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NUMERICAL SOLUTION OF FLOW FIELDS BEHIND

RECTANGULAR WINGS

Dale Anderson and Jerald Vogel

ABSTRACT

This paper summarizes research accomplished under NASA Grant

NGR 16-002-029 for the period 1 July 1970 through 30 June 1971. Re­

search accomplished during this period includes: (1) evaluation of

various differencing methods applied to the hyperbolic partial dif­

ferential equations encountered in gas dynamics; (2) application of the

apparent best numerical differencing techniques to the modified

Burger's equation, wedge flow, two-dimensional shock reflection and

the three-dimensional finite thickness wing at zero angle of attack;

and (3) calculation of preliminary results for wedge flows using optimum

differencing methods. Recommendations for continued research are

presented and include completion of the rectangular wing problem at

angle of attack, initiation of work on delta wing configurations and

continued exploration of near-optimum computing techniques.



NUMERICAL SOLUTION OF FLOW FIELDS BEHIND RECTANGULAR WINGS

INTRODUCTION

Aerodynamic analysis of aircraft capable of operating at supersonic

speeds for extended periods of time is a formidable task. The complex

geometry of such aircraft and the difficulty of solving the equations

governing the aerodynamics preclude the possibility of obtaining exact

solutions for the flow field. These fundamental difficulties have prompted

the development of numerous approximate methods for analyzing fluid flow.

One of the most common of the simplifying assumptions used is that the

flow may be separated into a viscous boundary layer flow and an outer

inviscid flow which effectively determines the body pressure. This

report is concerned with the calculation of the outer inviscid flow

about a rectangular wing moving at supersonic speeds.

The inviscid equations of motion governing the flow generated by a

wing moving at supersonic speeds form a set of hyperbolic partial dif­

ferential equations. Since they are hyperbolic, the equations can be

solved (at least conceptually) by techniques applicable to initial

value problems. At present only two such techniques which provide

exact solutions have been applied to inviscid supersonic flow problems.

The first technique is the method of characteristics. This method has

been successfully applied to numerous supersonic flow problems. Un­

fortunately, the application of this method is a complex task due to the

geometric problems introduced by body shape, the coordinate system or

systems required and the inherent way in which a characteristics method

works. The second method is to use finite difference approximations of

the equations of motion and solve the resulting approximate equations
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at each grid or mesh point. This provides a solution for the inviscid

flow throughout the flowfields.

Numerical calculations of inviscid flows based upon the full

Eulerian equations have been carried out for a variety of supersonic

problems using several numerical techniques. These numerical techniques

have been developed to the point where they can be relied upon to give

acceptable results for flow about aerodynamic shapes moving at supersonic

speeds generating shocks of nonuniform intensity which surround the

disturbed region of fluid. The methods are usually first, second ar

third order. Numerous authors have applied the Lax first-order method

to fluid flow problems. Notable among these are the time dependent

blunt body solutions obtained by Bohachevsky and Rubin l and Bohachevsky

and Mates 2 and the nonequilibrium gas dynamic calculations of DeJarnette. 3

While the Lax method provides reasonable results for very small mesh

sizes, second-order methods are being used with increasing frequency.

Kutler4 has recently applied a version of the second-order Lax-Wendroff

5method developed by MacCormack to flow about sonic-edged, conical,

wing-body combinations at angle of attack. Results of his work show

excellent agreement with conical flow solutions calculated using other

methods and with available experimental data.

The present paper is concerned with application of the second-order

5 6MacCormack method and the more recently developed third-order Rusanov

method to the solution of the full Eulerian equations for flow about a

rectangular wing moving supersonically. The results of a number of

simple nonlinear problems are presented. solutions of the simple

Burger's equation, wedge flow and shock reflection were calculated to
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aid in understanding the MacCormack and Rusanov differencing methods

and their application to hyperbolic systems. The flow field generated

by a rectangular wing at zero angle of attack was calculated and results

are presented for a free stream Mach No. of 2. These are the only

results available on the three-dimensional wing problem at this time.

The results for the zero angle of attack case appear to be satisfactory

with application of proper boundary conditions occurring as the only

major difficulty. The angle of attack case is currently in the program

de-bug stage and results will be published as they become available.

In addition a brief summary of preliminary work on development of optimum

differencing methods is presented.



4

DIFFERENCING METHODS

Differencing methods representative of first-order, second-order

and newer third-order techniques are presented in this section. The

application of each of these methods to the nonlinear equation

(1)

is discussed. The stability requirement for each of the methods is

presented and derivation of the modified equation associated with the

wave equation for each method is presented.

Lax's Me thod

Lax derived a first-order difference method which he used in

calculating one-dimensional flow containing shock waves. 7 Time deriva-

tives were approximated by

En n

E~+l
+ E. 1

- 'j+1 J-
J 2

£T

while space derivatives were approximated by

n n
F. 1 - F. 1J+ J-

2LS:x

Applying this to Eq. (1) yields the following at the (n + 1) time

point

(2)

(3)

(4)

This technique is required to satisfy the usual stability requirement,

i. e.
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\ 0 ~TI < 1
max AX -

where 0 is the maximum eigenvalue of the Jacobian OF/oE.
max

(5)

Lax's method is particularly easy to use because storage and computa-

tion time requirements are small. In addition, all calculations are

done on the same level, i.e., data at time t are used to directly obtain

values at time t + At in one step. Unfortunately, Lax's method pos-

sesses an implicit artificial viscosity which causes considerable shock

smearing when the method is used at off-design Courant numbers.

If the Lax method is applied to the one-dimensional wave equation

au au
~t + c "';>ot: ux

o (6)

The resulting difference expression becomes

n+1 1 _ c aT (;+1 - u~ 1)n n J- (7)u. = - (u. 1 + u. 1)
J 2 J+ J- Ax 2

If a Tayor series expansion is written for each of the terms in this

expression, the following so-called modified equation is obtained

au a A 2 2
~t + c ~ =~ [1 - v )uot: at 2AT xx

2
C Ax [1 2) (8)

6 - v u + ...xxx

This equation is really the one the difference method solves. The

first nonzero term on the right-hand side represents the order of the

differencing method and a remainder which goes to zero only at a Courant

number of one, i.e., the design point. This means the solution is

truly a solution of the wave equation only when V = cAT/Ax = 1. If

v # 1, the solution satisfies the modified Eq. (8). This will be dis-

cussed in detail in later sections.
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Lax's method has been used by numerous authors in solving

1-3complex fluid flow problems.

