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A theoretical  elastic  analysis  is  presented  for  the  in-plane  shear  of 

a  corrugated  plate  with  curvilinear  corrugations  and  with  discrete  attachments 

between  the  ends of the  corrugations  and  the  surrounding  members. The purpose 

of  the  analysis is to  obtain  information  about  the  effective  shear  stiffness 

of  the  plate  and  the  flexural  strains  that  develop in it during  the  shearing 

process  as  a  result  of  the  attendant  cross-sectional  deformations. 

The  crests  and  troughs  of  the  corrugation  cross  section  are  assumed  to 

be  identical  circular  arcs. The following  four kinds of  discrete  attachment 

at  the  corrugation  ends are considered  in  the  analysis: (a) point  attachments 

in  the  troughs, (b) point  attachments  at  the  crests  and  in  the  troughs, (c) point 

attachments  at  mid-height,  and (d) point  attachments  at  mid-height,  at  the  crests, 

and  in  the  troughs. 

The  analysis  employs  the  method  of  minimum  total  potential  energy  and  the 

calculus of variations in order  to  obtain  differential  equations  and  boundary 

conditions  governing  the  longitudinal  variation  of  certain  assumed  component 

modes of deformation  of  the  cross  sections,  including  deformations in the  plane 

of the  cross  section:  as  well  as  normal  to  the  plane  of  the  cross  section. The 

present  analysis  is  believed  to be more  accurate  than  a  previous  analysis  of  the 

same problem; in  particular,  it  does  not  employ an assumption  implicit  in  the 

previous  analysis  to  the  effect  that  the  straight-line  generators  of  the  corruga- 

tion  remain  straight  lines. 

Numerical  results are presented  only  for  the  first  of  the  four  kinds  of 

end  attachment  listed  above,  but  for  a wide  range of  geometries. The numerical 

results  show  that (a) the  shear  stiffness  of  the  discretely  attached  corrugated 

plate  can  be  much  lower  than  that of the  continuously  attached  corrugated  plate, 

and (b) the  extreme-fiber  flexural  stresses in the  discretely  attached  corrugated 

plate,  associated  with  the  deformations  of  the  end  cross  sections in their own 

planes,  can  be  very  high. 



INTRODUCTION 

T h i s  is t h e   f o u r t h   r e p o r t   i n  a series d e a l i n g   w i t h   t h e  e las t ic  s h e a r i n g  

a n a l y s i s  o f   c o r r u g a t e d   p l a t e s   h a v i n g   d i s c r e t e   r a t h e r   t h a n   c o n t i n u o u s   a t t a c h m e n t s  

a t  t h e   e n d s   o f   t h e   c o r r u g a t i o n s .  The t h r e e   p r e v i o u s   r e p o r t s   ( r e f s .  1, 2 and 3)  

dea l t   w i th   Cor ruga t ions   o f   t r apezo ida l   c ros s   s ec t ion .   The   p re sen t   r epor t   con -  

s i d e r s   c o r r u g a t i o n s  of c u r v i l i n e a r   c r o s s   s e c t i o n .  

The o b j e c t i v e   o f   t h i s   r e p o r t ,   a s   o f   t h e   p r e v i o u s   o n e s ,  i s  t o   a r r i v e  a t  

means  of p r e d i c t i n g   t h e   o v e r a l l   i n - p l a n e   s h e a r   s t i f f n e s s   o f   d i s c r e t e l y   a t t a c h e d  

c o r r u g a t e d   p l a t e s  as well  as t h e  stresses which   deve lop   i n  them d u r i n g   t h e  

s h e a r i n g   p r o c e s s .   T h i s   o b j e c t i v e  i s  m o t i v a t e d   b y   t h e   f a c t   t h a t   c o r r u g a t e d   s h e a r  

webs ,   w i th   t he   co r ruga t ions   runn ing   ve r t i ca l ly ,   have   been   p roposed   fo r   u se   i n  

t h e   s p a r s  of a e r o s p a c e   v e h i c l e s  as a means  of  avoiding  high  thermal stresses due 

to   t empera tu re   d i f f e rence   be tween   t he   ou te r   sk in   and   t he   i nne r   webs ,   and   fo r  

ea se   o f   cons t ruc t ion   i n   such   app l i ca t ions   t he   a t t achmen t   be tween   t he   ends   o f   t he  

c o r r u g a t i o n s   a n d   t h e   s p a r   c a p s  may b e   d i s c r e t e   r a t h e r   t h a n   c o n t i n u o u s .  

