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ABSTRACT B. Hapke

The spectral and polarization data for Venus are consistent with micron-sized,

aerosol cloud particles of hydrochloric acid containing soluble and insoluble -iron

compounds, whose source could be volcanic or crustal dust. The ultraviolet features .'

could arise from variations in the Fe - UC1 concentration in the cloud particles.
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In spite of four successful penetrations of the atmosphere of Venus by

**

Venera entry probes and two flybys by Mariner spacecraft the question of the

composition of the clouds of Venus remains controversial. Many materials have
«

been suggested as the dominant component of the clouds, including H_0 liquid

or ice, partially hydrated ferrous chloride, ammonium chloride, mercury halidea,

carbon suboxide, and dust ( i ~ i )',

Observations

Any proposed substance must be consistent with the following observations.
j

Theoretical analyses by Hansen and Arking ( jj ) of the polarization data of
_'

Coffeen and Gehrels ( 9_ ) have provided extremely strong evidence concerning the

physical nature of the cloud particles. The particles are spherical, and thus

are almost certainly liquid, have indices of refraction of 1.45 - .02, and exist

_in__a_narrQw_size.distribution with radii close to lp. Because of the detailed

matching of the theoretical model to the observed polarization-phase-wavelength

curves it is unlikely that Hansen and Arking1s conclusions are seriously in error.

The spectrum of Venus is shown in Figures 1 and 3. The cloud particles

absorb strongly in the near 1R over the 3 - 5y wavelength region and also have

absorption features in the visible at 0.A - 0.6jj and in the UV below 0.4p. For
/

wavelengths longer than about SM the radiation is primarily due to thermal

emission, and it is difficult to know whether the spectral features are to be

interpreted as absorption or emissivity bands. For wavelengths shorter than

about 0.3u the radiation can be accounted for almost entirely by Rayleigh

scattering from gas above the clouds, and little information can be obtained about

the absorbing properties of the cloud particles in this spectral region ( 10 ).

Several strong absorption bands of atmospheric CO- in the 1 - 3u rang'e make

it difficult to ascertain the exact spectrum of the clouds in the near IB.
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The only gases which have been detected spectroscopically from Earth tti the

atmosphere of Venus are C(>2, H20, CO, HC1, and HF, The mixing ratios of the latter

four gases at the level in the atmosphere where the CO pressure is approximately j
!

0,2 atffl and the temperature of the order of 250°K (altitude approximately 60 km) j

are of the order of 10" to 10~ , 10 , 10 and 10" respectively (3, 16). By [

-3 -2Contrast, the Venera probes measured H_0 mixing ratios of 10 Co 10 . Xc la

presently not clear how these conflicting sets of data are to be reconciled, except .

that the HO and CO Earthbased determinations may refer to different positions in

the atmosphere and to different times. ',
1. ,' .

The preceding observations argue against most of the proposed substances as

the major constituent of the clouds. The requirement of being liquid eliminates ice,

ferrous chloride, ammonium chloride and dust. The narrow size distribution implies a

condensable substance, arguing against the chlorides and dust. Ferrous chloride has

a prominent Fe"f2 absorption band at l.Oy which is not observed in the Venus spectrum

(12). Although H~0 water and ice, ferrous chloride and ammonium chloride absorb

strongly at 3.Op they become translucent again past 4.0»j, and clouds consisting of

micron-sized particles of these substances would be bright at long wavelengths. The

spectra of CO and mercury halides do not match the detailed spectrum of Venus

(3.,6_). Of all the proposed substances, only C,0 has a refractive index close to

1.45. The albedos,of volcanic dusts are too low for the clouds to consist primarily

of this material.

The pressure of HO vapor in the atmosphere, as determined by Earthbased

observations, is too low by significantly more than an order of magnitude to be in .

equilibrium with liquid water or ice at the 250°K level. However, if the Venera

mixing ratios are correct then water clouds would have no difficulty in forming.
' f •

Recent analyses of the Mariner 5 radio occultation data ( 17 ) indicate that the

temperature profile of the Venus atmosphere is consistent with the presence of a

-4
condensing component at latitudes of 60 to 75 km. An H»0 mixing ratio of 10
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_2
would allow water clouds to exist at the 75 km altitude (T=210°K, p=10 atm). The

haze or cloud layer apparently extends to 120 km ( 18 ); between 75 and 120 km the

temperature may be well below 200°K ( 17, 18 ) and water clouds would be stable for

mixing ratios as low as 10 .