MacCormack's Method

MacCormack has constructed a second-order preferential, predictor-

corrector sequence for use in solving systems of equations in conserva-

9tive form. When applied to Eq. (1), MacCormack's method reads:

~+l E~ _ aT [Fn - F~J
J J ax j+1 J

Enf-1 1
[E~ ~+1 _ aT [r+l - r:rl

) J= - +
J 2 J J Ax J J-1

(9)

This method contains a forward difference in the predictor and a back-
S . 4

ward difference in the corrector. MacCormack and Kut1er have used

this technique on shocked flows and have obtained good results.

MacCormack's method satisfies the same stability requirement as

Lax's, namely

I aTIa - < 1max I1x -

More storage and computing time are required than with Lax's method.

However, much better flow field resolution is obtained for the same

size mesh. The main reason is the higher order of the method and the

elimination of the implicit artificial viscosity.

MaCCormack's method applied to wave Eq. (6) becomes

n aTe n u~Ju. u. - c Ai u. 1J J x J+ J

n+l 1 [n "11+1 aT (--n+l _ "11+1) ] (10)u. ="2 u. + u. - c ax U j u. 1
J J J J-
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If the predictor is substituted into the corrector, the following modi-

fied differential equation is formed

au au
"dt+C"dX

Ii. 2 2 Ax3 2
c _x_ (1 - v )u - c -8- v(l - v )u +6 xxx xxx

(11)

The same information is clearly obtained here as in the case of the

Lax method, i.e., MacCormack's method is second order and provides a

solution to the wave equation under the condition that V = 1.0. It

is important to note that the first nonzero term on the right-hand

side of the modified equation is second order, and as a result pro-

duces a more nearly exact solution than Lax's method for any Courant

number.

Rusanov's Method

With the advent of large high-speed computers, higher-order dif-

ferencing methods are being applied to fluid mechanics problems. One

of the most recent is a third-order method developed simultaneously

6by Rusanov and Burstein and Mirin. 8 This technique uses a three-level

predictor-corrector sequence, and when applied to Eq. (1) becomes

E(l) 1 (En + En.) _ AT (Fn _ Fn.)
j+l/2 = "2 j+l J 3li.x j+l J

En. _ 2li.T ( (1)
J 3AX F j +l / 2

E~ ~T [ 2 n 7 ( n n) 2 n ]J - 24~x - Fj + 2 + Fj+ l - Fj _l + Fj _2 (12)
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The derived term in the third level is required for stability of the

system. The stability bounds or requirements are

10 ~TI < 1, Le., V < 1max I.1X -

and (13)

This method also requires more computing time and storage, however, the

increase in accuracy may justify its use.

If Rusanov's method is applied to the wave equation, the modified

equation produced is

au On 3

at + c- - c fix (30 - 4v + V3)u
at 24 V xxxx

~x4
4 - l5v2 + 4v4)u + (14)- c 120 (150 - xxxxx

As a result of the 0 parameter, the modified equation has a double

requirement if an exact solution of the wave equation is to be formed.

The requirement is that V = 1.0 and that 0 = 3.0. This, of course,

represents the stability limit as in the previous methods and can be

interpreted as a single requirement since the 0 parameter must take on

the value of 3 as V approaches 1 for a stable system. In addition, the

first nonzero term on the right-hand side is third order, consistent

with the differencing method.
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SOLUTION OF THE MODIFIED BURGER'S EQUATION

One of the major problems encountered in applying finite difference

methods to fluid flow problems is the variation of the eigenvalue

structure of the equations of motion in the flow field. This is

important because the eigenvalue structure determines the stability

bound for the difference method and also the so-called design point

of operation, e.g., a Courant number of one. An investigation of the

behavior of two numerical methods is presented here with particular

emphasis on the spreading of discontinuities and oscillations of the

solution near points of rapid change of the dependent variable.

The hyperbolic form of the equation introduced by J. M. Burger

is a valuable aid for use in studying the ability of a given numerical

h d d 1 · 1" . 9met 0 to pro uce a so ut10n to a non 1near equat10n.

Burger's equation in conservative form reads

The modified

2au a (~)
at + ox 2 o (15)

Kut1er has successfully used this equation as an analog of the inviscid

Euler equations and studied the solutions produced using various

. 4
numerical a1gor1thms. In particular, Kut1er examined first- and

second-order methods normally used in solving the gas dynamic equations.

Kut1er's results indicate that MacCormack's method provided the

most satisfactory results from among those he examined. Since his

investigation, third-order schemes such as that developed simultaneously

6 8
by Rusanov and Burstein and M~rin have started to appear. The

Rusanov technique has been developed specifically for application to

hyperbolic systems written in conservative form. The results presented
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here compare only MacCormack's method with the Rusanov technique.

This provides a comparison of what in Kutler's opinion is one of the

best second-order methods available with a more recently developed

third-order technique.

The problem is to determine the solution of the modified Burger's

equation subject to initial conditions shown in Fig. 1, which are

u = 0

x<x
- 2

where

Since this problem represents the intersection of two discontinuities,

the exact solution must be represented in two regions: the first

region is prior to the intersection of the discontinuities and the

second is after the intersection (Fig. 2). The exact solution in

these regions is

u(x, t) 0

u(x, t) u l

u(x, t) = u
2

u(x, t) = 0

u (x, t)

Region 1

x - xl u
l>-

t 2

u
l + u

2 ult
x 2 + 2

t < x< xl +2

x - x
2

u
1 + u

2<
t 2

Region 2

u
~ >-1
t 2

u
2x <_

t - 2
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The first double shock considered was provided with ul = 3 and u 2 = 5.

The mesh used was 100 points long in the x-direction with xl = 15 while

x
2

= 36. The discontinuities appearing in the initial data are assumed

to be spread over one mesh interval. The results of applying Rusanov's

and MacCormack's methods to this problem are shown in Figs. 3 and 4.

The Courant number is unity in both cases while the 6 parameter in

the Rusanov method is chosen to be 3 as required by the linear stability

bound. The wave position and amplitude appear to be correctly pre­

dicted by both methods. It is very important to notice that the

Rusanov method produces more oscillations than does MacCormack's.

