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FOREWORD

This final report pre sents the re sults of a four-month

preliminary design study performed by MBAssociates under contract

to NASA Manned Spacecraft Center (MSC). Mr. Richard Davidson was

the MSC Program Technical Manager, Mr o Donald F. Adamski, the

MBA Program Manager and Mr. James Cooper, the MBA Project

Engineer. MBAssociates was the overall systeln designer and

integrator. Perceptronics, Inc. and Control Data Corporation:

under subcontract to MBA, were responsible for man-machine

interface, supervisory computer control system and head-aimed

foveal TV system support, respectively. Hamilton Standard Division,

United Ai.rcraft and Garrett Corporation, AiResearch Manufacturing

Division contributed generously of their time to provide technical

support and background information on environmental control, life

support and power supply systems. In addition, MBA consultants,

Messrs. Kentner Wilson, Carl Flatau, Robert Rmnble and Dr. William

Gerberich contributed significantly to this effort.

The study was divided into two phaa es. Phas e 1 consisted

of concepts development and selection. Phase 2 consisted of further

analyses and refinement of the design selected in Phase 1 and of simula­

tion studies in certain critical control and viewing system areas.

The Final Report consists of four volume s as follows:

Volume I

Volume II

Volume III -

Volume IV -

i

Management Sumnl.ary ....

Concept Developlnent and Selection

Concept Analysis

(Part I - Technical)

(Part II - Estimated Development
Program)

Simulation Studies



A detailed pre sentation to NASA MSC ofol concepts develop­

ITlent and selection was given at Houston, Texas on 30 August 1971.

Presentation Aids for that briefing are given in MBA Doculnent
. .

MB-R-71/85. VoluITle II of this Final Report does not present all of

the inforITlation given at the briefing, but instead sUITlITlarizes all of

the iITlportant eleITlents of that briefing. SiITlilarly, a final report sUITlITlary

presentation to NASA MSC was given by MBA at Houston, Texas on

3 DeceITlber 1971. Presentation Aids for that briefing are given in MBA

DocuITlent MB-R-71/107. VoluITle III contains all of the inforITlation pre­

sented at the final report briefing, including a de scription of the

final preliITlinary design and the design analyses and tradeoff studies

leading to finalization of the design.
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1.0 SUMMARY

A preliminary design has been established for a general

purpose luanipulator system suitable for docking, cargo handling,

assembly and maintenance operations in support of space shuttle and

space station mis sions. The luanipulator can be used interchangea bly

on the shuttle and station and can be transferred back and forth between

them. Control of the manipulator is accomplished by hard wiring from

internal control stations in the shuttle or station. A variety of shuttle

and station manipulator operations have been considered including

servicing the Large Space Telescope; however emphasis has been

placed on unloading modules from the shuttle and assembling the space

station. Siluulation studies on foveal stereoscopic viewing and manipula­

tor supervisory computer control have been accomplished to investigate

the feasibility of their use in the manipulator system.

The basic manipulator systenl consists of a single 18. 3m.
(60') long, 7 degree of freedom (DOF), electrically actuated main boom

with an auxiliary 3 DOF electrically actuated, extendible 18. 3m (60 1
)

maximum length, lighting and viewing boom. A 3 DOF orienta r as sembly

is located at the tip of the viewing boom to provide cam'era pan, tilt and

roll. Primary viewing is accomplished with a black and white and color

stereoscopic, foveal, zoomable TV system. Direct viewing is used as

a backup where possible. TV cameras and lights are mounted on the

main boom, the auxiliary boom and on the space station and shuttle.

The main boom can exert a tip force of 111 Newtons (25 lbs) at which a

tip deflection of O. 142m (5.6") occurs for the boom fully extended

(straight out). The main boom actuators incorporate slip clutches

to prevent actuator /boom overloads. The main boom is symrnetrical

about the elbow and consists of two 8. 15m (27') long arms each having

identical 3 DOF, 1m (3.29') long wrist assemblies. The boom can

1



be operated froITl either end and is capable of walking end-over-end

froITl one root point to another. Root points are located strategically

about the station and shuttle so that the desired working envelopes

can be accessed for cargo handling, asseITlbly, repair and ITlaintenance.

The end connectors on the ITlain bOOITl plug direct~y into the root points

so that no special end effectors are required for station as seITlbly and

cargo handling operations. The basic ITlanipulator systeITl weighs approx­

iITlately 421 kgITls (930 1bs). Additional bOOITl and general purpose and/or

special purpose end effectors can be added as required for other operations.

It is estiITlated that development of the basic ITlanipulator systeITl including

delivery of one qualification unit and one flight unit, but without including

ground support equipITlent or flight te st support will require $17. 4xl 06

(+25%).

This study was divided into: Phase I "Concept Deve10pITlent

and Selectionl'and Phase II "Concept Analysis l
'. Initially the study objective

was to establish a preliITlinary de sign for a space station cargo handling

and docking systeITl. However, it becarne evident during Phase I that high

cOITlnlOnality existed between the requireITlents for a space station manipu­

lator system and those for a shuttle ITlanipulator system, and that potentially

large savings in overall developITlent and operational costs could be realized

if a ITlultipurpose interchangeable systeITl was designed suitable for both

applications. The study objective was ITlodified accordingly.

The results of Phase I are briefly sUITlITlarized in Appendix

5. O. The results of Phase II are sUITIITlarized in Sections 2.0 through 4. O.

A sUITlITlary of the systeITl weights and iITlportant weight trade-offs is

presented in Appendix 2.0 and a sumITlary of how the systeITl ITleets the

specified requireITlents is given in Appendix 3. O.

2



2..0

2.. 1

CONCEPT ANALYSIS

General Background

The initial objective of this study was to establish a prelim­

inary design for a space station assen~bly and cargo handling system.

However, it became evident during the concept selection phase that both

shuttle and space station applications should be considered simultaneously

because of the high degree of commonality and resulting development and

operational cost savings that could be achieved. The possible commonality

is as follows:

Common Elements

Manipulator Booms

General Purpose End Effectors

Control and Display

Data Proce s sing

Telemetry

Dedicatee} Ct)iTI.pUtcl'"S

Control Station Design

Different Elements

Crew Capsule

ECS/LSS

Emergency Systems

Special Purpose End Effectors

A considerable effort was ,therefore devoted to optimizing

commonality during both concept development and selection and subsequent

analyses and refinernent of the selected concept.

Space station as sernbly and shuttle cargo handling tasks were

given emphasis in the concept analysis because they involve:

• Shuttle berthing (cooperative berthing of a large mass

[ 113, 5 00 Kg (2. 5 0, 00 0 I b s )] ).

ell Transferring the nlanipulator boom back and forth between

the shuttle and station (in terchangeability).

3



o Operation (con trol) of the boom from both the shuttle and

station (common cont"rollers and displays).

G Station as sembly (a complicated task involving unloading

the shuttle cargo bay and assembling the station modules).

o Cargo handling (transfer, handling and berthing of large

[4. 27m (IS') dia x 17. 2m (40') length] high mass [11, 3S0 Kg

(2S, 000 lbs) objects].

Consideration was also given to manipulator operations

and supporting equipment required for the first ten (10) shuttle luis sions.

Some of these rnis sions involve only simple deployment and retrieval of

small [less than 4S0 Kg (1000 lb)] passive satellites such as the Meteroid

and Exposure Module. Others involve sophisticated retrieval, refurbish­

ment and redeployment of fairly large [',...4S00 Kg (10,000 lb)J satellites

such as the Large Space Telescope (LST). LST refurbishment will require

special purpose end effectors which can unlock, remove, replace and re­

lock equipment and experiment modules. The basic manipulator systern

which has been selected can accon""lplish all of the desired space" station

and shuttle based tasks considered by use of proper end effectors and

auxiliary devices.

A cruciform space station and the 040A shuttle were used as

reference configurations for the detailed manipulator system analyses.

Their configurations and n""lass properties and a reference berthing port

are presented in the appendix 1. O. Since the shuttle and other scientific

satellites will be developed and deployed prior to development and deploy­

ment of the space station, estimates of the manipulator system developn""lent

program have been phased with and are based on the shuttle development

program.

4



2.2 Selected Concept and Ground Rule s

The basic concept selected consists of the following:

Gi A single, 7 degree of freedom (DOF) symmetrical boom

which can be used interchangeably on the shuttle and

space station;

(} An integral control station internal to the shuttle

and station respectively with common controllers and

displays in each;

G A dedicated auxiliary boom used for lights and viewing

cameras;

o A stereoscopic, foveal, black and white and color tele­

vision viewing system capable of providing Inanipulator

operation without direct viewing in both sunlight and

earth shadow condition; and

o A hard wire telecommunication systetn.

Auxiliary end effector sand othe r booms and supporting equip­

ment can be used as required depending upon details of the particular

mission involved.

The ground rule s specified for the analysis and prelim.inary

design of the selected manipulator system were as follows:

Q The boom diameter shall be equal to or less than

22.9 cm (9 11
).

o Aluminum alloys are to be used for the boom structural

material, although other light weight metals such as

titanium should be considered.

(,) No separate manipulator power systeln is required; i. e. ,

the shuttle or station power system can -be used.

5



2.3

o Time sharing of the shuttle and station computers is to

be considered.

o The root points for the manipulator boom on the space

station side modules must be located at the ends of

the modules.

o The weight of the root points and as sociated wiring

required at various locations around the space station,

shuttle, cargo modules, etc. will not be charged against

the manipulator system.

o The weight of the total basic manipulator system shall

not exceed 454 Kg (1000 lbs), including the control station.

The ba sic system does not include general or special purpose

end effectors, but must be capable of performing space

station as sernbly, shuttle berthing, cargo handling and

berthing and simple satellite deployment and retrieval.

() Genera] 3.nrl spedal purpos~ end ~£fectcrs ~?.y be CC!1-

sidered for accomplishing complicated and special purpose

tasks.

G Space station and cargo modules [II, 350Kg (25,000 lbs)J

are to be used as the design drivers on the manipulator

boom design. The manipulator is to be designed for shuttle

berthing, but the shuttle mass is not to be used as a design

driver since the shuttle control system can be used to reduce

the shuttle relative velocity low enough so that the kinetic

energy to be absorbed in berthing the shuttle is less than

that for berthing cargo or station modules.

System Description

The basic manipulator system is illustrated schematically in

Figure 1 and it is shown in more detail in preliminary de sign drawing s

0053ES0689, 0053ES0690; 0053ES0691, 0053ES0692, 0053ES0702 and 011432.

(See Appendix 4. 0 for 8 -1 /2xl1 reduc tions of the se drawing s). Table 1

presents a weight breakdown of the major system com.ponents and Table 2

summarizes the boom design parameters. An effort was made to

6



FIGURE 1"
SCHEMATIC PRELIMINARY DESIGN OF MSC APPROVED MANIPULATOR SYSTEM

Be
310
310

620 (Ibs)

AI
620
310

930 Ibs

" State of the Art
@ Hard Wired

i elecommunication

Boom
o Single 7 DOF
o Electric Actuators
o Aluminum (Be)
o Walking
o F =25 Ibs @ 6 =5.6"

= 2,,0 fps Unloaded

= 0,,8 fps @ 25,000 Ib Load

?ystem Weight

Boom Mat.
Boom Wt.
All Other Wt.

Total Wt.

