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FIELD DEPENDENCE OF GASEOUS ION MOBILITY: TEST

OF APPROXIMATE FORMULAS*
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ABSTRACT

The accuracies of three approximate formulas due to Wannier,

Frost, and Patterson are tested by comparison with special cases for

which accurate results can be found. The Wannier free-flight theory

is superior, and can be extended to yield a formula without further

adjustable constants that gives an exact result at low electric fields

and good results at medium and high fields, applicable for any ion-

neutral force law and mass ratio.
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I. INTRODUCTION

*

It is well known that the drift velocity of an ion in a neutral gas depends

on field strength. No general expression for the field dependence is known,

although several approximate formulas have been suggested. The purpose of

this paper is to test these approximate formulas by comparison with several

accurate results for special cases, and to suggest an improved connection

formula that can be used at all fields. The most critical test occurs for

the case of light ions and heavy neutrals (Lorentzian mixture), for which the

drift velocity can be found at all fields by numerical integration.

Dimensional arguments suffice to show that the drift velocity v, depends

on the elctric field strength E and on the number density of the gas N only

through the ratio E/N. At low fields v, is directly proportional to E/N

for all ion-neutral interactions, and is given accurately by the Chapman-

Enskog kinetic theory. At high fields the nature of the ion-neutral interaction

determines the dependence of v, on E/N; for example, it is known that v,

-4 1/2varies directly as E/N for an r interaction potential and as (E/N)

1 2for a rigid-sphere interaction. '
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II. APPROXIMATE FORMULAS

In this section we briefly outline three formulas which give v, as a

function of E/N.

A. Wannier Free-Flight Theory

2
In 1953 Wannier indicated how to obtain a simple interpolation formula

for v,; since his result has been almost universally overlooked, we indicate

the line of arguments leading to it. An ion of mass m and charge e under-

goes an acceleration eE/m between collisions. If the ion lost all its

momentum on every collision, the drift velocity would be (eE/m)T, where T

is the mean time between collisions. But the ion loses only a fraction of

its momentum on each collision. The mass dependence of the momentum loss on

collision can be calculated from the equations of momentum and energy conser-

vation; if we average this momentum loss over all collisions and ignore sub-

tleties about the average of a product and the product of the averages, we

obtain

vd =

where M is the mass of a neutral molecule and £ is a factor of order unity

that depends in a complicated way on the ion-neutral force law and the masses

m and M. The mean free time is given by

T = l/NvrQ , (2)

where v is the mean relative speed of ions and neutrals and Q is the

average momentum-transfer cross section. It is reasonable to take v as

the root-mean-square speed,
f-T -srtl/2

(3)
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2 « o
where v is the mean square ion velocity and V the mean square neutral

velocity. For the latter quantity energy equipartition gives

i MV2 = | kT . (4)

5"
The only remaining problem is to find v , which has both thermal and field

2
components. At low fields v is entirely thermal, but at high fields it

1 2has a negligible thermal component. Wannier ' has shown that if T is con-

stant, then the thermal and field energies of the ions are additive, and that

the field energy is exhibited partly as a drift motion and partly as a random

motion,

1 5 " 3 1 9 1 9
2- mv = | kT + ± mvd + ± Mvd , (5)

3 1 2 1 2where ^ kT is the thermal energy, = mv, is the drift energy, and ^ Mv,

is the random part of the field energy.

Combining Eqs. (4) and (5), we obtain

•
and substituting back into Eqs. (l)-(3) we find

(eE/NQ)

(3kT

2
which is apparently a quadratic in the variable v, ,

This quadratic dependence is only apparent, however, unless Q is a constant

(rigid spheres). In general, Q depends on v in a manner determined by

the ion-neutral force law. In any case, solution of Eq. (8) gives a reasonable

2
result for vd at all field strengths. At low fields we have 3kT » Mvd

2
and vd is proportional to (eE/NQ); at high fields we have Mvd » 3kT and
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vd is proportional to (eE/NQ) '. At low fields the results can be compared

with the accurate Chapman-Enskog kinetic theory formula for the diffusion

coefficient. All the dimensional factors in Eq. (7) are found to be correct,

provided we identify the average cross section Q with a collision integral

3 4for diffusion, which we can write as *

43 1
<9)

