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1. INTRODUCTION

This rp.:'lOrt des cribes res earch conducted by the Life Sciences Division of

Technology Incorporated to further des cribe and understand the ITlechanisITl of

vertebral injury resulting frorE verticai ·a.ccci'::l'o.:i:ions of the spine. The work

reported was perforITled during the period 28 June 19 7 G t,·, 1'3 .T,;; !1D.aJ.- y 191 2 ,

and repres ents the concluding effort of a three_ year program..

Two significant results were accoITlplished during the reporting period.

The dynaruic and static properties of the hun1an spine in flexure were deterITlined

and a cOITlplex continuuITl ITlatheITlatical ITlodel describing the dynaITlic

response of the hUITlan spine was forITlulated, solved and verified experiITlentally.

Details of these efforts are presented In a series of disr.ussions, figures,

tables and equations that follo\"v .

. .,
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2. FLEXURAL PROPER TIES OF THE HUMAN SPINE

A series Ol tes ts have been perfonned on excis ed human vertebral segments

when loaded in flexion.. A total of fifteen tests were performed on eleven

specimens. Specim.ens were obtained from male donorsrallging in age £1'0:1-1

3,;, ~0 60 years. Demographic data pertinent to each specimen and the e12pc::<:d

time between death of the donor and testing of each corresponding specin1en

are pres ented~·r;pabre·.f.... Only spinal segments compris ed of lower thoracic

and upper lumbar vertebrae were tested becaus e in aircraft ejection injuries

clinical complications in this anatomical region predominate;.f-i-)-·

2.1 Specimen Preparation

Specirr1ens were obtained at autopsy and consisted of eight to ten

vertebrae, generally in the T7-L3 region. Although the transverse

processes were transected to remove the ribs, care \vas exerclsed to

keep the ligaments intact since they appear to contribute significantly

to the bending s tiffnes s of the spine •. Tr.e ligamenta £lava, the inter --

spinous, supraspinous, anterior and posterior longitudinal ligaments

were retained intact.

Specirnens V;CJ.:<:: ICloistened with phy~iological saline and ;s·tored in

o
tightly sealed plastic bags at5 C from the time of removal until

approximately 24 hours prior to testing, when they were allowed to

2-1
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~2°equilibrate at room temperature, L C. Upon equilibration with room

temperature, curved metal plates, for us e as load- bea'ring surfaces,

were bonded on the anterior surface of two vertebrae of each spinal

Precise deterrnination of the anatomical levels and initial curvature

of each specimen were determin'ed from radiographs taken in both

the c:.LtpriC'-posterior (A-F) direction and laterally.

2. 2 Test Equipment and Methods

The test equipment us ed to perform the bending tests is that which

was des cribed in detail in our annual technical report for Contract

No. NAS2-5062 of 28 June 1969 - 27 June 1970~2)It was not,ed in

that report that the predominant source of deforrrolation during a tes t

is attributable to the bending streases and that the shear deflectiol"i.3

can be ignored. We therefore concentrated on the pure bending tests

with the objective of defining quantitatively the bending stiffness, E1.

The test fixture used is shown in the photographs of Figures 2 and 3

and schematically in Figure 4. A s noted in Figure 4, the loading

fixture for the bending test does not necessarily result in, and the

analysis is not dependent upon, a symmetricai. luadiiig pdtte:.. 11,. :l'h~

as ymmetrica 1 loading results becaus e t~~ 1'",3 ('tio'1:lr y, loads at points

Band C must be placed on vertebral bodies, which are generally not

2-3
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of the bending stiffness.

symmetrically placed with res pect to the end loading points, A and

D. If the loading pattern was purely symmetrical then the central

portion of the specimen between Band C would be subjected to pure

bending and no shear load. The sm2.11 2:':yr:l:rr;<~try of loading does

therefore induce some shear loading in the center span. This,force,-

hC'.-i<:'>,'er, has been calculated to be insignificant for the test conducted.