IBasic Systeml

o Single Working Boom
o No End Effectors
o Internal Control Sration

o Main Boom
- Computer Assist
- Scale Model/Time Transform
- Position & Rate Control
- Force Reflecting At Wrist

GDexterous End Effector

-Computer Assist
-Position - Position Force

Feed Back

Viewing System

o Stereo Foveal
o B & Wand Color
o Dedicared Boom
G Panel Display
o Direct (Back Up)

Control



TABLE 1

BASIC MANIPULATOR SYSTEM WEIGHT SUMMAR y*

(Kg) (lbs)

Com.ponent

Dedicated Viewing Boom.
(with TV Cam.era & Lights)

Main Boom

Actuators (7)

Clutches (7)

End Connectors (2)

Tubing

Power System. (1)

Control System. (1)

TV System. (2)

Control Console

TOTAL

Com.ponent Subtotals Com.ponent Subtotals

.. 53 117

281 620

105 231

16 35

18 39

142 315

2. 3 5

2. 7 6

37 82

4S 100

421 930

>:< Based on Al as the prim.ary boom. reference structural m.aterial. It is

estim.ated that the boom. weight could be reduced to ~ 141 Kg (310 Ibs) by

use of Be
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Fundamental Period - Fully Extended Boom

Load (1)Configuration

7 DOF

Symmetrical

Walking Type

Identi col Electri c Actuators

Mass Properties

None

Station Module

Cargo Module

Mini Shuttle

Large Shuttle

Weight (Ibs)

o
25,000

65,000 Max

150,000

250,000

Period (Sees)

Bending Torsion (2)

2.0 0.04

23 8

38 20

50 61

65 110

A16061-T6

Length = 60'

Dia. = 9"

(1) Load Attached @ CG

(2) ·'-orsion in yaw for payloads

Thermal Dis,tortion

TABLE 2
SUMMARY OF BOOM DESIGN PARAMETERS

f = 0 1
Shield to Boom •

+
Max Deflection = - 1.4 in+

Max Deflection = - 14 in

~-Ia-c-k-S-u-rf-a-c-e--------W-i-th-T-h-e-rm-al-S-h-i-e-ld---

LTim: Constant ,.....5 min

I.!p_;~pe::lcls

u (unloaded) = 2.0 fps

u( 25,000 Ibs) =0.8 fps
'kActuators OK to ~ 50 lbs

Load Capability

Tip Force* = 25 Ibs @ r=5.6"

Bending Stiffness = 4.6Ib/in

Torsional Stiffness = 9.8 in-Ib/deg

Thi ckness = O. 19"

Weight

Tubing 316

Actua tors 231

Clutches 35

Connectors 39

621 Ibs



make all components except the boom as light as possible and then to use

the remaining weight balance ,for the boom in order to obtain the best com­

bination of large tip force and small deflection. However, as can be seen

in Table 1, the entire 454 Kg (1000 lbs) allowance was not used since

a tip force of III N (25 lbs) with a deflection of only 14.2 cm (5. 6 11 )cQuld be

achieved and it was believed that a weight margin should be provided to

accommoda te weight growth as components are better defined by detailed

design. The boom and actuators are capable of exerting a tip force of

approximately 222 N (50 lbs) but the deflection would also double to 3:' cm

(12"). A 14.2 cm (5.6 11
) deflection was assurned as a reasonable limit on

deflection since the anticipated allowable berthing misalignment is + 15 cm

(6"). Aluminum was selected as the reference boom structural material

with beryllium (or a berylliUlTI alloy) as a strong potential candidate.

Except for beryllium, an aluminunl alloY,tube can be made as light (or

lighter) 'than other candidate light weight metal alloys for the saIne boom

diameter, length and tip deflection since the bOOlU is deflection rathel"

ity of reducing the boom weight by a factor of ",2; however, berylliulll is

very crack sensitive and its use depends ,on detailed design analysis in con­

junction with fatigue/crack sensiti~ity testing.

Similar electromechanical actuators were selected for all

joints of the rnain bOOlll since a single actuator concept could be configured to

fit within the required envelopes and provide the rotation necessary for

all joints. Use of a common actuator type will reduce development and fabri­

cation costs, enhance reliability and SilUplify logistics. The selected

actuator concept is illus trated in Figure 2. It consists of two direct current

motors each driving a separate gear box and differential gear. Torque is

transmitted from the output side of the differential gear to one member

of the joint through a multiple disc clutch. The clutch slips if the boom

is forced beyond the set torque limit of the actuator and also may be

disengaged if one of the drive motor / gear trains should fail. The joint

position encoder is located on the boom side of the clutch so that joint

position/ registration is not lost if a clutch slips (see Drawing 0053E80690

10
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Appendix 4.0 for further details). It should be also noted that when a clutch is

forced to slip by overloading, it beconles an effective energy dissipating device.

The booln is s yTI1n1etrical about the elbow and has a total of

7 DOF's - one at the elbow and three at each "wrist" assen1bly. The

arn1S of the boon1 are 8.15 n1 (26.4 1
) long and the wrists 1 n1 (3.24') long

for a total length of 18.3 n1 (60 1
). The boon1 kinen1atic arrangen1ent is

shown in Figure 3. The elbow and nearest wrist joints are arranged

with their axes parallel so that the joint n1otlons all lie in the san1e plane.

The elbow joint is arranged so that the f">OOn1 can fold back on itself. The

n1iddle wrist joints are pivots whose axes are perpendicular to the above

axis and the wrist elen1ent. The outern1ost wrist joint has its axis parall­

el with the wrist elen1ent and provides wris troll.

The boon1 joint configurations have been selected in accord­

ance with five rules developed in this study based on past experience with

a variety of n1anipulator designs. These rules are smnrnarized in Appendix

6.0 in this volume and are discussed in detail in Vohnne II "Concept Selec-

The end of the wrist ternlinates in a connector that fits into

and locks with a root point. Space station or shuttle power is used to

power the n1anipulator. All power, control signals and television signals

are transn1itted to the bOOn1 through Inating electrical connectors i.n the

root point and bOOn1 end connector. The root points and end connectors are

illustrated in Figure 4.

The boon1 n1ay be operated fron1 eithe l' end. During norn1al

operation, the n1iddle "shoulder" joint is locked and used only as an in­

dexing joint. The bOOn1 controls are arranged such that the boom always

looks the san1e to the operator, no n1atter which end is plugged in. The

boom can move about the space station or shuttle or can be transferred

back and forth behveen the shuttle and station by walking "end -over -end l !

fron1 one root point to another. Proper connection to the '!new ' ! root

point is always confirn1ed before the old one is released.

12
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FIGURE 3.
KINEMATIC ARRANGEMENT OF SELECTED SYMMETRIC
BOOM-JOINT CONFIGURATION
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Boom Wiring Harness
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Power for actuators, lights and cameras is transmitted through

the boom on a bus. Power amplifiers, A-D converters and buffers for each

actuator are co-located with the actuator. Control and monitor signals are

transm.itted by a parallel wire, pulse code m.odulated system.. Television

signals are transm.itted in analog form. through coax cables. The m.axim.um.

power requirem.ent of the m.anipulator system. is approxim.ately 2 Kws.

The visual system. has been designed for a broad spectrum of

tasks ranging from. simple cargo m.odule handling (for which a m.onocular

single field TV system. may be adequate) to precise, dexterous repair tasks

(for which a stereo, high resolution TV system. is required). The system.

consists of two cam.eras m.ounted on the m.ain boom., a single carnera m.ount­

ed on the dedicated vie'wing boom. and sm.all auxiliary cameras located

strategically about the station or shuttle as required. The cam.eras on the

m.ain boom. and dedicated viewing boom are stereoscopic, foveal systelus

which can display in black and white for normal operation and color (by use

of a color wheel) for inspection. These cam.eras also have automatic focus

and convergence and a contj."olled zoom capability. ~~ ·1 .

1 nc auxlllary carrleras

are small [,...,2 Kg (5 lb) including illum.ination lights], black and white only

and have a variable field. The boom. ca:t;neras each have three 500 watts

incandescent lights which may be used singly or together. The auxiliary

cam.eras have a single 500 watt incandescent light. The viewing boom. is

a light weight extendible astrom.ast type boom having three locator and

three oriental' DOF IS. The locator DOF I S consist of two shoulder joints

and the boom extension. The three oriental' joints are at the distal end

of the boom and provide pan, tilt and roll motions for the cam.era/light

assem.blies. The viewing boom. has a shoulder end connector which m.ates

with the m.ain boom. root points. The viewing boom. also has a root point

on its side near the shoulder so that the m.ain boom m.ay m.ove the viewing

boom. to desired root points.

The m.an /m.achine interface (control station) has been designed

for m.aximum. cOlum.onality between the shuttle and space station. Direct

viewing will be possible for many shuttle/m.anipulator operations whereas
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the station may have no direct viewing capability. With the exception of

providing for direct viewing on the shuttle, it is desirable to have ident­

ical control console layouts to minimize -operator training and confusion.

The shuttle crew compartnlent is more confining than the space station

crew module. Thus, the approach used was to layout the control console

within the shuttle constraints, to take advantage of the direct viewing pos­

sible on the shuttle and to provide panel video displays satisfactory for

precise, dexterous tasks. The physical layout of the manipulator control

station in the 040A crew compartment is illustrated i.n Figure 5. The

manipulator controllers and the control panel layout are shown in Figures

6 and 7 respectively. One primary display and two secondary displays

may be displayed simultaneously. Furthermore, the operato.r

may switch different cameras into each of the several displays. Control

of the primary cameras is achieved by an occulometer type eye controller

us ing coded signals. Several control modes are used for the main boom

depending on the task involved, but for all except ernergency operations,

control is achieved through a computer.

For capture operati.ons, the boom is preset to a desired pre­

liminary capture confi.guration. The viewing cameras are then oriented

so that the scenes presented on the .consoie displays are placed 111 a pre­

ferred orientation relative to the operator x-y-z. frame of reference. He

then controls the boom with the right hand 6 DOF controller in an end

point rate control mode. He moves the controller in an x~y-z COordinate

system relative to his display and the computer performs a coordinate

transformation to drive the boom tip and wrist assembly in accordance

with his commands. The 3 wrist joints (orientor DOF IS) have force re­

flecting feed back to provide operator feel for engagement of the captive

socket. The maximum relative capture velocity has been specified as

.122 m/sec (.4 fps). The boom actuators have been designed to drive the

tip at 5 times [.61 m/ sec (2 fps) ] the maximum capture velocity in order

to readily outmaneuver the capture object.

For gros s translation operations, the operator us es the small

scale model controller and a similarly scaled model of the shuttle/station/

16
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Note: Master Controllers Have x,y,z,e,rfJ,-r Movement Capability.
Additional Functions Can Be Provided By Button Actuators
On Grip.

~
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Master Controller
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Boom Con ho II er

FIGURE 6.
LAYOUT OF MANIPULATOR CONTROLLERS
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payload configuration. He first lays out the models in their proper rela­

tive orientations for the beginning of the operation. Then he moves the

model boom through a trajectory to the desired end point configuration.

The model boon! joint histograms are recorded by the computer, smooth­

ed., checked for collisions with obstacles and optimized if desired. When

the computer indicates that all is ready, the operator can command ex­

ecution of the maneuver which is then done by the computer. Feasibility

of this control technique was demonstrated by simulation studies with a model

controller, a computer and MBA I S Naval Anthropomorphic Teleoperator

(NAT) mechanical arm. (See Volume IV liS imulation Studies "). For final berthing

operations, the operator controls the boorn in a rate control H10de s irnilar

to the capture operation des cribed above. For operation of a dexterous end

effector, the operator will use both 6 DOF controllers in an end point wrist/

grip as s embly, pos ition-pos ition bilateral force feedback control mode. As

in the cas e of the capture operation, he will orient his primary viewing cam-

era to obtain the desired field-of-view and work scene orienttation. He can

then move the controllers in an x-y-z coordinate system relative to his fran1e

of reference and the cOlnpuLer will do the necessa.ry coordinate and force

transforn1ations to provide the des ired bilateral motions and force feedback.

A single 6 DOF controller can be used for operation of other speci.al purpose

end effectors in a n1anner similar to boom capture and berthing operations.
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2.4 System Utility

Table 3 summarizes the utility capability of the basic

manipulator system and of this system with special end effectors and

auxiliary devices. Many tasks can be accomplished with the basic man­

ipulator (which includes no end effectors) by the simple expedient of

configuring the attachment point(s) on the objects to be handled as a

standard manipulator root point. Satellite deplo~ent can be accomp­

lished with the basic system and the power and parallel PCM data busses

can be used for final satellite checkout and activation during such deploy­

ments.

Special end effectors are required for satellite retrieval;

i.e., it is better to use a grabbing type (claw) fem.ale end effector than a

male expanding type (the boom end connector) to minimize "pushing' I the

satellite away during capture. The station maintenance, repair and pro­

pulsion package replacement can be accomplished with a single boom and

appropriate end effectors by using station root points as transfel' and

holdine recepta.cles. For more complicated !;2.sk= ~·eql_,-i:!.'i~:.~ ':!e~te!"ous,

force reflecting end effectors, the end effectors can be equipped with

special grapling anns to provide the platform stability (rigidity) required

for accomplishing the task.