F o r   s i m p l i c i t y   o f   a n a l y s i s   t h e   c r o s s   s e c t i o n  i s  assumed t o   b e  composed  of 

c i r c u l a r   a r c s .  It i s  e x p e c t e d ,   h o w e v e r ,   t h a t   t h e   r e s u l t s   f o r  a c r o s s   s e c t i o n  

composed of c i r c u l a r   a r c s  may b e   a p p l i c a b l e ,  a t  l eas t  as an   approx ima t ion ,   t o  

o t h e r   t y p e s   o f   c u r v i l i n e a r   c r o s s   s e c t i  

have   t he  same p i t c h   a n d   h e i g h t  as t h e  

F i g u r e  1 shows t h e   c o n f i g u r a t i o n  

n o t a t i o n   t o   b e  employed i n   c o n n e c t i o n  

o n   ( e . g . ,   s i n u s o i d a l )   p r o v i d e d   t h a t   t h e y  

c i r c u l a r - a r c   c r o s s   s e c t i o n .  

o f   t he   co r ruga ted   p l a t e   and  some of t h e  

with i t .  A s  i n d i c a t e d   i n   t h e   f i g u r e ,   t h e  

s h e e t   t h i c k n e s s  i s  t, a n d   t h e   c i r c u l a r   a r c s  making  up t h e   c r o s s   s e c t i o n   h a v e  a 

r ad ius   o f   R(>>t )   and  a c e n t r a l   a n g l e  of 2 8 .  The a r c s  are j o i n e d   t o  form a wave  of 

p i t c h  p a n d   h e i g h t   h ,   r e l a t e d   t o  R and 8 t h r o u g h   t h e   f o l l o w i n g   e q u a t i o n s :  

p = 4R s i n e ,  h = 2R(1 - c o s e )   ( l a )  

Equa t ions   ( l a )   pe rmi t  p and h t o   b e   r e a d i l y   e v a l u a t e d   i f  R and 8 are 

g iven .  On t h e   o t h e r   h a n d ,  i f  p and h are g i v e n ,  R and 8 can   be   eva lua ted  

2 



from  the  following 

8 = 2  tan 
- 1  

Equations (lb) can 

inverted  form of eq,uations (la): 

also  be  used  for  finding  the e and R of a circular-arc 

corrugated  plate  having  the  same  pitch  and  height  as a given  not-quite-. 

circular-arc  corrugated  plate. (To facilitate  this  use  of  the  equations 

they are graphed in  figure 18.) 

As  shown in figure 1, the  length  of  the  corrugations  is  denoted  by L 

or  2b. The coordinate  system  includes a longitudinal  coordinate z, a trans- 

verse  coordinate x, and a second  transverse  coordinate, s, measured  along  the 

cross  section  centerline,  starting  from a crest.  Also  as  indicated  in  figure 1, 

certain  generators  of  the  corrugation  will  be  referred  to  as  crest  lines, 

others  as  trough  lines. 

Four  different  kinds of discrete  attachment  will  be  considered  at  the 

ends  of  the  corrugations,  that  is,  along  the  edges z = kb.  These are 

illustrated  in  figure 2 and  may  be  described as follows: 

(a) Point  attachments  at  troughs  only. 

(b) Point  attachments  at  troughs  and  crests. 

(c) Point  attachments  at  mid-height. 

(d) Point  attachments  at  troughs,  crests  and  mid-height 

(combination  of (b) and (e)). 

In all  cases  the  attachments are considered  as  mathematical  points  providing 

constraint  against  displacement,  but  not  against  rotation.  The  attachments 

are  identical  at  both  'ends ( z  = +by z = -b)  of  the  corrugations.  Except  at 

the  attachment  points,  there is assumed  to be no  interference  by  surrounding 

members  with  the  cross-sectional  deformations  which  may  occur  during  the  shearing 

of  the  plate. 