2. 3 Results

The results of the bending tests are shown in Figure 5, in which the

bending moment is plotted as a function of the change in curvature.

More detailed information is pres ented in Table II which summarizes

the specimen number, the anatomical level and the average value

An overall average value for E1 of 8000 Ib/in
2

,\,,"as obtained fron1 thes c

2-8
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TABLE II

Bending Slifines s of Human Spine Segments, in Flexion

Specimen Anatornical Level Flexural ~igidity

EI (l b/in )

11 run 1 T12-L5

1 ' run Z T12-L5.L .i

11 run 3 T12-L5

12 T6 -L3

14 T7 -L3

16 T7 -L3

17 T7 -L3

19 T? -L3

21 T? -L3

22 T7 -L3

23 T7 -L3

26 T7 -L3

27 run 1 1"9 -L2

27 run 2 T9 -L2

27 r\.l;:'" 3 T9 -L 2

All Specimens

2-10

9,930

10,580

12,460

6,760

4,950

9,920

5,800

4,980

13,380

9, 580

5,660

4,850

21,000

17,500

13,600

8,000



3. MATHEMATICAL MODEL

The principal effort during the reporting period has been directed

toward obtaining G. stable, ?ccur"lte solution to the differential equations

that des cribe the dynamic res pons e of the s pine to impact loads. The funda- ­

mental as sumptions underlying the derivation of the equations will be reviewed

prior to a pres entation of -the solution; The terms us ed in the equatlons that

follow-are de'fined in the nomenclature section of this report.

3. 1 Derivation of the Difiel' entia 1 Equation

In the derivation of the differential equations, the spine IS assumed to

be a homogeneous, isotropic, linearly elastic, tapered beam column

having an initial curvature in a plane. The mass center of each cross

section is assumed not to coincide witn the centroid of tnat cross

section. For ce is applied to one end of the beam colUlnn and a con­

centrated mas s is as sumed pinned to the opposite end. Deflections due

to shear,axial compresinn and bending are considered. The axial,

rotary and transverse i.nertia of each elelnent is incorporated. Gravity

effects are neglected.

If motion is restricted to the pianc or tnt> inihal curvature, and if the'

beam colurnrlia il:i.it.iai~y UllS trained, applying Hamilton's principle

results in the following set of coupled, non-linear, partial differential

3-1



equations and cor r es ponding boundary conditions.

:;p

,-, r
r'·, "2

+ p :?: ];;Jr (3)

P - £34
(4)

The boundary conditions are:

AT Z=O:o'M=O

Ai r =1: M=O

(Sa

(Sb

(Sc

(Sd

(5e

(51

3-2



The initial conditions are:

AT t =0 L/.= Va (6

';;1) - ,--. (6i
~t:

">:...... - "u;....

W= 0 (6l

:;;~--0at. -

The complete derivation of the differential equations and boundry

conditions was presented in Cuarterly Progress Report No.2,

Contract NAS2-S062. (1)

3.2 Nondimensirmal Forrn of the Equations

The equations pres ented in s eetion 3. 1 \vere simplified and made

applicable to a wide range of problems by nondimensionalizing

according to the follo';\'ing relation.ships,

(6 (

(61

p-

5 -

)

)

3-3

I

tZ -

tic
/

,



w'

LL'.::>--r )

tu­
./

)

where the pri!Y1ed c;a riCl b1 *"5 Ci.ce in diIT1ensional forIT1 and the unpriIT1ed

variables are nondiIT1ensional. Using the preceding relationships in

equations (1) through (4) results in the set of nondiIT1ensionalized

equations presented below:

-(i) =0 ,

(8)

~(~4G7) p d(e41 ~.ol ;;;a
.;;g .;-

. J

-I-- ----
.;,Ji! JE4 ,;)2- ~z.

kG---e I
.£:4

3-4
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and

p :::: (dU)7 _ ....!... (dUO) '2
d? 2 d2

(10)

The boundary conditions become

2' = 0: M - 0 (11 a)

~b -
k

k'
(lIb)

i = I M = 0

:5 -
E

kG

(11 c)

( 11 d)

(11 e;

p-

3-5
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These equations were solved using finite difference techniques

des cribed in the next section.