The IR Spectrum of Hydrochloric Acid j
i. . i

The spectra of water and 6M HC1 acid are shown in Figure 2. Except for minor |

differences the spectrum of ice is similar to that of liquid water. The changes •

caused by the addition of HC1 are due mainly to the hydronium ion OH-J+ in the acid

( 19, 20 ), so that the addition of any strong acid to water results in a similar
^«* *** J«/*fy ? ' .

spectrum. Strong bases have a somewhat similar, but less pronounced, affect. The, '
'A

most striking change is the series of wide, overlapping OH- bands which keep the

transmissivity of the acid solution low over the entire range of wavelengths from

3y to beyond 16u. Thus the low reflectivity of Venus in the 3 - 5u range would be

accounted for if OH. ions are abundant in the clouds. Lewis ( ̂ ) has shown that the

relative abundances of HC1 and H?0 vapor observed in the atmosphere of Venus requires

that any liquid in equilibrium with these gases will be a hydrochloric acid solution

of the order of 25% by weight (•••/tf 5-7 M/l). Terrestrial volcanic exhalations contain

abundant S0_. Therefore, possible alternatives to HC1 could be H_SO_ or H_SO..
2 2 3 2 4

• However, SCL vapor has not been detected spectroscopically on Venus. Thus the most

probable additive to the clouds on Venus is HC1.

In the acid the bands .at 1.5 and 1.9uhave been decreased and widened and the

continuum absorption increased, making these bands difficult to detect spectroscop-
f / i v e / ^ r "j, 6/it.r* 6t-.t\'Jj

ically. Thus, an objection to ice and water cloud's raised by Rea and O'Leary ( 21 )
/̂  —~

is further weakened, since the objection is not particularly important for cloud

particles as small as iMr At 8p the acid spectrum has a broad band which is not

present in water and which corresponds to a minimum in the thermal spectrum of Venus.

Although a detailed scattering calculation remains to be done, the IR spectrum

of hydrochloric acid appears to be compatible with the spectrum of Venus, in contrast
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with pure water or ice. If this identification is correct, ice clouds will probably

be much rarer on Venus than on Earth, since the addition of HC1 to water depresses

the freezing temperature to below 200°K for 6M HC1 ( ̂ ). .

The UV Band of Venus

Hydrochloric acid has an extremely weak absorption band at Q.28\t. However,

none of the observed constituents of the Venus atmosphere absorb appreciably in the

0.3 - 0.6M region. Therefore, it is necessary to resort to indirect arguments to

account for the yellowish color of the clouds. Terrestrial clouds and aerosols form

by nucleation onto both soluble and insoluble substances, and thus are not composed
)

of perfectly pure H_0. The compositions of terrestrial cloud nuclei are not well

known, but analyses ( 22, 23, 24 ) of aerosel residues reveal three types of substances:

NaCl from ocean spray, ammonium and sulfate ions and other materials primarily from •

industrial sources, and natural dust from volcanoes and the crust. Because of '

unfavorable surface conditions the first two sources will presumably not be present

on Venus. However, because of the high surface temperature, volcanoes should be

even more prevalent on Venus than on Earth. Volcanic dust has been estimated to

reach altitudes greater than 60 km on Earth (25), Other finely-divided solids from

the crust could be carried into the stratosphere by turbulence.