In addition, it should be noted that the u = 3 amplitude wave initially

is being computed at an effective Courant number of 0.6. This is

off-design for both methods and produces some additional oscillations

about the discontinuity and also causes the discontinuities to spread

out over several mesh intervals. It is surprising that the second-order

MacCormack method appears to produce much crisper shocks with fewer

oscillations at off-design than the higher-order Rusanov method.

A 5-1-0 problem was solved providing a factor of five in

Courant number variation in the field. The results are presented in

Figs. 5 and 6 and indicate the same trends as the 5-3-0 problem,

namely that the MacCormack method produces better shock resolution

with fewer oscillations over the range of effective Courant numbers

considered.

Some additional runs were made with the Rusanov method to determine

the accuracy of the stability bound based on the linear analysis. It

was determined that values of the Courant number considerably larger
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than one could be used in solving problems. In addition, the lower

stability bound on the 0 parameter can be violated without producing

unstable solutions. Figures 7-10 present results obtained by using

the Rusanov method on both the 5-3-0 and 5-1-0 problem but at values

of 0 outside the linear stability bound. The results shown in Figs. 7

and 8 are satisfactory, and one may conclude that the method might

be used at smaller than recommended 0 values and still obtain useful

results. However, the question of how small 0 may be has yet to be

resolved. Figures 9 and 10 present solutions to the same problem with

o = 1. These results certainly are not as satisfactory as those

previously obtained. The oscillations produced are quite pronounced,

and for large time oscillations appear to have the character of

a limit cycle. They seem to increase in amplitude for some time then

stabilize to a relatively constant amplitude. It appears that a

ovalue of two produces the best results when the Courant number is

unity.

On the basis of information obtained from the solutions of Burger's

equation, use of the MacCormack method is to be preferred over Rusanov's

technique. Shock resolution and over- and under-shoot characteristics

are better over the range of eigenvalues considered. In addition, the

computer storage and computation times required are significantly lower

for the MacCormack method as compared to Rusanov's. Additional compara­

tive analysis is presented in later sections.
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TWO-DIMENSIONAL WEDGE STUDY

A study utilizing the two-dimensional wedge was undertaken to

further develop the comparison between the second-order MacCormack

technique and the third-order technique developed by Rusanov. In

addition, various coordinate systems were briefly investigated to

gain experience in the application of the two numerical techniques and

to aid in the choice of a good coordinate system for the three-dimensional

tip problem.

Using an approach similar to Kutler's, the wedge flow equations

of motion in a Cartesian body oriented coordinate system for a

steady, inviscid, nonheat-conducting and adiabatic flow are given

by 4

0
(pu)

0
(pv) 0dX +d"Y =

0
(p +

2 0
(puv) 0dX pu)+oy

(16)
0

(puv)
0

(p
2

dX +d"Y + pv ) = 0

p='£[l+Y- 1 (u2 + v2) ]
Y 2

These equations are the continuity equation, x and y direction momentum

equations and the integrated form of the energy equation. The state

variables in the equations are in a dimensionless form. The nondimen-

sionalizing factors for the pressure, density and velocity components

are, respectively, gamma times the free stream stagnation pressure, the

stagnation density and the stagnation speed of sound.
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The integration is started using the free stream values of the

state variables as initial conditions. The state variables at the

outer grid point are fixed at their free stream values. To satisfy

the body boundary condition (q . Vf = 0), the normal component of

velocity is treated as an odd function at the body. The sublayer

value of the normal velocity component is set equal to the value at

the first layer outside the body. The sublayer value of the remaining

velocity component as well as pressure and density are determined using

the reflection technique as used by Bohachevsky.2 That is, the sublayer

values are set equal to the corresponding values at one mesh point

above the body. The integration starts at the second grid point

(body) and proceeds to one point inside the outer grid point and in

the x-direction from x = 1 to x = 2 at which point Kutler's stepback

procedure is irnplemented. 4 The process is repeated until no further

changes in the state variables occur.

Equations (6) were integrated using both Rusanov's and

MacCormack's methods for a wedge with a 7.50 half-angle at a Mach

No. of 2. Two mesh ratios were used. One at 1.272 which is near the

experimental maximum for stability as determined by Kutler and the

6other at 1.0. Three values of the free parameter, 6, associated

with the Rusanov technique at a mesh ratio of 1.0 were used to

evaluate the effect of 6 on the solution.

Figure 11 shows the solution using Rusanov's method at the lower

mesh ratio of 1.0 for 6 values of 1.0, 2.0 and 3.0. The solution for

a 6 of 1.0 is distinctly inferior to those for 6's of 2.0 and

3.0 because of the excessive overshoots and undershoots in the vicinity
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of the shock. The solution for 6 = 2.0 appears to yield a crisper

shock than for 6 = 3.0 as well as lower-amplitude oscillations after

the shock is encountered.

Figure 12 shows the solution using MacCormack's technique for

ax/Ay = 1.0. Although there is some overshoot from the shock layer

side, the behavior for the free stream side is very good with no

oscillations occurring.

Figures 13 and 14 show the results of using the Rusanov and

MacCormack methods, respectively, at higher mesh ratios. The Rusanov

free parameter, 6, was set equal to 3.0. While the MacCormack solu­

tion produces very little oscillation at the shock, the Rusanov

solution exhibits excessive oscillations after the shock is en­

countered. However, running at a lower value of 6 might decrease

the oscillations shown in Fig. 11. Nevertheless, the shock crispness

is about the same in both cases.

There is about a 30% saving in solution time using the MacCormack

technique. Based on this fact and the results discussed above, it

would appear that MacCormack's technique is superior for solving the

wedge flow problem over the range of Mach numbers and wedge angles

examined here.

Some additional experiments were performed using different coordinate

systems to solve the wedge flow problem. One of these systems utilized

distance along the wedge centerline and the tangent of the elevation

angle as independent coordinates. Another was a pure polar system with

radial distance and elevation angle as coordinates. Although the

solutions in these coordinate systems are not reported here, they
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proved to be satisfactory. The major difference noted was that

computation times required to reach a solution were longer.
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SHOCK REFLECTION PROBLEM

An additional example denoting the importance of the variation of

local Courant number is provided by reflection of an oblique shock

wave from a solid boundary. This is a well-defined problem in which

the solution for the reflected shock angle and the downstream flow is

uniquely determined by the downstream boundary condition. The solution

is termed a regular reflection if the reflected shock is within the

attached shock region for two-dimensional flow, and it is termed Mach

reflection if the reflected shock angle is required by the downstream

boundary condition to exceed the maximum allowable angle for an

attached shock. The Mach reflection case is not of interest since

the solution has an imbedded elliptic region within the flow field.

