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Stochastic Stability

H. J. Kushner

Brown University

Abstract

This paper will survey the field of stochastic stability, with

special emphasis on the "invariance" theorems and their potential applica-

tion to systems with randomly varying coefficients. First, we will sur-

vey some of the basic ideas underlying the "stochastic Liapunov function"

approach to stochastic stability, then the invariance theorems will be dis-

cussed in detail and, if time permits, an example given.

In stability analyses of all types of deterministic dynamical

systems, the concepts of co-limit set and invariant set play an important

role. Let x,, t > 0, denote a bounded continuous solution to the deter-
t —

ministic ordinary differential equation x - f(x), where f(-) is con-

tinuous. A point x is said to be in the CD-limit set if x. -> x for
"Cn

some sequence t -»°°. A set B is said to be an invariant set if for

each x e B, there is a path y , t e (-°°,°°) for which y e B and y =
t t t

, t e (-°°,°°). Thus, the invariant set contains entire trajectories.

It is well known that the co-limit set is a closed non-empty invariant set.

Also, V(-) be a Liapunov function with V(x) = -k(x) < 0, where k(') is

continuous. Then by a very useful theorem of LaSalle, x. tends to the
"C

largest invariant set contained in {x = k(x) = 0} = K, as t ->«>. The

theorem is important and useful, since in numerous applications the deriva-

tive k(-) of the Liapunov function V(-) is semi-definite, and the theorem

gives a nice characterization of the subset of K to which x. tends.
"C

In fact, this characterization often enables us to determine the minimal

set in K to which . x tends.
O



There are useful stochastic analogs to all the deterministic re-

sults (the dynamical system is a suitable dynamical system of measures),

and they will be developed and explained. The concepts are felt to be

useful for random parameter systems for the following reason. Suppose

x = f(x,y), where the "parameter process" y, is a Markov process. Then

(x+^y+) will be Markov. Often, we are only interested in the asymptotic
"C "C

properties of x. . Indeed y, may even be stationary. Any stochastic
"u t

Liapunov function would have to take both x , y. into account in some~c TJ

way, and the "stochastic derivative" of that Liapunov function will often

be semi-definite (it can't be a negative definite function of (x.,y )
t t

if y, is stationary). The invariance theorems enter here to assist

us in studying the asymptotic properties of the x, process.
"C



1. Introduction

In this paper, we will discuss and prove some of the "basic results

in the theory of stochastic stability for systems governed "by continuous

time Markov processes. Our concern will be mainly with the asymptotic be-

havior of the paths of the process. The development will be along the

lines of [1], [2]. A detailed and introductory discussion of stochastic

stability for discrete parameter systems appears in [3]. In fact, [3]

contains introductory discussions of asymptotic stability, the invariance

theorems, the existence of (and convergence of the measures of the process

to) invariant measures, and a number of examples.

Next, we give some definitions, then mention some of the problems

with which stochastic stability deals. Then we give a.brief introduction

to some deterministic results, and discuss some of the probabilistic struc-

tures to be used in the sequel. Then some results on asymptotic stability

w.p.l. will be discussed and proved, and an invariance theorem proved.

Finally we give two examples, one dealing with a non-linear diffusion, and

the other with a problem arising in the identification of the parameters

of a linear differential equation. The paper will be as self contained

as space permits. For the most part, the discussion will concern the

case where the transition functions are homogeneous - since statements and

proofs are notationally simpler there, but some results for the non-homo-

geneous case will also be stated.

Stochastic stability is a long way from being a mature subject,

even from the theoretical point of view. Let u, denote a Markov process.
~u

Then under some suitable condition on f(*)» the process x, = (y,>u,) where y,*t ~c *t "



given by y = f(y,u) is a Markov process, and we may desire to investigate

whether y - » 0 w.p.l. In many applications u, is stationary, or at least
x u

its paths do not converge. Yet the Liapunov functions must take both u,
"C

and y into account. It is not clear what the appropriate theorems are
o

for such cases, nor is it understood how to find (even in relatively simple

cases) useful Liapunov functions. It is hoped that a combination of the sta-

bility results of part I, and the invariant set results of part II will be

helpful here, since the "derivatives" of the Liapunov functions will pro-

bably be semidefinite in such cases. A relatively simple example is given

in Example 2 in part III. Investigations into further possibilities are

continuing.

I. Stochastic Stability.

1. Markov and Strong Markov Processes.

For our purposes a Markov process can be defined in the following

way. Let X be a topological space (called the state space) and ft, <2)

and P {•}, a sample space, a cr_algebra on fi and family of probability
J\.

measures on (fl,̂ ) (for each x e X there is a measure P {•})• Let
J\,

x , t > 0 be a family of random variables from (ft,J0) to X with

&. C_0 being the least cr-algebra which measures x , s < t. Let there
t S •""

exist a real valued function ?(•,-,•) (called the transition function) on

X x [0,~) X ̂ (X), where (̂x) is the a-algebra on X which is induced

by the topology on X. Let P(-,t,T) be measurable on (̂X) for each t > 0

and T e ̂ (X), and let P(X, t, •) be a probability measure on



Furthermore, let P(X, t, P) = P {x e T]
X "C

and

(1) Px(xt+s e T|.0s} = P(xt,s,T) w.p.l.

for each s > 0, t > 0, x e X, r e _0(X) . Then we say that (ft, P , ̂ ., <&, x^)

(or simply that the process x.) is a homogeneous Markov process.

Note: By (l) we can write (l) as P {x e T] . The subscript x
xs S

denotes that the initial condition is a random variable with the distribution

of x . The argument x , e T indicates the event whose probability is being
s t .

written, under the given initial condition.

The definition of a non-homogeneous Markov process is similar - but

we must keep track of two time indices - rather than one. Then we define the

transition function P(-, •;•,•) by P {x e r] " = P(x,t;t+s,r) (the pro-
X. "C S

bability that with initial condition x at time t, the process is in T s

units of time later) .

Eqn (l) implies that P(-}-,'} satisfies the Chapman-Kolmogorov

equation

(2) P(x,t+s,T) = / P(x,t,dy)P(y,s,r), s > 0, t > 0.