Acknowledgement. - This  work was supported  by  the  National  Aeronautics  and 
Space  Administration  under  grant  NGR-33-022-115. 
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SYMBOLS 

b 

Ds 

Dsz 

DZ 

E ,  E '  

EZ 

F 

G, G' 

h 

L 

P 

P' 

t 

2u0 
" 

v, w ;  v, w 

X 

z 

L/2 (fig. 1) 

Et3/[12(1-~v'>] 

G't 3 /12  

E't3/[12(1-~~')] 

Young's  moduli  of  orthotropic  material 

E'/(l-uv') 

shear  force  (fig. 1) 

shear  modulus 

height  of  corrugation  (fig. 1) 

length of  corrugation  (fig. 1) 

pitch of the  corrugation  (fig. 1) 

developed  width  of  one  corrugation 

radius  of  crests  and  troughs  (fig. 1) 

transverse  coordinates  measured  along  the  corrugation 
profile  (fig. 5) 

thickness of corrugation  (fig. 1) 

strain  energy 

longitudinal  displacement  components 

overall  shear  displacement  per  corrugation 

displacement  components  in  the  plane  of  the  cross  section 
(fig. 5 )  

transverse  Cartesian  coordinate  (fig. 1) 

longitudinal  coordinate  (fig. 1) 
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€3, E 
Y 

E R 

E t 
E 
S 

5 

e 

v ,  v '  

D 

U R 

U t 

T 

n 

rotations in the  plane of the  cross  section  (figs. 4 ,  5) 

shear  strain 

longitudinal  strain 

transverse  strain 

transverse  strain of middle  surface 

thickness  coordinate  (fig. 6) 

half  the  central  angle  of a crest  or  trough  (fig. 1) 

Poisson's  ratio  of  orthotropic  material 

radius  of  curvature  (fig. 4 )  

longitudinal  stress 

transverse  stress 

shear  stress 

dimensionless  shear  stiffness  (the  shear  stiffness of 
plate  with  discrete  attachments  divided by shear  stiff- 
ness o f  identical  plate  with  continuous  attachment) 

5 



GENERAL  ANALYSIS 

Mechanism  of  Shearing 

The  plate  will be assumed  to be composed of infinitely  many  corrugations, 

all  identical,  and all subjected  to  the  same  deformation. Thus, the  analysis 

may  be  based on a  single  corrugation. By a  single  corrugation  is  meant  that 

portion  of  the  plate  consisting  of  one  complete wave  between two  corresponding 

generators.  For  convenience,  the  two  generators  defining  the  single  corrugation 

will  be  selected  from  those  which  pass  through  the  end  attachments. Thus, in 

each  part  of  figure 2 the  generators  labeled A and C will be  taken  to  represent 

the  left  and  right  edge  of  the  single  corrugation  typical  of  all  the  corrugations. 

The  shearing  of  the  plate  is  imagined  to  be  accomplished  by  imposing  relative 

longitudinal  (2-wise)  shifts  on  those  generators  which  pass  through  the  attachment 

points,  the  amount  of  the  relative  shift  being 2u per  corrugation. Thus, for 

each  of  the  cases  illustrated in figure  2  the  generator C is  shifted  longitudinally 

a distance 2u with  respect  to  the  generator A .  Where  there  are  attachment  points 

between A and C y  as in parts  (b) , (c) , and (d) of  figure 2 ,  the  generators  passing 

through  those  points  are  assumed  to  undergo a longitudinal  shift  relative  to A 

which is a fraction of 2u  the  fraction  depending  upon  the  location  of  the  generator. 

Thus,  the  generator  labeled B in  each  of  figures 2(b),  (c) and (d) is  assumed  to 

shift  longitudinally  an  amount u relative  to A .  In  figure 2(d) the  longitudinal 

shift  of A' with  respect  to A is  one-fourth  of 2u or  u0/2;  that  of C' with  respect 

to A three-fourths  of  2u0,  or  3u0/2. 

0 

0 

0' 

0 

0' 

In  these  imposed shifts, the  end  points  (attachment  points) of the  shifted 

generators  undergo  only  longitudinal  (2-wise)displacements;  but  intermediate  points 

along  these  generators are  free to  move  both  longitudinally  and  laterally,  resulting 

in  a  curving  of  these  generators  along  with  all  the  others. 
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As.a result  of  the  imposed  shearing  deformation  described  above, a re- 

sultant  shear  force F will be developed  on  each  longitudinal  cross  section, 

as  indicated in figure l(b). The couple  formed  by  these  forces  on  any  segment 

of  the  plate is assumed  to be reacted  by  means  of  forces  (not  shown in fig. l(b)) 

parallel  to  the  x-axis  at  the  attachment  points  along  the  edges z = fb. 