The regular reflection case retains the hyperbolic character of the

equations throughout the flow field.

The equations of motion in conservative form are

~pu opv 0
x + dY =

2
opuvo(P + pu ) = 0 (17)

ox + oy

opuv 2o(p + pv ) = 0ox + oy

In addition, the energy equation is used in the form

1
'Y - 1

(18)

These equations are in nondimensional form with free stream stagnation

values taken as the reference condition



18

P = _P­
PCOT

u, v (19)

,
where the bar has been dropped in the nondimensiona1 forms of the

equations of motion. Both x and y have been nondimensiona1ized with

respect to the same reference length.

The procedure used in obtaining a solution to the shock reflection

problem is to initialize input conditions along an x = constant surface

as shown in Fig. 15. Data input along this line are both pre- and post-

shock values in the initial flow field. The integration then precedes

step by step in the x direction as far as is desired. At the solid

boundary (y = 0), reflection is used. That is the x-velocity

component, pressure and density are taken to be even functions at the

wall while the normal velocity component is assumed to be an odd

function.

The x coordinate is assumed positive in the direction of the

original free stream which is parallel to the wall. With this coordinate

orientation, the maximum step size in the integration process is deter-

mined by the solution downstream of the reflected shock wave. In order

to get a large variation in eigenvalues in the flow field, a set of

initial conditions producing a shock close to the detachment region

is important. This problem produces a more severe test of a differencing

method than either the wedge or the solution of Burger's equation.

The method must work well over a wide range of mesh ratios, and in

addition must operate near the boundary where the character of the

equations of motion changes from hyperbolic to elliptic. The wedge

presents the same problem but is concerned with only one shock and two
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regions of flow. It should be noted, however, that the influence of

the mesh ratio size and the switch from hyperbolic to elliptic are

really closely related. The maximum mesh size is determined by the

maximum eigenvalue in the flow field and the equations of motion

become elliptic when these eigenvalues become complex.

Figures 16-18 present resu1 ts obtained with an original free

stream Mach No. of 2 and an initial shock wave angle of 410 with

respect to the free stream. The maximum allowable mesh ratio in each

region is

Ax 2 2u - c (20)(KY)max =
luvl+cVu2 + v2 _ c 2

Region
~x

1. 732I (Ay) max =

~x 0.820II (by)max =

Ax 0.55III (~y)max =

The mesh ratio used was 0.375, approximately 70% of the maximum allowable

for stability. The shock wave appears to be properly positioned for

both techniques with Rusanov's method producing a ~hock wave spread

over a greater number of mesh intervals. The most significant feature

is the oscillatory nature of the solutions. The Rusanov 6 = 3 solution

has severa110ca1 oscillations while the large over and undershoot of

MacCormack's method near the shock is undesirable. For this case,

the Rusanov solution with 6 = 2 is clearly the most acceptable.

Figures 19-21 present similar data for a free stream Mach No.

of 3. The mesh ratio range is



Region
ax

2.83I (~)max=

fix 0.78II (ay) max

Ax 0.35III (~y)max=

The same conclusions can be drawn regarding accuracy of solution as

in the M = 2 case. One feature of interest is the apparent nonlinear

limiting exhibited particularly by the Rusanov technique. The chopping

of the crest on overshoot is a curious phenomena and one which the

authors are at loss to explain at this time.

The Rusanov method produces the best results for the shock reflection

study presented here as long as the delta parameter is below its

limiting value of 3. The large overshoot of MacCormack's method and

the local oscillations of Rusanov's method with 6 = 3 are undesirable

for a problem of this type.
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RECTANGULAR WING PROBLEM

The ultimate goal of the present study is to generate a numerical

solution to the equations of motion describing the fluid flow about a

rectangular wing. The solution of this problem really consists of

three separate yet coupled individual studies. The first and most

difficult is to determine the flow field generated about the leading

edge and tips of the wing. The solution for the leading portion of

the wing then forms the initial data plane for the second problem,

calculation of the flow over the· remainder of the wing. This in

turn provides the initial data surface required to extend the solution

downstream into the flow field.

The current status of this research is that solutions for the

leading edge with three-dimensional tips have been obtained for the

zero angle of attack case. The method of solution and resulting data

is discussed in following sections.

The geometry of the leading edge portion of the assumed wing is

shown in Fig. 22. The wing is really a wedge with half angle 6 between

the two tips followed by an afterbody. The geometry of the tips is

such that the tip may be subsonic, i.e., lie within the Mach cone

generated by the tip, or it may be supersonic. In addition, the tip

is constrained geometrically to be conical in nature. That is, all

points on the edge portion of the wing must be defined by an envelope

of rays emanating from the tip.

The geometric constraints placed on the wing tip provide a conceptually

straightforward way of solving for the flow field. Since the surface

is conical in nature, the significant length dimension in the radial
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direction is absent and the flow field is conical. This allows one to

use the stepback procedure of Kutler in solving for the flow field. 4

It should be noted that the flow over the entire semi-span need not be

computed since the flow over the wing between the tip Mach cones is

two dimensional. The corresponding wedge flow solutions on the upper

and lower surfaces then form the boundaries of the solution for the

tip.

The exact geometry of the tip presumably could take any general

conical form. The first problem studied here assumes that the tip is

formed by a cone with the same half angle as the wedge portion of the

wing. The second case is that of a flat end, i.e., the wedge abruptly

terminates at the tip. These two problems are presented independently.



CONICAL TIP PROBLEM

Coordinate Systems

The tip geometry with a cone tip is presented in Fig. 23. The

origin is at the tip with x measured downstream along the plane of

symmetry, z is measured spanwise from the tip and y is normal to the

plane of symmetry. The wedge and cone half angles are the same and

are denoted by 6 .
w

If the velocity components are u, v, and w, measured along the

respective axes, the equations of motion in conservative form may be

written

~~u + ~~ + ~~w = 0

2
o(P + pu ) + o~uv + opuw = 0ax y ~

2
(21)

opuv o(P + pv ) + o§vw = 0'"()X + oy z

opuw + o(pvw)
2

+ o(P + pw ) = 0
·Ox oy Clz

This set of equations is very convenient to use in obtaining finite

difference solutions. However, specification of boundary conditions on

the conical surface is cumbersome. The reason for this is that the

body surface is not described by a constant coordinate such as x = constant.