For our purposes, the Markov process is slighlty too broad a class

of processes, for the following reason. Let x, be a Markov process whose

state space is the real line. Define T(O>) by

T(CO) = inf{t: xt = b > 0}

and suppose that T(CJO) < °o w.p.l. Then it is not necessarily true (even



if the terms are well defined) that w.p.l.

(3) P {x , e T| x . s < T} = P {x, e T}.v ' x t+t ' s' - XT

(Observe that x = b in the example.) In words - the distribution of the pro-

cess t units after first hitting b, conditional upon all the path data up to the

first hitting time, may depend on how we arrived at b and not simply on the

fact that x = b. (For an example see Loeve [4], p. 5?8). Indeed, (3)

should "be true for a process arising in a physical application, and we will

restrict our attention (without apparant loss of generality) to processes

where (3) is true for a large class of random variables T.

Definition.. A non-negative random variable T (defined on a set

ft C ft) is calleo1. a Markov time if

< t} e

i.e., T is a Markov time if we can tell whether or not T < t by watching

the process x up to time t only, for each t > 0.
*• S —



Definition. If (3) holds for all Markov times T, then x is

said to be a strong Markov process.

Definition. We will consider only strong Markov processes. If

x is a Markov process for which the function of x given "by E g(x,) is
"C X "t

continuous for each t > 0 and real valued, continuous and bounded g(*)>

then x is a Feller process.
U ~*—~~-~—~

A Feller process whose paths are continuous from the right is a

strong Markov process. ([5], Theorem 3.10).

Definition. Let B denote the Banach space of real valued bounded

measurable functions on X, and B_ the subset of B for which

f £Bo

weakly as t -»0. If the weak limit

E f(x ) - f(x)
XT/ w / s

I -»g(x),

exists (i.e., there is pointwise convergence, and the left hand side is

bounded as h -» 0) and is in B , we say that g(') is in the domain

of the weak infinitesimal operator A, and write Af = g.

Suppose T is a Markov time and E T < «>} and x, is right con-x ~t

tinuous w.p.l., and f e ̂ (A) } (the continuity conditions can be weak-

ened; see [5], p. 133) then we have the important relation (4), known as



Dynkins formula ([5], P. 133),

Af(x )ds.
s

The operator A plays a role for Markov processes, similar to the role

the differentiation operator plays for differentiate non-random real

valued functions. Equation (^ is an analog of the deterministic integral -

differential relationship and, as such, will play an important role in the

sequel.

The non-homogeneous case. If x, is non-homogeneous, or if we
"C

wish to apply (4) to functions f(x,t) of both state and time, then we can

proceed as follows. Define t to "be a state of the process (replace X

by X X [ 0, °°)). Redefine B, BQ appropriately, let f e (̂A) and g =

Af if f(-,') € B and

E f(x t+s) - f(x,t)
-2z* 2 -, g(x,t)

weakly as s -» 0, and E ,g(x ,t+s) -> g(x, t) weakly as s -» 0. Then under
X, u S

the conditions on T in U)

E f(x t+t) - f(x,t) = E / Af(x t+s)ds,
X, "C T > Q

In (k<) we understand that time is measured from the origin t ; i.e., the

value of x in (V) is the value of the state s units of time after the
S

initial time t.



2. A Few Sources of Stochastic Stability Problems.

Stochastic stability problems occur in almost all phases of physics,

control theory, numerical analysis and economics where dynamical models

subject to random distrubances appear, and the process is of interest over

a long period of time. Only a few simple problem types will be mentioned

here.

Suppose that y! is a Markov process which drives the differential
"C

equation y, = f (y|, y. ,0:), where a is a parameter, y! may represent an

external driving term, or random variations in some parameter of the equa-

tion. We may be interested in the range of a, for which y , -> 0 w. p.l. ,

or for which | y, | remains bounded in some statistical sense. For a
~\>

fixed at aQ, we may be interested in the range of initial conditions

y, y' for which (for some 1 > 6 > 0)

P { sup |y.| > X) < 6.
y>7 so > t > 0

 t ~

E.g., y, may represent a stress in a mechanical structure, and it may be
"C

of interest to keep the stress less than X > 0. Also, it may be desir-

able to know whether

P { sup | y | > X] ̂  0
> t > 0y'Y ~

as y or y1 or both tend to zero (a type of stability of the origin w.p. 1.)

The above stability properties are all properties of the paths of

the processes. There are many problems of interest concerning the asymptotic
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behavior of the moments and of the measures of the process - and even in

cases where the process is of interest for only a finite time [1], [3].

A large class of stability problems arise in tracking situations.

For example, suppose that we are driving on a road and sample our in-

struments and errors (e.g., distance from the center of the lane'and from other

cars) somewhat irregularly (as is usually done), then can we track the

center of the lane within a certain error, etc. Tracking problems arise

in radar and machine tool systems.

Many types of stochastic convergence can be studied. Here we deal

with w.p.l. convergence mainly. Other stability problems deal with (a)

convergence w.p.l. to a set, (b) recurrence - the process always returns

to a bounded set w.p.l., (c) no finite escape time w.p.l., (d) convergence

or .boundedness of certain moments of the process, (e) convergence of the

distributions of the process to an invariant measure. Types (d_e) are

usually more difficult to treat than w.p.l. convergence, but also are of

considerable practical importance.

3. A Brief Review of Deterministic Stability.

Some results in deterministic stability are briefly reviewed because,

in a certain abstract sense, the stochastic results are analogies of the

deterministic results.
•y*

Let R denote Euclidean r-space, f(-) a continuous function from

r rR to R and suppose that there is a continuous solution to the homo-

geneous differential equation x = f(x). Let V(-) denote a continuous, non-

negative, real valued, continuously differentiable function on R (whose

gradient is denoted by V (•)) satisfying V(0) = 0, v(x) > 0, for I xl ̂  0.
.X.