Residues of terrestrial stratospheric aerosols include Si, S and Fe (22); no

Ni is detected, indicating the source of the Fe is not meteoritic. Volcanic dust

which finds its way into the stratosphere of Venus would be readily attacked by the

hydrochloric acid clouds. Volcanic glass is especially susceptible to acid leaching

because of the high density of solid state defects. It has been shown that glass in

lunar soil is strongly attacked by hydrochloric acid and that all of the cations

which are abundant in the lunar soil are also present in the solute ( 27 ). Thus,

• * j

if the crust of Venus is similar to the crusts of the Earth and Moon, ions of the

following elements should be found both as solid nuclei and in solution in the Venus

aerosols: Si, Al, Ca, Fe, Mg, Na, K, Ti, plus smaller amount of Or, Mn, and V.
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Because of the much greater chemical activity of hydrochloric .acid compared with

water, the concentrationsof these ions should be much greater in Venus droplets

than in terrestrail aerosols. j
. i •

The coloration of terrestrial and lunar rocks and minerals is due almost j
i

entirely to absorption bands associated with the transition elements Fe, Ti, Cr, |
i

Mn, and V, with Fe being by far the most important because of its geochemical ;
s

abundance. The Fe ion has strong absorption bands in the 0.2 - 0.4u spectral :

region, and the yellow or red color of most iron compounds is due to these bands.

The spectra of several iron-bearing materials are shown in Figures 2 and 3. ..

In spite of the fact that the atmosphere of Venus is slightly reducing, some

+3.Fe would be expected due to oxidation by oxygen from the photodissociation of C0~

and from thermal oxidation reactions of the type, FeO + C02̂ Fe,,0_ + CO, which would

take place at the surface ( ̂0_ ). Using a simple, two-stream scattering model for

an optically-thick cloud layer and the absorbances of ferric salt solutions measured

on a Carey 14 spectrophotometer, I estimate that ferric ion concentrations of the

order of 0.3 mole/liter will account for the edge at 0.4p in the Venus spectrum and the

yellow color of Venus clouds. The 0.24y ferric bandyis probably unobservable because

+2of atmospheric Rayleigh scattering. . Ferrous iron Fe would also be expected to be

abundant in the Venus clouds. However, this ion has only a weak band at 1,0V , and

much more ferrous than ferric iron could be present without causing a detectable

band.

The position of the near-UV ferric bands depends on the type and normality of

the solvent. In water or in weak hydrochloric acid the ferric ion is complexed by

H.O molecules, resulting in a band at 0.30p. As the HC1 concentration increases,

complexes of FeCl | and FeCl +1 become significant and the band shifts to 0.34u.

At concentrations above about 6M HCl the dominant complex is FeCl/*"1, and the band

splits into two components centered at 0.31 and 0.36u. In FeCl3 salt the band is

at 0.40M. In H_SO^ the ferric band is at 0.30p.
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The reflection spectrum of Venus is poorly-known in the UV. A spectrum

obtained by Glushneva at a phase angle of 45° (28), shown in Figure 3, is suggestive
i

of a minimum at 0.34̂ . Clearly, more high-precision observations of Venus in the

near-UV are necessary. Such observations are extremely important because they could

confirm the presence and abundance of Fe, 1IC1 and liquid H_0 in the clouds of Venus,

as well as indicating the type and normality of the acid. .. i
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The Visible Band of Venus

When surrounded by anions all of the transition element cations have

absorption bands in the visible and near-IR due to d-electron transitions ( 31 )•

For instance, Ti has a band at 0.50U. However, these bands are relatively i
i

weak, and it is doubtful whether any of them could account for the 0.5f minimum ;

•42in the Venus spectrum without the 1.0/«:Fe band also being prominent. Much stronger

electron-transfer bands can occur in the visible when two multivalent transition

element ions are sufficiently close together that their d-orbitals overlap

( 32, 33 ). Tie intensity of this type of band depends on the product of the ,••'

concentrations of the ions; the wavelength depends on the degree of overlap and

on the nature and structure of the surrounding ions.

Because of the abundance of iron the Venus 0.5p band is most probably

j^ + 3
a Fe - Fe electron-transfer band, although if Ti is as abundant in the crust

LO i/*

of Venus as it is in the lunar maria, a Fe - Ti band may also be involved.

