over the cross
section which can be written in the form

5 =24 &° (3.5.81)
ZZ (o]

where
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zl(k2+Gl)[l-(a/b)2] + '62 (k1+G1)(a/b)2
2
)

¢
c 2
k,*G 1-@/D)"] + (k4G ) @/b

If in the composite cylinder H >>b, then replacement

piecewise constant OZZ

(3.5.82)

of the actual

stresses on the end sections by the uniform stress

(3.5.81) will merely produce end effects because of Saint Venant's principle,

so it is henceforth assumed that (3.5.81) is the normal stres
sections.

It is instructive to transform the tractions on the comp

surface to the cartesian Xl' x2 , X, system. We have

3

T, =Tr cos (r,xl) =Tr n, =0
T, = =T n, =2k en r=b
2 r 2 c® M >

= = = o
T3 Trn3 chen3J
T1=zzce°

- z2=0,H

T, =T, =0 ]

o
It is seen that (3.5.83 - 84) is a homogeneous traction system ,0
i

the cylinder surface, where

o]

'z/zce 0 0
[o°] = 0 2ke 0
1) C
0 0 2k e

s on the end

OSile cylinder

(3.5.83)

(3.5.84)

n,
]

on

7

]

(3.5.85)
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AN
Suppose now that (3.4.59) is applied to the surface of a homogeneous

transversely isotropic circular cylinder of radius b. The solution is most

elementary , having the form (3.5.75). We obtain in particular that

orr=2koe @)
(3.5.86)
=94 &°
Ozz 2 Oe (b)

where ko, zo are two of the five moduli of the homogeneous material (see
(3.4.86) ). Evidently the tractions on the homogeneous cylinder surface
will be of the same form as (3.5.83 ~ 84), with kc ' l’c replaced by ko' ZO.
It is thus seen that to an external observer the composite cylinder is
indistinguishable from a homogeneous cylinder with transverse bulk modulus

kC and modulus ec . This is also apparent from (3.5.85). Accordingly

kc and J?,c as given by (3.5.80) and (3.5.82) may be called apparent moduli

of the composite cylinder.

Dually, the composite cylinder may be subjected to the mixed boundary
conditions (3.4.62). Transformation to cylindrical coordinates again produces
an axially symmetric plane strain problem. An analysis similar to the pre-
vious one again shows that the composite cylinder has apparent moduli kc and
Lc , given by (3.5.80) and (3.5.82).

Consider now a homogeneous transversely isotropic cylindrical specimen
of arbitrary cross section A, with moduli kc and !'c . If the specimen is sub-

jected to the homogeneous boundary condition (3.4.59) we know by the theorem on
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homogeneous elastic bodies of arbitrary shape, under homogeneous boundary
conditions, par. 3.2.2, that the displacements in the cylindrical specimen

are just of the form (3.4.59), that is
(x) =0 (x) = ¢° (x) = ¢%x, (3.5.87)
uy (x) = u, (x € X, uy (x € X, .5.

Consequently the strains are given by

[0 0 0
[ey =0 2 0
[_0 0 eo_

and the stresses are found from Hookes' law for homogeneous transversely
isotropic bodies (3.4.86) to be precisely (3.5.85).
Now consider any circular cylinder, of radius b, within the cylindrical
specimen extending from base to base and with axis parallel to the specimen
. . . : (m) _(m)
axis. Let the center of the circular cylinder be at the point Xo ' X, ' in the

transverse plane. Introduce a local coordinate system y defined by

(3.5.88)

(fig. 3.5.2). The displacements on the curved surface r = b are in view of

(3.5.87) and (3.5.88)
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u, ) =0 (@)
u, () = eoxém) +e Y, (b) (3.5.89)
u, (b) = eoxém) + coy3 (c)

It is seen that the first parts of the right sides of (3.5.89b,c) are rigid body
motions of the circular cylinder, thus producing no stresses and strains.
The remaining parts of (3.5.89) are referred to the circular cylinders local
coordinate system and thus are equivalent to (3.5.71). Furthermore, since
the stresses throughout the cylindrical specimen are (3.5. 85) the tractions
on the circular cylinder's surface are given by (3.5.83 - 84). The conclusion
is that if the circular cylinder is replaced by the composite cylinder whose
apparent moduli are kc and zc the cylindrical specimen will not know the
difference since the displacements and tractions on the surface enclosing
the replaced cylinder have been preserved. Thus the states of strain and
stress in the remainder of the cylindrical specimen are not affected by

the replacement.

Consequently, such replacements can be performed again and again,
starting with composite cylinders of relatively large radii and filling the
remaining volume with smaller and smaller composite cylinders. In order
to preserve the same kc and ch in all cylinders we require that all quantities
in (3.5.80) and (3.5.82) be the same in all composite cylinders. Thus, in

particular, the ratio a/b is the same and the composite cylinders are
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all geometrically similar. In the limit the whole volume of the cylindrical
specimen is filled out with composite cylinders and thus becomes a composite

cylinder assemblage, Fig. 2.1.3. Evidently (a/b)z is now the phase volume

fraction of the fibers, thus

@/b)’ = v, @)
(3.5.90)
l-@/b)’ = v, (b)

and kc as given by (3.5.80) becomes the effective transverse bulk modulus

k of the composite cylinder assemblage. In view of (3.5.90) it may be

written in the equivalent forms

ot kilky #G vty Gy, @)
: ky +Gvy + &g+ Gl v,
(3.5.91)
v :
kK =k + . (b)
1 1 L, 1
K,k K¥G,

S|

*
Similarly, (3.5.82) becomes £ of the composite cylinder assemblage.

By use of (3.5.90) it may be written in the form

. 8oy + G vy 1, kitG) v
ky*Gvy  * &y +Gyv,

2 2

(3.5.92)
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It is recalled that k* and JZ* of a FRM must be connected by the
general relation (3.4.112a). It may indeed be verified that (3.5.91 - 92)
satisfy this relation.

It is recalled that (3.5.91 - 92) are results for transversely isotropic
phases, with G interpreted as GT. Tor isotropic phases 4 becomes )
while k and G are plane strain bulk modulus and isotropic shear modulus,
respectively.

* *

The analysis of k and £ may even be carried out for hollow or
composite fibers. Suppose that all fibers have concentric cylindrical
circular voids. If 'a' is a typical fiber radius let ao be the radius of the
void. Suppose that the ratio ao/a is the same in all fibers. Denocte
)2

@ /) =v_ (3.5.93)

where v, is the volume fraction of voids relative to fiber volume. We
know from previous analysis that also the hollow fiber behaves to an
external observer as a homogeneous fiber with some apparent transverse
bulk modulus ké . To find k'z it is merely necessary to reinterpret (3.5.80) for
the hollow fiber in the following way: kz becomes an elastic modulus of the
void and it therefore vanishes, kl' G1 become the fiber elastic moduli and
(él/b)z is replaced by (3.5.93). Thus

k, G, (1 -v)

K= —2 2 o (3.5.94)

+
2 GZ Vo kz
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Then the transverse bulk modulus for the composite hollow cylinder assemblage

becomes

.kl (kz +G1) vy +k2 (k1 +G1) v,

ky +G) vy +k +G)v

%

(3.5.95)
2
where v2 is the gross volume fraction of hollow fibers relative to the composite.
*
Next we consider the axial Young's modulus E_ and the axial Poisson's

A

ratio v:\ . These elastic properties can be obtained in a similar way by
subjecting a single composite cylinder to axial extension without load on

its lateral boundary, obtaining the apparent axial Young's modulus and
Poisson's ratio of the composite cylinder, and then filling out an arbitrary
cylindrical specimen with composite cylinders to obtain an assemblage.

Such a procedure has indeed been originally adopted in L3,10] but fortunately

this is no longer necessary for the general relations (3.4.117) and (3.4.118)

* * *
now permit calculation of EA and VA directly in terms of k ., The results

are
2
* AV vy v,
EA—E1v1+EZv + /k +v/k +1/G (3.5.96)
. 2 -V )(l/k l/k vV,
= + +
VA V) vy \)2 v, V]_/kz " Vz/kl + 1/G1 (3.5.97)

* *
The effective moduli E, and v, were first obtained in [3.10 ] in very

complicated form. The much simpler forms (3.5.96 - 97) were later given by
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Hill [3.5] as "effective moduli" of a single composite cylinder.

In view of the equs. (1), (2) in the appendix to par. 3.5.1 it is
seen that in the case of transversely isotropic phases E, v, k, G in
(3.5.96 - 97) are to be interpreted as agial Young's modulus EA' axial
Poisson's ratio \)A , transverse bulk modulus k and transverse shear
modulus GT, respectively. For isotropic phases they are the usual
elastic moduli.

For hollow fibers EZ, vz and kz in (3.5.95 - 96 are replaced by the
corresponding apparent elastic constants of the hollow fibers. These apparent
constants may be directly found from (3.5.96 - 97) by letting the fiber
moduli vanish in these expressions and replacing the matrix moduli by

fiber (2) moduli. We then find

E'Z =E, (l-vo) @)

(3.5.98)

vio=y (o)

Introduction of (3.5.98) into (3.5.96 - 97) instead of E2 . VZ and (3.5.94)
instead of kz yields the hollow fiber expressions for E:\ and v;.

It should be noted that instead of hollow fibers it is just as simple to
consider fibers which are thémselves composite concentric cylinders. This
may be of some interesvt for boron fibers which consist of a tungsten core
on which the boron is vapor deposited. In this case the primed moduli (3.5.94)
and (3.5.98) merely have to be replaced by the equivalent moduli of the

composite fiber, which are again easily obtained from previous expressions

of equivalent moduli of a composite cylinder.
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*
Evidently, n of a composite cylinder assemblage may now also be
computed by use of the relation (3.4.112b). For transversely isotropic

phases this modulus is given by

i 2 |

‘ (2. ~4) v, v i

‘ n*= +n. v, - : 2 L2 ! (3.5.99)
MV T Y kv, + kv ¥Gy, e

2 2

where the phase moduli are defined by (3.4.86). For isotropic phases 0,4 ,
k and G‘l‘ in (3.5.99) are given by (3.4.89),

We now consider the axial shear modulus G; of a composite cylinder
assemblage. The method is in principle the same as for k* calculation.
The boundary conditions (3.4.10) may be applied to the surface of the
cylindrical fiber reinforced specimen and consequently we consider the
problem of a single composite cylinder subjected to (3.4.10). The general
axial shearing formulation given in par. 3.5.1 is immediately applicable to
the present case, with eo = 0. We set for convenience eo =a . The

13 12

problem then becomes

ngo(l):O asrs<b @)
(3.5.100)
vch(z) =0 0<r<a (b)
o =20, r=b @)
A1 = @) (b) (3.5.101)
- I =a
(1) (2)
S "_ 39
Gl dn G2 on | (e)
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Evidently the problem (3.5.100 - 101) should be transformed to polar
coordinates r, & given by

X, =r cos 6

x3 =rsin @

In terms of these (compare e.g. [3.9] ) the harmonic problem (3.5.99 - 101)

becomes
2 (1) (1) 2 (1)
° @ + i _BL_ + ..].'_ a—L—: 0 as<r<b (a)
2 r 2dr 2 2
dr r 38
(3.5.102)
2 (2) 2) 2 (2)
Brz +__%‘P _l_iz_a_SQz___:O 0<rsa ()
or r d r 96
| @(1) (b, 8) =2abcos 6 ‘ (3.5.103)
|
1 M@, =92 @, 0 @)
(3.5.104)
(1) (2)
3¢ "(@,8) _ dow (@,b
G) 737 = Gy 3 ©)

Solution of this problem is readily obtained by separation of variables or adap-
tion of the general harmonic solution in polar coordinates in circular annular

domains (compare [3.9]) to the present problem. The results are
(1) _
o @ (r,8) = (B1 r+ Cl/r) cos 8 @)
(3.5.105)
2)

e (r,8) = B, r cos 8 (b)
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where B, Cl and B, are arbitrary constants. Insertion of (3.5. 105) into

2

(3.5.103 - 104) yields three linear equations for these constants, thus

completely s.pecifying (3.5.105). We record for future use the value of B2

which is given by

4aG1
B = (3.5.106)

2 2
G2 +Gl - (G2 - Gl)(a/b)

Again we are interested only in the tractions on the boundary r = b, We know from

the general analysis in par. 3.5.1 that the only surviving traction there is
OV €

s _ . dw ", D .
Tl which in view of (3.5.40 - 41) is G1 ™ i.e, Gl . in polar
coordinates. We then obtain on the basis of the present solution
= .5.1
Tl (b,8) =2 GAconcos ) (3.5.107)
where
)
G, =G, |1+ @/b) | (3.5.108)
Ac 1 G !
[ R NPT S
L Gz-Gl 2 1

Now suppose that (3.4.10 ) with sci = o is applied to the surface r = b of

2
a homogeneous transversely isotropic circular cylinder with axial shear
modulus GAo' The simplest way to find the solution is to'appeal again to
the theorem on homogeneous elastic bodies of arbitrary shape under homo-
geneous boundary conditions. It follows that the displacements in the

cylinder are just of form (3.4.10) throughout. Consequently the strains are

everywhere
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and the stresses are everywhere
o
0 ZGAO 0

[oij]='2GAOOL 0 0 (3.5.109)

0 0 0

In view of (3.5.109) the only surviving traction on r = b is

T, =0

] 12 n, = ZGAOOL cos 6 (3.5.110)

since n, = cos 6. Comparison of (3.5.110) with (3.5.107) shows that to an
external observer the composite cylinder is indistinguishable from a homo-
geneous transversely isotropic cylinder with axial shear modulus as given
by (3.5.108).

There remains , however, a problem of end conditions on the terminal
sections of the composite cylinder. In view of (3.4.10) and (3.5.38) it is

seen that we should have o= 2a x,, on the terminal sections which condition is

2
certainly not satisfied by (3.5.105). To assess the magnitude of the effect
involved it is best to consider the boundary tractions. It is easily shown
that the section resultant associated with (3.5.105) is only a shear force

in X, direction. Thus if in the composite H >> Db the actual variation of ¢
on the end section may be replaced by (3.4.19a) and the end effect produced

is macroscopically insignificant.
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We now follow the same reasoning that led to the construction of the
composite cylinder assemblage for k*' calculation. A homogeneous transversely
isotropic cylindrical specimen of arbitrary cross section is assigned the
axial shear modulus GAc . Parallel circular cylinders within the specimen
can be replaced by composite cylinders with constant a/b ratios without
affecting the stresses and strains in the remaining volume. In the limit of
filling out the specimen becomes a composite cylinder assemblage with

*
axial shear modulus GAc' This modulus is now denoted GA and becomes in

terms of fiber and matrix volume fractions

* Vz
G,=G, + : - | @)
+ ot 1
G,-G, 2G, :
§ (3.5.111)
{
G*=G G1v1+Gz(l +V2) '; o
A 71 G T+v )G, v !

2 21

R——

If the phases are transversely isotropic or even square symmetric,

G2 , G1 in (3.5.111) are the phase axial shear moduli. If the fibers are
hollow with void volume fractions defined by (3.5.93), then G2 in (3.5.111)
has to be replaced by

1 -vO
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where vé is given by (3.5.93).

The axial effective shear modulus is unique in that it depends only
on the phase shear moduli and not on other phase elastic properties. This
is so even for the axial shear modulus of any fibrous material since by par.

3.5.1 only G1 and G. enter into the field analysis for this case.

2
It is again very easy to generalize to the case of composite fibers
in the manner described above, after equ. (3.5.98).
There remains the problem of the calculation of a fifth EEM in order

to complete the analysis of the composite cylinder assemblage. In view of

(3.4.82) and (3.4.85) and the results obtained above for the composite
*

* *
cylinder assemblage, it is seen that any one of the group GT' ET and VT

can be taken as a fifth elastic constant. It turns out that of these the easiest
to consider is G; . But,unfortunately, the replacement method which has
been previously employed fails for this case since a compos ite cylinder has
no apparent transverse shear modulus.

1t is , however, possible to find upper and lower bounds for G; on
the basis of variational methods. The discussion of such methods and the
detailed derivation of bounds is deferred to chapters 3.6, 3.7. The bounds
are here presented for the sake of completeness.

Upper and lower bounds are denoted G; ) and G; =) respectively.

(%)
Then for fibers (2) which are stiffer than the matrix (1) i.e. kz >k1,G2 >G1

*) Bounds for the case of matrix stiffer than fibers are given in par. 3.7.4.
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2
. (1+av23)(o+ E‘lvz)-3V2V S
B T
2 /WP T Y 21"
where
- _
B Bl Y8,
“T Ty
Y2
+ 2
P v -l
.
, G
| |
A= —————14 I e T
3 - vl 2 3 - 4\)2
i o I U ';
| * 2 |
I = + ‘
L S TG T Kk, 26, i
v
: - + :
| G, G, ZGl(k1 Gl) 1
or equivalently
* VZ I
= 1+ |
Gr(-) TG 1 v, :
S Ry |
o ~ Y 1

@)

(b)

(c)

@)

(e)

@)

(3.5.113)

(3.5.114
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The upper bound (3.5.113) has been originally derived in (3.10] in
terms of a parameter which had to be obtained by solution of a six by six
system of linear equations. (See par. 3.6.2) The present equivalent and
much simplified result (3.5.115) has been obtained recently by algebraic
solution of the six by six system, [3.12].

A lower bound was also derived in [3.10]. Later,bounds for statis-
tically transversely isotropic fibrous materials of otherwise arbitrary phase
geometry were derived by Hashin [3.13]. Surprisingly enough it was found
that the general lower bound of [3.13] is always higher than the lower bound
of [3.10] , in the case of fibers which are stiffer than the matrix. Since the
composite cylinder assemblage is a special case of the general fibrous
geometry of [3.13], the general bounds are certainly also valid for the
composite cylinder assemblage model. Therefore the lower bound of [3.13]
supersedes the lower bound of [3.10]. Thus the bound (3.5.114) is the
general fibrous geometry lower bound.

Recent work by Hashin and Rosen |3. 12 ] indicates that the upper bound

* B
(3.5.113) may actually be the expression for GT of the composite cylinder

assemblage model in the event that the fibers are stiffer than the matrix,

If the phases are transversely isotropic the results (3.5.113 - 114)
are still valid with the following interpretation of phase properties: GZ P G1

are the phase transverse shear moduli and the Poisson's ratios are replaced by

=X -
v= (1 GT/k)
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It is of some interest to specialize the results obtained so far for the
composite cylinder assemblage model to extreme cases. In the first case it
is assumed that the fibers are perfectly rigid, which means phys ically that
they are very much stiffer than the matrix. We thus assume that all fiber
moduli are infinitely larger than matrix moduli. We then obtain from the

previous results (3.5.91), (3.5.96), (3.5.111) and (3.5.113)

Rigid fibers

% . V2
k =ky+ k) +Gy) 77 @)
2
* 11
E,~E, v, () (3.5.115)
- l+v2
A By fe)
2
3 )
v . A-v,")(1+3.v, )-3v, v 8
G, [1+(+3)-21<g" =g 2 12 2171
1 1’ v, T L 3 0 -3 2,2
Va Ap) VaV1 5

Note that (3.5.115b) becomes infinite for rigid fibers. This result implies
that for very stiff fibers (3.5.115b) is a very accurate approximation of (3.5.96).
The modulus /l* and V; are not meaningful for rigid fibers since vz remains
in the expressions and for a rigid material \)2 is indeterminate.
The second extreme case is that of cylindrical parallel voids. This is

obtained from previous results by letting fiber moduli be infinitely smaller

than matrix moduli. We then have:




157

Cvlindrical voids

- k, Gy (1-vy)

K = —————
Gl+klv2

£ -
s %60

b = (b)
G1+k1V2

"= 1 11
EA—El( vz) ) (3.5.116)
* —

\)A—\)1 @)

T )

Gp=Cy 1+v, e

Note that (3.5.116c,d) are merely special cases of the general results (3.5.61).
The bounds (3.5.113 - 114) are not valid in the present case. Bounds
for matrix which is stiffer than the fibers, which situation includes cylindrical
voids as a special case will be given later, par. 3. 7.4.
The third extreme case to be considered is that of incompressible
isotropic matrix in which case

v =‘;’ (@)
(3.5.117)
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where (3.5.117b) follows from (3.4.89 ~ 91). It should be noted that great
care has to be exercised in the use of (3.5.117b) in (3.5.91 -~ 92) and (3.5.96 - 97)

for the meaning of (3.5.117b) is really that £ kl become very large. It may

1’
be safely assumed that they are much larger than Gl but it is questionable
whether they become much larger than fiber moduli in the event that the fibers
are much stiffer than the matrix. Since the last case is of most practical
interest it is preferable not to simplify (3.5.91 - 92) and (3.5.96 - 97)

by use of (3.5.117).

It is noted that no Poisson's ratios appear in the G; expression
(3.5.111). This, of course, is in accordance with the general axial shearing
boundary value problem formulation of par. 3.5.1, which does not involve
phase Poisson's ratios. Therefore (3.5.111) remains the same whether or
not the matrix is incompressible,

*
The GT bounds (3.5.113 - 114) assume the following form for

incompressible matrix

v . (1+0Lv2)3(p+v )=3v. v

2 21

2
2)73VyYy

(3.5.118)
3
(l+ocv2) (p~v
*
It is of interest to note that the left side of (3.5.118) is the GA result
(3.5.111) in different form. The significance of this, if any, is not known

to the writer.
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For rigid fibers and incompressible matrix, (3.5.118) reduces to

2
v * l-v, +5v, +v
G, ¢+2=%)=<a_ < ¢ 22 2
1 v T 1 3
1 (l-vz)

(3.5.119)

* *
To obtain results for ET and vT we exploit the relations (3.4.82 - 84).
It is seen that for the composite cylinder assemblage all EEM entering into
the right sides of these expressions are known in closed form, except for

* *
GT which is bounded. It is easily shown that in terms of GT bounds we have

* * * %
4k 4k
_—-———(—GT -) < E. < ————————GT(+) @)
k*+mG* T k*+mG*
T(~) T (+)
(3.5.120)
* * k* *
k -mG -mG
T (+) * T(-)
k* * s v, s . (b)
+ +
mGT(+) k mGT(_)

* *
If it is accepted that GT is the actual expression for GT then

(+)

* %
T T(+) * *
+
k mGT(+)
k* *
v* = v* = ————-———mGT(-)
T T(-)

* *
+ +
_k mGT()
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We now re-examine the statement made at the beginning of this para-
graph that a composite cylinder assemblage with transversely isotropic phases
is macroscopically transversely isotropic. Indeed it has been seen that four
EEM of a composite cylinder assemblage are just the apparent moduli of a
single composite cylinder. A single composite cylinder is obviously trans-
versely isotropic because of its axial symmetry. This argument cannot be
applied to G;. However, it is clear that because of the geometry involved
the value of G; cannot depend upon the orientation of x2 ’ x3 axes with
respect to which the analysis is performed. Consequently the composite
cylinder assemblage is transversely isotropic.

The reader will recall that it has been emphasized in chap. 3.3 that
EEM depend in general on all the details of the phase geometry and not just
on the volume fractions. It is seen, however, that in spite of the complex
geometry of the composite cylinder assemblage, the volume fractions are its
only geometrical parameters which enter into the EEM expressions. This is a
rather special and fortunate situation which is a result of premeditated con-
struction of the model in such manner that its EEM are the equivalent moduli
of one single composite cylinder. Consequently, the results are so
surprisingly simple.

The present results for EEM of the composite cylinder assemblage model
will be referred to very frequently in the remainder of this work. They shall then

*

* *
be identified by an additional subscript c,thusk ,G,. ,E_, etc.
c Ac Ac
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Finally, it should be pointed out that the stress and strain fields in
the composite cylinder assemblage are just the stresses and strains in the
composite cylinders , which are known by previous analysis for those boundary

* * * *
conditions which lead to closed expressions for EEM, i.e. k, n , £ and EA'
For those boundary conditions which lead to G; and E; the stresses and
strains are not known, unless it is accepted that (3.5.113) is the actual
result for Gt[, in which case the stresses and strains are also known in those
cases. Results for internal stresses are given in appendix 2.

Some numerical examples will now be given. Table 3.5.1 lists some
elastic properties of various fiber and matrix materials. These should not
be taken too literally. In particular, different epoxies have significantly
different Young's moduli which range between about 0.3 - 0.6 X 106 psi.

Tables 3.5.2-4 contain effective elastic properties of various fiber
reinforced materials which have been computed on the basis of composite
cylinder assemblage (CCA) theory, using the properties listed in table 3.5.1.

* *
)" ET(+) and vT(_) have been underlined as

these may be the actual results for the composite cylinder assemblage model.

*
The effective properties GT

Figs. 3.5.3 - 3.5.8 show various plots of effective elastic properties
and also comparisons with experimental results. It is seen that E; shown in
fig. 3.5.3 varies to all practical considerations linearly with Vo This is due
to the fact that the third term in (3.5.96) is numerically insignificant in
comparison to the first two terms. Accordingly E; is excellently approximated
by (3.5.50). It will be shown in chaps. 3.6.-7 that this is true for any

fibrous geometry.
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Pig. 3.5.4 shows v;, (3.5.97) which is represented by a very flat
curve which can be approximated with fair accuracy by a straight line. It
will be seen in.chap. 3.7 that this feature of v:; is also common to general
fibrous materials.

Fig. 3.5.5 shows Gj; variation as given by (3.5.111}), together
with experimental results from {3.14] . It is seen that the experimental
results tend to be above the predicted values . It will be shown in chap. 3.7
that (3.5.111) is also a lower bound for GZ of a material of any fibrous
geometry. This,at least,is certainly verified by fig. 3.5.5.

Figs. 3.5.6-7 show bounds for E; which were computed by use of
(3.5.120), and also experimental results. It is seen that there is very good
agreement between theory and experiment. The experimental results in
fig. 3.5.7 definitely tend to favor the upper bound which may lend additional
credence to the previously stated conjecture that E;(+) is the actual result
for E; of the CCA model.

) *
Fig. 3.5.8 shows vT bounds. The lower bound has been emphasized

*
(thus E is the actual

T (+)

*
by a full curve since it is the actual result if GT(+)
result,

For additional numerical results for effective elastic properties the

reader is referred to 3.17 - 197 .
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3.5.4 Dilute Reinforcement

The problem to be considered here is that of uniaxially FRM when the
volume fraction of fibers is very small. We denote the fiber volume fraction

v2 by ¢ and assume that
2
c < <egc<x<l (3.5.121)

It should be realized at the outset that the case is not one of practical
interest since in FRM fiber volume fractions are generally of the order of
40 - 70%. However, the case is of importance as a check on expressions
for any fiber volume fractions and also the method used has its applications
in other cases as will be seen later, chap. 3.8.

The crucial assumption which makes analysis possible is that the fibers
do not interact. Mathematically this assumption can be expressed in the
following manner: Suppose that a dilutely reinforced cylindrical specimen
is subjected to homogeneous displacement or traction boundary conditions.
Then the state of stress and strain in any fiber can be computed with sufficient
accuracy from the problem of a homogeneous cylindrical specimen containing
one single fiber, when the cross section dimensions are infinitely larger
than the fiber cross section dimensions.

Suppose that the fibers are circular, with equal or unequal radii. We
start with analysis of the effective bulk modulus k* when the composite is
transversely isotropic or square symmetric. Without loss of generality we

may consider a cylindrical specimen of circular section with radius R,
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in which a circular fiber of radius 'a' is embedded concentrically. By
hypothesis

a<<R (3.5.122)
The boundary conditions are (3.5.59) at r = R and we realize that such a
problem has already been solved in par. 3.5.3 for the more general case
when the outer radius is not large with respect to a.

We now recall the result (3.4.123) and we realize that for k*
calculation it is only necessary to know E(Z)in the fibers. In cylindrical

coordinates and plane strain axial symmetry

@) _ 1 ((z>+€(2()9)=_1(__r_+ L)

2 €rr s 2

Introducing (3.5.75a) into the last expression we have
e '=B (3.5.123)

Now B2 is given by (3.5.78) for any ratio between inner and outer radii. In

the present case,because of (3.5.121),the quantity (a/R)2 can be neglected in

the denominator of (3.5.78). We then have in view of (3.5.123)

& 17% o 65124
kz + G1

2)

. 2) -
Since by (3.5.124) e( ) is a constant in any fiber, its average ¢ over all

fibers is also given by (3.5.120). Inserting the result into (3.4.123) we find

kl+G1
) ——— ¢ (3.5.125)

*
= + -
ko=ky+ky -k oy 7,
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The result (3.5.125) can also be directly obtained from the composite
*
cylinder assemblage result for k given by (3.5.91)." If in the latter

we set

(3.5.126)

vy = l-¢c

and expand the resulting expression as a power series in ¢, it is seen that

k.+G

16
c+....
+
ky*G)

K=k, + &y - k) (3.5.127)
Now if ¢ is as small as required by (3.5.116),all terms with c powers higher
than 1 can be neglected in (3.5.127) and k* reduces to (3.5.125). It should
however be noted that (3.5.125) is more general than a composite cylinder
assemblage result since in order to derive it the special geometrical construc-
tion by which a composite cylinder assemblage is obtained was not necessary.
It was only necessary to assume that there is no fiber interaction and therefore
(3.5.125) is valid for any sufficiently dilute fiber arrangement (as long as it
can be assumed to have the required macroscopic symmetry). Thus (3.5.125)
is also valid for dilute reinforcement by circular fibers of equal cross sections
and would in particular also apply to the cases of periodic hexagonal and
square arrays.
* *
Next we consider EA and vA . These can most easily be obtained

in the following manner: Since the composite cylinder assemblage results

*
(3.5.96 - 97) were obtained only from k as given by (3.5.91), and since we
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*
now know that for dilute reinforcement k can be obtained by truncation of
* * *
the ¢ power expansion of k after two terms, it follows that EA and \)A for

dilute reinforcement can be similarly obtained by retention of the first two

terms in their ¢ power expansions. The results are

2
4k G, (v, =-Vv.)

* _ 212 71
E El+[E2 E, + ——e lc (3.5.128)

2 1

. k, k4G

\_)A=\) + (v —\)1)- - .k +G1 c (3.5.129)

1 2 1

The method used to obtain k* for dilute reinforcement is directly
applicable to obtain GZ for the same case. We use the general result (3.4.124)
and the axial shear composite cylinder solution obtained in par. 3.5.4 for the
case of very small inner radius. It is seen that e (2)

12
the first of (3.5.33¢c). Now cp(z) in the fiber as given by (3.5.105b) can be

in the fiber, is given by

written
2) _
© = B2 x2
Therefore
@) _ 1
612 3 B2 (3.5.130)

For very small a/b (or a/R), B

(2)
12

, @S given by (3.5.106) reduces to a constant and

thus the average ¢ is also given by (3.5.130. Thus we have from (3.4.124)

G,-G
*
GA=G (1+2 2 1

1 G,7G, c) (3.5.131)




167

*

A as given by (3.5.111)

Again this result is directly obtainable from G
if (3.5.126) and (3.5.120) are used in these expressions.

An expression for the transverse shear modulus G; in the case of
dilute circular reinforcement can be similarly derived. We can introduce (3.5.120),

(3.5.126) into (3.5.111 - 114) and it is not difficult to show that they coincide

to give

2 (k. +G.)
) 1 71
1 k1+(k1+ZGl)GZ/G1

%

T

G Gl+(GZ -G c (3.5.132)
Alternatively, we may consider a circular cylinder of radius R in which
there is embedded concentrically a fiber of radius a, when R is much larger
thana. The cylinder's external surface is subjected to the transverse shearing
boundary conditions (3.4.13) and it is seen that this elasticity problem falls
into the general category of the first kind of boundary value problem discussed

in par. 3.5.1.

The problem may be solved in closed form, and it is found that the

(2) (*)

23 which is given by

only nonvanishing strain in the fiber is a uniform e

@) _ 2(k)*G)) 0 6.5.133)
23 k1+(k1+2G1)G2/G1 23
(*) The result (3.5.133) can be obtained on the basis of a solution for a

composite cylinder under transverse shearing displacement boundary conditions
which is given in par. 3.6.4, by specializing the solution to the case b > >a.
Alternatively, (3.5.133) may be obtained by plane strain version of methods
given in [3.20]. See also [3.21].
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2)

Since ¢ is uniform in any fiber it is also equal to ¢

23
2)
23

*
(3.5.132) is GT for any sufficiently dilute reinforcement of circular fibers.

(2)

23 Thus (3.5.133)

may be used for ¢ in the general result (3.4.125). When this is done,

By the transverse isotropy -- isotropy analogies (par. 3.5.1), all the
dilute reinforcement results obtained are also valid for transversely isotropic
phases, the interpretation of phase moduli being just as in the case of
composite cylinder assemblages. To recapitulate, k becomes the phase
transverse bulk modulus in all expressions, G becomes the phase axial shear
modulus in (3.5.131) and the transverse shear modulus in all others, and
E and v become axial phase Young's modulus and Poisson's ratio, respectively.

This completes the analysis of effective elastic properties of trans-
versely isotropic materials with dilute reinforcement of circular fibers. It
should be noted that for a square symmetric material (3.5.132) represents the
transverse shear modulus G'T*, (3.4. 56),and an additional related‘calculation
is necessary to find the other transverse shear modulus. It should also be
mentioned that all of the dilute reinforcement results can be obtained by use
of proper homogeneous traction boundary conditions inétead of the more con-
venient homogeneous displacement boundary conditions which have been
employed.

Dilute reinforcement results can also be obtained for elliptical fibers
since the necessary boundary value problem for one elliptical fiber in an
infinite matrix can be solved. It is known that under homogeneous boundary

conditions at infinity the strains in the elliptical fiber are uniform. Thus
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all the results would have the same general form as for circular fibers, i.e.

*
M =M1(1 +AMc) (3.5.134)

*
where M is some effective modulus, M, its matrix counterpart and AM is

1
some number depending upon phase properties and ellipse geometry (ratio
between minor and major axes).

It should be noted that the orientation of the ellipses would specify
the macroscopic symmetry of the FRM. Thus if all fiber sections are identical,
equal orientation of all ellipses would produce an orthotropic material, while
random orientation would produce a transversely isotropic material. Although
the analysis for elliptical fibers is a relatively straightforward affair, the
writer is not aware of such results in the literature.

As is seen from the results obtained, all dilute reinforcement results
depend only upon phase properties and phase volume fractions. The reason
for this is the basic assumption of non-interaction between the fibers which
implies that for any fiber placement the states of stress and strain in the
fibers do not depend upon their position.

An important interpretation of the dilute reinforcement results is as
follows. Suppose that in a FRM the fibers are all circular with volume fraction ¢
which is not small. Let M* be any effective modulus. Presumably sucha -

modulus could be expanded in a power series in ¢, thus

*
M =M_l (1+Alc+Azcz+... ) (3.5.135)
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The value of Al is now known from the previous results and it is seen
that it is geometry independent. However, the other coefficients in the ex-
pansion are in general geometry dependent. (An exception are the composite
cylinder assemblage results of par. 3.5.4). Yet, it is seen that for all
different fiber placements the results for dilute reinforcement reduce to one
and the same expression.

It is also seen that the coefficient Al in (3.5.131) can be interpreted as

*

1 dm
Al"Ml dc

c=0
thus giving the slope of the M* versus ¢ curve at the origin.

Recently Chow and Hermans [3.46] have attempted to compute the
second ccefficient, Az in the expansion (3.5.135) for EEM of unixial FRM
with circular fibers, by a method of "reflection."”

It should be emphasized that, unlike Al, the coefficient AZ will in

general depend on the detailed arrangement of circular fibers, while in

the analysis given in [3.46] it depends only on the volume fractions.

If the A2 computed in |3.46.] were indeed rigorous universal results

they would have to be the same as the A2 found by expansion of the rigorous

composite cylinder assemblage EEM, which were given in par. 3.5.3, as

power series in vz =c.
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Comparison of the two sets of A, shows no agreement whatsoever,

2

the A2 predicted in [3.46] being very much smaller than the ones obtained
from the composite cylinder assemblage expressions. It is therefore

concluded that the A2 obtained in [3.46] are not of universal validity and

it would appear that the results should be considered as approximations.

3.55 Nﬁmerical Analysis

Numerical analysis of internal fields in FRM is carried out by
numerical solution of the elasticity equations, subject to appropriate
boundary conditions, with the aid of electronic computers. Such analyses
have mostly been limited to the cases of periodic rectangular, square and
—hexagonal arrays, examples of which have been shown in figs. (2.1.4-6) .
Because of the periodic geometry it is possible to define repeating elements
in which, by symmetry , the stress and strain fields are identical. Such

elements are in the present cases the RVE of the composite.
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Appropriate repeating elements for rectangular , square and hexagonal
arrays, respectively, of identical circular fibers are shown in fig. 3.5.9 .
Similar repeating elements can, of course, be constructed when the (identical)
fibers have other shapes which must, however, be properly symmetric. For
rectangular and square arrays the fiber section must have X, and X, axes of
symmetry. For hexagonal arrays the fiber section must have three axes of
symmetry, equally spaced at 1200.

The boundary conditions on a repeating element are found by symmetry
considerations, as will be explained for a subsequent example. It should be
borne in mind that the analysis for a repeating element does not apply for
elements which are situated close to the bounding surface of the composite.
It is thus seen that a.lso in the present cases there is a boundary layer
(compare; fundamental postulate of theory of elasticity of heterogeneous
media, par. 3.2.2) which can be disregarded for a body which contains a
very large number of fibers.

*

*
2 ET

and the associated internal fields of a square array of identical circular fibers,

We consider as an illustrative example the computation of E

fig. 2.1.4. For convenience we choose a cylindrical fiber reinforced specimen
of square section with side 2D, which contains a square array of many fibers.
Appropriate cylinder boundary conditions are given by (3.4.311) . In the present
case these assume the form: no shear stresses on the entire cylinder surface,

zZero 011 stress on cylinders terminal sections and
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Opp Dy %5) = %2 =%
(3.5.136)

+ =
033 (XZ' +D)=0

Consider now the repeating element, fig. (3.5.9b) . It is clear from
the loading and from the geometry that the repeating element is bounded by
four axes of symmetry. On such an axis of symmetry the shear stresses must
vanish and after deformation the axis remains a parallel straight line.
Consequently, the following boundary conditions are valid for any repeating
element, apart from immaterial rigid body displacements

u2'3+u312=0 X, orx3=0,d @)

u, (O,x3)=0, uz(d,x3)=6 o) (3.5.137)

2

u, (xz,O) =0, u3(xz,d) =6 (c)

3

Condition (@) comes from

0(1) = G1 (u

() m L0

2,3 3,2

d® o W@ L@

23 2 M2,3 7 %3,2

which apply according to whether the boundary is composed of phase 1 (matrix)
or phase 2 (fiber). Conditions (b), (c) involve the presently unknown

constants 62, 63.
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In addition, the terminal sections of the repeating element are free of
load. The boundary value problem is thus of the nature of the first kind of
boundary value problem discussed in par. 3.5.1, i.e. plane strain with
axial strain. The governing differential equations are given by (3.5.14)
and the interface conditions at fiber-matrix interface by (3.5.15) and (3.5.19).

It is to be carefully noted that stresses have to be determined from (3.5.11 - 12),
which requires determination of the unknown axial strain e.c.ll by means of

(3.5.22), with the left side of this equation vanishing in the present case.

It is not permissible to assume plane strain conditions, which would make

It is convenient to consider instead of (3.5.137) the two separate

3
sets of boundary conditions for displacement fields 121OL and ua

2 2 _
u2,3+u3'2—0 x2 orx3 0,d
2 0,x)=0, & @ x)=1 (3.5.138)
5 (0%, . u2 ’XS) .5.
2 _ 2 ~
U, (xz, 0) =0, U, (xz,d) =0
343 =0 orx. =0,d
Y9.,3 " %32 Xo 00 X3 = 5y
S 0.x)=0, S @, x)=0 3.5.139
uz L4 3 ! U-Z ’ 3 (05- )
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2 3 , .
Otherwise, each of ua, uOL must satisfy the same differential equations
interface continuity and terminal section conditions as the previously considered
ua. Then by superposition the solution for boundary conditions (3.5.137) is

given by

) +8 3 ., x.) (3.5.140)

2
=§
u, by %)) Uy Gys xg) + 00 () %,

2

It is seen that the boundary conditions (3.5.138 - 139) actually define
identical problems, one being obtained from the other by rotation. Thus it

follows that

)

o g r Xg) = g 3

The problem of the repeating element under boundary conditions
(3.5.138 - 139) is now solved numerically. Inthis respect it is mentioned
that Pickett |3.6] employed a stress formulation of such problems since
this makes it possible to use Airy stress functions and to make use of general
two dimensional solutions of plane elasticity problems. Displacements are
then expressed in form of integrals of stress function derivatives and continuity
conditions at fiber-matrix interface and boundary conditions are satisfied at a
finite set of points. Adams, Doner and Thomas [3.22 ]and others used a
displacement formulation and replaced the elasticity differential equations
by finite difference equations. Continuity and boundary conditions were

again pointwise satisfied.
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2 3 .
Once the displacements u, and U, have been found, numerically, the
. .2 3 2 3 )
associated strains ¢ and e and stresses ¢ _ and ¢ are obtained
aB aB af aB

by numerical differentiation. It follows from (3.5.139) that the strains and

stresses in the repeating element which is subjected to (3.5.137) are given by

2 3
=3 3
a8 2 €a5+ 3 €OLB @)
(3.5.141)
o =85 % 44 3 (b)

Since the strains and stresses in all repeating elements are the same (except
in those near the boundary) the average strains and stresses in any repeating
element are the same as in the whole fiber reinforced cylinder. By the average
stress theorem o, and © are given by the right side of (3.5.136). It thus

22 33
follows from (3.5.141b) that

2 5
8 8 = =
2 %2 7% 999 T 9y 7O
(3.5.142)
23
6 o+ 68 =0

Equs. (3.5.142) serve to determine the unknown constants 62 ' 53 in
terms of the averages of the numerically known stresses in the repeating
element. The strains are now determined by (3.5.141a). The effective

* *
Young's modulus ET and the effective transverse Poisson's ratio vT are

then given by
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(o]
*
E = —
T 3
22
_ (3.5.143)
€
V¥ = - 33
T ¢
22

*
A somewhat simplified computation of ET may be carried out by
subjecting the square section fiber reinforced specimen to the following

boundary conditions

u, 8)=0
T, ) = o°22 n, (3.5.144)
T, S)y=0

These boundary conditions imply that the specimen is in plane strain, there

is no shear on the boundary and conditions (3.5.136) remain valid. The
preceding description of numerical analysis remains the same in the present
case but E*T and v’; are no longer given by (3.5.143). To see this we consider
the states of average stress and strain associated with (3.5.144). Since the

specimen is in a state of plane strain it follows from the analysis in par. 3.5.1

that ell = 0 throughout the specimen and so its average also vanishes.

Furthermore, from (3.5.144) and the average stress theorem, 522 = 00, 033 =0.

Inserting these results into the effective strain-stress relations (3.4.78) we obtain



178

0=0y) " Va %,
*
A
- _ A - 1 -
€2 - = o1 * o %2
A T
* *
%33 = %11 7 - %2
A T
from which it follows that
L2
- vA 1 fo)
€2 (" = +E*_) %22
A T
(3.5.145)
*2 *
- YA V7 o
= - +
€33 ( = = ) 922
A T

It is seen that once ;ZZ and 533 have been determined numerically it is

* * * *
necessary to know VA and EA in order to find ET and VT . Now it has

been mentioned in par. 3.5.2, and it will be later shown, that to a high

degree of accuracy

e

E =E, v, +E_ v

*
A 11 2 2

for any fiber reinforced material. Also, with lesser accuracy

*
~ +
\)A \)l Vl \)2 v2
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Since in the parenthesis in the right sides of (3.5.145) the first terms are
much smaller than the second terms the above approximations may be used
with high accuracy.

Other EEM may be computed by related methods. For numerical
results and description of methods the reader is referred to refs. (3.6] ,
[3.22 - 24].

It is of great interest to compare numerical values of EEM as
predicted by the composite cylinder assemblage analysis and by numerical
analysis of square and hexagonal arrays of circular fibers. Table 3.5 lists
numerical results given in [3.6] for effective elastic properties of an
hexagonal array of identical circular fibers, fig. 2.1.6. The phase properties
represent E-Glass fibers and epoxy matrix. The hexagonal array results
are denoted HA. Also listed are composite cylindef assemblage results
which are denoted CCA. It is seen that in most cases the numerical values
are so close that they are indistinguishable for all practical purposes.

As a further comparison numerical results for square arrays of identical
circular fibers, fig. 2.1.5, which were obtained in 3. 19] have been plotted
together with CCA results for same phase properties. Fig. 3.5. 10 shows
such plots for transverse Young's modulus E; , Where E*T(+) has been used
as CCA result. Also shown are experimental results from [3.19] . 1t is
seen that the two cufves are quite close up to v2 = 0.7 and both agree

reasonably well with the experimental results.
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It should be noted that the square array plot terminates at
vz =m/4 = 0.785, this being the maximum possible fiber packing for a
square array. It is also to be noted that in FRM the fiber volume fraction
can usually not exceed 0.7 because of manufacturing difficulties.

Fig. 3.5.11 shows a similar comparison for GZ . Again, it is seen
that for a similar range of fiber volume fraction the two curves are quite
close. Experimental results for this case have been given in [3.19].

As they are extremely scattered they are considered unreliable and are there-
fore not reproduced.

The previous comparisons between numerical and analytical results
lead to the following conclusions: both kinds of results are numerically
extremely close for hexagonal arrays and quite close for square arrays.
Comparison of all results with experimental data shows about the same kind
of agreement. However, the composite cylinder assemblage results have
an overwhelming advantage in that they are simple closed form expressions
which can be evaluated in very short time with a slide rule. In contrast
numerical regular array analyses must be performed by computers with

tedious programming and at great expense.
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APPENDIX 1

Isotropy - Transverse Isotropy Analogies for Effective Elastic Moduli

We consider two fibrous or fiber reinforced specimens of entirely
identical phase geometry. In the first specimen the phases are isotropic,
while in the second the phases are transversely isotropic about an axis in
cylinder generator diraction.

Let the specimens be macroscopically transversely isotropic. We

h ba h k* * * * *
i v_.
choose as sic EEM the set ' GT' GA' EA and A

* *
these are denoted ik . iGT etc. while for transversely isotropic phase,

For isotropic phaseS

* *
they are d k ,- .
y enoted L tGI' etc
* *
Consider first the pair k and GT . It has bean seen in paragraph
3.4.3, equs. (3.4.68 - 70) that the computation of these EEM is based on a
plane strain problem. Hence the first isotropy-transverse isotropy analogy
as expressed by (3.5.25) applies at once to these EEM. Thus
* *
(@) If expressions for ik and iGT are known for isotropic phases, expressions
* *
for tk and tGT are obtained by use of the replacement scheme (3.5.25) in
* *
the expressions for ik and iGT .
*
Next consider GA . Its computation is defined by the anti-plane
problem discussed in paragraph 3.5.1 and hence the second isotropy-transverse

isotropy analogy applies. Thus
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* *
(b) 1If iGA is known for isotropic phases tGA is obtained by replacement of
*
phase shear moduli in iGA by corresponding axial phase shear moduli.

* *
Finally, consider E. and Vv

A A Here the relations (3.4.117 - 118)

can be used to advantage since these were explicitly derived for transversely
isotropic phases.

These relations are here rewritten as follows

2
Bz WOV [T ] "
=E + —_— -
t A A (i _L 2 [ K tk*J
kz k1
—\) -
* _ = A2 Al 1 1
th vA+ 11 k* ™ (2)
kz kl t

Now since tk* can be simply obtained from analogy @), tE:\ and t\);
are given for transversély isotropic phases by (1), (2).

It should be noted that everything is simply generalized to the case
of macroscopic square symmetry with trans versely isotropic phases. In that
case there is an additional effective shear modulus G,'; , (3.4.56), which

is also defined by a plane strain problem and thus obeys the analogy (@).

Everything else remains the same.
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APPENDIX 2

Internal Stresses

The general problem of the determination of internal stresses in a
composite requires the complete solution of the elasticity problem for the
composite materialt as described in par. 3.2.3. It has been shown in par. 3.5 .1
that for a fiber remforced material with continuous fibers the problem can be
considerably simplif1ed by the establishment of two d1mensmna1 formulatlon.
Only in some very special cases, par. 3.5.2, is it possible to determine
stresses for fibers of arbitrary cross sections. In general, the internal stresses
depend upon the detailed internal geometry i.e. fiber cross section shapes,
fiber positions, and therefore even the two dimensional formulation becomes
extremely difficult, Consequently, stress analysis must be limited to simple
geometries such as regular arrays of identical circular or elliptical fibers and
the composite cylinder assemblage model.

It should , however , be borne in mind that the reliability of internal
stress computation for such simple models of fiber reinforced materials is quite
problematic from a practical point of view. There are inevitably geometrical
discrepénciés between é real fiber reinforced material and the simplified model
which is being analyzed, e.g. broken fibers, matrix-fiber interface separation.
Such local imperfections may lead to important local stress concentrations
whose determination is not only extremely difficult but in a sense impossible,

since no precise description of the imperfections is generally available.
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It may of course be argued that the role of such imperfections should
also be considered in EEM analysis but there they are fortunately of minor
importance, for EEM computation is based on determination of field averages.
While local stress or strain discrépancies may be severe, their contributions
to their averages appear to be insignificant.

A (perhaps exaggerated) analogy which comes to mind is the kinetic
theory of gases. While relations between macroscopic variables such as
pressure, temperature, entropy etc. can be accurately predicted, it is
impossible to determine the detailed motion of a single molecule.

Numerical analyses of internal stress fields for hexagonal,
square and rectangular arrays of identical circular or elliptical fibers have
been given in e.g. [3.6], [3.22—24] for isotropic fibers and matrix.
Recently a number of papers have been concemed with isolated aspects of
extension of stress analysis to the case of transversely isotropic phases.
The problem of such phase anisotropy has been resolved in general fashion
in par. 3.5.1, where a complete formulation for transversely isotropic phases
has been given. It is recalled that such formulation is in no sense more
difficult than the isotropic phase formulation.

Here we shall be concerned with internal stresses in composite
cylinder asserhblages, with transversely isotropic fibers and matrix, which
will be given by simple analytical expressions. The reason for the simplicity
of the results is that for boundary conditions which lead to exact closed

* * * * * *
expressions for EEM, i.e. k , EA' Var GA’ 4 and n , the internal fields
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in the composite cylinder assemblage are exactly known and are merely the
internal fields in any composite cylinder under the same boundary conditions.
The situation is different and complicated for boundary conditions associated
with determination of GTI and E*T .
We commence the composite cylinder assemblage stress analysis
with plane isotropic straining as given by (3.4.59). In that event the stress
and displacement fields in any composite cylinder, fig. 3.5.1, are given by
(3.5.74-75). The boundary conditions (3 .5.71¢c), (3.5.76~77) easily lead
to the determination of the‘constants Bl' C1 and B‘Z and thus all stresses

become known.

Resulting important matrix and fiber stresses are

oamar) ~ 06 @ =27, 3G )'f, ++G(kl v, ©
- (max) o B =2 @)
ng) =267 <k2+G1;<2vl+ f %k_1+G1) v ®3)
&) k Gy @

zz —ze‘ez(k+G)v +(k+G)v
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%*
Here the usual notation 1 - matrix, 2 - fibers has been adopted, k is given

(1) and 0(2) are
zz

by (3.5.91), Gl is transverse shear modulus GTl and o v

constant throughout their phase regions. In the case of isotropic phases
the phase moduli in (1~4) are given by (3.4.89).
Stress concentration factors in the matrix may be defined by division
of stresses by their corresponding values in the absence of fibers. Since
in the absence of fibers the stresses in any cylinder, and also in the whole

specimen, are given by

e = o =24 ¢°
Grr 099 Zkl € czz 1 (5)
We have from (1-3) and (5)
s @) = k) k1 + Gy )
+
86 ky k4G v, + k,*G ) v,
(1) ¥
st ) = K- (7)
Ir k
1
N R " k) +Gy @)
zz zl (kZ+G1) v, + (k1+Gl) v,

where S denotes stress concentration factor.
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If the fiber reinforced specimen is subjected to the plane isotropic
stressing boundary conditions (3.4.62) then the stresses can be immediately

obtained from (1-4) by the replacement

(o] O'O
e -~ )

*
where k  is given (3.5.91). It follows that all stress concentration factors

(6-8) remain the same.

Next we consider the case of uniaxial straining of a cylindrical
specimen in fiber direction with no load on the lateral boundary of the specimen,
as expressed by (3.4.37). In that event a typical composite cylinder is in
axially symmetric state and is subjected to the boundary conditions

Uy =u Se x) e oz @)

(10)

o ®)=0 (b)
IT

It is seen that the problem is one of plane strain with uniform axial strain,
whose general formulation was given in par. 3.5.1., Elementary considerations

lead to the results
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(1) ez @)

Z

(1) _
s —B1r+Cl/r : (b)
o(:r) =4, e + 2k, B, = 2G, 131/r2 (c) (1)
023, =4 ¢ + 2k, B, + 2G, Bl/rz d)
0(zl)z =ny e+ 24, By (e)

@) _ %z @)

Z )

@)_
u’= Bzr (b)

(12)

o(fr)= 0(923 =1, e + 2k, B, )
c(zzz) =n, e + 24, B @)

while all other displacements and stresses vanish.

The constants Bl' C 1 and B2 are easily found from the conditions
1

o ) = 0 @)
Ir

2P @) = 0@ g )  (13)
r r
2)

Ir

@) ()

ug’(a) =u
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Important resulting stresses are

oD - O [1 +4G1 Vl(Vl‘Vz) v, ] )
zZ 1 EI vy Gl/k1 +v1 G17k2 + 1
vV =v.)v
@) (1) o (z 1771
c’'@)=0""@) =2¢ G (15)
Ir Ic 1 vy Glilzl tv, Gl/k2 +1
(v, =v )1 +v,)
"gé @ =2¢G) 3 G/}( +z;r G/13~+1 (16)
2 71771 1712
y 4G v.v. =v,)v
c(£7'z)=€c>"':z[lJr o e i ] (7
" T A TS T [

Here E is axial Young's modulus , v is axial Poisson's ratio and G

1) . )

is transverse shear modulus. The stresses Gzz and ozz are constant through-
out their phase regions. It is easily seen that computation of Ezz from (14), |
(17) and division by ¢® leads to E: of the composite cylinder assemblage
as given by (3.5.96).

It is recalled that for the case vZ = \)1 a general internal stress solution
for arbitrary cylindrical geometry was given in par. 3.5.2, equs. (3.5.57).
Indeed, it is seen that for v, = V. the stresses (14-17) reduce to the elementary

2 1

results (3.5.57). It is of interest to compare the numerical values of (14-17)
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for vz = Vl with those predicted by (3.5.57). Taking as an example an E-Glass-

Epoxy FRM with elastic properties as listed in table 3. 1, for the case vy T

v, =0.5, we have from (14-17)

oM = 1.0334 L
zz 1

5% = 0.9991 ¢° E
zZ2z 2

@)
—— =~ 0.046
0

2z

1
It is seen that the axial stresses c(z)z ' cézz) are very close to the results

(3.5.57a) and it may be therefore surmised that (3.5.57a) should closely

approximate the axial stresses in any FRM with continuous fibers.

Finally, it is noted that if the terminal sections of the fiber reinforced
(e]
specimen are loaded by uniform stress 011 then the stresses corresponding

to (14-17) are found by the replacement

e - o (18)
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*
where EA is given by (3.5.96).

Next we consider the case of axial shearing with boundary conditions

u, () = u, (8) = e°1 x uy(8) =0 (19)

122

The problem of a typical composite cylinder in the assemblage in this case

is described by (3.5.102-105) where in view of (3.5.34)

(m)

(m) _ BrE (m) 1 352
crz Gm or Gz G'm r 06 20)
m=1,2
A simple calculation yields
(1) o v+ 1+ (-y-l)a /r
c ' =2¢ G cos 8 (@)
rz 12 YV, + 1-0'v2
2,2
(1) y+1l-(-1)a"/r
Oox =~ 2€, G TRSER sin 8 )
G cos @
(2) 2 (c) 21)
I‘Z 'yvl + 1+‘VZ
(2) 4@ ].ZGZ sin® Q@
oz 'yvl + 1"‘Vz

Y =G2/G1 (e)
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and all other stresses vanish. The resultant shear stress T at any point

is given by

o 2y
- 2 533
Tmax 12 71 Yv1+l+v2 e2)
while throughout the fiber
o)
) 4¢ 12 Gl 23)
yvl+l+ V2
In the absence of fibers the only surviving stress is
0., =1=2¢2. G (24)
12 €12 71

Therefore the maximum matrix shear stress concentration is from (22) and (24)

=2y
s'r yv,tl+v @5)
1 2
It should be recalled that G 1 G2 are axial shear moduli GAl' GAZ for

transversely isotropic phases.
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If instead of (19) the specimen is subjected to axial shearing

Tl(s) 019 Py TZ(S) Oy My T3(S) 0 (26)

then the stresses are given by (21) with the replacement

(o]
o ° 12
€y ~ 27)
N Ye
A

where G: is given by (3.5.111).