2(kT)

1 2
where e = ̂  uvr is the relative energy of a colliding ion-neutral pair,

/

p = mM/(m + M) is the reduced mass, and Q (e) is a diffusion or momentum-

transfer cross section,

Q (e) = 2n I (1 - cos6)I(9)sinede . (10)

o

We have here chosen the normalization factors in Eqs. (9) and (10) so that

both JT1'1' and Q(1) are equal to ird2 for the collision of classical

rigid spheres of diameter d. The value of £ in Eq. (7) is still at our

disposal; we choose it to give agreement with the Chapman-Enskog results,

1 1')
r - 3 <6*) ' . 0.814
* " 16 1 - A " 1 -'A ' U1'

where A is a correction term incorporating higher Chapman-Enskog approxi-

3,U
mat ions and given by

A = - M (6C .- 5) - ^ + higher terms ^ (12)

30m * 10M + 16mMA

* A 4
in which A and C are dimensionless ratios of collision integrals.

B. Kihara Medium-Field Expansion

Kihara has shown how the kinetic-theory results based on the Boltzmann

equation can be extended to higher fields, by avoiding the Chapman-Enskog

assumption that the ion velocity distribution function differs only slightly
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from the Maxwelliara form. The result is an expansion for v in powers of

2the quantity (E/N) . Depending on the particular approximation procedure

used to solve an infinite set of moment equations , the expansion can be written

•*v 6 -either as

or as

vd = vd(0)Cl

v (0)
v
d - 5 - 5 - »

1 + B^E/Nr + B2(E/N)
H t ...

where v
d(0) is the low-field limit of v, and is itself proportional to

E/N. The coefficients o. and 6. are complicated functions of the masses

m and M, as well as of the ion-neutral force law. The form of the expansion

obviously limits its validity to medium fields. Such an expansion in powers
2

of (E/N) can be obtained from Eq. (7) of the free-flight theory by expanding
2

the denominator of Eq. (7) in powers of the small quantity Mv, /3kT and

solving iteratively for v, , but the values of a., and B, so obtained are

not in general correct.

C. Frost and Patterson Interpolation Formulas

1/2
Knowing that v varies as E/N at low fields and as (E/N) for

7
rigid spheres at high fields, Frost proposed the formula

vd = A(E/N)[1 + a(E/N)]"1/2 , (15)

where A and ji are constants that are different for every system. The

form of this expression can be obtained from Eq. (7) by replacing the value

of v, in the denominator of the right-hand side of Eq. (7) by its high-field

value.

8Patterson incorporated the medium-field expansion of Kihara into a

somewhat more elaborate interpolation formula,
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vd = A(E/N)[1 + b(E/N)2 + c(E/N)V1/8 , (16)

where A, b_, and c_ are constants. This preserves the high-field variation

of rigid spheres, and at medium fields mimics the expansions of Eqs. (13)

and (It) with b = 5 B-.
O J.
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III. ACCURATE RESULTS

Only a few accurate results are available for testing the foregoing

-4formulas. An r potential (Maxwell model) can be treated accurately at

all fields for all ion-neutral mass ratios. The result is that the low-field

expression for v, is valid at all fields, which is not very interesting or

even physically realistic. Other known special cases are as follows.

A. High Fields

If the ions are either much heavier or much lighter than the neutrals,

then v, can be found for any ion-neutral interaction. If the ions and

neutrals have equal masses, then v, is known only for a rigid-sphere inter-

2 9action. For m » M the result is ?

vd
eE (17)

where the momentum-transfer cross section is evaluated at v,. For m « M

the result is given as integrals, '

vd
eE '•
m

(18)

where f is the isotropic part of the ion distribution function and <J>

the* directional part,

*nf(0) = *nB - 3 ( ) 2 [Q(1)(v)]2v3dv , (19)

*.- f*(3) Q<1)(v) • <20)

in which B is a normalization constant. Numerical integration is required

unless the velocity dependence of Q (v) is simple. For m = M the value
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of v, has been calculated for rigid spheres by a method involving a trial

distribution function judiciously selected to satisfy the first few moment

. 2equations; the result is

1/2
(21)

(1) 2in which Q = nd is a constant for rigid spheres of mutual collision

diameter d.