3.3 Solution of the Differential Equations

The principal dependent variables of interest are u, wand ¢ •

Equati0~ ~lO) was therefore subs.tituted into equation (7) and (9)

which reQ,.lcc::; the set of equations to be solved from four to three,

as follows:

o , (12 )

12 .;;J2qS---_.
I, dt 2 -(;)~~.)

3-6
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_ .;;JU~ ;:)'JUo .;JU I d(kA~) ;;;"1 I d(L~~~) otla I d(b161) ¢._- + E,4 --- -- - - -
;;J;: .;} ?- '2 di! dzt dZl EA c/,g C)i:' EA c:lZ

2
.;?t) _ d:J~-/. kg ,;;)2t( ~G ,;)t(o hGi

0 (14)- - =E ,;)~'2 E dz?2 E .;)i! ,;)t 2

The equations were then written with terms' combined for a, particular variable

or combination of variables. Coefficients are enc10s ed in brackets and

variables in parenthes es.

(15)

and

- 0:; (16)

k6
t...,

.~

~~ 7,/;, .-1
:..;.i ... <....-

-'----_ .. :
r:~.2;J· !

.J

3·· 7

0. !' " -~. \
\ . ( :



The boundary conditions becoITle

r = 0: (l8a)

and

kG
E

, (18b)

~ - l: 0-,

(lSc)

(18d)

-(~)

and

(18 e)

..;.!.
2

( IS£)

To simplify the form and to reduce the orde:':" of the original equations

the following nevI varia Sles ",rer 0 lPb"oc1u.ced:

3·- 8



//(2) _ (19 )

There are now a total of six variables" Originally, there were only

three equations: Three new equations must therefore be derived.

The three new equations are

0/ V&-)--.;Jt (20 )

.;)V(2) :-; V (s)
(21 )---- -de ;}t

and

;;JV (~) .;) V (e;,)
- '-~--'-'-

'-~')~

c;?t
t (22 ).::vr

3-9



[:6

Using the variables defined in equations (19), the equations were re-

arranged such that equations 17, 16, and 1,5 become, respectively:

(dtta) '2

dE

dk4G C)t(,
de dE-

o ;) (23)

and

3-10
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The cor res ponding boundary conditions are

Ii' = 0: V~) = 0 ;>

and

(s ..L dUo)] _
\ h i ~:/

0, (26b)

z = /." 1/ (4):::: 0

=0 (26c)

(26d)

At

(26£)

I - 0 V(I) _

v(~) ::::.

3-11
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(27a)

(27b)



v(~) o

I / /.~) ~

(021d)y'" J,...- T'~CJ- di!-

V(S') - 0 ( .2. 1~.)

v~)

Before proceeding, it is useful to examine the form of the boundary

"

conditions. and to determine where each variable appears.

At r= 0 :

from (26a)

from (26b)

" from (26c)

At r=-t:

from (Z>S d)

y( 4) is known

Y (6). .. f .-f.. d h
IS gIven In terms 0 ¥J, an ence in terms

of y(l) (refer to equation 19).

y(S) may be expressed in terms of V(6) and

h ' (1)
ence In terms of Y ,from above

(4 )
Y is known and froln equation (20) we may

d t
. u(l),

e ernl.lne y at i!=:; /.

3-12



from (26e)

from (26f)

y(3) may be expressed in terms of y(5), y(6) and

¢ and hence in terms of y(5), y(6) and y( 1)

y(2) is given in terms of y(5) and y(6)

. (4) (5) (6)
Thus, In effect, V ,y and Yare known

at Z =- 0

at e::. I

(1) (2) (3)
?nd ~v- ,V' and Yare known

B ecaus e the preceding is the form of the boundary conditions, the

following numbering s ys tern will be us ed

i = 1 forAt
y(4) ,

i = 2 fory(l),

y(5) and V(6)

y(2) and y(3).