Satellite erection, servicing and resupply tasks require an

auxiliary device on the shuttle to hold the satellite as well as specialized

end effectors on the main boom for accomplishing the task. If the shuttle

is equipped with a berthing port it might be used as the holding device

or a rotating turnstile might be attached to the part to hold and position

the satellite. In some cases, such as servicing the Large ~ace :!:elescope

(LST) it is desirable to hold the satellite away from the shuttle to avoid

possible contamination of the optics by outgassing from the shuttle. An

auxiliary boom or self -erecting scaffold could be used for this purpose.

It is also of interest to note current plans for the LST resupply call for a

force of-"" 908 Kg(2000 Ibs) to extract and re -install service and experiment

modules. It is not practical to design a boom to provide such a force, how-
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TABLE 3

SUMMARY OF MANIPULATOR SYSTEM UTILITY

CONFIGURATION POSSIB LE TASKS REMARKS

Basic System (single working
boom without end effectors)

Shuttle Berthing Manipulator Root Points Used as
Station Assembly attachment point on all objects.

Bulk Cargo Transfer(Cargo Modules)
Satellite DeploY1nent

N
N

Basic + End Effectors

Basic + End Effectors +
Auxiliary Devices

Satellite Deployment and Retrieval
Station Maintenance and Repair
Propulsion Pack.age Replacement

Satellite Erection(i. e. , solar panels)
Satellite Service and Resupply

Claw type end effector preferred
for satellite deployment and required
for satellite retrieval.

A second working boom could be
used as an llauxiliary device"



ever it can be accomplished, with the proper type of end effector as de­

scribed below.

No exacting task times were either specified by NASA or

derived during this study. A general rule was used that a task, or major

elements of it, should be accomplished in a time equal to a half orbit

period or les s, to minimize variations in illumination.

Boom tip forces of 4. 54Kg (10 lbs), or even les s, are ade­

quate to translate and orient cargo modules (the specified design drivers)

in times of like 10 minutes or less. If berthing, deberthing and other man­

ipulative tasks could be accomplished with such low tip forces, there would

seem to be no requirement for lar ge force levels. However, it is diffic­

ult to predict possible friction or jamming effects which may arise during

berthing, deberthing, or other object mating or extraction operations.

Thermal distortion, vacuum welding and emergency situations may also

require occasional use of high force levels. Therefore, the approach

used in the present design study was to achieve as large a. force level as

possible consistent with total system weight limits and reasonable boom

deflection even though specific (large) force requirements could not actual­

ly be identified in the utility analyses. Furthermore, by emphasizing a

maximum practical tip force capability, the reliability/utility level of

the bOOIn can be increased. In the event of failure of one of the two ac­

tuator drive Inotors, the booln can still operate at acceptable force levels

(1/2 of maximum) at that actuator. It should also be noted that the non­

backdriveability of the actuators (a consequence of friction at the large

gear reductions required) allows actuators with such a failure to sustain

full design loads if the actuator is not active (driving).

Specific manipulator operations, end effectors and auxiliary

devices for station as sembly and maintenance and LST servicing are

presented below. Additional considerations of Utility, including pos sible

shuttle root point locations and viewi.ng windows, are presented in Volume

III, Section 6.0 "Technical Discussi.on".
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2.4. I Servicing the LST

Possible luanipulator root point locations on the shuttle are

illustrated in Figure 8. A rotary root point extension can be used

to swing the shoulder from a side located storage position to a raised

vertically centered operating position. (It would be out of the way of both

the luanipulator and space vehicle operator's view in this location.) Two

additional fixed root points are located, one midway down the cargo bay

(in the fixed door sills which are exposed when the cargo doors are swung

open) and, the other, on the aft bulkhead•. Su·ch an array provides com­

plete mobility around the cargo bay to better access work areas.

Figure 9 illustrates the use of the above root point array,

an auxiliary scaffold (mast) and a special purpose end effector to exchange

modules on the LST. The LST would be retrieved by the manipulator boom

and placed on a rotate..ble pedestal on the end of the auxiliary mast. The

mast would be located in the aft region of the bay to place the LST in a

The LST would be held as £?!' as P08 ~j1:-J.f-'
<

away from the shuttle to minimize contamination of the optics caused by

shuttle outgassing. The boon1 would be transferred to the nJ.id bay position

to obtain better accessability to the LST modules. The special end effector

is configured to latch on to a module and at the same time engage actuators

with the module fasteners. The actuators can provide the large force re­

quired to release (and re-fasten) the modules from the LST without placing

loads on the boom. When the module is released, the boom would extract

it, place it in the storage rack and re-insert a new module. Direct viewing

is indicated, however, a simple TV camera may be required to facilitate

aligning and latching the end effectors on the modules.
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2.4.2 The First Ten Shuttle Missions

Table 4 summarizes the first 10 shuttl.e mis sions and the

possible manipulator requirements. The LST mission described above

represents shuttle rrlis sion #6. The first mis sion, deployITlent of the

meteoroid module (an inert gravity gradient stabilized satellite) can be

deployed by use of a simple claw type end effector. Mission #2 is unknown.

Mission #3 would use the equipment described above for the LST. However,

the LST mirror test unit would be carried to orbit by the shuttle as indicated

by the dotted line cargo in Figure 9. Mis sion #7 would require a large

claw which mayor may not be the same as Mission #1. Missions #8 and #10

will not deploy or retrieve any satellites. Mission #9 might use the same

claw as Mission #1. The visual requirements have not been examined in

detail but it is anticipated that at least a single field, Inonocular, black

and white TV camera will be required.

Space Station Assem.bly and Maintenance

Figure 10 illustrates the assembled space station including

the .::::ore luodule, solar array pov/er lTIodulc, ercv,,' side n1.odules, cargu

modules and air locks. Also shown are typical Inanipulator root points:

5 on each side Inodule, 4 on the core In9dule, 2 on the power module and

2 on the air locks. The nlanipulator is shown perforIning a repair opera­

tion on the solar arra y to illustra te the Inobility and reach achieved by the

root point array/walking boom.. concept.

A scale Inodel of the space station Inodules and the shuttle crew

cOInpartInent/ cargo bay were Inade to study Inanipulator kineInatics and

station as seInbly techniques. The photographs in Figures 11. 12, 13,

14 and 15 illustrate the way in which the manipulator can be used for

station asseInbly and Inaintenance. Note the root points used for each

Inodule. The Inanipulator would be carried with the shuttle until the

station is Inanned (after the station control/crew Inodule is attached).

Thereafter it would reInain with the station.
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N
00

Mission Purpose No. or Manipulator End Effector Auxiliary Comments
No. 800:"5 Required Type Equipment

1 Deploy Meteoroid One Claw Type None None
Module Hand Grip

2 DOD Mission Unknown Unknown Unknown Mission Type Unknown
-

3 large Space Telescope One Module Holder Astromast Manipulator And End
Mirror Test Re Jease/Fasten Support Effector Only Needed To

Mechanism Structure Practice Mission 6
-

4 Deploy Astronomy hplorer One Same As None None
Retrieve Meteoroid Mocule Mission 1

5 Deploy One Same As None None
HEAO - D Mission 1

6 Visit Intermediate One Same As Some As None
large Space Telescope Mission 1 & 3 Mission 3

7 Depl.oy/Retrieve One Large Clew None The large Clcw Will Make
Bioresearch Modules Satellite Capture Easier

8 Infrared None None None None
Telescope Sortie

-
9 Systems Test One Same As None None

Satellite launch Mission 1
-

10 Earth Observation Sortie None None None None

-

TABLE 4
FI~ST TEN SHUTTLE MISSION5 ~ MANIPULATOR REQUIREMENTS SUMMARY
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Figure 13 shows the crew module being 'manipulated using

the outer root points. Figure 14 shows a side module being manipulated

using an inner (forward) root point. The utility and mobility of the manipu-,

lator are enhanced by having root points at each end of the modules. It

should also be possible to use the root points as cargo tie-down points for

transporting the modules in the shuttle. Figure 15 illustrates the way

in which the boom can walk around the station for inspection, maintenance

and repair operation.
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2.4.4 Shuttle Capture

The ground rule (see Section 2.2 "Selected Concept and Ground

Rules") for shuttle capture is to: (1) accomplish "capture l ! at a relative

shuttle / station velocity of • 12m/sec (0.4 fps); (2) allow the shuttle ACS/

propulsion system to reduce the relative velocity to O. 03~/ sec (0. 1 fps)

by using boom position and rate information fed into the shuttle control system

(i. e., the boom is allowed to "float l
') and; (3) complete shuttle arrest from

O. 03m/sec (0.1 fps) by use of manipulator forces.

Several approa.ches to shuttle capture within the above ground

rule can be taken. The reference approach is to mate the boom end con­

nector directly with a root point on the shuttle. As soon as the boom is

connected to the root point, boom position and rate data can be fed into

the shuttle control system. This approach will require a degree of oper­

ator skill and a fast acting connector actuator.

A second approach is to use a special,quick grasping end effector

and G:. ccmp3.tible shuttle root point as shown in Figure 16. As soon as

the end effector grabs the ball shaped segment of the root point, the boom

position and rate data could be transmitted to the shuttle via a free space

RF or Laser data link. When the shuttle velocity is reduced to .03 m/ sec

(.1 fps), the end effector would 'Ipull itself" to the root point to assist in

Dlating it with the boom end connector.

A third approach is to use a laser ranging and tracking radar /

coupled with a laser free space data link to provide the shuttle with the

necessary position and rate data relative to the shuttle. When the shuttle

velocity was reduced to 0.03 m/sec (0.1 fps) the capture and arrest could

be made with the boom as in the first approach above.
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FIGURE 1601
SCHEMATIC SHUTTLE CAPTURE QUICK GRASP END EFFECTOR

(b) After Capture, Speed Arrest
And Then Connector Hook Up

(a) About To Make Quick Capture



2.4.5 Component/Tool Tote Box

If the boom is to do other than transfer /berthing operations,

(such as replaceing/repairing components on the station or perhaps even

a satellite) a means for carrying and accessing such components and nec­

es sary tools is required. This can be accomplished with a tote box such
I

as illustrated in Figure 17. The tote box itself is illustrated in Figure

l7(a). In essence it is a modular extension of the boom which has storage

bins and quick, twist lock connectors for attaching and carrying a variety

of devices. A standard passive root point is on top and a standard active

boom end connector is on the bottom of the box. To use the tote box, the

free end at the boom is connected to the box root point and the box loaded

with the parts and equipment required for a particular task. The boom

can then walk end-over-end until the tote box end of the boom is connected

to the desired working root point. The bOOlTI can then acce s s or store

parts on the box as shown in Figure l7(b) to accomplish the task.

2.4.6 Dexterous End Effector

No attempt has been made to design a dexterous teleoperator

end effector (TOEF) in this study; however, a schematic unit is illustrated

in Figure 18. It incorporates the dual field, stereo-foveal/3 lamp camera

and illumination assembly described in Section 2 0 3 "System Description l' •

It is not likely that the boom would be steady enough for many tasks with­

out some support of the tip at the work area. The two grapling arms shown

on the TOEF are for that purpose. When they are used in combination with

the boom and all are 1Jlocked Upl', the TOEF sho'lld be quite steady.

A small tool storage bin is indicated in the TOEF. For gen­

eral purpose capability, a variety of 'Ihand grips" and special tools would

be carried in the bin. Some storage for sm.all replacement parts would also

be required.

The arms of the TOEF could be used to lock the TOEF to a

work area while the boom is disconnected to bring up other hardware/equip­

ment. The arms could also be used to hold the TOEF in the tote box as
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illustrated in Figure l7(a).

2.4.7 Propulsion Package Replacement

Propuls ion packages (quadjet units with controller / actuation,

etc. ) will be placed at the ends of several of the space stati~)ll side modules

and they will require periodic maintenance / replacement. Deta11s of the

propulsion package configuration, its utility requirements, connectors, etc . .'

are not known at this time. However, two approaches to propulsion package

replacement can be considered; (1) the us e of a special end effector which

can cradle (hold) the package and actuate the fasteners and (2) the use of

a TOEF in a "man like" replacement mode. The second approach would

require a v~riety of tools, parts holder, fixtures, etc. The first approach,

therefore, seems a more likely candidate.

