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NOMENCLATURE

Area of cross section

A

Cq Constant of integration

E Young's modulus

G Shear modulus

11 Moment of inertia of cross section about v axis )

Ky Ratio of average shear stress tc maximum shear stress
P Longitudinal force, defined in equation (4)

Pb Vertical acceleration force applied to the column base
S Shear force on a cross section of column

Sb Transverse acceleration force applied to column base
i Timoshenko shear coefficient

k! Huffington shear coefficient

my Rigid mass attached to column at z=1

T Displacement of center of mass from centroid of column
t Time variable '

u Transverse displacement function

u, Initial value of u

w Displacement of centroidal axis in z direction

x,V,2z Inertial reference (Sec, 1)

p Mass density of column material

o Stress

@ Angle of rotation of cross section due to bending.
SUBSCRIPTS:

i Refers to discrete variables in the =z direction

n Refers to discrete variables in the time domain
SUPERSCRIPTS

Refers to variables which will be iterated



1, INTRODUCTION

This report describes research conducted by the Life Sciences Division of
Technology Incofporated to further describe and understand the mechanism of
vertebral injury resulting from verticali accelevations of the spine. The ‘work
reported was performed during the period 28 June 1970 to 15 Tanuary 19.72,

and represents the concluding effort of a three year program.

Two significant results were accomplished during the reporting period.
The dynamic and static properties of the human spine in flexure were determined
and a complex continuum mathematical model describing the dynamic

response of the human spine was formulated, solved and verified experimentally.

Details of these efforts are presented in a series of discussions, figures,

tables and equations that follow.



2. FLEXURAL PROPERTIES OF THE HUMAN SPINE

A series of tests have been performed on excised human vertebral segments

to determ

mine the static and dvnamic resnnnse of the thoraco-lumbar spire
: ! ar s

when loaded in flexion.. A total of fifteen tests were performed on eleven
specimens. Specimens were obtained from male donors ranging in age frcm
34 tu 60 years. Demographic data pertinent to each specimen and the elap<ed
time between death of the donor and testing of each corresponding specimen
are pres ented&\\;i—ﬁ-'Ta:bl-e«I\ Only spinal segments comprised of lower thoracic
and upper lumbar vertebrae were tested because in aircraft ejection injuries

.

clinical complications in this anatomical region predominate.

2.1 Specimen Preparation

Specimens were obtained at autopsy and consisted of eight to ten
vertebrae, generally in the T7-1.3 region. Although the transverse
processes were transected to remove the ribs, care was_exercised to
keep the ligaments intact since they appear to contribute significantly
to the bending stiffness of the spine, . The ligamenta flava, the inter--

spinous, supraspinous, anterior and posterior longitudinal ligaments

were retained intact,

Specimens vicr=s moistened with physiological saline and :stored in
_0 . ;
tightly sealed plastic bags at 5 C from the time of removal until

approximately 24 hours prior to testing, when they were allowed to
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-0 . . .
equilibrate at room temperature, 22 C. Upon equilibration with room
temperature, curved metal plates, for use as load-bearing surfaces,
were bonded on the anterior surface of two vertebrae of each spinal

segment, These plates were applied as shown in Figure 1.

Precise determination of the anatomical levels and initial curvature
of each specimen were determined from radiographs taken in both

the arnteric-posterior (A-P) direction and laterally.

Test Equipment and Methods

The test equipment used to perform the bending tests is that which
was described in detail in our annual technical report for Contract
No. NAS2-5062 of 28 June 1969 - 27 June 1970.(2)It was noted in
that report that the predominant source of deformation during a test
is attributable to the bending stresses and that
caﬁ be ignored, We therefore concentrated on the pure bending tests

with the objective of defining quantitatively the bending stiffness, EI.

The test fixture used is shown in the photographs of Figures 2 and 3
and schematically in Figure 4. As noted in Figure 4, the loading
fixture for the bending test does not necessarily result in, and the
analysis is nof ‘dependent upon, a symmetrical ivadiiig pa
asymmetrical loading results because the reactionary ivads at points

B and C must be placed on vertebral bodies which are generally not
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symmetrically placed with respect to the end loading points, A and

D. If the loading pattern was purely symmetrical then the central
portion of the specimén between B and C would be subjected to pure
bending and no shear load. The small asyrmmetry of loading does
therefore induce some shear loading in the center span. This force, -

licwever, has been calculated to be insignificant for the test conducted.