(1) (2) (3) .
Since ¢, wand u are computed from V ,Y and Y ,they wIll

follow the same numbering system.

A general equation with this numbering system will therefore contain

(4) (5) (6) .. (1)
levels i- 1 and i of Y ,Y and Y and levels I and I + 1 of Y ,

In the approach to the solution, an inspection of the six equ:ltjons to

he s()lved.~p.quations (20 - 25) and boundary conditions (26a - f),] reveals

that "3.11 non-linearities are directly attributable to the term y(6). This,

therefore, is the only variable that needs to be used at the value of the

3-13



previous i~erateo

Next, let F = ¢,

It.\

Y = the value of V\~I at the pr2viot'.8 iterate

and

(6)
X = value of V at t = 0 0 ,

Furthermore, if we call LM the total number of increments, then

LM + 1 = L is the total numb er of points, and L +1 =LP, by definition.

. (4) (5) (6) .
If we consIder V ,V _and V to be the Group 1 vanables and

(1)' (2) (3) , .
V ,V ,V ,u,_ w, and F to be tne Gl"OUP 2 vanables, then the

number systern to be used in derid,ng the fir..ite difference equations

is as shown in Figure 6 on the following page. The spatial variables

a!"e denoted by th/O' subscript; i, whereas the temporal vari:'lbles "!re

denoted by the s,ubs cript, n .

If we let .J t::;.L1 r and center the equations at the midpoint as shown in

Figure 6, then iet us ,,,-rite the finite difference equatiuns for the

general index where 3 ::; i ::; LM•.

Equation (20) becomes

+
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!
2 [

(4) (4)

11,' , n ,I- I - v,., n
LJ~

Now, since LJi!-:= L1 t , this expression becomes

Changing signs and reordering the ~qu;::fion l"esults irl

Similarly, we have, for equations (21) and (22)

and

Now, for equation (25)

(28

(29

(30

r ,(t) " (S)
I l ~', n+! - V;'- /) hoff/-

"2 Ar
l r

' ~

(5) (so) (6)) (:" )~~n -11-/,11 1+ .!. (y. -f Y + I/. _ .j.. v. ''''. )1
A :;: L4 \ f , ( -I ' ) ;, ' ( - /, n

- J ,J

-,
(2) (?) !

~I'-;"'" - fr:'zh I
Llf I

J
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is thus introduced more often, yet the equation remains

Note, on the non-linear term, II/. (eo) + V((;) )
\:'!~r.+1 ('-IJnN is used in place of

as the coefficient of A ~ (I/.(~)- v(c:.» ). The neVi iterate
Coli:' l/' (-I) n(~~Y )\, ,-I

(6)

of ~~ n-l-I

linear. Thus, the term becomes.
~ )

Then,

1[(. (~) _ V (c;)) -1-'1-. t/. t.,) _ [,/. (2») -!-. ;
\~L>n £-1>1') ~ L+I)n l)n

'. .

Now, change signs and combine the terms.
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(31

No\v, for equation (24) which is linear .

. SiInilarly,

Nate,· though, that

Thus,

-f- V (4).) -I-
'-I. n, /
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Combining term.s yields,

o
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Now, in considering Equation (23), exam.ine the non-linear terms first o

(32)
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.J~ <1~ [(v. +J:-,/ +(rr+v,-X2 i:+ 2~:~-I l<~)-V;-;~~

+IV (6) +2V.(Go) Vre.,) + v (CD)
2+2V(b)': 2t/w

>~)~ V (6)) +[_('( -I- r )2
{.11,n lIn ,-I,)n ,-I)n lin I-lin IJ L,nN I i-I

- V(e;,)+2V~)':"2v((p)~ll W(o) +(V(~~ V~)\IV(~)+v((i») 21
I.-f) n LIn I-I)n IJ L-I,n+! \ I) n L-0 n ) \ L,n L-I) " (