Such a special end effector is illustrated schematically in Figure

19. The propulsion package would incorporate pas sive alignment guides

and catches such that the end effector could be slipped over the top, brought

into proper alignment and latched to the unit. Individual actuators on the

end effector would engage in the fasteners on the propulsion package. The

entire unit would then be mated to the propulsion package mounting point,

and the fasteners actuated. Trle mounting pOlt1L/ prOI)ulo i')Ii pa.ck_ctg-=- vvoi.j.1.d

require compatible utility connectors and alignment guides (visual and / or

otherwise) to facilitate attachment. Removal of a propuls ion package would

be done in reverse order. The above approach is analogous to the LST

module replacement described

2.4. 8 Manipulator /Space Systems De sign Philosophy

It is evident that a manipulator system can greatly increase

the capability and cost effectiveness of future space systems. It can

also increase their reliability and safety by providing an on site, adap­

tive means of dealing with the unexpected. However, in order to realize

the maximum benefits that can be achieved with a space manipulator sys­

tem and in some case s, to even make tasks tractable, it is a must to de­

sign the entire space system with manipulator use in mind. Thus,

locking devices, fittings and components to be handled should be designed

for manipulator handling at their inception. As sembly replacement and

berthing, deployment and all other operations should be designed for re­

mote handling in a zero-g environalent with special/general purpose end

effectors and other auxiliary devices rather than try to adapt special

devices to alan's normal, earth-bound way of doing things.
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2.5 Reliability/Maintainability"

The selected ITlanipulator systeITl has been designed throughout

with reliability /ITlaintainabilit y in ITlind. The ITlain boon~ is the ITlost

critical eleITlent of the system since it is directly exposed to the space

environITlent and physically engage s with objects to be ITlanipulated.

For shuttle applications high reliability can readily be achieved

because frequent ground based inspection and ITlaintenance procedures can

be iITlpleITlented (the ITlanipulator systeITl can "be checked and serviced for

each shuttle flight). Since the shuttle will be operational and used for

satellite service prior to deployITlent of a space station, an opportunity

exists for developing a reliability base and verifying or upgrading the

ITlanipulator to space station requireITlents.

The overall walking boon~ concept is particularly attractive for

achieveITlent of ITliniITlal down tiITle and easy ITlaintainability for the space

station applicat";'oll, Since the bOO!.""ll "is eat;ily tra.Hs.terreo. bet.ween ~he

shuttle and station, it can be systematically rotated with a refurbished/

re-qualified boom on each normal shutqe / station logistic strip. (Even

ir"inade of aluITlinuITl, the bOOITl only weighs ,....,281Kg [620 lb] so that it does

not repres ent an appreciable payload sacrifice). The bOOITl end cluster

asseITlblies would be expected to require ITlore l"naintenance than the elbow.

If required, the entire elbow can be herJnetically sealed with a ITletal

bellows because it is a pivot joint where as the end clusters have roll

joints which would require a pliable (and perhaps elastic) boot subject to

periodic replaceITlent. 1£ the required maintenance interval was ITlore

frequent than norITlal shuttle visits, the end clusters could be serviced/

replaced in orbit by inserting the wrist into an airlock through a special

bulkhead designed to mechanically lock and seal with bOOITl. A bulkhead

seal within the bOOITl arITl would ITlake shirt sleeve maintenance possible.

The walking bOOITl feature would also allow each end of the bOOITl to be

serviced in this ITlanner.
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The booll1 also has the following additional design features

intended to ll1axill1ize reliability.

(1) Non-back drivable actuation - If an actuator drive systell1

fails cOll1pletely, the joint is not free to rotate so that the

booll1 can still be operated.

(2) Dual actuator drive systell1 - COll1pletely redundant

actuator drive 1l10tors/power all1plifiers /controllers have

been used so that the joint can still operate at half ll1axill1urn

load if one drive unit fails. If the a ll1plifie r or 1l10tor fails

open, the other 1l10tor continue S.· If the m.otor or amplifier

fails short, the fuse clears the load froll1 the supply bus.

When a drive unit fails, the clutch for that unit is opened

so that it doesn't overload or stop the rell1aining drive unit.

(3) Replaceable Root Points - The root points are designed to

be rell10vable froll1 the shuttle / station hard points so that

they can be replaced in the event of wear or damage. Norll1ally

the root points would he replaced with the bnnm lH;in g B· sped;:d

end effector. If the booll1 failed, the root point could be

rerrlOved (with the booIn attached) by use of another (replace ..

ll1ent) booll1 and special end effector or by EVA procedures.

An alternate is to cut or free the booll1 away explosively and

later replace the root point.

(4) Joint Redundancy - The boom has 7 joints so that the sall1e

6 DOF operations can still be perforll1ed if a joint fails. The

dexterity of the booll1 after a joint failure depends on which

joint failed. Failure of the"shoulder" index joint ll1ay cause

only ll1inor perforll1ance degradations whereas failure of the

elbow would ll1ake the bOOll1 nearly useless.

(5) Redundant Wire Connectors - Dual pins are used for each

wire pass through to rrlinill1ize the possibility of a pin connector

open circuit.
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(6) Data Bus ~ The bOOIn can be operated in eInerge ncie s

(coInputer failure) by a joint at a tiIne rate mode through the

inner control loop. The digital data bus is still required, but

lnultiple addres ses at each joint can be provided to enhance

reliability.

The control station sees only the space station or shuttle inter­

ior environn~ent. Standard space electronic practices can be used to

achieve a reliable system. The electronic s can be modular for easy

replaCelYlent. If there are several cor.nputers available on the shuttle or

station, they might be used if the manipulator computer fails the eInergency

operating mode (coInputer failure is describ ed above). When the station

and shuttle are operating together, the control station in either one may

be used to operate the manipulator in the event of failure on the other

control station. This could be accomplished by attaching the boom on the

vehicle with the operating control station or by interconnecting the opera­

tional control station to the data bus of the 'Ie hicle with the failed station

(the interconnection would be achieved through the station/shuttle berthing

port).

The manipulator visual system has a high degree of redundancy

by use of multiple cameras and lights, fail safe autolnatic camera features

and a separate dedicated viewing boom. Direct viewing aids are also used

as a backup. In emergencies the viewing booln could be used for certain

tasks.

The lYlanipulator system by its very nature can improve the

reliability /maintainability of the station or shuttle if it include s dexterous

and other special end effectors and auxiliary devices. Thus inspection,

maintenance and repair of the primary systen~s and payloads can be accom­

plished. Furthermore the properly equipped manipulator would have a

degree of self repair capability.
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2.6 Safety

The most im.portant aspect as far as safety is concerned on

the manipulator system is the safety ot" the space personnel. No mani­

pulator system failure should jeopardize their safety or create a hazard­

ous situation in space. As with any vehicle or equipment, operational

safety can onlybe achieved with proper operating procedures. For

example, approaching the boom end while it is extended straight out

could result in penetration of a vehicle hull. Fly-by or capture operations

should always be done on a non-collision course with the boom held in a

flexed configuration.

Several important safety features have been de signed into

the manipulator system. The capabilities offered by the computer are

particularly important. Except in en"lergencies (computer failure). the

computer always interfaces between the operator and the boom. The

computer has stored in its memory a complete updated representation of

the shuttle and/or space station configuration. All existing and projected

future positions of the boom are examined for potential collision3 with an

obstacle. The computer will avoid any such potential collision by program­

ming around the ob s tacle or s topping the boom. The cOITlputer also mon­

itors all joint speeds, torques, etc., to assure that the joints are always

operated within their capability and that the velocity of the object being

manipulated is never so great that it cannot be s topped prior to collision.

The con"lputer controlled operations can always beITlonitored by the oper­

ator and if required, the operator can stop the boom in the event of a

computer malfunction or failure.

The slip clutch feature ci the boom joints assures that the bOOITl

cannot be inadvertantly overstressed. The slip clutches also serve as

effective energy absorption devices to provide additional safety in event of,

say, a shuttle berthing ITlalfunction. (It is planned to have the shuttle ACS

reduce the shuttle/station closure velocity after capture. If the shuttle

ACS should malfunction, the bOOITl clutches provide a means of decelerating

the shuttle and dissipating its energy without damage to the boom).
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Location of the lTIanipulator root points on station or shuttle

hard points, other than berthing ports, reduces the possibility that the

m.anipulator can interfere with crew egress. If it should happen that

the manipulator fails across an emergency exit port, it can be pushed

out of the way by causing the clutches to slip.

It is quite possible that with the manipulator, the total safety

of the space station system will be increased. One can visualize,in an

em.ergency evacuation situation,where the crew cannot get to the shuttle

through the norm.al exit docking ports. In this case, the m.anipulator might

be able tc move a !nodule filled with the crew from the space station or from

a disabled shuttle down into the rescue shuttle bay. Another m.ode of oper­

ation would be where the crew has to go EVA. In this case, they would

be able to climb down the boom to the rescue shuttle cargo area.

In order to have a safe manipulator, it is important that it is

not damaged during its operation. To assure this, the materials are

stressed to levels well below their yell point or even endurance limits.

Safety factors of 8 to 16 are used in the main boom. The slip clutches

as described above and the redundant lTIotors and electronics also enhance

the overalllTIani.pulator safety by increasing its operational reliability.
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2.7

2. 7. 1

Technology Requireluents and Problelu Areas

Technology Requirements

The basic m.anipulator system is based on state-of-the-art

technology. No concepts are bas ed on future breakthroughs although

there is some uncertainty about the achievable, maintenance-free, in

orbit, life time of the actuator joints (without complete hermetic seals)

and the boom end connectors. Developn"1ent of satisfactory joints and

connectors present no servicing problem for shuttle mounted manipul­

ators, since ground maintenance can be employed. If, for the space

station ll"1anipulator, long, in-orbit life (years) proves to be difficult to

achieve, all pivot joints can be herll"1etically sealed with bellows and an

airlock ll"1aintenance procedure can be established for the wristl shoulder

roll joints and end connector as sem.bl ies. An alternative is to rotate re­

furbished boon"1S as a part of the periodic space s tationl shuttle logis tics

prograll"1. Many of the required cOll"1ponents including color TV calueras,

telell"1etry and data proces sing sys tell"1s, have already been us ed in space.

The reference structuralll"1aterials technology is well established and

space qualified lubricants are available. However, engineering develop­

ll"1ent and systell"1 engineering and integration supported by extensive

testing and simulation studies is required to properly Inerge the cOlupon­

ents and subsystell"1s together into a viable, effective manipulator system.

Control and use of a large,light weight "flexible" booll"1 (which

cannot lift its own weight in a 1 g field) is beyond current manipulator

experience. Detailed analys is of bootn dynatnics and full scale zero-g

sitnulation studies will be required to develop suitable control datnping

techniques.

The capability to accotnplish a broad spectrum of tasks ranging

frotn s itnple bulk cargo handling to rell"1ote precis e dexterous repair lll"1ain­

tenance is required of the present ll"1anipulator systetn. This requiretnent

places overall detnands on the integrated ll"1an/ll"1achine interface beyond

that of any existing tnanipulator systell"1 -although the feasibility of ll"1ost

of the ill"1portant control and feed back features have been succes sfully

dell"1onstrated on an individual basis. These detnonstrations include the

following:
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(1) A black and white, head-aimed, monocular, foveal TV

system (John Chatten, whil~ at Contro~ Data Corporation)

(2) A black and white/ color, head-aimed, single-field, sequen­

tial stereoscopic TV systeln (Lynlan Van Buskirk of the U. S. Naval Weapons

Center)

(3) A joy stick positioned, 2 camera,. split image, superimposed

stereo foveal/monocular peripheral black and white TV system (MBA - see

Volume IV "Simulation Studies!!)

(4) A black and white, split irnage; single camera steroscopic

TV system with automatic convergence control (James Jones, NASA AMES)

(5) Remote threading of a household needle by MBA using NAT

and a joystick controlled single camera, split image stereoscopic, black

and white TV camera in conjunction witl) a single, wide angle, monocular

TV camera.

(6) Computer controlled end point rate control of a lYlechanical

arm (MIT)

(7) Scale nl0del/ cornputer, time delayed, motion smoothed,

expanded time scale, supervisory· control of NAT (MBA - see Volume IV

"Simulation Control")

Thus, development of the'man/lnachine interface involves integra­

tion of the above techniques into a well laid out, effective control station.

Simulation studies will be required. to fully develop the controls and displays

and to establish the required levels of precision, resolution and depth cues

necessary to accomplish the selected mission tasks.