There remains the difficult problem of transverse shearing. An
exact solution for internal stresses in the composite cyiinder assemblage
is not available in this case. On the other hand internal fields which lead to
lower and upper bounds on G;‘ have been constructed. As has been indicated
in par. 3.5.3 the upper bound on G; , (3.5.113), may actually be the exact
result for this EEM in the event that fibers are stiffer than matrix. If this
conjecture is correct, the admissible displacements and associated stress
fields on which the upper bound construction is based are the actual displace-
ment and stress fields in the composite cylinder assemblage. Consequently,
it is not unreasonable to regard these fie_lds as approximations, at least.

The stress fields are the ones produced in any composite cylinder by the
boundary conditions (3.4J3) , with traction and displacement continuity satis-
fied at fiber-matrix interface. A solution for the displacement fields is given
in par. (3.6.4), equs. (3.6.85-88), Computation of the associated stresses
is an easy matter but the resulting expressions are complicated. Suffice it

here to give the fiber-matrix interface stresses crr and o.r 0
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c (@,8) =2G A5e sin 26
Ir

2

3 .

3-2\)2

' € €
= +
ch (a,e) 2G2 (As AG ) cos 28

where Ase R A6e are constants to be found by solution of the six=by-six

system of equations (3.6.87 .




195

3.6 BOUNDING METHODS FOR EFFECTIVE EIASTIC MODULI: CLASSICAL

EXTREMUM PRINCIPLES

3.6.1 Motivation

In the preceding chapter we have been concerned with computation
of EEM of FM and FRM by direct rigorous methods . In view of the extreme
difficulty of the problem it is not surprising that results coﬁld be obtained
only in special circumstances. Sblutions were obtained either for special
relations between phase moduli, par. 3.5 .2, or for special geometries,
pars. 3.5.3-5.

In the present and next chapter we shall develop variational
bounding methods for EEM of FM and FRM. Such methods are of crucial
importance since they enable us to estimate EEM by bracketing them
between lower and upper bounds in cases where direct computation is
impossible or extremelyv laborious and difficult.

| Bounding methods will be applied in two different classes of
problems. In the.f.irst class the phase geometry is only partially known.
Direct computation of EEM is then impossible , not just because of mathe-
matical difficulty but because the problem is then indeterminate. It is,
however, possible to obtain bounds on EEM in terms of the available

information. The most important example for this is a FM in which only

phase moduli and phase volume fractions are known.
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In the second class of problems the phase geometry is completely
specified but direct computation is difficult. It has been seen that even
such simple geometries as square and hexagonal arrays of identical
circular fibers could only be treated by numerical analysis with the aid of
computers. In such cases it is also possible to construct simple closed
form bounds which provide valuable information about the magnitude of the
EEM.

It happens at times that bounds obtained are so far apart that
they are useless from a practical point of view. It happens at other times
that bounds are so close together that they determine EEM to all practical

purposes.

3.6.2 Principles of Minimum Potential Energy and Minimum Complementary

Energy

Derivations of elasticity extremum principles may be found in many
textbooks (see e.g. Fung [3.25]). Usually the principles are derived by
methods of the calculus of variations, for homogeneous or continuously
non-homogeﬁeous bodies. The present derivation of the principles departs
from conventional derivations in that (@) the principles are derived for
heterogeneous bodies; (b) finite differences are used instead of variations;
(c) the principles are constructed in a straightforward manner, starting out

with the governing elasticity equations.
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We consider a multi-phase elastic body whose phases are homogene -~
ous and anisotropic. For present purposes we need only consider the case |
of vanishing body forces and we note in passing that all theorems which
will be derived may be easily generalized to the case of non-vanishing
body forces.

Suppose that the boundary conditions on the external surface are

u, (S) = u? on Su (@)

(3.6.1)

)
_Cijkiuk,lnj_Ti onST )

T, 6)

Other types of boundary conditions will be considered further below. We
choose to formulate the problem in terms of displacements, so the governing

equations in the mth phase are of form (3.2.27),

m @ |
ijkluk,lj 0 in Rm (3.6.2)

Furthermore, continuity conditions of type (3.2.28) must be satisfied at all

interfaces. These are written here in the form

u, @)

continuous on Si (3.6.3)

_ - nt.
T % T Chik % Y ()

where Sint denotes all interface surfaces. The unique solution of this

problem is denoted

u, =u', inR (3.6.4)



198

We now define a so-called admissible displacement field Ei which

is conttnuous throughout the phases and also satisfies the following requirements

:. = uo, on S @)
i i u
(3.6.5)
U, continuous on S, (b)
1 int.

where uciJ is the same as in (3.6.1) . We define the difference field Aui by

—
w
(<)}
cn

~—

Au = u, - u
1 1 1

It follows from (3.6.1a), (3.6.5a) and from (3.6.3a), (3.6.5b), respectively

that
Au =0 on S @)
i u
(3.6.7))
Aui continuous on Sint. (b)
We also denote Aui in a form similar to (3.6.4)
Ay, = ay™ in R (3.6.8)

i i m

Now multiply (3.6.2) by Aui(m) and integrate over the phase region

(m) (m) (m) -
1)k1 “ k,lj bu dv =0
Vo

- (m) (m) (m) c (m) g, (m)
,/[ Cik1Y,1 Ay ey T O Uy 1 Buy v

(m)  (m) m) (m) (m) (m)
Cijkl uk'1 A'Si njd f kl ui,jdv

S \Y%
m m
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where Sm is the surface enclosing Vm and the divergence theorem has been

used. Now

- (m)  (m) (m) .o _
/Cijkluk,li Bu dv=2% /Cijkl uy g duy v =0

v v
m
(m) (m) , (m) (m) _(m) (m)
- A - A
b /Cijkl u puyingds - R G Yy uj,y v
S v
m m
= 3 fT_(m)Au_(m)ds—z /cf‘_“) u(,m)Au(,m)_ av (3.6.9)
m i i m ijkl i i,j
S v
m m

The surface integrals in (3.6.9) are taken twice over the interfaces and
once over the external surface S. The interface integrals all cancel because
of T(im) and Au(rin) continuity at the interfaces (see discussion in par. 3.1.3
after (3.1.47)). Therefore (3.6.9) assumes the form

_ (m) (m) N (m) Sy o= )
_/Ti Bu, dS - 2 fcijkl '35 B ¥ R

S Vi

which in view of (3.6.1b) and (3.6.7a) can be written as

) _ (m) (m) , (m) . _
fTiAuidS r%/cijkl uk,lAui,jdV 0 (3.6.10)
S \'

T m

Now consider the integral

=z wedv-/Tf’u_ as @)

(3.6.11)
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1
wé==c¢c
m 2

(m) _(m) (m)

(m) (m) (m)
ijkl %i,5 “k,1 ¢

1
2 Cijk1 ¢4 ki ()

€ . .
where u, is the elasticity solution of the problem and Wm is the strain energy

density of the mth phase. The expression (3.6.11) is traditionally known

as the potential energy.

If the actual u, in (3.6.11) is replaced by the admissible Ei we have

U an/Wmdv fTiuidS @)

Vv S

m T (3.6.12)
~¢ 1 (m) ~(m) ~@m)_ 1 (m) ~(m)~(m)
W™ 2 Cijk1Yi,; k1 2C5k1 %y Sk @

where
~@m) _ 1 ~@m) ~m)
-1 .6.1

TR AR ©:6.13)

The expression (3.6.12) is here called the Ppotential energy functional.

In view of (3.6.6) the difference between (3.6.12) and (3.6.11) can

be written in the form

~ (1) (2)
- =A -
UP U,P UP A UP + A Up @)
M. _« (m) (m) , (m) o
I A - = . .
A Up =% ci]_kluk’1 ui’jdv TiAui ds=0(b) (3.6.14)
v Sp
) =g_~[ m) , (m) . (m)
A UL 75 Cijkl Aui,j Auk,ldv (©
Y
m
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Here (3.6.14b) vanishes because of (3.6.10). Note that in the (3.6.14b)

(m) _

volume integrals the symmetry Cijkl = Ck(llrz has been used to cancel the 1/2.

Now if we define

A e(m)= _ZL (Au(m)+ Au,(m,))

ij i,j j.d
then (3.6.14c) can be written as

@), -1 (m) (m) , (m)
A Up zznfcijklAem helyjdv (3.6.15)

2
\Y)
m
it follows from the positive definiteness property of elastic moduli, (3.2.9),
that the integrands in (3.6.15) are always positive and, therefore , all

integrals are positive. Therefore,

(@)

[A Y

U,=20 (3.6.16)
P .

(m)_ (m)

with equality occurring if and only if A eij = 0. But in that event Au i
is at most a rigid body motion; moreover, one and the same rigid body motion
for all phases, and thus of the whole body because of Aui interface continuity,

(3.6.7b). But becaus= of (3.6.7a) this rigid body motion must vanish.

Consequently, (3.6.16) can vanish only when Au(zn)= 0, in which event Ei is
the elasticity solution U, because of (3.6.6).

We now have from (3.6.14a,b) and (3.6.16)

U, =2 U (3.6.17)
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where equality occurs if and only if the admissible displacement happens to be
the true elasticity displacement.
The inequality (3.6.17) expresses the principle of minimum potential

energy which may be stated as: The potential energy is the absolute minimum

of the potential energy functional.

For purpose of future applications it is important to consider mixed
boundary conditions of different form than (3.6.1). Suppose that there are
prescribed on the entire boundary traction components in one or more directions
and displacement components in the remaining direction or directions. (But
never both a traction component and displacement component in the same

direction). Examples are

“1(S)=“1 TZ(S)=T2 T3(S)=T3 @)
(3.6.18)
i O —_—
Tl(S) =T ] uz (S) =u g ) = u% (b)

It is recalled that such mixed boundary conditions occur in formulations of
problems of computation of EEM, pars. 3.4.2-3.

The principle of minimum potential energy is easily adapted to this kind
of boundary conditions. The admissible displacement now has to satisfy only
those displacement component boundary conditions which are prescribed and the
surface integrals in (3.6.11-12) have to be considered only for those traction

components which are prescribed. Thus, for example, for (3.6. 18a) we have
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~ _.0
ul(S) =u, (@)
(3.6.19)
u, (S) . u, (S) arbitrary (b)
- e _ 0 o
UP % f Wm dv f(I‘z u2 +T3 u3)dS @)
\Y) S
m
(3.6.20)
~ = ~_ € O ~ mo ~ \3 .
UP I)% /Wm av /‘G:ZUZ"'.L:;U.SIUS {b)
\Y S
m

Next we consider the important special case of displacements
prescribed over the entire surface S (ST =0 in (3.6.1) ). Inthat event the
surface integrals in (3.6.11) and (3.6.12) vanish. Therefore, (3.6.11 - 12)

can be written in the forms

Ue=§]fWI; av @)
v
m

(3.6.21)

~€= ~e
T Iznfwmclv (b)
\T

Now U° is the strain energy and U°® is called the strain energy functional
and the theorem becomes:

Te < y€ (3.6.22)
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where again equality occurs if and only if the admissible displacement is the
true elasticity displacement.

The statement (3.6.22) may be called the principle of minimum strain

energy. Inwords: Fora body with displacements prescribed over its entire

surface the strain energy is the absolute minimum of the strain energy functional.

We now proceed to derive another class of extremum principles which
involve admissible stress fields. We consider again a heterogeneous body
consisting of any number of anisotropic phases, which is subjected to the
boundary conditions (3.6.1). The continuity conditions are still (3.6.3).

It is desired to formulate the boundary value problem in terms of stresses.

We have inthe mth phase

(m) _
%, T 0 @)

(3.6.23)

m) (m) _

(m) (m)
ijkl =~ kl ) (b)

REROR
2 i j 1J
The displacements may be eliminated from (3.6.23b) in the following
manner: since (3.6.23b) are strains they must satisfy the strain compatibility
equations which may thus be expressed in terms of stresses. Thus is obtained

a set of Beltrami-Michell equations for the anisotropic case. However, ui

are still present in (3.6.1a) and (3.6.3b). If Su =0 1in (3.6.1) the displacements
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disappear from the boundary conditions but not from the interface continuity
conditions. We thus conclude that a stress formulation is not useful for
actual solution of problems in heterogeneous bodies. (Recall a similar
situation in par. 3.5.1 for Airy stress function representation).

For present purposes we retain the formulation (3.6.23). We define

an admissible stress field
5 =3m R (3.6.24)

ij ij m

which satisfies the following requirements

~ -0

o) i nj L on ST @)

5 m in R (b) (3.6.25)
ljlj m

T = ?5,, n. continuous on S, (©

i ij ] int

We further define the difference

(m) _ ~ (m) _ _(m)

Ao, ) . (3.6.26)
ij ij ij
It follows from (3.6.23), (3.6.25) and (3.6.23a) that
At[‘i = Aoij nj =0 on ST @)
olm) =0 in R (b) (3.6.27)
ij,j m U

(c)

nt.
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Now multiply (3.6.23) by AO(J) and integrate over V . Then

(m) (m) , (m)_ (m) () -
_/(uklckl Ao ij AO yav=0
\Y
m

(m) _(m) , (m) (m)
Sijk1 %1 20y /

(3.6.28)

where the conversion to the surface integral is done by aid of the theorem

of virtual work. We now sum (3.6.28) over all phases.

argument the surface integrals over the interface cancel because of u(,m)

ATi(m) continuity. Thus
(m) (m), _(m)
N Ao - =
o ,/ Sijk1 %1 ° % 4V u, AT, d5 =0
v S
(m) (m) , (m) 0\
_ A
X /Sijkl % 849y 4V - Ju AT dS
v S
m u

where the last step is due to (3.6.1a) and (3.6.27a).

Now consider the expressions

_ o} 0
Uy ;’%/Wm dv fTiuidV @)
%
u

WO— 1S
m 2

(m) () 5{m)
ijkl kl (b)

Then by a previous

and

(3.6.29)
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~ _ ~ O _ ~ (@]

UC-Zme av /Tiuidv (c)
v S
m u

~0g _ 1 . (m)~ (m)~ (m)

W=7 %5k %5 (@)

The first integral is traditionally called the complementary energy and the

second is here called the complementary energy functional. The difference

between (3.6.29c,a) may be written in view of (3.6.27) in the form

~ (1) (2) .
- = =A + A
Ug UC AUC UC Ug @
1), _ (m) (m) (m) .. | 0 o —
A Uc z fsh,kl O Aoij dv ATiuidS 0 (b)
Vm Su
) 1 (m) (m) (m)
A R —
UC > rzn sijklekl Aoij dv (c)
V .
m

(m) =8 (m) has been used to cancel the L .

symmetry Sijkl klij 2

(2)
C

equality occurring if and only if Ao = 0. But in that event 0,

ij ij ij

which is the true elasticity stress field.

Here (3.6.30b) vanishes because of (3.6.28) . Note that in (3.6.30b) the

Now it follows from compliance positive definiteness, (3.2.10), that

(m) ~m) _ m)

(3.6.30)

AV UL 20 (3.6.31)
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We now have from (3.6.30a) and (3.6.31) that

U, =20 (3.6.32)

equality occurring if, and only if, the admissible stress field happens to be

the true elasticity stress field. Accordingly, the principle of minimum

complementary energy is stated as: The complementary energy is the

absolute minimum of the complementary energy functional.

Again we consider mixed boundary conditions of type (3.6.18). Now
we require that the admissible stress field satisfy only those traction
component conditions which are prescribed and in the surface integrals
in (3.6.29) we retain only the contributions of the displacement components

which are prescribed. Thus, for (3.6.18a) we have

| ?f n arbitrar ]
ij 'y y
5 n=71° o ons (3.6.33)
2j i 2
~ — m0
03}, nj T 3 )
| - o o
UC %/wmdv /Tlulds @)
v S
m

(3.6.34)

Uy nzlfw dv /Tlulds (b)
v S
m
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Next we consider the important special case when Su =0in (3.6.1),
i.e. tractions are prescribed over the entire surface S. In that event the

surface integrals in (3.6.29) vanish, and thus (3.6.29,c) reduce to

vl=5 fw° av @)
m m
v
m
(3.6.35)
T%¢ f\'/\”r" av )
m m
v
m

The first integral is the stress energy (this expression is here used instead
of the cumbersome expression: the strain energy in terms of stresses) and

(3.6.35b) is called the stress energy functional. The theorem becomes

~ Q0 (0}
U 21U (3.6.36)

equality occurring if, and only if, the admissible stress field is the true
elasticity stress field.

The result (3.6.36) may be called the principle of minimum stress energy.

It states that: The stress energy is the absolute minimum of the stress energy

functional.

3.6.3 Elementary Bounds for Fibrous Materials

In the present paragraph we shall exploit the previously derived extremum

principles to obtain lower and upper bounds for EEM of fibrous materials.
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The phase geometry of such materials is, by definition, irregular. The
information which is generally available to us about such a materiél is
phase elastic moduli, phase volume fractions, and the macroscopic elastic
symmetry of the material. The EEM bounds which will be derived are based
on this information alone. Thus, the present analysis is an example of

the utilization of partial information.

It is our first task to express elastic energies in terms of EEM
or EEC. This has already been done for a general macroscopically
anisotropic body in par. 3.3.2, equations (3.3.26 ~27). It is a very
easy matter to specialize these energy densities for various cases of macro-
scopic symmetry. It should, however, be noted that it is generally more

1 - - .
convenient to directly evaluate T Oij € i for a specific case instead of

* *
simplifying C ikl and S k1 in 3.3.26 -27).

For the macroscopically orthotropic material we have in view of
(3.4.1-2) and (3.4.5 -9)

e ¥ =2 * 2 * -9
2W'=C 1) €)1+ Chy €y +Cag €33
* - - * - -— *

+
12 €11 %2 T2C ;3 &y €35 T2C

+12C 13 €11 %33

* -2 * =2 * =2

+4C44 €19 +,4C55 €3 +4C66 €13

(3.6.37 )
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-2 -2 -2 *
o c o] 2v
-o_ 11 22 33 12 - =
S R P Y
By ) Es By
* * -2 -2 -2
2v 2v o g o
23 = = 13 = - 12 23 13
—E_* 022 0'33 E* 0'11 033+ C* + C* + C* (3.6.38)
2 44 55 66

For the transversely isotropic material it is most ¢onvenient to use

the effective or macroscopic counterparts of (3.4.86 ~ 87). We then have

2wWe=n"e% w2475 (e te )tk (e )
-hoegy €11 '%22 7 €33 (epp * €33
* - - 2 ) * -2 -2
+ - + .6.
Gy (egy = e33) T4G 65 +4G, (eg) ¥ ep;) (3.6.39)
6’2
- 11 1 -2 -2
= +
2W E* E* (022+033)
A T
* *
ZvA _ 2v_ 2v
T %11 %32 = %2 %3~ = 91 %3
A T
52
l — -
+ 23 (0'2 +o'2 ) (3.6.40)
o or 127013
T A
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*
For square symmetric materials,GT in the second terms from the end
*
in (3.6.3.3-4) must be replaced by G'T , equation (3.4.56).
For a statistically isotropic material the most convenient energy

densities are obtained by use of (3.4.95). Substituting these into

0. ¢.=3Ce+s, e, (3.6.41)
ij ij ij 1ij
we obtain
- ¢ - ) - —_
2Ws=9k e“ +2a e. e. (3.6.42)
ij i
-5 o2 ;i'g"
W = —— + —L 2 (3.6.43)
K 2G

Pinallylwe record for future use energy dens ities of homogeneous materials

Transverse isotropy

€ 2 2
= + +
2W ne 24 € (ezz e33) + k (e:22 + e33)
2 2 2 2
+ - + +
Gy (egy = &33) +4G; €5 +4G (e, + € }) (@)
(3.6.44)
o 2v
(o] 11 1 2 2 A
2W = +— (0, +0.,) - —— o (0. +0..)
EA ET 22 33 EA- 11" 22 33
2v 02

1
E. %2%3° G G, 12 13 b)
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Isotropy

€ 2 .

2W =9Kke +2CGe, e, @)
ij 1ij
(3.6.45)

o 02 si,si,
2 = — 4+ 2L 1
w K 2G (b)

where K is the three dimensional bulk modulus.

It is recalled that in the problem of computation of EEM or EEC of a
heterogeneous body the boundary conditions are homogeneous. Inthe present
method of establishment of bounds the admissible displacement and stress
fields will be chosen in homogeneous form throughout the body. This implies
that the admissible displacement fields are all linear and the admissible
stress fields are all constant i.e. fields as occur in homogeneous bodies
under homogeneous boundary conditions .

We begin with macroscopically orthotropic bodies and we start with

*
the shear moduli: As a first example we consider G 1 Dual formulations for

2°
this modulus are given by (3.4.10-12) and (3.4.19-21). 1Inthe first formulation
displacements are brescribed over the entire surface and, therefore, the
principle of minimum strain energy (3.6.22) is appropriate. An obvious
admissible displacement is

~ o ~ o =

u1=elzx2 u2=elzx1 u3—0 (3.6.486)

It is seen that (3.6.46) satisfies the boundary conditions and is continuous

everywhere and, therefore, also at phase interfaces.
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From (3.4.11a), (3.6.37), (3.6.21) and (3.4.4)

¢ « o’ (3.6.47)
U—ZGlzelzv .b.

For simplicity we first assume that the phases are isotropic. It follows from

(3.6.21b), (3.6.11b), (3.6.46) and (3.6.45a) that
2

~ o
= + .6.
Uc Z(Gl 2 G2 VZ) €19 \Y (3.6.48)

Inserting (3.6.47-48) into (3.6.22) we have

*

G

=G v+ GV,

To obtain a lower bound we use the formulation (3.4.19-2 1). Since
tractions are prescribed over the entire boundary the principle of minimum

stress energy (3.6.36) is now to be used. An obvious admissible stress field is

i
0 o} 12 O;

[’c‘:’ij] = C’Olz 0 0 (3.6.49)
L0 0 0

This stress field satisfies (3.4.19). It satisfies equilibrium since it is constant.
Its associated tractions are continuous everywhere and, therefore, also at phase
interfaces.

The stress energy is in view of (3.4.20), (3.6.38), (3.4.4) and (3.6.35a)

2
°
c_ 12

*

2G 12

\Y% (3.6.50)
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Now from (3.6.49), (3.6.35), (3.6.29d), and (3.6.45b) we have for isotropic

phases
oo ? v v
~0 12 1 2
= — (_G + N )V (3.6.51)

Inserting (3.6.50-51) into (3.6.36) we find

Obviously nothing is changed in the bounding procedure for the EEM

* *
G23 and G 13° We can, therefore, summarize that for a macroscopically

orthotropic body with isotropic phases

1 —ls % % * = 3.6.52
(G) GyrGygr Gy = G (3.6.52)
where
G=G, v, *G, v, @)
(3.6.53)
1 _ Y1 Y
E ——G—— +G— (b)
1 2

Suppose now that the phases are orthotropic with elastic axes parallel

(1) @)

12 * G 12 etc. The preceding

to the X0 Xy X system and shear moduli G

3

method easily generalizes (3.6.52) to read
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N
1 * =
(=) = G < G @)
G, 12 12
=1
1 <c =& (b) (3.6.54)
( G ) 23 23 U
23
1 >_l <G . s C ()
( G, Gi3* Cy3 ©

Next we consider the Young's moduli E* ’ E; and E;' We start with
the boundary traction formulation (3.4.28—365. It is seen that the principle
of minimum stress energy should be used. In each case the admissible
stress fields are chosen as the constant fields (3.4.29a), (3.4.32a) and
(3.4.35a). The analysis is in all aspects similar to that employed in the

previous establishment of lower bounds for shear moduli. If the phases are

isotropic we find that

(T_ls* R (3.6.55

B EprEgn By -6.55)
1,

where T is the analogue of (3.6.53b) in terms of isotropic phase Young's

moduli:

If the phases are orthotropic with elastic axes parallel to the composite's

axes, (3.6.55) assumes the form
-1
*

I <
(rE—i) <E, (3.6.56)
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where i = 1,2,3. An example for the left side is

Y v A\
__l_=__.+ 2
E

1 E(ll) Egz)

where the s.uperscripts on the Young's moduli indicate the phases.

The construction of upper bounds on the Young's moduli is not so
straightforward. For simplicity we shall limit the treatment to transversely
isotropic phases with axis of symmetry parallel to the composite's xl axis.
Treatment for corthotropic phases is analogous, but the results are cumbersome.

We now make use of the formulations (3.4.37), (3.4.39-40), (3.4.41-42)

and (3.4.43-44). We see that the boundary conditions are now of the mixed

type (3.6.18) and we use the principle of minimum potential energy for such

~——

cases. Starting with (3.4.37) we see that these are a special case of (2.5.18a).
Inspection of (3.6.20) shows that the surface integrals vanish since the

entering traction components vanish. Therefore, the principle of minimum
potential energy reduces to that of minimum strain energy.

We choose an admissible linear displacement system of the form

u; T o X uz=Bx2 U,= v X, (3.6.57)

These Ei satisfy the boundary condition (3.4.37a) and continuity everywhere.
Because of (3.6.19b) it is seen that B and v are now arbitrary constants.

The strains :;ij associated with (3.6.57) are
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f‘o T
€11 0 0
(c..1= 10 B 0 (3.6.58)
ij
.0 0 Y|

We insert (3.6.58) into (3.6.44) for the two phases and compute T€ from

(3.6.21b). The result is

~e - - - 2
2T = [neoll +zz€°11 (B+y) +Kk (B+vy)

+E;T ®-v)2 v (3.6.59)

where the overbars denote averages as in (3.6.53a).
Now because of (3.4.39), (3.4.5), and (3.4.8) the actual strain

energy is given by

*
20%=£€. 2.V (3.6.60)

Since U is larger than or equal to Ue, (3.6.59-60) yield an upper bound on

*

E1 in terms of the unknown parameters B , v. To find the best upper bound

(3.6.59) is minimized with respect to 8 , y. This procedure yvields

~e o - 3l
20 in =1 (T )V
k
Hence we have

- -1 -2
1 * - £

(_E—_) SEl sn - — (3.6.61)
A k
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where the left side inequality follows from the adaption of (3.6.56) to trans-
versely isotropic phases. Recalling the relation (3.4.80-81) it is seen that
it follows from these that

* 2*2
EA"“N - =
k

and the upper bound in (3.6.61) is of the same form in terms of averages of
moduli. It is not difficult to prove that this form of the upper bound is an

inherent feature of the present bounding method. Consequently bounds for

*
Ez, E; can be written down at once from (3.4.82) . We have
- _1 -
. 4k G,
( _) s E,,E < — — _
+
T k mGT
(3.6.62)
] w2
m=1+ —
EA

where the left side of (3.6.62) follows from (3.6.56).

If one or both phases are isotropic we can use (3.4.89) and (3.4.91)
to obtain the bounds (3.6.61-62) in that case.,

We have so far constructed bounds for the three effective shear moduli
and three effect ive Young's moduli. Bounds for the three remaining EEM or EEC
ére difficult to obtain for the present general geometry. Since the bounds
which are obtained by the present elementary method do not, in general,
give good estimates we shall not concern ourselves at the present time with

the remaining EEM or EEC.
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We now consider the transversely isotropic material with transversely
isotropic or isotropic phases. The bounds for the two effective shear moduli

can immediately be written down by adaption of (3.6.54). We have

L, L

—_— <
(G ) G, Gy @)

A

(3.6.63)

L )_l <a =6 b
( G G = G; (b)

T

If the phases are isotropic (3.6.63) reduce to

- -1

1y <& &' <& (3.6.64)
( G) G,r Gy .6.

Next we establish bounds for k*. Dual formulations for this EEM are
given by (3.4.59-61) and (3.4.62—6;1). In the first formulation we use the
principle of strain energy and in the second formulation the principle of minimum
complementary energy with mixed boundary conditions of type (3.6. 18a). Since
the analysis is completely analogous to previous ones we dispense with the

details. The bounds are found to be

-1
\:':_'_vz: _-]-:__)_Ig k*SE=kV+kV (3665)
k, "k k 171 "2 2 T
2
* * .* * *
We now recall the general relations betweenk , n , £ , EA and VA

given by (3.4.112) , (3.4.117) and (3.4.118). These can be used conveniently

to construct bounds on the EEM involved, in terms of K bounds, Hill [3.57].
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We consider first E; as expressed by (3.4.117). It is seen that because of
the left inequality in (3.6.65) the parenthesis in (3.4.117) cannot be
negative. It is also seen that the factor bef ore the parenthesis cannot be
negative. It is, therefore, concluded that E; is a monotonically increasing
function of k*. Consequently, replacement of k* by any upper or lower
bound produces corresponding upper and lower bounds for E* . We express

A
this symbolically by

Fam TEa k) @
(3.6.66)
En = Ea K1) ®)

Insertion of (3.6.65) into (3.4.117) , therefore, yields the following bounds.

k1 Ky

k

- % - 2
< < -
E E E -|~4(\)2 vl) "1"2

(3.6.67)

It should be noted that the phase Young's moduli and Poisson's ratios in (3.6.67)
are all axial. The lower bound (3.6.67) has been first obtaine‘d by Hill {3.5].
Now it should be realized that the bounds (3.6.61) also apply for the
transversely isotropic material and the question is which are the better bounds ?
It turns out that the upper bounds in (3.6.61) and (3.6.67) are exactly the same.
This follows by simple algebra from the relations (3.4.80-81) for the phase
moduli. The lower bounds are, however, different and it is easily shown

that (3.6.67) gives the better one.
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*
Next we consider VA as expressed by (3.4.118). It is seen that the

*

sign of (Vl'Vz)/(kz-kl) specifies whether v, is a monotonically increasing

*
or decreasing function of k . It is easily seen that by the same reasoning

as employed in (3.6.66) we have

* * *
am " Vak e v, - v,
: * % % 0 @
Va0 " Vake 2
(3.6.68)
* *
Vam T VA kW) v -,
x X % <0 (b)
Va) = Va & (_)) 2 1
We then have from (3.6.65), (3.4.118) and (3.6.68) that
v1k1V1+v2kaz _ \)Ak SFELT 2y very v (3.6.69)
v kv . >A> A 11 202
1717 %2V2

where the upper inéquality signs are valid for (@) and the lower inequality
signs are valid for (b).

Bounds for n* and !,* are similarly easily established by use of (3.6.65)
and the relations (3.4.112).

For statistically isotropic two phase materials methods analogous

to the ones used above yield the results
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@)

(b) (3.6.70)

The results (3.6.70a,c) were first given by Paul [3.26] .

Finally it should be noted that all results obtained in this paragraph

are easily generalized to any number of phases.

It is merely necessary for

this purpose to rewrite the averages in the bounds for that case. Thus, for

example

(_5=ZGV
m m m

To obtain some idea about the numerical values of the bounds we

consider a typical case of a fiber reinforced material composed of isotropic

glass fibers and isotropic epoxy matrix.

Phase moduli values are given by

Table 3.6.1
Epoxy (1) Glass fiber (2)
E 0.4x 106 psi 10.5 x 106 psi
v 0.35 0.20
6 . 6 .
G 0.148 x 10~ psi 4.38 x 10" psi
6 6 .
k 0.494 x 10 psi 7.3 x 10 psi
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Suppose that the material is transversely isotropic and that the volume

fractions are equal v, TV, T 0.5. Then from (3.6.63), (3.6.65), (3.6.67) and

(3.6.69)
6 . 6 .
0.29x10 psi<G,, G, < 2.26x 10 psi

0.92 x 106 psi 3.90 x 106 psi

A
~
A

6
5.45}‘:106 psi £ 5.47x 10 psi

A
[2a]

A
*

0.210 v < 0.275

A

* * *
It is seen that the bounds for GA GT and k do not provide good estimates.

!

* *
On the other hand, the EA bounds are excellent and the VA bounds are fair.

* -
The present EA bounds already show that E is an excellent approximation

*
for EA of a typical FM or FRM.

It will be seen in chapter 3.7 that it is possible to obtain substantially
better bounds for EEM of fibrous materials, in terms of phase elastic moduli

and phase volume fractions.

3.6.4 Bounds for Circular Fiber Reinforcement

In contrast to the general fibrous materials considered in paragraph 3.6.2
we shall here be concerned with FRM whose geometry is completely specified.
We consider the important case of a FRM in which the fibers have

circular cross sections. The geometry is completely defined if the radii of
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the fibers and the locations of their centers are known. We shall here derive
lower and upper bounds for the EEM of sucha FRM by use of the principles of
minimum potential and minimum complementary energies and the composite
cylinder results which were developed in par. 3.5.3.

It should be noted that the elementary bounds which were established
in par. 3.6.3 are certainly also valid for the present material. However,
those bounds are valid for all cylindrical geometries. It is our present purpose
to obtain improved bounds by explicit use of the present geometry.

To construct admissible fields which are suitable for the present
specific geometry we surround each fiber by an imaginary concentric circular
cylindrical surface which is entirely within the matrix. It is, moreover,
required that none of the imaginary cylindrical surfaces overlap. Fig. 3.6.1
shows an example of such a geometrical construction. It is seen that the FRM
has now been divided into a part of volume Vc which is the sum of the volumes
of all composite cylinders and into a remaining matrix volume V',

Suppose now that a fiber reinforced cylindrical specimen is subjected to
homogeneous displacement boundary conditions (3.3.1). We choose as an
admissible displacement in V' the linear field ec_l)j xj . In order to satisfy
continuity the admissible composite cylinder displacement fields must now
assume the values €oij xj on the outer surfaces of the composite cylinders
and they must also be continuous at fiber matrix interfaces. We may thus

choose as admissible fields in the composite cylinders their elastic displacement
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fields under the homogeneous boundary conditions (3.3.1). Thus, the

admissible field may be written as

-

ec_), X, in V' (@)
~ 1] )
u .= < (3 . 6 . 71)
i
W© oy (b)
i c
where u(ic) is the aggregate of all composite cylinder displacements under

homogeneous boundary conditions. Thus, the field (3.6.71) satisfies

(*)

continuity and the boundary conditions.
Next we suppose that the fiber reinforced cylinder is subjected to the

homogeneous traction boundary conditions (3.3.10). We use the same

geometrical construction and choose the following admissible field

?o ) in V' (@)
g.= < (3.6.72)

ol inv (b)

(c)

0
where oij is the homogeneous stress field in (3.3.10) and Oij is the
aggregate of all actual elasticity stress fields in the composite cylinders

under the boundary conditions (3.3.10).

(*)

c . . , .
For u(, ) computatlon we may consider any composite cylinder under

(©)

boundary conditions u, (S )_ i y.. where y is the local coordinate system with
origin at cylinder axis. To comply with u

(c )(s )— i % there is added the rigid
n
body displacement e i X (n) where xg )are the coordmates of the cylinder center.

See similar reasoning, par 3.5.3, eqns. (3.5.88-89) and fig. 3.5.2. The rigid
body displacements do not contribute to the strain energy functional,they only
serve to assure displacement continuity.
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It is seen that (3.6.72) satisfies equilibrium in V' because it is
constant there and also in Vc because G((i:j) is an actual elastic field in a
composite cylinder. The traction boundary conditions (3.3.10) are satis-
fied because of (3.6.72a). Traction continuity at composite cylinder-matrix
imaginary interfaces is satisfied by definition of c(fj) . and traction continuity
at fiber-matrix interfaces is certainly satisfied as a requirement of a com-
posite cylinder solution.

As has been seen before it is sometimes necessary to use mixed
boundary conditions for EEM calculation. In that event Ei in V' is chosen
as the linear displacement which satisfies such boundary conditions and
similarly gij in V' is taken as the constant stress field which satisfies the
boundary conditions. The fields in Vc are taken as elasticity sclutions
of composite cylinders which are subjected to such boundary conditions.

In order to exploit the extremum principles we need the strain and
stress energy functionals (3.6.21b) and (3.6.35b) which are associated

with the admissible fields. The strain energy functional associated with

(3.6.71) can be written in the form

ﬁ€=W;V'+Ue @)
C
(3.6.73)
ué=x vt (b)
C n cn
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where Wle is the strain energy density of the matrix material! with strains
th . .
eci)j , and U;n is the actual strain energy of the n” composite cylinder under

the homogeneous displacement boundary conditions.

Similarly, the stress energy functional associated with (3.6.72) is

~0 o o
U =Wl V' +U @)
c

(3.6.74)

v%=g u’ (b)
(o] n cn

o
where W1 is the stress energy density of the matrix material with stresses
o] o th , .
Gij and Ucn is the actual stress energy of the n* composite cylinder under
the homogeneous traction boundary conditions.
Expressions similar to (3.6.73-74) are obtained for mixed boundary
conditions in the event that the boundary conditions are such that the surface
integrals in (3.6.12a) and (3.6.29¢c) vanish.
For the purpose of computation of strain or stress energy in a composite
cylinder under homogeneous boundary conditions we go back to par. 3.5.3.
It has been shown there that such a composite cylinder has a set of apparent
elastic moduli which are the composite cylinder assemblage moduli. These
* * * * *

are here denoted by subscripts ¢, thus: k +E. ,Vv_ ,n and £ which
c Ac Ac c c

implies that under homogeneous boundary conditions associated with these

moduli the composite cylinder behaves precisely as a homogeneous cylinder

with such elastic moduli. Since the strain or stress energy of an elastic body
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is given by the surface integral _il—fTi ui dS and since the pertinent displace-
ments and tractions on the composite cylinder surface for the cases considered
are just as in a homogeneous cylinder having the apparent moduli, it is con-
cluded that also for purpose of computation of strain or stress energy the
composite cylinder can be replaced by a homogeneous cylinder with apparent
moduli.

Suppose that in the geometrical construction shown in fig. 3.6.1 the
ratio an/bn assumes M different values. For each of these values we have
a group of composiie cylinders which by the results of par. 3.5.3 have the

same apparent moduli. Thus, such a group may be replaced by homogeneous

cylinders with appropriate apparent moduli. Then we obtain instead of the
original FRM another M+1 phase equivalent FRM consisting of matrix of
volume V' and M different kinds of homogeneous circular cylinders of total
volume vo. Then, equivalent FRM bounds can be written down at once by
use of the bounds of par. 3.6.3 for fibrous materials, with M+1 phases.

The procedure will be illustrated by construction of bounds for square
and hexagonal arrays of identical circular fibers. Composite cylinder con-
struction for these cases is shown in fig. 3.6.2 and it is seen that all com-
posite cylinders are identical. Let the volume fraction occupied by Vc be
denoted v, . Clearly Ve is the fractional volume of a composite circle with
respect to its circumscribing square or hexagon, respectively. By elementary

geometry
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-Elr-= 0.785 square array (@)
v =< (3.6.75)

L= 0.907 hexagonal array (b)

Let the volume fraction of fibers relative to the whole composite be v,

Since (él/b)Z in each composite circle is the fiber volume fraction relative
to the composite cylinder it follows that

v

v, =vzc (3.6.76)

@/b)%=

The apparent moduli of a composite cylinder are then found by substitution of
(3 .6.76) into their expressions given in par. 3.5.3. This is equivalent to
the replacement

Vo - Vac @)
(3.6.77)

L |
Vi T Vo (b)

in the expressions for the EEM of the composite cylinder assemblage.

Resulting expressions of apparent moduli of composite cylinders are
denoted k: (VZC) etc. It is seen that in the present cases the equivalent
FRM has only two phases: matrix and composite cylinders of one kind. Hence,

we can use the two phase bounds of par. 3.6.3. We then have
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-1
l-v vc * x .
< < 1 .b.
k. "= ] ko= k) (v ) +k (v, ) v, (3.6.78)
1 kc (VZC)

* *

: *
1- + < < - +
El ( Vc) I-:Ac (VZC) vc E:A E1 e vc) E:Ac (ch) Vc

*
. k., k . )
+a vy W, -v1]2 v (1v) 1 ¢ 2¢ (3.6.79)

*
k1 (l-vc)+k o (VZJ vc

1 v -1

S+ = <G sG (Aw)+G. W, )v (3.6.80)

G, G* w. ) A 1 ¢ Ac' 2¢’ ¢ U
Ac 2c

* . : - .
To obtain bounds on v A the preceding method is not applicable since

*
bounds on \)A cannot be found by extremum principles. We can, however,

*
use the results (3.6.68) with (3.6.78) and (3.4.118) to find bounds for v_ .

A
The results are
klkz(vl—vz) [l-vc . vc ] < \,* i Vzkz-vlkl <

- - * -
k1 k2 kl K . ) > A k kl >
c' 2c
k. k_{v.-v.)
1
211 (3.6.81)

*
2 1 kl(l v, )+k c(v2c)vc
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where the upper inequality signs are valid for (3.6.68a) and the lower ones for
(3.6.68b).

It is to be noted that all the bounds apply for transversely isotropic
phases. Inthis case the shear moduli in (3.6.78) (introduced through (3.5.91))
are transverse, the Young's moduli and Poisson's ratios in (3.6.79) are axial,
the shear moduli in (3.6.80) are axial and the Poisson's ratios in (3.6.81)
are axial.

The EEM of the composite cylinder assemblage can also be obtained
by the same method. Indeed the initial derivation in [3.10] was based on
the present variational treatment. To see this we recall that in the composite
cylinders used to construct the assemblage the radii an/bn are the same in all
cylinders. The remaining matrix volume at any filling stage becomes V',
with volume fraction v'=l—vc, according to the present construction. In the

limit of complete filling by composite cylinders

e

(3.6.82)

~

2 —
(an/bn) =V, v, ()

Insertion of (3.6.82) into (3.6.78-81) shows that all bounds coincide and reduce

to the composite cylinder assemblage results (3.5.91), (3.5.96-97), and (3.5.111),

*
It is recalled that GT could not be obtained by the replacement method

given in par. 3.5.3, but with the present method it is possible to obtain bounds for
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G;' both for composite cylinder assemblages and any other circular fiber
arrangement.
Let a cylindrical fiber reinforced specimen be subjected to (3.4.13).
Then (3.6.71a) becomes

~_ ~_o ~ (o]
ul—O u, = € X u

2 - %23 %3 3 %23% (3.6.83)

(1)

The composite cylinder solution is denoted u i

(2)

in the matrix shell and u

in the fiber. The boundary conditions are

u(li)=0 u(;) = eo X u. = eo b'4 r=b (3.6.84)

It is seen that we have a plain strain problem which falls intc the general
category of the first kind of boundary value problem discussed in par. 3.5.1.
Hence, u(clx) and u(? must satisfy (3.5.14) in matrix shell and fiber,
respectively, and also the interface conditions (3.5. 15) and (3.5.19) onr=a.
A solution of this problem has been constructed in [3.10J. The general

form of the solution is in vectorial notation

(1), o - P e, 2 2 (1)
u /ey A k) xp) +A, /AN IV by xg) + 0T x) Xy )

X X X X A X

e 4 273 e 2.2 23 (1) 7273
+A3aV( r4 )+A4a v ( r4 ) + 8 r4 r] @)

(3.6.85)

2(2)/623 =A§ v (x2 x3) +AZ/azo [rzv (x2 x3) + a(Z) X, x3£ ] ()

@)

1
where g( ) and u ' are the displacement vector fields in matrix and fiber,

respectively. Here Alz k=1,2,...,6 are non-dimensional arbitrary
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constants, V stands for the gradient operator, r is the plane radial vector

(1) (1) @)

with components Xy 1%y and magnitude r, and the constants '™/, B*77,a
are given by
a(l) = = _z.is—_‘lil_)_ @)
3-2V.
1
2 (3-4v.)
1y _ 1
B = 179 (b) (3.6.86)
1
@ 2O ©
3—2\)2

This solution was prompted by the material contained in Love [3.3] ,
chapter XI, and a related composite sphere solution which was constructed
in [3.11].

So far the present solution satisfies the differential equations (3.5.14).
If inserted into (3.6.84) and into (3.5.15) and (3.5.19) at r = a, there are

obtained precisely 6 linear equations for determination of the constants AS

k
k=1,2,...,6. These equations may be written
€ €6 _ € _
cqu —dk k,4=1,2,...,6 ) (3.6.87)

where c}:'Z and d: are given in the table which follows.
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e €
Ckz dk
4 1 2 3 4 5 6
k
2
1 1 1/v v v 0 0 1
3-4v
11 2 1
2 0 ~ 39y - -2v 17y v 0 0 0
1 1
3 1 1 1 1 -1 -1 0
(b) 3.6.87)
3—4\)1 1 3-4v
* O T35y -2 1-2v 0 3-2V 0
1 1
3 1 3
5 1 — -3 - -y - = Y 0
3 Zvl 1 Zvl 3 sz
1 1 1
6 0 - 2 - 0 — % 0
3 2\)l 1 Zvl 3 sz
where
2
v = (a/b) @)
(3.6.88)
G
_ 2
e (b)

By the first transverse isotropy-isotropy analogy, par. 3.5.1, the

present solution is valid also for transversely isotropic phases. In this case

G

Poisson's ratios VZ .

, G. are to be interpreted as the phases transverse shear moduli and the
2 1

v, are replaced by the last of (3.5.25).
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Computation of the strain energy in the composite cylinder is best
carried out by computation of the boundary tractions and evaluation of the

. 1 .
surface integral 2 fTi ui dS . We find that

. 2(1-\)1) . ° 2
= - —— .6.
Uen =26 L v 2 Vo) Y2n %23 Von 8.6.89)

where Vcrl is the volume of the composite cylinder,
= @ /b )> (3.6.90)
Van r/ n T

and AZ (VZn) denotes the coefficient AZ in (3.6.87) computed for (3.6.88a)

of value (3.6.90).

Inview of (3.6.83) and (3.6.89) , (3.6.73) now assumes the form

~e o) 2 2(1_\)1) €
U =2€23 GI{V +§[1-T\)1 A4 (Vzn)vzn]\/cn} (3.6.91)

If the FRM is transversely isotropic the actual strain enargy is given in view

of (3.6.39) by

2
uf=2L2. g v (3.6.92)
23 G -6

*
and it is recalled that GT has to be interpreted as (3.4.56) for square symmetry.
Because of (3.6.22), (3.6.91-92) now give the upper bound

2(1—\)1) K
1—2\)1 4

* 1 .
< L End 1 -
G, Gl{v Szl v, ) VZn]vcn} (3.6.93)




237

wherev =V _/V
cn cn

To construct a lower bound the cylindrical fiber reinforced specimen
is subjected to (3.4.22). The stress field Eij in (3.6.72a) is then given by

(3.4.23a) and w1° in (3.6.74a) becomes

W1 = (3.6.94)

Now the composite cylinders are subjected to the traction system (3.4.22).

On the surface r = b we have

A

T.=0 @)

1
X

TZ 023 B L r=b () (3.6.95)
X

_ o 2

T35%3 5| ©)

The solution of the composite cylinder under (3. 6.95) is again of the form

(3.6.85). It is now written as

2G

1 (1) _ .o 6,2 .2 (1)
S u =A; v(xZ x3)+A2/a (r \7(x2x3)+<1 X, x3_1;_]
o
23
X, X X, X X, X
o 4 3 o 2.2 273 (1) 7273
+A3aV( 7 )tA, a L'v(——)+8 7y r] @)
r r r
(3.6.96)
2G
1 (2)_ .0 0,2 2 (2)
S u _Asv(x2x3)+A6/a r V(x2x3)+cx. x2x3£] (b)

23
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The boundary conditions (3.6.95) and the interface conditions (3.5.15) and
(3.5.19) at r =a now lead to the system of equations

o ,0 o
= =1,2,..., 3.6.
ckEAI, dk k,z 2 6 @) (3.6.97)

o
where cO and dk are given in the table below.

kg
a , o}
) {dp
£ 1 2 3 4 5 6
k
3 1 2 1
1 1 - -
v, v 1-2v. U 0 0 1
1 1
1 1 2 1
2 0 - 3y v 2v TV 0] 0 0
1 1
3 1 1 1 1 -1 -1 0
b) 3.6.97)
3-4v 3-4v
1 1 2
4 0 - -2 — 0 0
3 2\)1 1—2\)l 3-2\)2
3 1 3
> 1 -3 -y Y 0
- 1- -
3 2\)1 2\)1 3 2\)2
1 1 1
6 O - — 2 - — O '\{ O
3 2\)1 1 2\)1 3—2\)2

where v and y are given by (3.6.88).
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Tt is to be noted that (3.6.95a) is only satisfied in the Saint Venant
sense by the solution, which is of no consequence for a long cylinder.
See par. 3.5.1 for discussion,

Now the stress energy in any composite cylinder is found to be

2
o
o 2(1-v,)
Y 23 1 o)
= 1 _—r * .
Yon T 2G, [ 2y, "4 ) Vand Von (3.6.98)
o o o
where v, is given by (3.6.90) and A4 (VZn) denotes the constant A4 in

(3.6.97) computed for v = Vo
Insertion of (3.6.98) and (3.6.94) into (3.6.74) gives ffc . If the

FRM is transversely isotropic or square symmetric it follows from (3.4.23a)

and (3.6.40) that the stress energy is

U = \' (3.6.99)
2G

*
T
*
where GT is to be interpreted as (3.4.56) for square symmetry. Insertion of
(3.6.99) and the previously computed EU into the extremum principle (3.6.36)
*
yields the following lower bound for GT

-1

2(1-v,)
La%w v, Iv } <c  (3.6.100)
4 '2n 2n “c¢n T

1
el —1L
Gl{v v el T-2v,

We now apply the bounds (3.6.93) and (3.6.100) for special cases.

For square and hexagonal arrays as shown in fig. 3.6.2, VZn and vcn are

all the same. It is seen from (3.6.76) and (3.6.90) that now

Vo = Vae =v2/vc (3.6.101)



240

where it is recalled that v2 is the fibers volume fraction relative to the

composite and vc is given by (3.6.75). Since Vcn is the volume of a

composite cylinder, we have

(3.6.102)

v'=1-v
c

where N is the number of fibers. Inserting (3.6.101-102) into (3.6.93)

and (3.6.100) we obtain

-1
2(1-\)1) o * Z(l-—vl) .
—_— < < 1- ——— .6.1
G [1 ST (VZC)V2] Gr =G [ 2, %4 (VZC)VZ] (3.6.103)
For the composite cylinder assemblage vZc in (3.6.103) becomes vy ,(3.6.82Db).

We then have

-1
G ., =G [1 +2(1le W, )v ] <G, <G [1——2ﬂ AS v )v] =G,
Tc(-) 1 1-2\)1 4 272 Tc 1 l-Z\)1 4 2772 Tc(+)
(3.6.104)
These are the bounds which were given in [3;103.
It may be noted that the bound expressions (3.6. 104) can be obtained
in the following fashion. Iet a single composite cylinder of the assemblage

be subjected to the displacement boundary conditions (3.6.84). Then




241

* %23
GTC(+)__Z—GO__ (3.6.105)
23

where the overbar denotes average over the composite cylinder. If
the composite cylinder is subjected to the traction boundary conditions

(3.4.22), then

(e
(0)
* 23
=23 .6.1
G (4) " (3.6.106)
23

It is of some interest to note that the bounds (3.6.103) can now be

*

expressed in a different form. If the bounds (3.6.104) are denoted G(+) (vz)
*
and G(_) (VZ)’ respectively then (3.6.103) assumes the form
r 1‘Vc v, ]-1 N N
+ <G <G (A-v)+G, (v, )v_ (3.6.107)
*
|_ Gy c" W) T 1 c +) 2¢” ¢

(-) " 2c

which resembles the results (3.6.78-50).

The system of equations (3.6.87) has recently been solved alge-
€

4"
yields the explicit expression (3.5.113) in par. 3.5.3 for G

braically for A Insertion of this result into the upper bound (3.6.104)

*
T(+)°
the lower bound in (3.6.104) can be similarly simplified but this has not

No doubt

been done since for fibers stiffer than matrix this bound is superseded by
a better lower bound which will be derived in par. 3.7.3. This better

lower bound is (3.5.114) , par. 3.5.3.
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The results (3.6.78-580), (3.6.81), and (3.6.103) provide bounds
for five effective elastic properties. Bounds on other EEM can be derived
*
in terms of these. To find bounds on ET , for example, it is easily shown,

in general, by use of (3.4.82) and (3.4.84) that

R O {0 @)
T® ¢ e, G
+ THTTH
(3.6.108)
* *
E* = 4k(_)GT(_ (b)
O W m G
(=) " (=)7T)
where
4k* v* ’
my =1+ —AE (@)
Eaw)
’ (3.6.109)
* *
4k, |V
m(_)=1+—1——-f—-‘)*A+) (b)
Eag)

and the bounds in right sides of (3.6.108-109) are any bounds.

*

are known
A

and therefore the bounds (3.6.105-106) reduce to (3.5.120).

* *
For the composite cylinder assemblage k , EA and v
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3.7 BOUNDING METHODS FOR EFFECTIVE EIASTIC MODULI: POIARIZATION

EXTREMUM PRINCIPLES

3.7.1 Elastic Polarization

In par. 3.2.3 we have formulated the elasticity problem of hetero-
geneous bodzes in terms of dtsplacemehts The problem may also, though
inconvemently, be formulated in terms of stresses as has been shown in
par. 3.6.2. It is our present purpose to formulate the elasticity problem of a
heterogeneous body in terms of two new variables: the elastic polarlzation
tensor and a displacement deviation. >These will be defined further below.

Consider two elastic bodles of identical external geometries which
are subjected to identlca-l surface ois plaoehments . uis The first body is
homogeneoos anisotropic with elastic moduli Cc':jkl' The second body is
heterogeneous anis otroplc composed of any number of homogeneous
anisotropic phases with elastic moduli C(T‘)d in the mt phase For
convenience the first body is called the C body and the second is called
the C body . |

The elastic fields in the c® body are denocted uo1 ' ‘oij' Oczj while
the fields in the C body are de.noted ui, o:ij , O, i assuming the values u(i)

gn) ’ o(?;) in the mtb phase. We summat‘ize the elasticity problems of the

two bodies for the case of zero body forces:
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¢ body
00,, . =0 @)
ij,j
O O 0]
| %45 T C ik Gkl (b)
(3.7.1)
Co=2 W +u° ) ©)
ij 2 i,j il
|
| oS ) = @
C body
o, .=0 @)
1,
= b
% T Cijk1%x1 (b)
1
‘ e, = 5 (u, +u, . (c) (3.7.2)
| ij 2 i,ji j.i
| u, @
continuous on S,
int
= = e
=% T % ™ (e)
u 6) =u’ (f)
1 1

Equs. (3.7.2a,b,c) apply for each phase separately and all quantities

may then be given a superscript m.
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We now define the stress polarization tensor pij by

(o]

%9 = C k1 Skl T Py (a)
(3.7.3)
(m)_ -0 (m) (m)
o5 - Cikt Skl TPy (b)

where (@) is a general definition and (b) is an explicit expression for the mth
phase. The polarization may be interpreted as the necessary correction if
it is erroneously assumed that stress and strain in the C body are related
by the stress strain law of the Co body.