-.l

"" [;] 3j 4~ If& + ~Y+(}i + 1;.-1) (3~~~ ~-~:~) +Ii'.~)(3 ~~:)+v{:;,n)

+ &;'-~~ (l1,~)- Vz~;'~)J l(~~/+[-(~+ v.~/Y-(Y;+ r,:_,)&.~)+3<~)
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[
_I d LAG _ -'- _' d f':4 (d!.l.o)2_ ( dU~) (;;;;lto \)ll v(C» ~ rI / )
£:4 d:e-· 2 E.4 dZ. \dZ-' \d~/ \,;lZ 2 UC=.4 L'

(dk4G) __ ~ 1_/_' (dEA\ ~X/+X:·-/I~(X;·+Xi-/I(X:·-X'i-{~
\. de Ii 2 (EA)i" di!- l \ 2 J \ 2 J \ 4i! iJ

_[~ d;;G ~~o -f ~6

(><,+Xi-I) + Ik:G) (xc: -x:--l)"l
\: "2~-E l. \ 42 )J

Now, to get equation (23) in finite difference form, cornbifLe these terms.
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Equation (23) then becomes

( V; + Y;~1+3 (v,;~6).,L If-~~~t]+",L.. [-(}f+l1_,y- (v,+V,-/)

(
V(<;')+3 V('-)\+ V(6) (11. (G)_ V(G»)_ V(C

o
) (~(G»+3Vt~»)~ __/_

L,n l-/~nj {,;/] 'In t-/J Y1 £-I)n t;n (.-I,n IJ 2t1Z
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J I (.5) (5) \ / ((s) (S)) / [I- /) [dEA.-l]
+L8L1Z ~T7 +l(;-I/7)+.8LJ~ ~n - ~-/Jn +/cP \E4 i \ diZ!/:

(V(5~ //(5), -+ --l-: rL!~ \ f-dEA) l f/V.,L v.- \2+ 3(lI.~)+ V~G:}
-\' ,)n' 'i-V) / . r::Xf L:L i,c4/t. \ de ~ J ~ 'i . 'i-I) \ ,/j. in.)' 'I

+y(G) /3l/.(~)~ [/((;,»)+ l/~). (v:~)- V(6) )~ f- _1_ G(kGi_)
(In V LIn t-IJn (-lIn tIn l-/)n J ZA2 ~ E ji

_ i (X~+-X":"/\2.lJ +l-I/-'--.\ Idk.4Gi\ _}J-'- \ (dE:4) (!S.~x,-y
2 ~ ~) 4 L\54Ji \ de l ? \E4j[ \ d~ h' \ 1

- ~Ki ~x,c') (\-;i-)l} Ii::,
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If the boundary conditions are now discretized utilizing the san"le -