The "walking" boom feature of the selected manipulator system

is a powerful technique which greatly expands the multi-purpose capability

of the system by providing high mobility, interchangeability and maintain­

ability. It's success depends on the ability to reliably make and break the

root point, electro-mechanical connection under space environmental con­

ditions. There is a large variety of space qualified electrical connectors,

including multiple single wire and coax ass ernblies, but it appears that no
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connector has been specifically des igned for repetitive connect/ dis connect

us e while in space. It is believed, however, that a suitable connector can

be developed in a straight forward engineering fashion and that no material

break throughs are required.

The astromast type viewing boom has already been developed

in prototype form for other space applications (fo'r example, deployment of

solar panels in a space station or large satellite). It is only necessary to

configure it for the specific viewing requirements -of the station and shuttle.

This will include incorporation of two additional shoulder DOF's, three

distal end camera orientor DOF1s, power and control leads to operate cam­

eras, lights and actuators and, finally, root points and connectors on the

shoulder assembly to enable movement about and attachment on the station/

shuttle, respectively.
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2.7.2 Problem Areas

The manipulator system can be built with existing technology

for shuttle applications. Son~e technology development may be required

for the space station application depending on the experience with the

shuttle system and on the maintenance approach adopted for the space

station system. Specific problem areas identified as a result of this

study are' summarized below.

2.7.2.1 Manipulator Boom

(1) Structural Material. Significant improvements in weight

and performance can be achieved if beryllium ( or beryllium alloys) can

be used. Studies should be initiated to investigate the crack sensitivity,

fatigue limits, fabricability and availability of candidate beryllium alloys.

(2) Actuators. Actuators are the key to successful reliable

and safe boom performance. Detailed design, development and testing

are required to demonstrate that sucessful operation in a hand space

environment under maximum sin1.ulated boom load conditions is required.

(3) End Connector/Root Points. The success of any space

manipulator system is dependent on ha;ring an electrical connector

which can operate (connect/disconnect) reliably for thousands of cycles

in a hard space environment. Detailed design, development and testing

of a suitable connector to demonstrate that successful operation in space

can be achieved is required.

2.7.2.2 Man-Machine Interface

Development problems arising from the design and analysis

of the present man/machine control concept include:

(1) Man/Computer Communication

Develop an indexing sy stem and special-purpose Illanguage"

to permit efficient transmittal of desired boom movements to the computer.
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(2) Interpretor Software

Develop and impl~ment the computer programs which will

interpret the symbolic movement commands, and generate the required

control inputs to the boom mechanism.

(3) Model Controller

U sing the experience of the present simulation, develop a

full 7-degree-of-freedom model controller isomorphic to the boom,

natural to use, and meeting the design requirements of the console.

Develop an associated system for specifying at the controller the points

on the space station between which, or around which, the manipulator

must be guided.

(4) Traj eetory Storage and Optimization

Extend the techniques of the silnulation program to encompass

the full manipulator degrees-of-freedorh. Incorporate collision-avoidance

and optimum path criteria in the trajectory "smoothing" routines.

(5) Mating and Berthing

Develop the control display sy stem to optimize mating and

berthing of the manipulator end -effector and module loads. Particular
,

attention must be paid to (a) the master controller, (b) alignment guides,

and (c) display / control compatibility. A series of simulation s will be

required.

(6) End-Point Control

Develop and implernent the computer program s which will

generate movements of the manipulator end cluster with respect to the

display coordinate sy stem. Incorporate routines to handle dynamic re­

strictions on mating and releas e.

(7) Time-Line Analyses

Perform detailed time-line analyses of the operator's task

during execution of planned manipulator operations to provide initial

p'erformance estimates and uncover potential trouble spots.
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(8) Console Design

Provide a full-scale console mock-up as a vehicle for final

optimization of the functional area s, detailed specification of display /

control components, and more reliable size and weight estimates.

2.7.2.3 Visual System

The viewing system has been designed to n~ake maximum use

of available equipment and techniques. However, development will be

needed tc adapt a number of component subsystems and techniques to

be used, as well as to integrate them into the viewing system.

(1) Zoom Lenses. Currently available remote controlled

zoom lenses are not designed to focus to distances smaller than 4 feet.

The stereo foveal cameras on the dexterous manipulator will have to

work at shorter distances. At the moment, there is work in progress

on "macro-zoom" lenses. Paillard-Bolex is making this type of lens

for an 8 mm camera without remote control. Special zoom lenses will

ha ve to be designed for both the foY.;-eal and the peripneral field ranges

since these lenses require focal length ranges not available in present

models. The peripheral lens must parallel the focal length range of the

foveal lens, multiplied by the field ratio. Thus, for a 50-500 mm foveal

lens, a field ratio of 5 will call for a 10-100 mm in the peripheral lens.

Also, a zoom coupling device must be developed to keep the field ratio

consta.nt while zooming the two lenses.

(2) Automatic Focus and Stereo Convergence. The technique

proposed for automatic focus is still inthe experimental stage; however,

Nikon is marketing a device using a similar principle. Further develop­

ment of auto focusing is required. It will be a straight-forward problem

to couple the stereo convergence control to the automatic focus device,

to have the stereoscopic fields converging at the viewed object.
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(3) Parallax Stereogram TV Display. This type of display

depends on maintaining scan line registration within the limits of the

lens array field. Various techniques of doing thi s have been perfected

during the developn~ent of color television. A technique for monitoring

line registration similar to the one described in this report was developed

by John Chatten, at Philco in the fifties and its feasibility was proven.

Work is needed to integrate the whole display. Good. mechanical stability

and precision are also needed.

(4) Camera Controls. There is insufficient data presently

available to select the preferred camera. orientaticn control method.

Eye control is attractive and the techniques for determining eye vector

position exist. Design and human factor simulation studies are required

to establish acceptable eye position/scan sequences and to investigate

alternate control concepts.

(5) Illumination. Simulation studies are required to define

acceptable lighting and contrast levels. Surface color and finish should

also be investigated as a means to assist illuminating and featuring the

work area.

2.7.2.4 ControlSystem

From an overall view point design of the boom electronic

control system appears straight-forward. However, the effects of the

desired non": back-driveability of the actuators require s investigation.

Development of suitable means to provide dynamic electronic damping

of boom oscillation is required.

2.7.2.5 Auxiliary Vie'mng Boom

The auxiliary viewing boom is based on the astromast already

developed in prototype form. The effects of shuttle/ station dynamic

movements and vibration characteristics and general performance

(vibrations, oscillations) of the auxiliary viewing boom as a camera

platform must be investigated.

54



2.7.2.6 End Effectors

Preliminary design studies of manipulator end effector

applications should be accornplished to establish necessary' end

effector requi rements and design characteristics.
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2.8 Growth Potential

The selected manipulator system offers significant growth

potential that can be phased in with the shuttle, satellite and space station

development and operational programs. Shuttle based manipulator opera­

tions will be the first to occur and these will progr,ess from simple inert

satellite deployment and retrieval (the meteoroid module) to modular re­

supply and servicing of a complex station-keeping satellite (the Large

Space Telescope). Direct viewing in conjunction with a rrlOdest (single

field monocular TV system may be acceptable for meteoroid module

deployment and retrieval and for LST servicing. Thus the manipula-

tor system can begin operation in a fairly simple forrn and be upgraded

in complexity and capability as task requirements dictate.

In order to accomplish such growth it is imperative that the

manipulator system be de signed with growth potential in mind. The data

proces sing and transmis sion system must have sufficient capacity for

handling increased command, monitoring and video functions. The con­

trol console should be laid out to acc()1nmodate upg::..'aded v°l-ewin.G sY3telTi

(displays) and manipulator controllers. The root points should be design­

ed with a large strength margin to handle stronger and stiffer booms as

they are developed. An adequate array of root points should be installed

on the shuttle satellites and station modules to allow flexible, mobile use

of the manipulator.

A workable manipulator can readily be built using aluminum

alloys as the primary structural material. It is also very probable that

a satisfactory beryllium, or beryllium alloy, boom can be built today to

provide greater stiffness and cornp?rable tip force capability for approx­

imately 1 /2 to 3 / 4 the weight of an aluminum boom. The utility of bery­

llium is limited by its generally poor fatigue / crack sensitivity. However,

by proper des ign and fabr ica tion, and use of low stres s levels, (the boom

is deflection limited rather than stress limited) a beryllium boom could be

desirable. Certainly, as the state-of-the-art in beryllium and in light­

weight, high strength composite materials is advanced, the manipulator

boom capability can be upgraded by employing them.
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The present boom design was limited by NASA MSC to a 22.8

cm (9") diarneter in order to facilitate storing the boom in the shuttle

cargo bay along with payload modules. A more nearly optimum diameter

is 38. I cm (IS") which, for the same nOluinal weight, the boom deflection

can be reduced by 64% for the same tip force and the boom ti.p force can

be increased by 67% for the same wall stress. Therefore, from the man­

ipulator point of view, it is desirable to have a dorsal fin storage volume

on the shuttle to accommodate a 15 11 diameter boom". If such a fin i.s built

into the shuttle at a later time, the boom could then be increased in dia­

meter to provide greater boom stiffnes s /tip force capability.
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2.9

2. 9. 1

DeveloplTIent Re source Requirements

Development Program I:10del

Only the basic ulanipulator system is considered; i. e.,

no end effectors or other auxiliary devices are included (see Background

above). Also no ground support equipment or shuttle flight test support

is included. It is assumed that full scale zero~g simulation facilities

will be built by NASA MSC and made available to the program at no

cost. No attempt has been made to define the zero-g test facility re­

quirements since such facilities were beyond the scope of the pre sent

study.

The equivalent of five manipulators systems are

fabricated during the assumed program. These consist of one each

of the following:

(1) Engineering Model

A functional system built up in an iterative manner

and subsystems and to work them together as a complete system. An

attem.pt will be made to configure all cO,mponents as if they we re to be

flight hardware, however, many changes, to meet flight hardware re­

quirements, will, be required.

(2) Mock Up

A partially functional systelTI in which all components

are configured externally to meet the flight hardware envelope, inter­

face and mass property requirements. Engineering model or even

non-functional internal components may be used as long as such compo­

nents reflect proper power, load, and control requirements to the

shuttle mock up system.

(3) Prototype

The first flight hardware configured manipulator system.

The prototype represents an integration of the engineering model and
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lTIock up systelTIs. Iterative changes will be lTIade until the complete

system is configured as required for space flight use. The final con­

figuration will be the system Final Design subject only to change as

required by the qualification test program. Sufficient developmental

testing will have been accomplished to provide high confidence of

passing the qualification tests with few or no changes required.

(4) Qualification Unit

The first system built to final manufacturing release

drawings and specifications using hard tooling. It will be subject to the

complete range of environmental conditioning and functional performance

tests required to qualify the system as flight ready. Because of its

size and because it cannot lift its own weight in a I-g environment it is

anticipated that much of the qualification testing will be done at the

component and subsystem level.

(5) Flight Unit

release drawings and specifications and hard tooling. This system will

incorporate any changes required and proven to meet all of the qualifica­

tion test requirements. It will be subject to flight acceptance tests only

and after successful cOTIlpletion and certification will be delivered for

the shuttle/manipulator space flight te st program.

The following shuttle development program ITlilestones

were as sumed:

(1) Shuttle mockup available for mockup hardware inte­

gration studies on the 18th month.

(2) Shuttle prototype available for hardware integration

and check out on the 24th month.

(3) Manipulator Qualification Unit delivery required on

the 38th month.
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(4) Manipulator Flight Unit delivery required on the

48th month.

The development program was broken down into the

following 7tasts.

(l) Program Management

This task extends through the life of the program and

provides overall technical and adn1inistrative management, cost and

schedule control and top level program management and direction for

configuration management, reliability, quality as surance 2.nd safety.

(2) Specifications and Requirements

This task generates detailed specifications and re­

quirements for the complete manipulator system and its components

and subsystems. It will include shuttle /manipulator interface require··

ments, functional requirements, perfornl.ance requirements and re­

liability and safety requirements.

(3) Design Trade Off Studies

This task consists ot detailed analytical and experi­

mental trade off studies reCluired to establish a near optimum initial

design. Additionally some trade off studies will be required to estab­

lish the system requirerrtents and specifications.

(4) Engineering Design

This task consists of all the engineering analysis,

and design and all of the developmental hardware fabrication required for

development of the manipulator system up through the prototype unit.

It also includes continuing engineering design support for the qualifi­

cation test unit. Hardware testing and siInulation effort6 are accomp­

lished in Tasks 5 and 6 respectively.
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(5) Simulation Studies

This task consists of experimental sim ulation studies

required to develop the man-machine interface, the boom control system

and suitable space task operational procedures. The man-machine

interface studies will establish illumination level and operator TV dis­

play requirements nece s sary to accomplish planned space operations.