Symmetry  and  Antisymmetry  Properties  of  the  Deformation 

Considerations of linearity,  symmetry  and  continuity  dictate  that  all  of 

the  labeled  middle-surface  generators  in  figure 2, as well as  any  crest  lines 

and  trough  lines  not  labeled,  must  have  zero  longitudinal  strain  everywhere 

along  their  lengths.  Furthermore,  although  the  crest  lines  and  trough  lines  may 

curve  in  the  horizontal  plane,  they  cannot  curve  in  vertical  planes. 

One  can  also  deduce  certain  symmetry  and  antisymmetry  characteristics  for 

the  displacements in the  plane  of  the  cross  section.  Figure 3 shows  two  points, 

a and a’, both  in  the  same  cross  section  and  one  the  mirror  image  of  the  other 

with  respect  to a vertical  plane of symmetry of the  corrugation.  As  implied  by 

the  upper  part of figure 3, both  points  must  experience  equal  horizontal  displace- 

ment  components,  but  equal  and  opposite  vertical  displacement  components.  Resolving 

the Av and A at  each  point  into  normal  and  tangential  components,  one  obtains  the 

symmetry  and  antisymmetry  properties  shown  in  the  lower  part  of  figure 3 for those 

components  of  displacement. 

H 

Besides  having  the  properties  just  discussed,  the  displacement  components 

A and AT in  the  plane  of  the  cross  section  can be  shown to  be  odd  with  respect 

to z. 
N 

Turning  to  the  longitudinal  strains, one can  deduce  that in  a given  cross 

section  the  longitudinal  (z-wise)  strain  at  any  point, a, is  the  negative  of  the 
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longitudinal  strain  at  its  mirror-image  point,  a',  while  along a given 

generator  the  longitudinal  strain  is an odd  function of z .  

Finally,  referring  to  figure 2, it  can be argued  that,  except  for a 

rigid-body  motion  of  the  entire  corrugated  plate,  the  longitudinal  displacements 

u(s,z)  of  middle-surface  points  must  be  odd  with  respect  to s .  

Kinematics  of  the  Deformation  of a 

Cross  Section in its  Own  Plane 

In this  section  relationships  will  be  developed  governing  the  deformation 

of a cross  section in its own plane,  starting  with  an  arbitrary  cross  section 

and  then  specializing  to  the  case  of  the  circular-arc  cross  section of figure l(a). 

Figure 4 represents  the  arbitrary  cross  section.  Point P, with  coordinate 

s, is a typical  point  on  the  middle  surface. The  local  radius  of  curvature  at 

this  point  is p (positive  if  the  center  of  curvature  is  below  the  cross  section, 

as  shown),  and a is  the  angle  between  the  local  normal  and  the  vertical.  The 

vectors t 
* 

surface  and 

pointing  in 

and n are  local  unit  vectors  tangential  and  normal  to  the  middle 

lying  in  the  plane  of  the  undeformed  cross  section,  with t always 

.+ 

+ 

the  direction  of  increasing s, and n always in the  direction  corres- 
-, 

ponding  to ;i 90 counterclockwise  rotation  of t. A third  unit  vector k, not 

shown,  is to  be  imagined  pointing  out  of  the  paper.  The  direction  of k is  also 

0 + -f 

-f 

to be taken as the  positive z direction. 

Point  P  and  the  infinitely  close  point Q define  an  infinitesimal  arc  of 

length  ds  subtending  an  infinitesimal  angle  da.  The  vector  corresponding  to  this 

arc i s  

PQ = t ds 
+ +  

8 



Displacements. - The displacement of the  typical  point P has a longitudinal 

(2-wise)  component  and  a  component  in  the  plane  of  the  cross  section. The latter 

component is represented in  figure 4 by  the  displacement  vector 

-+ + +  
U = v t + m  

where v(s,z)  and w ( s , z )  are  the  scalar  components of the  displacement  vector 

in  the  directions  of t and n, respectively. The neighboring  point  Q  will 

have  the  infinitesimally  different  displacement  component U + (aU/as)ds in  the 

plane  of  the  cross  section, where, from  equation ( 3 ) ,  

-+ - f .  