Results

The results of the bending Vtesbts are shown in Figure 5, in which the
bending moment is plotted as a function of the changeE in curvature,
More detailed information is bresented in Table II which summariz.es
the specimen number, th.e anatomical level and the average value

of the Bendihg stiffness. An overall average value for EI of 8000 lb/in2

v 3 r .
was obtained from thesc tests.
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TABLE II
Bending Stiffness of Human Spine Segments, in Flexion

Specimen Anatomical Level Flexural Rzigidity
EI (lb/in™)

11 run 1 Ti2-1L5 é,930‘
11 run 2 T12-L5 | 10, 580
11 run 3 T12-15 12,460
12 T6 -L3 6,760
14 T7 -L3 4,950
16 T7 -L3 9,920
17 7 -L3 5, 800
19 T7 -L3 4,980
21 - T7 -L3 13,380
22 ~ T7 -L3 . 9, 580
23 | CT7 -L3 5,660
26 . T7 -L3 ’ 4, 850
27 run 1 | T9 -L2 - 21,000
27 run 2 . T9 -L2 17,500
27 run 3 ‘ T -L2 M 13,600
All Specimens | . 8,000



3. MATHEMATICAL MODEL

The principal effort during the reporting perio-d has been directed

1

toward obtaining & stable, zccurate sclution to the differential equations

that describe the dynamic response of the spine to impact loads. The funda- -

mental assumpfions underlying the derivation of the equations will be reviewed

prior to a presentation of the solution. The terms used in the equations that

follow-are defined in the nomenclature section of this report.

3.1

Derivation of the Difierential Equation

In the derivation of the differential equations, the spine is assumed to
be a homogeneous, isotropic, linearly elastic, tapered beam column
having an initial curvature in a plane. The mass center of each cross
section is assumed not to coincide with the centroid of that cross
secti‘on. Force is applied to one end of the beam column and a con-
centrated mass is assumed pinned to the opposite end. Deflections due
to shear, axial compresion and bending are considered. The axial,
rotary and transverse inertia of each element is incorporated. Gravity

effects are neglected,

If motion is restricted to the piane of the inifial curvature,and if the

beam columrn is initially unsirained, applying Hamilton's principle

results in the following set of coupled, non-linear, partial differential
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The initial conditions are:

AT z‘%o U =

The complete derivation of the differential equationé and bdundry

conditions was presented in Cuarterly Progress Report No. 2,

Contract NAS2-5062.

Nondimensional Form of the Equations

The equations presented in section 3.1 were simplified and made

‘applicable to a.wide range of problems by nondimensionalizing

according to the following relationships,

0

pi

£4

oy,

f’-%:
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where the primed variables aie in dimensional form and the unprimed
variables are nondimensional. Using the preceding relationships in
equations (1) through (4) results in the set of nondimensionalized

equations presented below:

o _ 2w _/r) %8 _ \
oz ~ ¢z (7) 547 T | (7

J?¢ 7L_{_ &(EL) f?ié + (éé;)(df‘)\) /&‘ZI _ &(’(o__ ¢\\__ _{g 5’2?5

oz? | EI, 97 OF 27 oz T 37 TFT 7 72

_( r)(4/2> X% o, )
£\ Z D2
LG o) 2% | 1 2 "’4"’5’)+ A 5(5”>7L oo | s
£ oF? | &4 e B4 oz osz o7

P ks of _ g A4S s 2%, 1 eem) o,
EYE L E4 52 s oF E4 52 27 {9



and

The boundary conditions become
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These equations were solved using finite difference techniques

described in the next section.

3.3 Solution of the Differential Equations

The principal dependent variables of interest are u, w and ¢.
Equatien {10) was therefore substituted into equation (7) and (9)

whicli reduces the set of equations to be solved from four to three,

as follows:
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The equations were then written with terms combined for a particular variable
or combination of variables. Coeificients are enclosed in brackets and

variables in parentheses,
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The boundary conditions become
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To simplify the form and tc reduce the order of the origiral equations

the following new variables were introduced:
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a) o . ' @
T o=
@2 _ W @ _
4 = =z ’ 4 =
@ _ U ®  _
Vo= a2 2 =

‘There are now a total of six variables. Originally, there were only

three equations: Three new equations must therefore be derived.,

The three new equations are

ev® _ ov®

o - ot
2v®  _ ov®
oF EY R
and
s x/f) oy ®
=y -
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Using the variables defined in equations (19), the equations were re-

arranged such that equations 17, 16, and 15 become, respectively:

L 1 (auVlov® - [ov®\ & @ o =
2= 1L [=Xe & = @  65)
[ £ 2 (;EZ ) >z Tl\eE |V TV ’ ” LE—- = |V

2 23 :
e /V@) ooyl s el @V [ Jeda s s e (o)
z ] s L?E o E4 gz 2 E9 JF |2z

Vi r )
_ ( azz(,) SU | & _ | za| / Jkas ov®
- rer - | F - =
D2 | 227 LE Eq4 Iz )

g.= U %
- G’éf’:a o 2 {5 J e = O , (23)
E4 AP o2 £ 2z%

“) l ’ ' ,
i / “4 2 2
& / o/f J V(‘f—') : ,ké‘.- 427 V(é) [Qc, L7 —l 4

OF EL o2 £ 1, LE Z

R 91/(’) o al?| 2v® e af? SUs| _ o (24)
I of L I | o7 e 1, o7 | © ’ ~ | B

and

v, o v ® __[r} ay(’)_[aﬁ-fc "Hj

= [ L
IZ a S= =} 4 > SZ ,,,,,J.



The corresponding boundary conditions are
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(o27cJ

25 - - .
= Sz (27d)
Vg) o (27@)
2o ’ 2 7F
= o  (274)

Before proceeding, it is useful to examine the form of the boundary

conditions and to determine where each variable appears.

is given in terms of $, and hence in terms

At Z2=0:
(4) .
from (26a) \% is known
6
from (26b) V( )
(1 .
of V (refer to equation 19),
(5) . : (6)
from (26¢) A% may be expressed in terms of V and
hence in terms of V ), from above
At Z=1;
from (24d) V(4) is known and from equation (20) we may
. ALy
determine V at  #=1/,



(5) (6

from (26e) v may be expressed in terms of V. 7, V and

(5) (6 (1)

- ¢ and hence interms of V' ', V and V

2 5
from (26f) V( ) is given in terms of V( ) and V

(6)

Thus, 'in effect, V(4), v

' 1) 2 3
at Z= @ =2nd 'v'( ", V( ) and V( ) are known

(5)

and V(é) are known

at 2

It
~

Because the preceding is the form of the boundary conditions, the

following numbering system will be used
1 for V(4), A\

(1)’ V(Z') (3)

"

At Z=0 i

2 for V

[
n

(3)

. 1)
Since ¢, w and u are computed from V , V ) and V', they will

follow the same numbering system.

A general equation with this numbering system will therefore contain

levelsi -1 andi of VM), V(S) (6) and levels i and i + 1 of V(l),

(3)

and V

V(Z) and V

In the approach to the solution, an inspection of the six ecuations to
be solved fequations (20 - 25) and boundary conditions (26a - f),] reveals

(6)

that all non-linearities are directly attributable to the term V This,

therefore, is the only variable that needs to be used at the value of the

3-13



previous iterate.

Next, let F = ¢,v

(6)
the value of V

Y at the pravious iterate

and

6)

X = value of V( at t= 0.

Furthermore, if we call LM the total number of increments, then

LM+ 1 =1, is the total number of points, and L.+ 1 = LP, by definition.

(4) - (5) . (6

If we consider V. ', V' " and V ) to be the Group 1 variables and

NARUMRCUNEES

, u,. w, and F to be the Group 2 variables, then the
number system to be used in deriving the finite difference equations
is as shown in Figure 6 on the following page. The spatial variables

are denoted by the subscript; i, whereas the temporal variables are

denoted by the subscript, n .

If we let 4442 and center the equations at the midpoint as shown in
Figure 6, then iet us write the finite difference equatiuns for the

general index where 3 i SLM. .

Equation (20) becomes

o) ) ) @)
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“) @) '(4) 4)
Vioner = Vin y Vi, mpr — l/_[/:

E: az

N

Now, since J42 = 44 , this expression becomes

— o Es

0] L) @ @) ) o ) . @
-V. . / ==/ - |/ -
Vz., r+i + V(-f/, £l (=fnet  TLnti T GR T l{ V‘":” V‘:”

Changing signs and reordering the equaticon results in

@ ) @ D 4y Ly @
. - V. = Y /.
V‘”; n+s I{:"‘*/ * s N1 Ii,c/, 7t/ l{,n [44/, +V [z,n
Sinlilariy,. we have, for equations (21) and (22)