A comparison of the foregoing accurate results with Eq. (7) of the free-

flight theory is simple for the case of an inverse-power ion-neutral potential,

V(r) = C/rn , (22)

where C and n are constants. The momentum-transfer cross section for

3 4this potential is '

Q(1)(v) = 2* 2nC 2/n
(23)

where the A (n) are pure numbers that are evaluated by numerical inte-

gration. An extensive tabulation of A (n) has been given by Higgins and

12Smith. To use Eq. (23) with the free-flight results, we note that the ion

energy at high fields is given by

2 2 2mv = mv, + Mv, ,

from which it follows that

(24)

With the energy dependence of Q (v) as given by Eq. (23), the integrals

of Eqs. (18) and (19) can be evaluated to yield the exact result for m « M,

4n-8
I 3n J

3n-4
tin- a r

f

3n-2'
2n-4

' 3n '
[4n-8J

r
[nVcV. feE]
tm) [MN]

L-

M
L2ncJ

9/r\z/n _

2wA (1 )(n)
-I

n

(25)



feE'
(MN.

' M '
I2nc>

2/n x

2TTA (1 )(n)

— 9—

Similarly, the energy dependence of Q (v) can be substituted into

Eq. (17), which can then be solved to yield an accurate result for m » M,
n

(26)

Comparison of these accurate values with the free-flight formula shows that

the latter has all the dimensional factors correct. The numerical accuracy

is shown in Table I for a number of values of ri. Even though 5 was chosen

to fit only the low-field results, the agreement at high fields is quite

reasonable, the largest deviations being less than 20%. No comparison with

the other formulas can be made—the Kihara expansion breaks down at high

fields, and the Frost and Patterson formulas are valid only for rigid spheres.

B. Intermediate Fields

Only for m « M is an exact result known for arbitrary field strengths.

The ion distribution function is given by '

*nf(0) = *nB - f m dv - - , (27)
J kTv + i

d, - mv/NQ(1) , ,
* - - 5 - i - TTYT * ^ '

kTv + i M[eE/mNQv ']
O

for which Eqs. (19) and (20) are the high-field limits. Given the energy
V

dependence of Q , the integral in Eq. (27) can be evaluated, after which

v, can be found by the integration in Bq. (18). In order to test the approxi-

mate formulas , we have carried through the integrations for rigid spheres .

The integration in Eq. (27) can be performed analytically, but the final

integration for v, must still be done numerically. We can consolidate the
O '

temperature and field dependence of v by defining the dimensionless quantities,
O . " o
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M
2kT

1/2
(29)

r1/2 fm + Ml1/2

16kT m
eE

(30)

The dimensional argument underlying these choices can perhaps be seen most

easily from the free-flight result of Eq. (8), which becomes

3 ,r-*x2
<v

ft O
)2 -

2(1 - A)'
= 0 , (31)

in which we have substituted the value of £ from Eq. (11). No assumption

of m « M has been made in obtaining Eq. (31). The exact equations become,

with m « M,

A

V< ' 9,-

16 o* 1
T72& T~ (32)

where

x2(x

I2(y) =
1/2

e~Xdx

Y "X
(x + Y) e"dx

(33)

(34)

x = mv2/2kT , y = 128(£ )2/27ir.

Equations (33) and (34) were evaluated by numerical integration using Simpson's

rule. The results are given in Table II, and may be used as a convenient test

case for any proposed theory of the dependence of v, on E/N.

A comparison of the free-flight Eq. (31) and the exact Eq. (32) is shown

13
in Fig. 1. In the free-flight calculations we have used the exact value of

1 - A = 9TT/32 in order to make the two results agree at low fields. The agree-

ment is remarkably good over the whole range, the worst disagreements being

about 8% at intermediate fields and about 6% at high fields (as shown in



-11-

Table I). The Frost interpolation formula of Eq. (15) is also shown, the

constants A and a_ being chosen to secure agreement at both low and high

fields. The agreement with the exact result is no better than that for the

free-flight result, except at high fields. Even the Patterson interpolation

formula of Eq. (16) produces very little improvement, despite the use of an

additional parameter.