Next we define the deviating fields ui, e;j ' o.ij as

u' ' =u -u, @)

1 1 i

e =c - (b) (3.7.4)
1} 1) 1]

o =0 -0 ©)

1) 1) 1]

It follows from (3.7.lc-2c) and (3.7.4b) that

e, =1—(u! c+u! ) (3.7.5)
ij 2 i) il

from (3.7.la-2a),

. =g 7.
%, (3.7.6)
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from (3.7.1b), (3.7.3a) and (3.7.4c),

o [

(@]
] = L S = + 7.7
% = C ik %1 TPy T Cujka Y ,1 t Py ®.7.7)
Insertion of (3.7.7) into (3.7.6) yields
o] (o]
' = s = 7.8
© k1 %k pij),j Ciik1 %, 15 TPy, (3.7.8)

We replace in (3.7.3) the left side by (3.7.2b); we then have

- _ A0
Pis = Gy ~ Cijnd (@)
(3.7.9)
o)
= + ' =
57 %4 7 % Hijk Pe ®)
where H_, = is the inverse of C , . - C?, . The relation between these two
ijkl ijkl ijkl
tensors is written both in matrix and subscript notation
H+o'=1 Hijrs Crskl - Iijkl (@)
(3.7.10)
Vo _ A0 , - _ 0
€'=¢ -¢C Crskl Crskl Crskl (b)
o
h i i .2.7). Si
where I or Iijkl is the fourth rank unit tensor (3.2.7). Since Cijkl and Cijkl

are elastic moduli tensors they obey the symmetry conditions (3.2.3) and thus

Kl obeys these

symmetry conditions by definition. Therefore H"kl also has the same
1)

their difference Cijkl obeys the same symmetry. The tensor Iij

symmetry. Thus

Hiikd ™ Fjien T Hiyie ™ By (3.7.11)
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In view of (3.7.11), (3.7.9) can also be written in the form

1
e +e. =e (@  tu |
ij ij ij 2 i, il

) = (3.7.12)

Hisk1 Pra
Equations (3.7.8), (3.7.12) are 9 differential equations for the 9
quantities ui and pij . They may be taken as the governing differential
equations for the C body if the solution for the Co body is known.
For a multiphase body (3.7.8) and (3.7.12) have to be written for

each phase. All quantities in these equations, except those with zero

(m)

superscript, are then given a superscript m. The meaning of H ikl is given by

(m) . (m) o
- = .7.13
H ijrs (Crskl Crskl) Iijkl 8 )

To complete the formulation of the problem in terms of u'i and pij we
have to consider the boundary and continuity conditions (3.7.2d,e,f). In

view of (3.7.1d), (3.7.2f) and (3.7.4a) we have
u' @) =0 (3.7.14)
as the boundary condition. Since ui is continuous at interfaces and uoi is

continuous everywhere, the difference u'i is also continuous at interfaces,

Similarly, o, n, and oo,, n, are continuous at interfaces and so their difference
1 ] 1 )

oij n. is also continuous there. This difference is expressed in terms of u'i
‘ ]

and pij by (3.7.7) . Thus (3.7.2d,e) are replaced by
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(@)

(3.7.15)

|

L

?contmuous on S,
int

)

e} 1 |

L= u' o+ !
T 7 Cijk1 Yk 1 pij) o (b)

. J

It is seen that the elasticity problem for a heterogeneous C body has
. , (m) (m) . .
been formulated in terms of ui and pij which satisfy (3.7.8) and (3.7.12)
in each phase, the boundary condition (3.7.14) and the continuity conditions
(3.7.15).
Next we derive an interesting formula which expresses the strain

energy Ue of the C body in terms of pij and e(;, . The strain energies

o)
of the C and C bodies are, respectively,

2U€=/0c.). e? dv @)
0 1] 1)
vV
(3.7.16)
20 = /o,_ e.. dv (b)
ij ij
v
In view of (3.7.16a) and (3.7.4b,c), (3.7.16b) can be written as
20 $=20° + /o e dv+fo,, ' dv (3.7.17)
o ij ij ij ij

\ \Y

Consider the last integral in (3.7.17). Because of (3.7.2a,e), (3.7.5)

and (3.7.15), the theorem of virtual work is valid. Thus
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fcr.. ¢! dv = fT.U'_ ds =0
ij ij i
v

\

which vanishes because of (3.7.14). Now consider the other integral in

(3.7.17). Because of (3.7.7)

o) o o) o
' dv = e d +
,/Gij ¢ i \Y fC Kl €kl e \Y /plj ei]_ dv

\' \ \Y
Because of ij, kl symmetry
o o) o o o
\ = ' av = o ' d
./C k1 k1 €y WV /Cijkl ¢ Sk Y f i Sy @Y
\' \Y \Y%

where the last step is due to (3.7.1b). By (3.7.1a), (3.7.5) and (3.7.15a)

the theorem of virtual work applies to the last integral. We have
/09. e dv = fTo, u' dv =0
ij i} i i
Y Y

because of (3.7.14). Introduction of all of the preceding results into (3.7.17)

yields the remarkable expression

ué=vu +—/ jav = U + L f (m) o (3.7.18)
o 2

This was first derived by Eshelby [3.27] . The extreme right side follows

if the continuity condition (3.7. 15b) is satisfied at interfaces.
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3.7.2 Polarization Extremum Principles

We shall now derive an extremum principle which is a variational
formulation of the elasticity problem for the C body as expressed by (3.7.8),
(3.7.9) or (3.7.12) and (3.7.14-15). This extremum principle was first
derived by Hashin and Shtrikman [3.28]. Another derivation was subsequently
given by Hill 13.297, starting out from the classical extremum principles
of par. 3.6.2. The present straightforward derivation follows a method
used in [3.30] . As in our derivation of the classical extremum principles
in par. 3.6.2 we shall again use finite differences rather than variations
of fields.

We define admissible fields Ei'(m)and Sigm) by the requirement that

they satisfy (3.7.8) (in each phase) and (3.7.14-15), but not (3.7.9).

Thus the last equation will assume the role of extremum condition. Accordingly,

we have
C(i)jkl E'k,lj " Si(;n,)j = ?J’kl B g) * f’Jigm))'j SOmR, @
E{ (8) =0 (b)
> ©) (3.7.19)

continuous on S,
int

(@)

—_——
Q
=
pe
_
=
Nl
=
+
=
5
| S
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where

We define the differences

Au.('m) _ ;.'(m) _ u._(m)
1 1 1
(3.7.20)
(m) _~ (m)_ _(m)
By TRy TPy
where u'(im)and p(irjn) are the actual fields which also satisfy (3.7.9) or (3.7.12).

Subtraction of corresponding equations in the group (3.7.8), 3.

the group (3.7.19) yields in view of (3 .7.20)

o (m) (m) o (m) (m), _
Au' = A + A =
i1 2%t Py, T Gt TPy ),;=0 @
Au',l 8)=0 (b)
Au', (c)
1
continuous on S,
int
O
Ae'. +A d
C i e * 4Py 1y @
where
(m) _ 1 , (m)  (m)
Ae i 3 (Au i,j+Auj,i) )

(e)

7.14-15) and

(3.7.21)

In view of future derivations it is convenient to rewrite (3.7.19%,d)

and (3.7.31a,d) in the following forms
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@)

t =0 (b) (3.7.22)
1] ,)
t(r.r,l) n, continuous on S (c)
1] ] int
0 J(m) (m) _ , (m)
Ci]’klAekl +Api]_ Atij @)
a™ — g (b) (3.7.23)
1] ;1
At (m) n, continuous on S, (c)
1] int

th . m
Now (3.7.9), written for the m phase, is multiplied by Ap(ij) ’
then integrated over the mth phase volume and the resulting integrals are

summed over all phases. The result is
ij ij ij

m) (m), (m) ,(m), m_ o, (m) -
%/(_Hijklpkl Ap, " +¢' " Ap", +e:ij Apij)dV 0 (3.7.24)
Y
m

m
Consider the middle integral in (3.7.24) and substitute for Ap(ij)

from (3.7.23a). Then




, (m) (m) .. _ (m) . (m)__,(m)_0 «(m)
zzn / € i A pij dv—;ln / (e i Atij € i CijklAe Kl )y dv (@)
\ v
m m
_ ,(m) , (m) _ ,(m) o ., (m)
= Iz;,] / u At n, dS %/Ae i k1% K1 dv (b)
S \Y
m m
= fu' At” n ds - % / As'(m) (O'(m) _ p(m) ) av (C)
i ij m 1j 1) 1]
S v
m
(3.7.25)
=- / AL / p o ™M gy (@)
m i ij m 1) 1)
S v
m m
=- jf/_\.u' o' . n,dS +% / Ae (m) (m)av {e)
ij j m ij i
S \
m
= 5 f pe ™ o gy ®
m ij ij
\Y
m

Here the conversion to surface integral in (b) follows from the theorem of virtual
work which is valid because of (3.7.21e)and (3.7.23b). The interchange in the
volume integral in (b) is permissible because of C(?ijl symmetry. The interface
surface integrals in (b) cancel because of (3.7.15a) and (3.7.23¢) and so

only the integral over S remains in (c}. The volume integral in (c) is obtained by
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o) m
substituting for Ci' e'( )

k1 €kl from (3.7.8) in (b). The surface integral in (c)

vanishes because of (3.7.14). The first volume integral in (c) is converted
to the surface integral in (d) by virtual work in view of (3.7.21e) aﬁd (3.7.22D).
The interface integrals in (3.7.25d) cancel because of (3.7.21c) ahd (3.7.22&).
Thus there remains the external surface integral in (e) which vanishes because
of (3.7.21b}.

Define the integrals

po 4 ,(m) _(m)
U_—Z—rzrzl./‘ €i]. pij av @)

v

m

(3.7.26)

R S A g

v

m

The difference between these integrals is in view of (3.7.20) and (3.7.21e)

_ 2)

AU' =T - U U+ 0% g @)

(3.7.27)

1
A(z = ? / ) dv (C)
V

In view of the equality of the first and last terms in (3.7.25), we have from

(3.7.27a)
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1 (m) (m) 1 (1)
— ' = — A v
2 rfrl'] f ©ii A pi]’ dv 5 U
\Y%

Substituting this into (3.7.24) it is seen that the resulting integral
(1)

can be interpreted as A 'Q where
~ 1
10=3 -q=0" +a¥q @)

- gm ) ) ) ), () o |
Q=% k f Hikl Piy Pl *Py €y T2Py ey)dV ) (3.7.28)
\'s

3

O
]
NII—‘

(m) ~(m)~( ), ~(m)~,(m), ,~(m) ©
_[ ((Hi Py Py TRy gy Y2P y ) dv e
\Y

m
and (3.7.11) has been used. So from (3.7.24)

sWg = g

For reasons of convenience and without loss of generality the known

strain energy er of the C° body is added to (3.7.27b,c). Thus

R _ .1 (m) (m) (m) _ _(m) ,(m)_, (m) o
U"I_Jo tQ=U, -7 & / Hiki Py Pl " Py © g Zpijeij)dv @)

Vo,
~ _ ~ ¢ 1 ’ (m) ~(m) _~  =~(m)_,~(m) &
U=U, +Q=T Z.rznf (H, P P, ¢y "2py e )adv ()
| '
m

(3.7.29)

d)
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The expression (3.7.29a) can be greatly simplified. We first observe

that it can be written in the form

(3.7.30) i

It is seen that the parenthesis in the last integral in (3.7.30) vanishes in

each phase because of (3.7.9). We thus have
e 1 o€
U= - =y (3.7.31)
o 2 m
V

the last equality in (3.7.31) following from (3.7.18). It has thus been shown
that U is the strain energy of the C body.

We shall call (3.7.31) and (3.7.29) polarization strain energy and
polarization strain energy functional, respectively. So (3.7.2 9d) asserts that

the first difference of the polarization strain energy functional vanishes.

We now examine A(Z)U in (3.7.29¢c). We have from (3.7.29%a,b)
2) 1 ) {m) (m) (m)
A = - = - e 2
U 2 by (Hljkl Ap Apkl Apij )dv (3.7.32)

In order to establish an extremum principle for U we have to examine the sign

of (3.7.32). It will be shown that
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(2) y(m) _~ @) _ s -

AT'U<O0 1]k1 1]k1 k1 positive definite @)
(3.7.33)

A(Z)U >0 C' (m) = C(m) - Co, negative definite (b)

ijkl ijkl ijkl

(m)

To prove (3.7.33a) we substitute for Ap from (3.7.23a) in the

second term in the integrand of (3.7.32), obtaining

@ _ 1 (m) , (m) (@, (m)
A '"2%/ Py Apk1+Ckl i 21
v_

=™ pe My (3.7.34)
1} 1]
The last integral in (3.7.34) vanish2s by virtual work (by use of (3.7.23b,c)

and (3.7.21b,e) ). It is seen that the middle term in (3.7.34) is positive

because C(,), is positive definite. The first term in (3.7.34) is positive if

ijkl
( lZl is positive definite, so in that event (3.7.34) is negative. Now the
matrices H( Ll and C' (1m}11 are inverses of one another, (3.7.13). Accordingly

if H( IZI is positive definite so is C'(]k)1 . This proves (3.7.33a).

To prove (3.7.33b) we first consider the integral

o (m) , (m) , (m)
§ = .7.
) / sijklApij Apij Apkl dv (3.7.35)

\)
m

where Siojkl are the compliances, related to ijkl by (3.2.6-7). Again we

substitute for Ap(,lj) Ap(kl) from (3.7.23a), obtaining



258
o (m) ,, (m) (m) , _.(m)
= A pe' ™ g et
’ %f Sk 8t Atyg * Oy be'y By
v

m
(3.7.36)

Coar™ oy oMy G
ij ij

The last integral in (3.7.36) again vanishes by virtual work and it is seen
that the remaining two terms in (3.7.36) are each positive definite. Therefore,
if the first term in (3.7.36) is omitted the whole integral is decreased and

thus becomes smaller than (3.7.35) . Accordingly

o () (m) 0 (m) (m)
Ap > ' '
L fsukl Apkl av >z / o bey de'y) av

\Y \Y%
m m

Using this result in (3.7.34) we have

Q) 1 (m) , 4o (m) ()
vWus-2g / H i " Siyk) 8Py 8B 4V (3.7.37)
v

To ensure that A(Z)U be positive we require that H(m) +8°  be negative definite.

ijkl  “ijkl
To show that this condition is equivalent to (3.7.33b) it is best to operate with
(m) o

+ S be written

trices i i .
matrices in symbolic form. Let the matrix of H ' ikl ikl

a=g™ +g°

It follows from (3.7.10), (3.7.13) and the definition of compliance that

1 1
A= m) o o
¢ '-C C
Then
@m)~g%-go-g=gm)
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0
Now since Q(m) and G are positive definite it follows that if A is negative

(m)

. o . - ;
definite then C - ¢ is also negative definite and vice versa. Therefore,

if _g(m)

- _QO is negative definite the right side of (3. 7.37) is positive. This
proves (3.7.33b).
In view of (3.7.29¢c,d), (3.7.31) and (3.7.33) we have the following

extremum principles

~ € {(m) {m) o) - o
1 3 - d
U<U C ikl ikl Cijkl positive definite (a)
(3.7.38)
U > U€ (m) (m) _ Co negative definite (b)

ijkl ijkl ijkl

In words: The strain energy of the C body is the maximum,/minimum of the

polarization strain energy functional when the elastic moduli difference matrix

o m)
ijk1

is everywhere positive/negative definite.

. - ) L€ -
The bounding of the strain energy U and of EEM by the present

~()

extremum principle proceeds as follows: An admissible polarization tensor p

is chosen at will. Then p(ir?)j may be regarded as the "input" in (3.7.19) and
' (r.n) as unknown functions ("output") to be determined. It is seen that (3.7.19)

S )

is an unusual elasticity problem for the homogeneous C body in which p
are "body forces" and the "traction" Cijkl u’(m) nj in (3.7.19d) is discontinuous
at phase interfaces, if ;ij nj is discontinuous there.

It is easily shown that for any choice ;ij there is a unique a‘i. For
assume that there are two different Eli satisfying (3.7.19) with same ;ij .

Then by subtraction and linearity the difference between these two Ei satisfies

(3.7.19) with zero pi]. . But this is a usual elasticity problem with zero boundary
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values and zero body forces and, therefore, its solution vanishes. Sothe
assumedly different H'i are the same.

Once Hli has been determined in terms of Sij the integral (3.7.26b) can
be computed and is then carried back into (3.7.29b) and so 0 provides
bounds on U° because of (3.7.38). If the boundary conditions (3.7.1d),
(3.7.2f) are homogeneous of form (3.3.1), then Ut is expressible in terms
of EEM and "oi,- , (3.3.14), and thus bounds on the EEM in terms of Sij and
Coijkl may be obtained. The Eij and C?jkl are then determined by
optimization of the bounds.

This procedure will be illustrated in the next paragraph for fibrous
materials.

A dual set of extremum principles in terms of strain polarization has
been derived in [3.25] . Additional extremum principles in terms of the
polarization tensor have been derived in [3.30].

The extremum principles which were derived are now resummarized:

An elastic homogenaous (C ) body with elastic moduli C k1 and an elastic

()
ijk1

identical external shapes and are subjected to the same boundary displacements

heterogeneous body (C) body with phase elastic moduli C. are of

on their entire bounding surfaces. Define the functional

~ e 1 ) (m) ~(m)~(m) ,~(@m) o

g oL -  (m) _ dv 3.7.29b
v=U,-7%& ,/ 1]kl Pl “Py ey TPy ey ( )
v
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where

Uoc - strain energy of the Co body

¢, - strain field in the c® body

H(m)

(m) o

ijrs © rskl C rskl) = Iijkl (3.7.13)
~m)_ 1~ (m) , ~(m)

' = — [ +u' ) 1
iy 2 'y ruts ) (3.7.19%)

(m)

The admissible fields E and G"i are related by the boundary

(m)
ij

value problem

o ~(m) , ~(m) .
) + - 0
Gkt M TPy " Ry @)
'Ei €) =0 o)
~ (3.7.19)
ul ()
continuous at S,
c® T +P)n @
ijkl Tk, 1 Py’ Y
Let U® be the strain energy of the C body. Then
Usvu® if (11;21 - C?jkl positive definite @)
(3.7.38)
T = Ut if C(m) -c° negative definite (b)
ijkl ijkl
. o .~ (m) . . (m)
Equality occurring if and only if p ij is the actual polarization p i and
E;(m) is the actual displacement difference u'i(m); between the displacement

fields in the C and C° bodies.



262

3.7.3 Bounds for Fibrous Materials

We now proceed to use the polarization extremum principle to bound

the EEM of macroscopically transversely isotropic FM. We shall first
* * * *
establish bounds for k and GT . Bounds for EA and VA are then easily

constructed, in terms of the k* bounds, by use of (3.6.66), (3.6.68), (3.4.117)
and (3.4.118).
*

A separate treatment is necessary to establish GA bounds.

We choose as the C‘-O body a transversely isotropic homogeneous
cylinder of volume V, surface S and section A. This cylinder is henceforth
called the CO cylinder. The axis of elastic symmetry of the material is in
generator direction and the elastic moduli are no, ﬁo, ko’ GTo' GAo
(see (3.4.86) ).

We choose as the C body an externally identical cylinder of fibrous
material, which is assumed to be macroscopically transversely isotropic
with elastic symmetry axis in generator direction. This cylinder is called
the C cylinder. We shall assume for simplicity that the phases are isotropic,
bearing in mind that results for transversely isotropic phases are immediately
obtainable from the isotropic phase results by use of the transverse-isotropy
analogies which were described in par. 3.5.1. The variable moduli of the C
th

cylinder are taken as k=X +G and G assuming the values km and Gm in the m

phase. The volume fraction of the mth phase is denoted v
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We are primarily interested in the two phase cylinder, but since the
major part of the analysis is just as conveniently carried out for a multiphase
cylinder we do not at present specify the number of phases.

Let the CO and C cylinders be subjected to the homogeneous displace-~

ment boundary conditions

uf’ =0 @)
B . (b) (3.7.39)
2 T €22 % T €23 %3 e
S o o)
= +
Uz = €93 %y T €33 %3 ()

It is seen that (3.7.39) is a special case of (3.5.3). Inview of (3.7.39%)
both cylinders are in states of plane strain.
, o o o o} . . .

The fields u i€ i and O'ij in the C~ cylinder can immediately be

written down since uoi(>_<) has the form (3.7.39) throughout the cylinder.
o)

Consequently eij and o?j are homogeneous. It is convenient to separate
strains and stresses in the x_ x_ plane into isotropic and deviatoric parts

23

as was done in (3.4.69) and (3.4.71) for averages. We then have

o _ 0o _ o o
cme()i)—e:OLB e 60LB+ech @)

o_1l o _1 o0 o

¢ = eYY 5 (e22+e33) (b) (3.7.40)
e =¢% =¢2. =0 (c)
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o] o _ o .0
Tup(X) =770 0 g% % o5 @)

O_O=1_O_O (b)

2 vy
(3.7.41)

o _ (o} (o] - o]
o =2k, ¢ SaB 2GonLB ()
o _ o © _ o _
oll—ZLOe 012 013 0 (d)

a, B,y =2,3

Inview of (3.6.44a) and (3.7.40-41) the strain energy er stored
in the CO cylinder is
2
o o) 0

€ —
UO—(Zkoe +GoeaaeaB)A (3.7.42)

per unit height of cylinder, where A is the section area and Go is a

simplified temporary notation for GTO

The fields u and GOLS in the C cylinder subjected to (3.7.39) are
determined by the formulation given in par. 3.5.1 which reduces here to a

plane strain problem. It follows from (3.5.9-12) that

=0 =
u, u, =u (xz, x3) @)
ell=elz=el3=0 , eaB=eaB(x2,x3) () (3.7.43)
c..=0.. =0

12~ %3 ¢ 9 70, 0 g=0,gk, %) (©
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We consider (3.7.9) for the present case. Here Cij represent the

kl

local phase moduli in the C cylinder and C(z - the phase moduli of the

jkl
transversely isotropic c® cylinder. Consequently (3.7.9) has the form of a

transversely isotropic stress-strain relation (see 3.4.86). In view of (3.7.43)

we have
Py = A (e +egy) @)
Pyy = k' +G") €0 + k' -G") €13 (b)
P33 = k'-G e, * k' +G'") €33 (c) (3.7.44)
Py = 2G' €3 d)
Plp TP~ 0 (€)
where

=
1l
>
i
=~
1l
>
I
=~
—
[+]]
A

(@] @]
k =k—ko=x+G—ko (b) (3.7.45)
G'=G-G_ =G-G (c)

e} To

In view of (3.7.43Db) the pij are not functions of X,

It is convenient to separate the polarization and strain components

in (3.7 .44b,c,d) into isotropic and deviatoric parts. Thus
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Pus Plas T 9qp @)
1

= L b

P=3 pw (b)

cap= 008" Cup @)
- L

¢ =3 eYY (b)

Then (3.7.44b,c,d) assumes the same form as (3.7.41c)

p=2k'e @)

an=2GleaB (b)

We now proceed to evaluate a functional of type (3.7.29).

(3.7.9b) it is seen that

Hiskr Py Pra = Py &y

(3.7.46)

(3.7.47)

(3.7.48)

In view of

Bacause of (3.7.43b) and (3.7.44e) the summation extends only over 2,3

and thus reduces to p € . Using (3.7.48) we have
aB ab

2
g op op =B 4 fadlas
ijkl "ij kI k' 2G'

From (3.7.40¢), (3.7.43) and (3.7.4) we have that

Pij €45 " Pap %as
O (@]
p €

i €4 Pap s

(3.7.49)

Again w2 separate into isotropic and deviatoric parts to find the expressions
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' =2pe' + e
pij 'ij P qaﬁ af
(3.7.50)
P eo =2beo+ eo
ij i 938 " ap

We now use (3.7.49-50) to write down the functional (3.7.29%). It is
seen that the integrands are functions of x2 ' x3 only. Therefore, volume inte-

gration can be replaced by area integration over the section A, We have

(m) (m)
(m)
€ _ € p GB 9ag
A m m

—

_ o, (m) ,(m) _ (m) ,(m)_, (m) o _ (m)
2p € dgp eaB 4p e (15 B)dA (3.7.51)
where U and er are strain energies per unit height of C and Co cylinders,
respectively, A are the phase areas, and k' and G are (3.7.45b,c) for
k = km and G = Gm' respectively. Because of (3.7.39), (3.7.40), (3.4.70)
and (3.3.26) the strain energy per unit height of C cylinder can also be

written as

2
o * o

*
= 2k ¢ *Gre g OLB)A (3.7.52)

* *
The EEM k and GT are the quantities which are to be bounded and for that purpose

we shall bound (3.7.51) by use of admissible fields.
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It is recalled that admissible polarizations pij and admissible displace-
ment deviations E', must satisfy (3.7.19). In order to incorporate as many
1

features of the actual fields as possible in the admissible fields we choose

~

13 Py =Py By %) Pys Pag &pr%y)
(3.7.53)
u) = 0 ug = un (XZ'X3)
Since Cci)jkl is, by hypothesis, transversely isotropic and because of

(3.7.53), (3.7.19a) assumes the form

g T (m) ~ (m)

~,(m) _
kouB,ch ouon,BB+pOLB,$ 0 (3.7.54)

in each phase. The :,1 differential expression in (3.7.54) has the same form as

(3.5.14), for obvious reasons.

The rest of (3.7.19) assume the form

u' =0 on C @)
Y (b)] (3.7.55)
{
« G )"‘. . (’“. +~. ) i~ frcontinuous
o o '8,8"a oMo, "B,a’ "8 Pup ! on G
int

(c)

i

It is seen that (3.7.54-55) is similar to the plane strain formulation of

par. 3.5.1. Inthe present case there are "body forces"

paﬁﬁ . Equ.(3.7.55¢)

replaces traction continuity (3.5.19) . It is seen that the first two terms in
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(3.7.55¢c) have the form of a traction expressed in terms of ?1‘; displacement
gradients. In genéral, ;aB nB is not by itself continuous at the interface
and, therefore, the "traction" is also discontinuous.

The functional (3.7.29b) can now be written down at once by replace-
ment of actual fields in (3.7.51) by admissible fields (compare (3.7.29a)

and (3.7.29b) ). We have

~ (m)~ (m)
~ (m) q._aq
~ e 1 p afaB ~(m) o
= - — + -
U Uo 5 % / ( - G 4p ¢
A
m
- Za(m) e )da+ T @)
aB “aB
(3.7.56)
T= L ~ m)~,(m)  ~ ~(m) L ~ (m) ~, (m)
v 21}%1/‘(2p ¢ +aneaB)dA 2§1 paaeaBdA(b)
Am Am
We now choose S (mB) to have different constant values in each phase.

Thus, ;aﬂ is piecewise constant in the C cylinder. Then all terms in (3.7.56)

except U'can be readily computed. Assuming now that there are two phases

we have
~ 02 o o
U—_:(2'(03 +GoeaBeaB)A_
2 2
~ (1 ~(2) ~(1) ~(1) ~(2)~(2)
_ 1_[ PV N P Y + Tap %a8V1  9qg Tagy
2 ki7kg k, =k 2(G1~GO) Z(GZ-GO)

~ o - o ~
- - + U
4p ¢ zaneGB]A U @)
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5’=S(1)v1 + 5@ v, (b) (3.7.57)
Tes ™ a(ila) v ra ey )

~

The computation of U" via the boundary value problem (3.7.54-55) for

the present choice of Sa and two phases is given in the appendix to this chapter.

]

The result is

~ 2
00 = (a6 -5 45 G070 6@ 25Uy v @
_ 1
a =~ g (b) (3.7.58)
(o] o]
k +2G
b = O Q (C)

o 4G (k _+G )
O O O

~

It is seenthat (3.7.57-58) provide an expression for U in terms of arbitrary
piecewise constant polarization components and arbitrary elastic moduli of
o)
the C cylinder.
In order to examine the present meaning of the extremum conditions

. . Vo _ 0 . .
(3.7.38) we realize that the matrix of Cijkl Cijkl C ikl is now given by

the moduli differences in(3.7.44). To examine positive or negative definite-

ness we form a strain energy type expression C!

and examine its
ijkl ij %kl

sign. Recalling that ¢.. = 0 we have from (3.7.44) and separation of ¢

11 o8

into isotropic and deviatoric parts
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c' e =2(2k'€2+ G'e

ijk1 i ki )

o1} eaB

Since all the strains appear squared, positive definiteness is ensured if,
and only if, k' and G' are non-negative while negative definiteness is
ensured if, and only if k' and G' are non-positive. Recalling the definition
of k' and G' by (3.7.45b,c) we have from (3.7.38)

~ €
> > =
U=z U ko kz > ko G+ G,z G @)

(3.7.59)

a

< <
1,k2 k Gl’GZ GO (b)

To find the best bound on U€ with the present polarization choice

we minimize U as given by (3.7.57-58) with respect to E m) and cT;ms)

when (3.7.59) is fulfilled and we maximize when (3.7.53b) is ful

41144
Li1TU .

wl

Both extremum conditions are thus found by setting the derivatives of
(3.7.57-58) with respect to polarization components equal to zero.

Thus, the common extremum condition is

= (m) ~ Z
- k,:-ko +a E™ %) +2¢%=0 @)
(3.7.60)
a5y (m)
a ~m) _ —
- 2G, =G, tho @ g "agp) Tegp= O (®)
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Computation of second derivatives of (3.7.57-58) easily shows that

(3.7.60) are maximum conditions for (3 .7.59a) and minimum conditions for

(3.7.59p).

We carry (3.7.60) back into (3.7.57-58) and obtain the simple

axpression

~ _ € 1 ~ 0 ~ o
Uext. UO +2 (2p ¢ +aneaB)A (3.7.61)

where S and &Va are the averages (3.7.57b,c) of the polarization components

B8
defined by (3.7.60). Averaging of (3.7.60) easily gives expressions of the

averages in (3.7.61). We have

';—?= —Z—A o @)
1+a04
’ O
g _Jﬁe a B
o8 1+boﬁ (b)
(3.7.62)
4 ’m
B E 1 (c)
m=112 k "k~ 'aO
m [e]
%

VP S s @

Introduction of (3.7.6c) and (3.7.42) into (3.7.61) yields
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o2 1
e 4+ (Go+§—

3 1+bOB

\

B 16 _ &°

easeas

A (3.7.63)

We now insert (3.7.52) and (3.7.63) into (3.7.59). Since e°

a,p
can always be chosen as purely isotropic (in which case e(;a = 0) or as
purely deviatoric (in which case e = 0) we have
* > A
-  —_—
K < ko 1+aoA (@)
(3.7.64)
* > 1 B
- o =
¢ 2%%2 1w B (b)

where the upper inequality signs apply for (3.7.59) and the lower inequality
signs apply for (3.7.59b). We now choose the moduli ko, GO so as to get
the best bounds from (3.7.64). lLet the right sides of (3.7.64a,b) be denoted

Fk (ko, Go) and F

o (ko, Go) respectively. If the se functions are explicitly

written out by use of (3.7.58b,c) and (3.7.62b,d), it is easily shown by
computation of first derivatives with respect to ko and Go that Fk and FG are
monotonically increasing functions of ko and Go. Therefore, to obtain the
best lower bounds in (3.7.64) we have to choose the largest phase moduli

which comply with (3.7.5%9). Assume that

>
k2 kl Gz >(;,1 (3.7.65)
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Then the best choice (3.7.59a) is

k =k G =G (3.7.66)
o) 1 o 1

Similarly, to obtain the best upper bounds from (3.7.64) we have to

choose the smallest ko, G0 which comply with (3.7.59b). This choice is

ko =Ky G, =Gy (3.7.67)

Insertion of the conditions (3.7.66-67) into (3.7.64) yields the following

bounds
* Vz
k =k. + @)
() 1 1 Y
ky7k1 ky*Gy
(3.7.68)
ok ®)
M 2 Vs
+
k1 kz k2+G2
|
G =G =q. + 2
G {5 R R I TR TN @)
+
G,-G, 2Gl(kl+G1) |
(3.7.69)
* G* . Vi )
G, = =G, + R
+ T+ 2 k +2 :
® 1 RN 3

+ :
G, -G 2G (k + i
2(2 GZ)
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It should be recalled that the bounds are based on the assumption
(3.7.65). If the inequalities (3.7.65) reverse then obviously the upper
bounds (3.7.68-69) become the lower bounds and vice versa, since the
phases appear in the bounds in a completely unbiased manner.

The present treatment does not permit the cases

kz > kl Gz < G1

< >
Koy <Ky G, 7 G,y

Such cases can be taken into account by a method given by Walpole (3.311,
but they are hardly of practical interest since materials whose elastic
properties are subject to such inequalities do not seem to exist.
It should be recalled that if the phases are isotropic then k in
(3.7.68-69) is the plane strain bulk modulus as expressed by (3.4.89c) and
G is the isotropic shear modulus. If the phases are transversely isotropic
then k is the transverse bulk modulus and G is GT' the transverse shear modulus.
We now recall the expression for k*, of a composite cylinder assemblage
and we observe the remarkable fact that (3.5.91) and (3. 7.68a) are identical.
Since (3.7.68b) may be obtained from (3.7.68a) by interchanging 1 with 2
we conclude that (3.7.68b) can also be interpreted as k* of another, reversed,
composite cylinder assemblage in which the fibers are of material 1 with

volume fraction v1 and the matrix is of material 2 with volume fraction v2 .
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Two composite cylinders belonging to the two different assemblages are
shown schematically in fig. 3.7.1.This identification of the bounds with
composite cylinder assemblage results leads to some very important conclu-
sions as will be now explained.

It is to be noted that (3.7.68a) is a lower bound for any transversely
isotropic phase geometry, thus it is also in particular a lower bound for
the composite cylinder assemblage. Let it be assumed that there exists a
better general bound, i.e. higher, than (3.7.68a) in terms of volume
fractions only. But it is clearly seen that this is impossible since kt:

would be below it. It is, therefore, concluded that (3.7.68a) is the

best possible lower bound in terms of volume fractions. It is similarly

shown by identification of (3. 7.68b) with the second, reversed, composite

cylinder assemblage result that (3.7.68Db) is the best possible upper bound

in terms of volume fractions.The bounds (3. 7.68) are called in short

best possible.

It is thus seen that if in a transversely isotropic two phase FM the
phase moduli and only the phase volume fractions are known, then this
information has been exploited to the fullest extent by the bounds (3.7.68).
Additional geometrical information is needed to improve the bounds.

This result has an important connection with statistical geometry

considerations. It has been shown in chap. 2.2 that for a statistically
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homogeneous body the volume fractions are one point probabilities. Thus,
the present bounds may be considered as the fullest exploitation possible
of this simple geometrical information.

It is of interest to note that if the phase shear moduli are equal while
the transverse bulk moduli remain unequal the bounds (3.7.68) coincide.
This is most easily seen by writing these bounds in the form (3.5.91a),

We thus have the exact result for arbitrary phase geometry

+
k* - v2 _ kz (kz G) v, +kz(k1+G) v, @
+ +
1 ) . v, (kz+G) v, (k1 G) v,
kz-kl k1+G
(3.7.70)

if

- = ' (o)
G,=G, =G kz’é‘l (b)

This has been first shown by Hill [3.5] on the basis of a direct exact field

solution for the case (3.7.70b). The result (3.7.70) can be added to the

results of par. 3.5.2 as a FM exact solution for special relations between

phase moduli. Unfortunately, the condition (3.7.70b) is not of practical interest.
At this time it is not known if (3.7.69) are best possible bounds in terms

of volume fractions, since it has not been possible to identify these bounds

with exact solutions for special phase geometry.

It is of some interest to note that for v2 <<1, v1 = 1, the bound (3.7.69a)

coincides with the dilute reinforcement result (3.5.132). For vy

e

<
1,V1< 1
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the upper bound (3.7.69b) coincides with another dilute reinforcement result,
for a small amount of circular fibers of material 1 which are imbedded in a
matrix of material 2. Thus, the lower bound is best possible for very small

v2 while the upper bound is best possible for v very close to unity.

2
It is easily shown that the bounds (3.7.68-69) are always closer

together than the elementary bounds (3.6.63b), (3.6.65). As will be seen

later, from numerical results, these new bounds are a substantial improve -

ment of the elementary bounds. However, from a practical point of view,

the bounds (3.7.68-69) by no means solve the problem of determination of

k* and Gfr , for the margin between the bounds (3.6.68-69) increases with

relative stiffness ratios of the phases, i.e. with the ratios kz/k1 and Gz/Gl’

For elevated values of these ratios the bounds may become too far apart

to provide good estimates on the EEM. This situation is not surprising for

it should be recalled that the bounds are very general results for transversely

isotropic fibrous materials, in which only the volume fractions are specified

and the geometry is otherwise arbitrary. If phase 2 is very stiff and phase 1

is very compliant the bounds must in particular apply to the cases of (a)

2 - fibers, 1 - matrix (b) 1 - fibers, 2 - matrix. It is evident that FRM (b)

is much stiffer than FRM (@) and, therefore, the bounds must be far apart.
This situation is also illustrated by the extreme cases of one rigid

phase or one empty (cylindrical voids) phase. We have
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phase 2, rigid

kz/k1 - @, Gz/Gl - @)
* . Vz
k(_)— 1+(k1+Gl)Tl— (b)
(G.7.71)
* 2(k1+G1) v,
G,,=G [ 1+ ] (c)
) 1 k,2G, v,
* o * d
“@ Sw " @
phase 2, empty
kz/kl -0, Gz/Gl -0 @)
K 0 * L0 (b)
()" G 7
(3.7.72)
* k*Gvy
k =k [ 1+ ——-—————] (c)
"1 G, Tk Y,
* 2(k1+Gl)vZ
Gh= 1 [ L- Zle2+k1(1+VZ)] @
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*
Having obtained bounds for k we can immsdiately write down bounds

*
for E:\ and VA by insertion of (3.7.68) into (3.6.66), (3.6.68) for which,
*

A
by the general relations (3.4.117) and (3.4.118). Now it is to be remembered

* *
it is recalled, the functional relations between EA + V., and k are defined
*
that (3.7.68) have been identified with kc of two different composite cylinder
assemblages and thus insertion of (3.7.68) into (3.6. 66),(3.6.68) is
* *
equivalent to the derivation of EA and \)A of composite cylinder assemblages
*
as has been done in par. 3.5.3. It is thus concluded that the resulting EA

* * *
and vA bounds are EAc and VAc for the same assemblages connected

*
with the k bounds. Accordingly, we can write down the bounds at once

by use of (3.5.96-97)

2
E* =E v, +E_v_ + 4(\)2_\)1) Vl Vz @)
A(-) 171 2 2 vl/k2+vz/kl+l/G1
(3.7.73)
4(v_-v )zv
*E* =E. v, +E_v. + 2 1172 (b)
; A(+) "1 71 T2 27 v /k .k +1/G
122" 2
-~Vv.)(1/k. =1/
v =v. v, +v v + (\)2 vl)(/kl /k2V1V2 @)
A(+) 171 2 2 vl/k2+v2/kl+l/Gl
(3.7.74)
* V=V ) (1/k, -1/k v, v
Voo 1 "2 2 1’71 72
AR =V vy +y, v, 4 v 7k, H, 7k F1/G, ()
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The bounds are valid when the conditions (3.7.65) are fulfilled. (Actually,
only the second of these is needed here). According to (3.6.68) the upper

signs in the left of (3.7.74) apply for

V179
k, ~ Ky

and the lower signs apply for

If the phases are transversely isotropic then E of the phases becomes
EA' v becomes \)A and G becomes GT.

The bounds are obviously best possible in terms of volume fractions

since, by construction, they are composite cylinder assemblage results
and at the same time bounds for arbitrary transversely isotropic phase

geometry. In contrast to (3.7.68-69) the bounds (3.7.73-74) are close

* -
together. In particular the EA bounds show that E is an excellent approximation

*
for EA of any FM or FRM.

*
With the bounds (3.7.68-69) and (3.7.73-74) , bounds for ET can now
be constructed by use of the general results (3.6. 107-108).
* *
Bounds for n and £ can be obtained in similar fashion by use of the

general relations (3.4.112). It is easily seen that if
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o h
ky ~ Ky

>0

which is the case when 2 is stiffer than 1, both n* and 1&* are monotonically
increasing linear functions of k*. Therefore an increase (decrease) of k*
produces an increase (decrease) of n* and }Z,*. Consequently, upper (lower)
bounds for n* and Z* are obtained by introduction of upper (lower) bounds

*
for k into (3.4.112). This results in

2 2
”7+)_k?+)(:2 —il) 'E(: —Zl) tno @
* 2 %1 2 " 51
(3.7.75)
AR Y27 BTN .
() (5 k, -k k, =k,

*
We now consider the axial shear modulus GA . The CO and C cylinders

are both subjected to the boundary displacements.

S_ o
u1 = ¢ 12 x2 @)
S o}
= .7.76
u, s ¥ (b) (3 )
S _
U, 0 ()

which are a special case of (3.5.4). In the transversely isotropic Co cylinder
the displacement field is of the form (3.7.76) throughout. Therefore, the strains

and stresses in the cylinder are homogeneous and are given by
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(1= e 0 0
1]

I o] 1
0 ZGoe 12 0
O q_ (o}
o u]‘ zc;oelz 0 0
0 0 0

where Go is now the axial shear modulus GAo'
¢
The strain energy Uo per unit height is

2

u f=2¢c ¢, A (3.7.77)
o) o 12

The elastic fields in the C cylinder are determined by the axial shearing

formulation of par. 3.5.1. We have from (3.5.33-34)

0 2 13
[eij] = €1y 0 0 @)
L€l3 0 O_
(3.7.78)
i [ o 2Ge,, ZGemW
| o= |2Gey, 0 0 (b)
LZGna13 0 0 ]
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where G is the phase shear modulus which assumes the values Gl' G2 in
the two phases. It follows from (3.7.9a), (3.7.78a) and the stress strain

laws of the Co and C cylinders that the polarization components are

0 2G ch 2G el3§
|
[pij]=. 2G'e,, 0 0 @)
é_ZG 613 0 0 )
(3.7.79)
G =G-G (b)
o

Consequently, we choose an admissible polarization field of the form

- ~m) ~mi | m) _(m)
0 Pilg Pi3 ' 0 "9 ™3
~m, _  ~(m) - | .(m)
[p.l]_ ] | p12 0 0 | = | TZ 0 0 | (3.7.80)
| - |
I T RS 0 |

which is constant in each phase, thus piecewise constant in the C cylinder.

Since the actual displacement field in the C cylinder is of the form
(3.5.30-31) while the displacement field in the C° cylinder has the form (3.7.76)
we conclude, by taking their difference/that the actual u',1 has the form |

u =u' (x

] T Uy Ky xg)
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Therefore u' is chosen similarly as

(3.7.81)

The functional (3.7.29b) is now computed in terms of (3.7.80-81) for two

phases. We find easily

2 2 2 2
7 e L@,
T[VJ = U € - _].; _2_______3___ v + 2 3 v _
o 2 Gl—GO 1 GZ—GO 2
-27 e A+T]' @)
2 12
where
v =f(Tz ey t T4 ¢ ) dA (b) (3.7.82)
A
= _-(@ -(2)
TyTT Ty V1T Y ©)

~ ~
and ¢.,., &

12 are derived from (3.7.81).

13

Furthermore, Eli and 'r,1 are connected by the boundary value problem

(3.7.19) which, because of (3.7.80-81), now assumes the form

2
v =
GV u) bty xg) +7) oF Ty 5 =0 @)

u. =0 on C (b)
(3.7.83)
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N c
ul } continuous (c)

~ ~

] +l
G (u n ull3n3)+'rn+Tn

onCir1
2 2 3 3

t d)
The computation of U' in (3.7.82) must now be performed by insertion
of (3.7.80) into (3.7.83) , computation of :1‘1 and subsequent computation of

(3.7.82b). The details are given in the appendix further below. The

result is

2
— [(Tél)-w‘;)) +(T(l)—'r(32))] v, v, A (3.7.84)

We now carry (3.7.84) back into (3.7.82) and thus this expression

is now given in terms of T(rzn) , 'r(;n), GO and known quantities. The rest of the
*

bounding procedure is entirely analogous to the one previously used for k and

*
GT bounding. Therefore, only a brief outline will be given: In view of

(3.6.47) the actual strain energy per unit height of C cylinder is

2

uf=2c" & a (3.7.85)
A €12 e

For the present case (3.7.38) assume the simple form

~ [
<
U U Gl,GZZG @)

(3.7.86)

(4
<
> U G» G2 Go (b)

il

Now (3.7.84) and (3.7.77) are introduced into (3.7.82). The resulting expression

for U and (3.7.85) are then introduced into (3.7.86) and then U is optimized
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with respect to 'rz(m) , 'r?fm) in order to approach Ucas closely as possible.
*
Thus are obtained bounds for GA in terms of the unknown Go' These are

optimized with respect to Go subject to the right side restrictions (3.7.86).

The result is

+
& o+t P R iy @)
A(-) 1 1 v, 1 G1(1+v2) + GZ vy
G,~G, 2G
3.7.87)
. v, ) G, v,* Gy (14v)) ®)
Gamy "G * v G G I+ +G, v
1, 2 2 1 1 V2
G,-G, 2G,
when
G2 > G, (c)

Comparison of (3.7.87a) with (3.5.111) shows that it is identical
*
to the composite cylinder assemblage GAc' Similarly, (3.7.87b) can be identified
*
with another, reversed composite cylinder assemblage GAc' (Compare , similar

* *
discussion for k and GT bounds , above). Therefore, the bounds (3.7.87) are

best possible in terms of volume fractions .

If the phases are transversely isotropic Gl ' G2 in (3.7.87) are to be

interpreted as the axial phase shear moduli.
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The margin between the bounds depends upon the ratio GZ/Gl and
in this respect their behavior is similar to that of the bounds (3.7.68-69).
For extreme cases of one rigid phase or one empty phase we obtain the

following results

phase 2, rigid

Gz/Gl - @
N 1+v

GA(—) = Gl 1—v2 (3.7.88)
*

Sam ”

phase 2, empty

G,/G, = 0
G 0 (3.7.89)
A(-) o
G* B l—v2
A(H) Gl 1+v2

The bounds (3.7.68-69), (3.7. 73-74) and (3.7.87) bracket five EEM
which completely describe the macroscopic elastic behavior of macroscopically
transversely isotropic two phase fibrous materials, when the phases are iso-
tropic or transversely isotropic. All the bounds except (3.7.69) are known to be best
possible in terms of volume fractions.

*
Bounds for ET may be obtained by use of (3.6. 108-109).
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Bounds (3.7.73-74) were derived by Hill [3.5], bounds (3.7.69),
(3.7.87) were derived by Hashin [3.13]and (3.7.68) were derived independently
in both of these references.

Hill's method of derivation is entirely different from the present one.

Its starting point is the direct proof of (3 .7.70) , from which were deduced

the bounds (3.7.68). Then the bounds (3.7.73-74) follow as was described
above. While Hill stated that the bounds are best possible he did not

actually show this. He did identify bounds with "effective moduli” of a

single composite cylinder, but the composite cylinder assemblage model is needed
to identify the bounds with effective moduli expressions of a composite material.

The bounds given here are very important results as they clearly define
the restrictions placed upon EEM by specification of volume fractions only.

By their general nature the bounds obviously also apply for FRM. If the fibers
are much stiffer than the matrix then the upper bounds (3.7. 68b) , {3.7.69b)
and (3.7.87b) are generally not useful from a practical point of view. In this
case the lower bounds are much more important since four of them coincide
with composite cylinder assemblage results and are thus in good agreement
with experimental results for circular fibers, as has been shown in par. 3.5.3.

Physical reasoning why the k* and GTI' bounds must be far apart for a
two phase material, in which one phase is very much stiffer than the other,
has been given previously. The same reasoning also applies for Gz and E;
bounds. For all of these EEM it is crucial whether the stiff phase is in the

form of matrix or fibers.
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The situation is different, however, for Ez and \;1 , for these are
defined by uniaxial loading, in which case it does not matter too much which
material is matrix and which is fibers. Thus the E:\ bounds (3.7.73) are
found to be always extremely close while the v*A bounds (3.7.74) are quite
close.

These observations will now be illustrated by some numerical examples.
Plots of some two phase bounds are shown in figs. 3.7.2 -3.7.4 for a Boron-
Aluminum fibrous material. The E; bounds have been obtained by use of
(3.6.107-108). It is seen that in the present case the bounds are fairly
close together and thus provide valuable estimates for the EEM. It should be
borne  in mind that because of the generality of the bounds they apply for
any transversely isotropic FRM with fibers of any shape.

Fig. 3.7.2 also shows, by comparison, plots of the elementary
shear modulus bounds (3.6.64).

The E; bounds are practically coincident and may for all practical
purposes be represented by E. A list of v* bounds for various volume

A

fractions is given below. It is seen that these bounds are also very close.
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; * ! *
‘2 “AR) VA()
0.2 i 0.276 0.288
0.4 i 0.249 0.263
0.6 % 0.228 % 0.240
0.8 % 0.213 0.219

It should be borne in mind that the G;, ETI‘ and G; bounds for the
present material are reasonably close since the phase stiffness ratios are not
too large. The Young's moduli ratio, for example, is }3:2/'E:1 = 5.6 for the
present material. The situation is different for such materials as Boron-Epoxy
and Glass-Epoxy in which the fibers are very much stiffer than the matrix.

As an example we consider the Glass-Epoxy material whose phase properties
are listed in table 3.6.1, par. 3.6. 1. We compute fibrous materials bounds
for vy = v, = 0.5 and compare them in the table below to the previously computed

elementary bounds, given on page 224.

Table 3.7.1
vy = v2 = 0.56
Elastic moduli in 10" psi
Lower Bound Lower Bound ’ Upper Bound Upper Bound '
Elementary Improved Improved Elementary
*
0.92 1.04 k 2.49 3.90
*
5.45 5.45 EA 5.47 5.47
*
0.210 0.221 vA 0.266 0.275
*
0.29 0.41 GA 1.59 2.26
*
0.29 0.36 GT 1.19 2.26
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The table shows that while the present bounds are a marked improvement
of the elementary bounds for k*, G; and G; . they are too far apart for the
present material to provide good estimates. On the other hand, the improved
E; bounds are excellent but are numerically the same as the elementary
bounds. The V;; improved bounds are better than the elenentary ones, but not
significantly.

The method of derivation used above to obtain bounds for two phase
FM is easily applicable for any number of cylindrical phases. Bounds for

* *

*
k , GT and GA for this case were given in [3.13]. These results are

szkrn—kl -l "l
Ky =Ky * +Gl)[~k+G vm] -1
m= m 1
(3.7.90)
-1 - -
. m=M k"kM 1 1
K. =k +(k +G )[Z v -1
+
M "M UM UM &gk G Um
-1 -1
\ 26, k. +c) (M e -g)v
G=G+111[Zmlm]_1
T(-) 1k *R2G, ed G TR G /K R2G))
(3.7.91)
k +G L ) - -1
G*=G+MMM[m Gva]_l
+ +
T (+) M 2G m kMGM/(kM 2G, )
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* { m=M Gm_Gl -1 -1
G =G 1+2 [ v ] -1
A(-) 1 et Gm+G1 m }
(3.7.92)
= - "1 —1
* =G 1+2 SN G C
Caw) G_+G. 'm ] -1
m:l m M

Here M is the number of phases, Gl' k1 are the smallest phase moduli and

G kM are the largest phase moduli.

MI
For transversely isotropic phases k is the transverse bulk modulus,
G is the transverse shear modulus in (3.7.91) and the axial shear modulus

is (3.7.92).

* *
Bounds for EA and VA cannot be obtained from (3.7. 90) by use of

the relations (3.4.117) and (3.4. 118) since these are restricted to the two phase
case. It is, however, to be expected that E remains an excellent approximation

* - *
for EA’ while v should be a fair approximation for VA'

It is not known whether or not any of the multiphase bounds is best

possible in terms of volume fractions.
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3.7.4 Bounds for Circular Fiber Reinforcement

The bounds for EEM of fibrous materials which were developed in
paragraph 3.7.3 are very general results which are valid for any fibrous
material whose phase geometry is statistically transversely isotropic and
whose phase elastic moduli and phase volume fractions are specified. Con-
sequently, the bounds are certainly also valid for transversely isotropic fiber
reinforced materials, where the fiber cross sections may be of any shape.
Furthermore, the identification of lower bounds with composite cylinder

assemblage EEM shows that this configuration is @ FRM with minimum EEM

for given phase properties and volume fractions.

It will be recalled that in the treatment of the composite cylinder assem-
blage model the EEM G;C has been bounded from above and below by
application of the principles of minimum potential energy and of minimum com-
plementary energy, (3.6.104). Since the composite cylinder assemblage has
transversely isotropic geometry, the general bounds (3.7.69) are certainly also
bounds for G*Tc and there arises the question which bounds are more restrictive ?

It may be shown (by tedious algebra) that when the fibers are stiffer than
the matrix, i.e. when condition (3.7.65) is fulfilled, the lower bound (3.7.69)
is always above the lower bound (3.6.104); therefore the latter is not needed.
On the other hand the upper bound (3.7. 69b) is below the upper bound (3.6. 104),
Consequently, optimum bounds on G;c are given by (3.7.69a) (lower) and
(3.6.104), upper. The last bound can be put into the form (3.5.113) and so

there are obtained the bounds (3.5. 113-114),
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As has been stated before, recent work by Hashin and Rosen indicates
that the upper bound (3.5. 113) may actually be the G;‘c expression for a com-
posite cylinder assemblage in which the fibers are stiffer than the matrix.

If the matrix is stiffer than the fibers it may be shown that the upper
bound (3.7.69b) is below the upper bound (3.6.104) , thus superseding the
latter, while the lower bound (3.7. 69a) is below the lower bound (3.6. 104).
Consequently, optimum bounds consist of the lower bound (3.6.104) and of the
upper (3.7.69b) . But note that according to the previous convention, where 2
was stiffer than 1, the matrix must now be denoted 2 and the fibers 1 to obtain
the upper bound from (3.7. 69). To avoid confusion let the matrix be denoted by

subscript m and the fibers by subscript f. We then have for

>
km> kf Gm Gf
2(1=-v ) v
G 1+=—-"=23%)v <G <G + L (3.7.93)
m 1-2v 4 V'f f T m 1 k +2G
m ¥ m m v
G. -G 2G &k G )'m
f m m m m

where A, (v,) is defined by (3.6.97).

It is not clear whether the arbitrary fibrous geometry bounds of par. 3.7.3
are valid bounds for regular arrays of circular fibers, such as square or hexa-
gonal arrays. It is recalled that the hexagonal array is elastically transversely
isotropic while the square array has this property with respect to axial shearing,
par. 3.4.3. But it should be remembered that the derivation of the bounds in par.
3.7.3 was based on the condition (2.2.14) which was used in (29), Appendix to
chap. 3.7. This condition implies that the phase geometry is statistically trans-
versely isotropic. Evidently, square and hexagonal arrays do not obey such a

geometrical restriction.
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On the other hand, it is empirically observed that for fibers which are stiffer than
matrix, lower arbitrary fibrous geometry bounds of par. 3.7.3 are below numerical results
for EEM of such arrays and al:ove the lower bounds (3.6.78-80) for such arrays.

Figs. 3.7.5-6 show numerical examples for G:\ of square and hexago:al arrays,
respectively. Infig. 3.7.5,the upper bound is the right side of (3.6.80) with Vo and Voe
defined by (3.6.75a) and (3.6.76), respectively. The "lower bound" is (3.7.87a). Also
shown is the numerical analysis result of ref. [3.22] for this case. Similar bounds are
shown in fig. 3.7.6 for GZ of a hexagonal array of circular fibers. The upper bound
in this case is the right side of (3.6.80) with Vg and vzcdefined by (3.6.75b), (3.6.76).
The "lower bound" is again (3.7.87a). Numerical results of ref. [3.6] are also shown
and it is seen that the lower bound is practically indistinguishable from these up to 70%
fiber volume fractioa. As the lower bound is also a composite cylinder assemblage re-
sult it is recalled that this aumerical coi.cidence has already been described in table 3.5.

The question of the validity of the arbitrary fibrous geometry bound for periodic

arrays merits further investigation.

3.7.5 Bounds for Effective Elastic Moduli: Randomly Oriented Fibers

We consider the case of a statistically homogeneous and isotropic two phase
material with isotropic phases. A particular case of this is a FRM in which the fibers
are randomly oriented, all directions being equally likely, fig. 3.4.4.

General bounds for K* and G* of statistically isotropic composites in which
only phase properties and phase volume fractions are specified have been derived in
[3.33] on the basis of the polarization extremum principles which were derived in
par. 3.7.2. The method of derivation is analogous to the one employed in par.

* *
3.7.3 to derive bounds for k and GT of FRM.
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Let the two phases be isotropic with elastic moduli K1 ’ Gland K, .G

respectively, for each phase. Also K, > K+ G

2

2
* Vz
= +
Ko™K ED
+
K, K, 3K MG,
£ . =K + !
G R T 3,
+
- +
K,-K 3K, 4G,
G . =G, + 2
- +
(-) 1 ! LG(Kl zcl) v,
G,=G, 5G1(3K1+4G1)
&t - V1
G,,= +
+ (K +
(+) 2 ] . 6(K2 ZGZ)V2
: - +
G, G, 5G, (3K, 4G,)

(b)

@)

The bounds (3.7.94) are best possible in terms of the information available.

2'72!

> Gl' The bounds are then

(3.7.94)

(3.7.95)

It is not known whether or not the bounds (3.7.95) are best possible.

The numerical margins between the bounds (3.7.94) and (3.7.95) are
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of the same order as in the case of the previously considered k* and G;
bounds (3.7.68-69). Thus in the case of not too large phase relative stiffness
such as Boron-Aluminum the bounds ( 3.7.94-95) provide good estimates.

In the case of large phase relative stiffness such as Boron-Epoxy , this is

not the case.




299

APPENDIX

Computation of ik

Establishment of the results (3.7.58) and (3.7.84) for ﬁ', for the case of
piecewise constant polarization, is not simple. The results were originally
derived in [3.13] by use of statistical methods for differential equations with
random forcing functions, the forcing functions being in this case the body
force type terms SOLB,B in (3.7.54). Subsequently, Green's function methods
where used in [3.31] to derive a related result in the case of statistically
isotropic two phase composites. The present method of derivation contains

ingredients of both methods mentioned above.