Let the set defined by Q^ = {x: V(x) < X) be bounded with the derivative

of v(xt) non-positive along trajectories in Q ; namely



(5) V(xt) = V̂ (xt)f(xt) = -k(xt) < 0

for x, e Q,, . Let x = x be in Q^. The following statements can be

made

V(x,) is non increasing. Then x, e Q for all t > 0.
"t t A*

From

t
(6) V(x) - V(x.) = / k(x )ds > 0

• * 0 S

we have that / k(x )ds < °°. This, and 'the uniform continuity of k(x )
0 . S S

on [0,°°) imply that k(x ) -> 0 as s -» «> and x -» (x: k(x) = 0}n
Q S

Furthermore as x -> 0, the maximum excursions of | x, | decrease

to zero.

Define an invariant set of points G in Rr as follows. Let

x € G. Then there is a function x, . t e (_oo «,) which satisfies the equa-
ii

tion x = f(x) with x = x, and furthermore x, e G for all t e (_<» «>).
O "u

Thus G contains entire trajectories over the doubly infinite time inter-

val (-00,00).

Let the trajectory x, be bounded. In particular, let x,= x e Q .
t - 0 A-

and assume. (5). Then the invar iance theorem [7] states that the path tends

to the largest invariant set contained in K. .

The theorem is important since it is often used to show that the

x tend to a much smaller set than 1C . It gives a very nice characteriza-

tion of the sets to which x, can tend.t
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2
Example. Define the differential equation on R ,

Xl= X2

where

t.
/ g(s)ds -»oo as t -»°°, sg(s) > 0 for s ^ 0
0

g(Q) = 0, a > 0. .

Define the Liapunov function

x.,
V(x) = Xp + 2 / 1g(s)ds.

0

Then

V'(x)f(x) = -k(x) = -2axp.
.A. £-

We can conclude that x0. -» 0. But what about xn,?
•̂ "U J_T*

It is natural to expect that x . -»0 also, and indeed (although
_L"C

the Liapunov function argument does not directly yield it) it can be proved

using a limiting argument, using the facts that V(x.) is non-increasing

and Xg, ->0. Yet is would be much simpler to merely substitute Xp, = 0

in the differential equation, and see what trajectories are possible,-

namely, put the limit of x̂ . into the equation, directly. The invariance
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theorem allows us to do this, and to conclude that xn, -»0 also. In
_L"G

examples involving functional differential or more complicated systems,

the invariance theorems can save an enormous amount of work.

In the sequel, we will develop stochastic counterparts of all the

concepts which we just used. While homogeneity is required for the in-

variance theorem, there are straightforward non-homogeneous extensions of

the Liapunov function theorems.

k. Stopped Processes.

The weak infinitesimal operator A and Dynkins formula (k] will be

used to replace (5), (6) for the stochastic problem. The domain (̂A) was

defined to be a subset of a set of bounded functions on X. However, the

Liapunov functions V(-) which are most likely to be used, and to which A

is to be applied, are usually unbounded (as is usual in the deterministic

case). Even if V(-) were bounded, the process may have a stability property

only in a bounded or compact set Q in X. I.e., Af(x) may be non-posi-

tive only in some neighborhood Q. °f "kne origin.

There is no loss of generality in studying the process only while

the paths are in such a set Q. For we can often (always, if X is c-

compact) find a sequence of sets Q, f> X, and, if desired, study the be-

havior of X by studying the "limits" of the behavior of the process up

to, say, T , where T = inf(t: x / Q ). Thus, we can bound V(x) for x "suf-
n n "G n

ficiently far" from Q, or we can define a new process by merely stopping

x, on first exit from Q,. The latter approach is much more convenient.

Let Q, be a set in X. Dynkin ([ 5 ], Chapter U) gives various

general conditions under which T = inf{x, / Q} is a Markov time. We
t
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mention only the following. Let x be right continuous w.p.l.

(a) Q is open and has compact closure. (Lemma 4.1)

(b) Q is open, X is a metric space (or metrizable) and X - Q,

is compact. (Lemma 4.1)

(c) Q, is open, and x is continuous, (p. Ill)
U

Define the stopped process x = x+nT>
 wnere tfH = min(t, T) . Let

either (a)-(c) above hold, and let x, be right continuous w.p.l. Then

x. is a strong Markov process ([ 5], Theorem 10.2). Unless otherwise
"C

mentioned, A_ will be used to denote the weak infinitesimal operator of

the process x. . Let x, be continuous w.p.l. Then to apply Dynkins for-
t . "C

mula to an unbounded function V(-), we only need check that the restriction

of V(-) to Q is in ^(A ) . If x, is right continuous w.p.l.. we need
ti "C

to check whether the restriction of V(«) to the union over x = x in

Q of the almost sure range x , s < T, is in ̂ (A ) . Such verifications — 14

usually seems to be straightforward in examples.

5. Stochastic Stability and Asymptotic Stability.

Unless otherwise mentioned, we will use the following assumptions

in this section. After the theorems are proved, extensions to more general

cases will be discussed.

(Al) X is Euclidean r-space

(A2) V(-) is a non-negative real valued and continuous function

on Rr.

(A5) Define Q,, = {x: V(x) < X] and assume that Q, is not empty.
A A,
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Let x denote a right continuous homogeneous strong Markov
t

process on the state space X, defined until at least the first

time of exit from CL . Write A, for the weak infinitesimalA, A,
~ **

operator of x, , where T = inf[tz x £ Q }, and x^ = x .
A,

V(-) e £̂ (A.) (where the definition of V(-) is assumed
A,

restricted to the union over x_= x in Q, of the almost

sure range of x,).

(A5) sup P { sup ||x -x|| > e} -> 0 as t -> 0 for any e > 0.
xeQ. x t > s > 0 S

A* — —

Observe that, if y 4 Q,, "but is in the almost sure range of x y
~"~~ A» - " - - ~ - - • S

s < T for some x. = x e Q. . then A.V(y) = -k(y) = 0. We will use this
— A (J A, A,

fact implicitly in the following theorems.

Theorem 1. Assume (Al) -(A4). Let A,V(x) <0 (recall that the

operation A,V(x) is defined for the stopped process). Then V(x.) con-

verges w.p.l., as t -> °°. Hence V(x.) converges for almost all paths re-
- - - - "- ~~ ~~~̂ ~~"~~~ Li ' ' ' - • ~ ~ ~ "^ "" '

maining in Q, . For x e Q, ,

(T) P { sup V(x ) > \] = P { sup V(x , ) > \]
x o o > t > 0 r ~ X ° o > t > 0

< V ( x ) / X .