In this particular case the wedge surface is described by

y = x tan 6
w

while the cone is

Vy 2 + z2 x tan 6
w

(22)

(23)
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It is advantageous to perform coordinate transformations on the

equations of motion in order that the body surface be a constant

coordinate surface. Since the geometry of the wedge and cone are

quite different, two separate transformations must be used. This

places a restriction on the coordinate systems in that they must meet

smoothly at the interface, i.e., in the plane of juncture of the wedge

and cone. This requirement provides identical mesh points in the

interface plane and gives a smooth transition from the wedge to the

cone.

Two coordinate systems satisfying this smooth transition were

considered. The first is shown in Fig. 24. The transformation

equations on the wedge for this system are really just a simple

rotation given by

s = x cos Ow + y sin Ow

y cos Ow - x sin Ow

, = z

(24)

The S coordinate is distance along the surface, ~ represents distance

normal to the surface and z = , is spanwise distance as before. The

smoothness requirement at the interface suggests that the tip transforma­

tions be such that S measure distance along the body, ~ represent

distance normal to the cone and , denote the angle of rotation measured

from the interface. The transformation equations are



25

(25)

-1 z
tan

y

The body surface equation for both the wedge and cone is just ~ = o.

This coordinate system has not been used although further investigation

of its merit should be undertaken.

The second coordinate system considered is shown in Fig. 25.

The transformation equations used on the wedge are

S = x

(26)

, = z

The use of the tangent of the elevation angle, i.e., ~ rather than

-1
tan ~ mayor may not be advantageous. Since the coordinate is

nonlinear, the resolution at the shock wave location is much finer

than at the body. If this transformation is applied to an equation

of the form

o (27)

The result is

oSE a OSG
aS + o~ (F - ~E) + oC o (28)

In this coordinate system the equations of motion become
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~ + %n (pv - llpu) + o(§CS) = 0

oS(P + pu
2

) + ~ [puv l1(p + P 2) ] + 0 (puwS) = 0
oS all - u ~

o (Spuv) a 2 a ~
~s + aTi (P + pv - llPuvS) + ~ (pvw,::»

(29)

o(§~UW) a a if+ dTi (pvw - llpuw) + de S(P + P ) o

The transformation equations required for the cone in order to proceed

smoothly from the wedge to the cone are

S = x

11 = "y2 + z2
x

(30)

, = -1 z
tan

y

The coordinates on the cone are analogous to those on the wedge. The

only change is that , represents the angle measured from the interface

plane outward toward the cone. The same difference in flow field

resolution in the wedge transformation is observed here with 11 defined

as a tangent.

Application of the transformation equations to general rectangular

conservative form given by Eq. (27) results in

O~~E + ~11 {11[F cos, + G sin' - TlEJ} + ~, [G cos, - F sin eJ + TlE 0

(31)

The resulting conservation forms in the cone system become
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o(~~PU) + ~~ [~(pv cos C+ pw sin C - ~pu)J

o
+ oC [pw cos, - pv sin 'J + ~pu = 0

o[S](P + pu
2)J + 0 { 2 Jil-- oS - ~ ~[puv cos C+ puw sin C - ~(p + pu ) ~

o 2
+ dC (puw cos C - pvw sin C) + ~(p + pu ) = 0

~ + ~ {~[(p + PV
2
)cos C+ pvw sin C - ~puvJ}

o [ r ( 2) . rJ TI 0+ ~ pvw cos ~ - p + pv S1n ~ + llPUV =

O(S~~Uw) + ~ {~[puw cos C+ (p + pw2)sin C - ~puwJ}

o 2
+ dC [(p + pw )cos C - pvw sin 'J + ~puw = 0 (32)

These equations are somewhat complex and unwieldy to manipulate. It

should be noted that the transformed equations pick up a nonhomogeneous

term.

Equations (29) and (30) must be solved to obtain the flow field

over the wing. These equations are a sort of hybrid set, in that the

independent variables are pseudo-conical coordinates while the velocity

components are measured in the positive direction of the original

rectangular coordinate system. This feature insures that one can

recapture the uniform free stream without using correction factors. 6
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Body Boundary Conditions

The boundary condition at the body surface provided by an analytic

description of a problem of this nature is

....
q • 'VF = 0 (33)

....
where q is the velocity vector and F is the equation of the surface.

Unfortunately, the numerical solution of such a problem cannot be

completed with only this one condition.

The velocity vector is given by

....
q = iu + jv + kw (34)

and the scalar function, F, defining the surface of the wedge is given

by

and by

y - x tan Ow = 0 (35)

(36)

for the cone. The boundary condition which is applicable to the wedge

surface then becomes

v = u tan Ow (37)

which states that the body surface is a streamline in the flow. The

condition on the cone surface is

u tan Ow = v cos, + w sin' (38)

Consider the wedge boundary condition. If one approximates the velocities

at the body surface in terms of their values in the sublayer and the

first mesh point above the surface, Eq. (37) may be written



+v + v
2
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(u+ + u-)= tan Ow
2

(39)

This is a single equation in the two sub layer unknowns u and v •

The process of reflection is used to provide the additional equations

necessary to solve for the required sub1ayer values. This process is

one in which the tangential velocity component and the scalar pressure

and density are assumed to be even functions of the normal coordinate

so their first derivatives vanish at the body surface. On the wedge

surface the unit normal is given by

....
n - i sin Ow + j cos Ow (40)

The tangential velocity is given by

i cos Ow[ u cos Ow + v sin Ow]

+ j sin Ow[u cos Ow + v sin Ow] + kw (41)

If the first derivative of the tangential velocity at the surface

vanishes, then each component must vanish, i.e.

au OvdU cos Ow + on sin Ow = 0

Ow 0
dil=

(42)

notice that only two of the components provide useful information.

If the derivatives are approximated to first order, then

+ ­
W = TN

and

solving Eqs. (39) and (44) for u and v-

(43)

(44)



- + - +v = (u + u )tan Ow - v

u
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u+(l - tan20w) + 2V+ tan cw

sec 20w (45)

In addition, the normal derivatives of p and p are set equal to zero

requiring that

+p = p

+p = p
(46)

This provides a complete set of body surface boundary conditions for

the wedge portion of the wing.