+ -+ 

Substitution  of  allas = - n/p and  a&as = t/p converts  this to 
-f -f 

Transverse  strain. - Assuming  that  au/as  is  small,  where u(s,z) denotes 

the  longitudinal  (2-wise)  displacements  of  middle-surface  points,  the  length of 

the  vector  P'Q' in  figure 4 may be taken  as  the  deformed  length  of  the  line 

element  PQ. Thus, the  transverse  strain E at  point  P  is  given  by 

-> 

S 
+ 

E =  
JP'Q'( - ds 

S ds 

But 
+ -+ -+ 
P'Q' = PQ + dU 

= [&l + as av + x) + n(- - x)] ds + aw 
P as P 
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Taking  the  absolute  value of this  vector,  substituting  it  into  equation ( 4 ) ,  

and  assuming  small  displacements  and  small  displacement  gradients, SO that 

terms  higher  than  the  first  degree in these  quantities  may be  neglected,  one 

obtains 

At  this  point, we will  make  the  assumption, as in references 1, 2 and 3 ,  

that  the  middle  surface  is  transversely  inextensional, so that  may  be  equated 

to  zero  to  obtain  the  following  constraining  relation  between  the  w  and  v  dis- 

placement  components: 

This  assumption  is  based on an  inference  from  ring  and  frame  analysis,  namely 

that  when  flexural  deformations  can  occur,  their  contribution  to  the  overall 

deformation  usually  far  exceeds  the  contribution  arising  from  direct  extension, 

and  the  latter  may  therefore  be  neglected  with  very  little  error.  It  should  be 

noted  that  the  assumption  of  transverse  inextensibility  being  made  here  is  far 

less  stringent  than  the  assumption  of  complete  middle-surface  inextensibility 

made in previous  analysis  (e.g.,  refs. 4 ,  5 2nd 6). 

In  cross  sections  with  smoothly  turning  tangents  (i.e.,  without  corners), 

w must  be  a  continuous  function  of s, but p may  be  discontinuous.  (For  example, 

in  the  cross  section  composed  of  circular  arcs  (fig. l(a)), p changes  from 

+R  to  -R  at s = Re.)  Equation (7) therefore  implies  that  av/as  will be dis- 

continuous  wherever p is  discontinuous,  provided  that  w  does  not  vanish  there. 

Rotation. - The  rotation  in  the  plane  of  the  cross  section  of  the  line 
segment PQ will  be  denoted  by B ( s , z ) ,  positive  if  counterclockwise  when  viewed 

from  the  positive  end  of  the  z-axis  (see  fig. 4 ) .  
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The relationship  between  the  angle  of  rotation f3 and  the  displacement  com- 

ponents w and  v  can be obtained  by  evaluating  the  cross  product  of  the  vectors 
-f 

PQ and P'Q' in two  ways. First, from  the  basic  definition of the  cross 
-+ 

product , 

= k ds.ds.sinf3 
+ 

+ 
where  the  inextensibility  assumption  has  been  used in replacing IP'Q' I by  ds. 
Alternatively,  from  equations (2)  and (5), 

By  equating  these  two  expressions  one  finds  that 

Assuming  that  no  corners  develop  as  a  result of the  deformation,  sin6 

must  be  a  continuous  function  of s. Furthermore,  if  there  are  no  corners in the 

undeformed  state,  the  component v must  also be  a  continuous  function  of s. When 

equation (8) is  viewed  in  the  light  of  these  two  statements,  it  reveals  that 

aw/as  must  be  discontinuous  wherever p is  discontinuous  (e.g.,  at  the  junctions 

of  adjacent  circular-arc  segments  of  the  cross  section)  unless v happens  to 

vanish  there. The discontinuity in aw/as  must  match  the  discontinuity in v/p 

in  such  a  way  that  the  right-hand  side  of  equation (8) remains  continuous.* 

Expressions  for v and w in terms  of  sinB  for  a  region of constant p .  - 
For  a  given  cross  section,  sinB  may  be  regarded  as  the  basic  unknown  deformation 

*The  remarks  in  this  paragraph  suggest  that  the  continuity  condition 
awl/ay1 = awZ/ay2  used  in  equation (11) of  reference 4 at  the  junction of the 
two  adjacent  circular-arc  segments of the  cross  section  may  not be appropriate. 
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function,  since  the  differential  equations(7)  and (8) can,  in principle, 

be solved  simultaneously for w and v in terms of sin8.  This  solution  is 

simple  if p is  constant,  as  it  is  in  each  circular-arc  segment  of  the  cross 

section  of  main  interest  (fig. l(a)). One  first  eliminates v between  equations 