_If V(0) = 0 and V(x) 4 ° £°£ x ^ °* then as I xl ~* °^ the probability

in (7) goes to zero (a type of stability of the origin).

Proof. Applying (K) gives

t

(8) V̂ t) - V(x) = E^ * A V(x )ds = E / A V(x )ds < 0.
X \ » X - . A . H ^ r \ A * S —



Thus, w.p.l. ,

E~ V(xt) < V(Xs)
s

or, equivalently, since x is Markov, (.0 is the smallest a-algebra which

measures x , r < s)
T} —

j0s] < V(xs), w.p.l.

Thus (V(x ),ĵ  } is a non-negative super-martingale. This gives the con-
"b ~t

vergence of V(x, ) . (7) is the super -martingale pro"baMlity inequality. The"u

rest of the statements are obvious. Q.E.D.

Non-homogeneous case. Suppose that the Liapunov function V(-,0 de-

pends on x and t or that x, is non-homogeneous. ¥e state the following"t

Theorem 2, without proof.

Theorem 2. Let the real valued continuous functions (on R , Rr X

[0,°°), Rr, resp) V (•), v(-,0, V2(') satisfy, for some real tQ > 0, and X > 0,

V1(x) < V(x,s) < V2(x)

for s > t_ and x e Q' = {xl Vn(x) < X}. Let x be a right continuous— 0 A, 1 "t

strong Markov process defined until at least the first exit time T from.^ ^ — ^

Q,'. Let A, denote the weak infinitesimal operator of the process
A, A* ~

(x,,tn-r ), which is (x,,t) stopped on first exit from Q'. Suppose

V(x, t) e ^(A ) and A V(x, t) < 0 for t > t . Then, for t > t ,
A> •• • ™ A/ ~~ ~ • ~~ \J ' ^̂ ^̂ ^ ~~ \J
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(9) Pv + ( sup V (x ) > X) < P { sup V(x s+t ) > X)
X^0 ° ° > s > 0 1 S ~ ~ X^0 oo > s > 0 S U ~

< V(x,tQ)/\.

Also V(x..t+tn) converges for almost all paths for which V(x, , t+t0) < X"t U • ' -— —~— • ' i . . ———...-..-._..-. "£ (j —

for all t > 0, where we use x= x for the initial condition at the

initial time t ; thus there is convergence with at least probability 1 -

V(x,tQ)A. •

Let V2(x) -»0 as | x| -» 0; then the right hand side of (9) goes to

zero as | x| -»0. Let also V (0) = 0 and V (x) > 0 for | x| ̂  0; then for

any e > 0 and any neighborhood of the origin A., there is a neighborhood

A0 C A so that, if x e A0, the probability of x ever leaving A-, is no
t— J_ -—•" — —— c. ••• ' ™— •"•" ••"•" "C — -L '

greater than e.

Theorem 3. (Asymptotic Stability). Assume (Al)-(A5). Let A.V(x) <
••- • - ' • ...-—.—-. -—,,- • ' A, —

-k(x) < 0 in Q. . Then k(x.) -> 0 in probability and V(x.) converges
— A* ^—— \j ——̂ -̂ ^̂ —̂̂ ^̂ —̂̂ ~̂—̂ ~̂-̂ — u ~~̂ —̂

p
w.p.l. Thus k(x ) -»0 (and also V(x.) converges) for aibnost all paths

which never leave Q, . (Equation (7) gives a lower bound l-V(x)/X to the pro-

bability of never leaving Q .)

Let k(') be uniformly continuous in Q, . Then x, ->

[ n (x:k(x) < e}] fl Q = P^ for almost all paths which never leave Q. . If
e X ) X X X —

the hypotheses hold for all X < <» and V(x) -> °° as | x| -»°°, then x, -»

0 {x: k(x) < e} = K w.p.l. The convergence in the last two sentences is in
eX)
the topology for the compactified Rr, if the Q, n {x! k(x) < e} are unbounded.

If they are bounded, replace n (k(x) < e} by {xt k(x) = 0}.
e

Proof. The key to the proof is the. fact that the total time which

the process x can spend outside of the set K = {x: k(x) > e > 0} fl Q,,
S € — A

is finite w.p.l. for any e > 0. This follows from the inequality
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(10) V(x) > -ExV(xt) + V(x) = Ex / k(xg)ds > eExT'(t,e),

where T'(t,e) is the total time that k(x ) > € in [0,t]. That
X S —~

k(xt) ^ 0 follows from (10) .

We next prove the first statement of the second paragraph of the

theorem. Let T(t.e) denote the total time that k(x ) > e in [t,°°).
S —

Then T(t,e) -> 0 w.p.l. for any e > 0 and x e Q,̂ . The rest of the

proof combines this fact with (A5), the uniform stochastic stability as-

sumption, to yield the w.p.l. convergence. Let C denote the set

C = {x: k(x) < e} n CL .
G A.

Assume that k(x) < 0 for some x e Q,, for otherwise the theorem is trivial.

Then, by uniform continuity of k(-) in Q, , there is some e so that the

distance between Q, n C° and C /0 (C is the .complement of C ) is posi-
A. € G I c. ^ ^

tive (say > o(e)) for 0 < e < eQ, and Q,^ n C£ is not empty.

Define the Markov times a , CT' (finite on sets ft , fl', resp.) asn' n n' n' * '

follows, (if a or a1 is not defined at co, set it equal to °° there.)

aO = °^ °6 = inf(t: ^t e Ce/2^ CT1 = inftt: xt e Q^ n CC, t > a'}, a' =

inf{t: x e C /p, t > a }, a = inf{t: x e Q n C°. t > a'}, etc. Thereu / — n—x n \j A, G — n

is some p > 0 so that

(11) sup P { sup |x -x| < 5(e)/2) > 1
xeQ, p > s > 0 S

> 1/2.