The boundary conditions for the cone are derived in the same

fashion. The unit normal vector on the cone surface is

and

-> 'ilF
n = l'ilFI = - i sin Ow + j cos Ow cos , + k cos Ow sin C (47)

qT = i[u cos 2 Ow + (v cos C + w sin C)sin ow cos ow)

2 2+ j[u sin Ow cos Ow cos , + v(l - cos Ow cos ,)

- w cos
2

Ow sin C cos cJ + k[u sin o'w cos Ow sin C

- V cos
2

Ow sin C cos C + w(l - cos2 Ow sin
2

C) J (48)

An approximate reflection of the tangential velocity can be ob-

tained by equating the components of ve~ocity parallel to the body

surface in the sub and super layers. In vector form

~ ~ ~ ~ ~ ~

n X (q X n) = n X (q X on) (49)

The scalar forms are lengthy and are not presented. They will be in-

eluded in a later, more complete report.
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Only two of the components of Eq. (49) are independent as in the

case of the wedge. If the normal velocity is set equal to zero as in

Eq. (38) and any two of the components of Eq. (49) are differenced

and solved for the sub layer values, the solutions are

u+(~
2 .

u - ~2) + 2] 2 [v+ cos C+ w+ sin cJ
+ ~ 1 + ~

2~ + +
(~2 . 2 2cos C+

v C - 0v
1 + ~2

u
~2

+ s~n cos
1 +

2W+
2 cos C sin C

1 + ~

w

(50)

The assumption has been made that the cone angle is small and this is

at best an approximation of order 0 to the reflection.

The numerical solution of the equations of motion is obtained by

initializing at all mesh points in a plane at a given distance from

the leading edge, integrating to twice that distance, stepping back and

repeating the procedure. Integration is carried out in a series of

planes perpendicular to the S axis. The integration region in each

plane is bounded by the body, the free stream and the two-dimensional

flow field on the wedge outside the tip Mach cone. If the angle of

attack is zero and the wing is symmetric, the flow variables are re-

fleeted across the plane of symmetry at the tip.

A solution of the leading edge problem with a cone tip has been

obtained at a free stream Mach No. of 2 and zero angle of attack. The

solution required seven stepbacks to converge using a mesh twenty points

from the body out into the flow field and thirty points wide. Each
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stepback required 160 planes and the solution required approximately

26 minutes on the Iowa State IBM 360-65. Convergence was assumed when

the difference in pressure at each point for successive stepbacks

changed less than 0.5%.

Figures 26-28 present distributions of pressure normal to the

body surface at various lateral positions on the wedge and the cone.

Starting from the two-dimensional wedge solution, the shock gradually

moves in as the plane of symmetry is approached. Several points of

interest should be noted. The linear stability theory indicates that

the critical plane in the flow is the interface plane. The solution

bears this out as the shock appears to be crisper at the interface.

The oscillations in the normal distributions near the body surface

are of great concern. At the present time it is suspected that better,

more accurate boundary conditions are required on the cone surface in

order to eliminate these waves.

It is of interest to compare the value of surface pressure at the

plane of symmetry with that of an equivalent cone. A 7.50 cone at a

free stream Mach No. of 2 has a surface pressure of 0.105 which is

about 8% below that predicted as shown in Fig. 28. The surface pres­

sure in the finite wing case should be higher since the tip is bounded

on both sides by a two-dimensional wedge flow at a higher pressure.

Figure 29 shows the pressure distribution around the tip various

distances out into the flow field. No unusual behavior is noted and

the distributions are well behaved. Figure 30 presents the shock wave

shape around the tip. The shape is again well behaved and no unusual

properties have been noted. It is of interest to note that the shock

wave angle for 7.5 0 cone at a free stream Mach No. of 2 is approximately
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300 • The shock angle in the plane of symmetry is roughly 320 which

means that the cone shock angle would be approximately one mesh point

closer to the body than the wing tip solution in the' = 900 plane.

This is consistent with the pressure data, i.e., the shock produced

by the wing tip is stronger than the shock produced by a cone with the

.same half angle.
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RECTANGULAR TIP PROBLEM

The geometry of the flat tip problem is shown in Fig. 31. The

wedge forming the leading edge of the wing is abruptly terminated

forming a flat tip 900 to the leading edge. This geometry conveniently

allows the same coordinate system to be used in solving for the flow

field both inboard and outboard of the tip. The coordinates as shown

are distance along the axis of symmetry measured from the tip, the

tangent of the elevation angle measured from the plane of sYmmetry and

distance measured outward from the tip in the spanwise direction.

Each S = constant plane in which integration takes place is a

domain divisable into rectangular regions. The first region is bounded

by a free stream on three sides and the C = 0 plane containing the

wing tip forms the fourth side. The second and third regions are

above and below the wing. They are bounded by the free stream, the

C= constant surface outside the tip Mach cone in the two-dimensional

flow region, the body surface and the C = 0 plane. The integration is

carried out in region one first and then regions two and three.

The simplicity of the coordinate system is evidenced by the ease

with which boundary conditions can be applied. On the wedge surface,

the boundary conditions enforced are given by Eqs. (43) and (44)

which require the surface to be a stream line in the flow. The C

component of the velocity is also reflected so that w+ = w on the

~d~.

The boundary conditions enforced on the edge of the wing are

particularly simple because the surface containing the tip is a

constant coordinate plane namely' = O. Pure reflection across the end

is used and
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boundary conditions constitute those required to

+w = - w+u = u

+p = p

p = p+

These two sets of

v +v (51)

solve the general square tip wing problem at angle of attack. If

the angle of attack is zero, the integration is confined to the upper

half plan and pure reflection is used as a boundary condition across

the plane of symmetry.