(a) U' for Transverse Bulk and Shear Modulus Bounds

We introduce the simplified notation

. =v (1)
o8 a

The polarization Sas is split into average ;aB and deviation from average TGB '

thus

+ T @)

~ ~(1) ~(2)
Peg P oY1 Pqp"a (b)

At present'ff is a general tensor. It will be taken as piecewise constant
a

)

in a later stage of the development.
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In view of (2a) the expression (3.7.56b) for U' can be written as

~_ 1 ~, 1_/ ~,
U=3 pasfeasd“z Tap Sap®® ®)

since Sa 8 is a constant tensor. Because of the boundary condition (3 .7.55a)
and the average strain theorem, the first integral on the right side of (3) vanishes.

Also, since TQB is symmetric we can rewrite (3) using notation (1) in the form

=l
v = 2 ./Tch Va,BdA @

Next, (2) is introduced into the boundary value problem (3.7.54-5 5).

Since gaB is a constant tensor in all phases it contributes neither to (3.7.54)

nor to (3.7.55¢c). Accordingly, the boundary value problem can be rewritten

as follows

k ym oL g ,m , _(m)

oVB,Ba ova,BB 'OLB,BZO ian @)

Ve =0 on C (b)
(5)

Va (c)

¥a N Tas na continuous on Cirlt (d)

v
Here Ta denotes the traction type ‘term

v
Ta= (ko h Go) VB,B na+Go (VOL,B +VB,OL) nB
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which is the usual plane elasticity traction associated with a plane displacement
field Vi

It is our purpose to construct a solution of problem (5) in terms of plane
elasticity Green's functions. In this respect it is first noted that since the
cylinder cross section A, which is bounded by C, can be taken to be of infinite
extent (in comparison to size of phase regions), the boundary condition (5b) can be
replaced by

vy 0 at infinity (6)
This replacement merely introduces the usual boundary layer effect at C which

quickly becomes insignificant at points removed from C.

Next we consider the auxiliary problem

+ + = 0
Ko Ve, Ba S Ve, BB ch @)
v, 0 at infinity (b)
(7)
v (c)
a
continuous everywhere

v

Ty d)

where Fa is some body force distribution. The solution to this problem is given by
v, (®) = fGOLB (x,x") Fg (x') dx’ (8)

where GOLS is the Green's tensor whose functional form will be disc ussed below,
dx' is the aresa element
dx' =dx’ dx!
= 2 3
and the integral extends over infinite two dimensional x' space. Similar notation for

integrals will be employed from now on: all elements of area shall be written in the

above form with all integrations extending over infinite two dimensional space.
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If we now compare problem (5) (with (5b) replaced by (6) ) with problem (7)

(m)
aB,B’

but there is a fundamental difference between (5d) and (7d). For simplicity

we see that the body force distribution Fa can be simply replaced by T

the case of two phases is considered; then (5d) can be written as

v \%
1@ Lo ) e)

a a aB ad 2 onC )

)“a 12

2
where n( ) is the normal pointing outward from R2 . From now on this normal

]
is taken as positive and is simply written n, for the interface.

g
The traction discontinuity (9) can be interpreted as a body force layer
in the interface whose resultant per unit interface area is given by the right

side of (9), [3.27). Accordingly, from (8), the displacement due to this

body force is

P ' l
' ® = [ eptex ) g )n as (10)
€12

)

where )_c'lflenotes interface points , n is the interface normal (outward to Rz
Y

and ds is element of arc of C12 . Therefore,the total displacement v, in (5)

which is produced by volume and interface body forces is

x') dx' (11)

VCL (&) = lzva(é) + GCLB (KIZ{_') TB'YI'Y

where the integral extends over all phase regions. The integrand may be

rewritten as
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Cap "By.y - Cap oy ).y Cab.y By

Application of the plane divergence theorem brings the integral of the first

term into the form

oy @) )
JANEIVENL S Gp ey gl g n ds )
© i3

[= -]

It may be shown on the basis of the functional form of Ga and the fact

B

that the average of Ts vanishes , (2), that the integral over C , the boundary
'Y (o]
at infinity, vanishes. Thus introduction of the preceding results and of (10)

into (11) cancels the interface contribution and brings the solution of (5)

into the form
= ———6—— 1 ] ]
vy (>_t)—-_[ax.Y [GOLB (zs,z)]'rsy(ﬁ)dz (13)

Equ. (13) provides a formal solution for Ve for a given distribution TOLB provided
that (13) goes to zero at infinity in order to comply with (6). Expression (4)
is now known in principle; actual computation, however, is not simple.
We proceed by first obtaining the Green's tensor GaB for the present case.
The simplest way of doing this is to obtain its Fourier Transform (FT) by use of (7).
We define the two dimensional FT of a function ¢ in the form
LK x_ +K_x)

2 [+~ [¢+] (
A 1 272 33
K K = —_—
o ( 5 3) (211) f /cp(xz,xs)e dx, dx,

where L =./-1 . In simplified notation
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2
F o) =3 )= (57) [olx) e Eax @)
(14)
o (x)= Sow T Eg (b)

where (b) is the inversion of @).

The FT of derivatives is given by

}' (cp,a)=—uca$ (15)

provided that ¢ vanishes at infinityl[B .32] . Accordingly, the FT of (9) is

given by
IS 2 A A
K K + K - =
ko a BVB Go Ve Fa 0 @)
(16)
2 2 2
K" =K K =K K
a a 2 * 3 (b)
Solving for Vo we have
8 K K
3=<1 a5 aﬁ)f, -
+
a G, 2 Go(ko GO) K4 B

Inversion of (17) by use of the convolution theorem for FT, [3.32], yields
v, (x) = fGaB (x -x') Pa (x') ax’ (18)

where GOLB (x) is the FT inverse of the parenthesis in (18). Accordingly

PN 5.8 k, kK
aB =" G 2 G (k+G) 2 (19)
o K o o o K
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The Green's tensor Gaﬂ can now be found by inversion, but it will not be

needed for subsequent development. It is seen that (18) is a reproduction
(indeed a proof) of (8) and shows that the argument of the Green's tensor

in the integrand is x - x'. It follows from (18) and (13) that

2
= a_ = e _._a_._ -y ! ] ]
Va,B (x) = axa Vq ./.Bxsax'Y [Ga6(§ ﬁ)]Téy (x) dx'  0)

We introduce the variable

X-x'=r

@21)
Consequently
3 d
dx'_ dr @)
a a
3 _ >
e & e
a. a
d 1 = 1 LI ] | J—
b4 dx2 dx3 dr2 dr3 dr (©)
Introducing (21-22) into (20) we have
a2
v gm = f (a0 7y famo) 23)

2
~' _ 1 a _
Ut = E'faraarY Gt (5){_/"&3(&) Ts (D dz} . (24)
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Equ.(24) formally determines U' for any choice of ’Tas, but the integral may
be extremely difficult to evaluate.

We consider the case of a two phase material and piecewise constant

paa. Then
~(1) _
paB const, in Rl
P.g - 25)
P 8 = const, in R2
and from (2)
(1 _ ~(1) _~(@) :
TG.B (E;G,B QB ) 2 1n Rl
Taﬁz (26)
@) _ ~@2) _~(1) .
TaB (pa_ﬁ paB)Vl n RZ
~ _~(1) ~(2)
Pos paBV1+paBV2 @7
Consider the two point correlation integral
Ppys &) =T og )7 | (x+r)ax 28)

For any X, T8 (x) assumes only either one of the values given in (26), the

same being true of T 5 (x +r). The integrand can thus assume the values

v
(1) (1) (1) _@) @) _(1) _@) _@) . .
T a8 T'\(5 ' T(IB T\(é ’ TQB TYél TGB TY5 only, according to the phases in

which the points x and x +r are situated. In terms of the two point

probability functions (2.2.8) of chap. 2.2 which have the form (2.2. 14) because

of statistical transverse isotropy, the integral (28) can be written as
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(1) +B) p (1) (2)
Pabys (D)= lrogm s Py O+ g T Py OF
@ _@ ) (2)
2@ e el B, 00 29)

This shows that

Pa5y6 () = PaByé (r) (30)

where r is the magnitude of r . It will be seen that this fact alone will enable
us to evaluate (24).

It follows from (28) that (24) can be written in the form

2
~ 1 / a A
= ——————— K K
=2 '7’[ar . Gaé(;)] B oo (8)aK 31)
B vy
By the rule (16) for FT of derivatives we have

& A

F [araarY Gos (i)] ="K KyGaé(ﬁ) (32)

Also, because of (30)

A A

(k) =PaBy6

PMW5 k (k) (33)

where K is given by (17b). Introducing (33), (32) and (20) into (31) we have

K K k K K K K

~,__ 1 a B » aBy_
2U0'= Gof Kz P a(K)dK+ (k+G)_/ PBY (k) dk

(34)
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We now introduce polar coordinates in K space i.e.

K =Kcos @

2
(35)
K3 =K sin 6
and integrate (34) over an infinite circle. Then, since ﬁaﬁ 5 is a function of k
Y
only, the angular integration can be carried out. The result is
k - k_+2G_ .
2~' = — P K KdK ~ ——————— K KdK
U=t (k+G)faaaﬂ()2”d 4G (k+G)fPaaaB()2”d
oo o o o o
0 o)
(36)
Now, from the FT inversion theorem (14b) we have
A =LK or
= K — = 4K
Pupys ()= f B s ()™ Fax @)
(37)
P o= P (x)ax
= K
aBys © aBys = 9% (®)
Because of (33), (37b) reduces to
= [ p Kk K dKk
PaByé(o) f Paﬁyé (KYy2mk 4 (38)
o)
We have from (38), (28) and (26)
P =
w5y6@ 7 [T )
39)

L0 @

B Ty V1 Tag T 5Vl R




309

Note that (39) also follows from (29) and from (2.2.10), chap. 2. Insertion

of (38, 39) in terms of (26) into (36) yields

k,
= _ 50 ~@) ~(1)
2U’= [8G k_ Ge ) (p pwh 35)5
(40)
k_+2G
e (505 W) () 50
1G_k_*G_) (Pp~Pap) (P as)] Vivp A

If the polarization components in (40) are separated into isotropic and deviatoric

parts according to (3.7.46), the result (3.7.58) follows at once.

(b) T' for Axial Shear Modulus Bound

The method is entirely the same as the one previously employed. The
boundary value problem is now (3.7.83) and U' is defined by (3.7.82b).
use the notation

r;-l =y @1)

and we split the polarization vector Ton into average and deviation, thus

T =T +71' (42)
a a  a

Then (3.7.82Db) assumes the form

ﬁ'=f'r‘ ¢, dx (43)
a 'a

and the boundary value problem (3.7.83) becomes
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In analogy to (13) the solution may be written as

i) == f s - 2] T () dx

3x'
a

where H is the Green's function which solves the problem

GO‘\72¢I (x)+F(x)=0

¥ -» 0 at infinity

o)
v, 3 : continuous everywhere,

in the form

v (x) =fH(§—>_<') F (x') dx'

The FT of H is easily shown to be

continuous at Cin

(@)

(b)

()

(44)

(46)

@7)

@48)
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Proceeding now just as in the derivation of (24) we find

2
o 3 . '
U —/WH(L){/TQ(é)TB(E'L)dK} dr

Next for piecewise constant polarization we have

(1)

('rOL -'r((zx)) v, in R

1

T.s (r) =./-T;x (x) 'r'a (§+_£)d§=Taa(r)

Proceeding as previously the analogue of (32) becomes

2
™o ) A .
v /f[ara_ars B | B e

which leads in view of (48) and (16) to

_ ) KKy,
U'=s = — _a—T (KI)d_K_
G 2 aB

(o] K

(49)

(51)

(52)

(53)

Introducing now the polar coordinates (35) and carrying out the angular integration,

(53) becomes

~ 1 A 1

' = o a KdK = = ——r
U G f T o (k) 2mkd ZGO T oo (o)
o}

(54)
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where a relation of type (38) has been used. Then from (£0-51) and (54)

T = - _Zéo @y @0y A (55)

which is the result (3.7.84)
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3.8 FIBER EMBEDDING APPROXIMATION

We have so far considered only rigorous methods of prediction of EEM
of FRM. Many approximate treatments can be found in the literature. Discus-
sion of all of these is certainly not within the scope of the present work.

In view of the respectable available number of rigorous theoretical results,
and their good agreement with experiments, it has also to be questioned

whether such approximations serve much useful purpose.

We shall here be concerned with only one method of approximation
which is often called the "self consistent scheme." This method is here
called: fiber embedding approximation (FEA) since it is believed that this
name is more descriptive.

The method has been applied in different ways and with different end
results by Hill [3.21] and Hermans [3.34]. The FEA will here be generalized
so as to include the previous two different approaches as special cases. The
present treatment is similar to one given by Hashin [3.35], for particulate
composites.

Let a transversely isotropic FRM with circular fibers be subjected to the

usual homogeneous displacement boundary conditions (3.3.1). By the results
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of par. 3.4.6 we know that it is sufficient to determine strain averages in one
phase, which is here chosen as the fibers, in order to compute EEM. The FEA
may be interpreted as a method by which the strain averages in the fibers are
estimated and are then used in the general EEM expressions which were
derived in par. 3.4.6.

For illustrative purposes we consider first the problem of computation
of the effective transverse bulk modulus k*., Appropriate homogeneous displace-
ment boundary conditions on a cylindrical specimen are (3.4.59), which are here

rewritten

S) = k., (3.8.1)

2 Y3 3
A typical fiber of radius a is imagined to be surrounded by a concentric

cylindrical surface of radius b, which lies wholly in the matrix and does not

include any other fiber. There has thus been formed a composite cylinder of

radii a and b. The fundamental approximation to be introduced now is that the

composite material outside the composite cylinder is replaced by a homogeneous

transversely isotropic material whose elastic moduli are the EEM of the composite.
Before we proceed further it is worthwhile to examine this fundamental approxi-
mation. It is recalled that the concept of EEM is based on averages taken over
RVE which must necessarily contain many fibers. The present approximation
departs rather severely from this concept in that the immediate vicinity of one
composite cylinder is replaced by an equivalent homogeneous material. This

can certainly not be correct. All that can be said about this immediate vicinity is

that the elastic moduli assume erratically either fiber or matrix values.
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Bearing all this in mind we proceed with the development. The boundary
conditions (3.8.1) are applied at a distance R >> a,b from the composite
cylinder center, fig. 3.8.1, and at the interfaces r = a,b the usual displace-
ment and traction continuity conditions must be fulfilled. Thus there has been
formulated a well defined elasticity boundary value problem of a three layer
composite cylinder which enables us to compute the strains in the fiber,

The solution of this problem is very similar to that of the two layer compo-
site cylinder which was considered in par. 3.5,3 and the solutions in all layers
are again of the form (3.5.73). Instead of solving the boundary value problem
to find the strain in the fiber, we shall develop a different method of solution,
We recall from par. 3.5.3 that a composite cylinder behaves as a homogeneous

cylinder with apparent transverse bulk modulus given by (3.5.80). Denote

(a/lo)2 =V, (3.8.2)

and denote the function on the right side of (3.5.80) by kc (vzc) . Thus

kl(kz +G1)(l—v ) +k, (k +Gl) Voo

2C 21
(k,+ Gl)(l-v

(3.8.3)
(k +G1) Voo

kc (VZC) - 1

+
2 Zc)

Then the inner composite cylinder is replaced by a homogeneous cylinder with

1
transverse bulk modulus k (v. ). The strain ¢ = — (e._.+e__) in this equivalent
c 2c 2 2 33

2

cylinder is the average strain in the composite cylinder and is denoted ;c'

Such a problem has been solved in par. 3.5.4 in conjunction with dilute
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reinforcement theory, the pertinent result being (3.5.124). In the present
interpretation and by the first isotropy-transverse isotropy analogy, par. 3.5.1
we have
* *
k +G

P W (3.8.4)

C k t,)tG,
c VZc GT
* *
where k and GT are the unknown EEM of the FRM.
The displacement of the surface of the inner composite cylinder is
radial and is given by

uc(b) = e:cb

To find the strain in the fiber we consider the problem of the inner composite
cylinder with this boundary condition. This has been solved in par. 3.5.3 but
again we use a different approach. We apply (3.4.123) to the composite

cylinder. Consequently

k &

c Zc)zk * kymky)

v (3.8.5)

where Ec is the average strain in the fiber. From (3.8.5)and (3.8.3)

* *
-@) kC(VZC)—k1 k +GT 0
¢ = A - (3.8.6)
2~ %1 k . )+G.. Vac
c 2c T
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The same computation can be carried out for any fiber and as long as

a/b is always the same the result (3.8.6) remains the same. Thus (3.8.6) is

the average strain in all fibers.
Finally we use the estimate (3.8.6) in the general equation (3.4.123)
for the FRM. We then have

k* *

+ G \Y

* T 2

= + - .
ko =k + Ik v, ) -k, ] = (3.8.7)
T

k (v ) Vac

where v2 is the fibers volume fraction relative to the composite. It is seen

* *
that (6.8.7) involves both k and GT and is thus not in general sufficient to

* *
determine either one of them. Another equation which involves both k and GT
*
is thus needed. This will be discussed later below. It is also noted that k

*
and GT in (3.8.7) are both functions of vzc which is not known and can be chosen

in many ways. Thus vZC has to be regarded as some unknown parameter of

uncertain status.

In Hill's [3.21] approach it is assumed that

vzc=1 (3.8.8)

Because of (3.8.2) this implies that the fiber is directly imbedded in the
equivalent composite without an intermediate matrix shell. Since by (3.5.80)
1) =
kg (1) k,

we have from (3.8.7)
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. k') + G ()
T
k (1) = ky + (kz-kl) v (3.8.9)

rar @ 2
kZ T

which is in agreement with Hill's result.
On the other hand Hermans [3.34 ] assumed

= L 'l
Voo = Vs (3.8.10)

This implies that the fiber and matrix volume fractions in the composite cylinder

are the same as in the FRM. If (3.8.10) is introduced into (3.8.7) it is easily

*

shown after some algebra that without regard to the value of GT ’

)=kc «.) (3.8.11)

In view of (3.8.3), (3.8.11) implies that in this case the FEA predicts the

composite cylinder assemblage results (3.5.80), (3.5.91).

*
Next we consider the effective axial Young's modulus EA and Poisson's

*
ratio v, on the basis of the FEA, Hill [3.21]) who assumed (3.8.8), showed

* * *
that in that case his general relations between k , EA and VA , (3.4.117),

(3.4.118), remained valid for the FEA predicted results. It is not difficult to

*
show by his reasoning that the relations are also valid for E

*
A and \)A predicted

by the present generalized FEA., Therefore we have

2
* 4(\)2 -vl)

- Vl V2 1
= + -
E, (Vzc) E+ 1/|<1..1/k2 [ 5 X s : ] (3.8.12)
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* A B W St Rl L'
* k, -k
27" K ) 2~ "1

(3.8.13)

*
where k (Vzc) is given by (3.8.7). It is seen that (3.8.12-13) are functions of

*
v, whose value has to be assumed and of GT, (vzc) which is not yet known.

2c
If (3.8.8) is assumed we obtain Hill's results. If (3.8.10) is assumed we
obviously obtain the composite cylinder assemblage results (3.5.96-97),
since in that event k*(ch) reduces to (3.5.91),
The problem of G; is more difficult, though the principle of the method
is the same as in the case of k*. The three layered cylinder, fig. 3.8.1, is

*
now subjected to the boundary conditions (3.4.13) . Then GT is given by

(3.4.15) or by (3.4.125), the latter being more convenient for our purposes.

2)

93 in the fiber and for

It is seen that it is now necessary to find the strain ¢
this purpose it is necessary to solve the elasticity problem of the three layered
cylinder under boundary conditions (3.4.13) with the usual traction and
displacement continuity conditions at the interfaces r =a,b. The solution

to this problem is of the general form (3.6.85) , par. 3.6.4 which was there
utilized for the problem of a two laysr composite cylinder. There are here
three different solutions for the equivalent material, matrix shell and fiber
respectively. These involve eight arbitrary constants which are defined by a
system of eight linear equations in eight unknowns. Analytical solution of the
problem has not yet been carried out and we can therefore not establish here a

*
relation of type (3.8.7) for GT as a function of any v Instead, we shall

2¢’
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consider only the special cases (3.8.8) and (3.8.10). In the first case the
fiber is directly imbedded in the equivalent material and there is no matrix
shell. In that event the solution for a single fiber in a large cylinder which
has been given in par. 3.5.4 for dilute reinforcement is immediatel y applicable
here. We have from (3.5.133) and the first isotropy - transverse isotropy

analogy, par. 3.5.1

* *
_2) k() +Gy ()

23

=2 € (3.8.14)

*l+ * *(1)] /*(1)
+

k (1) + [k () +2G, G,/G

Insertion of (3.8.14) into (3.4.125) gives

* * 1
k() +Gq ()

*
1) = + -
6T =G, +2(,°G,)

= - — v (3.8.15)
k () + [k (1) +2GT(1)]GZ/GT(1)

This is equivalent to the result obtained by Hill [3.21]. Egns. (3.8.9) and
(3.8.15) determine the unknowns k* (1) and G; (1).

Analysis on the basis of the assumption (3.8.10) has been attempted
by Hermans [3.34]. The continuity conditions at r = b, in the three layer
cylinder problem have, however, been disregarded in his analysis and the
meaning of his result in the frame of the FEA is therefore not clear. It is a
curious fact that Hermans' G,:l‘ result is the same as the general fibrous mater-

ial lower bound (3.7.69a). The reason for this is hot known to the writer.
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It thus appears that at the present time (3.8.15) is the only available
FEA result for G*T.

Finally we consider the axial effective shear modulus GZ. To obtain
a FEA for this modulus we can utilize the same method which led to the
expression (3.8.7) for k*. For this purpose we make use of eqns. (3.4.124),
(3.5.111), (3.5.130) and (3.5.106). We dispense with the details and give

only the final result

G W.)-G v
* *
¢ w. )=G +26 W, )—o2c L . _2 (3.8.16)
A2 1 A" 2¢ G )+G*(v ) 2¢c
c 2c A 2c
where
G,(l-v, )+G, (1+v,_ )
G W 1 __2c 2 2¢ (3.8.17)

c 2c 1 G1(1+ch) Gz(l VZc)

*

It is seen that (3.8.16) directly determines GA (vzc) as the solution of a

quadratic. In the special case (3.8.8) we obtain
2 1) - 2G (1 )
GA()- GA()(GZ G1 v

-vl) -G Gl=0 (3.8.18)

2 2
which is equivalent to Hill's result. Inthe special case (3.8.10) we obtain

G Ww)=G ) (3.8.19)

which because of (3.8.17) implies that (3.8.19) is the composite cylinder

assemblage result, (3.5.111). This again agrees with the result obtained

in [3.34].
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We shall now attempt to assess the importance of the FEA method on the
basis of the results which were obtained above. It is recalled that only in the
special case (3.8.8) is a complete set of FEA expressions available. They are,
however, not convenient results from the computational point of view, since

* *
k and G,, must first be obtained by solution of the two simultaneous

T
equations (3.8.9) and (3.8.15).

It has been shown by Hill [3.21] that his FEA results, which are based
on the assumption (3.8.8), are always bracketed by the general fibrous
material bounds which were given in par. 3.7.3. It can moreover be shown
that if the bounds and Hill's FEA results for any EEM are plotted as function
of fiber volume fraction the FEA result starts out tangent to the lower bound
and terminates tangent to the upper bound. A schematic example is shown in
_fig. 3.8.2. Since for the stiff fibers and soft matrix which are used in practice
the upper bounds are much higher than the actual values of EEM, as has been
explained in par. 3.7.3, it follows that for that case Hill's FEA results also
considerably overestimate the EEM values for appreciable fiber volume fractions
(50% - 70%) as used in practice.

In the event of a FRM in which the fiber to matrix stiffness ratios
are not too high(e.g. metal fibers in different metal matrix) the general fibrous

material bounds may become quite close. But in that event the FEA is not

needed, since the bounds themselves provide good estimates.
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As has been shown above the FEA in Hermans' version, which is based
on (3.8.10) does not provide new information since in four cases his expressions
reduce to the composite cylinder assemblage results, which are also general
fibrous material lower bounds, and in the fifth case (G*T ) the result appears to be
incorrect. But it would seem that the composite cylinder assemblage inter—
pretation of the results is much preferable to their FEA interpretation, since
the former is based on rigorous analysis of a model while the latter is based
on an approximation of uncertain validity.

Neither of the assumptions (3.8.8) or (3.8.10) has fundamental signifi-
cance, since as has been pointed out the FEA can be carried out for any value
of Vzc. (It is most likely, however, that vzc must be bracketed between the
values (3.8.8) and (3.8.10), compare [3.35] ). Accordingly there exists an
infinity of FEA predictions and it is not clear why any of these should be
preferred to another.

It may therefore be concluded that the FEA is a method of quite limited

value and that available results which are based on rigorous analyses of FRM

models are much to be preferred.



324

3.9 COMMENTS ON MACRO-MECHANICS OF COMPOSITES

In all of the preceding treatment we have been solely concerned with
effective elastic moduli of composites. It is recalled that EEM are defined
by linearity relations between stress and strain averages of statistically
homogeneous fields of stress and strain, and it should be emphasized that
such fields are an exception rather than a rule in heterogeneous media.

This may be better understood if it is pointed out that a SH field in a SH

body is the statistical generalization of a homogeneous field in a homogeneous
body. In homogeneous elastic bodies, homogeneous fields of stress and
strain arise only in the case of homogeneous boundary conditions in static
conditions. In all other cases, and in particular in all dynamic cases, the
fields of stress and strain are non-homogeneous, i.e. space variable.

The statistical generalization of a non-homogeneous field is a
statistically non-homogeneous (SNH) field. Such fields no longer have the
property that body averages are equal to RVE averages.(See fig. 3.2.3).

Simple examples of SNH fields are internal stress and strain fields in hetero-
geneous cylinders in torsion or bending and in vibrating heterogeneous cylinders.

Now the chief interest of the engineer in prediction of EEM or other
effective physical properties is to use them in the analysis of structures or
parts which are made of composite materials. Since, as has been pointed out,
the stress and strain fields in such structures and parts are mostly SNH,
there apparently arises a difficulty in the practical use of EEM. A general

approach to the problems mentionéd would consist of efforts to establish
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macroscopic equations of composites in terms of some average quantities
which would describe the behavior of the composite in some global sense.
This is at present an active research area and a definitive theory does not
seem to be available at the present time. It is possible that
macroscopic continuum equations of a composite are of multipolar type.
For examples of such investigations the reader is referred e.g. to (3.36-371] .
Here we shall only give some simple analytical reasoning with the aim of
providing some justification for use of classical equations in terms of the
effective elastic moduli.

Consider a composite body whose phase geometry is SH. The fields of
strain and stress in the body are, however, SNH. We choose a RVE as
previously defined which has some specified shape, e.g. a cube. The position
of the RVE is determined by the position vector x from the body coordinate
system to a specified point, e.g. the centroid, in the RVE. The RVE may be
located at any place in the body, its sides remaining parallel to the body's
coordinate plan2s. Then the position vector x may cover all points within
the composite.

Within the RVE in any position define a local coordinate system yi whose
origin is the end point of the position vector x. Consider the average of displace-

ments taken over RVE. These are given by

1 (*)
v /oy (x +y)dy

A 3.9.1)

ai (x) = <

dy = dy1 dyz dy3

*) Such an average is sometimes called a moving average, since it may be imagined
that the RVE moves throughout the body with the average being taken instantaneously.
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where V' is the RVE volume. It is assumed that the average is a continuous
function of x. The displacement ui (x +y) is called the micro-displacement
while the average Ei(§) is called the macro-displacement. Similar averages
can of course be written down for any quantity.

Next consider the gradient of 1_11(>_<). We have

) ] du, (x+z) 1 du(x+y)
v'

7 i

) ui x+y)
9 yj
may be called the micro-gradient. Equ. (3.9.2) states that the macro-gradient

The left side of (3.9.2) may be called the macro-gradient while

is the average of the micro-gradient. Analogously, we define a macro-strain by

du (x) 3du, (x)

_ 1 i j
(&)—2( ij + 5%, ) (3.9.3)

ij

™

and a micro-strain by

aui(g +y) 3u (x+y

1 i ;
+ | J—
ei]. (x+y 5 ( ayj + ayi ) (3.9.4)

It follows from (3.9.3-4) that

_ 1
eij(g)— 7 eij (x +y)dy (3.9.5)
vl

which implies that the macro-strain is the average of the micro-strain.
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We define macro-stresses and macro-body forces by

(3.9.6)

Averaging of the equilibrium equations for micro-stresses

9 +
Gij (x+y)

>
Yy

+Fi(§+y_)=0

as done in (3.9.2), easily yields similar equilibrium equations for macro-
stresses. Thus

30,. (x) -
—3 +F(x)=0 3.9.7)
9 X, i
)

All results derived up to now are exact. It is our purpose now to establish
differential equations for the macro-displacements L-li . The simplest approach
that we can take is to assume that the stresses and strains in any RVE may be
considered to be statistically homogeneous. Note carefully that this does not
imply that stresses and strains are SH throughout the body, since the averages
over RVE vary with position,

The assumption made is certainly reasonable when the space variation
of RVE averages, e.g. of macro-stresses and macro-strains is not drastic through

typical RVE dimensions. If this assumption is adopted we can write down the

macro-stress-strain relation
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* -

5 (%) =Gl 5y () 3.9.8)

*
where C, . are the usual EEM.
ijkl
It is now seen that equs. (3.9.3), (3.9.7-8) have just the form of the
usual elasticity equation of par. 3.2.1. Indeed, substitution of (3) into (8)

and substitution of the resulting macro-stresses into (7) yields

* -

+F = .9.
Ciki %,y TE 70 (3.9.9)

which are of the form of the classical elasticity equations, (3.2.13).
Boundary conditions for Gi are obtained by performance of the average
(3.9.1) over RVE's near the boundary, thus in a boundary layer. It is

intuitively plausible that actual deterministic boundary conditions

u,(S) = uo, on S
i i u

(3.9.10)
T, (S) = To. on S
i i T

prescribed over the surface of the composite, can be approximated by specification

of the boundary layer conditions

u,(8) = u’

! (3.9.11)
T (8) =T1°
1 1

where overbars denote local RVE averages. This completes the mathematical

formulation of the problem for the determination of the macro-displacements u (x).
‘£
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It is recalled that the crucial assumption used is contained in equ. (3.9.8).
More complicated theories can presumably be established by generalization of
(3.9.8).

Since the present theory is completely analogous to classical elasticity

theory it is immediately concluded that all classical static elasticity solutions,

and also elastic strength of materials results, generate similar results for macro-

displacements, strains and stresses as defined here, simply by replacement of

homogeneous elastic moduli by effective moduli,

The present theory may be called the first approximation to macro-

elasticity theory of composites. The writer believes that on the basis of
our experience with composite structures and parts it should provide reasonably
accurate answers for most elastostatic problems of composite bodies.

To give an example for the first approximation consider the deflection
of a uniaxially fiber reinforced beam under transverse central concentrated load,
with the fibers in beam axis direction. For a homogeneous transversely

isotropic beam

A
where
p - load
I —moment of inertia
L - span
EA - axial Young's modulus

8 - deflection under load.
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*
If the beam is fiber reinforced with effective axial Young's modulus EA' then

according to the first approximation

PZS
4 *
8EAI

§ =

Note that the last result is based on an Euler-Bernoulli assumption
for macro-displacements.

Similarly, all static solutions for homogeneous structures may now be
interpreted as first approximation solutions for structures made of composite
materials, simply by replacement of the elastic moduli in the classical
results by effective elastic moduli.

Establishment of a similar first order approximation for elasto-dynamics
of composites, in general, and of FRM, in particular, is not so simple and
straightforward. It has proved possible to derive such a theory for two phase
materials. The resulting macro-differential equations are similar to classical
equation of elastodynamics and contain in their coefficiénts static EEM
and effective densities which are not the average densities, (to be published).

The problem of dispersion of elastic waves due to material
heterogeneity is at present an active research area. For examples

of such work the reader is referred to [3.37-38).
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3.10 BIAXIAL AND MULTIAXIAL FIBER REINFORCEMENT: LAMINATES

3.10.1 Introdhction

Elastic analyses of conventional uniaxial FRM which were given in
preceding chapters, as well as experimental results, show that stiffness

in fiber direction can be much larger than stiffness in transverse direction.

To give an example we consider the ratio EZ/EE‘H) on the basis of the
numerical results given in tables 3.2-4, For v1 = v2 = 0.5 we obtain for

glass/epoxy, boron/epoxy and boron/aluminum the values 3.64, 17.70 and
1.55, respectively, for this ratio. It is seen that the ratio is largest for
boron/epoxy the reason being, of course, that this material has the largest
phase stiffness ratio of the three FRM considered.

A similar even more pronounced difference exists between strengths
in éxial and transverse directions.

These anisotropic stiffness and strength properties lead to important
engineering conclusions. Evidently, the uniaxial FRM is a suitable mate-
rial for structural memi)ers which are predominantly uniaxially stressed;
thus for structural members subject to axial forces and bending in one plane.
Such structural members are bars, struts, beams, frames and rings. On the
other hand, plate and shell structures are subjected to forces and moments

in all directions within their surfaces and thus uniaxial reinforcement is not
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suitable, for it is liable to expose the weak transverse direction of the
material to unbearable stresses. (It should be borne in mind that a
material as boron/aluminum is less limited in this respect.) For such
structures it is therefore advantageous to employ fiber reinforcement in

more than one direction. This is usually done by construction of FRM
which consist of parallel uniaxially reinforced layers. Fig. 3.10.la shows
a biaxially reinforced material in which the angle of reinforcement alternates
from layer to layer. Triaxially and multiaxially reinforced materials may

be constructed in similar fashion.

It is necessary to distinguish between two fundamentally different
cases. In the first case, each layer contains only one or two planar
sets of fibers, fig. 3.10.l1b. Such a material must be considered as a
three dimensional fiber reinforced material. Its analysis is exceedingly
difficult and is at the present time an open subject. Methods of analysis
for uniaxial FRM which were discussed in preceding chapters are not
applicable,

In the second case, each layer contains many uniaxially oriented
fibers, fig. 3.10.lc, and therefore the layer itself may be considered as
a uniaxial FRM whose properties were discussed in preceding chapters.
There is therefore introduced the fundamental approximation that each

layer may be replaced by a homogeneous material whose elastic moduli

are the EEM of the uniaxial FRM. If this approximation is accepted,

the theory of biaxially (or multiaxially) reinforced plates and shells
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reduces at once to theory of laminated plates and shells in which the

laminae or layers are anisotropic.

3.10.2 Laminae Stress-Strain Relations

Since the elastic axes of the laminae are differently oriented, it
is necessary to refer their elastic properties to one common coordinate
system. Taking as an example the biaxial laminate(*), it is advantageous
to refer the elastic properties of a layer or lamina to a cartesian coordi-
nate system one of whose axes is perpendicular to the layer surface while
the other two axes bisect the angles produced by the alternating directions
of reinforcement, fig. 3.10.2. In the case of a plate this is the coordinate
system to which the entire laminated plate is referred. In the case of a
shell the coordinate system described defines the local directions of a
curvilinear system one of whose surfaces is the shell surface.

Let it be assumed that the laminae are made of the same FRM which
is transversely isotropic around its fiber direction. The fixed coordinate sys-
tem to which the biaxial material is referred is denoted X, x2 Xqs the mate-
rial coordinate system of layers with reinforcement angle 6 is denoted x' x' x!

1 2 3

and the corresponding coordinate system of layers with reinforcement angle

*
( )Such a laminate is sometimes called: angle-ply. In the special case of
perpendicular fiber directions it is called: cross-ply.
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-0 is denoted x"l x"z x"3 . In these layers x'l, x"1

fiber direction, fig. 3.10.2.

are in respective

The elastic moduli of the laminae, referred to their material coordi-
nate systems, are by hypothesis the effective elastic moduli of the same

It is necessary to

transversely isotropic FRM and are denoted Cijkz'
transform these moduli to the Xy xz x3 system. The transformed moduli
: 1 1 ] 111 1t " L [1]
in the X) x2 x3 and xl x2 x3 systems are denoted Cijklland C ik 2
respectively.

By the laws of tensor transformation

Cn, =2 4. 4 1 C (a)

ijk £ ip "jq “kr 7 gs Tpgrs (3.10.1)
Cn —_ zu zn I/u 4@“ C (b)

ijk 4 ip “jg “kr “4s “pqrs

where L'ij and /&'ij are the sets of direction cosines which define the

position of the x'l x'2 xé and x"l x"2 X" system. The relative position of
3

these systems are defined by rotations of 6 and -8, respectively, in the

X, X_ plane. Therefore,

172
[cos @ sing 0
/z'ij = | -sin® cosé 0 (a)
0 0 0
B (3.10.2)
|-cos 6 -cing 0
1"”. = | sing cosy 0 (b)
L 0 0 0
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Similarly, for compliances

tip ¥jq *xr *1s Soars

St (a)
ke (3.10.3)

Sijkz =4 ip zjq ﬂ’kr L 4s Spqrs (b)

From (3.4.47-49), (3.4.51-55) and (3.4.78) single lamina moduli

and compliances are given by

1111

1122

1122

1

C = = (C

2323 2

1122

2222

2233
0

2222

or in "engineering" notation

[c 1=

pa

cn Ci2
Cia  Ca2
Cioa  Co23
0 0
0 0
L 0 0
. (C
Ceg™ 7 “22

Ciy

C23

CZZ

0

2233

)

0 0 0
0 0 0
0 0 0
(a)
Ci212 0
0 Co323 0
0 0 Ci1212
-
(b)
0 0]
0 0
0 0
(a)
0 0
0
Css
0 044_
(3.10.5)
(b)

(3.10.4)
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with similar matrices for compliances.

The moduli and compliance components may also be written as

1111
2222
1122
2233
C1212
2323
S1111

S2222

S1122

S2233

$1212

S2323

and all others vanish.

k+G

(3.10.6)

A

A (3.10.7)
I

T

It is recalled that all moduli and compliances in

(3.10.6-7) are effective.

C'
pars

It follows from (3.10.1), (3.10.2) and (3.10.3) that the moduli

are given by the following symmetric matrix
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Ciiir Slizz Cniss S 0 0
Clizz  C2222  Ca233  C2212 0 0
o} C! C! C! 0 0
1 223
C1112 C2212 C3312 C1212 0 0
0 0 0 0 Cos2z  C2331
0 0 0 0 c2331 C3131
In the engineering notation, (3.10.8) assumes the form
-C' C! ct 0 0 ]
11 13 14
C1g Cos Co4 0 0
C! C! C! 0 0
4
[c’pq] = 13 33 3 (3.10.9)
C14 C34 C44 0 0
0 0 0 C55 056
'_ 0 0 0 056 C66
Obviously, the C" , 3 and S" matrices have the same
pars pars pars

form as (3.10.6-7).

The C'pq components are given by
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Cl

4 . 4 2 . 2 2 , 2
11 C11 cos e+sz sin g+ 2012 cos 0 sin 8+ 4C44 cos 0Osin’@

Co- 2, .2 4, 4, 2. .2
C12 = (Cll+C22) cos Bsin“ 8+ Clz(cos 8 + sin 8) 4C‘/_14 cos Asin“6

¢ - . 4 4 2.2 2. .2
022_011 sin 6+sz cos 9+ZC12 cos B sin 6+4C’44 COs ©sin 8

. 2 .2
C13 C12 cos @+ 023 sin™ 6
— . 2 2
023 = C12 sin 8+ 023 cos 6
C33 = Cp (3.10.10)

. 3, . . 3 3 . . 3
C14 C11 Cos fsind+ sz cos 6 sin 8+ Clz(cos 8 sin 6- cos 6 gin” §)

+ 2044 (cosse sin 6 - cos @ sin3e)

. .3 3 ) .3 3 .
024 = C11 cos 6 sin“g + sz COs 6 sin § + Clz(cos 0 sin 6 - cos 6 sin 6)
+ 2044 (cos ® sin3e - cos3e sin &)

034 = (023 - Clz) Cos 6 sin u

" 2 . 2 2. .2 2 L 2 .2
C44—(Cll+sz) cos 6 sin" @ —2012 cos 6 sin e+C44(cos 8 - sin"9)

A .2 2
C55 = C44 sin e+055 cos 6
056 = (CSS - C44) cos 8 sin g

' 2 . 2
066 = C44 cos 9 + C55 sin 6

For a lamina whose fibers are oriented at -¢ the C"pq or C"
pPq

moduli are obtained by replacing sin @ by -sin & in (3.10.10). It is seen

therefore that C';)q is given by
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o G, S % 0 0 ]
l ¢}, Gy S S ° 0
e | 213 223 233 -2?4 Z Z (3.10.11)
14 24 34 44
0 0 0 0 Ciy  ~Cig
0 0 0 0 Oy  ~C |

The results (3.10.10-11) obviously are also valid for compliances
by replacement of moduli by corresponding compliances everywhere.

It should be noted that all of the preceding developments remain
valid for square symmetric layers if the relations (3.10.4b) and (3.10.5Db)
are omitted and thus 02323 or C55 becomes an independent modulus.

Finally, it is mentioned that in the case of a general laminate
where each lamina is oriented at some angle, relative to an appropriate
common coordinate system, equs. (3.10.6-7), (3.10.9-10) define the elastic

properties of any lamina with respect to the common coordinate system.

3.10.3 Laminated Plates

Theory of laminated plates and shells is a subject of considerable

engineering importance which has received great impetus by the advent of
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fiber reinforced materials. A sample of important references is given by
(3.39-451

Here we shall limit ourselves to establishment of differential equa-
tions for a thin lamimated plate, which is subjected to bending and in-plane
forces. The plate is referred to a fixed cartesian coordinate system
x1 x2 x3, the Xl’XZ plane being the "reference surface" which need not
be the middle plane of the plate. Fig. 3.10.la may be regarded as a
typical element of such a plate. Reinforcement direction of the laminae is
not specified at the present time and the elastic properties of the mth

. , m
lamina, referred to the plate coordinates, are denoted C< )

i 1
ik in genera

fashion.

Conventional analysis of laminated plates is based on the
Kirchhoff-Love assumption according to which: A normal to a reference
surface of the undeformed plate remains straight and normal to the deformed

reference surface. The mathematical expression of this assumption is

u, = u (x, ,x,) = w(x,,x,) (a)
3 03 172 172 (3.10.12)
ua= uq(xl,xz) - X, w,OL

where w and u are transverse and in-plane displacements, respectively,
a

0 . )

u are in-plane displacements of the reference surface and a - as well

Q

as other greek subscripts from now on - ranges over 1, 2,

The strains e are then given by

aB




€ = X. X)) +t X
af eaB( )

e° =l_ uo uo
aB 2 a,B B.,C
K(}.B= - WIBG'

where K
af

layer.

(m)
OLB

Since the subscripts range over 1,

(m)

C apyd

(m) q_
[Ca B yé]

(nﬁ
aﬁy5

[ .(m)
Ciin

(m)
Cli22
(m)
Lclllz

(m)
CaB'yé

(m)
Ci122
(m)
Cy222
{m)

c2212

or in engineering notation

(m)4 _
e -

pq = 1,2,4

(nﬂ
C11

(nﬁ
Cia

(nﬂ
L14

(nﬂ
€12

(m)
Ca2

(nﬂ
Coq

are the curvatures and €

v6

C

C
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Ka a(xl’xz)

In view of (3.10.13a) this stress is given by

are given by the following matrix

(m) ]
1112

(m)
2212

(m)
1212

of the stress ©

(m) |

Cl4

(nﬂ
Cra

(no

44

(b) (3.10.13)

(c)

o
ag are the reference surface strains.

(m)

We consider the plane part 00L

(m) th

in the m

ij

(3.10.14)

2 only, it follows from (3.10.8) that

(3.10.15)

(3.10.16)
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Let the laminae be labeled by numbers 1, 2, .... M starting with
the uppermost lamina. The mth lamina is between the planes x3 =h ,
x3 = hm-—l' the m plane always being further away from the upper face

than the m-1 plane, fig. 3.10.3. The membrane forces NO(B and internal

moments MQB of the plate are then defined by

h
M
NOLB = }'1[ oaB dx3 (a)
° (3.10,17)
hyv
= o
My g 1'1[ Xy 9, 59, (b)
o
Insertion of (3.10,14) into (3.10.17) yields the results
N = A e 4 B K (a)
ap apys b aByd yé (3.10.18)
o .10.
= 3 K
Maﬁ B“5Y6€y6+ Da Byé 8 (b)
where
= (m) .
Bagys’ § Cagys Pm = hpy) (a)
_ 1 (m) 2 .2
Bieys = 2 :4:; Caugys B = hpy) (b) (3.10.19)
-1 B3 3
DOLB'YG_ 3 ‘E Caﬁyé m hm_l) (c)

In engineering notation
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_ (m) _

pq 7:‘;‘ Coq Pm hmt) (s)
1 - (m) , 2 2

B, =3 % Conl n - np ) (b)
! (m) ,. 3 3

Doy~ 3 % Cpq Pm ™ Pt (©)

It should be carefully noted that the hm in (3.10.19-20) are

taken with their proper signs.

(3.10.20)

to be

Insertion of (3.10.13 b,c) into (3.10.18) gives the expressions

o)
N = A u - B w, = N a
ap By v .0 apyd aB Ba (a)

o
M =B u - D w, = M b
of aBys v aByé ap a B (b)

The plate resultant equilibrium equations are
+p =0 (a)

M + p=20 (b)

(3.10.21)

(3.10.22)

where pOL and p are loads per unit area in the X x2 and Xq direction,

respectively, (The contribution of membrane forces to x3

equilibrium,

through plate curvature, has been neglected). Insertion of (3.10.21) into

(3.10.22) yields the set of three differential equations
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A u - B w, + =0 a
aBys - oy, B8 agys “'eys o Py (a)

(3.10.23)

u - , +p=20
BaEv6 v, QB8 Danéwaﬁvé P (&)

Typical boundary conditions consist of prescription of displacements
and/or force and moment resultants on the plate boundary. The force and
moment boundary conditions are expressed in terms of displacement
derivatives via (3.10.21).

Consider for example the case of a simply supported rectangular

plate with sides al, a2 and rigid horizontal support. The boundary conditions

are in this case:

o _ o ) _ o _
u o (O,xz) = uOL (al,xz) =ug (Xl' 0) ua (xl, a2) 0
w (O,XZ) = w (al, XZ) =w (Xl' 0) = w (Xl' al) =0

M11 (O,XZ) = M11 (al, XZ) = M22 (Xl' 0) = M22 (Xl' a2) =0

where the moments M“, M22 and M12 should be expressed by (3.10.21b).
The complexity of equations (3.10.23) makes it necessary, in most
cases, to resort to numerical methods of solutiom. When the displacements

are known, the strains e(;ﬁ and curvatures KOLB follow from (3.10,13b).

Then the plane stresses o((lné) in all layers are determined by (3.10.14).

It should be noted that shear stresses (;2 may be determined from |

o
by equilibrium considerations, while oér;) is assumed to be negligibly

(m)

small in conventional plate theory.
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The problem may be differently formulated by use of an Airy stress
function to satisfy (3.10.22a) identically (compare e.g. 3.45])).

It is seen that in the general formulation given there is coupling
between in-plane stretching-shearing and transverse bending-twisting.
Thus, for example, a plate which is loaded by in-plane forces, only, will
in general also experience bending and twisting.

We now consider some simplified specific cases of lamination, as
used in practice, and the ensuing simplifications of the plate boundary value
problem. Let it be first assumed that the laminated plate is geometrically
symmetric with respect to its middle surface. By this is meant that to
each lamina on one side of the middle surface corresponds another lamina
which is its mirror image in the middle surface. Such a lamina pair is
shown in fig. 3.10.4, In this event it is convenient to choose the
middle surface as the plate reference surface. The upper lamina is
labeled m and is bounded by the planes Xa = h hm, while the lower

m-1,

lamina is labeled n and is bounded by the planes x3 = hn hn—l' The

m,n subscripts conform to the convention employed in (3.10.19-20),

By the assumed symmetry

(3.10.24)

It follows from (3.10.24) that
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hm B hm-~1 = hn - hn-l (a)
2 2 _ 2 2

hm ~ hm—l = (hn hn-—l) (b) (3.10,25)
3 3 _,3 3

hm - h 17 hn hn—l (c)

Let it be further assumed that the laminate is also elastically

symmetric with respect to the middle surface, by which is meant that

m  _ ()

Capye apyo @ (3.10.26)
(m) _ . (n) _

cpq Cpq p.g=1, 2, 4 (b)

A laminate which is both geometrically and elastically symmetric with
respect to its middle surface is henceforth simply called: symmetric

laminate.
It follows from (3.,10.19b), (3.10.20b), (3.10.25b) and (3.10.286)

that for a symmetric laminate

B =0 (a)
xBy o (3.10.27)

B =0 =1, 2, 4
oq p.q (b)

Introduction of (3.10,27) into (3.10.21) and (3.10.23) simplifies these

equations to

N = A u
BEGRYOS vl (a) (3.10.28)

Ma; _Da[s > w'yé (b)
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O
+p =0
Bepys Y v,ps " P

' - =0
Disve Wrapys P

(a)
(3.10.29) }

(b)

It is seen that for the symmetric laminate the previous general formulation

. . . o
"decouples", i.e. in-plane displacements u @

and membrane forces Na

8
are determined independently of transverse deflection w and bending
moments M .
a R
Equs. (3.10.29b), (3.10.28b), written out in detail, in the
notation (3.10.20), are
D.. w + 4D, , W + 2(D,, +2D,,) w ‘
11 1111 14 ‘1112 12 44 1122
+ 4Dy Wigga t Dop Wrg222 T (a) ‘
M) = = (D) Wiy + Dy Wipy + 2D Woyy) (b)
(3.10,30)
= - +
M2 (D, Wipq * Dyy Wigy * 2Dyy Wigpp) (c)
= - +
My (D), Wipy *+ Dyy Wigy * 2Dy, Wepp) (d)

The symmetric laminate is now further specialized by the assumption

that the laminae are uniaxially fiber reinforced, the reinforcement direction

alternating over 6, -6 with respect to the plate x1 axis, from lamina to

lamina. The relation between elastic moduli of adjacent laminae is then

defined by (3.10.11). In the present case only the moduli (3.10.15-16) are

of interest. It follows from (3.10.11) that
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' Cla “Ciyq
Cpq = | ¢, C, -Chy (3.10.31)
~Cg Co4 Caq

where Cpq (6 orientation) are given by (3.10.10). Since Cll' Clz' sz,

C44 are the same for both kinds of laminae, it follows from (3.10.20 a,c)

and (3.10.25 a,c) that

[A“, Algr By A44] = h[C'll, Cl,+ Chyr C! had (a)
i (3.10.32)
[0}, D)y Dy, Dyl = 12 [cy,. oy Clyt Cyad ®

where h is the plate thickness.

The components A14, A24, D14 and D24 depend on the laminae
thicknesses, cannot be expressed in such simple form as (3.10.32) and
should be computed from (3.10.20). However, in the event that the sum
of the § laminae thicknesses is equal to the sum of the -g§ laminae

thicknesses, it follows from (3.10.20a), (3.10.25a) and (3.10.31) that
A14 = A24 =0 (3.10.33)

In this event equs. (3.10.28a) and (3.10.29a) assume orthotropic form.
An important kind of laminate is an odd number of equally thick

laminae with 8, -¢ alternating reinforcement direction. The laminate

is evidently symmetric and so the results (3.10.27-30) and (3.10.32)

apply. However, (3.10.33) is not valid.
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A related important laminate is an even number of 8, -6 alternating
laminae of equal thickness. This laminate is geometrically symmetric
with respect to its middle surface, but it is not elastically symmetric,
for in each pair of symmetrically located laminae one is at 6 orientation
while the other is at -6 orientation. Labeling again the upper lamina in

the pair by m and the lower by n, the relations (3.10.25) remain valid.

Also, in view of (3.10.31)

C (m) (m) (m)]
C11 Cig -C 4 |
[C(Sc)z] - C(lmz) C(zn;) '0(21114) (3.10.34)
(m) (m) (m)
L_Cl4 “Ca4 Caq

Combining (3.10.34) with (3.10.20) and (3.10.25) we have

AL B, 0 ¢y, Oy 0
= = 1 ' 0
()= P12 P 0 Bl Clp Caz (=)
0 0 Ay, 0 0 Cyy
0 0 3
[qu]= 0 0 Boy (b)
B, By, O (3.10.35)
Dy Pig 0 . i1 C1z 0
h
= = — ' 1 0
[, J= |P12 P2 0 7| 1z C22 (c)
0 0 D 0 0 Sy,
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14" 824 depend on the laminae thicknesses, are not

given by such simple relations as (3.10.35 a,c) and should be computed

The components B

from (3.10.20b).

Establishment of theories of laminated shells on the basis of the
Kirchhoff-Love assumption is similar to development of theory of laminated
plates, though more complicated. The interested reader is referred e.g.

to [3.42-43 ), [3.45].
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FIG. 3.21 - VARIATION OF AVERAGE STRESS WITH
SIZE OF VOLUME ELEMENT

e

FIG. 3.2.2 - VARIATION OF STATISTICALLY HOMOGENEOUS
STRESS IN A COMPOSITE
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FIG. 3.2.3 - VARIATION OF STATISTICALLY NONHOMOGENEOQUS
STRESS IN A COMPOSITE
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b ‘l\z 12
; T3=053=0
|
‘ | "\_7/T|=T2=T3=O
| |\——-/ n =0
I
J""——— T, =0
// )"___ Xs T=oll=o
/ 2” %2
_O’;f_ _ f T3=03=0
4

FIG. 34.| - UNIAXIAL STRESSING OF FIBER
REINFORCED CYLINDER
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FIG. 3.4.2 - TRANSVERSELY ISOTROPIC STRESSING OF
CIRCULAR FIBER REINFORCED CYLINDER

TRANSVERSE SHEARING AXIAL SHEARING

FIG.3.4.3 - SHEARING OF FIBER REINFORCED CYLINDER
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FIG. 34.4 - STATISTICALLY ISOTROPIC FIBER
REINFORCED MATERIAL
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AXIAL CENTER CUT
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% H

> Xo

TRANSVERSE CUT

FI1G.35.1 - COMPOSITE CYLINDER

FIG. 3.5.2 - LOCAL COORDINATE SYSTEM OF COMPOSITE CYLINDER
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E-GLASS FIBERS E,=10.5x10®PSI

v,=0.20

EPOXY MATRIX E;=0.5x 108 PSI

v,= 0.35

E,=10.5x10® Pﬂ

/ o
/ .
4
/|
E,= 0.5x10°PSI
o.lz I —>

0.4 0.6 0.8 1O
FIBER VOLUME FRACTION, Vo

FIG.3.53 - AXIAL YOUNG'S MODULUS, E:
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E-GLASS FIBERS E,=10.5x10°PSI

v, = 0.20
EPOXY MATRIX E =0.5x10°PSI
v,=0.35
A
0.5
*< 04
9" v,= 0.35
3 -
0.3
» NS
Z \
8 \
U) V2= 0.20
a 02
o
-
<
3 ol
0.2 0.4 0.6 0.8 o =

FIBER VOLUME FRACTION, v,

FIG. 354 - AXIAL POISSON'S RATIO, v, CCA MODEL
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401
E-GLASS FIBERS E,=10.6x 10®PSI
V,:0.22

EPOXY MATRIX E=0.5x 108 PsI
V,® 035

106 PSI
w

(@]
---

*
T

n
o
\D

A—E*

T(-)

N
<

TRANSVERSE YOUNG'S MODULUS, E

/// EXPERIMENTAL DATA

/ FROM REF. [3.5]

0 0.2 04 0.6 0.8 1.0
FIBER VOLUME FRACTION, v,

FIG. 3.5.6 - TRANSVERSE YOUNG'S MODULUS, EZ,
OF GLASS REINFORCED EPOXY -
COMPARISON OF THEORY AND EXPERIMENT
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1000

500

200

100

50
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E,= 414 GN/m2=0.6x10°PSI
t
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1 ] l

v,=0.35

2}v,=0.20 O - EXPERIMENTAL DATA

O Ol 02 03 04 05 06 07

08 09 10

MATRIX VOLUME FRACTION, v = 1-v,

FIG. 35.7- TRANSVERSE YOUNG'S MODULUS, E,

OF BORON-REINFORCED EPOXY -
COMPARISON OF THEORY AND EXPERIMENT
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E-GLASS FIBERS E,=10.5 x 10°PSI
v, =0.20

EPOXY MATRIX E, =0.5 x 106 psi
Yy - 0.35

- |
-~. U

T
N\ \

% \
0.3 T(-) -& Y
¥,=0.20 \
0.2
0.l
>
0.2 0.4 0.6 0.8 1.0

FIBER VOLUME FRACTION, v,

FIG. 3.5.8 - BOUNDS FOR v, CCA MODEL
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(b) SQUARE ARRAY
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_ 302

e 7~

(c) HEXAGONAL ARRAY

FIG. 3.59 - REPEATING ELEMENTS FOR PERIODIC FIBER ARRAYS
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108 PSI

*
A?