(7)  and (8) to  obtain  the  following  differential  equation  for w  for  the  case 

p = constant: 

where 

is a shorL-hand  noration  introduced  for  simplicity.  Equation ( 9 )  has  the 

solution 

w = A(z)  sin - + B(z) cos - + g(s,z) S S 

P P (11) 

where g ( s , Z )  is a particular  solution  of  equation (9) and A and B are  arbitrary 

functions of z .  Equations (11) and (8) then  give 

v = ~ ( z )  cos - - ~ ( z )  sin 5 + p ( a  - f) S 

P P as (12) 

Expressions  for v and w for  the  circular-arc  corrugation. - The above 
results,  equations (11) and (12) ,  will  now  be  applied  to  each  segment  of 

the  circular-arc  corrugation. A typical  repeating  unit  of  the  cross  section 

of such a corrugation  is shown in  figure 5. We  will  designate  as  Region 1 

that  circular  arc  which  forms a crest  region  of  the  corrugation,  and  as 

Region 2 that  one  which forms a rrough  or  valley.  It  will  be  convenient  to 

introduce  Lhe  auxiliary  transverse  coordinate E,  measured  from  the  lowest 

point  of  the  trough  (see  fig. 5) and  related  to s as  follows: 

= 2R0 - s 

1 2  



It  will  also be convenient  to  introduce  auxiliary  displacement  and  rotation 

parameters v, w and E ,  which  bear  the  same  relationship to I as v, w and B 

bear  to s. The definitions  and  sign  convention  for v,  i j  and are  shown  in 

figure 5. The v, w and E of any  point of the  cross  section  are  obviously 

- -  

“ 

related  as  follows  to  the v, w and B of the same point: 

- 
v = -v 

w = “w 
- 
- 
B =  B 

Writing  equations (11) and (12) first  for  Region 1, we obtain 

w = A(z)  sin - + B(z) cos + g(s,z) S S 
R 

where g(s,z) is  now  a  particular  solution of equation (9) with p replaced 

by R ;  that is, a  particular  solution  of  the  equation 

Considering  equations (8) and (10) and  the  symmetry  and  antisymmetry 

properties  of  v  and w shown  in  the  lower  part of figure 3 ,  it  can be con- 

cluded  that  the  function f(s,z)  is  even in s .  If we then  stipulate  that 

the  particular  integral g(s,z) be odd in s ,  the  function B(z) may  be  set 

equal  to  zero  in  equations (15), and 

w(s,z) = A(z) sin - + S 
R 

V(S,Z) = A ( z )  COS - + S 
R 

these  equations  become 

(14a) 

From  this  point on it is to  be  understood  that f ( s , z )  and  g(s,z) are  respectively 

even  and  odd  with  respect  to s ,  and  that  equations (17) apply  only in Region 1. 
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- 
The equations for w and for Region 2 are directly  analogous  to 

equations (17) and  are  therefore  as follows: 

w:(s,z) = ; i ( z )  sin - + g ( s , z )  
” S 

R 
- -  

- 
” 

v ( s , z )  = x ( z )  cos + R(8 - f) 
- 

R 

where A ( z )  is  another  arbitrary  function  of z ,  

f(2RB - S ,  Z )  
- 

and g ( s , z )  is  a  particular  solution,  odd  with  respect  to E ,  of  the 

differential  equation 

Equations (lo), (13)  and (14c )  were used in the  development of equation (19). 

Equations (18) are  valid  only in Region 2. 

. The continuity  requirements  on  displacement  at  the  junction of 

Regions 1 and 2 are 

;(Re , z )  = - w(RB,z) 

v(RB,z) = - v(RB,z) 

(Continuity  of  rotation  at  such  junctions will be insured  later  on  by 

selecting  only  continuous  functions of s to  represent B ( s , z ) . )  When 

expressions  (17)  and (18) are  substituted in equations  (21a)  the  latter 

become 
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I 

x ( z )  sin0 + g(R0,z) = - A(z)  sin8 - g(R0,z) 

which  can be rewritten  as 

The relationship r (RB,z)  = f(R0,z), from  equation (19), was  used  in 

obtaining  equation (23).  