No solutions to the three-dimensional wing problem have been

completed to date using the technique described here. Instabilities

appear to originate in the plane of symmetry and cause the solution to

become unstable. The stability analysis based on evaluation of the

maximum eigenvalue indicates that the maximum occurs in the plane of

sYmmetry. For an equation

~x + [A] o~ + [B] o~ = 0
ox oy oz

under the transformation given by Eq. (26), the resulting form is

(52)

o~ [A) - 1)[ I] o~ + [B] o~
~ + S all ~

The maximum eigenvalue of the matrix

[A] - ll[I]
S

o (53)

(54)

occurs in the plane where II = 0 and the maximum mesh size must thus be

determined there. On the basis of this investigation and the behavior

of the computer program it would appear that the mesh ratios used are

too large, and instabilities occur as a result.
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Another problem exists because of the square corner at the wing

tip. Because the corner is square, a vortex may appear near the corner

point even for the case where angle of attack is zero. At this time, suf­

ficient data has not been obtained to understand this problem and its

effect on the flow field. The corner is currently being treated as a

sort of floating point. That is, it is defined within one mesh point.

Reflection is used on the surface at all points except the corner

point where these conditions are unnecessary. In this sense, the

corner may not appear to be square but it is simply defined to be

somewhere within a cell containing what has been referred to as the

corner point.
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INITIAL PROGRESS ON OPTIMUM COMPUTING METHODS

Some initial thought has been given to optimum computing methods

and some initial progress has been made. Study and development of

techniques in this area are an important part of work continuing under

the extension of the present NASA grant.

Kutler and Lomax have noted that shock resolving ability of a

finite difference technique can be improved by three methods: (a) in-

creasing the order of the differencing scheme, (b) refining the mesh,

and (c) adjusting the mesh on a local basis or adjust some system

h h h · h 1 1 h .. 10 Thparameter so t at t e mes 1S near t e oca c aracter1st1CS. e

third idea is of interest in this study.

If a technique is adjusted so that the mesh is nearly coincident

with the local characteristics, this means an effective local Courant

number of one is desired. A difference method such as MacCormack's

provides an exact solution at least in the linear case when the

Courant number is unity. This is observed in the modified equation

generated by use of the simple wave equation in an earlier section of

this report (Eq. 11).
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Local Mesh Changes

Present finite difference methods are applied holding the value

of the mesh ratio at a fixed number throughout the solution of the

problem. In the typical one-dimensional case, the mesh ratio is usually

determined by the Courant-Lewy-Friedrick's stability criterion,

which reads

I aTI < I
°max fj.x -

where ° is the maximum eigenvalue of the hyperbolic system andmax

(55)

!jT/Ax is the mesh ratio. The use of this as a method of establishing

mesh size is based upon a linearized stability analysis. The stability

boundary is reached (at least in the linear case) if the local step

size or mesh ratio is set equal to the reciprocal of the maximum eigen-

value of the system. It may be shown that if calculations are carried

out at the maximum mesh ratio or at the shift condition, the mesh is

then compatible with the local characteristics.

The most convenient model of inviscid fluid equations is again the

modified Burger equation used to develop numerical techniques operating

at a local Courant number of one. Notice again that this equation

retains the nonlinear character of those describing fluid flow.

Consider a simple Lax first-order technique applied to Burger's

equation. The differenced form is

n+l
u.

J

= (Uj+l +Uj _l ) _ aT (U~+l - U~_l)
2 2L),x -"'---2-.......- (56)

The Lax method is used for simplicity. The ideas and applicability of

the technique should not depend upon the differencing method. The

usual stability requirement applied to Burger's equation becomes
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(57)

Suppose the local mesh ratio AT/fJ,x is varied according to the require-

ment

AT
Ax= IIIu

(58)

This requires that the local Courant number be one. The question must

now be answered as to how this moves discrete data or how this propagates

a discontinuity.

If Eq. (58) is substituted into Eq. (56) one obtains

n+l
u.

J

u~ 1+ u~ 1[2 1u ., - u. 1+ u. lJJ+ J - _-,J"--_~J+-,-;-_----,,,J,--_

2 21 u j l
(59)

In addition to substituting for the local mesh ratio, the step size at

that particular point in space and time must be altered. Assume that

alterations in mesh ratio AT/~x are achieved by changing fJTwhile the

x-grid is fixed in space. This means that after the initial step at

t = 0, each value will have advanced a different amount in time.

Suppose this is represented by the x-t plane shown in Fig. 32.

The time advance of the solution must be recorded at each step

just as the x position is normally noted. The procedure used is to

note the value of u at the j th point, set the time advance AT = Iu~1 AT
J

n+l
and compute the value of u. at (t + Ii t) 1 1 using Eq. (9).

J oca

Since this method uses central differences, one chooses points

for which values of u at j - 1 and j + 1 have advanced farther in time.

n n
In this way, values of u. 1 and u. 1 at the proper time can be deduced

J+ J-

by interpolation.

by

A similar operating sequence is obtained by approximating lu.1
J

lu. 1 + u. 1 1/ 2 which is consistent with the Lax method. In this
J+ J-

case, for u = positive, the difference equation reduces to
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u.

J

n
u.

J
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(60)

which is just a shift in time for each value at x. The time shift

is given by

(61)

These methods appear to be particularly simple and straightforward.

Such is not the case. The difficulty is that wave propagation velocities

are wrong. This can easily be seen by considering a square wave with

u. = 0 and u = 1. If a local time step is used in the u1 = 0 range
1. F

based upon AT = ~x/ Iu.1 it would appear that the value of u. is the
J J

same for all time. In fact, one may state that local mesh altering on

this basis distorts the wave speed at the leading edge of discontinuities.

It becomes apparent that alterations of the mesh in both space and

time are required to accurately track changes in the flow field.

One must question the use of Eulerian methods if the mesh alterations

become too complex. In essence, one is forced to track discontinuities

in a finite mesh by altering the mesh so that it effectively moves with

the wave fronts.

The fact that wave propagation speeds are wrong in time dependent

flows indicates that one must be careful in using the method and inter-

preting the results. One place where this type of method can be and

has been used is in solving the wedge flow equations. The wedge flow

equations were solved as part of the preliminary investigation

of this technique. Since the radial distance plays the analog of

time, the advance is in the radial direction. The final answer is

independent of radial distance so that phase errors in time or radial
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distance are unimportant if a steady solution is sought. The only

critical point is if the local eigenvalues in the flow go to zero.

Results show that solutions obtained through variable mesh ratio are

better although not significantly different from the fixed mesh results.

A wedge flow solution using the variable mesh ratio scheme was

obtained by using the polar version of the equations of motion for

wedge flow. The solution of the wedge flow equations using a Lax

differencing method was used for initial data. Along each ray the

local eigenvalue was calculated at a radius r = 1. Using this eigen­

value structure, a single integration step was taken and all variables

were stepped back to r = 1 again. This method was used as opposed to

a search for the minimum radius point due to long computing times

required.