AXIAL SHEAR MODULUS, G

366

S-GLASS FIBERS G,= 5.0 x 10° PSI
EPOXY MATRIX G,=0.185 x 10% PSI

A
2.0 | |
NUMERICAL ANALYSIS
SQUARE ARRAY
1.5 REF. [3.22]
.0 CCA MODEL
EQU (3.5.111)
I
0.5 / :
|
/ 5 .”-/4 |
G, = 0.185 x 108 PSI
0.2 04 06 0.8 0

FIBER VOLUME FRACTION, v,

FIG. 3.5.11 - COMPARISON OF SQUARE ARRAY

AND CCA MODEL RESULTS: AXIAL
SHEAR MODULUS G,
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FI1G.36.l1- COMPOSITE CYLINDER CONSTRUCTION
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| - MATRIX

2 - FIBERS

| - FIBERS

2 - MATRIX

FIG. 3.7.1 - TYPICAL COMPOSITE CYLINDERS OF DIFFERENT
ASSEMBLAGES WITH SAME PHASE VOLUME

FRACTIONS
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S-GLASS FIBERS G,= 5.0 x 10° PSI
EPOXY MATRIX G, = 0.i85 x 10° PSI

A
20
%
o
[+
o
- i.5 - ]
*
o
o NUMERICAL ANALYSIS
-
3 UPPER BOUND REF. [3.22]
()] - 1
g (3.6.80) ||LOWER BOUND, (3.7.87a)
a llccA MODEL., (3.5.111)
b |
»n 05 i
J
g |
x
LU,
< I Ta
>
02 04 06 08 10

FIBER VOLUME FRACTION, v,

FIG.3.7.5 - BOUNDS FOR AXIAL SHEAR MODULUS G:
OF SQUARE ARRAY OF CIRCULAR FIBERS
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E-GLASS FIBERS G,= 4.17 x 10° PSI
EPOXY MATRIX G, = 0.185 x 10® PS|
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|
I
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2.0 |

|

[ !
[ /I
15
l
NUMERICAL ANALYSIS / // LOWER BOUND, (3.7.87a)

REFI. [3.6] / ‘chA MODEL, (3.5.111)
1.0 UPPER BOUND
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Ly

f
(3.6.80) / :
I
0.5 / |
// I
{ 0.907
0.2 04 0.6 0.8 0
| FIBER VOLUME FRACTION, v,

FIG.3.7.6 - BOUNDS FOR AXIAL SHEAR MODULUS GZ OF
HEXAGONAL ARRAY OF CIRCULAR FIBERS
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FIG. 3.8.1 - GEOMETRY OF FIBER EMBEDDING APPROXIMATION

T FIBER_MODULUS

EFFECTIVE ELASTIC MODULUS

FIBER VOLUME FRACTION, v,

FIG. 3.82 - RELATION BETWEEN FIBROUS MATERIAL BOUNDS
AND FEA APPROXIMATION (SCHEMATIC)
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FIG. 3.10.1 - BIAXIALLY REINFORCED MATERIAL
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FIG. 3.10.2 - COORDINATE SYSTEMS OF LAMINAE



378

\
\
L

|
2
3

M- 1
M

I
|
|
v
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FIG. 3.10.4 - SYMMETRIC LAMINAE PAIR
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Table 3.5.1 Elastic Properties of Fiber and Matrix Materials

6
Elastic Moduli in 10" psi, v - nondimensional

Fiber Material E v G k
WE—‘Glass 10.5 0.20 "~~'~~4 .38 ~‘“;29
S-Glass 12 .4 0.20 (?)
Beryllium 44,0 0.09 20.18 24,83
Carbon 55.0 (?)
Boron 60.0 0.20 25.00 41.67
Matrix
(typical) Epoxy ( 0.50 0.35 0.185 0.617
Magnesium, 6.5 0.35 2.4l 8.03

Aluminum g 10.3 0.33 3.87 10.73
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4,1 QUASI-STATIC LINEAR VISCOELASTICITY

4.1.1 Stress-Strain Relations

In the present chapter we shall give a brief discussion of linear visco-
elasticity theory. For more detailed expositions the reader is referred to [4.1-3].

A linear viscoelastic material may be defined as a time dependent material
in which the displacements and strains are small and effects may be superposed
in time according to the Boltzmann superposition principle.

Let the displacements, strains and stresses be space and time dependent
and be denoted ui(gg,t), €ij (x, t) and Gij(>_<, t) respectively. The strains and

displacements are related by

e (o) = = (u (x,) +u (x.0) @.1.1)
1} 2 1,) ).l

The most general anisotropic stress-strain relations are

t Bekl(g,'r)
O‘ij(élt) = f Cl]k].(&' t-T) —S':'r—'_ dr @)
4.1.2)
t 3o, (x,T)

- oy D=
oy ) = [ 5 Grtn) —gm— @ ®)
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The first of these will be referred to as the viscoelastic stress-strain relation
and the second will be referred to as the viscoelastic strain-stress relation,

and S, define the material behavior. The
kl ijkl

former are known as relaxation moduli and the latter as creep compliances.

The functions Cij

Both are components of fourth rank tensors. If Cijkl and Sij Kl are not space

dependent the viscoelastic body is homogeneous; otherwise it is nonhomogeneous.

Symmetry of the stress and strain tensors leads to

t) =C,. (1 (@)

®) = i ~ Vijlk

Cij kl ikl

4.1.3)
Sia® = 85 ® =8, © (o)
Biot [4.4] (see also [3.25], chap. 13) has shown that if Onsager's

principle is assumed valid for viscoelastic materials, then

Cim® =Gy ® Sk = Sy

(t) @.1.4)
It appears, however, that the symmetry relations (4.1.4) are not as universally
accepted as their elastic analogues (last equalities in (3.2.3) and (3.2.5)).
For discussion of this subject see e.g. [4.5]. In the present work the
validity of (4.1.4) shall be assumed.

The functions Cij Kl and Sijkl are obviously related, for if Oij as given

by (4.1.2) is introduced into the right side of (4.L2B the strains on both

sides must be the same. It is, however, inconvenient to relate Ci,k.land Sij Kl
]

in this fashion. A better way of doing this will be described later.
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A physical interpretation of relaxation moduli and creep compliances is
given in terms of responses to step function inputs. Suppose that we impose

the strain

.. © =% HW) @.1.5)
ij ij

where H(t) is the Heaviside step function which is defined as

0 t<0
H{) = (4.1.6)
1 t=0
Insertion of (4.1.6) into (4.1.2) and taking cognizance of the fact that the
derivative of H(t) is the delta function, 6(t), yields

o

= 4.1.7
% (t) Ci], Kl {t) € ( )
Dually, if we impose the stress variation
o)
g t)= o, HW) @.1.8)
1) 1)
then (4.1.3) vields
©=s. @ ° 4.1.9)
€4 ijkl kl T

It is seen that relaxation moduli are given by the stresses produced by time
constant strains, and creep compliances are given by strains which are
produced by time constant stresses. This indicates the type of experiments

which have to be performed to measure relaxation moduli and creep compliances.
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The stress-strain relations (4.1.2) may be derived by starting out
with (4.1.7), (4.1.9) by use of the Boltzmann superposition principle. Such
a procedure will be used later below in order to derive the effective stress-
strain relations of viscoelastic heterogeneous materials,

We now examine the important cases of discontinuities in time of
the strain or stress variations in (4.1.2~3), Since at this time we are only
interested in time variation at a typical point there is no need to incorporate
the space variation into the stress-strain relations.

Consider the case of a strain which is suddenly applied at time =0,
and varies continuously from there on, Such a strain may be written

0 t <0

= (4.1.10)
e, (t) t=20
ij

*i (-, 1)

It is seen that there is a discontinuity at t=0, Let the strain variation be written

e, = &y ©) HO + el @)

where ei'j is continuous and vanishes for t < 0, Then

aeij Bei. aei.

A———— —L: ———

3T €1j(°) 6(t) + 3t €5 (o) s(t) + Bt_L ; (4.1.11)
t > "

Inserting (4.1.11) into (4.1.2) we have
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: a€l<1
= + - ‘1.1
oij(t) Cijkl(t) ekl(o) / cijkl(t T) r dr (4 2)
o4

If the last integral in (4.1.12) is integrated by parts we obtain the equivalent

form
t BCi,kl('r)
o, = Cijkl(o) e+ _/ 37 6, &7 AT
(0]
+

We shall find it more convenient here to use the form (4.1. 12).

If we impose the discontinuous stress variation

0 t< 0
g, = (4.1.13)

then by similar reasoning

t

o0
= _ kl
45 (t) = Sijkl(t) °k1(°) + f Sijkl(t T) 5 dr 4.1.14)
o4
It is seen from (4.1.11) and (4.1.14) that

oij (o) = Cijkl(o) ekl(O) @)

(4.1.15)
ei]. (o) = Sijkl(o) 1 (o) (b)

These expressions define the initial (elastic)responses of the viscoelastic

material.
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It is often convenient to write (4.1.10) and (4.1. 14) in a more
simplified form. It is easily seen that these relations may formally be written

t

®ey)
cij t) =/Cijk1 (t-7) s dr (@)
o
@4.1.16)
t 3 Okl
ei]' (t) =/Sijkl t-r ) —a—T——dT (b)
o)

Insertion of (4.1.10) into (4.1. 16a) and of (4.1.13) into (4.1. 16b) recovers
(4.1.12) and (4.1.14). Thus (4.1.16) are general viscoelastic stress-
strain relations for strain or stress inputs which vanish for t < 0, with the
understanding that delta functions are permitted to occur in the integrands.
The representations (4.1,16) also remain formally valid for a number of
discontinuities at different times.

Integrals of type (4.1.16) are called hereditary integrals or convolutions.

For simplicity of writing, such integrals or their more detailed versions (4.1,11)
and (4.1.14) are frequently expressed in the forms

% = Cijk1 © 9o
4.1.17)

5~ Sik © 9%

We shall use this notation whenever convenient.
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If the viscoelastic material is isotropic the stress-strain laws (4.1.16)
are reduced exactly as for isotropic elastic materials. It is convenient in this
case to split stresses and strains into isotropic and deviatoric parts in the

usual fashion. Thus

1
T TI TR A S T 31 @)
‘ (4.1.18)
g,=06 +s o= L o] (b)
ij ij ij ! 3 kk
Then (4.1.16) for the isotropic case assume the forms
t
oft)=3 K(—'r)-?-’-id'r @)
- t DT a
o
t de .
_ _ i
Sij (t) —Z/G(t T) —'la'r aT (b)
o
4.1.19)
t
1 80
e t) = 3 /I(t-'r) YE3 dr (©
o)
1 t asi_
ey (t) = —Z-/I(t—'r) _La'r dr (d)
o

Here K(t) and G (t) are the bulk and shear relaxation moduli, respectively, and

I(t) and J&) are the bulk and shear creep conpliances, respectively.
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The stress-strain relations of a transversely isotropic viscoelastic
material are similar to (3.4.86). Let X, be the axis of elastic symmetry.

We then have in the notation (4.1.17)

Gll=n®dell+£0de22+eode33 @)
%)) =£odell+(k+GT)cade22 +(k-GT)ede33 (b)
033=/l®de11+(k-GT)®dezz +(1<+GT)®de33 (c)

(4.1.20)
9, =2GA<ade:12 @)
%5 =2GT <9de23 (e)
013 =2GAod<-:13 ®)

where n(t), £(@t), k), GT (t) and GA(t) are the five relaxation moduli of the
material. It is similarly possible to write a strain-stress relation in terms
of five creep compliances but this will not be done at the present time.

For reasons of mathematical expedience viscoelastic stress-strain
relations are frequently expressed in terms of differential time operators,
Limiting ourselves to the isotropic case we can write such stress-~strain
relations in the form

R(D) 0 =38MD) ¢ @)

@.1.2)
P(D) sy = Q (D) eij (b)

where
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-4
D T dt
r
m
R(D) —Z R_D
m=0
S
m
s(D) =Z s_D 4.1.22)
m=0

HereR , S , P , Q_ are constants and
m m m m

m m
D ==
dt

To each differential operator stress—strain law belongs a set of initial
conditions. Methods to derive these may be found in [4.67, par. 15.6.
The simplest examples of (4. 1.21-22) are the so-called Maxwell and

Kelvin models, whose deviatoric stress-strain relations are, repectively,

S
= ._..ul- + _}.—-
Dey =7m T76 "%y @)

(4.1.23)

s..=2Ge,, +27MDe_ b)
ij ij 1)
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Any viscoelastic differential operator stress-strain relation can be
represented by an appropriate spring-dashpot model.

It should be carefully noted that (4.1.19) are much more fundamental
than (4.1.21) since they are based on measured viscoelastic functions. It
can be shown that relations of type (4.1.2 1) can always be brought into
the form (4.1,19) while the converse is not necessarily true. To see this we
define relaxation moduli associated with (4.1.21) by the stress variations
due to strain step functions. Similarly, creep compliances are defined by
strain responses to stress step functions. Thus the relaxation moduli and
creep compliances are given by certain solutions of the differential equation
(4.1.21). Having obtained these viscoelastic functions the responses to
any strain or stress variations are found by superposition as integrals of
form (4.1.19),

Evidently, the relaxation moduli and creep compliances associated
with (4.1.21) will contain the constants Rm’ Sm, Prrl and Qm. To find the
constants the differential operators must be arbitrarily terminated at some m
and the constants are then found by fitting of the theoretical viscoelastic
functions to the experimental results at a number of points. To obtain a
realistic presentation the differential operators may become lengthy. The
simple operators contained in (4.1 .23) can certainly not be expected to
represent real materials with sufficient accuracy and their use can only

lead to qualitative results.
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It should be mentioned that elastic stress-strain laws are contained
as special cases in viscoelastic stress-strain laws. Elastic moduli and
compliances may be interpreted as relaxation modali and creep compliances
in the form of step functioans. Thus

c... ="°c.

ijkl ijkl Ht) @)

(4.1.24)

_ e
Sijkl ) = Sijkl HE®) (b)

where elastic properties are here and henceforward denoted by a left e

superscript. Insertion of (4.1.24) into (4.1. 16) yields the elastic stress-—

strain laws

_ e
oy ©="Cyn € ®
@.1.25)

e @) =°

i Sk O ®

For stress-strain relations of type (4.1.21) , elasticity implies that all
constants except Ro’ So’ PO and QO vanish in the differential operators.

In many isotropic viscoelastic materials viscoelastic behavior is
predominant in shear and negligible in dilatation. In this case (4.1.19,c)
and (4.1.21a) simply become

o) =3°Ke () (4.1.26)

while 4.1.19b,d) and (4.1.21Db) stay as they are.
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A most important tool in linear viscoelasticity theory is the Laplace
transform. We shall use the notations

[2]

L lo@®)] =3 (p) = / e_ptcp(t) dt (4.1.27)

O

for the Laplace transform, abbreviated LT from now on. We recall that the LT
of a convolution is given by

t
I(wod¢>=ai£fw<t—'r)w(T)dTJ=q‘><p>$<p> 4.1.28)

o

The LT of the stress-strain laws 4.1.11), (4.1.14) or (4.1.16)

then assume the form

A~

. =pC, (p) &

. g ® £ ) @)

(4.1.29)

™
—
e}
e
I
o]
>

k1 @ G @) (b)

where (4.1.28) and the rule for the LT of a derivative have been used. It is

seen from (4.1.29) that the tensors péijkl and p §ij K are reciprocal. Thus

2 A A~
= 4.1.30
Cijrs Srskl Iijkl ( )

where Iij Kl is the unit tensor given by (3.2.7). (Provided that Cij (t) and

kl

Sijkl(t) are ij,kl symmetric ). Expression (4. 1.30) provides a relation between

relaxation moduli and creep compliances which assumes a complicated form in
the time domain. Suffice it is to say that if the relaxation moduli are known

the creep compliances must be found by solution of integral equations.
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We introduce the notation

) = (p) (£.1.31)

j ijkl ijkl

0 (p) (p) e () 4.1.32)

which is similar to an elastic stress-strain law. Therefore I‘ij Kl (p) will be

called transform domain (abbreviated~TD) moduli.

The LT of (4.1.19) is given by

G=3pKé=3kKe @)
S =2pGé =2Te, (b)
ij ij ij
4.1.33)
e = glp f G (c)
A _ 1 A
4 =2 pJ S @)
where
K (p) = pK (p) @)
(4.1,34)
I'(p) =pG (p) (b)
are the TD bulk and shear modulus. It follows from (4.1.33) that
p2 12 f= 1 @)
4.1,35)
2 A A
p GJ=1 (b)

Consequently the TD bulk and shear compliances are 1/€ and 1/T.
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We can define other TD moduli just as in elasticity. As an example
we consider the TD Young's modulus, which is denoted pE and E is the LT
of the Young's relaxation modulus. Suppose that a cylinder is subjected

to the space constant uniaxial state of stress

oll(t) 0 0
lb.®)1=1|o 0 0

ij
0 0 0

with transform

oll(p) 0 0
6.el=1o0 0 0

ij
0 0 0

~
We define pE as

Q>
it
o

(4.1.36)

o
>
1l
33
—
et

Separation of the transformed uniaxial stress into isotropic and deviatoric

parts and insertion into (4.1.33a,b) easily yields 311. Then we have from
(4.1.36),
ﬁ— 912(3
= —_—x——e—
3K+ G (4.1.37)

Inversion of (4.1.36) into the time domain yields in view of (4.1.28)
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t de
oll(t) = fE(t—T) aq_ll dv (4.1.38)

(o]

" which is the uniaxial stress-strain relation. Note that the relation (4.1.37)
is very complicated in the time domain.
We can formally define a TD Poisson's ratio by analogy with elasticity,

in the form

P €

22 33
\)(p):——h—— = - N

11 €11

It follows just as in elasticity that

_3K(p) -2G() _ 3%(m-2T()

v (p) — 4.1.39)
2[3R(E)+GE)]  203€(E)+T(p)]
The LT of (4.1.20) leads to the TD stress-strain relations
811=pﬁ€11+p£322+p2 333 (@)
5,, = pie), +RktG) €0t p(k-Gp) &, (b)
5y =PEe, * p(k-Go) &y, + p(kiGy) &, )
4.1.40)
61y = 2P éA £12 @
533 =20 Gy &5 e
813 =2p éA 313 (0
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The LT of differential operator stress-strain relations of type (4.1.,21-22)

are

R() 0=S(p) ¢ @)
4.1.41)

P(p) Sy = Q(p) °4 (b)

The residual terms at t=0 in the evaluation of the LT of the derivatives on
both sides of (4.1.21) cancel out because of the initial conditions, [4.6],

par. 15.6. Comparing (4.1.41) with (4.1.33) we see that in the present case

=pf =L SB)
“(p) =pK == R () @) ( |
4.1.42
re)=pG= o (b)

Equations (4.1.42) define in a simple manner the relaxation moduli associated
with the differential operator stress-strain law.

We illustrate the use of (4.1.42) to find the relaxation shear modulus
and creep compliance for the Maxwell stress-strain relation (4.1.23a). It

follows from (4.1.23a) and (4.1.42Db) that

& = L
Gy ®) = T (4.1.439)

where M dendtes Maxwell and T = 1/G is a characteristic time which is called

relaxation time. It follows from (4.1.35b) and the result for éM(p) that

7. ® (%+—-1—2- (4.1.43b)

np

M
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Inversion of (4.1.43a,b) yields

_ . ~t/T @)
GM(t) =Ge
(4.1.44)

7 =5 HO ®)

4.1.2 Boundary Value Problems

We consider the case of a viscoelastic body in the absence of body
forces. Since the stresses and displacements are time dependent there are
in principle inertia terms in the equilibrium equations. We adopt the usual
assumption that changes in time are so slow that these inertia terms can
be neglected. Then the equilibrium equations are

%% 3 (x,t) =0 (4.1.45)
in which the time appears only as a parameter. This kind of approximate
static equilibrium state is called guasi-static.

To obtain differential equations for the displacements, (4.1.16a) are

substituted into (4.1.45) . The result may be written

=0 (4.1.46)

C L=
( ‘)

ijk1 @ duk,l)

where € have been replaced by (4.1.1), the symmetry (4.1.4) has been

taken into account and the notation (4.1.7a) has been used. If the body is

homogeneous, C"kl are not space dependent. Equ. (4.1 .46) can be written as
ij
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t

a2 auk(g,'r)
W [/ Cijkl (t-T) T d'T] =0 4.1.47)

o

Boundary conditions associated with (4.1.46) or (4.1.47) may be of

the type
o
u, (S,t) =u on S @)
i i u
(4.1.48)
T. (S,1) =T° on § (b)
i ’ i T

or we may have the mixed kind of boundary conditions of type (3.6.18).

If the body is heterogeneous then (4.1.46) or (4.1.47) must be satisfied
(m)

in each phase with relaxation moduli C and there are added the interface

ijkl *
conditions
u, (x,t)
continuous on S, 4.1,49)
int
T, (x,t)
1

The boundary value problem as expressed above is exceedingly complicated
if considered in the space-time domain. Great simplification is achieved if all
quantities are Laplace transformed with respect to time. Listing the LT of

(4.1.47-49) we have

pc;ijkl uk,lj =0 (4.1.50)
a (S,p) = ﬁo on S @)

i =P i u a
T.(S,p) =T1° on § (b)

i i T

(4.1.51)



403

ﬁi (x,p) ()
continuous on S,
N int
T, (x,p) @)
where
T =pGC,. 0 4.1.52)

i ikl "k, 1
Comparison with the formulation of elasticity problems in chapter 3.2
shows that we have formally obtained an elastic problem for ﬁi in space -p
domain in which the TD moduli péijkl = rij Kl assume the role of elastic
moduli. If more convenient,p éijkl can be taken as the TD compliances,
in view of the reciprocity relation (4.1.30). This "elastic" problem is

generally called the associated elastic problem. Thus a convenient method

of solving linear quasi-static viscoelastic problems is to solve the associated

elastic problem which yields the transforms ﬁi (x, p) and 31;- (x, p) of the

viscoelastic solution. Then inversion of the LT gives the viscoelastic solution.
It should be emphasized that it has been tacitly assumed that the

temporal change of external and internal boundaries can be neglected.

The analogy described above is known as the correspondence principle.

We shall refer to it as the static correspondence principle since we shall

later describe a dynamic correspondence principle. The static correspondence

principle has been gradually developed by a number of writers (see [4.7]).
If the material is isotropic the associated elastic problem is also

concermned with isotropic materials which are now described by the TD moduli

(4.1.34).
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If the viscoelastic material behavior is described by differential
operator stress-strain relations of type (4.1.21), the TD moduli in the
associated elastic problem are given by (4.1.42).

We shall now exploit the correspondence principle to extend the
solution for homogeneous elastic bodies of arbitrary shape, under homogeneous
boundary conditions, par. 3.2.2, to viscoelasticity. Let a homogeneous

viscoelastic body be subjected to the boundary displacements

ui(S,t) = (4.1.53)

Then

3. (5,p) = €. () x, (4.1.54)
1 1) ]

The associated elastic problem is now to find the elastic fields in an elastic

body with moduli p &ij , subjected to (4.1.54). By par. 3.2.2 the solution is

kl
§; () = £ )%, @)
(4.1.55)
A _ A AQ
Oij (x,p) = pCijkl(p) © 3 (p) (b)

Inversion into the time domain gives
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u, (x, t) = eo,_ ) x

i ij

e, (x,t) =¢ (©) t20

ij ij
t dekl("r)

Oij (x,t) = /Cijkl(t-T) —TT—dT = oij (t) (4.1.56)
o

u, (&l t)l €,, (?il t)l 0..(&: t) =0 t <0

i ij ij

It is seen that the strain and stresses are space constant (homogeneous) and

time variable.

Next, let the viscoelastic body be subjected to the boundary tractions

o0 () n, tz0
ij j
T, (S,t) = (4.1.57)

Then

T (S, p) =0°, (® n, (4.1.58)
i ij j

It is now convenient to consider the associated elastic problem as an elastic

body with TD compliances p gijkl (p) . By par. 3.2.2 the solution is

5. (x,p) =0, (p) @)
(4.1.59)
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The inverse transform is

O

o, (x,t) =0 () @)
ij ij
(4.1.60)

t doil('r)

oy ) =[5, 6 —E—dres 0 ®
o)

with displacements
a{x,t) = ¢ @) x, (c)
i i j

Expressions (4.1.60) are defined fort » 0 anud vanish fort < 0. Thus agaii,
the strain and stresses are spatially homogeneous and time variable.
Accordingly, boundary conditions (4.1 .54) and (4.1.57) may be called

homogeneous boundary conditions for viscoelastic bodies.
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*
4.2 GENERAL QUASI-STATIC THEORY OF VISCOEIASTIC COMPOSITES( )

4.2.1 Definition of Effective Viscoelastic Properties of Composites

The definition of effective viscoelastic properties of composites is closely
related to that of effective elastic moduli of composites, as discussed in
chapter 3.3.

Suppose that a composite of volume V and surface S consists of two or
more homogeneous viscoelastic phases. The properties of the mth phase are

( (m)

specified by relaxation moduli Ci;nk)l (t) or by creep compliances Sijkl(t) . It is
assumed that the phase geometry is statistically homogeneous and that internal
and external geometry changes remain small.

The composite will be subjected to homogeneous boundary conditions of
type (4.1.53) and (4.1.57). We recall the fundamental postulate of the theory

of heterogeneocus media as given in par. 3.2.2 and we extend it to the visco-

elastic case: The stress and strain fields in a very large SH viscoelastic

heterogeneous body, subjected to homogeneous boundary conditions are spatially

SH, except for a narrow boundary layer near the external surface. It will be shown

later below that the postulate for the viscoelastic case actually follows from the
postulate for elastic heterogeneous media.
The composite is first subjected to a special homogeneous boundary

condition of type (4.1.53)
(*)

The theory presented in chapter 4.2 is based on references [4.8-9].
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u (8,0) =0 HY) x, @.2.1)
1 1) )

where H(t) has been defined by (4.1.6) and e(zj are constant. It follows from

the average strain theorem,(3.1.18),that in the present case
e () =< HG) 4.2.2)
1) 1]

Because of SH (4.2.2) are also the local RVE strain averages.
Since the differential equations of the viscoelastic phases, (4.1.47),
are spatially linear it follows by the same kind of argument as given in par.

3.3.1 that the average stresses are linearly related to eoij . In general

s t=c" ®L =c"
1)

4.2.3
ijkl ki ijki kl ( )

*
The coefficients C ijkl(t) are defined as the effective relaxation moduli (ERM)
of the composite, [4.8]. It is seen that this definition is completely analogous
to (4.1.5-7) for homogeneous viscoelastic media.

If the homogeneous boundary conditions are (4.1.53) then by the average

strain theorem (3.1.18)

e ) =< () 4.2.4)
ij ij

For this case aij (t) can be constructed from (4.2.3) and the Boltzmann super-

position principle. We have

;r [ as’ M o, de,, (1) }
oij (t) —/Cijkl(t—'r) ~5—— dr =/c ijkl(t‘T)—JTr— dr t 4.2.5)

O o]
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which is the effective viscoelastic stress-strain relation of the composite. For a
SH composite the averages in (4.2.5) are local over RVE as well as body averages.
It should be noted that (4.2.5) also holds for any heterogeneous viscoelastic
body, not necessarily SH. In that case the averages are just body averages.
Dually, the composite is subjected to a special homogeneous traction

boundary condition
T (S,t) = 0", H{t)n, 4.2.6)
i ij j
It follows from the average stress theorem, (3.1.35), that

5. {t) = o Ht) 4.2.7)
1) 1}

and by SH these are also RVE averages. It follows by linearity that the average

strains are linearly related to the average stresses. This is expressed as

- * 0 * -
_ - 4.2.
e ©) = 8450 ® 0= 8 ® % @.2.8)

t=20

*
The Sijkl(t) are defined in analogy to (4.1.8-9) as the effective creep compliances

(ECC) of the composite.
If the traction boundary condition is (4.1.57) , it follows from (4.2.7-8)

and the Boltzmann superposition principle that

- l
dookl('r) * dokl('r) .
= - d 4.2.9
ij ijkl do dr=| 8 ij kl( ™ dr T ( )

! e 0= ]s" &
| 5
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which is the effective strain-stress relation of the composite. This is again
a perfectly general result for any heterogeneous body under homogeneous
boundary conditions. For SH the body averages in (4.2.9) are also local RVE
averages.

Equs. (4.2.5) and (4.2.9) are the most general stress-strain relations
for viscoelastic SH composites. Using arguments similar to the ones given in
par. 3.3.2 for re¢iprocity of EEM and EEC tensors, it follows in the present
case that ;ij and aij in (4.2.5) and (4.2.9) may be taken as the same

* *
quantities. Consequently C i (t) and Sij }(3 are related as in a homogeneous

kl
viscoelastic body. Again it is convenient to express this relation by LT as
was done in (4.1.30). This is postponed to the next paragraph.

Because of the symmetry of the average stress and strain tensors it

follows from (4.2.5) and (4.2.9) that

*

L Cy a® =0 0 =0, 0® @)
i ; 4.2.10)

s W=s. =5 @ i (b)

ijklt - jiklt B ijlkt
If (4.1.4) is accepted then it is easy to show that also
¢ w=c @

C k1 t) =C KLij t) ? @)

(4.2.11)

*

Si® =8,;,® (b)

The proof is very similar to the one given in par. 3.3.2 for EEM and EEC. We

express the average stress in the left side of (4.2.3) by (4.1.16a) and then equate

to the right side of (4.2.3).
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t

3 R -
oij(t) —/Cijkl(ﬁ' t-T) Y €kl(}i’T)dT Cijkl(t) €
0

where Cij (x,t) denotes the variable (piecewise constant) relaxation moduli

kl

of the composite. It follows that

t
St = [ O 12 (x) d
C ™ Crny) Sa ™) Oy Bt =Gy lxetn g ey (e dr
0]

Now the integrand on the right side vanishes because of (4.1.4) and therefore
the left side vanishes. But since Ekl are arbitrary this is possible only if each
coefficient of Eij vanishes and this proves (4.2.11a). The proof of (4.2.11b)
is evidently analogous.

For various cases of macroscopic symmetry such as orthotropy, square
symmetry and transverse isotropy, the general stress-strain relations (4.2.5)

and (4.2.9) may be simplified just as effective elastic stress-strain relations.

Thus for macroscopic orthotropy (4.2.5) assume by analogy with (3.4.1-2) the form

- * - * - * -

= +
cll(t) Cllsde11 C12 ez>de22 +013®de33 @)
- _ * d_ + * - " * d— b
0y 1) =Cyy@de); +C,y @dey, *Cyj@de,, (b)
- _ * -— + * - + * —
033(t)_0139d€11 023 ede22 C33®de33 (©)

(4.2.12)
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— * -
Glz(t) = 2044 ® d.:-:12 (@)
5. =2¢" eds )
23t T2C g @de,, (e
- _ * —
c713(t)—2066¢8>de13 (£)

* *
Here C 11(t), C 12(1:) etc. are the ERM and we have used the shortened convolution
notation (4.1.17).

The strain-stress relations may be simply written by analogy with

* *
(3.4.5-6) in terms of ECC Sll(t), S12 etc.

For macroscopic transverse isotropy we have by analogy with (3.4.47-48)
and (3.4.51-55)

- _ * - + * -— + * -
Gll(t)—ﬂ ®d€11 £ ®d<~:22 J ®d€33

- )_ * - + * * d— + k* * d_
czz(t =4 @de11 (k +GT)® €9 ( GT)o €33

- ( —-Z* - + k* *) d— * *) d_
0330 =4 ede) ) +(k - Gylede,, +(k +G,)ode,,

(4.2.13)

- * -
°1z(t) = ZGA © delz

- * -
023(t) = ZGT ® de23

- * -
olS(t) = ZGA ® d€13
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where n*(t), L*(t) ' k*(t) , G*T(t) and GZ(t) are the five ERM of the material.
Homogeneous boundary conditions appropriate for computation of the ERM

in (4.2.12~13) are of type (4.2.1). Thus all the boundary conditions in

chapter 3.4 are transcribed to the viscoelastic case by multiplying their

*
right sides by H(t) . For example: For k (t} definition (see (3.4.59-61) )

u (8,t) =0 u, (8,1) = CH (1) x, u, (8,1) = SHE) X,
0 0 0
(e ()] = 0 & 0 H (t)
ij o
0 0 €
5,y (1) = 3,50 = 2k (1) °

22

If eoH(t) in the boundary conditions is replaced by e° {t), t =0, then

t

o]

- _ = _ * de (1)

Gzz(t) = 033(1:) —ka t-7) T—dw
(o]

4.2.2 Static Correspondence Principle for Viscoelastic Composites

We now proceed to derive a correspondence principle for viscoelastic
composites which will enable us to find effective relaxation moduli and effective
creep compliances on the basis of known effective elastic moduli. The theory

developed also leads to the general results of par. 4.2.1 in independent fashion.
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Consider a viscoelastic composite which is subjected to the homogeneous
boundary conditions (4.1.53). We summarize the Laplace transformed problem

in the manner of (4.1.51-52).

~(m)  a(m) _ .
PClik Yk, = iRy @)
8.(8,p) = €2, (o) x (b)

i ij j

4.2.14)
U, (©)
continuous on S,
int.
P Ciki %1% @)
The transformed stress is given by

A (m) __ A(m) ~(m) .
Y (x,p) =p Cijkl (o) €\ (x,p) in R (4.2.15)

Suppose that we wish to compute the average of eij (x,p) . Itis seen
that this is precisely the problem which arose in the computation of average
stresses in elastic composites for purpose of computation of EEM, pars. 3.3.1-2,
We may regard (4.2.14) as a problem for an associated elastic composite whose

phase "elastic moduli" are the previously defined TD moduli

(m) _ _ A(m)
Ti].kl(p) =p Cijkl(p) 4.2.16)

By the linearity argument of par. 3.3.1 we can write the average of (4.2.15) as
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*

A(t) are the five ERM of the material.

* * * *
where n (t), £ (), k (t), GT(t) and G
Homogeneous boundary conditions appropriate for computation of the ERM
in (4.2.12-13) are of type (4.2.1). Thus all the boundary conditions in

chapter 3.4 are transcribed to the viscoelastic case by multiplying their

*
right sides by H{t) . For example: For k (t) definition (see (3.4.59-61) )

u, (8,t) =0 u, (8,t) = < H (t) %, u, (8,1) = SH ) Xq
0 0 0
[Eij 0] = 0 & 0 H(t)
o o0 &

- - _ * o)
0,5 (1) = 0, () =2k (t) ¢

If eoH(t) in the boundary conditions is replaced by e (ty, t = 0, then

t

O
- - _ * de (T)
OZZ(t)— 033(t) —sz (t-7) TdT
O

4.,2.2 Static Correspondence Principle for Viscoelastic Composites

We now proceed to derive a correspondence principle for viscoelastic
composites which will enable us to find effective relaxation moduli and effective
creep compliances on the basis of known effective elastic moduli. The theory

developed also leads to the general results of par. 4.2.1 in independent fashion.




415

Ak aQ A% 2
[

o.p)=p C, (e

2.1
i ikl kl (p) (4.2.17)

(p) are for the time being arbitrary coefficients and the last

Ak
where p C ikl

equality in (4.2.17) is due to the average strain theorem applied to the
transformed strains in the associated elastic composite.

If the viscoelastic composite is SH then the associated elastic
composite is also SH since SH is a property of the phase geometry only and
the laplace transformation operates only on the time variable. Consequently,

Ak

PC i

elastic composite by the arguments of par. 3.3.2. They may also be called

may be defined as the "effective elastic moduli" of the associated

the effective TD moduli. Thus

* A K

rijkl(p) =p Cijkl(p) (4.2.18)

If the homogeneous boundary condition is chosen in the special form

(4.2.1) then the average strains are eci)]_ H(t) with LT eoij/p. Insertion of the

transformed average strains into (4.2.17) yields

- ( ) _ Ak ) [o]
9P =C @) ey
with inverse transform
- ( _ * ( o _ C* ( ) -
0,8 =C g e TC ) ey

-+
v
[l
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*
which is the same as (4.2.3) . Thus C ijkl(t) are recognized as the ERM. The

inversion of {4.2.17) is

t -
d T
s o=fc" —il-(——)— dr
ij ijkl ar
(0]

which is the same as (4.2.5).

Effective viscoelastic stress-strain relations for various cases of
macroscopic symmetry have been given in par. 4.2.1. Such reductions may
also be easily performed on the basis of present developments in terms of
transformed quantities. The effective TD stress-strain relation (4.2.15) may
be reduced on the basis of symmetry considerations precisely as an effective
elastic stress-strain relation and so the results of chapter 3.4 are directly
applicable. Inversion then produces viscoelastic stress-strain relations as
written in par. 4.2.1.

For example: in the case of transverse isotropy (4.2.17) involves only

five effective TD moduli and may be written

A ax 2 Ay 2 Axl
= + +
911 TP ey FRE 6y, TR gy @)
2 2* Ll (a* A%k 2 Ak Ak A
o, = + + + -
ap “ P4 et GT) €00 pk GT) €33 (b)
2 _ 2*2 + A% % 2 Ax Ax 2
O, =P4 € tok - Gop) ey, TPk +GT) €33 ()

(4.2.19)
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[l A% 2
O1g 2P Gy ey (@)
: _2 T 3 f_ ()
93 TP G €5 e
o Ax D
013 =2P Gy €3 ®)

ak Ak Ak L.

K3
where pn , p£ , pk , pGT and pGA are TD effective moduli. Inversion of

(4.2.19) produces (4.2.13).

We shall now derive a correspondence principle which directly relates

effective elastic and viscoelastic properties, [4.8]. Let the EEM of an

*
elastic composite and the phase moduli be denoted eC ikl and eci(?l?l '
respectively. We write symbolically
e * e_* e ., (m)
= 2.
C ikl Cijkl(g , {al) 4.2.20)

where the first term in the parenthesis denotes phase moduli and the second

term denotes phase geometry. It follows for the associated composite that

* _e.* (m) |
rijkl(p) - Cijkl (2" , {g} ] ? (4.2.21)

Equ. (4.2.21) states the static correspondence principle for viscoelastic

composites. In words: The effective TD moduli of a viscoelastic composite

are obtained by replacement of phase elastic moduli by TD phase moduli in the

expressions for the effective elastic moduli of a composite with identical

phase geometry.
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*
Once rijkl in (4.2.21) are known it follows from (4.2.18) that
* -1 .1 _*
) = - T 2.
c...w=2L"1 . R 4.2.22)

ijkl

where £-1 denotes the inversion of the LT .

The correspondence principle described above is valid for a general
anisotropic composite with general anisotropic phases. If the phases are
isotropic the phase TD moduli have the form (4.1.34) if the phases are
described by stress-strain relations of type (4.1.19). If the phase stress-
strain relations are of type (4.1.21-22) then the phase TD moduli are given
by (4.1.42).

It should also be noted that if the displacement, strains and stresses
in an elastic composite are known then the "displacements", "strains"and
"stresses" in the associated elastic composite are also known in terms of
TD moduli. These are then the transforms of the displacements, strains and
stresses in a viscoelastic composite with identical phase geometry.

The theory developed above applies equally for effective creep
compliances. Equ. (4.2.9) may be rederived on the basis of associated

elastic composite theory just as (4.2.5) has been rederived above. The LT

of (4.2.9) is

A ~

Nk

€5 P)=p Sijkl 9 (p) (4.2.23)

Since by SH (4.2.22) and (4.2.17) must apply for the same transformed average

Ak
stresses and strains we conclude that pC
i

A%k
ikl and p S k1 are reciprocal. Thus
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2 Ak Ak

- | 2.2
P Cijrs Seskt " Ty | (4.2.24)

Ak A%
and pS ikl may be identified as TD effective compliances. Once C ikl are
Ak
known, S k1 can be computed from (4.2.24) and can then be inverted into the

time domain.

Since in applications one is primarily concerned with the case of visco-
elastic matrix and elastic fibers it is of importance to investigate the form of
the correspondence principle for the case of a composite consisting of
viscoelastic and elastic phases. It has been stated before, (4.1.24) , that in
viscoelasticity theory elastic moduli are interpreted as relaxation moduli

in terms of Heaviside unit functions. We can also see this if we take the LT

(m)

of (4.1.25a) for an elastic phase with moduli °c iK1

and compare the result

with (4.2.15). It is seen that

A (m) _e_[(m)
pCijkl (p) Cijkl (4.2.25)
from which it follows immediately that

m) 4y = ec™ g

Cijkl ijkl

which is the same as (4.1.24). More important, (4.2.25) shows that the TD

moduli of an elastic phase are just the elastic moduli. This shows that the

correspondence principle as stated above remains unchanged in the case of the
presence of viscoelastic and elastic phases. It may be emphasized that in this
case the moduli of the elastic phases are left unchanged in the replacement

scheme which leads to the effective TD moduli.
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The transform inversion in (4.2.22) is frequently very difficult to carry
out. But it is fortunately possible to obtain information about the behavior of
C:jkl(t) att =0and att ~ ® without performing a transform inversion. This is
done by the use of initial and final val ie theorems (Abel-Tauber Theorems) for
Laplace transforms.

Suppose that <3(p) is the LT of a function ¢ (t) . Then

lim p% (p) = v (o) (@)
D o
4.2.26)
lm pp (p) = o (=) (b)
p - C

provided that the limits exist. For proof see e.g. [4.10]. The first of (4.2.26)
is the initial value theorem and the second is the final value theorem.

Now from (4.2.18), (4.2.21) and (4.2.26)

* o A% . e * (m
Cijkl(o) = lim p Ci].kl(p) = lim CijklEL ep), {g} 1 @@
p - p- @
(4.2.27)
* - 1 Ak — 1 e * (m)
Cijkl( ) llmpCijkl(p) lim Cijkl[E ®),{g}] (b
P~ O p-—- 0
From (4.2.16) and (4.2.26)
(m) _ . A (m) _ ~(m)
lim T ikl lim p Cijkl (p) = Cijkl (o) @)
p_. [«-] p - @
(4.2.28)
. on(m) _ . A (m) - (m) \
lim Tijkl lim p Cijkl (o) Cijkl () (o)

p = 0 p-—- O
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Insertion of (4.2.28) into (4.2.27) yields

Gl © = %05, 6™ (0, 191 ] @)
(4.2.29)
* e * (m)
Gl @ =0T, 1™ (61 ] ®)

*
We shall call C ijkl (o) and C(S]}ll (o) initial effective and phase relaxation moduli,

(m)
ijkl

and phase relaxation moduli, respectively. The theorem which we have proved is:

*
respectively. Similarly, we shall call C ijkl(°°) and C (») final effective

The initial (final) effective relaxation moduli of a viscoelastic composite are

obtained by replacement of phase elastic moduli by initial (final) phase relaxation

moduli in the expressions for the effective elastic moduli of a composite with

identical phase geometry. This theorem will be called the initial (final) value

correspondence principle.

The theorem which has been proved is of considerable practical importance
as will be seen in applications further below. It provides the possibility to
compute the initial (elastic) and final (after long time) values of ERM. In some
cases these values are quite close and this then indicates that the viscoelastic

effect is not of importance, if it is assumed that ERM and ECC vary monotonically

with time.
Initial and final effective creep compliances are most easily obtained

in the following manner. From (4.2.24) and (4.2.26)

rskil 1=

P = p...cn

Lo 2A% A o &Y Jlimfp S
lim p Cijrs(p)s {9 =lim Lp ijrs’ T EP Srek

*

*
= Cjrs © Spgpg © =TIy
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with a similar result for p - 0 . Summarizing, the results are

* *
Clies @ 8 g4 © = Lk
(4.2.30)
* _‘* )
Cijrs( ) brskl (=) = Iijkl
In words: The initial (final) ERM and ECC are reciprocal.
Evidently the same proof also applies to phase moduli. Thus
(m) (m) _
C ijrs (0) srskl ) = Iijkl
(4.2.31)
m) o cm) .\ _
Cijrs ) Srskl( ) Iijkl

Consequently, initial and final ECC are computed from initial and final ERM
just as in elasticity. Also, phase final (initial) creep compliances may be
used instead of phase initial (final) relaxation moduli in the initial (final)
value correspondence principle, if convenient.
We note that the correspondence principle for viscoelastic composites
applies only to expressions for effective properties. No conclusion can be
drawn at the present time for relations between bounds for EEM and bounds
for ERM. It is possible by means of the elasticity-viscoelasticity analogy
to derive bounds on TD moduli just as in elasticity, but it is not known what
these bounds imply for the inverse transforms in the time domain.
Schapery [4.11] has discussed some relations between transform bounds and
inverse transform hounds on the basis of approximate transform inversion, but the

magnitude of error introduced by his approximation does not seem to be known.
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*
4.3 VISCOELASTIC BEHAVIOR OF FIBER REINFORCED MATERIALS( )

4.3.1 Effective Transform Domain (TD) Moduli

We now proceed to exploit the correspondence principle for viscoelastic
composites and the results for EEM of FRM, given in part 3, to derive ERM and
ECC of FRM. It is recalled that the correspondence principle applies to elastic
and viscoelastic composites of same phase geometry and that the principle can
be used only if explicit expressions for EEM are known. Fortunately, we have
expressions for EEM of transversely isotropic FRM described by the composite
cylinder assemblage model. Therefore we can use the correspondence principle
to study the viscoelastic behavior of viscoelastic composite cylinder assem-
blages. It has been seen that the EEM computed for this model agree quite
well with experimental results. It would seem, therefore, that similar good agree~-
ment can be expected in the viscoelastic case.

The analysis to be given is based on the following assumptions:

@) The fibers are perfectly elastic, isotropic or transversely isotropic.
(b) The matrix is viscoelastic, isotropic.
() The viscoelasticity of the matrix can be neglected in dilatation.

These assumptions imply that fiber (phase 2) stress-strain relations
are (3.4.88) or (3.4.86-87) and the matrix (phase 1) stress-strain relation

is a simplification of (4.1.19), given by

*
The theory presented in chapter 4.3 is based on ref. [4.9].
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o (%) =3K; ¢ (x,t) @)
t
s(i?)(g,t) = /Gl(t—'r) % ei(jl) (x,T) dT (b) (4.3.1)
O
t
ot () = Zl—frl t-r) 2 s (0 ar ©
(0]

It is noted that Gl and Il are related by (4.1.35b).
If it is desired to use differential operator stress-strain relations
of type (4.1.21-22), then in the present case

e (1)

(x,t) = 3K, e (x,1) @)

(4.3.2)
(1)

P({D) s
ij

‘;’m,t) ()

(x,t) = QD) ey

Equs. (4.3.1a), (4.3.2a) are a consequence of assumption (c) which is a
frequently used approximation.

Note that neither of the assumptions @-c) is theoretically needed.
The following treatment may be easily extended to tra nsversely isotropic
matrix, viscoelastic fibers and matrix dilatational viscoelasticity.

To apply the correspondence principle we use the expressions for
composite cylinder assemblage EEM which were derived in par. 3.5.3. We
note that since the fibers are elastic their TD moduli are also their elastic
moduli, as has been shown in par. 4.2 .2,and they are thus left unchanged

in the replacement scheme.
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For matrix moduli we have to incorporate the assumption that the
dilatational stress-strain relation is elastic with bulk modulus Ki' To do
this we first write the matrix moduli appearing in composite cylinder assem-
blage EEM expressions in terms of K1 and Gl' To avoid confusion with
relaxation moduli we assign to elastic matrix moduli a left superscript e,
except for K, where this is not needed. We recall the well known relation

1

for isotropic elasticity

2
= + —
K= 3G

We then have from (3.4.89)

e _ 4 e

1'11—K1+3 G, @)

ey =k, - 2 g (o) 4.3.3)
1" ™M T3 4 S

e _ le

k=K 3 & (©)

The Young's modulus eEl and the Poisson's ratio . are given by the well

1

known expressions

e
9. %c
eEl - —_le—l— @)
3K,+°G)
. 4.3.4)
3k,-2°G,

1 e
2(31<1+G1 )
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Now the TD moduli replacing (4.3.3-4) in EEM expression are simply obtained

by replacement of eG1 by I‘l (p), everywhere. Therefore the replacement rule is

e _ A
G, - I‘l (p) = PG, (p) @)
“ry = PR ) =K + 2T ) )
e Iy _ 2
S pkl(p) =K - 3 Fl (p) (c)
‘ 4.3.5)
e A _ 1
klﬂpkl(p)—Kl+3—Fl(p) (d)
9K, I' (p)
e A _ 11
E, =~ PE,(p) = W (e)
3K, -2T (p)
e 1 1
vy~ v (e = 23K+, ®) ] (®)

Here (4.3.5a) is to be interpreted as (4. 1.42) for stress-strain relations of
type (4.3.2), which also define (4.3.5b~f) for this case.

Use of the replacement scheme (4.3.5) in the expressions (3.5.91-92),
(3.5.96-97), (3.5.99) and (3.5.111) yields the corresponding TD effective moduli.
The case of the transverse effective shear modulus G*T is unfortunately more

complicated. It will be recalled that bounds, (3.5.113-114), for this EEM
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were given, but it is not known at the present time how these bounds can be
generalized to the present viscoelastic case. As has been stated before
recent work by Hashin and Rosen indicates that (3.5. 113) may be the actual
result for G; of a composite cylinder assemblage if the fibers are stiffer
than the matrix. It has also been seen that (3.5.113) is in good agreement
with experimental results. We consequently regard (3.5.113) as an ad-hoc
expression for GTI‘ of the composite cylinder assemblage and also transform
it into effective TD modulus form as the other moduli.

The resulting TD effective moduli are now summarized.

[ . 3
- (A, = A ) v, v
1 pn (p) = pﬁl vitn, v,- Al 2 1 2 i @)
H + + i
o p')\\l(k +pél) v+ (p)A<1 + pél) v,
pt (p) = 2 - 2 " - (b)
(k2+pG1) vyt (pk, + pGl) v
n DE (k +p€3)v + k., (pk +pG)v
PO i Mt U WY i St v )
+ +
(k2+pGl) vy (ok | pGl)v2
2
A% - 4[\)2 = Vl(p)] v, Vz
pE =pE. v, +E v, * = = .3,
(p) = pE; v, * E, v, v ok /08 (d) (4.3.6)
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1

[\)2 -V (p)](l/plzl-l/kz) v,V

2

*
v =y v, +v v, o+ y -
A L 1272 Vl/k2+v2/pk1+l/pG1

~ o
- pGl \a C2 (1+v2)

: A K

pGA(p)=pGl n
> (1 +
pC1(+v2) Gz vy

i 3. 4 . 2.2
- Li+a v, 1lo) + 8. () v, ] -3v v *8.°(p)
o7 (p) = 0, 2 1 2 2 71 "1

[ @v, 1006 - v,] -3y, v 28R ()

where in (4.3.7)

3,(0) - (o) B,
ap) = @)
1+y(p) Bz
v (p) + Bl(p)
p(p) = -W‘T— (b)
G
(p) = — 2 (©)
pGl(p)
B (p) = =
1P 3-4v, () (@)
1
B T 3-4v, (e)

(e)

(£)

(4.3.7)
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* *
The TD modulus pﬁT and the TD Poisson's ratio VT(p) are defined just as

for elastic composites. Thus from (3.4.82-84)

Ak Ak
~ 4pk pGT
PE.(P) = — — (a)
pk +m(p)G
I\*
pk -m(p)pGT
Vo) =—% — (b) (4.3.8)
pk +m(p)pGT
Ak *2
4pk Va (p)
m() =1+ — (c)
pEA

A few comments on equs. (4.3.6-8) are in order. Firstly, it will be
noticed that in many equations p factors have not been cancelled. The reason
for this is that because of the presence of Ky there is no common p factor in
the right sides of (4.3.5) except for (4.3.5a) and so cancellation of p factors
would provide no advantage.

Secondly, the occurrence of TD Poisson's ratios (4.3.6d) and (4.3.8b)
calls for some explanation. These "Poisson's ratios" are only of formal
significance in relating TD moduli (for example (4.3.7a,c) ). The inverse
transforms of these "Poisson's ratios" have no intrinsic physical meaning.

In order to obtain an effective strain-stress law we write first the TD

analogue of (3.4.78) which is given by
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® 1>
=
>
<
—
z
>
<
c)
I»

1= o 91 v Y99 T Tax 33

1>
<
g
>
—
>
<
)
>

%22 ax 11 7 Taw 22 ~x 933 () 4.3.9)

) )
= vAp > VTp g + c
33 ﬁ* 11 ﬁ* 22 Ak 33
PEA PEr T

® 1>

—
1>

(c)

I
—
3]

‘107 T aw @)

1>
Q>

ez3=-——:-*—— (b) (4.3.10)

1>

2 913
13

_ =
ZpGA

Inversion of (4.3.8-9) yields strain-stress relations of type (4.2.9) and thus

the effective creep compliances.
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Often relaxation moduli reduce to a small fraction of their initial values
after long time, (theoretically infinite) , has elapsed. This has important bearing
on the calculation of final values of ERM. It is recalled that according to the
initial and final value correspondence principle initial and final value ERM
are found by substitution of initial and final value phase relaxation moduli,
respectively, into EEM expressions. The initial values of the relaxation moduli
are written simply as the left sides of (4.3.3-4) with zero time argument. The
final values of the relaxation counterparts of (4.3.3-4) are found by substitution
of G1(°°) into these expressions while K1 is left unchanged, since it is by
hypothesis time invariant. Now G ( =) may often be neglected in comparison

1

to I<Z1 . In this case we have from (4.3.3-4)

n (=) =1 (=) =k (@) =K @)
E1(°°)=3G1(°°) (b) (4.3.11)
v ()= ©

It is, of course, not necessary to neglect Gl(m } with respect to Kl'

If G1(°°) can be estimated from experiment its value can be easily used.
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4.3.2 Effective Relaxation Moduli and Creep Compliances

4.3.2.1 Methods of investigation

The ERM and ECC of the viscoelastic FRM may now be obtained by
transform inversion of (4.3.6~7), but examination of the expressions to be
inverted reveals that this is a formidable undertaking. An extensive investiga-
tion of the resulting viscoelastic properties is not within the scope of the
present work. We shall limit ourselves to study of some typical cases and
some conclusions of general interest.

The methods of investigation at our disposal are:

@) Representation of matrix shear relaxation modulus Gl (t) by an arbitrary
function which is determined by experiment.

In this case the inversion must be performed numerically by either one
of the following methods: numerical solution of an integral equation or
approximate numerical transform inversion.

(b)  Representation of the matrix shear stress-strain relation by differential
operators of type (4.3.2b).

In this case pél(p) is given by the expression (4.1.42b) which is a
ratio of two polynomials in p. All of (4.3 .6-7) then also become ratios of
polynomials in p and the inversion can be performed by conventional methods.

The necessary calculations may, however, become extremely laborious,
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(c) Simplification of fiber and matrix properties in order to obtain easier
transform inversions.

Great simplification is achieved if it is assumed that fibers are rigid or
(@and) that the matrix is incompressible. Expressions for composite cylinder
assemblage EEM for such extreme cases have been given in par. 3.5.3 and
the correspondence principle can be applied directly to these expressions.

The simplification is primarily due to disappearance of matrix Poisson's ratio
whose TD counterpart (4.3.58), is largely responsible fof transform complexity.
It should, however, be realized that the rigid fiber and/or incompressible
matrix approximation may introduce significant errors. Consequently,
viscoelastic results obtained on the basis of these approximations should

be regarded as qualitative.

(d) Use of the initial and final value correspondence principles, of par. 4.2.2,
to obtain initial and final values of ERM and ECC.