In the Venus aerosols conditions appropriate for electron-transfer bands probably

would not occur in the aqueous state because the solutions would have to be too

concentrated. More favorable conditions would occur in precipitates involving

iron complexed with ammonia, chloride, carbonate or other ions, and in the
/\

insoluble portion of the'aerosol nuclei. An example of a solid-state, electron-

transfer band in the visible spectrum of an artificial basaltic glass containing
L̂O L̂*) -L~t

Fe , Fe , and Ti is shown in Figure 2. In this spectrum the tails of strong

bands of Fe and Ti in the far UV are also prominent, but the l.OU Fe band

is extremely weak* and no band is present at 0.34u, • .

The Index of Refraction

The index of refraction of the upper Venus clouds is close to l.Ap ( &_ ),

whereas the index of refraction of a 6M HC1 solution is approximately 1.39 and is

only weakly dependent on temperature (34 )• However, most solutes have the effect

of raising the index of refraction of an aqueous solution by the order of .01 - .03

per mole of the dissolved material per liter of water ( J5 ). Thus, if the Venus
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For instance, a 1.7M/1 solution of 6M HC1 has n-1.45. Thus, if the Venus

aerosols contained a few moles per liter of dissolved salts, their indices of !
* I

i
refraction would have the required value. Exactly the same situation occurs in !'

terrestrial water aerosols. Water has an index of refraction of 1.331 however, [

the scattering properties of these particles can be well-accounted for by Mia i
I

theory using an index of refraction of 1.50 rather than 1.33 ( 2 3 ). The large ;

refractivity is due to both dissolved salts and the insoluble portion of the

nuclei. Thus a value of 1.45 for Venus hydrochloric acid aerosols is eminently

reasonable.

Vapor Pressure of Water • ''•'

The partial pressure of HO vapor in a gas containing suspended aerosols

will in general not be the same as the tabulated value of the vapor pressure, which

refers to the partial pressure over a flat, infinite surface of pure water. The
A

growth of aerosol particles and their equilibrium vapor pressure depends on a

number of factors, including the size, shape, and wettability of the nuclei,

surface tension, and the concentration of dissolved salts ( 22, 24 ). In particular,

the partial pressure of water in a solution is reduced in proportion to the mole

fraction of solute, in accordance with Raoult's Law, so that it is possible for

aerosols to grow under conditions where the partial pressure of water is less than

half the vapor pressure at that temperature. However , the Raoult's Law effect is

probably not capable by itself of reconciling the Venera and earthbased measurementst

nor would it allow the formation of water aerosols if H_0 mixing ratios of 10~

are typical.

The. UV Clouds

To the eye the disk of Venus is featureless, but when the planet is observed

in wavelengths below 0.4p large diffuse markings.which persist for several days

or weeks,become visible. Since the apparent rotation period of the UV features

is of the order of 5 days, while the solid body of the planet rotates with a

243 day period, the markings obviously are atmospheric rather than surface features.
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Dollfus ( 36 ) and Kuiper and his associates ( 37 ) have published a large

number of photographs of these clouds. A natural explanation in terms of the !
. I-

model discussed here is that the markings reflect variations in the intensity of i

< \
the ferric band. !

Several lines of evidence indicate that thefeaturea are associated with a
UV1

e f
scv&frj- //£/£ 6yt̂ 0.,-/v !

partially transparent or incomplete cloud or haze layer, which absorbs weakly in !
'X /̂

• I
the UV and which overlies a more strongly UV-absorbing cloud deck. 1. The UV i

features are seen more often near the center of the disk rn>i»«r than near the

polar or equatorial limbs. 2. The markings occur more frequently at smaller phase
**'•'.

angles than at large ( ̂ 8 ). 3. The ratio of the reflectivity of Venus in the '•

UV to that in the visible is considerably higher at larger phase angles than at

smaller ( 11 ). 4. The minimum at 0.34u which is apparent in Glushneva's

spectrum at a phase angle of 45°, seems either to have disappeared or to have shifted

to shorter wavelengths in the 87° spectrum.