Define



An = n
: *a +s

 £ Ce/2 n Qx, 0 < s < p, an
'

If oo e A infinitely often, then the total time out of C /2 U Q, is

infinite for the corresponding path X,(<D). Then oo e A only finitely

often w.p.l. But Z I. -> °° w.p.l. if and only if (6g measures
XT. On n

x , s < cr , thus all A., i = 0,..., n-1, are in <& )
n

^ P. 398-399) and, by the strong Markov property (P {A} = 0 for t = »)
Xt

(12) Z Px{Aj â } > E Px { sup |xs-x| > }I <
n c r p > s > 0 l n

n — —

Thus a < oo only finitely often w.p.l. The remaining statements of the

theorem follow easily from what we have already proved. Q.E.D.

Discussion and extensions.

(1) It is not necessary that k(-) be continuous in Q , nor

even that k(x) = 0 anywhere. See the hypothesis and proof of [1],

Theorem 2, Chapter 2. There are examples arising in control theory

f
where X = R has a hole in it, i.e., a target set S is deleted, and

k(x) > 1 for x ̂  S . The set Sp is absorbing, so there is a dis-

continuity of k(') on the boundary of X.

(2) If the hypotheses of Theorem 3 hold for all X and V(x) -» «>

as | x| -» °°, then x, -» {x: k(x) = 0} w.p.l.
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(3) If A.v(x)< -k(x)<0 in Q then k(x.) 0̂ for any state
A* ~" "~" A* "C

space, provided that the Dynkins formula is valid for the x. process.

(*0 If Q, is unbounded, (A5) may not hold. Furthermore
A.

{x: k(x) < e} n Q may be unbounded. Suppose that (A5) holds if Q is

replaced by any compact subset S of X. Then, we can obtain the follow-

ing. For any compact S and e > 0, there is a random variable T < °°b, e

w.p.l., so that x d S - C for t > T . Thus x -> {x: k(x) = 0} U
t £ — S, € o

{°°} w.p.l. in the one-point-compactification topology of R .

Sometimes subsidiary conditions can be used to eliminate the point

C00} . Refer to the next section for the definition of the terms "weakly

bounded" and "invariant set". Let the measures of the process x. be
u

~ p
weakly bounded, and let k(x ) ->0. Then x, tends in probability to the

t u

support of the largest invariant set whose support is contained in

C l**>

[ {x: k(x) = 0} n Q ] U Q, . Thus, x, tends in probability to the union
A. A/ "U

Q

of Q, and a subset of {x: k(x) = 0} n Q,̂ .

The remarks and results for unbounded Q, are motivated by the
A,

stability problem for a process of the type y = f(u, y), where u,, and

the pair (u.,y,) = x. are Markov processes. The process u, may serve
"C t "C \j

as a time varying parameter, and not converge in any sense. We may be con-

cerned with the convergence of the component y, only, but the Liapunov

function may depend on both components.
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(5) If X is a matric space, the proof still goes through under

(A2) _ (A5), if we replace R in (A2) by a metric space X. It may be

difficult to verify (A5) and the uniform continuity of k(-) in this case,

and the closure of Q, will not usually be bounded. But it sometimes happens
A

that if x = x_ e Q,, then the path x , T > s > 0, is contained in a

bounded subset of Q, w.p.l. Then Q, is "effectively" contained in a
A/ A,

bounded subset, and if k(-) is uniformly continuous and (A5) holds on

this subset, then the proof goes through. See [ 6] for a specific example. (A5)

plays a crucial role in the proof (since we need to guarantee that x, does
"C

C C C
not jump (w.p.l.) from C /2 to C and back to C /~ infinitely often

in a total integrated time which is finite), and some form of uniform sto-

chastic continuity condition is probably essential.
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II. Invariant Set Theorems and Applications to Stochastic Dynamical Systems.

In this Section we will develop a stochastic theory of invariance

analogous to the deterministic theory in [ 7 ], [8 ]. The main conclusion

is that, under given conditions, the measures of the process x. tend to
"C

an invariant set of measures, and that x, tends to the closure of the sup-
"C

port set of this set of measures in probability as t -»°°.

Note that we are using the terms "invariance" and "invariant" ac-

cording to their usage in the general theory of dynamical systems. The term has

nothing to do with the stochastic notion of invariant measure. In this

Section x, will be a homogeneous strong Markov process. We essentially

follow the development in [ 2 ], with some changes and corrections.

1. Definitions. Let X, the state space of the process x., be a"t

separable metric space. Let cp denote the initial measure of the process;

i.e., P{x e A) = cp(A). Let m(t,ep, •) denote the measure induced on the

Borel sets of X by the process at time t, with initial measure cp. The

semigroup property

m(t+s,q>,') = m(t,m(s,cp),-)

holds.

Let J[ denote the space of probability measures on X . A sequence (ty }

is said to converge weakly .to \|/ if /f(x)i (dx) -> /f (x)i|/(<ix) for every

f(-) in G, , the space of continuous bounded functions on X. We may

abbreviate the convergence relation as f [ i|r ] -» f[ \|/] . A set M = {̂ L} in

J£ is weakly bounded if, for each e > 0, there is a compact set K C X

Occasionally for simplicity cp is written for cp(-) and m(s,cp) for

m(s,cp, •) or m(s,cp( •) •) .
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for which il/ (X-K ) < e for all a. Define an co-limit set as a seta e' —

W(cp) in Jt with the property: i|r e W(cp) if there is a sequence t ->»

so that f[m(t ,9)] -> f[ i|/] (ty is a weak limit of a sequence of measures

taken along the trajectory) for all f(-) e C^. A set MC^ is an in-

variant set if for each i|r e M, there is a sequence of measures m1 (t, •},

for t 6 (-°°,°°) where m' (0, •)= iK') . the initial measure, and m(t,m' (s,cp), •) =

m'(t+s,-) for any t > 0 and s e (-00,00). Thus for each i e M, there

is a trajectory of measures defined for all t e (-°°,°°) and satisfying

the law of motion of the process x, and initial condition i|r. Let ty
"C

be in J?. x e X is in the support set S(i|r) of ty if (̂w) > 0 for each

neighborhood of N of x. Similarly S(Q) = U S(i|/) is the support set
^eQ

of a set Q, in J?. The set S(ty) is closed, "but S(Q) is not neces-

sarily closed. The process x. is a Feller process if E f(x,) is con-
"C • X o

tinuous in x for t > 0 and f(-) € C,,.