This method is of significant practical importance since it uncovers those
cases where the viscoelastic effect is unimportant. If the final value of an
ERM is close to its initial value and if the ERM is a monotonic function of time,
then this implies insignificant time effect. It is not, however, known to the
author how monotonicity can be demonstrated without finding the ERM for the
whole time range. It seems physically reasonable to assume that this is the
case if matrix relaxation moduli are monotonic functions of time, which is a

well established physical fact. So the monotonic time character of ERM is at

present regarded_as a conjecture.
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4.3.2.2 Axial and isotropic-plane stressing and straining

Suppose that a fiber reinforced cylinder is subjected to average strains

Ell(t) 0 01
e, )] = 0 e (t) 0 (4.3.12)
ij l T
! 0 0 S ()

by means of the homogeneous boundary conditions

ul(S,t) = ell(t) X, u, (S,t) = € (t) %, u, (S,t) = eT(t) Xq
4.3.13)
In that event the TD stress-strain law (4.2. 19) becomes
2 ax 2 Ak 2
= +
oll(p) pn (p) ell(p) 2ps (p) eT(p)
(4.3.14)
s jad [ 2* Ak fad )
g = = = +
22~ %33 OT(p) pt (p) +2pk (p) eT(p
The inversion of (4.3.14) into the time domain is
- * — * -
Oll(t)—n odell+2£ sdeT
(4.3.15)

- * — * _
= +
OT(t) 4 sde:11 2k sdgT

* * *
We wish to study the ERM " (t), £ (t) and k (t) entering into (4.3.15).
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We start with application of the initial and final value correspondence

principle. The initial moduli are then given by replacement of elastic matrix

moduli in (3.5.99), (3.5.91) and (3.5.92) by the corresponding initial values

of the phase relaxation moduli. Therefore

2
r * L)\i(o)—hz_‘ VY,
(

. v, -
0o n vy tn, v, k, v,k v +G, (0)

2

; )‘1(0)&2+G1(°)]V1+)‘° [k, (0)+G, (0) v,
[k2+G1(o)]v1+ [kl(o)+c;1(oﬂv2

kl(o)[k2+G ! (o) ]vl+k2 [kl(o) G, (o) ]vz

k (o) =
[k2+Gl(o)Jv1+ [k1(0)+G1(0)]v2

i
!
{

where because of isotropy Lcompare (3.4.89)]

nl(o) = )\1(0) + ZGl(O) = kl(O) +G1(O)

= + = +
N )\Z ZG2 k2 GZ

*

(b)

(c)

* *
The final values of n (t), £ (), k (t) are found by substitution of

(4.3.11) into (3.5.99), (3.5.91-92). This yields
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2 ?
| n*(oo)=K v, +n_v. - (Kl—)\z) Vlvz i @)
; 171 2 2 Is1v2+k2vl ’
' K.k,v, +A_v ) T
*
A )  (4.3.17)
21 172
K. k .
* l 2 X
ki (¢)s ——— 2 : (c)
k2v1+Klv

i

Note that G1 () has been neglected with respect to fiber moduli.

We perform a sample calculation for a FRM consisting of epoxy matrix
and glass fibers. The elastic moduli of the epoxy are taken as the initial values
of the epoxy relaxation moduli. The epoxy and glass elastic properties are
given in table 3.6.1, p.223 . The results for n*(o) and n*(m) are given for

various fiber volume fractions in the table below.

* 6
Vo D ©  n (=) (10° psi)
PR ;:T |
0.2 2.66  2.54 |
0.4 f 4.69 . 4.63
06| 671 | 6.7
0.8 ,’ 8.88 ' 8.91

1.0 ' 11.68 | 11.68
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It is seen that the results are so close that the time dependence of n* (t) can
be safely ignored for this kind of FRM.

Results for z*(o), z*(w) and k*(o), k*(w) are shown in figs. 4.3.1-2,
It is seen that the time dependence of z*(t) and k*(t) is not very significant.
It should be borne in mind that to study this time dependence it is necessary
to resort to methods (a) or (b) described in sub-par. 4.3.2.1. Since the
mathematics involved is laborious and complicated this hardly seems to be a
worthwhile undertaking in view of the small difference between initial and
final values shown in the figures.

If the fibers are assumed rigid it is possible to establish a very simple
expression for k*(t) which expresses this ERM explicitly in terms of arbitrary

*
matrix properties. For rigid fibers ek is given by (3.5.115). The corres-

ponding TD modulus is found by replacement of kl, G1 by 4.3.5a,d). We find

v

Ak 1 A 4 A 2
= - + + =
pk () =K, * 3 pGl(p) [Kl 3 P Gl(p)] =, (4.3.18)
Division of both sides by p and subsequent inversion yields
1-3
k*(t)= ! + —v—z— G, () t> 0 (4.3.19)
l-v2 3 (l—vz) 1

It is easily realized that (4.3.19) can be generalized to the case of a matrix

which is viscoelastic in shear and dilatation. In that event (4.3.19) becomes
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. Kl(t) l+3v2
k (t)=_..1__72_ + 3(1_—\/_2) Gl(t) | (4.3.20)

&

Expressions (4.3.19-20) permit the direct use of experimentally obtained matrix

viscoelastic properties. Such expressions are a happy and unusual occurrence

in viscoelastic composite theory. It is, however, emphasized again that the
underlying rigid fiber approximation has to be viewed with caution. A possible
way of checking the validity of (4.3.19) for a FRM with stiff fibers is to

* * * *
compute from it k (o) and k (« ) and to compare these with k (0), k (=)
results obtained by the previously used method for non-rigid elastic fibers,
If the results are close it may be assumed that (4.3.19) can be used. We
have for rigid fibers

A\

€ 0) =k, () + [k (0) + G, (0)] & @)

: @.3.21)
* Kl
Kle) = 5= (o)

where (4.3.21) follows from (3.5.115) and (4.3.21b) follows from (4.3.18) by
neglect of G1(°° ) with respect to Kl' A numerical comparison of the values

* *
of k (0) and k (=) based on (4.3, 16c) , (4.3.17c) for epoxy matrix and glass

fibers and based on (4.3.21) for epoxy matrix is given in the table below

rigid fibers elastic E-glass fibers
* * , * ‘ * 6
v, k (o) k(®) | k (o) k (=) (10" psi)
0 0.49 T 0.44  TToge T T ol4a I o
0.2 0.65 0,56 0.64 0.55
0.4 0.92 0.74 _ 0.87 0.70
0.6 1.46 1,11 1.26 1,02
0.8 3.51 2.22 2,21 1,78
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It is seen that for the present material for which kZ/kl(o) = 14,8 the values

in the range 0 s v, < 0.6 are reasonably close and therefore the use of

(4.3.18) for the whole time range seems justified.

We now proceed to study ECC and for this purpose we consider

average stresses of the form

Oll(t) 0 0
lo. @] = 0 o () 0 t= 0 4.3.22)
i] T
0 0 BT(w

which are impnsed by means of the homogeneous traction system

T,(8,t) = 511“)“1 TZ(S,ﬂ==oT(U n, T,(8.1) = ar&)n3

The TD strain-stress relations (4.3 .9) now assume the form

2 " Lc:y - ———sz(p) g @)
11 e 11 &
Pip P=p
4.3.23)
* l *
8 a2 v, ® s, v () 2 o)
€92~ €33 °7 A* 11 £*
PEaA P

Since TD moduli are related just as elastic moduli we recognize from (3.4.85b),

(3.4.82-84) that
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* * 2
l—\)T(p) ! z[vA(p)]

] = — (4.3.24)
pET 2pk pEA

We now introduce the notation

pe, = 5 @)
A pﬁ
Ak ]_
pr = — (b)
pk
* (4.3.25)
vV (p)
AKX
p s :——%— ()
pEA
B
A* \) p
pr = AA* (@)
pEA

Insertion of (4.3.24-25) into (4.3.23) and inversion yields

* -
+2s odo @)

- * -
ell(t)—eA@do11 T

(4.3.26)

- ( * i 1 k* * -
= + —
e t)=s o do,, ( 5 +2r ) o doT (b)

* * * *
The functions eA(’c) S (t), £ (t) and r (t) are effective creep compliances.
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If O’T is zero then the specimen is in a state of uniaxial average stress.

We then have from (4.3.23a) and (4.3.26a), respectively

t -
_ de. . (T)
cll(t) =/-E:(t-'l’) lel dr @)
O
4.3.27)
t -
_ da, . (1)
=[] €0 —— ar )
o)

Equ. (4.3.27a) determines the uniaxial stress variation (relaxation)
if an axial strain history is given and (4.3.27b) determines the axial strain

variation (creep) for uniaxial stress history.

1f Ell(t) vanishes then the specimen is in a state of plane strain.

In this event it follows from (4.3.23), (4.3.24) , (4.3.25b) and (4.3.26b) that

_ t dey ()
O'T(t) =2/k t-T) I dr @)
o
4.3.28)

t -
_ do_(7)
o) =7 f B -m) —e— 41 (b)

(0]

The physical interpretation of (4.3.28) is similar to that of (4.3.27).

Equ. (4.3.28a) determines average stress relaxation for given average strain

history, while (4.3.28b) determines average strain (creep) for given average

stress history.
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* *
The creep compliances s (t) and r (t) appearing in (4.3 .26) determine
the coupling effects on deformation when 511 and c_rT act simultaneously.
They are of the nature of time dependent Poisson's ratios.

*
We proceed to study the behavior of the ERM EA(t) . which is of great

practical importance. We have from (3.5.96) and from the initial and final

value correspondence principles with (4.3.11) used in the latter,

2
) 4[\)2 - v, ()] VY, ;
E,(©)=E ©)v, + Ev, +V1ﬁ<2+"z/k1+1/G1(O) e

.
|
|
|

(4.3.29)

EA () = E, v (b)

2

The simple form of (4.3.29b) is obtained because Gl (=) is neglected with
respect to fiber moduli.

Plots of (4.3.29) for glass and epoxy properties, previously used,
are shown in fig. 4.3.3. The third term in (4.3.27a) is numerically
insignificant and so E*A(o) is practically given by the first two terms. This
phenomenon has been repeatedly noted in discussion of elastic E;. It is
seen that only for small fiber volume fraction is there an appreciable difference
between E*(o) and E*(°°). For the fiber volume fractions used in practice which
are generally higher than 0.4, the difference is negligible. Thus the time

*
dependence of EA(t) can be neglected for such materials.
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*
The vanishing of EA(°°) for no fibers should not be taken too literally.

*
Since in this case EA(°°) is E1(°°) , this merely implies that E1(°°) is regarded

as a small number.

It is recalled that it has been shown previously that E is an excellent

*

approximation for eEA

, i.e. the effective axial Young's modulus for any

fibrous or fiber reinforced material. It is reasonable to expect that therefore
aAx

the TD modulus pEA can be represented with excellent approximation by

the average of the phase TD moduli, thus

B" T pf v, +E
PELA T PV TR Y

from which by inversion

EA(t) = El(t) v, + E2 Ht) (4.3.30)

* *
The initial and final values of the compliances eA(t) and # (t) are also

easily found. We have from (4.3.25a,b) and (4.2.26)

e;;(o) = 4im péZ(p) = 4im [ Al* ] = *l @)
p- e p-= pkE A(p) E A(o)
(4.3.31)
e;(“) = Zim pé;(p) = 4im [ A: ] = *1 (b)
pEA(p) EA(w)
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and similarly

5 o) = — (@)
k (o)

}f*(co) = -]:k— (b)
k ()

(4.3.32)

The results (4.3.31-32) are really examples of the general relations

(4.2.30) and can be directly derived from the latter.

It follows from (4.3.29) , (4.3.16¢), (4.3.17¢c) and (4.3.31-32) that

[ * ~ i T
en © =

El(o) vz + EZ vy

[k2+Gl(o)] vyt [kl(o) + Gl(o)] v,

k(o) =
kl(0)[k2+Gl(0)]vl+kz[kl(0)+Gl(o)] v,
* V1 Yo
;5 (00) = e— —
Kl kz

| —

@)

4.3.33)
(b)
@)

(4.3.34)
(b)

where the third term in the right side of (4.3.29a) has been neglected.

Plots of (4.3.33-34) for Epoxy~-glass FRM are shown in figs., 4.3.4-5.

It is seen that for sufficiently large fiber volume fractions, as used in practice.
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el(o) and eZ(m) are very close together, indicating again the insignificance
of the viscoelastic effect for a uniaxial stress in fiber direction. There is a
significant difference at low fiber volume fractions. Indeed e:\(w) for the
matrix without fibers becomes theoretically unbounded. This, of course,
merely implies that E1(°°) is small.

The values of k*(o) and k*(w) are also not significantly different.
Evaluation of k*(t) for the whole time range is of course as laborious as
evaluation of k*(t) and must again be done by numerical methods or on the
basis of assumed differential operator stress-strain relations for the matrix.

It is to be noted that there is no such simple result as (4.3. 19) for
the creep compliance k*(t) , when the fibers are assumed rigid. To see this
we use (4.3.25b) and (4.3.18) to obtain

*
K ;'% ( 1+3v

1 D) 2 2 o 1
+ K = —
T-v p 3(1-v, G % o) 2

The inversion of this equation into the time domain is

1+3v
/k (T) dT+ fG (t~ 'r)h: (r) dT7 =t (4.3.35)

O

l—v

*
Here Gl(t) is a numerically known function and % (t) is the unknown function.

Another form of the equation may be obtained by differentiation of (4.3.35) with re-

spect to t. We then have

t
K . 1+3v oG, (t-7) *
L l-i; +G1(o)]k(t)+ zz)f L Bo(r)dT =1

3(1-v 3T
o]
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Such integral equations can be solved numerically by methods described in [4.15].

*
We now consider the ECC s (t) which enters into (4.3.26). It follows

from (4.3.25c) and the theorems (4.2.26) that

. v* (o)
s (o) = - —2—— @)
EA(O)
* (4.3.36)
. v ()
5 (2) = - —= (b)
EA("’)

The denominators of (4.3.36) are given by (4.3.29). The numerators are

*
obtained from (3.5.97) with the replacement (4.3.11) for vA(°°) . We then have

. b, @ T1/k ) - VSr
s vA(o) = vl(o) vyt A + Vl/kz A OESVR0) @)
3; 2’ "1 1
; 4.3.37)
v* (=) = 2 v, V. v (b)
A 2 1 2 2

volume fractions larger than 0.3 the difference between the two is insignificant.
We observe that s*(°°) - s*(o) is positive for fiber volume fractions between 0 to
about 0.55 and then becomes negative. The same curious phenomenon was
also found for Z*(t) , fig. 4.3.1,

*
Treatment of r (t) is, of course, completely analogous and it is again

found that for the present material the viscoelastic effect is insignificant.
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4.3.2.3 Axial and transverse shearing

We shall now discuss the viscoelastic properties of FRM in axial or
transverse shear. It will be seen that in contrast to the viscoelastic properties
discussed in sub-par. 4.3.2.2 there is a significant viscoelastic effect for
both of these shears.

Suppose that a fiber reinforced cylinder is subjected to average axial

shear

12
0 0 0

t=0

0 elz(t) 0
[Eij(t)]= e () O 0 (4.3.38)
: 0]

by means of the homogeneous boundary conditions

ul(S,U =  (t)x (S,t) = ¢

19 ) u, (t) x u {S,t) =0

12 1 3

It follows from (4.2.13d) that the only surviving average stress is 812 which

is given by

t -

_ N delz(’r)

Olz(t) = Z/GA {t-T) ——d—T-—‘dT (4.3.39)
o]

*
where GA is the effective axial shear modulus, whose transform is defined by
(4.3.6f).

Dually, the specimen is subjected to the average stress
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0 012&) 0
fo, @) J= 1?” 0 0
0 0 0 t> 0

by means of the homogeneous traction boundary conditions

T,(8,t) = Elz(ﬂ n, T, (S,t) = g. () n T,(S,t) =0

12 1

To find the strain response we consider (4.3.10a). We define the quantity

5" () b
gA p) by
Ax 1
PG, P) = —— (4.3.40)
pGAm)
Insertion of (4.3.40) into (4.3.10a) and inversion yields
t -
do_ (t)
-, 1 * 12
= — — Ll . ]'
elzxt) > /gA(t T) e dr (4.3.41)
o

*

Thus gA

is recognized as the effective axial shear compliance.
Obviously, similar results for transverse shearing can be written down

at once. For average transverse shear strain
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0 0 0
e, @] = 0 0 523(’0
0 ezs(t) 0 t=2 0

the stress response is

t
o w=2 [a @) —22—ar (4.3.42)
23 T dr
o
*
where the LT of the effective transverse shear relaxation modulus GT is
defined by 4.3 J—jg),

For average transverse shear stress

0 0 0
[oij ®)]= 0 0 23(t)
0 023(t) 0 t= 0

_ LT o 43, (1)
623(t) = 2‘ ng {t-1) T dr (4.3.43)

(4.3.44)
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We start the investigation of shear properties with application of the
initial and final value correspondence principle. The elastic axial shear
modulus eG; is given by (3.5.111), The form of G:\(o) is immediate and GZ(“’)
is obtained by replacement of Gl by Gl (®)in (3.5.111). We then neglect

G1 (*) in comparison to G The results are then

-
G, v,+ G, (1+v,) ]
* o 197 V1T SN, :
G0 =G, ) G, (1+,)+G, v ‘ a)
| (4.3.45)
* 1+V2 »
64 =6y — ®)

It is seen by the form of (4.3.45) that GZ (®) is of the order of Gl (= ). Therefore
the reduction of GZ(t) in the time range (o, ® ) is considerably larger than even
that of Gl(t) - This implies that the viscoelastic effect is significant and the
initial and final values do not give good estimates.

The initial and final values of the creep compliance g;;(t) , entering
into (4.3.42) are simply found by use of theorem (4.2.36) in the relation (4.3.40),

It follows that

|
gA(‘))—G*(o)
A
(4.3.46)
o)) = —




451

*

and thus (4.3.45-46) define the initial and final values of gA(t) . It is seen

* *
that gA(°°) is very large since GA(°°) is very small. This again indicates the

significance of the viscoelastic effect.
* e *
The procedure for GT(t) is entirely analogous. The elastic GT is
. *
assumed to be given by (3.5.113). The initial value GT(o) is given by
replacement of G1 and v by Gl(o) and \)l(o), respectively. The final value
* 1
GT(°°) is given by replacement of Gl by Gl(w) and of V) by o (4.3.11),
If G1(°°) is also neglected with respect to Gz we have
1 -v_+5v 2 + v

* o - 2 772 2
GT(°°) —Gl( ) 3 (4.3.47)
(l—vz)

It is again seen that G;(“’) is of the order of Gl(°°) which indicates significant
viscoelastic effect in transverse shear. Comparison of (4.3.47) with (3.5.119)
reveals identical forms. This is not surprising since as has been mentioned

(4.3.47) is based on final Poisson's ratio ;— and negligible G1(°° ) with respect

to G2 , which is equivalent to incompressible matrix - rigid fiber situation.

Again, it follows from (4.2.36) and (4.3.44) that

* 1
g.00)=—%
T G o)
(4.3.48)

* 1
g ()=
T * -

GT()

*

*
and gT(°°) becomes very large since GT

(») is very small.
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Having satisfied ourselves that the initial and final value correspondence
principle does not provide useful information for G*A(t) and G;(t), we are forced
to look for other methods of investigation. We start with derivation of some
very simple and general results for G;(t) when the fibers are rigid,and for G;‘(t)
when the fibers are rigid and the matrix is incompressible.
Suppose that the material is fibrous or fiber reinforced, with arbitrary
phase geometry. It has been shown in par. 3.5.1 that the elastic axial shear solution

e
depends only on the phase elastic moduli Gl and eG Consequently, we can

2"

write the general expression

G,.ig}) (4.3.49)

where {g} stands for phase geometry. By dimensional argument (4.3.49) can
be written in the form

e
eG*:eG F G
A 1

. fagl) (4.3.50)

G

where F is some function.
C . e i i
Now let phase 2 be rigid and so Gz/eG1 becomes infinitely large,
e *
It is assumed, however, that GA remains finite. Such a situation will
arise when the rigid phase is in the form of fibers, 2 , which are surrounded
by matrix, 1 . Then (4.3.50) can be rewritten

* e
eGA= G, P (4.3.51)

where FA is a function of the phase geometry only.
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We now apply the correspondence principle to (4.3.51). This implies

* *
that eGA and eGl are replaced by péA and pé in 4.3.51). This procedure

1
yields
&Y o) =& 4.3.52)
GA(p)—Gl(p) Fy .3.
which immediately inverts into
*
GA(t) —Gl(t) FA (4.3.53)
In view of (4.3.51) we can also write (4.3.53) in the form
* *
G,0 G,
Ao (4.3.54)
1 eel

Expressions (4.3.53-54) are very interesting results. They show that
the ratio between the effective axial shear relaxation modulus and the matrix
shear relaxation modulus remainsconstant for all times and is given by the
ratio between effective axial elastic shear modulus and elastic matrix shear
modulus.

Inserting (4.3.52) into (4.3.41) and using the relation (4.1.35) for the
matrix material, we find after inversion

gA(t) = Il(t)/FA (4.3.55)

where T, (t) is the shear creep compliance of the matrix.



454

We now apply the general results obtained to the composite cylinder
e_* C i e . .
assemblage model. Equ. (3.5.115¢c) gives GA for rigid fibers. Using this

result in (4.3.53) we have

* 1 +v2
GA(t) = Gl(t) T (4.3.56)

2

*
This equation makes it possible to find GA(t) when G, (t) is known only as a

numerical experimental result. Similarly, (4.3.54) for the composite cylinder

assemblage yields the simple result

(4.3.57)

Similar considerations can be applied for establishment of an expression
*
for GT(t) when one phase is rigid and the other is viscoelastic. But here it is

necessary to make the additional assumption that the viscoelastic phase is
*

. . . e
incompressible, since GT

depends on all phase elastic properties. We can

then derive a relation similar to (4.3.51)
G. = G, F 4.3.58)

where PT is a function of phase geometry only. It follows by the same arguments

used before that
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I
* e *
iy
1 °a
1
4.3.59)
* e
gT(t) ) G, | -
T, (t) e * ‘
1 Gy

The right sides of (4.3.59) are given by (3.5.119) . Consequently

3
l-v_ + +
v2 5v2 v2

* —
GT(t) =G, () @)

1 (1—v2)3
(4.3.60)
% (l—vz)3
gT&)=Iﬁﬂ 5 (b)
l—v2 + 5v2 + V2

It should be remembered that (4.3.60) has to be regarded with much more
caution than (4.3.56-57), because of the incompressible matrix assumption
involved in the former.

We continue the investigation of viscoelastic shear properties with
the derivation of expressions for GZ(t) and g’;(t) when the matrix behavior is
expressed by a differential operator stress—strain relation. We choose the
simple Maxwell relation (4.3. 10a) . The associated TD shear modulus is

given by
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nlp

+
1 Tlp

Fl(p)=pel(p)= (4.3.61)

where

T, =1,/G,

and M and G1 are the viscosity coefficient and shear modulus of the matrix ,

respectively. Insertion of this TD modulus into (4.3.6f) yields the result

' - + + oy (L+
& oy = o ((Iv,) + T Ly +y (14v,) Jp 4.3.62)
AP 4T P v, P I, Fw ) D o
where
Y:GZ/GI

The LT (4.3.62) is easily inverted by the method of partial fractions. The

result is
*
C;A(t)= 1:1 exp (-t/Tl) + 7 4;((\1,1, - j eXP (-T-\L;l'— 'E.E—)
1 v, (-Pv2 2 YV +v2 YV, ]
(4.3.63)

When the fibers are rigid y - « , and (4.3.63) reduces to

1+v

— 2
1 1~v

0 =G
G ()=
A 2

exp ( -t/Tl) (4.3.64)

It has been previously shown, (4.1.44a), that the relaxation modulus
of the Maxwell material is

G, () =G, exp ( -t/Tl)
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Comparison of the last result with (4.3 .64) verifies the general formula
(4.3.56) for the present case.
*
The creep compliance gA(t) is also easily computed. It follows

from (4.3.62) and (4.3.41) that

+ +
5 ) = Lrhe vt 0w
9a 2 v (I+v

P

Z+YV1) p
) +Tl[v1 + oy (I+v

7o 4.3.65)

2 2

Again inversion is easily carried out and the result is

* V1 4v2
G,g, )= (H@) +t/T, )+ H({t) -
1°A v, 1 v (1+v2)2
4v . v v (1+v,)
172 2 t
- exp ( - . ) (4.3.66)
(1+V2)2y Ly (1+v2) + vlJ v (1+"2)+"1 T

where H (t) is the Heaviside step function. For rigid fibers, (4.3.66) reduces to

1l -v
2 [Pé(” bt 4.3.67)

2 1 My

*( _
9,0 =757

Comparing this with the shear creep compliance of the Maxwell matrix, (4.1.44b)
it is seen that the general formulat (4.3.57) is verified.
The results obtained here can be used to obtain some idea about the vy

value for which the rigid fiber approximation becomes permissible, Fig. 4.3.7
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shows plots of the relaxation modulus (4.3.63) for different values of v , in
the case vy = v2 =0.5. It is seen that for v = 25 the rigid fiber approximation
becomes quite accurate. Typical values of v are about 30 for glass~epoxy
FRM and 60=90 for boron~epoxy FRM. It is, therefore, to be expected that

the general results (4.3.54-55), for any geometry, and (4.3.56=57) for the
composite cylinder assemblage model , should be applicable for such
materials.

In order to perform a similar investigation [or transverse shear
properties it is necessary to use the transform (4.3 .7) in which xl(p) is to
be interpreted as (4.3.5f). It is seen that even for the simple Maxwell
matrix the inversion is extremely cumbersome, though there is no theoretical
difficulty involved. Such an inversion will not be perfoimed here. It would
seem more advisable to resort to approximate transfoim inversion methods.,

See e.qg. Schapery 14,11 ].

Another method of investigation mentioned in sub-par. 4.3.2.1 is that of
integral equations {(method (@) ). As an example we derive the integral
equation for the ERM G;(t). We rewrite the transform (4.3.6f) in the form.

(l+v)G G*+G v =~l-G*=v GZ+G (l+v)~1— G

2 1 7A 2 1p A 1 71 2 2" p 1

Inversion of this expression gives

t t
* *
0 +v2)fGl =) G ()d +a, vlfGA('?') g =
@]

o]
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-vlfGl (t-7) Gl(T) dT +Gz 1 +v2)fol('r) dr (4.3.68)

Another form is obtained by differentiation of (4.3.68)

t t
(1+v fiG(t-T)G (T) f_a_ t-7) G, (T) dT +
2 3t 3 1
(o] (@]

+2 LGZ - Gl(o) ]GA(t) (4.3.69)

These integral equations must in general be solved numerically and
this can be done for matrix relaxation modulus Gl(t) which is known only
numerically from experiment.

Again, the situation is much more complicated for G;(t) . An integral
equation can in principle be derived from (4.3.6g) but its establishment,
lct alone its solution, is a very laborious affair. We must again conclude
that approximate transform inversion seems to be the best method indicated

in this case.

4.3.2.4 Transverse stressing and straining

Let a fiber reinforced specimen be subjected to the average time

dependent stress system

[ |
Q
—
It
o
@]
—_
-t
~—
o
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by application of the appropriate homogeneous traction boundary conditions.

it then follows from {4.3.9) that

P

5, " A (4.3.70)
pF..

*
We define the transverse TD compliance peT by
pe.. = - o (4.3.71)

Insertion of (4.3.71) into (4.3.70) and subsequent inversion yields the

creep relation

-, / * dZZ()
€22(t) :/eT (t- ) N d- (4.3.72)
o

*
and it is seen that eT(t) is the effective transverse Young's creep compliance.

Next, the specimen is subjected to the average transverse strain -e'zz(t)

and all other Bij (t) are kept zero, except for v__(t). This is achieved by

22

the mixed boundary conditions

Tl(S) =0
w, (0) = Ezz(t) X, t= 0
T.(S) =0
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Again (4.3.70) is obtained from (4.3.9) and is now inverted into the

relaxation relation
t -

N dezz('r)
22(t) =/ET (t-T) rra— dr (4.3.73)

ql

o

*
where E T(t) is the effective transverse Young's relaxation modulus.
* *
To obtain results for ET and e it is necessary to use (4.3.8) which

*
defines the transform of ET , and by virtue of (4.3.71) also the transform of

*
e in terms of the transforms of other ERM , which are given for the

composite cylinder assemblage by (4.3.6c¢c,d,e) and by (4.3.7). Itis seen
*

A X
that the resulting transforms ET and éT

are exceedingly complex expressions.
[ * *

Because of the appearance of GT in the results, ET and eT vary significantly

with time and so the initial and final value theorems do not yield practical

*
results. Again, it is concluded that the practical method for obtaining E T and

*

eT variations must be based on numerical transform inversion.

If the matrix is nearly incompressible and the fibers are very stiff, (4.3.8a)

becomes approximately

~ *
=

E B!
4CT

*
T
which inverts into

* ~ *

ET (t) 4GT(t) (4.3.74)

This result should, however, be regarded with great caution because

of the incompressibility assumption.
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APPENDIX

Internal Stresses

The general correspondence principle which relates elastic and visco-
elastic solutions, as discussed in par. 4.1.2 , makes it possible to write
down Laplace Transforms of viscoelastic stresses if expressions for elastic
stress are known. Inversion of the transforms gives the stresses as functions
of space coordinates and time.

It should ke noted that numerical elastic results cannot be converted
into viscoelastic results by means of the correspondence principle. In order
to obtain numerical viscoelastic res.lts it is necessary to analyze numerically
the viscoelastic boundary value problem of a composite in the space-time
domain, which is a very complex undertaking, It appears that no such
numerical work has been carried out to date.

Leat it be assamed that a viscoelastic FRM is subjected to the
boundary condition

0

T.(S,t) = > n H{) (1)
1 1] ]

If the stresses which result from (1) are found and are momentarily denoted

H
5} i (x,t) , then the stresses in the case where H(t) is replaced by a general

function F(t), t = 0, are given simply by

t

. _ H _ dr(v) .

‘Vl](}ilt) / »1] ()_<_,t T) d’T' ds (2)
o]

The LT of (1) is given by
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A 1
T (S,p) = — o n, (3)
i p 1y ]

this being the boundary condition for the associated "elastic" problem with

A

T _
TD phase moduli i (p) pcijkl

Kl ().
Consider an elastic FRM, of entirely identical phase geometry, which

is subjected to the boundary conditions

Let the internal stresses under (4) be denoted

%, (x) =1, ec™, (411 (5)

1)

(m)

where eg_ is a compact notation for elastic phase moduli and {g} denotes
the phase geometry. It follows from (3), (5) and the correspondence principle
that the stresses in the associated "elastic" problem, thus the LT of the

viscoelastic stresses, are given by

A 1 A
o, (x.,p)=— f [pQ(m
ij pij

)(p). {g}] (6)

where é(r?p))) is a compact notation for the LT of the phase relaxation moduli
and {g} indicates the same geometry.

It follows that if expressions (5) for elastic stresses are known, expres-
sions (6) for LT of viscoelastic stresses can be written down at once by replace-
ment of all phase elastic moduli in (5) by TD phase moduli and division by p.

The remaining, and major problem is then to invert (6) into the time domain.
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Again the initial and final value correspondence principles, which were
proved in par. 4.2.2 for effective viscoelastic properties, are very helpful.
It follows by similar reasoning that initial and final values of viscoelastic

stresses under boundary conditions (1) are given by

c o (x,0) = eoijr_C_(m)(o), {g} ]

e

o, (x,®) = oijLQ<m)(*’), {g} ]

which implies that initial/final stresses are simply found by replacement of
phase moduli in the elastic stress expressions by initial/final values of
phase relaxation moduli.

The general approach outlined here will now be applied to obtain
some results for internal stresses in viscoelastic composite cylinder assemblages.
It is recalled that results for internal elastic stresses were given in Appendix 2,
Chap. 3.5. From the point of view of conversion to viscoelastic results, the
simplest case is that of axial shearing.

Let a fiber reinforced cylindrical specimen with viscoelastic matrix

and elastic fibers be subjected to the axial shearing boundary condition

_ 0
T,(8,8) = o, n, H®)
T,(8,1) = Oolz n, H) (8)

T3(S,t) =0




465

in which event the only surviving average stress is 0012 H{). In this case
the LT of the stresses can be obtained from Appendix 2, (21), (26-2 7) and the

present (6) in the following form

A
G, ) AT )12 /2
6(1) (f,elp) = OO].Z ,\1* Y(p) 1. )[1(p)+ 11]?_ V/I' cos 8
pG , (o) YRV 2
G 2,2
~(1) -_ L0 G, ) yp)+1-[y(P)-1]a”/r" .
0oz {r,8,p) 012 — v, f 1ty sin ©
PG , (P) Y Py 2
G
A (2) o 2 cos &
57" (r,8,p) =20 T = )
rz 12 é’A(p) Y(p)v1 1 v,
G
~(2) o 2 sin @
c (rlelp) =-20 * ]
> 22 e YOI,
G
vio) = ._:_Z____.
PG, (p)

A K
where GA (p) is given by (4.3.6f).
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If the matrix viscoelastic behavior is idealized by a differential operator
stress-strain relation, then (9) can be inverted in elementary fashion. The
necessary calculations become heavy unless the matrix is represented by
very simple viscoelastic models.

Application of the initial and final value correspondence principles

to the elastic axial shearing results easily yields the following expressions

- - 2,2

(1) _ 0 vy()+l+ L (0)-1] a”/r
o, (r,8,0) = S o (1+V2)+V1 cos 8
o (1) (r,8,0) = oo v(O)*+1= kv (0)-1] az/fz sin 6

gz ' 12 (o) (1+\;2)+vl

2) _,.0 v (o)
o (r,8,0) —2012 Y(O)(l*”vz)’rvl cos 8 (10)
- @) - o v (0) .

> on (r,8,0) 2012 y (o)(l+*v2)+v1 sin 6

G
V) = 5
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2,2
(1) o = O 1fa /t
ez (c,8,) 12 1+v s ®
2
2.2
(1) _ o l-a /r _,
S oz r,8,) 12 l+v2 sin ©
(11)
o)
@) ~ Zolzcose
a (rlelm) -
rz 1+v
2
o)
2 .
0(2) o e = - %19 sin @
gz ' l+vz

It has been assumed in (11) that Gl(m) is infinitely smaller than Gz .
The maximum matrix shear stress is obtained atr =a, 8 = o.

We have from (10-11)

(o 1-
Tmax‘ ) =1+ VZ Gl(o)
Tmax(o) 1-!“\/'2 G2

which shows that T («#) 1is larger than T (o).
max max
If it is assumed that the fibers are rigid, it is found that the matrix
stresses are given by (11) for the whole time range t > o. This easily shown
by first specializing the elastic stresses to the rigid fiber case by setting

v » @, and then applying the correspondence principle.
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It is also not difficult to show that for any FRM with rigid fibers,

internal stresses under boundary condition (8) are the same for elastic and

viscoelastic matrix.

A similar conclusion can be established for transverse shearing, but

only if the matrix is also incompressible.
Next we consider the case of uniaxial stressing. The appropriate

boundary conditions are

Tl(s,t) = Jll nl H(I)

(13)

T, (S,t) = T3 (S,t) =0

Important elastic stresses are given by (14-18) , Appendix 2, Chap. 3.5.
The initial and final values of the axial stresses in fiber and matrix are

found to be with very accurate approximation.

E. (o)
G(l) (o) = Oo 1
zZZ 11 E* (o)
A
(14)
E
0(2) o) ~ GO 2
zz 1 E* (o)
A
W)z g
zz
e (15)
5@ (myz 1L
zz v
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where E;(o) in (14) is given by (4.3.29a) (the third term of which may be
disregarded) and (4.3.11) and (4.3.29b) have been used to obtain (15).

It is seen from (15) that after long time the fibers are taking the entire
axial load.

The methods described here may evidently be applied to obtain the
viscoelastic counterparts of other elastic stresses in FRM such as those
produced by plane-isotropic loading. There is also no difficulty to treat
displacement boundary conditions (relaxation) and to find viscoelastic

deformations.
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4.4 DYNAMIC LINEAR VISCOELASTICITY

4.4.1 General Dynamic Problem

We shall now considzr linear viscoelastic bodies, as defined in par.
4.1.1, under dynamic conditions, in which case the inertia terms have to be
incorporated into the equilibrium equations. In this event we have instead of
(4.1.45) , the equations of motion

o,. .(x,t) = ol (x,t) (4.4.1)

i, = PRy R
where p is the density which is here assumed constant and the dots above ui
denote partial time derivative.

To obtain differential equations for the displacements it is customary

to substitute (4.1.2a) into (4.4.1), Then are obtained the equations

f[c t-7) -9— w1 (201 47 = 0T (x,0) 4.4.2)

The use of (4.1.2a) in the present dynamic case can be interpreted in
two ways. Firstly, it may be assumed that the Cij Kl in (4.4.2) are the
relaxation moduli obtained from a quasi-static experiment., Secondly, it may
be assumed that this is not the case, but that the Boltzmann superposition
principle is valid also for the present dynamic situation. Then (4.1.2) are
dynamic constitutive relations in which Cijkl have to be obtained from some

dynamic experiment.
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Appropriate boundary conditions are again

o]

u, (S,t) =u, on S @)
1 1 u
(4.4.3)
o)
T (S,t) =T, on S (b)
i i T
These have to be supplemented by the initial conditions
u,(x,0) =1 (x) @)
i i
(4.4.4)
1'11(&.0) =g; (x) (b)

Equs. (4.4.2-4) mathematically formulate a general class of problems in
dynamic viscoelasticity.

Extension to heterogeneous bodies is obvious. Equs. (4.4.2) apply
separately for the different phase regions with appropriate phase Cijkl and
there are added to (4.4.3-4) the interface conditions (4.1.49).

We shall not be concerned with dynamic problems of such generality.

It is our purpose to consider the case of steady state vibrations. This is

done in the next paragraph.

4.4.2 Viscoelastic Vibrations: Compiex Moduli

Let the time variation of strain at a typical point be sinusoidal. Rather

than consider the cases
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?,_ (x) sin wt
1)

... (x) cos wt
1)

separately, we use the more convenient complex representation

—~ L
e (x, ) =% (x)e *t @.4.5)
1} 1]

where L =4+/-1, wis the frequency and Zij may be real or complex. In the
former case ’gij is the amplitude. Suppose that ';ij isreal. If (4.4.5) is

inserted into the usual elastic stress=strain relation we find

bt @)

L (x 5. (x)e
ij ij

Q
b
-
=
It

(4.4.6)

o (x)="cC (x) (b)

i ijkl k1

It is seen that stress and strain vibrate in phase and that their amplitudes

~

Oij and :ij are related by the elastic stress-strain law.

We now adopt a similar procedure for viscoelastic materials and insert

(4.4.5) into (4.1.2a). This yields
t
7 i Ltwt
oij(t) € LU /Cijkl(t T) e dar (4.4.7)

-0

*)The ~ sign above a quantity, as will be used here and henceforward, should
not be confused with a similar notation in chaps. 3.6, 3.7 where it denoted
admissible fields.
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where the x argument has been suppressed for convenience. The change of

variable y =t - 7 in (4.4.7) gives the result

_~ Lt “Lwy
oij(t) cp © wacijkl(y)e dy (4.4.8)
(o]
We define
= “Lwy
Dijkl( Ltw) Lw/Cijkl(Y) e dy (4.4.9)
(o]

It is seen that (4.4.9) is a one sided complex Fourier transform. There may
arise problems with respect to the existence of the integral (4.4.9) which
shall not be discussed here. The reader is referred to [4.1].

In view of (4.4.5) and (4.4.9), (4.4.8) may be rewritten in the form

~7 t
c t)=75. e (@)
ij 1)
(4.4.10)
o5 = Pijki ¢kl (b)

It is seen that (4.4.10b) has the appearance of an elastic stress-strain law.

are called the complex moduli of the viscoelastic material.

Therefore Dij Kl

They may also be written in the form

R I
= + 4,4.11
Dijkl( Lw) Dijkl(w) ('Dijkl (w) ( )
where D?jkl and Dijkl are the real and imaginary parts, respectively, It

should be noted that gij is complex, even when :ij is real, and is thus not

the amplitude of Oij .
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The physical meaning of (4.4.10) is best obtained by insertion of
(4.4.11) into (4.4.10b) and computation of stress from (4.4.10a). We then

have for ';ij real

o..(t) = (DR. cos wt -~ DF.

. ~ +
ij ijkl jjk1 Sinwt) ey,

cos wt) & (4.4.12)

R
L (D Kl

I
i +
1jkl sin wt Dij

kl

It is easily seen that the real part of (4.4.12) is the response to a strain
vibration Zkl cos wt while the imaginary part is the response to a strain
vibration ”gkl sin wt . Unlike elastic vibrations, (4.4.6), the stress and
strain vibrations in the present viscoelastic case are not in phase.

We can define complex compliances in completely analogous fashion.,
We assume a stress vibration

~ L
o (1) =75 et (4.4.13)
1] 1)

and we insert (4.4.13) into (4.1.2b) . We then obtain

o~ Lyt
e ) =50 (@)

¢~ Rijkl Okl (b) (4.4.14)

[so}

= T Lwy
Rijkl( Lw) Lw/Sijkl(y) e dy (c)
-0
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where Sij are the creep compliances. The tensor components Rijkl are

kl

called complex compliances.

If it is assumed that C. . .(t) and S (t) are ij, kl symmetric then the
ijkl ijkl
same follows, because of (4.4.9) and (4.4. 14c) , for the complex moduli

D..

ijk1 and the complex compliances Rijkl' Evidently, because of Oij and eij

symmetry, Dijkl and Rijkl are also i,j and k,1 symmetric. In summary
Dkt = Pyikt ™ Pijik ~ Prai (a)
(4.4.15)

Ry = Rk ~ Rijik ™ Ry (b)

Furthermore, since (4.4.10b) and (4.4.14b) are one and the same equation,
we conclude that the complex moduli and complex compligdnces tensors are

reciprocal. Thus
= 4.1
Dijrs Rrskl Iijkl (4.4.16)

Next, we note an important connection between laplace transforms of
relaxation moduli (creep compliances) and complex moduli (complex compliances).

Recall the definition (4.1.31) of TD moduli which may be written
T...., ()= pfc ) e Pt at
ijki ijkl
o

Comparison with (4.4.9) shows that
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Tyalw) =D Cra) @)

ijkl
(4.4.17)

Dy ® = Ty @) (b)

which implies that if rijkl(p) is known, replacement of p by Ly yields the
complex moduli, and if Dijkl( tw) is known replacement of (. by p yields
the TD moduli. Similar relations may be obtained between TD compliances
and complex compliances.

We have so far been concerned only with generally anisotropic bodies
and we shall now consider the case of material symmetry. It is seen that
the complex stress-strain law (4.4.10b) has the same form as an elastic
stress-strain law. Thus, symmetry reductions for elastic stress-strain
relations are immediately applicable in the present case.

For an isotropic material (4.4.10b) assumes the form

oij(Lw)=7\(Lw)ekk 6ij+2G(Lw) i (4.4.18)

or equivalently

=3 (tw)? (@)
(4.4.,19)
gij =2G (1 w) gij (b)

~ ~

where K and G are the complex bulk and shear moduli, respectively; 5 and gij

are the isotropic and deviatoric parts, respectively, of 'Ei, and ¢ and Eij
J

are the isotropic and deviatoric parts, respectively, of 'gij .
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Other complex moduli are defined just as ir elasticity and all the
relations between elastic moduli as listed in (3.4.88-9 0) carry over unchanged
to complex moduli. Similarly, the complex stress~strain relations for a
transversely isotropic material have the forms (3 .4.86-87) with appropriate
complex moduli.

Relations of type (4.4.17) between TD moduli and complex moduli

can also be written down at once. We have for the isotropic case, for

example
K(Lw) =K (L) (@)
(4.4.20)
G(Lw)=T(tw) (b)

where the right sides of (4.4.20) are defined by the p functions (4.1.34).
For viscoelastic stress-strain relations in differential operator form,

(4.1.21) , we have from (4.1.42) and (4.4.20)

_ 1 Stuw
K ( LU)) - 3 R( LU.)) (a)
(4.4.21)
- _ 1 Pliw)
G (tw) =7 Q) (b)

As an example consider the case of the simple Maxwell model. We have from

(4.4.21b) and (4.1.43a)

Gyl ew) = T o7 (4.4.22)
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Complex moduli are often written in the form (4.4.11). The complex

shear modulus, for example, may be written
~ R I
G(Ltw) =G (w)+ G (w) (4.4.23)

Another frequently used form is

G(iw = lgl et (@)
G| = ,/(GR)Z":;I;E (b) (4.4.24)
I
G
tan § = —— (c)
R

The angle § is called the loss angle and tan ¢ is called the loss tangent.
Finally we note by comparison of (4.4.6b) and (4.4.10b) that for

an elastic material the complex moduli are just the elastic moduli. In that

case the real part of the complex modulus is the frequency independent

elastic modulus and the imaginary part vanishes as also does the loss angle ¢ .
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4.4.3 Viscoelastic Vibrations: Boundary Value Problems and Correspondence

Principle

We consider a viscoelastic body which is subjected to displacement
or traction boundary conditions which vary sinusoidally in time. A general

form of such boundary conditions is

u(8,t) = S g0t @)

(4.4.25)
T,(5.1) = ) et (b)
where 'Joi (8) and ',;oi (S) are time independent. By taking real or imaginary parts
of (4.4.25) we obtain the cases of cosine and sine vibrations, respectively.
It is seen that the class of problems considered is that of forced vibrations

of viscoelastic bodies. To obtain a mathematical formulation it is assumed,

and later justified, that the internal displacements have the form

uet) = T (x) e Ut (4.4.26)

e =-§—(TI. o+ U, ) (4.4.27)

and that the stresses are given by (4.4.10).

To obtain differential field equations, the stresses (4.4.10a) are

expressed in terms of (4.4. 10b) and (4.4.27) and are then substituted into
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the left side of the equation of motion (4.4.1), while (4.4.26) is substituted

into the right side. Cancelling the common factor e"wt we obtain
D (L(.U)’L; + pwza =0 (4.4.28)
ijkl k,1j i
From (4.4.26) and (4.4.25) we obtain
~ ~O
u, (S)=u i (a)
(4.4.29)
T. (8) = Tc; (b)
where
T, (S) = Dijkl( Lw) Uy nj (4.4.30)

This completes the mathematical formulation of the viscoelastic
vibration problem. The space dependent parts iTi of the displacements are
uniquely determined by (4.4.28-29) which fact justifies the assumption (4.4.26).

They are in general complex since Dij is complex. The space dependent

kl
parts of the stresses follow from (4.4.27) and (4.4.10b) and actual complex
displacement and stresses are obtained by multiplication of space dependent
parts by etwt. The real parts ot displacements and stresses obtained give the
solution for a real boundary cosine input while the imaginary parts give the
solution for a real boundary sine input.

Note that in specialization of the general dynamic viscoelastic

problem of par. 4.4.1 to the present case of vibrations the initial conditions (4.4.4)
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have been disregarded. The reason for this is that the form (4.4.26) of the
displacements already specifies fl(g{_) and g{(}i) in (4.4.4).

Evidently, the boundary value problem (4.4.28-29) includes as a
special case the problem of vibrations of an elastic body. In that case the
complex moduli in (4.4.28) have merely to be replaced by the elastic moduli
e

C..

1K1’ since as has been pointed out in par. 4.4.2 complex moduli reduce

to elastic moduli for elastic materials. Consequently, the problems of
elastic and viscoelastic vibrations are mathematically analogous for the
complex formulation of the latter. This analogy forms the basis of a

correspondence_principle for viscoelastic vibrations which may be summarized

as follows: Let the solution of an elastic vibration problem be

~ L ~
eui()i) e wt, ecij (x) et Wt | The complex solution of the geometrically

, . . . . ~ t ~ t
identical viscoelastic problem is then u, (x) et? 5 (x) et?

¢ ij

~ ~ . . ~ e
where u, (x) . cij (x) are obtained by replacing in eui (x) . cij(}i) the

elastic moduli by the viscoelastic complex moduli. (compare e.g. [4.15] )
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*
4.5 EFFECTIVE COMPLEX MODULI( )

4.5.1 Definition and Correspondence Principle

In attempting to formulate a theory of dynamic behavior, in general,
or of vibrations, in particular, of viscoelastic composites, we encounter the
same kind of difficulties which were discussed in chap. 3.9 with respect to
elastic composites. We therefore confine ourselves to the first approxima-
tion whose fundamental assumption is that macro-stress and macro-strain,
i.e. local averages over RVE, are related by a classical type stress-strain
relation, in terms of the usual effective physical constants. If this appro-
ximation is adopted it is possible to establish a set of differential equations
for the space dependent parts of the macro-displacement (local averages)
in two phase materials, which are similar to equs. (4.4.28) . These equa-
tions contain as coefficients the effective complex moduli to be discussed
here and also effective densities which are not the average densities and
are moreover complex numbers (to be published).

In the elasto-static or elasto-dynamic case the relation between
macro-stress and macro-strain is expressed by equ. (3.9.8) . Accordingly,

in the present case such a relation will have the form

* ~

(x) =Dijkl (tw) ekl(&) (4.5.1)

qn

ij

where aij and ;ij are defined by

(*) The theory and results given in this chapter are based on refs. [4.16-18].
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Here Oij and eij are macro-stresses and macro-strains which are space

*
and time dependent and Dij K1 are defined as the effective complex moduli

(ECM) of the viscoelastic material.

*
To obtain information about D ijkl we proceed as in par. 4.4.2
in the derivation of (4.4.9). We insert (4.6.2b) into the effective visco-

elastic stress-strain relation (4.2.5), with an hereditary integral whose lower

limit of integration is - . We then obtain exactly as in par. 4.4.2

* * - LU)Y
D Lw) = Lw 9.
Lkl (Lw) = L fcijkl (v) e dy (4.5.3)
o
which relates the effective complex moduli to the effective relaxation moduli.
In completely similar fashion we can obtain the form of effective

*
complex compliances R, .. Thus
ijkl

-]

* _ * —Lwy

Rijkl(bw) waSijkl(y)e dy (4.5.4)
o

It follows from (4.2.10-11) and (4.5 .3-4) that

* -p* =p' =D| (@)
Dkt = Pkt = Pijik ~ Pk a
(4.5.5)
* _ * _ * —R* (b)
Rk~ Rjikl =Rk ™ Rk
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We also have the rec1procn:y relation

* R" | (4.5.6)
Dijrs Rrskl Iijkl T

which is proved just as (4.4.16).

We now recall the definition of TD effactive moduli (4.2.18) which

is here rewritten in the form

-pt
”kl fc ) e Pt gt (4.5.7)

*
Comparison of (4.5.7) with (4.5.3) shows that rijkl
*

on p just as Dijkl depends functionally on w . We, therefore, conclude

depends functionally

that
. s |
| Dijkl(tw) = Tiikl (Lw) (@)
§ (4.5.8)
* o
Tijkl (p) = Dijkl (p) | (b)

I
}

* *
This implies that if rijkl (p) are known, Dijkl (Ltw) is obtained by replace-

* *
ment of pby tw . Conversely, if D ijkl(l.w) is known, rijkl (p) may be obtained

by replacement of L w by p.

Next we recall the static correspondence principle for viscoelastic

composites, equ. (4.2.21). It follows from this principle and from (4.5.8) that

_e_* (m )
kl(l.w)- cijkl[_r (tw), {g}] (4.5.9)
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where L(m) ( Lw) is a symbolic notation for the left side of (4.4.17a),

associated with the phases and {g} denotes phase geometry. But by

(m) (m)

(4.4.17a) rijkl ( Lw) are the phase complex moduli Dijkl (Lw) .
Consequently, (4.5.9) may be rewritten as
* ) =€ * D(m) Lo
Dijkl (Lo cijkl[— (L w) {9}] (4.5.10)

Equ. (4.5.10) expresses the correspondence principle for vibrations

of viscoelastic composites. In words: The effective complex moduli of a

viscoelastic composite are obtained by replacement of phase glastic moduli

by phase complex moduli in the expressions for the effective elastic moduli

of a composite with identical phase geometry.

In the event that a certain phase is elastic, its phase elastic moduli

e * . .
are left unchanged in the Cij expressions, since the complex moduli of

kl
an elastic material are its elastic moduli.

Note that the present correspondence principle is much easier to use
than the one for static viscoelasticity of composites, since the complex phase
moduli are directly obtainable from experiment. Thus, expressions for
effective complex moduli are obtained in a rather simple fashion in terms of
experimentally measured quantities. It is recalled, in contrast, that in
the static case the correspondence principle leads only to laplace transforms‘

of effective viscoelastic properties, whose inversion may lead to considerable

difficulty.
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On the other hand, it should be noted that the present concept of
effective complex moduli is based on a physical approximation, which was
called the first approximation . This limits the applicability of the present
theory to some unknown frequency range.

It should be further noted that the existence of the present powerful
correspondence principle was to be expected on the basis of the first approxi-
mation and the correspondence principle for viscoelastic vibrations as for-
mulated in par. 4.4.3. The first approximation for vibrations of elastic
composites states that a macro-theory in terms of local averages may be
approximately formulated in the form of a classical theory with the usual
effective elastic moduli. In view of the correspondence principle for visco-
elastic vibrations it is not surprising that the effective complex moduli which
enter into the first approximation theory for vibrations of viscoelastic com-
posites depend upon phase complex moduli, just as effective elastic moduli
depend upon phase elastic moduli.

For purposes of illustration and subsequent usage, we specialize
the principle (4.5.10) to the case of a composite which consists of two iso-
tropic phases, but is otherwise macroscopically anisotropic (e.g. fiber-
reinforced). Let the EEM of a composite with identical phase geometry

be written
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e _* e * e e e e
ijkl Cip UK G Ky Gyr {9} )

Then the effective complex moduli are

* * ~ ~ ~ ~
Dijkl("w) =ecijkl [Kl (Lw), Gl(tw), Kz(Lw),Gz(Lw),{g}) (4.5.11)

~ ~

If the phases are assumed elastic in dilatation, then Kl( Lw) and K2 (tw)

become the real and frequency independent elastic Kl and K2 .
In FRM the fibers are usually elastic and the viscoelastic effect

is thus confined to the matrix. For reasons of simplification it shall be

mostly assumed that the matrix is elastic in dilatation. Then (4.5.12)

assumes the form

*

e *
- .5.12

4.5.2 Effective Complex Moduli of Fiber Reinforced Materials

The correspondence principle for effective complex moduli (ECM)
which was derived in par. 4.5.1 enables us to write down at once expressions
for ECM of FRM in all cases where analytical expressions for EEM are known.
It is not possible to thus exploit the correspondence principle for numerical
results for EEM.

The viscoelastic matrix properties may be characterized by the

complex bulk and shear moduli and associated loss angles. Thus
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K (Lo =K ) + K] ()

~

Gl( Lw)= GlR(w) + LGlI (w)

(@)

(b)

(@)

(b)

(4.5.13)

(4.5.14)

Other matrix complex moduli are related to (4.5. 13a) and (4.5.14b) by

elastic type relations. Thus

~ 9K, (Lw) G, (w)
El(Lw)z L L

~

3Kl (tw) +51(Lw)

3K1(Lw) -~ ZGl(Lw)

'\71 (¢ w) = _ —
2[3K1( Lw)+Gl(Lw)

wlo—l
OR)]

Ell(l.w)=K1 (tw) + L Cew)

(b)

(c)

(4.5.15)
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According to the correspondence principle of par. 4.5.1 any ECM
is obtained from a corresponding EEM expression by replacement of the
matrix elastic moduli by the appropriate matrix complex moduli, while
the fiber elastic moduli §re left unchanged. The resulting expression
for the ECM has then to be separated into real and imaginary parts. The
ratio between the latter and the former defines the effective loss angle.

We may thus exploit the expressions for EEM of the composite
cylinder assemblage model, par. 3.5.3, to write down corresponding
ECM . Results for the more important ECM, for elastic fibers and visco-

elastic matrix are listed below:

. K (tw)lk +5 ww)lv, +k [k @w +g (tw)k
Tew) = —2— L2 l:‘ 1z @.5.16)
[k, +G (o) vy + [k, (bw) + G (kw)lv,

o N 4[v2 - Ul(t.w)]z vy Y,
EA (Lw)=E1 (Lw) v1+E v, + (4.5.17)

2 2 vl/k2 + vz/lzl(t.w) + l/gl(bw)
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~ v, -9, 1 -
V.ew =Y (to)v, +v v + "2 Vl(Lw)][ /El(bw) l/kz] 172
A 1 1 72 ~ = 4.5.18)
vl/k2 +V2/k1(l-w) + 1/G1 (tw)
g* (L w) =g (tw) ! o) 71 +G2 (1+V2) i
A 1 E (Lw) (14 ) , (4.5.19)
1 2/ TGy vy
|
I
- N (43 3.~ ~ ) 22
5 ” =G1(Lw) on(l..uu)v2 Mo (w) + Bl(Lw)VZJ 3v2v1 By (Lw) o
~ 3.~ ~ |
Ota@av," e (w - v,l - 3v2v12 Blz (Lw) |
where
T (Lw) -y (Lw)B i~ s |
~ s 2 - y(tw+ 8 (L w)
@ (Lw) = — > (Lw)= L (b)
Y (w) By Y(tw -1 ’
(4.5.20)
~ _ 1 l
B w) 3-49 (w) %= 3-4v, ) ,
G
_ 2
Y (L(.U) = eo——— (d)
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*
Again (3.5.113) has been taken as an ad-hoc expression for eGT of the

~

composite cylinder assemblage, thus yielding (4.5.20) as an ad-hoc GT'

In this respect it is noted that Christensen [4.19] has given a method by

which effective shear modulus bounds for the composite spheres assem-

blage model, [3.11], can be transformed into bounds for the effective

complex shear modulus real and imaginary parts of the same model.

No

doubt, the method can also be applied to derive similar bounds for the

*
composite cylinder assemblage. )

In view of (3.4.83-84), the transverse complex Young's modulus

~

*
ET (L w) is given by

X" (LWIY, (L))

EY (Lw)
A (tw

-

(a)

(4.5.21)

The matrix complex moduli appearing in (4.5.16-21) are given by

(4.5.13-15).
(4.5.13a-14a).

real and imaginary parts.

the required algebra is very heavy in many cases.