(6) Testing this task consists of all thE: hardware testing

required in support of engineering development, system qualification

and system flight acceptance. It also includes design and fabrication of

small special purpose test fixtures and assemblies but does not include

design and fabrication of major test facilities such as thermal vacuum

chamber etc a Such facilities and environmental conditioning facilities

will be leased, rented or subcontracted for.

(7) Deliverable Hardware

This task consists only of fabrication, as sembly,

check~ out, support engineering and documentation required for the

deliverable units (the qualification and flight te st systems).

2. 9.2 Schedule and Resource R'equirem.ents

The estimated schedule.and resource requirem.ents

based on the model described above are summarized in Figure 20. The

manpower estimate includes all categories such as engineering, draft­

ing, technicians, shop, clerical and inspection.
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3. 0 CONCLUSIONS

The basic, multipurpose manipulator system prelim.inary de­

sign established in this study consists of a single.7 DOF walking boom

(without end effector), and internal control station, and a remote visual

sys tem including multiple calueras, lights and dedicated viewing boom..

The conslusions whi ch can be drawn regarding this system. are as follows:

(1) The walking boom feature offers complete interchangeability

between the shuttle and space station. In the basic configura­

tion, the system can accomplish space station assembly, cargo

module transfer, shuttle berthing and deployment of simple

satellites.

(2) The addition, as required to the basic sys tem, of special

and general purpose end effectors plus auxiliary equipment

(automatic scaffolding, special purpose booms or even a

second standard manipulator boom) will provide a powerful

general multipurpose system for a broad range of space

tasks as including inspection, maintenance, repair, satellite

assembly/erection, satellite retrieval and sel'vicing, and

astronaut rescues.

(3) The potential general multi-purpose capability of the

manipulator system derives from the fact that it is an ex ­

tension of mans l own adaptative, dexterous capability. The

use of such a manipulator in space v/ill improve the overall

capability, reliability and safety of the space systems on

which it is used. The ease and scope of the tasks which

it can accomplish will be greatly increased by optimally

designing space systems so that they can be serviced and

m.aintained with a manipulator.

(4) Development of the manipulator system can be phased

from the initial basic concept to a complete sophisticated

array of end effectors and auxiliary devices as needs dic­

tate and as operational experience and reliability data are

accUluulated. This type of developnient program phases

very well with the planned shuttle, satellite and space station
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develop.ment progra.ms.

(5) For shuttle applications the .manipulator syste.m can be

developed with existing technology and no break throughs

are required. Some technology i.mprove.ment .may be re­

quired in the areas of dyna.mic seals and/or lubricants and

space operational electrical connectors if long (10 years),

in orbit, .maintenance free life is required. The se technology

needs are not unique to the walking boo.m concept. A fix-

ed boo.m has the sa.me require.ments ev~n for the eler.trical

connector since it too .must be designed to have a space

operable end effector, electrical connec~or to realize the

potential of the .manipulator sys tern.

(6) The walking boo.m concept is particularly attractive for

the space station application. It provides the necessar.y .mo-

bilityand a straight forward .maintenance capability. Rather

than atteillpt developing a 10 year m.aintenance free sys tem,

it.may be better to develop it for planned periodic rotation

as an integrated part of the overall space station/ shuttle

logistics progra.m. The space station boo.m can be rotated

with refurbished/ requalified ground m.aintained boorns on

planned shuttle visits. 'With this approach, the station.man­

ipulator boo.m can be easily updated with new and i.mproved.

configurations. Furtherillore, the walking bOOlll concept

lends itself to in -orbit space station m.aintenance. (if required

between shuttle visits) by use of an air lock fitted with a

special bulkhead.

(7) The selected .manipulator syste.m offers good growth

potential. The booln can be built with alurninuln and'lneet

the 454 Kg (1000 lb) overall weight lilnit. The eventual use

of a berylliu.m lnetal (or COlnpositelnaterial) offers a two­

fold reduction in b00l"rl: weight with even greater stiffness and

force capability. The selected .manipulator booln has been

restrained to a 22.9 em (9") diameter to fit in the shuttle

cargo bay along with full diameter cargo. If the shuttle
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grow s in size or is reconfigured to accommodate a more near­

ly optimum boom diameter of 38 em (15"), the weight of the

boom can be reduced and/ or its force / deflection capability

can be significantly improved.

(8) A ground based zero g space simulation facility will be

required to develop the man machine il1;terface, control tech­

niques, operational procedures and to provide operator train­

ing. Air bearing, suspension type zero g facilities, neutral

buoyan:::y facilities and artificial computer simulation facilities

are all viable candidates for this purpose.
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4.0 RECOMMENDATIONS

1) Establish the tilne schedule of desired lnanipulator s ysteln

functional requirelnents. It is anticipated that initially, lilnited shuttle

based, satellite related operationswill be required followed by lnore COln­

plex satellite operations, followed finally by space station operations.

2) Re-evaluate shuttle stowage s-pace lilnitations to possibly

accommodate a 15" diarnete r booln.

3) Initiate engineering developlnent of alnanipulator sys tern

based on the prelilninary de sign concepts developed in this study. This

developlnent prograln should be time phased tOlneet the requirelnents

established in 1) above.

4) Initiate a prelilninary design Phase A study of end effector

including a dexterous anthropolnorphic system based on current projected

shuttle flights.

5) Investigate the crack sensitivity/fatigue characteristic fab­

ricability and structural force availability of berylliuln (and suitable alloys

of berylliul1.1.) La es~ablish if or when ouch rneLal.::> shoulci be useci on the ooorn

lnaterial and if so, what design data and/or technology ilnprovements are

required to ilnplelYlent such use.
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SPACE STATION AND. SHUTTLE PARAMETERS
Mini Shuttle

Orbital Weight

Overall Length

Overall Height

Overall Width

Roll Moment
of Inertia

Pitch Moment
of Inertia

Yaw Moment
of Inertia

Large Shuttle

Orbital Weight

Overall Length

Overall Height

Overall Width

Roll Moment
of Incrti<J..

Pitch Moment
of Inertia

Yaw Moment
of Inertia

68,038.5 Kilograms

37.3 meters

11.6 meters

27. 7 meters

1, 054, 013 Kilogram meter
2

6,114, 332 Kilogram. meter 2

6,324,891 Kilogram meter
2

129,118.5 Kilograms

52.1 meters

17.2 meters

29.7 meters

2,818,745 Kilcg:ram meter
2

19,541,403 Kilogram. meter
2

20,543,353 Kilogram meter
2

(150,000 pounds)

(122. 5 feet)

(37.9 feet)

(90.8 feet)

2
(777,400 slug ft )

2(4,509,700 sl ug ft )

2(4,665, 000 slug it )

(284,659 pounds)

(171. a feet)

(56. 3 feet)

(97.5 feet)

2(14, 413, 000 slug it )

2(15,152, 000 slug ft )

Shuttle Launched Module for Modular Space Station (Study De sign Driver)

Weight

Diameter

Length

11,340 Kilograms (25, 000 pounds)

4. 3 meters (14 feet)

9.8 meters (32 feet) .

SHUTTLE DOCKING CLOSURE RATES AND MISALIGN MENTS
Centerline
Miss Distance ~ 0.1524 meters (6 inches)

Miss Angle

Forward Velocity 0.1219 meter/sec (.4 fps)

Lateral Velocity O. 0475 meters/sec (.15 ips)

.Angular Rate 0.10 /sec



SHUTTLE AND SPACE STATION PARAMETERS

(Experiment Module)

Module Weight

Module Length

2

29,500 Kilograms

(65, 000 Pounds)

12 Meters

(40 'Feet)
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FIGURE 1- 3
REFERENCE SPACE STATION CONFIGURATION (EARLY VERSION)

+2

I
Nadi....

~

LalUI'"\c.h 'Se'!ucr1ce
Co ... a
Povve ..
SM-'

57'(,"

14.5" DIA

WINDOW:'.> (..3)

Initial Staf"ion
Module A:;sembly
North AmErican Rockwell

7-9-71

r---'04 1

7"

I 1--3"4" -~-40'O"
I
I

.II

o r-...
-0 ' \w·_·····'" ,­
I ..o I ,~c;
o \'1~,,1
~ \,,", ,
""-I \ (

...j



-:e

I
Nadi..r-

9

12'6"

14.5" CIA

W11'J DOW:5 (3)

Growth StCltion
Module Assembly
North American Rockwell

7-9-71

FIGURE 1-4
REFERENCE SPACE STATION CONFIGURATlOt"J (GROWTH VERSION)

18?>'O"



FIGURE 1-5
REFERENCE BERTHING PORT CONFIGURATION
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APPENDIX 2.0

2. 0 SYSTEM WEIGHT AND SIZE ANALYSIS

Item Requirement Source

{ Maximum allowable weight ~ 454 Kg( 1000) Study G round Rule

Boom Diameter ~ 22.9 cm(9 11
) Study Ground Rule

{ Dexterity As required Study general
Reach .-t 0 accomplish

requirements
Mobility tasks

{ Tip Force Level As required
Study general

Deflection to accolnplish
requirelnents

tasks

1

3

2

The design drivers which determine the manipulator system

weight and tradeoff criteria can be categorized as follows:

Type

The type 1 criteria are quantitative, easily understood and

have an obvious physical ilYipact on the manipulator sy-sten, design.

Type 2 are not as obvious but are readily resolved by kinematic studies

of the required working envelopes and tilsks. The type 3 criteria are not

obvious and in fact have no firm judgement value; i. e., "The stronger and

stiffer, the better it is". The approach used in this study was to establish

a system configuration which best meets the Type 2 criteria with Type 1

criteria in mind and then to use best engineering judgement to select an

"optimum" combination of tip force and tip deflection consistent with the

Type 1 criteria. Once the overall system design approach was defined

many of the component (subsystem) weights, which are invarient with

tip force/ deflection, could be defined. It then wa s a matter of trading

off the remaining items (all as sociated with the boom) to select a final

configuration. A summary of the overall manipulator system weight and

a brief review of the weight trade off studys are given below. The reader

is referred to the appropriate sections of Volume III (as noted below) for

further detail on. the trade offs.
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2. 1

2. 1. 1

System Weight Summary

The Overall System

The overall system weight is summarized in Table 2-1. The

power system weight is a negligible part of the total weight since primary

shuttle or station power is used. The control system weight is also neg­

ligible because the individual controlled power level (actuators) are low

(136 watts maximum) and miniaturized solid state equipm.ent is used. The

control and power systems do not account for the wiring and miscellaneous

switches, etc, required throughout the station or shuttle; however, since

the boom is 18.3 m (60 1
) long and the total power and control systel.i1 weight

(including amplifiers, encoders, decoders, etc.) is only 5 Kg (11 lbs), the

weight impact of the wiring on the shuttle and station will be negligible.

2.1.2 Control Console

The control console weight summary is given in Table 2-2. The

weight alloted in Table 2-1 is slightly larger to allow for contingencys.

2.1.3 Auxiliary Viewing Boom

The auxiliary viewing boom weight summary 1S given in Table

2-3. Note that it includes the TV and illumination light assembly.

2. 1.4 Root Points

The study ground rule s do not charge the manipulator system

with weight of the root point arrays on the station, shuttle, cargo module,

etc. The root point is estimated to weigh 1. 7 Kg (3.75 Ibs). This does

not include the weight expenditure for the hard point to which it is attach­

ed or the wiring required to service it. If it is assumed about 10m (,,,... 30')

of wiring carrier is required for each root point then, exclusive of the

hard point structure, the weight expenditure per root can be taken as

~3 Kg (6.6 Ibs) each.

2.2 Weight Trade Off Analysis

To first order,only the boom weight varies as tip force and deflec­

tion are varied. The boom weight, material, tip force and deflection trade

off studies for the selected design are described in Volume III "Weight

and Deflection Trade Offs". Results of the material trade off studies are

2



TABLE 2 0 I

BASIC 11ANIPULATOR SYSTEM WEIGHT SUMMAR y*

Component

Dedicated Viewing Boom
(with TV Camera & Lights)

Main B OOr.-l

Actuators (7)

Clutches (7)

End Connectors (2)

Tubing

Power System (1)

Control System (1)

TV System (2)

Control Console

TOTAL

(Kg)

Component Subtotals

. -.53

281
10S­

16

18

142

2. 3

2. 7

37

45

421

(lbs)

Component Subtotals

117

620

231

35

39

315

5

6

82

100

930

~c Based on Al as the primary boom reference structural material. It is

estimated that the boom weight could be reduced to ~ 141 Kg (310 Ibs) by

use of Be
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TABLE 2-2

CONTROL CONSOLE WEIGHT ESTIMATES

Units Description Total Wt Total Wt

Stereo/Foveal TV Monitor 6.8 kg
.