A decreased strength of the near-UV ferric band could be due to lower

+3
concentrations of either Fe or HC1 or both in the upper haze layer. Such a

decrease may reflect more favorable conditions for the condensation of H_0 vapor

at higher altitudes due to the lower temperatures. Alternatively, larger iron

concentrations at lower altitudes could be due to increases in the supply of silicate

dust from volcanic eruptions on the surface. Physically, the UV features could

be either holes, local deficiencies of iton in the upper clouds, or local

concentrations of iron in the lower clouds, possibly related to the surface distribution

of active volcanoes.

!,.n n J .Hi- < n p „ 1 p ... , -t ' g •• *1. . ̂ n̂f -"" ' " 1 " "" ̂  * — •"» ̂  , fftf

!,j tt\e f *r /'A' */
__Ij\__ap-ca«igowi!o£ Venufc*. three minima appear to be present at 8, 9.5, and 11̂ . The

•

9.5y depression is probably due to a CO. band at 9.AH, although there is' no sign of a

minimum at 10.AU, where another CO band is located* The 8y feature may be a hydrochloric
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acid absorption band. The lip and possibly the 9.5w minima may be associated

with silicate -veŝ avWM**- aerosol nuclei. Silicates possess emissivity minima

in the 9— llu range due to the Si-0 vibration band. The band location is

composition-dependent, being shifted toward ty for acidic rocks and toward lly \

\

for ultrabasic silicates; carbonates also have an emissivity minimum at llu (39 ).

la order for -fits* silicate-**rbOBa** bands to be seen in emission these materials

would have to be abundant at the level from which the thermal radiation originates.

However, the hydrochloric acid band -iv seen in absorption, -danp̂ ciatg a relatively

lower silicate and higher HC1 concentration at greater altitudes. Thus the UV markings

and the thermal 1R bands may be closely associated, and simultaneous monitoring
i
i

of Venus.in these two spectral regipns may prove highly informative. :
* *~ • •

Finally, it must be stressed that these conclusions apply only to the visible

clouds. Other substances may be important in the lower atmosphere. i !
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FIGURE CAPTIONS i
I

Egure 1. Relative reflectivity and thermal emission spectrum of Venus. The following
' • |

sources have been used to construct this spectrum: < 0.3}J

C 10.). - 0.3 - l.Oti ( 11),. 0.8 - 1.2y ( 1£ ), 1.2 - 3.5y ( 13, 1 > » !

3.0 - 14 w (14, 15) . The near-UV and near -IR values have been normalized

to the Bond albedo values of Irvine et. al. (!!_); the far-IR curve has

been arbitrarily joined to the near IR curve at 3.2y . The bars indicate
i •
• the position of strong CO. bands in the atmosphere of Venus. A strong

I ' U^O band in the Earth's atmosphere occurs at 6 - 7.5p and an ozone band »' •'
I '

at 9.8u.

{ Figure 2* Transmission spectra of ' H 0 and 6M HC1. Absorption cell thicknesses:

0 .2 -^ .7w , 1 cm; 0.7 - 2.5y, 40v; 2.5 - 16p, 5w. The 2.5 - 16p data was

adapted from ( 19 ) and ( 2Q_ ) , the 0.2 - 2.5p data was measured on a Carey

14 spectrophotometer. Also shown is the reflection spectrum of an

artificial basaltic glass powder of composition approximating lunar Apollo 11
( '. :

samples (this spectrum has been multiplied by 3) and the transmission

spectrum of a solution resulting from leaching this glass with 6M UC1

for 60 hours (cell thickness O.lcm, ).

Figure 3* Near-UV spectrum of Venus and absorption spectra of ferric ions.

Top: Relative reflectivity spectrum of Venus by Glushneva ( 28 ).

as reduced by Cruikshank. and Thompson ( 1^ ). Bottom: absorption

spectra of Fe ions in various hydrochloric acid solutions ( 29 ), and of

o. (Absorbance is proportional to the negative logarithm of trans-

mi ttance. To avoid confusion the absorbance spectra have been displaced

in the vertical direction by arbitrary amounts.) The spectrum of Fe

in H.SO, solutions is ««ssjp- similar to the H.O curve.
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