Next, the main theorem and a useful corollary will be given. Then

the conditions of the theorem will be replaced by more easily verifiable conditions.

2. The Invariance Theorem.

Theorem ik Assume (Bl) - (B3).

(Bl) The trajectory {m(t,<p), t. > 0} is weakly bounded.

(B2) For each f(-) in Ĉ ., f[m(t,cp)] is continuous in t on

any finite t (t > 0) interval, uniformly in cp, for 9

in any weakly bounded set.

(B3) f[m(t,ep)] is weakly continuous in 9 for each fixed t > 0.

[I.e., as cp ^cp, f[m(t,q> )] -» f[m(t,cp)] ' for each f(-) e C
1 ••• • ^— *1 II —̂ —̂ —̂ -~—~— }

and each t > 0.]

It is important to keep in mind that the en-limit set is an co-limit set

of a trajectory of measures.
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Then W(cp) is a non-empty, weakly bounded, weakly compact invari-

ant set and there is a sequence t(t) in W(cp), t > 0, so that

f[m(t,q>)] -

for all f (-) e GX, as t -»°°.

Proof. According to Theorem 1, Section 1, Chapter 9 of []Q], a

sufficient condition for a sequence in Jt- to have a weakly convergent

subsequence is that it be weakly bounded. Thus W(<p) is not empty.

Let {e.} denote a real sequence which tends to zero. By (Al),

there are compact sets G. so that G D G. and m(t,cp,X-G.) < e.,

all t > 0. For each G., there is a countable familŷ "! of continu-

ous functions, defined on G., and dense in C^ . Each element of
i

^"! can be extended to a continuous function X without increasing its
1

norm (using the normality of the metric space and [9], Theorem 1.5.3).

Let ^. denote the countable family of such extensions and & = U &. .
i . i

Write G = U G.. Observe that, for any f(') e Cx,

/f(x)m(t,9,dx) = / f(x)m(t,cp,dx).
G

(*) also holds for m(t,cp, •) replaced by an element in the weak closure

of {m(t,q>, •))•

Let m(t ,9, •) converge weakly to i|r(-) in the oi-limit set w(q>)

Define the function F (•,•) by



Fn(t,f) = /f(x)m(tn+t,(p,dx).

If t -T > 0, then Fn(t,f) = /f (x)m(t+T,m(tn-T,cp,), dx) . Since {m(tn-T,q>) )

is weakly bounded, (B2) implies that F (t, f) is continuous in t on

[-T,T], uniformly in n, for each ft") • Thus Ascoli's Theorem implies

that there is a uniformly convergent subsequence on [-T,T]. By succes-

sive applications of the diagonal procedure, we can extract a subsequence

(of t ) for which F (t, f) converges to a continuous function of t, F(t, f)

for each f ( • ) e & , and uniformly on any compact [ -T, T]

interval. Since, for any f(-) e Cy- and e > 0, there is an f (•) in

^ f or which |F (t, f ) - F (t, f ) | < e for all n and t > -t , the as-

serted convergence is for all f e C^ .

Define the set function t(t, •) by

i|r(t,A) = inf F(t,f)

where f( ')£C ? and I. is the indicator function of the Borel set A in X.

The argument in [10], pp. l̂-Wt-4, can be used to prove that, for

each t e (-00, °°), ty(t, •) is a unique probability measure, ty(t, G) = 1 and

F(t,f) =

for each f(-) 6 GX. Thus m(t +t,cp, •) ̂  1/(t, •) for each t e (-00,00), where

i|/(0, •) = !]/(•)• The weak closure of {m(t,cp, •)} is also weakly bounded

and is supported in G . Thus, by (B3), we can write, for any t e (-00,00),

s > 0, and f(-) in C^,



f[m(s,m(t+t,q>))] -» f[m(s,i|f(t))]n

f[m(s,m(tn+t,<p)).] = ftm(0,m(tn+t+s,cp))]

which implies that \|/(t+s, •) = m(s;\|>(t), •) since the continuous func-

tions determine the measures uniquely. Thus (ty(t)} obeys the law of

the process and each ty(t) is in an invariant set.

Let f[ty (•)] converge for each f(-) e Ĉ , as n --» °°, where

i|f (•) e ¥(cp) (thus {\|/ } are weakly bounded). There is a measure t(')

for which f[ ty ( •) ] -> f[ t(*)] on Cj and (̂G) = 1. We need to show that

e W(9) . For each n, m(t.(n),cp, •) ™» ty (.) as i -» »^ for some real

sequence t. (n) -»°°. Since

lim lim /f(x)m(t. (n),9,dx) = lim /f(x)i)f (dx)
n i 1 n n

= /f(xH(dx),

for each f e &, we can extract a subsequence {t } of the double se-
QJ

quence (t.(n)} for which m(t .cp, •) ̂ i|/(-)-

Only the last assertion of the theorem remains to be proved. Suppose that

there is a sequence {t } so that for any subsequence {tr}, and some

f(-) in _^or C,

(*) lim sup inf | f[m(t;,q>) ] - f[*(-)]| > 0.
n il

By weak boundedness of {m(t̂ ,cp, •)}, there is a subsequence which converges



weakly to some \KO e -^. This i|/(0 must also "be in W(cp), a contra-

diction to (*). Q.E.D.

Theorem 5. Assume (Bl)-(B3) of Theorem 4. Then

p

(i) x, -> S(w(cp)) = C, the closure of the support set of the in-
"D —'— " " T — ~~" •—

variant set W(cp), I.e., P { inf | x -y| > e} -»0 as t -»°°, for any
9 y e C

e > 0.