(5) 2 5> oON @ 02 5) 5)
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New, for equation (25)
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@) @)
Note, on the non-linear term, <[),_y+/ - /'n+/)1s used in placc of

\ . / .
(}f 4 )f ’/ as the coefficient of g3 (/{n(o) V(@ ) . The new iterate
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Now, in considering Equation (23), examine the non-linear terms first.
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Now, to get equation \@3) in finite difference form, combine thesc terms.
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If the boundary conditions are now discretized utilizing the same

considerations as employed above, we have the following
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A table is constructed on the following page which presents the variables present

at the ntl time level for each of the six equations, [(28)(33)], The reason for

presenting the equations in this order (rather than the aorder of their appearance

in the report) will be readily apparent,



TABLE III:

Variables appearing in each equation at the n+l time step.

_Eguaiion {1 . .
28 V(4) . V(li V(4) V(/)
29' y %) | szx\) V(f)v 4 ' | L2
33 A2 :/”7(4’ v y© | e
32 v @y A N | y 5
31 | vE @ v 4/’" pE @ e )
30 @ @ e

Let us now arrange these variables and equations in the order shown in
Figure 7 on the following page, where a zero (0) means that the coefficient
of a particular variable is equal to zero and a one (1) means that the coefficient

of a variable is not equal to zero.

Thus the band width is thirteen. This is consistent since the nature of equations

(28), (29) and (30) fixes the minimum permissible band width at thirteen.

Furtheimoie, Fignre 3 presents the band and shows schematically those
coefficients which do not change with either iteration or time (C), those
coefficients which change only with iteration (L) and those which change with

both iteration and time step (T.).
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The right hand side of each of the six equations changes with the

time step but not with the iteration,

From an inspection of Figure 8 and by recalling that (1) at gz o©O ,

(6) (1) (2 (3)

AR ana v!® are known, and (2) at 2 =/ , V', and V' ' are

known, it is obvious that the finite difference are of a form that is capable

(3)

of solution using an algorithm of the type discussed elsewhere.

Using such an algorithm and iterating three times within each time space

results in a solution which is stable and convetrgent to five significant figures,

(1) (@) _(3) _(4)

5
, VvV vV vV, V( )arid V(é).

The
(6)

The equations are solved for V
1
variables of interest, namely u, w and ¢ may be obtained from V( ) -V
by using the relations established in Equations (19). Furthermore, all
stresses and strains are calculated according to the relationship derived
; (3)
previously.
The solutions obtained using the numerical techniques discussed above have

been verified experimentally, These experiments are discussed in the next

section,

3.4 Experimental Verification of the Solutions

Au experimeontal program was designed to check the accuracy and
adequacy of the solutions to Equations (1-4) and boundary Equations

(5-6).



A beam of low density polyethylene was fabricated having the same
taper size and initial curvature as that of a representative human
(4)

spine, The bottom end was mounted in a pih joint fixture such

. that the applied moment at the inferior end was zero,

The beam was instrumented :,vi_’fb strain gages in the. approximate
anatomical levels of 1.3 and T7. Accelercmeters were monnted
on the base and at the superior end of the beam, The entire beam
and’ support fixture were mounted on the acceleration carriage of
the HYGE shock tester, Thg test arrangement with strain gages

and accelerometers positioned is shown in Figure 9,

The output from the strain gages at L3 and T7, and from the
accelerometers a2t the inferior and su\.périor ends of the beam were
comp'ared with the theoretical predictions from the mathematical
model of the same beam. Figure 10 shows the input acceleration

applied to the base of the spine., Figures ll - 14 present the

comparison between experimental results and theoretical predictions

An inspection of Figure 11 - 14 demonstrates that the qualitative
agreement between theory and experiment is quite good. Consideri-ﬁg'
that the evperimental program was performed very rapidly and that

it was a secondary considerafcion to the overall objective of this
project, the quantitative. agreement is also quite good. To-

check the quantitative predictive capability of the model, it is
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3.5

believed that a more precise, more complete experimental pro-

gram should be considered,

Considering the constraints mentioned above, the experimental

" results offer excellent support to the theoretical predictions of -

the model.
Conclusions

When the results of section 3.4 are considered, it is concluded
that the model derived and the solution effected are su_fficier:t
to predict the response of tapered, curved beam _colufnns.
Additional parameterization of the spinal tissue is {.;:robably
required before the model can be applied with full confidence to
predict injury of the spine, Experiments correlating model
predictions with measured dynamic response of either primatés

or humans is now required to determine the limits of applicability

of the model,
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