Each of these has to be written in the complex number forms
The resulting ECM expressions may then be separated into

While this presents no fundamental difficulty,

*
( )Simple general ECM bounds, for isotropic composites of arbitrary phase
geometry , have been obtained by Roscoe [4.13] .
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In order to simplify the results we idealize the matrix viscoelastic
behavior in the following fashion:
(@) The matrix behaves elastically in dilatation. This implies that (4.6. 13a)
reduces to

~

KI(Lw)=K (4.5.22)

1

where K1 is frequency independent. (Evidently the loss tangent (4.5.13b)
then vanishes).

(b) The shear loss tangent of the matrix is so small that its square can

be neglected with respect to unity. This implies that in (4.5.14b)

tan26G<< 1 (4.5.23)

The viscoelastic behavior of a respectable number of polymeric materials
may be well approximated by (4.5.22-23), at moderate temperatures. It
should, however, be borne in mind that (4.5.23) may be seriously in error
beyond the glass transition temperature.

Separation of the ECM expression (4.5.16~21) into real and
imaginary parts is now greatly facilitated by the following observations.
Firstly, it is easily proved that if the condition (4.5.23) applies,the loss
tangents of any of the complex moduli (4.5.15) also obey a similar condition.
Secondly, it may be proved (to be published)that for the conditions (4.5.22-23)
the real part of any ECM is obtained by replacement of elastic phase moduli
in the corresponding effective elastic modulus expression by the réal parts

*
of the complex phase moduli. In symbols, let M be any effective elastic
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modulus which is written as

*
M =F(K, G, Kyu G,po{g}) (4.5.24)

where {g} denotes phase geometry. Under the conditions (4.5.22-23)

*
the real part M R of the corresponding ECM is then given by

MR =P, G W) Ky Gyie)] (4.5.25)

*
Note that since GlR is a function of the frequency w , so is M R,
If in the EEM expression there appear the elastic moduli, El'
R R R
vy and kl, then these have to be replaced by El 'V and k1 to

obtain the ECM expression. These real parts are given in view of (4.5.15)

and (4.5.22-23) by elastic type relations

R
9K.G. (w)
BN w) = ——f— @)
3K1+G1 (w)
R
3K -2G. (w)
le (w) = ——1———1-R—- (b) (4.5.26)
2[3K +G,; (wl
R 1 _R
kl (w) = Kl 3 G, (w) (c)

Thirdly, it can be proved (to be published)that the imaginary part

*1
M is given by
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* I *R
Mi=gl 3M (4.5.27)
1 R
3G,
It follows from (4.5.25), (4.5.27),that the loss angle is
R
* *
tan 5* = : = Gl o M i tan § (4.5.28)
* * . .
M M R M R aGlR

where tan §

is the matrix shear loss tangent.

We now proceed to apply the above given results to obtain ECM

expressions.

*
The real and imaginary parts of K (L) are easily found to be

R R R
+
*R _ k1 (k2 + Gl )vl + k2 (k1 Gl )v2
k™= R R R (a)
(ky +G vy + (k) +G) v,
o2 ¥ (4.5.29)

k, +G,) -4v_ (k -k )
*I 1 1 176G 1275
k =3 G )1~ R R_RrR_J2( |®

{(k2+Gl Jv +k e )VZJ

~

*
The real part of EA (Lw) is given by (3.5.96) with matrix elastic

moduli replaced by the real parts of corresponding matrix complex moduli

which are interpreted as (4.5.26). Then the third term in the expression for

* R *
EA is negligible, just as in the case of the elastic EA . It is also easily

shown by use of (4.5.27) that the third term contributes very little to
*1
EA - Accordingly we can approximate (4.5.17) with high accuracy by

~

*

EA(LuD

e

El(Lw) vl+1-:2 v, (4.5.30)
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It follows very simply that

*R R
= +
EA El vy Ez v2 (a)
gl =gl (b) (4.5.31)
A 1 1 M
*1
x EA B tan 6E
tan § . = —¥R T (c)
! E 2 2
A 1 +
E Rv
1 1
where
Ey
tan éE = —;-E
1

3
i
i
i

-

Note that in the usual fiber reinforced materials EZ/E R

1 is a large

number of the order of 25-60, while v, and v. are of comparable magnitudes

2 1

*
(i.e. v2=0.5 -0.7 , v, = 0.5 - 0.3). It follows that tamsE is a much

smaller number than tan 5E,which implies that a fiber reinforced cylinder
displays much less viscoelastic effect in oscillatory axial stressing and
straining than a similar matrix cylinder. This is, of course, physically
plausible since the stiff elastic fibers inhibit the axial deformation which

would develop without presence of fibers. It is recalled that similar conclusions

were reached in the static case, par. 4.3.2, sub. par. 4,3.2.2.

The real part of the complex Poisson's ratio (4.6.18) is given by
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R R
R R (v, \al)(l/kl =1/k,)v, v,

= + +
VA T V1 V1TV Y,

R R (4.5.32)
vl/kz + vz/kl + 1/G1

*

where v R and klR are defined by (4.5.26b,c), The computation of Vv is

1 A
complicated because of the third term in the right sides of (4.5.18) or (4.5.32).
The contribution of this term is not substantial though its neglect leads to a

*
larger error than in the case of EA (Lw). We do not take into account this

term here and we can write accordingly

*1 Ly (4.5.33)
Vo~ Vi vy .5.
where
I
Vi K G
1 14
+
2(3K1 Gl)

the last expression following from (4.6.15b), (4.6.22) and (4.6.23).

~x
Next we consider the ECM GA (Lw). Itis easily found that

*R_ R g1V, )Yy
A =G V. v (a)
YR "1 V2

G

(4.5.34)

2 2
+ -
sr_ 1 Dyt +vplyp - 1) 1V
G, =G, (b)

2
(ygvy 7 1+v,)
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where

~x
The ECM GT (t ») isunfortunately very complicated as can be
*
seen by the form of (4.5.20). Still the real part GTR is easily obtained by
*
replacement of all matrix moduli in the expression for the elastic GT’ (3.5.113),

and VR as

by the corresponding real parts of matrix complex moduli, G R 1

1
given by (4.5.26b). We thus obtain

3 2 2
(I+qv, )ptBe,Vv,)-3v, Vv
* p P
GTR=G1R 2 1 2 2 1 1 @)
L+ av, ), -v,) ~3v, v2g?
avy Mp =Vl =9V, vy By
{
|
where
B, v, B vp T B
o= —R72 p=R—-ll (b) (4.5.35)
Y
1 1
B, = ————e B, = —/—— b (c)
PN 27 T3 - 4y, |

*
To find an expression for GTI it is necessary to carry out the
differentiation in (4.5.27) or to separate out the imaginary part of (4.5.20).

This requires extremely cumbersome calculations which will not be performed
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here. Instead we consider the simplified case of perfectly rigid fibers.

In that event YR ® in (4.5.35) and we obtain a result analogous to (3.5.115d)

(1-v23)(1+a1v2) -3v, Vv

2
1 Py

3 2 2
(l-v2 )(l—vz) - 3v2 vy o8,

*R R 2

(4.5.36)

where 51 is given by the first of (4.5.35c). We compute the transverse shear

loss angle by use of (4.5.28) and (4.5.36). The result is

* 4 R R 2 3
= - — -+ -— .
tans GT 1 3 (1 V] )(1 2\)1 ) 51 vy v,

3
I-v,” +3v, v, B (B, +2)
: 2 2 17171 tan g . (4.5.37)
1- 3--3v v BZ) (1-v 3)(l+ v,)=3v v2 2 G
(1-v, 2 V1 Py TV )L vy)=3v, vt 8]

Several numerical calculations have shown that the second term in the

parenthesis of (4.5.37) is a small number of the order of 0.05. It may therefore

be concluded that for rigid fibers

| tanaGT... tan 6G (4.5.38)
|

e e e e e e

1
e e

and it is very likely that such a conclusion is also valid for fibers which are
very much stiffer than the matrix, as is the case in many FRM. Consequently,
*

the approximate relation (4.5.38) enables us to compute GTI in the following

*
approximate fashion. First GT R is computed from (4.5.35) and then

*I *

R
GT ~ GT tanéG (4.5.39)
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The approximations (4.5.38-39) are related to some rigorous results
for the shear loss angle of FRM with rigid fibers, which will be derived
further below.

Equ. (4.5.21) may be now exploited to obtain the real and imaginary

~x
parts of E T( Lw) . It is readily shown that for the simplifying assumptions

(4.5.22-23),
* *
4k RG R
E*R_ T (@)
T KRy k
R'T
(4.5.40)
*R *Rz
4k (v, )
mpTlT TSR )
A

*
There is no special difficulty to obtain ETI but the result is

cumbersome and will not be given here.
It will be recalled that in the discussion of static viscoelastic
properties of FRM, par. 4.32, great simplification was achieved in some
cases by the assumption of rigid fibers. We now consider similar simplifications
for ECM. Assumptions (4.5.22-23) are discarded at the present time.
Results for EEM in the case of rigid fibers are given by (3.5.115).
We use the present correspondence principle to transform these into ECM.

It follows from (3.5.115a) and (4.5.15c) that
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v
(4.5.41)

T€*(Lm)=K1 (Lw)+;—G1(Lw)+[K1(Lw)+%-G1(Lw)] )

Separation into real and imaginary parts is immediate and yields very simply

v
*R__R_1 _R R,4 R _'2
k " =K) + 3 G+ K+ 3G v, @)
(4.5.42)
Tokfrtel e vLa)) 2 (o)
I R M | 1 3 717 1-v,
If assumption (4.5.22) is introduced, (4.5.42) reduces to
k*R=K +—1—GR+(K +4—GR) 2 @)
1 3 1 1 3 1 l—v2
(4.5.43)
1 +3v
*
K I=GI _ 2 ®)
1 (l—vz)

If (4.5.23) is valid then GlI is much smaller than GlR or K, and it is
seen that in this event the loss tangent tan 5: becomes much smaller than
the matrix shear loss angle.

Next we consider the axial shear modulus as given by (3.5.115¢).

The correspondence principle yields at once

~* ~ 1+'vz
G, (Ltw)=G, (tw)
A 2

) g (4.5.44)
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From which it follows that

R R 1+v
Ca TG I @)
2
1+v
*
cl=gl 2 (b) (4.5.45)
A 1 l1-v
2
6*
- tan &
tan GA tan - (c)

The last result is of particular interest since it implies that the FRM axial
shear loss tangent is the same as the matrix shear loss tangent. This resuﬂ
resembles (4.3.54) and just as in that case it can be generalized to any
FRM with rigid fibers. To show this we use the general result (4.3.51) from

which it follows at once by the correspondence principle that

e
~ ~ G

*
G:(Lw)=Gl(LUJ) &

°a

1

or in real and imaginary parts

* * *
GAR GAI eGA
A - —= — (4.5.46)
< G, <

The results (4.5.46) show that the ratio of real/imaginary part of axial complex
shear modulus to real/imaginary part of matrix shear modulus are the same as
the ratio of effective =lastic axial shear modulus to matrix elastic shear modulus

and this relation holds for any frequency. It also follows from (4.5.46)
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that

*
tan & =tan & (4.5.47)
GA G

this relation thus being valid for any FRM with rigid fibers
N*
Similar relations may be derived for GT (tw), by use of the general
relation (4.3.58). But it should be carefully noted that here it is necessary

to assume in addition that the matrix is incompressible. In this case it

follows that

e e
* :
1
from which we have
*R *I e *
G
T _ GT _ T @)
R * e
Gy Gy Gy
(4.5.48)
. i
| 5" 5
i t = y
|[ an a tan G ‘ (b)
t

It has been previously noted, (4.5.38), that (4.5.48b) is approximately
fulfilled for stiff non-rigid fibers and for polymeric compressible matrix (Poisson's
ratio of order 0.35 - 0.40). On the other hand calculations show that (4.5.48a)

is liable to lead to significant errors when applied to such phase materials.
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~

It would seem therefore that it is best to estimate Gfl‘ (Lw) by use of (4.5.35)
and (4.5.39).

The expressions for ECM given in this chapter easily permit numerical
computation in terms of measured matrix complex moduli. To give a simple
example we consider the case of a polyisobutilene matrix. Figs. (4.5.1-2)
show plots of real and imaginary parts of the effective complex axial shear
modulus G;(Lw) as a function of log frequency, for different fiber volume
concentrations. It has been assumed that the fibers are rigid and thus

eqn. (4.5.45) has been used. The complex shear modulus variation of poly-

isobutilene (plots for v, = 0) have been taken from [4.20].
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4.6 STRUCTURAL APPLICATIONS

4.6.1 Quasi-Static Theory and Examples

If we intend to use the effective viscoelastic properties,which were
derived in preceding chapters,for a theory of viscoelastic structures which
are made of composite materials, we encounter the same kind of difficulty
which was discussed in chapter 3.9 for elastic composites, since the
stress and strain fields in structures are in general not statistically
homogeneous.

The difficulty is resolved, or rather mitigated, as for elastic
composites by establishment of a first order approximation, in terms of
local averages, based on the assumption of local statistical homogeneity.
Indeed, the establishment of such an approximation is in all respet:ts similar
to the development given in chapter 3.9. The local averages (3.9.1), (3.9.3)
and (3.9.6) now depend on space and time and the macro-equilibrium equations
(3.9.7) remain in the same form and now represent quasi-static equilibrium.

Thus for viscoelastic composites

30 (x,t)
ij

dx.
)

+f‘i(§, t) =0 (4.6.1)

The elastic macro-stress-strain relation (3.9.8) is now replaced by

its viscoelastic macro-counterparts
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t
- * a ( ) d
oU(x,t) Cijkl(t T) 37 S\ XeT) AT @)
(4.6.2)
t
_()“/*()a_()d (
e (BT J ST 3T O lEBem AT b)
* *
where C k1 (t) and S ikl (t) are the effective viscoelastic properties which

were discussed in preceding chapters.
Boundary conditions of form

u,(s,t) = u’ on S
i i u

T.(S,t) =T on S
1 1

are replaced by the boundary layer conditions

u.(S,t) = uo, on S
i i u

(4.6.3)

- - o
Ti(S,t) Ti on ST

It is seen that (4.6.1-3) define a boundary value problem for Gi(:i ,t) which is in
all respects analogous to a typical quasi-static boundary value problem for
homogeneous viscoelastic bodies, the field variables and viscoelastic properties
of the latter being replaced by local averages and effective viscoelastic pro-

perties of the former. We conclude that all classical quasi-static viscoelasticity
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solutions and also viscoelastic strength of materials solutions generate similar

results for viscoelastic macro-displacements, strains and stresses of viscoelastic

composites, simply by replacement of homogeneous viscoelastic properties by

effective viscoelastic properties.

For illustrative purposes we consider two simple examples: bending-
shear deflection of a fiber reinforced beam and torsion of a fiber reinforced
cylinder.

(@) Bending-shear deflection of beam

Consider a homogeneous elastic beam as shown in fig. 4.6.1 . Let the
material be transversely isotropic with material axis of symmetry along the

beam axis. Then the bending and shear deflections obey the differential

equations
2
dw® M o)
2 E
dx AI
2 s
Lv . 2k (b) (4.6.4)
dx A
b s
wik) =w x) +w (%) ()
b . .
w - bending deflection
wS - shear deflection

w - total deflection




507

M - bending moment

q - load per unit length

1 - gsection moment of inertia

A ~ section area

a - geometrical factor defined as first moment of area above neutral
axis divided by section width at neutral axis

EA - axial Young's modulus

GA - axial shear modulus

Equs. (4.6.4) may be found in any strength of materials book where
they are usually derived for isotropic materials. It is easily realized that they
also hold for the present case of transverse isOtropy.

If we consider instead a viscoelastic transversely isotropic beam,

we have by the usual correspondence principle which was discussed in par. 4.1.2

aZa® M
7 =T A (@)
dx pEAI
dzx'bs aq
- q (b) (4.6.5)
dx pGAA
w=wt e W ()

P o) S A A b S
where w , W, w, M and q are laplace transforms of w (x,t), w x,t),

wx,t), Mx,t) and ql,t) , respectively, and pﬁA and péA are the TD f(transform

domain) moduli.
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Consider the basic case

qlx.t) = qk) H(t) @)
(4.6.6)

Mx,t) = M(x) H(t) (b)

where H (t) is the Heaviside step function. This describes a load which is

applied at t = 0, and is then left unchanged. (Note that (b) follows from

@).) Then
A _ 9x)
qlx,p) >
(4.6.7)
N ,p) = M&)
p

Recall also the relations (4.3.25a) and (4.3.40) which are certainly valid

for homogeneous materials. Thus

fo_ L
AT 2a

P LA

(4.6.8)

.1
A =
A 2a

pGA

where éA and §A are the LT of the Young's and axial shear creep compliances,

eA(t) and 9 (t), respectively. Introduction of (4.6.7-8) into (4.6.5) leads to

expressions which may be inverted at once, the results being
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2 b
2wt o ME o, g @
X
32w i, 1) aq(x)
___é_;.._=_-A_gA(t) (b) 4.6.9)
3x
b s
wx,t) =w x,t) +w (x,t) (c)

Comparison of (4.6.4) and (4.6.9) shows that if the solution of an elastic
bending-shear deflection problem is known then the solution of the analogous
viscoelastic problem, with corresponding boundary conditions is simply
obtained by replacement of l/EA and l/GA in the elastic solution by eA(t) and
gA(t), respectively.

The macro-bending stresses are simply

5 - MKz
XX I

H(t)

It should be noted that it follows from superposition that if the load (4.6.6a) is
replaced by
qlx,t) = qx) f(t)

where f(t) is any function, and the beam end conditions are kept the same, then

t
wle,t) = f wy e, t-1) £(7) dr

-0
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where wH is the deflection under (4.6.6a).

The macro-bending stresses become

5 =- Mz g
XX I

Consider for example the case of uniform load per unit length of a
simply supported beam, in which case g=const. in (4.6.4b) and in (4.6.6a) .

Then the deflection at the center is

4 2
4 S5gi aqgl
w(z—)=¢6= + (4.6.10)
2 384IEA 8AGA
(see e.q. {4.21]). Then for a viscoelastic beam
4 2
£ _ Sq4 aqgl
— =0 (t) = ———ro + .6.11
W(2 . t) (t) 3841 eA(t) oA gA(t) 4.6.11)

Consider the same beam, except that the material is now fiber rein=-
forced with fibers parallel to beam axis. By the first approximation, eA (t) and

* *
9 (t) merely have to be replaced by eA(t) and gA(t) . Thus

*
—S—é—4-—1— eA 8A gA(t) (4.6.12)
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It is now recalled that it was shown in par. 4.3.2 , sub-par. 4.3.2.2 .

*
that for stiff fibers the time variation of eA(t) is negligible and therefore

E_ (o)

*
A (4.6.13)

*
~ g +
EA(o) El(o)v1 ]EZ2 v2

*
In contrast, it was shown in sub-par. 4.3.2.3 that the time variation of gA(t) is

*
considerable. Indeed for rigid fibers, gA(t) is given by (4.3.57) in the form

* ]'_Vz
gA(t) = Il(t) —_—

2
where Il(t) is the shear creep compliance of the matrix, which varies considerably.
It is thus seen there is a fundamental difference between the two parts of (4.6.12).
The first part which is the bending ‘deflection varies negligibly with time, while
the second, which is the shear deflection, increases with time. It is well known
fhat for elastic beams the shear deflection is generally very small in comparison
to the bending deflection (unless the beam is very short, in which case the
validity of the approximate theory is doubtful). It is seen by the present
example that this may not be the case for a viscoelastic fiber reinforced beam,
in which after the elapse of sufficient time the bending and shear deflections
may become of same order of magnitude. This phenomenon is easily understood
on physical grounds: Bending is produced by stresses normal to the section

and in this case the stiff fibers deform very little and constrain the matrix
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deformation. The shear stresses, however, act in the matrix parallel to the
fibers and in this case the matrix easily deforms by relative sliding,
carrying the fibers with it.

(b) Torsion of Cylinder

We consider the torsion of a fiber reinforced cylinder in which the
fibers are parallel to the axis, fig. 4.11. If the cylinder were elastic homo-
geneous and transversely isotropic, with material axis of symmetry parallel

to the cylinder axis then

0= TI,
A
where
e - angle of twist per unit axial length
T - torque
GA - axial shear modulus
2 2 o) el
' - + + —— 4.6.1
I fA(XZ X3 7%y 3%, X3 3%, ) dx, dx, (4.6.14)
© -~ torsion function

If the cylinder is viscoelastic and subjected to torque T(t), then
by the correspondence principle

A

8(p) = L) (4.6.15)

pG A(p)I
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Let

T(t)=ToH(t) (4.6.16)

then

. T
T(p)=-p°— (4.6.17)

Introducing (4.6.17) into (4.6.15), using (4.6.8b) and inverting we have

T

8(t) = I—° g, ® (4.6.18)

If instead of (4.6.16)

T(t) = To f(t)

then from (4.6.18) and superposition

T t
8(t) = -I—°— f gA(t-'r) £(7) dT (4.6.19)

Suppose that the cylinder is fiber reinforced, with axial shear compliance

*
gA(t). Then by the first approximation (4.6.18-19) simply becomes

To *
8(t) = T 9 (t) @)
(4.6.20)
T t
__0 * oo
e(t)—-I-,- ] gA(t T) f(1) dT (b)

- 0O
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(c) General comments on viscoelastic fiber reinforced structures under static loads

The results obtained in this chapter,in conjunction with the results of
chap. 4.3,indicate an approximate rule for analysis of viscoelastic fiber rein-
forced structures which are subjected to loads which are constant in time:

The solution for an elastic structure of same geometry and under the same loads
is first obtained. To obtain the LT of solution for the viscoelastic structure
effective elastic moduli are replaced by effective TD moduli. Any of the group

e * e * e * e * e * *
of EEM n, 4 , 'k, EA ; VA may be replaced by the initial values n (o),

* * * *
£ (o), k (o), EA(O) , \)A(o) because of their small time variation. Any of the group
e * e * e * e * . i

GA ’ GT, ET ’ \)T should be replaced by the corresponding effective TD

Ak

A% Ak *
.,V .
modulus of the group pGA , D GT, pET T(p)
Once the solution for loads constant in time is known the problem of

variable loads is solved by an hereditary superposition integral.

4.6.2 Torsional Forced Vibrations of Fiber Reinforced Cylinder

As has been mentioned in par. 4.5.1 vibration problems of two phase
composites may be treated on the basis of a first approximation theory in
terms of effective complex moduli and effective densities. Since this subject
is still in the development stage, we treat the present example by classical
vibration theory of homogeneous cylinders » With complex moduli and average density,

respectively. It is not clear to what extent the analysis is meaningful.
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The cylinder shown in fig. 4.6.2 is built in at X, =x = 0 and is sub-
jected to a sinusoidal forcing torque at the end x = £ . If the cylinder is
elastic homogeneous transversely isotropic with axis of material symmetry in x
direction then the governing differential equation of the problem is

2
d
9 L 4.6.21)

=1
sz c2 Btz

where
9 (x,t) - angle of twist
2 GAI

c = ‘ (4.6.22)
pl

where I' is given by (4.6.14) and
I - polar moment of inertia of section
o - density

The boundary conditions are

d(o,t) =0 @)
(4.6.23)

L 39 (2t) _ Lt
GylI' 3% T ¢ (b)

where the right side of (4.6.23) is the forcing torque of frequency w.

The solution of (4.6.21) with (4.6.23) is (see e.g. [4.15]))
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x)
)

)
cT sin(
, c

wGA cos( (Zz

Llwt

Jx,t) = (4.6.24)

Suppose the cylinder is homogeneous viscoelastic transversely
isotropic with complex axial shear modulus 'C:A(Lw) . In view of the classical
correspondence principle of par. 4.5.3 the solution can then be written down

on the basis of (4.6.24) in the following fashion

s, 1) = d) et (@)

cT sin (=)
Ix) = —> w (b) (4.6.25)
UJGA cos ( - )

~ GAI'
c = (©)
pl

The forcing torques

T = T_cosuwt @)
(4.6.26)

T=T sinwt (b)

o
produce the solutions

%(x,t)=Re [ dx,t)] @)
4.6.27)

os(x,t)=1m[o(x,t)] (b)

respectively.
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Now for a fiber reinforced cylinder;(?;A in (4.6.25) is replaced by 'é:\
and p is replaced by the average density p . The last replacement, in
particular, cannot be correct. As mentioned in chapter 3.9 the effective
density is not the average density and in the present case it is to be expected
that the effective density will be a complex number. Proceeding nevertheless
with the simple assumptions adopted here we find after straightforward
calculations (for details see [4.16]) that for a cosine forcing torque (4.7.27a)

the angle of twist at the extremity x = £ 1is given by

*
cT . 2 L2
3 (L,t) = o sin_2a+sinh 28 oy -2 -y) (4.6.28)
c *R, .., cos2a +cosh28B
wG . (Wl
A
where
1+v
* R R 2
G =
A (W) =G, (w) e @)
2
*
vy G @)
c ¢ = (b)
pl
Q= wf cos 6 /2 (c)
c
8 = — sin 6/2 d)
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I

G1
tan 8§ = R matrix shear loss tangent (e)

Gl

2
tan” § << 1 (f)
_ sinh28

tan¥ = sin 2a ()

It has here been assumed that the fibers are rigid and that the FRM
is described by the composite cylinder assemblage; hence the form @) for
GZR . It i1s seen that the factor multiplying the cosine in (4.6.28) is the
amplitude and ¥ + 0/2 in the cosine argument is the phase lag.

A plot of the amplitude of 0c, as given by (4.6.28), as a function of

frequency & , is shown iu fig. 4.6.3. Also shown is Amp "c in the case of

torsional vibrations of an elastic fiber reinforced cylinder. The data used are:

4L =5.0 ft.
d=4.0 in. diameter of circular section
p=3.0 density relative to water
R _ .R 1
G, W) =G, (o) 1+ T logt10 w)

GlR(o) =0.5x 106 psi

tan 6 =0.1
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In the elastic aalysis it has been ass imed that GlR(o) is the elastic matrix
shear modulas.

The elastic amplitude diagram shows typical resonances. It is seen
that for the viscoelastic cylinder the resonances are quickly damped out.

Other cases of vibration analysis of fiber reinforced viscoelastic

stractures have been analyzed in [4.161].
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CONDUCTION, DIELECTRICS AND MAGNETICS



532

INTRODUCTION

In the present part, we shall be concerned with steady state
thermal and electrical conduction and magnetic and dielectric behavior
of FRM. The reason for grouping these subjects together is that the
problems involved are mathematically completely analogous, as will be
shown below.

The structure of the theory to be developed in this part is identical
to the structure of the theory for elastic behavior developed in part 3.
Moreover, the problems to be solved are much simpler than the elastic
problems since the governing equations in the present physical subjects
are much simpler than elasticity equations.

At a certain stage of the development, it will be shown that the
problems to be solved here are mathematically analogous to problems which
have arisen in elastic axial shearing theory and this analogy will enable
us to immediately convert axial shearing results into corresponding results

for the present subject.
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5.1 VECTORIAL AVERAGE THEOREMS

5.1.1 Average Gradient or Intensity Theorem

The vectorial average theorems to be derived in this chapter are
the vector analogues of the tensorial average theorems which were given
in chap. 3.1. The theorems are of general mathematical nature and do
not presuppose any specific physical behavior.

Consider a two-phase body of volume V and with external surface
S. The phase volumes are V1 and Vz occupying regions R1 and RZ'
respectively, and the phase interfaces are denoted Slz'

Define a continuous scalar function ¢, called the potential

which has the following properties

o(8) = ¢ @)
ro(l)(§) R,
rp(gg) = 2) in ©) (5.1.1)
o ) R
2
(1) _ @)
© (Slz) o (812) ()

The gradient %pis given by
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(ch)i = o, (5.1.2)

For reasons of convenience we shall define an intensity vector H as the

negative of the gradient (5.1.2), thus
Hi) = - vg

H& = - o,

(5.1.3)

The average of the intensity is defined by

1 1
=7 fﬂd"“v S voav
\%

\Y% (5.1.4)

-+ f --=f
i v HidV v to,.ldV
\'% \Y

The average intensity or gra‘gi_ien_t theorerg asserts that

jasyl

T

{
|

= 1 |
E = - v— QDOD_ dS !
S | (5.1.5)
= - _ 1 o)
hi 7 cpni ds 1,
S :

The proof is immediate: The volurr;e integral in (5.1.3) is converted to
two phase region surface integrals by means of the divergence theorem.
The surface integrals on the interface cancel because of (5.1.1c) and the
reversal of the interface normal. Then (5.1.5) follows at once.

From (5.1.5) we obtain the following special result

Corollary

If

I
I

®(8) = HX, B® . KAI (5.1.6)
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o , o . .
where Hi are arbitrary constants and H is a constant vector with com-

o)
ponents Hi’ then

i _ﬁ_ -
: ! (5.1.7)

i
Il
o

Proof:
Insert (5.1.6) into (5.1.5) to obtain

E,=1—H‘.’fx,n,ds
i V it
S

Now by the divergence theorem

1 _.0 1 .0 1 _o
7H fx]_ni 5 7H ijlidv 7 H 4V = H
S \

which proves the corollary.

Evidently, the theorems proved hold for any number of phases and
they are also easily generalized to time dependent fields to hold for
intensit.ies and rates of intensity, as has been done for strain rates
in par. 3.1.1.

By comparison with par. 3.l.1, it is noted that ¢ is the scalar
analogue of the displacement vector ui and the intensity I—Ii (or the negative

of the gradient 7o) is the vector analogue of the strain tensor eij'
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5.1.2 Average Tlux Theorem

We define a vector D with components Di which has the following
properties

D) =D-n=D(S)n =0D° @)
n 1 1

pM ey R,
D, (x) = t in (b)
! D.(z)(y R
! 2 (5.1.8)
v. V) =pl -y in R
= i,i 1 )
Vo D(z) = D(.z). =0 in R
= 1,1 2
L)

_ nf2)
n (812) B Dn (Slz) (d)
The vector D is called the flux vector.

Equ. (5.1.8a) states that the normal component of D is prescribed

on S, (5.1.8d) expresses continuity of the normal component at the

phase interface and (5.1.8c) states that the divergence of D vanishes
everywhere.

The average flux vector i) is defined by

— 1 -
-+ fDewa
v

(5.1.9)
i %/- fﬁi()-c) av
\Y%
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The average flux vector theorem asserts that

1 1 o]
S S

101

5.1.10)

Ol

1 _l_/ o
i‘Vf Dn x ds = v fDxds
S s

Proof:
We use the identity
(Djxi)'j = Di
which is true for any vector satisfying (5.1.8c). Substituting this

expression for Di into (5.1.9) we have

B, =-\17 f (Dyx). v
v )
We convert to surface integrals on the surfaces S. and SZ' enclosing

1

V1 and Vz. Then the integrals on the interface S12 cancel because of
(5.1.8d). (The same problem with the normal arises here as in the
proof of (3.9.29) and is resolved in the same way by proper consideration
of the sign convention of the normal.) The result (5.1.10) then follows
at once.

From (5.1.10) we have the following special result

Corollary

If

D (S) =D 'n=Djn, (5.1.11)
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o o
where D is a constant vector with constant components Di’ then

e
N
10

(5.1,12)

o
]
V)

Proof:
Insert (5.1.11) into (5.1.10) to obtain
5 = _]'_.D d
i vy ) xnyes

S

The surface integral which appears here is equal to éijV as has been
shown in the proof of (5.1.7). So (5.1.12) follows at once.

Again the theorems proven are easily extended to bodies with any
number of phases and also to flux vector rates in the case of time
dependence.

By comparison with par. 3.1.2 it is noted that the average flux
theorems are the vector analogues of the average stress theorems. The
flux vector takes the place of the stress tensor, the normal flux component
takes the place of the traction and vanishing of the divergence is

analogous to stress equilibrium without body forces.

5.1.3 Average Virtual Work Theorems

Suppose that in the two-phase body there is defined a scalar function
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o which has the properties (5.1.1) and a flux vector D which has the

properties (5.1.8). The integral

= av = - .1
Q f D, H, f Dyg; AV (5.1.13)
v v

is defined as the virtual work. It should be emphasized that the vectors
D and H are at present unrelated and Q has no physical meaning.

The virtual work theorem asserts that

o- [pDE av = - [ Dgas (5.1.14)
J 1l 1 o il
Y S

To prove this theorem we note that at any point

since Di i vanishes according to (5.1.8¢). We introduce this result
into the left integral in (5.1.4), integrate separately over the phase
volumes Vl and Vz,and convert the volume integrals into surface

integrals by use of the divergence theorem. We then have

Q:-f DinicpdS —fDinicpdS
! 52
The surface integrals on the interface cancel and the only remaining
contribution is from the external surface S which gives the surface

integral in (5.1.14) and thus proves the theorem.

Obviously, a similar result holds for any number of phases.
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We now consider theorem (5.1.4) for the cases when either one
of (5.1.6) or (5.1.11) is given on the boundary. We first split D and

H at any point into average and deviation. Thus

D, () = Ei + D;(x)
— (5.1.15)
Hx =H + H(x
i i i
Consequently,
Q = DHV +fD:H:dv (5.1.16)
1 1 1 1
\Y
Evidently, it is always possible to express Hi in the form
Hi = (Hjxj),i
Because of (5.1.3) it then follows that
Hi(&) = -Cplli (a)
(5.1.17)
o' = o) + Hpx, (b)

Since ]51 in (5.1.15a) is a constant vector it trivially satisfies

both (5.1.8¢c) and (5.1.8d). Since Di(>_<) also satisfies these conditions,

the same follows for Di(>_<). Thus

D! . =0 (@)
(5.1.18)

D n continuous on S 12 (b)
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In view of (5.1.17a) and (5.1.18) the theorem of virtual work applies to

the second integral in (5.1.16)

fD:H: v = - f D' 'dS (5.1.19)
i n

\Y vV
The development up to this point is perfectly general. We now

consider specifically the boundary conditions (5.1.6) and (5.1.11). In

the first case we have from (5.1.7) and (5.1.17b) that

0'(S) =0
Consequently, (5.1.19) vanishes and only the first term remains in the
right side of (5.1.16).

If (5.1.11) holds it follows from (5.1.12) and (5.1.15) that

and again the integral (5.1.19) vanishes. We may thus summarize

fD.H.dv =DHV = j
1 1 1 1

D HV @)
1 1

o (5.1.20)
D,lHiV i (b)

where (5.1.20a) refers to (5.1.6) and (5.1.20b) refers to (5.1.11).
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5.2 STEADY STATE BOUNDARY VALUE PROBLEMS

5.2.]1 Formulation

Suppose that the intensity H and the flux D, defined in chap. 3.1,

are connected by the general linear relation

b T @ (5.2.1)
T )
ij ji

where uij may be space dependent. Equs. (5.2.1) may be regarded as a

constitutive relation. The inverse of (5.2.la) may be written as

H, = g D, @)
! R (5.2.2)
=5
S ik Yk i (b)
It follows from (5.2.16) and (5.2.2b) that
= 5.2.3
gi]' gji ( )

It is seen that uij is the analogue of the elastic moduli tensor Cijkl'

§ij is the analogue of the elastic compliance tensor Si' and (5.2.1a),

ikl
(5.2.2a) are analogues of Hooke's law.

Inserting the extreme right of (5.2.la) into the zero divergence
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condition (5.1.8c) we obtain the differential equation

GYES e (5.2.4)
ij i1

If ui], are constant, (5.2.4) reduces to

Hii745 = 0 (5.2.5)
In an orthotropic material
- )
Hy 0 0
LL.LU] = 0 My 0 @)
| 0 0 u; ]
g 0 07
| = 0 b 5.2.6
[gljj g, 0 (b) | ( )
| O 0 §3_
1 1 1
g, = — g, = — g, = — ()
3
1 ul 2 uz u3

Since Uij is a symmetric tensor it can always be brought into the form

(5.2.6a) by referring it to its principal axes.

If the material is transversely isotropic, with x_ axis of symmetry,

we have
T, , R @)
1 By 5.2.7)
) )
= = = = ; _ ————
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If the material is completely isotropic we have

and consequently

ij - M9 (@)
. (5.2.8)

= 6 =—-6
ST T Y (b)

8!

Then (5.2.5) reduces to

V(g=cpii—0 (5.2.9)
which is the Laplace equation.

Boundary conditions to be considered are

© =0 on 8 @)

(5.2.10)
D =D on S (b)

which imply that the potential v is prescribed on part of the external
boundary and the normal flux component on the remaining part of the
boundary. Since the formulation is in terms of ¢, (5.2.10b) should be

expressed in terms of this quantity. It is easily seen that
= = , D, oo
D ui.q)] i (5.2.11)

For a homogeneous or continuously non-homogeneous body (5.2.5)
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or (5.2.4) subject to (5.2.10) define a unique potential function ¢ if
uij is positive definite. In the event that Scp vanishes, i.e. (5.2.10b)
is prescribed over the entire boundary, ¢ is unique except for an arbitrary
additive constant.
If the body is two-phase or multiphase the formulation has to be

modified. To be specific we consider two homogeneous phases. Then

utV

; in R1
b, = J (5.2.12)
Y @) in R
M 2
The field equations (5.2.5) become
1 1
u(.l.) :9,(..) =0 in R, @)
;o (5.2.13)
2
L )
ij i) 2

The boundary conditions (5.2.10) with (5.2.1l1) may be left as they stand,
with the understanding that the quantities in them must be given indices
1 or 2 in the boundary regions which belong to the phases 1 or 2.

At the phase interfaces there are now imposed the continuity

conditions
1) _ (@)
A on 8, @ (5.2.14)
n n

the last of which may be written in view of (5.2.11) as



546

? n o= u® @, (5.2.15)

1)y Q
M., ©, i ij ] i

1)

The problem thus formulated also has a unique solution if uij

)
and u i

. are positive definite.

(1)

There is of course no difficulty whatsoever

to generalize the formulation (5.2.10), (5.2.13-15) to bodies with any

number of phases.

The mathematical formulation given above applies to the physical

subjects of thermal and electrical conduction, electrostatics and magneto-

statics. We list below the physical interpretation of the various guantities

defined.

Physical Subject

H=-v¢

Thermal conduction

Electric conduction

temperature

electric potential

temperature gradient

electric field intensity

Electrostatics electric potential electric field intensity

Magnetostatics magnetic potential magnetic field intensity
2 M 5

heat flux heat conductivities resistivities

current density electric conductivities resistivities

electric induction,
electric displacement

magnetic induction

dielectric constants ’
permittivities

magnetic permeabilities
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5.2.2 Elementary Solutions for Homogeneous Bodies of Arbitrary Shape.

Homogeneous Boundary Conditions

We now derive solutions analogous to the ones derived in par.
3.2.2 for elastic bodies.

Consider a homogeneous body with conductivities ui]_ and let
it first be subjected to the boundary condition (5.1.6) which is given

again below

©(8) = - H%, (5.2.16)

It is seen that this function trivially satisfies (5.2.5). It obviously
satisfies (5.2.16) and it is therefore the correct solution by the

uniqueness theorem. Consequently, by (5.1.13) and (5.2.1)

H,l(}_g)

1l
T

(@)
(5.2.17)

D, &) = u, 8 (b)

which are homogeneous vector fields. Therefore (5.2.16) is called:

homogeneous potential boundary condition.
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Now let the boundary condition (5.1.11) be imposed, which is

given again below

D (S) =-u o©n, =D'n, (5.2.18)
n 1} 71 1 1 1

We try a solution of the form

ok = - gijD?x,l + const (5.2.19)

where Eij are defined by (5.2.2b). Since (5.2.19) is a linear function
it satisfies (5.2.5) trivially. It follows from (5.2.19), (5.1.3), (5.2.1)
and (5.2.2b) that

H &) = e D a)
(5.2.20)

D =D (b)

Forming the normal component of (5.2.20b) it is seen that (5.2.18)
is satisfied. Therefore (5.2.19) is the solution and (5.2.20) are the
homogeneous intensity and flux fields within the body. Consequently,

(5.2.18) is called: Homogeneous flux boundary condition.
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5.3 EFFECTIVE CONDUCTIVITIES OF GENERAL COMPOSITES

5.3.1 Heterogeneous Bodies with Homogeneous Boundary Conditions

In the present chapter effective conductivities (EC) will be defined
and discussed for general SH composite materials. We shall use the

following expressions

©® - potential

H - intensity

D - flux

ui]. - conductivities
g - resistivities

ij
with the understanding that the theory applies to the subjects of thermal
and electrical conduction, electrostatics and magnetostatics.

Let a composite body be subjected to the homogeneous potential

boundary condition (5.2.16), which is here written out in detail

o o o
= - + +
0 (8) (Hlx1 HZXZ H3x3) _ (5.3.1)

Because of the linearity of the governing equations the solution may be
regarded as the sum of three different solutions, each of which is defined
by the application of a single term of the right side of (5.3.1) on the

boundary. Consider the case when
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and denote the corresponding field solution by Lo(l)(li)- If instead there is

o
imposed on the boundary o(S) = - Hlx then by linearity the solution is

1

Hcl)cp(l)(z). Defining, similarly, unit solutions cp(z)(g) and cp(s)(:>_<) corres-
ponding to «(S) = - Ry s o(S) = - Xy respectively, the solution for

the general case (5.3.1) can be written, by superposition, in the form

_ .0 o} o} _ .0
olg) = cho(l)(g) + Hch(z)(gg) + H3Qp(3)(>_<) = H o, & (5.3.2)

k™ (k)

It follows from (5.3.2), (5.1.3) and (5.2.la) that the intensity and flux

at any point have the forms

( ) — Oﬁ
(5.3.3)
- _ (@]

where uik(>_<) denotes the space variable (piecewise constant) conductivities

of the heterogeneous body. Consequently the average of (5.3.3b) can be

written in the form

(Wl

= u* H (5.3.4)
1 1) ]

where

* = -
us Jik(éi)tp(j)’k (5.3.5)
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In view of the average gradient or intensity theorem (5.1.6-7) it is seen

that (5.3.4) can also be written in the form

| D. = u*H | (5.3.6)
i iy

There is thus a linear relation between the average flux and intensity
components.
Next, the homogeneous flux boundary condition (5.2.16) is applied

to the boundary. It follows by similar linearity arguments that
~ o
= *
H.1 giij (5.3.7)

where g";j are some averages of field quantities. In the present case
o)
Dj are the flux averages because of theorem (5.1.11-12). Therefore

(5.3.7) can be written in the form

- —
t = * .3 .
. H =D, (5.3.8)

S |

It is to be noted that (5.3.6) and (5.3.8) are general results for
any body, homogeneous or heterogeneous, under homogeneous boundary
conditions. If the body is homogeneous (5.3.6) and (5.3.8) merely reduce
to the results (5.2.15b), (5.2.23a), respectively.

It is easily shown that u’?”, and g*;j are symmetric tensors if
M., i1s symmetric. To see this we average (5.2.la) and equate to

1)
(5.3.6). Thus
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*ﬁ = u, H,

|J‘1] ] 1) )
and also

u’?.ﬁ = u, H,

it it

It is seen that the right sides of these equations are equal because of

=\u,.. Theref
uij ujl erefore

% - y*)H =0
(uU wi) H

- o
But H], = Hj is an arbitrary vector and therefore

u*r = p* (5.3.9)

The proof for g’{j symmetry is evidently analogous. Thus

5’{]. = 5’;1 (5.3.10)

We now consider the volume integral

L = %— /Di(g)Hi()ng (5.3.11)
\'

taken over a heterogeneous body. In view of (5.2.1-2) this integral

can be expressed the the alternative forms

L= L fu,,H,H_dV
2 ij 17

v (5.3.12)
1
= — D dav
L=3 fgij i
\Y
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The physical interpretation of (5.3.11-12) is rate of entropy pioduction
for thermal conduction, half the electric power for electric conduction,
the electrostatic energy for electrostatics and the magnetostatic energy
for magnetostatics. (There may be a different factor before the integral
according to the physical units which are used). To be specific we
shall refer to (5.3.11) simply as the energy integral . This integral is
obviously the analogue of the elastic energy (strain or stress energy).
From the average theorem of virtual work, it follows at once that

for homogeneous boundary conditions, (5.3.11) is rigorously given by

L= XDBHV (5.3.13)
2 i

If the boundary condition is (5.1.6) it follows from (5.1.20a) and (5.3.4)

that

2 j

e s e s e 23 e e

L=1 wt HOHOV (5.3.14)
|
|-

If the boundary condition is (5.1.11) it follows from (5.1.20b) and (5.3.7)

that

e ey
rL = % g* DODOV | (5.3.15)
j

5.3.2 Statistically Homogeneous Composites

The interpretation of the general results (5.3.4, (5.3.6-8) and
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(5.3.14-15) for SH composites is exactly as in elasticity, par. 3.3.2.
We first state the fundamental postulate of theory of conductivity of

heterogeneous media: The intensity and flux fields in a very large

SH body, subjected to homogeneous boundary conditions are SH, except

in @ narrow bcundary layer near the external surface. It follows that

the body averages which enter into the results obtained in par. 5.3.1

are now also RVE averages. Hence (5.3.6) and (5.3.8) become the effective
constitutive relations, and u’flj are the effective conductivities and g’;j are
the effective resistivities. By the same arguments as given in par. 3.3.2

these tensors are reciprocal for a SH body. Thus

i l (5.3.16)

The effective physical constants u’{j and E*{j may also, alterna-

* *
ik Skj

tively and equivalently, be defined by the energy expressions (5.3.14-15)
For a SH body these expressions can also be interpreted as energy

densities per unit volume RVE. We write

=
i

l p— —
—_— *

7 Wi H
5.3.17)

1l

l — ——
—_ *
Mp = 7 85 B

These are the analogues of elastic strain energy and stress energy densities,

respectively.
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5.3.3 Effective Physical Constants in Terms of Phase Averages

We shall now derive expressions for u’fj or £*¥ of a two-phase
i ij

body in terms of averages over a single phase. We decompose intensity

and flux averages as follows:

H =H. v, +HY v @)
(5.3.18)

_D,l=5.lv+D v (b)

where the averages in the right sides of (5.3.18) are taken over phase

volumes. For homogeneous phases we have

oM = W FL @)

! bl (5.3.19)
50 - ) 50 o

i i i
B0 - 05 X

' o (5.3.20)
R0 @5 "

Consider the equations (5.3.6), (5.3.18) and (5.3.19). We

eliminate from these the quantities _Di’ 5(1) —D(,z) and ;I(l).

s , This leaves
1 1 1

the equation

. H, = u,, H, . .. Y/ 5.3.2]
RSN 1y ] 1] 1]) j 2 ( )

If the body is subjected to the homogeneous potential boundary condition
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- o
(5.2.16) then Hi = Hi' In this event we can also write the linear

influence relation

?1,(2) =@ yo (5.3.22)
i 1) ]

2 .
where Ai(j) is an intensity average influence tensor for phase 2. Inserting

(5.3.22) into (5.3.21) we obtain

ur - [()+((2 (l)) (Z)J H?=0

o . . s o} .
Since H]_ is an arbitrary vector, each coefficient of Hj must vanish

separately. Consequently

e = O 2) _ (1) ,(@)
uij Uy, + (u M “m)) Ak]_ v, (5.3.23)

Evidently (5.3.23) remains valid if 1 and 2 are interchanged.

The same procedure may be repeated for fluxes and resistivities.

The counterpart of (5.3.21) is then

A= ¢ § e 2) (1) =@)
g, D]. 51] D + (gij gij)) D]_ v, (5.3.24)

For homogeneous flux boundary conditions (5.2.18) we have

pl) = @) po (5.3.25)
i 4

2
where B(ij) is a flux average influence tensor. Then (5.3.24) can be

brought into the form

w, W (z)

ij
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5.4 EFFECTIVE CONSTITUTIVE REIATIONS OF FIBER REINFORCED MATERIALS

5.4.1 Symmetry Reductions

We consider the implications of various symmetry properties for the
general constitutive relations (5.3.6) and (5.3.8). Suppose that the

material is fibrous and SH. The system of axes is as usual x. in

1
generator direction of cylindrical phase regions or fibers, and xZ, x3
in a transverse plane. It is clear that the x2 x3 plane is a plane of

symmetry for the constitutive relations if it is also a plane of constitu-

tive symmetry for the phase materials. From this it fcllows easily that

waz =y =0 (5.4.1)

To see this suppose that there is only an average intensity component

Hl in X, direction while H. and H. vanish. In this event (5.3.6) assumes

2 3
the form
- =
D) = wh, H @)
- =
, = 0k, H) () (5.4.2)
- =
Dy = uwi; Hy (c)
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Let the coordinate system be rotated in the following fashion:

the x2 axis is a fixed axis of rotation while x1 and x3 are rotated

o)
counter clockwise by 180" to assume positions xi and xé. The direction

cosines of the rotation are

cos (xl, Xl) = 1&11= -1
cos (XZ’ xz) = 222 =1
cos (x3, x3) = 12,33 = -1

and the rest of the direction cosines vanish. By the laws of vector

transfomation the vector D in (5.4.2) transforms into a vector D' with

the components

'] = [-D,, D,, -D

1+ Py 3] (5.4.3)

in the new system, while the axial vector [E] = [ﬁl’ 0, 0] in (5.4.2)

transforms into
[H'] = [ H,, 0, 0] (5.4.4)

Since X, Xj is a plane of symmetry the components of E' and E' must

be related just as (5.4.2) It follows in particular from (5 4.3-4) and

(5.4.2b) that

D = - u* H (5.4.5)
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Comparison of (5.4 2b) and (5 4.5) reveals a contradiction which can

only be resolved by letting u*lz vanish.

We may similarly perform a 180o rotation of X, and X, axes

around the Xq axis. This makes u*ls vanish by the same kind of

argument. This completes the proof of (5.4 1).

Consequently for any SH fibrous material

| -
L D=y Hy | (a)
i
— _ " — « — P
D, ¥, Hy + ux  Heo| (b) (5.4.6)
n = * T * 7
Dy = W¥gq Hy + u¥gy Hy (c)

Obviously the reciprocal relation (5.3.8) will also be of the same form
as (5.4.6).
The constitutive relations (5.4.6) are physically plausible. They

imply that for a fibrous material an intensity component in x_, direction

1
does not induce fluxes in the transverse directions. There is thus no
"Poisson” effect in the present case.

The relations (5.4.6) may be further reduced by referring the two
dimensional u’;B tensor (a,8 = 2,3) in (5.4.6b,c) to its principal axes.
In this event there will only remain the principal co’nductivities u*z and

u* .  This, however, is not very helpfut since the values of u* _ must

3 ab

be known in order to find the principal axes, and these are precisely

the quantities we wish to determine.
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Next, suppose that the composite is geometrically orthotropic
with respect to the X, X, X, system and that the phase materials are

also orthotropic with respect to the same system of axes., Then the

composite is macroscopically orthotropic and (5.4.6) reduce to

- =
Dl w H1 (a)
= =
D2 B H2 (b) (5 4.7)
= _ =
D3 W H3 (c)
where
* = * * = * * = *
Wy = Wy “z W5 M M3 (d)

If the composite is macroscopically transversely isotropic then
* — 1k = (1*
le Hs HT

to which we adjoin the notation

* = (%
MY T YA

Then (5.4.7) simplifies to

-
Dl SN H1 (a)

D, = W%, H, (b) (5.4 8)
= =

Dy = u, H, (c)
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Examples of orthotropic and transversely isotropic FRM have been
discussed in chaps. 2.2 and 3.4. It is easily seen that in the present
physical subject a geometrically square symmetric material is also
transversely isotropic with respect to constitutive relations.

This completes the discussion of symmetry reduction of the macro-
scopic constitutive relations. The present simple situation should be
contrasted with the complexities of elastic stress-strain relations,

chap. 3.4.

5.4.2 Axial Conductivity

We proceed to establish a general formula for the axial conductivity
“*11 of fibrous materials, of any transverse geometry. Let a cylindrical

composite specimen be subjected to the homogeneous potential boundary

condition

(o]
®(S) = - H| x (5.4.9)

Then by the average intensity theorem (5.1.7), and (5.4.1)

(o]
= *
D1 “11 H1 (5.4.10)
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The general formulation of the conduction prob'em of a two-phase body
is contained in equs. (5.2.10), (5.2.13-15). We assume that for the

present problem

cp(1) (2)

(x) = - HOx (5.4.11)

® = o 15

It is seen that (5.4.11) trivially satisfies (5.4.9), (5.2.13) and (5.2.14a)
Thus the only remaining condition is continuity of normal flux component
(5.2.14b) or (5.2.15) at the interfaces.

We recall that the phase interfaces are here cylindrical and

consequently the interface normal n has the form

Furthermore, we have from (5.4.11)
vtV ] = [vel?)] - (157, 0, 0]

Therefore,(5.2.15) assumes the form

(1) _ . (2)
Hal na T Tal na

a= 2,3
This condition is evidently satisfied when

L@

12 12 7 0

0 2 (5.4.12)
]
M1z = M3 = 0
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i.e. when the phase constitutive relations have the very general form
(5.4.6)., (Strictly speaking, the equality to zero in (5.4.12) is not
even necessary.) Consequently (5.4.11) is indeed the potential for a
very general class of phases.

Now from (5.2.1), (5.4.11) and (5.4.12)

(o]

= (1) (2)
(L )

D, = (W "v) + Wy vy) H

where v_, v2 are the volume fractions. Comparing this to (5.4.10)

1
we have
W . (@2 —
* = =
M= Y Yt Ry Yy S My (5.4.13)

For orthotropic, transversely isotropic or isotropic phases (5.4.13)

reduces to

T [ (a)
= TlA (b) (5.4.14)
wh = (c)

Evidently the axial resistivity §’il is given by the reciprocal of

(5.4.13), in view of the form of (5.4.la).
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The present simple and general result is the analogue of the
results (3.5.55), (3.5.60a) for the axial Young's modulus of a fibrous

material in the case of equal phase Poisson's ratios.
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5.5 TRANSVERSE CONDUCTION

5.5.1 Formulation and Axial Shearing-Transverse Conduction Analogy

To investigate transverse conduction of a fibrous or fiber reinforced
material we impose upon a cylindrical specimen, fig. 2.1.1, the homogeneous
potential boundary condition

(o]

__ ©
©(S) = (2x2+H3

x3) (5.5.1)

It is assumed that the potential ¢ (x) is not a function of X, Thus

cp(l) (x) = o M &, +%4) @)
(5.5.2)
cp(z) (x) =9 @) &, %) (b)
Consequently the boundary condition (5.5. 1) may be written
9 )=~ x, + HY %,) (a)
(5.5.3)
- — _ (1° o
P (0,X21x3) = o (H,x, X,) = (H2 x, +Hy x3) (b)

where C is the contour of any transverse section. Thus (5.5.3a) is a
boundary condition for the curved cylinder surface and (5.5.3b) - for the
terminal sections.

Let it be assumed that the two phases are transversely isotropic with
axes of symmetry in X, direction. In this event, (see (5.2.7) ) the only non-

vanishing phase conductivities are
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1 _ 1) n _ @) _ @
B S Il N Mog THaz T Mg
(5.5.4)
@ _ @) @) _ @) _ @)
SRl S Hog TH33 T My
The phase potentials (5.5.3) must satisfy equations (5.2.13). In view of
(5.5.2) and (5.5.4) we obtain simply
1
& cp( ) - 0 in R, (@)
2 (2
v ()=o in R, (b) (5.5.5)
2 2
Fedo L 2 ©
9x 89X
2 3
The continuity condition (5.2.14a) is
1
fp( ) =cp(z) on Clz (5.5.6)
where C12 is a transverse section through the phase interfaces.

In view of (5.5.2), (5.5.4),and the fact that the interface normal

has no component in x1 direction, (5.2.14b) reduces to

(1)

HT(cp (

W)

D, @, @

2% cp'3 (5.5.7)

n)=u?1.)(cp

3™ n3) on C1

2

It is seen that the parentheses in (5.5.7) contain normal derivatives.
We adopt for simplicity the notation

u(l) = @)

(5.5.8)
T "M (b)
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Consequently (5.5.7) may be written in the form

B _ a'Q
Y Y2 3n on Gy, (5.5.9)

The problem formulated by (5.5.2a), (5.5.5), (5.5.6) and (5.5.9) is
a plane potential theory problem for a plane two-phase region. It has a
unique solution if u 1 and U, in (5.5.8) are positive. (As they certainly
are for physical reasons.)

It is seen that the boundary conditions (5.5.3b) cannot be satisfied
by the present solution. However, for a cylinder which is very long in
comparison to typical cross section dimension this is of no consequence.