1 15 Ibs.

2 Auxiliary TV Monitor 4.5 10

1 Termina! CRT Monitor 2.3 5

1 Rear-Lighted Graphic Peinel 0.9 2

1 Computer Keyboard 0045 1

1 Actuator Control Panel 0045 1

1 Power Status Panel 1.8 4

1 Model Controller 0.45 1

Add'l Knobs And Dials 104
,

3

2 Master Controllers 90 0 20

Add'l Sheet Metal And Wiring 11.3 25

1 Adjustable Seat 1~4 3

Interface 1.4 3
- to

Total 42 93

CONTROL CONSOLE WEIGHT ESTIMATES



TABLE 2-3

WEIGHT SUMMARY. .

FOR

AUXILIAR Y VIEWING BOOM

TV 16Kg (35 lb)

Lights 2.2 Kg ( 5 Ib)

Extendible Boom

Be Members .082 Kg/m (. 055 lb/ft)

Hinges + Wires .216 Kg/m (.145 lb/ft)

Total for 18. 3m(60 ft) 5.5 Kg (12lb)

Extension Mechanism 9.1Kg (20 lb)

Roll & Pivot Joint At Root Point

Motor/ea. .23 Kg (. 5 lb)

Harmonic Driver / ea. .52 Kg (l.Ilb)

Support Structure/ea .9' Kg ( 2 lb)

Total for Both 3.3 Kg ( 7. 2 lb)

Roll, Pivot, Tilt Joint at TV End

Motor lea .19 Kg (. 4 lb)

Harmonic Driver / ea .27 Kg (. 6 lb)

Support Structure/ ea .68 Kg (1.5lb)

Total for All Three 3.4 Kg (7.5 lb)

Root Points (3) 6.8 Kg (15 lb)

End Connector 6.8 Kg (15 lb)

Total 55 Kg ( 116. 7 lb)
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swnmarized in Table 2 -4 . The material comparisons for the same

<p, y, and 1, are the most significant. Beryllium offers significant poten­

tial weight savings (a factor of 2 or more) however 606l-T6 aluminum

(the next best choice) was selected for the reference design until certain

unknowns relative to beryllium (or beryllium alloys) are resolved.

Table 2 r 5 summarizes weight trade offs against tip force for an

aluminum boom. The weight available for the boom tubes is the difference

between the maximum allowable weight [454 Kg (1000 lb)J and the sum of

all weights (including actuators, etc. ) excluding the boom tube weight. Since

the available weight decreases as tip force is increased, it is clear that

an optimum choice of force versus weight exists. The curves shown in

Figures 2-1 and 2",2 illustrate the parameters involved in final selection

of the boom geoITletry. These curves are based on a tip force of lllN

(25 Ibs) which was judged as a reasonable cOITlpromise between boom weight

tip force and tip deflection. As shown in Figures '2 -1 and 2 -2 , the

as sumed deflection liITlit (taken about equal to the shuttle berthing center

line n'1isalign:r:..'1ent - see Apr;81:clix 1. IJ) i:, cO:1j"'Jn.eticn 7vith the specif:::;d 0.13.­

meter limit est,;ol.ishes a '"'('(nn tube tl~ich1!>8S of' 4. F'.1'Tm"l(O. 19 5n) rlnd a

boom tube weight (total including transitions, etc.) of 142 Kg (315 Ibs). If,

however, the dialueter were allowed to increase, a more optimurn bOOlU

configuration could be achieved. If, for example, the thickness is deter­

ITlined by the ITlinimum practical working thicknes s [say 1. 8 mITl(. 07 in) J,
then a near optiITlum boonl configuration is obtained with a 38 CITl (15 in)

diaITleter. The weight and deflection [at III N (25 lbs) tip force)for this boom

would be 88 Kg (195 lbs) and 8.4 cm (3.3 in). (See Volume III llBoom

Loads and Structural Analysis" for further details).

By considering the additional possible weight reduction offered

by use of beryllium, it is clear that the shuttle imposed 22.9 cm (9 in)

diameter should be seriously re-examined and that studies to resolve the

unknowns relative to the use of beryllium should be initiated. On this

basis, a total boom weight of ~ 100 Kg (220 lbs) appears feasible.
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Cantilevered Thin Wall Circular Tube Of Dimensions r, t, II,

Same (t, r,; ,<1
B
) Same (S, r, j)

E p C'Tu <1 Ty
(:~AJ (fAI) ( <1:1) ~~AI)

Fr
(lb/in

2
) (Ib/in3) (lb/in

2
) (lb/in

2
)

Ip
Material (Sir AI) Fr Al-- - Ip ,

AI (6061-T6) 10 x 10
6

0,,098 45 x 10
3 3

1.,000 1.,00040 x 10 1,,000 10 00 1.,00 1.00

Be ( ,,0175 BeO) 44 x 10
6

0,,066 *70 x 10
3 3

0.227 0.675 0.227 4.40 0.153*50 x 10 1.00

Mg (AZ31 B-F)
6

0.064 37 x 10
3

26 x 10
3

1.540 0.653 1.540 0.65 1.016.5 x 10 1.00

Ti (Ti -6A1-4V) 16 x 10
7

0.160 140 x 10
3

l28 x 10
3

0.625 1.64 0.625 1.600 1.02 1.00
- . a

*Cross rolled Be sheet

For Bending For Torsion

Mr M
stress = <1 = - = --z-

Bitrrr

deflection = i =~ = (~i:) ~ErhJ
O'B

when T =M, 0'T = 2"
W(i:W(:'-
v"l .1..-"',~~,I weight =wt =

co t"- I
'0 .) ....,)co ',- 'I

I

rrdtD p

TABLE 2-4
BOOM MATERIAL COMPARISONS

stress =

J = 21

~ Tr _(1 _

T J
T

2
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00

FORCE LEVEL

PART DESCRIPTION

44.5 newtons (10Ib) 111 newtons (25 Ib) 222 newtons (50 lb)

Dedicated TV Boom Assembly (1 ) 53 kg (117Ib) 53 kg (117 Ib) 53 kg (117 Ib)

Actuators (7) 43 kg (95 Ib) 105 kg (231 Ib) 165 kg (364 Ib)

End Connectors (2) 7.3 kg (16 Ib) 18 kg (39 Ib) 35 kg (78 Ib)

Power System (1) 1.8 kg (4 Ib) 2.3 kg (5 Ib) 2.7 kg (6 Ib)
,

Control System (1) _ 2.7 kg (6 Ib) 2.7 kg (6 Ib) 2.7 kg (6 Ib)

TV System (2) 37 kg (82 Ib) 37 kg (82 Ib) 37 kg (82 Ib)

Control Console (1) - 45 kg (100Ib) 45 kg (100 Ib) 45 kg (100 ib)

Clutches (7) 6.4 kg (14 Ib) 16 kg (35 Ib) 32 kg (70 Ib)

. -,

Total Wt Except Boom Tubes 197 kg (434 Ib) 279 kg (615 Ib) 374 kg (823 Ib)

Total Weight Allowed 454kg ~Olb) 454 kg (1000 Ib) 454 kg (1000 Ib)

Weight Available For Tubes 257 kg (566Ib) 175 kg (385 Ib) 80 kg (177 Ib)
1--- =,

Note
1: (Dedicated Boom + Power Systtsm + Control System + TV System + Control Console) = 310 Ibs

1:Wt...
,!:Soom) A .' = 690 Ibs

VOl I

TABLE 2-5-
SUMMARY OF MANIPULATOR SYSTEM WEIGHT VS TIP FORCE
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APPENDIX 3. 0

3. 0 SYSTEM REQUIREMENTS ANALYSIS

A brief sum.mary of how the selected manipulator system

meets the study requirements and ground rules is given below. (The

system requirements are summarized in Volume III, Section 6.2

11 Requirements").

3. 1 General Requirements

(1) Task Accomplishment. All of the required tasks can

be accomplished. Many of these tasks can be accomplished with only

the basic manipulator system (one boom and no end effectors). Special

or general purpose end effectors and other auxiliary devices are re­

quired to accomplish the full spectrum of tasks.

(2) Interchangeability. The boom, visual system, control

console and root points are completely interchangeable between the

shuttle and space station. Details of wiring, power source and computers

will vary depending on the configurations and availability of these systems

on the shuttle and station.

(3) Weight Limit. The manipulator system is within the

specified weight limit.

(4) Stowage and Transportability. The manipulator sy stem

will fit into shuttle cargo bay for stowage and transport. The boom

meets the specified 22.9 em (9") diameter limitation.

3.2

3.2. 1

Subsystem Requirements

Boom

(1) Tip Force and Deflection. Reasonable values of maximum

tip force and tip deflection can be provided.

1



(2) Dexterity. The entire required working envelope can be

accessed and the terminator output arranged in any orientation for any

location. The 7 DOF boom config'uration in conjunction with the walking

boom mobility provides the capability to circumvent obstacles as required.,

(3) Mobility. The walking boom concept offers complete

mobility to any desired working area simply by providing the necessary

root points.

(4) Telecommunications. The boom can transmit all of the

required command, monitor and video signals to and frOln end effectors

and manipulated obj eets as required simply by connecting them electri­

cally into the boom end connector.

(5) Interchangeability. The boom is completely interchange­

able between the shuttle and space station.

3. 2.2 Control Station

(1) Commonality. The identical control station can be used

on the shuttle and space station.

(2) 040A Constraints. The control station is compatible with

the 040A envelope.

3.2.3 Man-Machine Interface

(1) Crew. Only one operator is required.

(2) Compatibility. The system allows the operator to use

his complete dexterous, sensory and adaptive capabilities to a very

high degree.

(3) Alternate Modes. The system provides necessary re­

dundancy and back-up modes and allows the operator to override (stop)

the boom whenever he deems it necessary.

3.2.4 Vi sual Sy stems

(1) Visual Display. High resolution with the depth cues re­

quired for close in precise tasks is provided.

2



(2) Field-of- View. Co:mplete coverage of the overall work

area is achieved by use of :multiple ca:meras and a dedicated viewing

boo:m.

(3) Direct Vision. The control console is arranged to take

advantage of direct viewing where it is available (the 040A shuttle).

(4) Back-Ups. Redundant ca:meras and :monitors in conjunction

with direct viewing stereoscopes provide the nece-ssary back-up capa­

bility.

3.2. 5 Control Sy ste:m

(1) Boo:m Behavior. S:mooth boo:m :motions can be provided

and electronic controlled dyna:mic da:mping is provided to eli:minate

boo:m oscillations.

(2) Redundancy. Independent dual control co:mponents and

:multiple addresses are used to provide redundancy.

3 . 2. 6 Data Processing and Translnission

(1) Video Quality. Hand wired video trans:mission precludes

ghosting and rnultipath problems and provides good s 19nal to noise ratio.

(2) Control and Monitor. Parallel pulse code :modulation

provides good accuracv, and noise rejection capability.

(3) Growth Potential. The selected syste:m provides good

growth potential.

3.3 Safety

The :manipulator syste:m should increase the overall safety

of the shuttle or space station by providing an e:mergency capability

that would otherwise not exist.

3. 4 Reliability

The selected :manipulator syste:m can :meet the anticipated

reliability require:ments because of the ti:me scale on which the :mani­

pulator and related space syste:m will be developed. Initial require:ment s

3



will be lTIodest because of the ability to implement frequent ground

servicing. As requirement.s become more stringent refined develop­

ment and experience will have been achieved to keep pace with the

increasing requirements.
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5.0 CONCEPT DEVELOPMENT AND SELECTION

The initial objectiv"e of this study was to establish a preliminary

design for a space station assembly and cargo handling manipulator system

having its own manned control module. The space station would be assem­

bled from, and cargo carried in, modules which would be transported into

orbit in the cargo bay of the shuttle. The complete manipulator system

was also to be capable of stowage and transport in the shuttle cargo bay.