(ii) Let k(-) be a real valued, non-negative and continuous
p

function on X and let k(x,) ->0. Let G denote compact sets in X1 ' - ,™ • ' "C - - ii — .. _ —

for which m(t,cp,X-G ) < e -»0, G +, D G . Then x^ converges in prob-

ability to the largest support set of an invariant set whose support is

contained in lim G fl {x: k(x) = 0).
n n

Proof, (i) Let N (C) denote an e-neighborhood of C. We will

show that , for each e > 0,

(*) lim P {x e X-W£(C)} = 0,
t -> <»

since (*) implies (i). Suppose (*) is violated. Then there are t

and e > 0 so that P {x e X-N (C)} > e > 0. There is a function
U CLJ t t ^~ \J

f(-) e C satisfying 0 < f(x) < 1, f(x) = 0 on N(C), f(x) = 1 on

X-N (C) . For some subsequence {t1} of {t}, m(t',cp, •) converges weakly

to a t(') in W(cp) and f[m(t̂ ,cp)] -* f[ i|f( •) ] > eQ > 0. Thus X-N£(C),

which is disjoint from C", contains some point in the support set of iKO>

a contradiction to the definition of C.

(ii) follows easily from (i), and the proof is omitted. Q.E.D.
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Discussion of the Conditions (Bl)-(Bj) of Theorem k.

Under the conditions of Theorem 1, if Q is compact, then the

measures for the stopped process are weakly "bounded, and we can apply the

invariance theorem to the stopped process. If the conditions of Theorem 1

hold for all X < <», and each Q,, is compact, then {m(t,cp, •)} is weakly

bounded. Usually, the function k(') in Theorem (5) is the k(-) of Theorem 3.

Furthermore, even if each Q. is not bounded, it may be that the measures

for the process stopped on exit from Q~ are weakly bounded. See Example

2 in [ 6].

Theorem 6. (B3) holds for a Feller process on any topological

state space.

Proof. Let cp (•) ̂  cp (•). We must show that

/f(x)m(t,cpn,dx) - /f(x)m(t,cp,dx) -+0

for all f(-) e GX. Write (*) as

/[f(y)m(t,x,dy)](cpn(dx) - cp(dx))

= /h (x)[cp (dx) - cp(dx)]
u n

m(t, x,•) denotes the measure with initial condition x and h.(x) =
"C

E f(x.) which is in Cv by the Feller property, and the convergence
X u A

follows since cp (•) -»cp(-)« Q.E.D.

Remark. Theorem 6 implies that condition (B3) is not very restrictive.



Theorem 7. Let

0

as t -» 0, uniformly for x in any compact set. For each real T > 0 and

compactum K C X, let the family {m(t, x, •), x e K, t < T} be weakly

"bounded. Then (B2) holds.

Proof. Let {cp } denote a weakly bounded set of measures. Then the second

hypothesis implies that the family {m(t,cp , •), t < T, all a] is weakly
Co ~~

bounded (we omit the proof, which is not hard).

Write, for t > 0, s > 0, s+t < T,

| /f (x) [m(t+s,cpa, dx) - m(t,cpa, dx) ]|

< /|Exf(xs)-f(x)|m(t,cpa,dx)

= / |E f(x )-f(x)|m(t,cpa,dx) + / t|Exf(xs)-f(x)|m(t,<Pa,dx).
QI x X-G'

Choose compact G' to make the second term less than ^ for all a,

t < T. Then, using the first hypothesis, choose s_ > 0 so that

|E f(x )-f(x)| < 75 for s < s and x e G1, thus proving right continuity
X S — £- — \j

of E f (x ) .
X "C

To prove left continuity, write, for T > t-s > 0, s > 0,
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/f(x)[m(t,q>a,dx) - m(t-s,q>a,dx)]|

< / | E f (x ) -f (x) | m(t-s,q> , dx) + / | E f (x ) -f (x) | m(t-s,cp , dx) ,
—

, , ,
a Y r '

Choose compact G' so that the second term is < ̂  for 0 < t-s < T,

and all a, and then choose sn so that JE f(x )-f(x)| < •* for s < s_
\J X S — ^ — U

and all x e G1. Q.E.D.

III. Examples .

Example 1. A. relatively simple example is the diffusion process given

by the It6" equation

dx = x2dt

dx2 = -gCx^dt - ax2dt - XgCdz

where

t
/ g(s)ds -*» as t ->», sg(s) > 0, s ^ 0, g(0) = 0,
0

and g(-) satisfies a local Lipschitz condition. Let Q be a bounded open

set in E . . Then x can be defined up until the first exit time from
u

Q, and the stopped process is a continuous Feller process and (Bl)-(B3)

hold. The function

V

V(x) = y£> + 2/ 1g(s)ds
0

is in (̂A_) and, for x e Q,
<t

AQV(X)



2
Let c < 2a. Then

P { sup V(x,) > X] < V(x)/X ->0 as X
x

-»
t > 0

and x. can be uniquely definedon [0,°°) w.p.l., even though g(-) does not
"C

satisfy a global Lipschitz condition. It is a continuous Feller process and

(B1)-(B3) hold.
p

Let c < 2a. Then x0, -» 0 w.p.l. and "by Theorem 1, x tends^"t t

in probability to the smallest invariant set whose support satisfies Xg - 0,

for all t. Thus x, -»0. This and the w.p.l. convergence of V(x ) im-
t «

plies that x , -» 0 w.p.l.

Example 2. For the second example, we take a problem arising

in the identification of the coefficients of a linear differential equa-

tion.

The system to be identified is the scalar input, scalar output

asymptotically stable, reduced form, system

n-1 i m i
(1) (~̂ + Z a ̂ -T)y= (Zb ̂ u, n>m,

dt i=0 dt 0 dt

where u(t) is the input. We wish to know the a.,b.. The input u(t) is

Z c.u.(t), where u(t) is a stationary Markov process. The "equation

error" method of P. M. Lion ("Rapid Identification of Linear and Nonlinear

Systems", Proc. 1966 Joint Automatic Control Systems Conference, University

of Washington, Seattle) will be used. For this method, some estimate of

the derivatives of a smoothed input and output are needed.

Let H(s) denote a transfer function the degree of whose de-

nomenator exceeds the degree of the numerator by at least n. For any



real number c, define the "derivatives of the smoothed u, y" as

yk(s) = H(s)(s+c) y(s), k=0, ...,n

) = H(s)(s+c)ku(s), k=0,...,n

and the equation error e(t) as

n-1 m
(2) e(t) = y (t) + Z a.y.(t) + Z P.U (t)

0 0

-where {a., P.} are to be prescribed. Let the system (y, ŷ  , ...,ŷ n~ ')

be state variablized by the minimal order, (with asymptotically stable

Ay) xy = Ayxy + Byu, y = Hyxy, and write

where the last term goes to zero exponentially.