The medium-field expansions of Eqs. (13) and (14) are compared with the

exact results in Fig. 2. Because of the difficulty of computing higher terms

in the expansions as well as accurate values of the expansion coefficients,

we have stopped with the following approximations:

«
v,

which can be obtained from the results in refs. 5 and 6. The numerical con-

stants in these two equations are not yet mutually consistent in this order

of approximation. It is clear that these expansions give a good representation

only at fairly low fields, and are not to be trusted when the deviations from

the zero-field asymptote are larger than about 10%. Equation (36) is somewhat

better than Eq. (35).

C. Resonant Charge Transfer

If resonant charge transfer is possible, than each collision converts a

fast ion and a nearly stationary neutral into a fast neutral and a nearly

stationary ion. Thus the ion may be regarded as coming essentially to rest

after each collision, and the kinetic-theory problem becomes simple. Solutions

have been obtained by Fahr and Muller14 and by Smirnov. If the charge-transfer
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cross section Q is independent of velocity, the low-field result is

M^- • (37)

Fahr and MUller find A' = 0.330 and Smirnov finds A1 = 0.341. At high fields

both obtain

1/2

v (
i, mNQT

It is interesting to compare these with the previous results for rigid spheres.

When charge transfer is the dominant process in collisions, an accurate rela-

U) = 2Q . (39)

. 16,17
tion is

With this expression, Eq. (37) is the same as the Chapman-Enskog result with

1/2the constant A' = Sir /16(1-A) = 0.338, a value in good agreement with Fahr

and MUller and Smirnov. At high fields Eq. (38) may be compared with Wannier's

rigid-sphere result given in Eq. (21). The form of the two results is the

1/2same; the numerical constant from Eq. (38) is (2/tr) = 0.798, and from

l /")
Eq. (21) is 1.1467/2 = 0.811, in good agreement.

Thus the interpolation formulas we have tested should apply also to

mobility with charge transfer, provided Eq. (39) holds.
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IV. EXTENDED INTERPOLATION FORMULAS

On the basis of the comparisons in the preceding section, it is easy to

extend the formulas giving the field dependence of the mobility. The only

serious candidate is Wannier's free-flight theory, since the other formulas

are, restricted to rigid-sphere interactions. The three main defects of the

free-flight theory are as follows. First, the averaging of the momentum-

transfer 'cross section is too crude. At low fields it is averaged over a.

velocity distribution to yield the temperature-dependent collision integral

ft ' of Eq. (9), but at high fields it corresponds to the drift energy

according to Eq. (24). Second, the free-flight theory predicts that the

initial deviations of v, from linearity in E/N are always negative; that is,

that a in Eq. (13) is negative or that 3, in Eq. (14) is positive. Actually,

the sign of the deviation depends on the ion-neutral force law in a sensitive

way, and is potentially a valuable source of information on ion-neutral inter-

actions. Third, the limiting behavior at high fields can be incorrect in

magnitude by as much as 20%, according to Table I.

The first defect is easily remedied. Referring to Eq. (9), we see that

Q (e) is averaged over relative energies e = — yv with a weight factor

0
e e~ /r^ corresponding to the spread in thermal energies. A plausible pro-

cedure is to imagine that the same weight factor is appropriate at all fields,

but is centered about the drift energy, so that e in Eq. (9) is replaced by

an energy e', given by

1 2e' = e + e(field) = e + -^ Mv, ,

the last step following from Eq. (24). Thus Eq. (9) is replaced by
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FJ •
o

?J~ e-'/kTQ(l)(e,)(et)2det f= F e - Q ( e ' ) ( £ ' ) d e ' , (41)

ilv 2

2 d

where F is a normalization factor,

î d

For ^Mv « kT, Eq. (41) reduces to Eq. (9), and for ^Mv » kT it

reduces to Q ^oMvn )• However, Eq. (41) has no theoretical status other

than a reasonable interpolation formula.