considerations as employed above, we have the following

A+~=o: (34a;

~~~J - fb+(~), [(~~] [(5b Nr;)+ ~2>n +~! v,,~]

+[(~'":~), ] [1tJ ~~~I

and

Using (34b) we obtain

3·- 28

(34b;

l34c:



At Z. - I.: V
(4)

-' 0,
L) 17+1

(34(

and,

A table is constructed on the following page which pres ents the variables pres ent

at the ntl time levei for each of the six equations, (28)(33)]. The reason for

pres enting the equations in this order (rather than the o"!'ner of thei.r appear.ance

in the report) ~vill be readily apparent.
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TABLE III:

Variables appearing in each equation at the n+l time step.

.
I 1 ;l fi'···)- 'ion i - 1 i i +_.~.:: y t. d I. J..

V(4) (I) V (4) V)28 V )
. -- V (,j") V{2~ V(5) v(z)

29
!

.-.-,---_.-.._-
V (4) V (5) V(e,,) . (I) V (3) V (4) V(5) V (G) V(/~ J/ (;."')

33 .) .:> V:> ) > ..>

32 V (4~ v(c4»

I
V O) V{2) V(4) v(G) V(I)) 0 2 )

) ~ >

v{~~ v(w) (J) V(2) V(5) V(6) (O V(2)31 . V > , ~ V )

(c.) v O ')" V(b)
I v(0)

30 V
I

Let us now arrange these variables and equations in the order shown in

Figure 7 on the following page, where a zero (O) means that the coefficient

of a particular variable is equal to z era and a one (l) means that the coefficient

of a variable is not equal to zero.

Thu3 the band width is thirteen. This is consistent since the nature of equations

(28), (29) and (30) fixes the minimum permissible band width at thirteen.

Fl1rtllelElOi0:, F·:~g:tJ.'e 3 presents the band and shows schematically those

coefficients which do not change with either iteration or tim.e (C), those

coefficients which change only with iteration (L) and those which change \vith

both iteration and time step (T.),
1
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The right hand side of each of the six equations changes \vith the

time step but not with the iteration.

From an inspection of Figure 8 and by recalling

i-±~ (5) (6)
1[' " V and Yare known, and (2) at Z! =. /

that (1) at i= 0

, y(l), y(2) and y(3) are

known, it is obvious that the finite di'fference are of a form that is capable

of solution using an algorithm of the type discussed el~ewhere. (3)

Using such an algorithrri and iterating three time s within each tim e 'space

results in a solution which is stable and convergent to five s'ignificant figures.

The equations are solved for y(l), y(2), y(3), y(4), y(5) arid V(6). The

. (1) (6)
variables of interest, namely u, wand ¢ may be obtawed from Y - Y

by using the relations established in Equations (19). Furthe rmore, all

stresses and strains are calculated according to the relation'ship derived

. 1 (3)previous y.

The solutions obtained using the numerical techniques discussed above have

been verified experimentally. These experiments are discussed i.n the next

section.

3.4 Expe rimental Verification of the Solutions

Au eXl'e r:"':Y1':)ntal program was designed to check the accuracy and

adequacy of the solutions to Equations (1-4) and boundary Equations

(5-6).
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A beall1 of low density polyethylene was fabricated having the sall1e

taper size and initial curvature as that of a representative human

spine. (4) The bottOll1 end was mounted in a pin joint fixture such

that the applied ll1Oll1entat the inferior end was zero.

The beall1 was instrlunented ,;;,~tb c.;t"':?1n gages in the approxill1ate

anatoll1ical levels of L3 and T7. Accelercll1ete ys we re m0tlllted

on the base and at the superior end of the bearn. The entirE: beall1

and support fixture were ll10unted on the acceleration carriage of
,

the HYGE shock tester. The test arrangell1ent with strain gages

and accelerorneters positioned is shown in Figure 9.

The output froll1 the strain gages at L3 and 1'7, and from the

accelerometers at the inferior and superior ends of the beam were

cOll1pared with the theoretical predictions frOll1 the mathematical

ITlodel of the sall1e beall1. Figure 10 shows the input acceleration

applied to the base of the spine. Figures 11 - 14 present the

cOll1parison between expe rill1ental re s ul ts and theoretical predictions

An inspection of Figure 11 - 14 dell10nstrates that the qualitative

agreernent between theory and experimer~t is quite good. Considering

that the eY:perinlental prograll1 was perforll1ed very rapidly and that

it 'was a secondary consideration to the overalL objective of this

project, the quantitative agreell1ent is also quite good. To'

check the quantitative predicti_ve capability of the ll1odel, it is
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....

Figure 9. Test beam instrumented with strain gages and accelerometer.
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believed that a more precise, more complete experimental pro­

gram should be cons.idered.

Considering the constraints m.entioned above, the experirnental

results offer excellent support to the theoretical predictions of .

the model.

3.5 Conclusions

When the results of section 3.4 are considered, it is concluded

that the model derived and the solution effected are sufficient

to predict the response of tapered, curved beam .columns.

Additional parameterization of the spinal tissue is probably

required before the model can be applied with full cOI1.fidence to

predict injury of the spine. Experiments correlating model

predictions with measured dynamic response of either primates

or humans is now required to determine the limits of applicability

of the model.
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