Let us impose the following conditions:

(Cl) u(t) is a right continuous stationary Feller strong
_ 2

Markov process with E|u(t)| = M_ < °°. Thus, the paths

are Laplace transformable paths w.p.l. In particular,
CO

/ e~kt|u(t)| < oo w.p.l. for all k > 0.
0

(C2) P_{ sup |u(h)-u| >e}-»0 as 5-»0 uniformly for the
u ̂ h>0

initial condition u = u(0) in any compact region.

(C3) E[u(t+T)u'(t)| u(s), s < 0] ->R(T), the covariance of the

u(t) processes. Let Eu(t) = 0. (This condition is not

essential.)



S (oi), the spectral density of u(t), is nonzero over some

interval.

There are real numbers {a.,p.] so that e(t) = 0 if all

x.(0) =0- To see this write the Laplace transform of (2) where we have

n-1 m
e(s) = y (s) + Za°y.(s) + Z P°u (s)

0 0

J(s+c)
n

= H(s) (s+c)
n
 + z" ̂ (s+c)

1 *|. + Z ̂ u(s) = 0

if

m

N(s) 0 x
Ep°(s+c)1

o. a = a = l.
' n -nD(s) n ' n n

0 1

For {a.,p.] used in (2), e(t) ->0 exponentially. In fact, we suppose

that the systems generating y.(t), u.(t) are connected to their inputs

at t = 0, and that their initial conditions do not depend on the process

u(t). Then e(t) is non-random. The condition can be relaxed to allow

for random y.(0), u.(0), at some extra complication in the analysis.

The parameter adjustment procedure is

, ^ 2

(3)

Define the column vectors



z -

w =

Then

z = -kwe = -

yn + ty0°S + — + UmO - CyOaO

(5) = -kww'z + 6,
"C

~ o
where 5 = -kw[y + y_a +...+

T II O i)

We can assume that the y, (t), ̂("t) are "the outputs for asym-
yk yv yfc yk / x yv

ptotically stable systems of the form x = A rx + B y, y(t) = H *x

etc. Thus all y , u, , y, u, z are state variabilized, and the composite

state variabilization, namely x(t), is a right continuous strong Markov

process and Feller.

Furthermore, it is uniformly stochastically continuous in the

sense of (C2).+

2
Let E|z(0)| < °°. Let $(t, s) denote the fundamental matrix solution

of z = -kww'z. Then |*(t, s) | < 1 and

z(t)| < ]z(0)| + / 16 Ids
0 S

E.g., let 5c = Ax + By, where y satisfies (C2) . Then we only need

PY J sup I/ eA(h-T)By(T)dT| > e] -» o
0

uniformly in (x, y) in conpact intervals, as S-»0.



which, together with the bound EJ w | | w, | < M < °° for some M, yields that
S "u —

E| z(t)| 2 < M for some J/̂  < °°.

Next, let us introduce the Liapunov technique. Let

V = z'z.

Then

(6) • v = -2k(z'w) - k(z'w)[y + w'a°]

= -2k(z'w)

n

2

where a° = (a°, ...,a° ,, P° ...,P°). Note that, since V(z(t)) is

differentiable, [E V(z(t+A)) - V(z(t)]/A -» V(z(t)) w.p.l. V does not
xt

involve the possibly non-differentiable components (namely u(t)) of x(t) .

(a) E| z'(t)w'(t)| < E1/2] z(t)| 2E1/2|w(t)|2 is uniformly bounded
00

and y (t) + w(t)a is not random. Hence / I p. I dt < °° w.p.l. and
n 0 *

00

/ E| P. | dt < oo.
0 *

xjunueu, aj-iice &\ zn, u; |

hence the (x(t)} process is weakly "bounded.

(b) The z(t) process is weakly bounded, since E|z(t)| < M <

(c) From (6) and (a), z'(t)w(t) is square integrable on ft X

2
[0,<») and / (Z'(T)W(T)) dT -»0 w.p.l. as t -»«>. The components of

t
z(t) and w(t) satisfy the uniform stochastic continuity condition.

This, together with the weak boundedness and the convergence

00

/ (Z'(T)W(T)) dT -»0 w.p.l. imply that z'(t)w(t) £ 0. (indeed z'(t)w(t)
t
can be shown to converge to zero w.p.l.)



(d) Writing

n-1 m
e - [yn + Z a.y. + Z P̂ .] = z'w + yn - yn

p
we have that e(t) -» 0, and is square integrable.

(e) The measures of x(t) tend to an invariant set of meas-

ures. This invariant set must be consistent with e (t) =0 w.p.l. for

each t. Thus, by (4), for the invariant set, z(t) = z, a random variable.

For the measures in the invariant set

n-1 m
(7) 0 = y (t) + Z 5 y (t) + Z p u (t) = e(t)

0 0

rx/ 'N* '̂  '̂ f 'N^ S\ f\

for some set of random variables z = (a.,..., a .,. Prt. ...,P ) - (o;».. ...P )0' ' n-1' 0' ' w ^ Q' ' m

Write

0 = E[e(t)6'(t*-T)|2.,p., for all i] = R . ( T ) .
11 "C

Let y(t) denote the components of x(t) without z(t). The probability

law of the process x(t) implies that P (y(t) e A} = P (y(t) e A}. This
«y ) ̂* *j

and (CJ) imply that the limit R(T) of R,(T), as t -> °°, is the same as
>̂ s rv

if the Ct.,p'. were not random. Then, using the stationarity of the u(t),

y(t), yk("
t)̂  ~\̂  processes, the Fourier transform of R(T) is

n . „ /. \ m
(8) 0 = |Z a.

0 J



[Consider R(T) as the covariance of the output of an asymptotically stable

linear system with input u(t) - the transfer function of which is

n ~ • l\r( "l m

o ^ D^s' o

But (8) and (Ck) imply that a. = a., P. = P°, and the demonstration is
J J J J

complete.
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