To alleviate the other two defects we have available only one plausible

generalization in the derivation of the free-flight theory, namely the parti-

tioning of the ion field energy into drift and random components according

to Eq. (5). This partitioning of energy is strictly correct only for constant

mean free time (Maxwell model); we can allow for other partitioning by intro-

duction of another adjustable parameter, so that Eq. (5) becomes

^mv2 = ^mkT + ̂ mv 2 + i(l+6)Mv,2 . (43)
2 2 2 d 2 d

The parameter 6 can be adjusted to eliminate one of the defects, but not

both. If we choose to obtain the correct initial field dependence, we can

then use the high-field limit as an indication of the overall success of the

interpolation formula, and vice versa. Picking 6 to reproduce the correct

value of 8, in Eq. (14), we obtain the result

A
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where Q ' is given by Eq. (41) and depends on T and v , A is given by

Eq. (12), and A1 is5'6

.
+ 3MA 30m + 10M + IGmMA

We can now test Eq. (4t) at high fields in the same way that Eq. (7) of the

free -flight theory was tested, using the inverse-power potential given in

Eq. (22). The results are shown in Table III; comparison with Table I sug-

gests that the price of improved agreement at medium fields is not worthwhile

unless the ion-neutral short-range repulsion is rather steep. Similarly, we

can pick 6 to reproduce the correct high-field value of v, for the special

cases shown in Tables I and III, and then compare values of the coefficient

B... The results are shown in Table IV, and appear rather worse than those in

Table III. Moreover, they depend strongly on the mass ratio m/M.
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V. CONCLUSIONS

The free-flight theory indicated by Wannier provides a reliable inter-

polation formula for the mobility as a function of field strength. Choosing

one adjustable parameter to force agreement with the Chapman-Enskog theory

at low fields, and extending the definition of the average momentum-transfer

cross section (or diffusion collision integral) according to Eq. (41), we

obtain a formula useful for all fields and all ion-neutral force laws and mass

ratios. An additional parameter can be introduced and adjusted to force agree-

ment with the Kihara theory at medium fields according to Eq. (44), but the

resulting agreement at high fields may be spoiled. Further tests of the formula

with ion-neutral interactions containing both attractive and repulsive com-

ponents would be interesting, but require extensive numerical integration.



-17-

Table I. Test of the Wannier approximate free-flight

Eq. (7) for the drift velocity at high fields for the

potential V(r) = C/rn.

n

4

6

8

10

12

25

50

CO

vd(approx.)/vd

m»M m = M

0.814 0.814

0.857

0.872

0.879

0.884

0.894

0.898

0.902 0.944

(accurate)

m«M

0.814

0.902

0.943

0.966

0.982

1.022

1.041

1.060
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Table II. Exact drift velocity as a function of field

strength for rigid spheres with m « M.

sV

&

0.10

0.12

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.5

0.6

0.7

0.8

0.9

1.0

'.».' '
Vd"

0.1122

0.1342

0.1667

0.2197

0.2709

•0.3203

0.3679

0.4137

0.4578

0.5004

0.5811

0.6566

0.7274

0.7943

0.8576

ft

&

1.2

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5

6

7

8

9

10

s"«vd
0.9753

1.134

1.364

1.564

1.743

1.906

2.057

2.198

2.331

2.576

2.801

3.008

3.203

3.386
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Table III. Test of the extended free-flight

Eq. (44) for the drift velocity at high fields

for the potential V(r) = C/rn.

n

8

10

12

25

50

oo

vd(approx.)(

m»M m

1.302

1.210

1.164

1.077

1.049

1.025 . 0

/v (accurate)d

= M m«M

1.368

1.147

1.124

1.093

1.089

.932 1.088
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Table IV. Test of the extended free-flight theory for

medium fields, when the high-field result is forced to be

correct. The.expansion coefficient 8, appears in Eq. (14),

and the potential is V(r) = C/r .

n

8

10

12

25

.50

oo

6, (approx

m»M m

2.209

1.841

1.657

1.315

1.201

1.104 0

. )/8 , ( accurate )

= M m«M

1.103

0.879

0.767

0.558

0.488

.742 0.430
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FIGURE CAPTIONS

Fig. 1. Reduced drift velocity as a function of reduced field strength

for rigid spheres with m « M. The two solid curves are the exact numerical

results (Table II) and Wannier's free-flight Eq. (7). The two dashed curves

are the Frost and Patterson empirical formulas given by Eqs. (15) and (16),

respectively.

Fig. 2. Reduced drift velocity as a function of reduced field strength

for rigid spheres with m « M. The exact curves represents the numerical

results of Table II, and the other two curves are the Kihara expansions in

powers of (E/N) as given by Eqs. (35) and (36).
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