The basic functions of the manipulator were to be docking and assemhly

of the modules onto a station core, cargo docking or cargo transfer to the

completed station. Other functions such as propulsion package replacement

and maintenance were to be considered, provided they did not impact the

basic station or manipulator system design.

One or more booms could be considered for the manipulator

system, however, no force levels or task times were specified. No manipu­

lator system weight limit was given for the concept selection phase, however,

as with all aerospace equipment minimum weight must be optimized together

with development, fabrication and operational complexity and cost. The

manipulator control module was to have its own environmental control, life.
support and power systems capable of limited operation independent of the

station, although normally the module could utilize the station utilities.

Several space station configurations were considered as shown

in Figure 5 -1. The cruciform configuration was selected as the reference

for this study. Several shuttle configurations were considered during the

concept selection phase. Shuttle details were not important except that

the carg'o bay was taken to be 4.57 m (151) in diameter by 18. 3m (60') in

length and that the station module could be berthed to a berthing port on the

top of the shuttle just forward of the cargo bay. Parameters for both the

space station and shuttle are summarized in Appendix B.
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As the concept selection study progressed, it became apparent.

that considerable overall economies in the developnlent of space manipulators

could be achieved by designing a general purpose manipulator system suit­

able for both space station and shuttle based operations. The potential

commonality between the station and shuttle application is as follows:

Common Elements

Manipulator Booms

General Purpose End EffectoJ.·s

Control and Display

Data Processing

Telemetry

Dedicated Computers

Control Station De sign

Different Elements

Crew Capsule

ECS/LSS

Emergency Systems

Special Purpose End Effectors

In order to achieve the above com.monality, it is only necessary

that the manipulator booms be literally interchangeable and that the man/

rnachine interface (controls and displays) be sized to fit in both the station

and shuttle.

The evolution of the recommended manipulator system concept is

illustrated by the concept selection networks shown in Figures 5-2 through

5-6. The boom configurd.tion selection is shown in Figure 502. One boom.

was selected because of the simpler control requirements (lower cost and

higher reliability) and because each boom would have to be equally strong;

i. e., if one failed, the other would be required to absorb the loads formerly

shared by two booms. Furthermore, it appeared that all of the required

space station tasks could readily be accomplished with one boom. PriInary

eluphasis was placed on the station in Phase 1. A fixed length elbow con­

figuration was selected because it appeared simpler than an extensible boom,

it could be made stronger for the same weight expenditure and the extensible

feature was not required to avoid obstacles' or achieve access throughout the

'desired working envelope. A boom symmetrical about the elbow was selected

because of the desired interchangeability between the station and shuttle.

A constant section, circular tube type construction '.'las selected because of

the nature of the loads imposed on the boom.
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It was a contract requiren1.ent that a separate, external,

D1.anned D1.anipulator D1.odule (control station) be used for the space station

asseD1.bly and cargo handling systeD1. in order to enhance direct viewing.

The external control station selection is shown in Figure 5. 3. An L­

shaped D1.odule was selected because of the increased direct viewing

achieved by having the crew cOD1.partD1.ent located radially away froD1. a

station D1.odule longitudinal axis. (For exaD1.ple, jf D1.ounted on the end

of a side D1.odule, the operator could see along the sides of the nlOdule

to which he was mounted.) A "fixed" n1.odule was selected to avoid the

probleD1.s of a rotating pr es sure seal, however, the D1.odule could be

oriented in at least opposite (180
0

) positions. A reD1.ovable booD1. was

selected because of the de sired interchangeability between the station

and shuttle and to facilitate D1.aintenance of the D1.anipulator systeD1.. (A

new booD1. could be brought up to replace a daD1.aged or D1.alfunctioning

booD1. rather than atteD1.pt in~orbit repair. )

Detailed consideration of the de sired station/ shuttle COD1.D1.on-

ality and interchangeability and of station rnanipulator' ~-nIJbil~ty requi:ce-

ments led to MBA IS recomrnendation of a unique walking booD1. which could

be operated froD1. either an internal or ,external control station. It is

a far siD1.pler task to walk the booD1. end-over-end froD1. one root point to

another than to D1.ove the relatively large control D1.odule froD1. one berthing

port to another. Furthermore, reD1.oving D1.an froln the transfer reduces

the safety probleD1.s and greatly siD1.plifies the procedures, support equip­

D1.ent and root point utility requireD1.ents. The viewing systeD1. is not COD1.­

proD1.ised by the walking booD1. concept since direct viewing is not pos sible

nor adequate for D1.any tasks; for exaD1.ple, repair or D1.aintenance tasks

using a dexterous end effector. Thus a high quality indirect viewing sys­

teD1. is still required for a "direct 'l viewing systeD1..
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The control concept selection is shown in Figure 5-4. The length

of the boom coupled with the requirement for low weight while moving or

berthing massive objects [11,340 kgms (25,000 lb) to 129,118 kgms

(284,659 lbS)] necessitates iimited tip ~elocities [:s:. 61 m/sec (2 fps) J
and low angular rates (:S:3° /sec). It is not practical (or perhaps even possible)

to use a conventional position-position geometrically similar master slave

controller for such operations. The size ratio (slave/master) of .....,20/1

would amplify all operator perturbations causing dynamic problems on the

slave and extreme operator fatigue would occur because of the slow steady

motion required. A computer aided control system was selected to preclude

these difficulties. A library of preprogrammed motions would be available

and new motions for gross translation, deceleration, etc. could be inputed

to the computer by means of a sil'1all, scale model, geometrically similar

boom. The computer would optimize the desired motions and drive the

manipulator boom in a smooth proportional rate control m.ode. Position­

position and position-position with force feedback are not appropriate to such

a computer driven control mode and fixed rate control is not as desirable nor

is it necessary. After the boom is brought to the desired "near proximity"

configuration (by the above computer aided control), and end point combined

force to rate and position-position control mode was selected for final berth­

ing, capture or other precision operations. The precision operation would

still be interfaced by the computer, but the operator would be controlling

in real tinle the end point location by force to rate control and the end point

orientation (wrist) by position-position controL The computer would make the

necessary coordinate transformations and drive the boom in such a way so

as to pre sent the operator with an x-y- z coordinate systeil'1 referenced to

his working field of view. Selection of the combined force to rate and

position-position control mode provides the operator with a single analog,

proportional controller. Control of a small (man like) dexterous end

effector would be by a bilateral, position-position force feedback control

system.
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The viewing system concept selection is shown in Figure 5-5.

TV (black and white plus color) and direct viewing were selected to achieve

maximum flexibility and capability. A stereoscopic foveal system was

selected to provide the overall field~of-view required for general orienta­

tion and coordination and the detail (resolution) and depth perception required

for precise tasks while at the same time IniniInizing the data processing

and transmission bandwidth requirements. A mobile viewer was selected

because it could be made of off-the-shelf components (low cost), it would

offer high quality optical images, it could be made light weight compared

with panel displays and the camera field-or-view could be controlled by a

natural head activated control system. (The disadvantage of the viewer is

that the operator must place his face onto a viewing hood and is thereby

somewhat encumbered.) The position-isometric activation concept was

selected because within a lirnited range (small head motion), the carnera

field-of-view could be controlled in a natural position-position mode.

For greater camera movement, the mobile viewer would be pressed iso­

metrically at the limit of the position-position travel in the desired direc­

tion to control the calnera in a rate mode. Both earth shadow and sunlight

fill-in illumination concepts were required. The dynamic range available

with current cameras is large enough to accommodate low intensity to bright

sunlight conditions; however, they cannot accommodate two extren1.es

simultaneously. Thus low intensity [10 to 20 watts 1m2 (,..,..1-2 watts/ft2)]

lamps were selected for earth shadow conditions. Field separation by

means of the two camera foveal concept was selected over the sun cheater

[line spectrum illumination @ 100 - 200 watts 1m2 (,..,..10- 2 0 watts 1ft;?)] . or

mirror reflection because it requires no additional equipment or illumin­

ation. Large contrast lighting conditions are not important in the largest

field of view, hence fill-in is not required there. The smaller foveal area

of interest can be viewed under its own local lighting conditions independent

of the overall lighting conditions. Although not shown on Figure 5 -5, a

separate dedicated boom was selected for supporting, locating and controlling

additional lights and viewing cameras.
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The environIT1ental control, life support and power systeIT1 selection

is shown in Figure 5 -6. It was a requireIT1ent that the IT1anned control

IT10dule be capable of lin1.ited independent operation; however, it is clearly

desirable to utilize the station or shuttle utilities where possible. Therefore,

a dual EC/LSS concept was selected. The open loop systeIT1 and open loop.

eIT1ergency equipIT1ent selections refer to the separate IT10dule and operator

emergency escape systeIT1s respectively. Open loops were selected for

these systems because for the limited tiIT1es (~30 m.inutes) required, open

loop systeIT1s are lighter and less costly. About 5 hours of independent

operating time were required for the cOIT1plete manned control IT1odule.

For the required average operating power of :s; 3.4 kw secondary batteries

are the logical choice for the main and backup power sources.

A IT1anipulator system using the external con.trol IT10dule

without a walking bOOIT1 but incorporating all of the other above concept

selections is illustrated in Figure 5-7. The IT1anipulator systeIT1

recoIT1IT1ended by MBA is illustrated in Figure 5"-8. It utilizes the walking

bOOIT1 concept and can be operated from either an external or internal

control station. A sIT1all internal portable control station which can plug

into a berthing post was also recommended. This station would be used

at the port to which a IT10dule was being 'berthed so that direct head-on

viewing of the berthing could be used without need of TV displays. Note

that the walking bOOIT1 cuncept,operated froIT1 an internal control station,

requires no capability for independent operation detached froIT1 the station

or shuttle ,and since the operator is inside the station or shuttle no

separate environmental control or life support systeIT1s are required.

The above rationale backed up with greater detail on all of the concepts

considered was presented by MBA in a briefing to MSC and other NASA

personnel on August 30, 1971. MSC approved and authorized MBA to

proceed with the recoIT1m.ended concept with the following options selected:

1) An internal control station without direct viewing shall

be used.

2) .A panel display shall be used rather than a mobile viewer

so as not to encuIT1ber the operator.
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3) No portable control stations are to be used.

In addition, MSC established the following ground rules:

1) The total ITlanipulator systeITl weight, including the

auxiliary lighting bOOITl, shall not exceed 454 KgITls (1000

Ibs). The weight of additional root points are not charged

against the ITlanipulator system.

2) The bOOITl diaITleter shallbe.::;; .229 ITl (9") to facilitate

stowage in the shuttle.

3) A light weight ITletal such as aluITlinum. or titaniuITl

shall be used. COITlposite ITlaterials are not to be

used because of their high developITlent costs.

4) The station ITlodules [ 11,340 KgITl (25, 000 Ibs)]

are to be the design drivers. It can be assuITled that

iITl:m.ediately after capture, the shuttle control system

can bring the shuttle kinetic energy down to values lower

than for ITloving ITlodul~s.

5) The 040A shuttle configuration can be used as the

refere~ce for the study.

The MSC approved ITlanipulator systeITl concept is illustrated

in Figure 5-8.
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6. 0

6. 1

BOOIn Mechanical Analysis and Design

KineInatic Design Rules

The kineluatic configuration of the selected Inanipulator systeIn

bOOIn illustrated in Section 2.3 "SysteIn Description", Figure 2.3-3 was

evolved utilizing a set of design rules devdoped in this prograIn. These

rules along with figures to illustrate their concepts are presented below.

The reader is referred to Design Rules, VoluIne II IIConcept DevelopInent

and Selection", Page 30, for a detailed discussion of them.

MANIPULATOR DESIGN RULES

(1) Design kinematically to accomplish primary tasks it must perform with
ease.

(2) To minimize operator training, task time, and task mistakes under
stres s - - kinematic similarity between master controller and slave must
be maintained. (Note: By use of a computer it is possible to achieve
effective kinematic similarity with. physical having, kinematic similarity
between master controller and slave arm).

(3) 3 rotational (or orientor) axes should be as clos e to the terminals as
possible. (See figure 6.:.1).

(4) In the preferred position the three terminator orientor a xes should be
mutually perpendicular. (See figure 6 -2).

(5) In the preferred position, the 3 loe ator or shoulder axes should be mutual­
ly perpendicular. (See figure 6-:- 3) ..

(6) For spot mounted manipulators the actuator connected to the ground should
have a vertical output axis. (See figure 6 -4).
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