The first method used was to switch to an optimized Lax method

after the original constant mesh Lax solution had converged. The

change in solution produced was negligible and the results are not

presented here. One must ask why much better results were not ob­

tained. The reason must lie in the structure of the modified equations

for the Lax method applied to wedge flow. Even though a mesh ratio is

selected in such a way that the local Courant number is unity, the

solution is really that of the modified equations and would be exact

only on a locally linear basis.

More encouraging results have been obtained using second-order

predictor-corrector methods. MacCormack's method was used as the

difference approximation for the locally optimum method and the results

are presented in Fig. 33. The results are not greatly different from
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the standard fixed mesh method, but the locally optimum technique does

produce the expected behavior at the shock. Oscillations appear on

both sides of the shock. This leads one to speculate that the

preferential nature of the method begins to look more like a central

difference scheme.

The predictor-corrector roles were then reversed, i.e., backward

prediction-forward correction, and a solution was computed. This is

shown in Fig. 33. It is interesting to note that this produces very

nearly the same result as the MacCormack technique. The reason again

must reside in the fact that the modified equations for the two

methods must be nearly the same; for the linear wave equation, the modi­

fied equations are the same. It would be an interesting experiment

to see if the Lax-Wendroff method produces similar results.

Not enough mesh points were used to properly define the free

stream in this case. Additional experiments are planned and this

problem will be avoideo.

Free Parameter Methods

Several attempts at modifying differencing methods have been made

by including a separate parameter that can be adjusted independently

of the mesh size. Typical of these is the Rusanov method 6 and more

recently that proposed by Kutler and Lomax.10 These methods are not

based upon operating at the optimum Courant number; they instead pose

the question: given a fixed mesh size, is there a value of the free

parameter which gives the best solution for that mesh ratio? The term



43

"best solution" at least in the linear case is taken to mean that solu-

tion for which the shift condition is most nearly satisfied.

The accuracy of a given technique applied to a specific equation

is best determined by examining the resulting modified equation.

Specifically, the Rusanov method applied to the linear wave equation

produces modified Eq. (14). At the design point, i.e., V = 1, 6 = 3

the shift condition is satisfied and the solution of the wave equation

is exact. If one is operating off design, the right-hand side of the

equation must be minimized.

This poses a minimization problem in which several constraints

must be observed. In this case, the wave speed, c, the Courant number,

II, and the mesh size, Ax, are fixed, along with the derivatives at -a

given x position. The only parameter that can be varied is 6 and this

can vary only within the stability bounds of the method. The first

thought is to simply set the

equal to zero. This yields

4v2 _ 4
6 V

= 3

coefficient of the fourth derivative term

clearly outside the linear stability bound. The same result occurs if

the fifth derivative coefficient is set equal to zero.

The parameter 6 is free to vary with V, x, and t. If only the

fourth derivative term is considered the problem is one in which one

must find

I 36 3 IMIN (l/ - 4v + V )uxxxx = MINIF(V, x, t)! (62)
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subject to the stability constraints of the system. This is a minimiza­

tion problem in three independent variables V, x and t. It should

yield to standard minimization techniques. The difficulty is that

some approximation for the spatial derivative of u is required. This

results in more complexity, storage and computer time required" when 0

is calculated.

At this time, proceeding along these lines does not look very

promising. The main difficulty is presented by the complex structure

of the modified equation. The alternative is to perform numerical

experiments which would provide at least a qualitative answer as to

what value of the 0 parameter should be used. Unfortunately, the

numerical experiment approach does not provide a general technique

nor does it present insight into the reasons for selecting a given o.

It is anticipated that some effort will continue to be expended in

considering free parameter methods. However, it appears that less

restrictive techniques which use the free parameter approach should

lend themselves to easier analysis.
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FUTURE PLANS

The first priority in the continued research effort is to obtain

additional solutions for the cone tip wing problem. A study of the

effect of altering the surface boundary conditions on the cone is

imperative. The oscillations in the flow variables near the body are

of great concern and perhaps better boundary conditionswill,eliminate

this problem. Kutler's results indicate that better surface boundary

conditions may eliminate these oscillations. Both the MacCormack

method and the third-order Rusanov technique will be used on this

problem at zero and nonzero angle of attack.

Additional effort will be expended in obtaining a solution for

the rectangular wing with a flat or squared tip. The program for this

problem using MacCormack's method is complete and in the de-bug stage.

Difficulties are being experienced with stability near the plane of

symmetry of the wing. The linear stability analysis indicates that this

is the critical surface in the flow and in fact attempts to obtain

solutions diverge in this plane. It appears that a more careful as­

sessment of the stability requirements for this problem must be made.

A solution continuing downstream over the wing and in the after­

flow will be sought. The initial conditions for this problem are

supplied by solution of the leading edge problem. Since this is an

initial value problem, no difficulties are anticipated in implementing

techniques to complete its solution. The selection of the body shape

is undecided at present. Current plans are to use either a power law

extension after the wedge to the trailing edge or to use a simple

double wedge configuration. The downstream solution past the trailing
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edge of the wing is again a simple initial value problem and no dif­

ficulties are expected.

Pending completion of the rectangular wing problem, work proposed

for the continuation of this grant on the pyramid-shaped body will

begin. As noted in this report, proposed work on optimum differencing

methods has started and will be continued.

One additional project will be initiated. This investigation

will be concerned with the relative accuracy of solutions obtained

by differencing the original equations in conservative form or in the

advective form. Most applications in gas dynamics have been made using

the conservative form while the meteorologists particularly favor the

advective form of the equations of motion. It is hoped that this

study will provide insight into the advantages and disadvantages of

each way of differencing.
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REPORTS AND PUBLICATIONS

Although no publications have been produced during the first year,

plans include release of several reports during the next six months.

A detailed report including comprehensive results obtained with

Burger's equation, wedge flow and shock reflection from a solid

boundary is currently under preparation and will be completed during

the next two or three months. The final report on research on the

finite thickness rectangular wing will be published sometime during

the coming year. Present plans are to finish that phase of the research

effort by November at which time the final report will be written.

It is anticipated that a report on conservative versus advective

differencing will be completed within the next six months. This work

is to be completed by a graduate assistant in research and should be

finished by November.
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