We shall now show that there is complete mathematical analogy
between the axial shearing formulation , par. 3.5.1 and the present transverse
conduction formulation. We observe that the governing differential equations
(3.5.39), (3.5.41) and (5.5.6) , (5.5.8) , and the boundary conditibns
(3.5.37) and (5.5.3a) have the same form. Comparison of all of these
shows the mathematical equivalence of the following quantities

G | i.e. GA<-——>L1T

(5.5.10)

20 «>-pg° a =2,3
la o

Comparison of (3.5.33b,c) and (3.5.34b,c) with the conduction constitutive

relations reveals the further equivalence
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zela("z ,x3) «> - HOL (x2 ,x3) = ? 4 @)
(5.5.11)

012 (xz ,X3) «> DG.(XZ lx3) (b)

The scheme (5.5.10-11) expresses the mathematical equivalence of
the axial shearing and transverse conduction problems. If a solution for
one of them is available the solution for the other can be immediately

written down. We shall call this analogy the axial shearing-transverse

conduction analogy.

This analogy has far reaching consequences for the computation and
bounding of transverse conductivities of FRM. The effective axial shear

*
modulus G A is defined by

*
g, =2G

5.1
la A %1qg (5.5.12)
*
while the effective transverse conductivity uT is defined by
- * -
D =u H (5.5.13)

a T o

It is seen that (5.5.12-13) are mathematically analogous in view of (5.5.10~11).
*
Now GA is a function of phase geometry and phase shear moduli only. Conse=

*
quently “T is the same function of phase geometry and phase conductivities.

Thus

G, =F G,.G,, {al)
(5.5.14)

u*T =F (), u, {g1)
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This permits us to write down effective transverse conductivity

expressions simply by replacement of phase shear moduli by transverse phase

conductivities (for transversely isotropic phases) in effective axial shear

modulus expressions.

It is not difficult to realize that the same analogy is valid not only
for exact expressions for G;; but also for bounds on GZ . It is recalled
that G; bounds were obtained by application of elasticity theory extremum
principles. If there are substituted into these extremum principles the special
axial shearing forms (3.5.33=34), there are obtained extremum principles in
terms of ¢ of the shearing formulation. (The reader may verify this.)
All the G:; bounds can be obtained on the basis of these modified extremum
principles. But because of axial shearing-transverse conduction analogy
the modified extremum principles also provide bounds for ufr and so the

* *
conclusion is reached that GA bounds are transformed into uT bounds by

replacement of phase shear moduli by phase transverse conductivities.

It is easily shown that the axial shearing transverse conduction

analogy also remains valid for orthotropic phases.

5.5.2 Expressions and Bounds

On the basis of the analogy proved in par. 5.5.1 we can now transform

* *
all the GA results into corresponding uT results.

From (3.5.111) we have for the composite cylinder assemblage
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v
* 2
= +
H Lll 1 v @)
!
Mp7Hy 2,
(5.5.15)
+ +
u* . oy Vl le 1 VZ) )
1+v ) +
T 1 ul( vz) by vy

where 1 denotes matrix and 2 denotes fibers. This result has been given in

[5.1=2 7.
For dilute reinforcement of circular fibers we have from (3.5.131)

le 'Ul

*

U =u. (1+2
+

T Hy TH)

c) (5.5.16)

where

Bounds for any transversely isotropic fibrous material are provided
by (3.6.63) and (3.7.87).

Elementary bounds

* -

1
v Lo V] (5.5.17)

Improved bounds
+

. b vyt (1+vz)

"1 T M, O

)+U-ZV @)

2 1
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*

He@) ~ M Y EEN TR

‘ M, v, o, (1))
2 2 1 1
(b)

i ‘ - (5.5.18)
The conduction analogue of a rigid phase is a phase with infinite
(very large )conductivity. bThe conduction analogue of an empty phase is
an insulating phase. Evidently the special bounds (3.6.30) are also applicable
for transverse conductivity. Furthermore, all axial shearing numerical results
can also be interpreted as corresponding results for transverse conductivity.
(This has been pointed out in [5.3]  forthe case of periodic arrays ).

Experimental values of thermal conductivities of FRM have been
reported in [5.47 . There is not good agreement between these and the
theoretical results obtained. In particular, experimental values reported
are consistently below the lower bound (5.5.18a).

On the other hand, similar theoretical results for two phase isotropic
media (see appendix) do agree very well with measured values of effective
magnetic permittivity, dielectric constant and electrical conductivity of
two phase media, [5.5]. It is consequently of importance to explain the

disagreement in the thermal conduction case and to perform further experiments.
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APPENDIX

Conductivity of Isotropic Composites

We consider a statistically isotropic composite which consists of
two isotropic phases. If the only information available is phase conductivities
*
ul, uz and phase volume fractions vy vZ » then elementary bounds for u

of the composite are given by

-1
(L.}._‘.,E_ < U-* < uw, v, tu v (1)
ul uz .= = 171 2 2

Wiener, [5.5].

Improved best,possible bounds,are

0. + 2 <u <+ 71 )
e | 1 A4 - = 2 1 v
+ 1 — + 2
Hy ™Y 34,y H1™H, 34,
Hashin and Shtrikman, [5.6] . My > My

The bounds apply to FRM with randomly oriented fibers as well as to
isotropic particulate composites. In the latter case the lower bound (2) is
appropriate as a composite spheres assemblage expression with matrix 1 and
particles 2.

For further results and discussion see e.g. [5.7-87.
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Table 5.5.1 Thermal Conductivities of Fiber and Matrix Materials

Fiber

Matrix

Material Thermal Conductivity
Cal/cm—sec-OK Btu—in/hr—ftz-oP

E-Glass 0.00214 6.2
A1203 0.08 232
SiC 1.7 4930
Magnesium 0.38 1090
Aluminum 0.53 1520
Epoxy (typical) 0.00045 1.3
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6.1 UNCOUPLED THERMO-EIASTICITY

6.1.1 Formulation

We are concerned with an elastic body in which there are stresses,
strains and temperature changes. As a consequence of the temperature changes
there are expansions or contractions which affect the strains and stresses that
would have been present under isothermal conditions.

The simplest constitutive relations for a generally anisotropic
thermoelastic body are

g = +a 1.1
i Skt T %y (6.1.1)

the inverse of which "is

G = +T
i~ Skt T y® @)
where (6.1.2)

' =- a
ij Cijkl kl

(b)

Here ¢ is the temperature rise relative to a reference temperature which is
arbitrarily chosen as zero, Cij Kl and Sijkl are elastic moduli and compliances,
respectively, at reference temperature, and oni]_ are the thermal expansion
coefficients. Because of the assumption that elastic properties remain

unchanged by the temperature change, (6.1.1) cannot be expected to hold

for large temperature changes.
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It is seen from (6,1.1) that when cij =0, then

=q 6.1.3
€5y = Oy @ ( )
It follows that aij are the stress free-strains per unit temperature change.

Also, in view of strain symmetry

aij = aij (6.1.4)
There are thus six expansion coefficients in the general anisotropic case.
As in the case of conductivity, par. 5.2.1, it is always possible to find
a8 set of material axes (principal axes of cnij) in which the mixed aij will
vanish, and thus aij will be orthotropic.

If the material is elastically and thermally isotropic, (6.1.2) reduces
to the following form

Oij=)\€kk Gij+2Gsij —3K(1cp5ij (6.1.5)
Here X and G are the usual Lamé and shear modulus, K is the bulk modulus
and a is the isotropic expansion coefficient.

Equs. (6.1.5) may be inverted to obtain the isotropic form of (6.1.1)

but the resulting expressions are inconvenient. Equivalent more convenient

expressions are

™
Il

1
—_ + - s .
57 (a+v) %, vokk] + a o i=j (@)

(6.1.6)

= 1 o
€45 G i#j (b)
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If the material is elastically and thermally transversely isotropic, with
X axis of symmetry, then the elastic stress-strain laws are given by (3.4.86-87)

while the thermal expansion matrix assumes the form

0
G'A 0
La, ]= 0 a 0 6.1.7)
ij T
0 0 ch

In this event the constitutive relations (6.1.2) for normal strains and stresses

assume the form

= + + - +
0y =My A ey, +egg) - (NG, 2L 0)

= £ + + - - (¢ + 1.
%0 € (k+GT) €0 (k GT)e33 (aA ZkaT)cp (6.1.8)

o =£el+(k-GT)e

+ (k + - (Lo +
33 1 o t kG egq = (B0 2ka) @

2

while (6.1.1) assume the form

1 A
® =— g _ - (o..+0 . )+ta o
1 g ‘uTE, 2z 38 A
\Y] \Y}
" 1 T
e . = - 6 +— 0 =—-— 0. ta_ o 6.1.9)
22 E, ‘11 Eg 22 E 33 T
Va Yy 1
= - - o _ +—o0__ +
€33 91" F %27 E %3 % ®
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The shear stress~strain relations remain, of course, as in isothermal

elasticity
P19 T2G, 4,
_ 1.1
93 = 2Gy 93 (6.1.10)
013 = 2G, €3

Suppose that the body is in static equilibrium without body forces.
Then

o (6.1.11)

TR
We consider first a body which is homogeneous and isotropic. To obtain
differential equations for displacements u,i and temperature ¢ , the strains

in (6.1.5) are expressed in terms of displacement gradients and the resulting

expressions are substituted into (6.1.11). We then obtain

()\+G)uj L. tGu | -3Kag ,=0 (6.1.12)

]l 1,) ’

Another differential equation is needed for the temperature o . It is the funda-
mental premise of uncoupled thermoelastic theory that the temperature «» may be
determined f‘rom a heat conduction problem without consideration of mechanical
deformation. We adopt this assumption and we furthermore assume steady state
conduction. The problem of steady state conduction has been discussed in
chap. §.2; for an isotropic homogeneous body a general class of problems is

formulated by (5.2.9-10) . We thus regard o in (6.1.12) as a knowr function
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which has been found by solution of the heat conduction problem. Conse=
duently, the term -3K0ch'i in (6.1.12) is of the nature of a body force.

In the general anisotropic homogeneous case we obtain the differ-
eutial equations by substitution of (6.1. la) into (6.1.11). Using also (6.1.4)
we find

(u - ) =0 (6.1.13)

a
Ciia “k,1 7~ %k
and the heat conduction problem is now defined by (5.2.5) and (5.2. 10).

Appropriate boundary conditions are prescribed tractions or displace-

ments on the boundary S. An-expression for tractions is provided by substitution

1 ]
anisotropic and isotropic cases, respectively

of (6.1.2) or (6.1.5) into Ti = 0. n.. We thus have for the generally

= -pQ
T,=Cip @1 9% Yy @)
(6.1.14)
= (r - 3Ka +
T, ( €k 3Kaop) n, zeeij n, (b)
A general form of boundary conditions is
u =’ on S (@)
i i u
(6.1.15)
T =1T° on S (b)
i i T

where 'I‘i in (6.1.15) is to be interpreted in the forms (6.1,14).
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The thermoelastic problem thus formulated has a unique solution if the
matrix of elastic moduli is positive definite. A proof for the isotropic body
may be found in [4.6] , chap. 2. Proof for the anisotropic body is analogous.

Extension of the formulation to heterogeneous bodies consisting of
homogeneous phases is immediate. As an example we consider a body
consisting of two anisotropic phases. The phase differential equations are

o WO

ikl k1, k1?5 @)

6.1.16)
2) () 2) @), _
ikl @ ey T % 9 y)=0 (b)

where 1 and 2 denote the phases. To the boundary conditions (6.1.15)

there are now adjoined the interface conditions

u(l.) = u(z.) @)
1 1
on S12 (6.1.17)
1 = @) (b)
1 1

where (6.1.17) are to be taken in the forms (6.1.14a).
Uniqueness for two or multiphase bodies is also easily proved, it
being necessary that the matrix of elastic moduli be positive definite, everywhere .

The associated heat condition problem to determine q)(l) and cp(z)

has been formulated in par. 5.2.1.
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6.1.2 Elementary Solutions

We consider first a heat conduction problem whose solution will be
needed later. Let a heterogeneous body, consisting of homogeneous

anisotropic phases, be subjected to a constant boundary temperature.

¢ (S) =<p° \ (6.1.18)

Then the temperature everywhere in the body is also on. Thus

o |

p(x) = o (6.1.19)

To prove this we nbte that (6.1.19) trivially satisfies the phase conduction
differential equations (5.2.13) . The boundary condition (6.1.18) and the
continuity condition (5.2.14a) are obviously satisfied by (6.1.19) . The

heat flux vector associated with (6.1.19) vanishes everywhere and so (5.2.14b)
is also satisfied; this completes the proof. Obviously, the result is valid

for any number of phases.

Next we consider a homogeneous anisotropic body which is subjected
to the temperature boundary condition (6.1.18) and the usual homogeneous
displacement boundary condition

u, (8) = & % (6.1.20)
The solution of the thermoelastic problem under boundary conditions (6.1.18)

and (6.1.20) is (6.1.19) and

u,.(x) =e,, X (6.1.21)
1 1) ]
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Proof: Obviously (6.1.18) is also the temperature solution for the present
homogeneous body. The differential equations for the displacements are given
by (6.1.13) and since the temperature c.po is constant its gradient vanishes
and so (6.1.13) reduce to the elasticity differential equations (3.2.18). Now
(6.1.21) satisfies these equations and certainly also the boundary conditions
(6.1.20). This completes the proof.

The strains in the body are homogeneous and are given by

e, (x)=¢°

.1,
i i (6.1.22)

and the homogeneous stresses follow from (6.1.2), (6.1.4) and (6.1.19) as
- o _ o
% )= Cipr ey = %) (6.1.23)

Dually, the temperature (6.1.18) and homogeneous traction boundary

conditions

T.(5) = & n, (6.1.24)
i ij

are applied to the boundary. It is easily shown that the stresses and strains

are again homogeneous and are given by

o,.(x)=o0
ij ij

GY)

(6.1.25)

_ o o
ey (B) =84 ¥ T (b)

The solutions (6.1.22-23) and (6.1.25) are the thermo-elastic extensions of the

elastic solutions obtained in par. 3.2.2.
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6.2 EFFECTIVE THERMO-EIASTIC STRESS-STRAIN REIATIONS

6.2.1 Establishment of Stress-Strain Relations

A statistically homogeneous heterogeneous body of volume V and with
bounding surface S, which consists of any number of phases, is subjected to
the boundary conditions (6.1.18) and (6.1.21) , which are here rewritten for
reasons of convenience.

o(S) = o @)

(6.2.1)

u.(8) = 2, x, (b)
i ij 7

The boundary conditions (6.2.1) are thermoelastic homogeneous boundary
conditions since, as has been shown inpar. 6.1.2, they produce uniform
fields of temperature, strain and stress in homogeneous bodies of arbitrary

shape. As has been done previously we postulate that the stress and strain

fields in a large SH heterogeneous body subjected to thermoelastic homogeneous

boundary conditions are SH, except fora narrow boundary layer near the

external surface.

Evidently, the average strain theorems derived in par. (3.1.1) remain
valid in the present case and therefore

- _ 0
€., ~ €.,
1} 1]
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Since the thermoelastic problem is linear we may consider instead of (6.2.1)

the two separate cases

®(S) =0 @)
(6.2.2)
u (8) =¢° x (b)
1 ES I |
o (S) = ¢~ @)
6.2.3)
ui(S) =0 (b)

The superposition of the fields due to (6.2.2) and (6.2.3) , respectively,
yields the field due to (6.2.1). It follows from the result (6.1.19) that for
(6.2.2) applied the temperature vanishes throughout the heterogeneous body.
Consequently, the body under (6.2.2) applied is isothermally elastic and the
theory of elastic heterogeneous bodies is valid. Therefore the average stress

Bin for boundary conditions (6.2.2) is given by

I L * o _ ¥ -
%57 C ik fa T Cyk S (6.2.4)

*
where C 15kl are the effective elastic moduli at zero temperature (i.e.
reference temperature).

Next we consider the boundary conditions (6.2.3). The physical situa-

tion expressed by these is heating with boundary deformation prevented by a

bonded rigid enclosure. It is known from the result (6.1.19) that the temperature
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throughout the heterogeneous body is uniform and equal to c.po. It is our
purpose here to show that the average stress, 51111_ , when (6.2.3) is applied
. , o
is proportional to ¢ .

To see this we set up the thermoelastic equations in this case. We
assume for simplicity two phases only which are, however, generally
anisotropic. We have from (6.1.16) the phase differential equations

(1 1 2

Clim Y Ky 0 @)
(6.2.5)
2) 2) _
Clik Y kLY 0 (b)

The phase interface continuity conditions (6.1.17) assume the form

u(li) - “(Zi) @)
(6.2.6)

@ @0 O

@ @ .0 (M, _.o
" C ik Y ikl Tkl T Ykl okl

n =0 (C

© ijkl k.l ijkl ~k,17 i

where (6.1.14a) has been used to obtain (6.2 .6b).
Suppose that (po = 1 and denote the corresponding displacement solution,
as defined by (6.2.5-6) and (6.2.3b), wi(gg). It is easily seen that the vector

field coowi(ﬁ) satisfies equs. (6.2.5-6) and (6.2 .4b) for c,po # 1. Hence

u (x) = cp°wi<5) 6.2.7)
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where ui(g) is to be interpreted as u(il) (x) and u(zi)(>_<) in the different
phases, respectively.
Now from (6.1.1b) and (6.2.7)
o )
= +T 4.
% (x) =0 [Cijkl(g) et Ty (x)] (6.2.8)

where Cij Kl (x)and rij (x) denote the piecewise constant variation of those
quantities throughout the heterogeneous body. Hence, the average of (6.2.8)
may be expressed as

51 =Ty, 9

r .2,
i TR (6.2.9)

where

* —— —
T = + T
i~ Cik Yk, Ty
This proves our assertion that BLI is proportional to cpo .
Superposition of (6.2.5) and (6.2. 9) yields

-1 =II * (o] * (0]
= = + T . 2.1
Oij + i3 ij C ijh 1€] 1 ij © (6 2 0)

Qi

0
Since o is uniform its average is certainly also cpo. Thus (6.2.10) may

be rewritten as

- * - * -

% T Cjk S Ty @ (6.2.11)

all averages being body averages as well as RVE averages.
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A dual set of thermoelastic homogeneous boundary conditions is pro-

vided by (6.1.18) and (6.1.24). Thus

0 () = ¢ (a)
6.2.12)
T (S) = 07, n, (b)
1 1] ]

By the same kind of reasoning which led to (6.2.10-11) it is easily proved

that for (6.2.12) applied

¢ - O (o) 1
; = -+ i
& Sy ke Ty @ (@)
6.2.13)
— _ S* - + * -_
5 " Cuk Tk T %y ® (b)

*
where S ikl are the isothermal effective elastic compliances at zero temperature,

* -
o . are some constants expressed by field averages, oij are the average

1)
stresses ooij and c_p is the average of the uniform temperature cpo, thus goo itself.
The constants cx:j are defined by analogy with (6.1.1b) as the effective
thermal expansion coefficients (ETEC) of the heterogeneous body. We also
adopt the usual assumption (compare par. 3.3.2) that equs. (6.2.11) and

* *
(6.2.13Db) are identical for a SH body. Since C ikl and S i1kl are reciprocal

it follows easily by substitution of (6.2.13b) into (6.6.11) that

* * *

r o= - 6.2.14
iy~ " Cuyrta ( )

which is the analogue of (6.1.2b).
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*
In analogy with (6.1.3) we can interpret the aij as average stress
free-average strains. To see this we consider (6.2.12) in the special case

when oci)j = 0. The resulting boundary conditions are

¢ (S) = ¢°
(6.2.15)

Ti(S) =0

In this case the average stresses evidently vanish and we have from (6.2.13)

Ce®=d o 6.2.1
= a = . .
&5 Ty ® T %@ ( 6)

*
which shows that aij are the average strains for a body with traction free

boundary and unit temperature rise.

Also because of ;ij symmetry we have from (6.2.16) that

o, =a., (6.2.17)

The present derivation of thermoelastic effective stress-strain relations
has been carried out for two phase bodies but, evidently , similar relations
are valid for heterogeneous bodies consisting of any number of phases.

Finally, it should be noted that relations as (6.2. 10-11) and (6.2.13) are
not restricted to SH bodies but are valid for any heterogeneous body. However,
if the body is not SH C:jkl and S:jkl will not in general be reciprocal, and the
relation (6.2.14) will not be valid and (6.2, 10-11) and (6.2.13) will not be

effective constitutive relations but simply linearity relations.
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6.2.2. Relations Between Effective Elastic Properties and Effective Thermal

Expansion Coefficients

In par. 6.2.1 effective thermal expansion coefficients have been defined
in terms of field averages. It would seem at first sight that in order to obtain
specific results for ETEC it would be necessary to find internal fields for

specific internal geometries (such as, for example, the composite cylinder

*

assemblage) and on the basis of these compute averages and thus obtain the aij .

Fortunately this is not necessary. We shall derive in the present paragraph
fundamental relations between effective elastic properties and ETEC which
will enable us to determine the ETEC of any two phase body on the basis of
its effective elastic properties, phase elastic properties and phase expansion

coefficients.

The theory to be developed is based on a remarkable paper by Levin [6.1].

We consider a heterogeneous multiphase body which is subjected to
constant temperature change on the boundary and to zero surface tractions,
the internal fields in this case being denoted o', elij and Olij . Then

0'(S) =¢ ='(x) @)

(6.2.18)

T'.(S8) =0 (b)

In view of (6.1.1) and (6.1. 19) the strains, stresses and temperature at any

interior point are then related by

(@]
Co 6.2.19
i " Sik1 Tk T % ® ( )

where S, ., are piecewise constant.
1

kl
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Next we consider the same heterogeneous body, subjected to zero
surface temperature and homogeneous non-vanishing traction boundary condi-
tions. The field variables for this case are written unprimed. Then

7w (8) =0 @)
(6.2.20)

T.(8) = ¢ n, (b)
i ij

Inview of (6.2.20) and (6.1.19) the internal temperature vanishes

everywhere. Therefore

S a .2.21
i Cijkl ki (6 )
which is the usual isothermal elasticity stress strain relation.

We note that by the average stress theorem,(3.1.35),we have, because

of the homogeneous boundary conditions, (6.2.18b) and (6.2 .20b), respectively.

o i =0 @)
(6.2.22)
5. =a (b)
ij ij
By the average theorem of virtual work,(3.1. 50),and by (6.2.22)
fo“ ¢ . dv=0" &V @)
i ij ij ij
\%
(6.2.23)
fo'_, e, dv=0 (b)
1
A

Insertion of (6.2.21) into (6.2.23b) yields the altermative form
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' =0 6.2.24
fsijkl % T 4V ( )
\Y
In view of (6.2.18), ;;] in (6.2 .23a) can be replaced byv(6.2. 16). We also

replace e'_j in the left side of (6.2.23a) by (6.2.19) and make use of (6.2.24).
1

The resulting equation is

fo) *
fc_,on“dv=o_,a,_v (6.2.25)
ij i ij i
A%

Suppose that the body consists of M homogeneous phases, the

expansion coefficients of the mth phase being a(r?)

. Then
1)

fo,, e, dv=g a(.r?)f o av=g o™ 5 ™y (6.2.26)

1} 1) m 1) 1) m ij 1) m
\Y \Y
m
= (m), th . .
where © Y is the average of Oij over the m  phase region, which has the

volume V

Now it should be recalled that Oij are stresses in an isothermal

elastic body with traction boundary conditions (6.2.20b). By linearity

- (m) _ ) o

.2.27
ij ijkt ‘Kl (6 )

where B(ijlll is a stress-average influence tensor for the mth phase (compare a
similar relation in (3.3.38)). We insert (6.2.27) into the extreme right of

(6.2.26) and then the resulting expression into (6.2.25) . After rearrangement

we obtain
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lo —;:ncx('.’.‘) g™ L 150 - (6.2.28)

th o
where vm is the volume fraction of the m  phase. Since Okl is an arbitrary

tensor the parentheses in (6.2.28) must all vanish. Interchanging subscripts

we have
M *
§ompm) o (6.2.29)
m=1 kl "klij m ij

Next we consider the average ;ij which can be written in two ways.

Firstly,
- * fo) .
= .2.3
i “ijkl ‘i (6.2.30)
. v
where S ikl are the effective elastic compliances . Secondly, in view of (6.2.21)
- 1 1 (m)
= g e}
5TV f Sijkt k1 4V TV B Sijkn S % AV
Vv A
=g g™ lm | (6.2.31)

m ijkl k1l m

We insert (6.2.27) into the last of (6.2.31) and equate to the right side of (6.2.30).
Rearrangement yields an expression of the form (6.2.28) and again the coefficients

of oc;(l must vanish. This yields
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(m) (m) = ¥

m=1 ijrs rskl ‘m ijkl (6.2.32)

Finally, we consider the average of ¢, which may be written
1)

(m)

5 =g o™y g o
ij m

ij m=?n ijkl1 m ki (6.2.33)

where (6.2.27) has been used. Equating the extreme right of (6.2.33) to

the right side of (6.2.22Db) we find after rearrangement

M
Mg oo (6.2.34)
m=1 ijkl m ijkl

where Iij Kl is the unit tensor defined by (3.2.7).

* *
It is our purpose to establish a relation between S k1’ aij and known

(m) (m)
ne and aij .

must be eliminated from equs. (6.2.29), (6.2.32) and (6.2.34).

phase properties S To this end the unknown influence

(m)

coeffici
icients B k1

This can be done only when the heterogeneous body consists of no more than two
(1) 2)

phases. In that event there are two sets of influence coefficients Bij Kl and Bijkl

and we have three sets of equations (6.2.29), (6.2.32), (6.2.34) which serve

to eliminate them. The result of the elimination can be written in the following

equivalent forms
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* (1) (2) (1) * (1)
= + - - a
Oy T % T O T %) P © s1y ™ 8 rsij @)
* 2) @) (1) * (2)
= - P S - 6.2.3
Oy T Oy T T ) Prrs ® gy T Sy (b) ( 5)
* = @)_ (1) * 3
= -+ - -
U T % O T o) Py B gy 8 sij) )
where the tensor P is defined by
klrs
) (1)
- = 6.2.36
klrs rsij Srsij ) Iklij ( )

and &,_, S .. are defined as usual by
ij rsij

_M L@

rsij rsij 1 rsij 2

* *
We have thus obtained explicit expressions for aij in terms of S ikl

properties. A relation of type (6.2.35) was first given implicitly in [6.1]

and phase

for a macroscopically anisotropic two phase body with isotropic phases. The

present more general and explicit relation was given in [6.2] .
When there are more than two phases the number of influence coefficient
(m)

sets B ikl is larger than two but the number of equation sets available is still

three. Therefore, elimination is not possible and a relation of type (6.2.35)
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*
cannot be established. It is, however, possible in that case to bound a i

by variational methods. This subject will not be discussed here and the
interested reader is referred to [6.27.

It should be emphasized that (6.2.35) is a general result for a SH
two phase body which is macroscopically anisotropic and consists of
anisotropic phases. As an example for the use of (6.2.35) we consider the

simple case of a statistically isotropic body, consisting of isotropic phases.

In this event

a. = a 5. (@)
ij ij

oDea s, a?=q 5 (b) (6.2.37)
ij 1 1ij ij 2 1ij

q = P a == +

au a 61] a=o,v,ta, v, (c)

Insertion of (6.2.37) into (6.2.35c¢c) and contraction of the resulting equation

over all free subscripts yields

* - 1 *
o =at+ 3 @-a) P o 6 Sy (6.2.38)

Similar contraction of (6.2.36) yields

@) _ o), _
Pkkrs (Srsii Srsii) 3 (6.2.39)

It is not difficult to show that for an isotropic material
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A 1
T § 4+ = (5§ &5 +6 b .2,
Sijkl 6GK 1ij kl 4G ( ik j1 il jk) (6.2.40)
Consequently
6
_ _Is
rsii 3K
and therefore
) -
* = r's § = Grs L (a)
. ” s
rsii 3K rsii 3 K
(6.2.41)
6§ &
@) _ _rs (1) _ _rs (b)
rsii 3K rsii 3K
2 1
where
= v v
I]é_ = _1+ -2_
K K

Insertion of (6.2.41a) into (6.2.38), of (6.2.41b) in (6.2.39) , and combination

of the resulting expressions, yields

* _ o, - a 1 I

o« =a+ 21 (L -1, (6.2.42)
1T _1 - K
KZ Kl

Forms equivalent to (6.2.42) are obtained by use of (6.2.35a,b) instead of
(6.2.35c). These are
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* LQT% 11
e S T T @)
x "k & 1
2 1
(6.2.43)
-Q
* % =% 1 1
@ =a+——7 (- ) (b)
g "k K 2
2 1

*
The fundamental results (6.2 .42-43) explicitly express a in terms

* *
of K and phase properties. Thus, if K is known either from theory or
*
experiment, & is determined. These results have first been derived in
[6.1] in different form and have also been independently derived in 16.2-4].

An interesting result is obtained if

K.a, =K a (6.2 .44)

Such a relationship is approximately valid for many materials. In that event

(6.2.42) reduces to

K a =K, a, =K, « (6.2 .45)

It has been shown in [6.2 ] that a relation of type (6.2.45) is also valid for
isotropic composites with an arbitrary number of phases, if the product Ka
is the same for all phases.

Furthermore, bounds on CL* can be easily obtained from (6.2.42) in

*
terms of bounds on K . It is to be noted that the right side of (6.2 .42) varies

*
monotonically with K , the sense of the variation being determined by the sign of
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!

V= TR TR
/K, -1/K,

Consequently, we have

y> 0 i.e (Kz—Kl)(cxz—al)<0
U PO N
a(t) a+¢y(K*_ K)

(+)
<0 i.e (Kz—Kl)(az—al)>0
- 1 1
fw e mT o)

=)

(6.2.46)

@)

(b)

(6.2.47)

()

d)

Since stiffer materials have generally smaller thermal expansion coefficients than

more compliant materials, the relation (6.2.47a) is mostly fulfilled. This is in

accordance with the previously noted approximate validity of Ka = const. for

many materials,

*
Best possible K bounds for macroscopically isotropic two phase

materials have been previously mentioned, (3.7.94). If these bounds are

*
inserted into (6.2.46) there are obtained best possible bounds for & . These are

4 G, (KZ-Kl)(OLZ-OLl)v % * 4G

lzsa-&s 2

K

2

- K@ -0)) vy v

2

N —
3K1 Kz 4G1 K

3K1

K. +4G. K

2

2

(6.2.48)
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provided that

K= K G, 2G,

and (6.2.47a) is valid.
The bounds (6.2 .48) are valid for a FRM with randomly oriented fibers

as well as for any statistically isotropic two phase material.



600

6.3 THERMO-ELASTIC FIBER REINFORCED MATERIALS

6.3.1 Effective Thermal Expansion Coefficients

It is recalled that equs. (6.2.35-36) determine the ETEC of any two
phase composite in terms of its EEC and phase properties. It is a straight-
forward matter to exploit (6.2.35-36) to derive expressions for C:;j of a two
phase FRM in terms of its EEC.

For the sake of simplicity it shall be assumed that the two phases
are elastically and thermally isotropic while the composite itself is macro-
scopically transversely isotropic or square symmetric. Other cases, such
as macroscopic orthotropy or transversely isotropic pha ses,can also be
treated in a straightforward fashion; however, the necessary calculations are
somewhat heavy.

We first proceed to simplify (6.2.35) for the case of isotropic phases,

while the composite itself is macroscopically anisotropic in the most general

sense.

Introduction of (6.2.37b,c) into (6.2.35c) yields

¥ =3 ) P S 1

Q = 6 + - - e e

ij ¢ ij (az OL1 kkrs (8 rsij Srsij) 6.3.1)
From (6.2 .36)

2 1
P S() *S() ) =6 (6.3.2)

kkrs " rsij rsij ij
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(1) . and S(Z) are

Since the phases are assumed elasticaly isotropic, S, »
rsij rsij

isotropic tensors of form (6.2 .40) and therefore their difference which enters
into (6.2.36) is also an isotropic tensor. It therefore follows from (6.2.36)

that Pklrs is also isotropic and thus has the form

5 +DP" (6

8 ) + 6 )
kl rs kr 1s ks lr)

Prars = F

where P' and P" are two scalars. Therefore

P =@P +2P") s 3.
Kkrs (3p' +2P") rs (6.3.3)

Insertion of (6.3.3) into (6.3.2) yields

1 B 1
@ L0 /KK,

rrii orrii

3P +2P" =

(6.3.4)
S
the last equation following from (6.2.41b). Insertion of (6.3.3-4) into (6.3.1)

and using the result

s =X
rrij 3

:7~1||—-l
o

ij
which follows from (6.2.40) , it is found that

r * %% * 1

= a G — - —
| oy = ady, 7GR, GBS\ ki~ X aij) (6.3.5)

S — [P

Equ. (6.3.5) is valid for the ETEC of any two phase composite with isotropic phases.
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For purposes of application to FRM it is now assumed that the composite

is transversely isotropic or square symmetric. In that event

* 0 0 |
|
x - * |
la,. J= 0 a 0 (6.3.6)
ij T ‘;
* |
0 0 o
L T |
and also
* _ S*
Skka2 T Skk33 (6.3.7)
Therefore, (6.3.5) reduces to
* - (X.z - G.l % ’i
= + —— - —
R N 17K, -1/% G S - ) @
(6.3.8)
a - a -
* = 2 1 * 1
o4 = + — —
- ¢ 7K, -17K B 80 =) (o)

The EEC of a transversely isotropic or square symmetric FRM which

appear in (6.3.8) are given in (3.4.78). We easily find

*
s* _ 1-2\)A o)
kk1l = a

A

(6.3.9)
1-2 *)v*

g* _ 1 _( Ya'va )

* *
kk2z £
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where (3.4.82-83) have been used to obtain (6.3.9b). Inserting (6.3.9)

into (6.3.8) we find

; a* s, az - 3(1-2v )_ I o
, A 1/K.-1/K * K
; 2 1 E
! A
(6.3.10)
1 * *
a*_—.a . az—al [ 3 _3(—2\)A)vA .._1_] o
- * *

T l/K2 l/Kl 2k E K

*

*
It is recalled that K is the phases three dimensional bulk modulus and EA' \)A

*
and k are the effective axial Young's modulus , axial Poisson's ratio and
transverse bulk modulus respectively of the FRM. Expressions equivalent to

(6.3.10) may be obtained by use of (6.2.35a,b) instead of (6.2.35c). These are

N o - 3(1-2\)*)
O =a + 2 B! [ A ] @)

A m 1/1<Z—1/Kl et K
A
(6.3.11)
* *
q,*:q, . a, = & [ 3 3(1—2\)A)\)A L ] o
T m 1/1<;2—1/K1 2 EZ K_

m=1,2

*
These results were implicitly given in [6.1] and explicitly in 1 6.2 _l( ).

(*) In [6.2] there is a misprint in the equation corresponding to (6.3.10a).
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The results (6.3.10-11) determine the ETEC of any transversely iso-
tropic or square symmetric fibrous or fiber reinforced material in terms of
effective elastic properties. This is a rather unusual situation for it should
have been expected that in order to find ETEC, it would have been necessary

to find thermo-elastic fields in composites and then average them.

*

A

*

It is to be noted that because of the general relations between k*, E
and VZ , par. 3.4.5, equs. (3.4.117-118), it is possible to express a; and aT
in terms of one EEM only, e.qg. k*. This, however, results in complicated
expressions which serve no particular advantage. Another possibility is to

* * *
express (6.3.10) in terms of the group k , n , £ by use of (3.4.80-81).

The resulting expressions are

* - % "% k=g I
DSERS Ve vl e s o @

(6.3.12)

* % *

k n -4

QA -Q * * -
a*=a+ 2 1 3 n -2 _ 1 (b)
T 17K2-17K1 2 2 K

These expressions have a certain theoretical advantage for bounding purposes

as will be explained further below.

* * *
Any analytical, numerical or experimental results for k , EA and VA

* *
may be introduced into (6.3.10) to find the associated G.A and OLT . We

consider here a few cases of interest,
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We recall the simple results of par. 3.5.2 for arbitrary fibrous
materials, when the phase Poisson's ratios are equal. Introduction of (3.5.55-56

*
into (6.3.10) shows that it thus becomes possible to determine a_ for arbitrary

A
*
FM, but not GT. Thus
o o -
* - 2 1 3(1-2v) 1
=a + - = .3.1
T TK,-T/R, [ = K] (6.3.13)

when \)2 = Vl' for arbitrary fibrous geometry.
Next, we recall that composite cylinder assemblage analysis of par.
* * *
3.5.3 yielded rigorous closed form results for EA, \)A and k , (3.5.96-97) ,

(3.5.91), Introduction of these results into (6.3.10) therefore gives the ETEC

of the composite cvylinder assemblage model. Thus the ETEC of the composite

cylinder assemblage may be written as

*

a* . a4 = a 3(1-2vAc) ) T )
. TAc 1/K_ =1/K * K
i 2 1 E
g Ac
| (6.3.14)
H i
{ |
| 3(1-2v’, v, 5
A S A 3 U TVAMAe __T_] )
, - * * |
| Tc /K, /K, 2k . K|
kl o Ac l

Equivalent results have already been obtained previously, [6.5], by direct
composite cylinder analysis, before the general results (3.6.10) were known,
* *
Fig. 6.3.1 shows plots of aA and OLT on the basis of the composite

cylinder assemblage model, for a typical glass-epoxy FRM.
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It will now be shown that the results (6.3.14) can be used to obtain
best possible bounds,in terms of phase properties and volume fractions, for any
transversely isotropic two phase fibrous or fiber reinforced material. To see
this it is advantageous to initially consider the ETEC expressions in the form

* * *
(6.3.12) and to express in these £ and n in terms of k by use of the general

relations (3.4.112), par. 3.4.5. Then the terms containing k*, /&* and n*
in the brackets assume in each case the form
*
Ak +B
*
Ck +D
where A,B,C,D are some constants which are expressed in terms of phase
properties and phase volume fractions. Now it follows by differentiation that
the above given expression is a monotonic function of k*. It therefore follows
that (6.3.12) are monotonic functions of k* and since (6.3.10) are the equivalent
of (6.3.12) , the former are also monotonic functions of k*.
We now recall the best possible bounds (3.7.68) for k*, each of these
bounds also being a composite cylinder assemblage results with associated

* * * * *
E. and v_ . It follows that ifa setofk , E. and v, fora composite cylinder

A A A A
assemblage is inserted into (6.3.10) then the resulting expressions (6.3.14) are
best possible bounds for the ETEC of any transversely isotropic fibrous or fiber
reinforced material whose phase properties and phase volume fractions are the

same as those of the assemblage. Thus, best possible bounds are defined by

(6.3.14) in following fashion: Best possible bounds for the ETEC of transversely
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isotropic FM or FRM consisting of isotropic phases 1 and 2 with volume
fractions ViV, are given by (3.6.14) evaluated, @) for a composite cylinder
assemblage in which 1 is matrix and 2 is fibers, (b) for an assemblage in which
2 is matrix and 1 is fibers, the phase volume fractions of both assemblages
being the same.

It is possible to give a complex analytical criterion as to which of the
bounds are lower or upper, but it is probably best to ascertain the nature of
the bounds on the basis of the numerical results obtained. An example for this
procedure is shown for a glass-epoxy composite in fig. 3.6.2 where lower

bounds correspond to an assemblage with glass matrix and epoxy fibers and

upper bounds are the composite cylinder assemblage results of fig. 3.6.1.

6.3.2 Internal Stresses

The unusual aspect of theory of ETEC as developed above is ;che success-
ful avoidance of the problem of thermo-elastic field computation in composites.
This in contrast to theory of other effective physical properties.

If it is desired to obtain some information about internal stresses due to
temperature changes, the thermoelastic problem of the composite has to be con-
sidered in full detail. It is recalled that the general problem of two phase com-
posites has been formulated in par. 6.1.1, It is our present purpose to consider
the problem, as was done in par. 3.5.1 for isothermal elastic fibrous or fiber
reinforced specimens, with the aim of reducing the three dimensional formulation

to a two dimensional one.
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Consider a long cylindrical fibrous or fiber reinforced specimen,
fig. 2.1.1,whose phases are thermo-elastically transversely isotropic about
the x1 direction. The specimen is subjected to the previously considered

boundary conditions

0(S) = cpo = const. @)
u.(8) = ¢ x, (o) (6.3.15)
i ij 7
or
T (S)=0o° n (c)
1 1) ]}

Proceeding as in par. 6.2.1,the boundary conditions (6.3.15a,b) are split into
(6.2.2) and (6.2.3) which are applied separately. Now when (6.2.2) is applied
the temperature vanishes throughout the specimen by (6.1.18-19) . Thus (6.2.2)
lead to an isothermal problem which has been fully considered in par. 3.5.1,
Consequently, it is sufficient to consider the problem
o
©(S) = ¢ = const. @)
(6.3.16)

ui(S) =0 (b)
and superpose on the solution the isothermal solution under (6.3 .15b).

Similarly the problem (6.3.15a,c) may be split into

o(S) =0 @)

(o] (6.3.17)

Ti(S) = Oij nj (b)
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w(S) = on = const. @)
(6.3.18)

Ti(S) =0 (b)
Again, (6.3.17a,b) is an isothermal elastic problem which has been fully
discussed in par. 3.5.1 and so it is only necessary to consider (6.3.18).

We consider initially the problem (6.3.16) . Adopting the semi-inverse
approach of par. 3.5.1 the displacements are assumed to be of form (3.5.9).
Since, however, in the present case uy (S) vanishes, because of (6.3.16b), it

follows that ecil in (3.5.9) vanishes. The intemal displacements and strains

thus assume the plane strain form

u, (x)=0 @)
u, (x) = u, (xz,xs) (b) (6.3.19)
ug () =g &, %) (c)
B (x) = eas(xz.x3) a,B=2,3 @)

6.3.20)
€117 ¢ = €13 =0 (b)

It is furthermore recalled that because of (6.1.18-19) and (6.3.16a)
o
the temperature ¢ is constant and equal to ¢ throughout the specimen. Using
this result together with the strains (6.3.20) in the transversely isotropic

stress-strain law (6.1.8), (6.1.10) , we have for the internal stresses
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o
= + - (na. +
cll(xz ,x3) 2 (e:zz e33) ( o 24 aT) ® @)

o (k. .x)=(k-G)e 6 +2G_. ¢ .-(ta +2ka )6 (b) (6.3.21)
3 T “vy T a

aB "2 aB T aB A B

.. =0._=0 (©)

where elastic moduli and thermal expansion coefficients assume different values
in each phase. An interesting consequence of (6.3.21) is that a uniform temper-
ature rise does not produce axial shear but does produce transverse shear.
Evidently, the equilibrium equations (3.5.13) remain unchanged.
Insertion of (6.3.21) into (3.5.13) leads again to the differential equations

(3.5.14) which are rewritten

(1) 1 _ -
k,u B,SOL+GTluCL,BB_O in R, @)
6.3.22)
! 2) 2) _ .
kzu B,BG+GT2u a,BB—O in Rz (b)

The displacements must satisfy continuity at interfaces. Thus

on C (6.3.23)

u 12

1) _ )
a Ya

Traction continuity requirement leads to
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(2) _ (1) (2) @)\ _
[y - Gpp) ulg o=k =G u'g gln + (G @ 8 Vs, d
(1) (1) -
GTl(u .8 +u 8, ) ] ng =
= [0, * 2k a ) - (8, o, +2k, @) Jo’n, onCp,  (6.3.24)

The problem may thus be summarized as follows: find the plane dis-
1
placements u(_) (x2 'XS)’ u(z_uz (x2 ,x3) which satisfy the differential equations
(09
(6.3.22), the boundary conditions

ua(C) =0 (6.3.25)

and the continuity conditions (6.3.23-24)

It is easily seen that the mixed problem

p(S) = cpo = const. @)

uy (sy=0 (b) (6.3.26)
_ o

TQ(S) = 0,8 Mg (c)

also falls under the present category. In this case the isothermal problem is
(6.3.26) with cpo = 0, which is a plane strain problem to be solved by the
method given in par. 3.5.1. The remaining thermo-elastic problem is (6.3.26)
with Tcx (S) = 0. The formulation of this problem is the same as the previously
considered thermo-elastic problem with (6.3.25) replaced by

TCL €c)=0 (6.3.27)
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Next we consider the problem (6.3.18). Again the displacements are
assumed to be of form (3.5.9), but in the present case there is no plane strain
condition, so <-:o11 does not vanish and is unknown. Consequently, strains

have the form (3.5.10) and use of (6.1.8), (6.1.10) leads to the following

internal stresses

o]

o]
+ + - +
Oll(x2 Xg )=ne 2 (e22 633) (ﬂaA 24 OLT)cp @)

11

= o - _ o]
OaB(XZ'X3) =De vk G eW] 6,8% 2 e (00, ¥2Kk ) 8 b) (6.3.28)

.. =0..=0 (c)

It is seen that also in the present there is no axial shear throughout the specimen.
Stress equilibrium equations remain of form (3.5.13) and it is easily seen
that insertion of (6.3.27) into (3.5.15) again recovers the differential equations
(6.3.22).
Continuity conditions at the interface consist again of (6.3.23) while

(6.3.24) is modified and assumes the form

- (2) (2) (2) (1) (1)
[kyGyy) uy 5= (e Gypu'y (In ¥ (G, o, V8,d Gy, gt Vg, o) R
= [(8,= 1) ey * [y, + 2k % )=(4,0 +2k 6 )] 6” I onC,, (6.3.29)
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It remains to consider the boundary conditions (6.3.18b). On the

terminal sections AO, AH of the cylinder the traction components are ¢ ,0

11'%12°%13°

the last two of which vanish by (6.3.28c). Therefore the remaining condition is

Gll(XZ'X3)=O X, =0, H ' (6.3.30)
On the lateral surface of the cylinder the traction T1 vanishes since ng. 012 and

013 vanish. Therefore, the traction conditions to be satisfied there reduce to

TQ(C)=0 (6.3.31)

which written out in terms of displacement gradients, by use of (6.3.28),

assume the form

- + + =
(k GT) us’ n GT(ua u, J)n

B AL

=[-2 2

O
T (qu-+2kaT)w ] ny (6.3.32)

As in par. 3.5.1, the unknown strain ¢ is to be found by satisfaction

o)
11
of (6.3.30) which can only be achieved in the Saint Venant sense and thus the

cylinder must be much longer than cross section diameter. Instead of (6.3.30)

we write

~/BildA==o @)
A

(6.3.33)

x, 0y, dA = [x dA = (b)

2
A A

3 %11
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Insertion of (6.3 .28a) into (6.3.33a) leads to

(o]
- +
o _nonA+2kaT © L(ezz 633)
€117 (6.3.34 )

where an overbar denotes section average.
It is seen that in order to carry out a solution a displacement field

which satisfies (6.3.22) subject to (6.3.25), (6.3.29) and (6.3.32) , with

o

11 is determined by (6.3.34).

, must first be found. Then so

arbitrary e 11

There is of course no guarantee that (6.3.33b) are also satisfied.
As in the isothermal elastic case they are automatically satisfied for phase

geometries with x2 ‘ x3 axes of symmetry, statistically homogeneous phase

geometry (in the limit), and also for composite cylinder assemblages (since
in that case (6.3.33b) are satisfied by symmetry for any one composite cylinder).
The procedure described is not feasible for numerical analysis since

. o ia s
it would be impossible to cope with an arbitrary ¢ 11 ° In that event it is

necessary to split the displacement field u(1 into two parts, u'Cx and u"OL

The first satisfies (6.3.29) and (6.3.32) with zero :po , is thus proportional

.. O
', where v' corresponds to unit e

o] o)
to ell and may be written ellva a 11°

Similarly, u’;x satisfies (6.3.29), (6.3.32) with zero ¢ ., is thus proportional

o

11
0 . . O . " . O

to ¢" and is written ¢ v o where v o corresponds to unit ¢ . Then the

complete solution is

0 ] o "
u e v, Te v (6.3.35)
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. . (O
where v'a V' oare numerically known functions. Now o is generally

prescribed, so insertion of (6.3.35) into (6.3.34) determines eoll numerically.
As a simple and pertinent example of thermo-elastic stress analysis
we consider a FRM which is described by the composite cylinder assemblage

model and is subjected to uniaxial stress in fiber direction and a temperature

rise. Thus for a cylindrical fiber reinforced specimen

0 (S) = cpo = const. @)

_ 0
Tl(S) =0, (b) (6.3.36)
T, (S) = T3 (S) =0 (©)

In accordance with (6.3.17-18) we consider the two separate boundary conditions

(S) = 0 @)
_ O
Tl(S)—CF11 nl (b) (6.3.37)
T,(8) =T,(8) =0 (c)
and
0 (8) = o° @)

(6.3.38)
T, = T, (s) = T, (S) =0 (b)
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The first problem is isothermal and its solution for the present model has been
given in chapter 3.5, appendix 2, important stresses being (14~17) with eo
replaced according to (18) by ool I/E:& .

To solve (6.3.38) we consider a single composite cylinder, fig. 3.5.1,

which is subjected to (6.3.38). In cylindrical coordinates

x1=z, x2=rcose, x3=rs1n9

we have

@)

O
czz(H.r) = ozz(o,r) =0,

(6.3.39)
cViz.a) =0 (b)
r

o)
and the temperature is ¢ throughout the cylinder. The problem is axially

symmetric and so 0r9 and u9 vanish throughout the cylinder and the displace-

ments uz and ur are not functions of 8. Since in the previous general formula-
tion it was shown that u2 ' u3 are not functions of 3 = z and since ur depends

only onu_ and u

2 37 it follows that ur is not a function of z. Consequently,

u =u () (6.3.40)
r r
Furthermore, by the general previous formulation

u =ellz (6-3.41)

o
where ¢ 11 is as yet unknown.
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Computation of strains from (6.3.40-41) and insertion into the thermo-

elastic stress strain law yields

du u

=L e =L e =0 @)

r dr 60 r zZ 11
(6.3.42)
) - e:Bz - erz =0 (b)
o =ﬁgo + (e + ¢ ) - (na +25a )on @)
22 11 r 86 A T
o o)

= + + + - - +

S (k GT) € k GT) ®00 (2 % ZkonT) ® (b)

(6.3.43)

o] O
o =4 + (k - + (k + - (g + .
€ ( GT) e k GT) c50 (s % ZkOLT) 0 (c)

o =0 .=o =0 )

The only surviving equilibrium equation is

do o -0

Lo SN « SN L A (6.3.44)
dr r

Insertion of (6.3.42-43) into (6.3.44) yields the following differential equation

for u
r

r +r -u =0 (6.3.45)
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whose general solution is Br + C/r . Thus

Byr+ Cl/r a Sr <b, matrix @)

u = (6.3.46)

B, 0 <r =<a, fiber (b)

Then matrix and fiber stresses are from (6.3.46) and (6.3.42-43)

(1) o o
= + -
Opz "M €13 Y24 B -, +2000)0 @)
1
o) =4 O 2k B.-2G.. C./%- (1. a2k, q o°  (b)

T 111 171 Tl 71 1Al 1Tl

(1) o o
= + - 4
o] 08 !,1 € 11 Zk1 B1 ZGT1 Cl/r (zl (}\1 ZklaT1 ) (6.3.47)
0(2) eo +24, B, -~ (n o _+2L @ ) °© d)
z2Z 2 "11 2 2 2 A2 2 T2
6B 6@ oy 0 Lok B -(a +2k o )Qp e)

r 99 2 11 2 2 2 A2 2

To find the constants Bys Cl' B, the boundary condition (6.3.39b) and the

2

coatinuity conditions

Ll(:) @) = u(Zr) @)
' (6.3.48)
0(1) @) = 0(2) @)
IT rr

are utilized. Insertion of (6.3.46-47) into these gives the equations




2
2k, B, - zc;T1 Cl/b
2
+
B1 Cl/a
2k. B. =2G_. C /az
11 T1 1
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+ 4 €011 = (zlaAl+2k1aTl)<p° @)
- B, =0 () (6.3.49)
~ 2k, B, Uy = ) &) =
%y + 2k O - 8y, + 2k, 0 T¢0 )

which are three equations for the four unknowns Bl' Cl' B2 and eoll' To find

a fourth equation (6.3.34) is used.

2B1

2B fiber

2

matrix

Since in the present case

the last result following from (6.3.46) and (6.3.42a), equ. (6.3.34) assumes

the form

where

171 2

a _+

Al

+ =
n aA ZkaT (n1

- 0
2 + 2 + =na +2Ka
2 v B1 JZZV B2 ne T

11 A

a _+

A2

a +
2k @) vyt (0,

o
¢

2k, Gy) v

2

@)

(b)

(6.3.50)

(6.3.51)
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v, =1- @/’ | )
2
v, = @&/b) @)
Thus Bl' Cl' B2 . eoll are determined by the four linear equations (6.3.49),

(6.3.51) and all the stresses (6.3.47) become known. Analytical expressions
for the stresses are, however, cumbersome. It is better to solve (6.3.49),
(6.3.51), numerically.

It is quite easy to realize that the stresses in the composite

cylinder are the correct stresses in any cylinder of the assemblage. To see this

(1)

it is pointed out that on the surface r = b, Orr

(1)

e (6.3.46a), is a purely radial displacement, of the form
(1)
Ir

, (6.3.47b), is a constant
stress and u
ur(b) = erb, where e and 0’ are the same for any cylinder with same a/b.
Therefore, the composite cylinder appears to an external observer as some
homogeneous cylinder with certain thermo-elastic properties. Now the argument
of par. 3.5.3, whereby all the cylinders can be fitted together by matching
displacements and tractions can be repeated verbatim.

It is also to be noted that by the present argument it is easily possible
to obtain the ETEC of the composite cylinder assemblage as apparent expansion

coefficients of any one composite cylinder, [6.5]. However, the general

method given previously, par. 6.3.1, is certainly much more attractive.
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APPENDIX

Specific Heat

The effective specific heat of a composite is defined as the amount of
heat necessary to raise the temperature of unit mass (in the RVE sense) by unit
temperature. It is necessary to distinguish between the specific heat at
constant average strain ct, , and the specific heat at constant average

*
stress ¢ . -
p

It has been shown,[6.6] , that the two effective specific heats
of any composite are related by

* * * * *

- = o 1
e % %45 %y %k % (1)

*
where is the absolute temperature and C
?o ijkl

at that temperature. This relation is analogous to the relation between cV and c

*
and aij are EEM and ETEC

of a homogeneous elastic material.

For transverse isotropy or square symmetry, {1) assumes the alternative

forms

S )
v 2
* *2+ * * * + * ]
[EA oy 4k (\)A @y aT) 0,
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For a two phase transversely isotropic or square symmetric FM or FRM,

*
with isotropic phases, cp is given by

c -c¢ az - o _ . *
_LL«*O =3 l/KZ-l Kli (Sa-ch—Zch) (3)
* *
where ay aT are given by (6.3.10). This is simply shown on the basis of

*
the results given in [6.2]. With this expression, c, becomes known from (2)

.

* *
Numerical values of ¢ b and cV are very accurately given by

*

~ Land

11

* - -
c c = ¢ c 4)
P v P v
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Table 6.3.1 Thermal Expansion Coefficients of Fiber and Matrix Materials

Fiber Material Thermal Expansion Coefficient (x106)
S 5 5
E-Glass 5.0 2.8
S-Glass 4.0 2.2
Carbon ? ?
Boron 8.3 4.6
A1203 ' 8.7 4.8
SicC! . 4.8 2.7
Matrix Magnesium _ 25.7 14.3
Aluminum 24.6 13.7

Epoxy (typical) 63 35
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7.1 INTRODUCTION

One of the principal advantages of uniaxial FRM as engineering ma-
terials is their potential to exploit the very high strength of fibers, such as
glass, boron and carbon fibers, to produce materials of very high axial
strength. Moreover, the fibers and matrix have low specific weights and
thus the specific weight of the FRM is also low, as low as one third of the
specific weight of steel. (List of strengths and specific weights is given
in table 7.1.)

This attractive combination of high axial strength and specific weight

is often expressed by the specific (axial) strength which is defined as the

axial strength-to-specific weight ratio and has thus the dimension of length.
Indeed, the specific strength is the length of a vertically suspended cylinder
which fails under its own weight.

On the other hand, the transverse strength of uniaxial FRM is in
general only of the order of the strength of the matrix in which the fibers
are embedded and is therefore by an order of magnitude smaller than the axial
strength. It follows that the axial strength potential of uniaxial FRM can be
exploited to advantage in structural members which are predominantly uni-
axially stressed, such as bars, struts, beams, rings and frames. In the
case of two dimensional structures, such as plates and shells, uniaxial
reinforcement is not adequate since the weak transverse direction would be
exposed to unbearable stresses. For such structures it is therefore advantageous

to employ biaxial or multiaxial reinforcement,e.g. in the form of laminates.
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Prediction of strength of FRM is evidently of foremost practical impor-
tance. Unfortunately, however, the subject is of such difficulty that on the
basis of present state of knowledge it does not seem possible to present a
coherent, reasonably rigorous development, as has been done so far in this
work. Consequently, the presentation of this subject here will be of more
qualitative than