Equations (22) and  (23)  are  constraining  relationships  among  the 

functions A ,  i, f, g  and  which  must  be  satisfied  to  insure  the  satis- 

faction of the  continuity  conditions (21). Either  of  these  equations 

may be replaced by the  following,  which  is  obtained  by  eliminating 

A ( z )  + A(z)  between  the  two  equations: 

Series  Expansions  for  the  Rotations 

and  Displacements in the Plane of  the Cross Section 

From  here on attention  will  be  restricted  to  the  case of the  circular-arc 

corrugation,  and  expressions  will be developed  for  sinB  f(s,z)  and  for w, v, 

w and 7 in the  form of Fourier  series in s .  
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S e r i e s   e x p a n s i o n   f o r   f ( s , z ) .  - The r o t a t i o n   f u n c t i o n  sink? f ( s , z )  w i l l  

be   r ega rded  as the b a s i c  unknown d e f i n i n g  the d e f o r m a t i o n   o f   t h e   c r o s s   s e c t i o n  

i n  i t s  own plane.  Inasmuch as t h e   r o t a t i o n  i s  even i n  s and   pe r iod ic   ove r  

4R8, a n   a p p r o p r i a t e   F o u r i e r  series e x p a n s i o n   f o r   f ( s , z )  i s  

W 

f ( s , z )  = a ( z >  + 1 a (2) cos - nm s 
n 2RB 0 n= 1 

w h e r e a o ( z ) ,   a I ( z ) , . . .  are unknown f u n c t i o n s   o f  Z. This  series is  p o s t u l a t e d   f o r  

t h e   e n t i r e   c o r r u g a t i o n   c r o s s   s e c t i o n .  With p a r t i c u l a r   r e f e r e n c e   t o   f i g u r e  5 ,  

i t  a p p l i e s   t o   t h e   r a n g e  -RB 5 s c 3RB. Wi th   equat ion   (25)   se lec ted  as t h e  form 

of f ( s , z ) ,  e q u a t i o n  (19) t h e n   d i c t a t e s   t h e   f o l l o w i n g  series e x p a n s i o n   f o r  f ( s , z ) :  

Determinat ion  of   g(s ,z)   and g ( S , z ) .  - E x p r e s s i o n s   f o r   g ( s , z )   a n d  g ( s , z )  

i n  series form are ob ta ined  by subs t i t u t ing   expres s ions   (25 )   and  (26) i n   t h e  

r igh t -hand   s ides  of equa t ions  (16) and   (20 )   and   t hen   f i nd ing   t he   pa r t i cu la r  

i n t e g r a l s  of t h e s e   e q u a t i o n s   h a v i n g   t h e   d e s i r e d   c h a r a c t e r i s t i c  of  being  odd  with 

r e s p e c t   t o   t h e i r   f i r s t   a r g u m e n t .  The r e s u l t   o f   t h i s   p r o c e d u r e ,  when B is no t  

equa l  t o  n / 2 ,  i s :  

m 

g ( s , z )  = 4RB A n  a n ( z )   s i n  
n= 1 

nms 

m - (27) 
g ( s , z )  = 4RB >: ( - l ) n  An a n ( z )   s i n  - nn s 

2RB n = l  

where 

The n=l terms of   equa t ions  ( 2 7 )  are obv ious ly  n o t   v a l i d  when 0 = n / 2 ,  

because A1 (eq.  2 8 ) )  becomes i n f i n i t e .  It is e a s i l y   v e r i f i e d   t h a t   f o r  B = n / 2  

t h e   p a r t i c u l a r   i n t e g r a l s   o f   e q u a t i o n s  (16)  and 20) co r re spond ing   t o   n= l  become 
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respectively. Thus, for  B=n/2  equations  (27)  must be replaced  by  the 

following: 
m 

g ( s , z )  = - - cos E + 4Re 1 An an(z) sin - S nn s 
2 R  n=2 2R8 

- _  ~I(z)R g ( s , z )  = - - - 
- 03 - 
S 

COS - + 4RB 1 (-l)n An an(z) sin - nn s 
2RB R n=2 

Imposition  of  the  continuity  constraints. - Substitution  of  expression 
(25)  and  (27)  or  (27')  into  the  continuity  constraint  equation  (24)  yields  a 

relationship  among  the  even-subscripted a ' s .  This  relationship,  when  solved 

for a  gives 
0' 

n 

m 

ao(z) = 1 (-11~'~ nn an(z>  (29) 
n=2,4,. . 

where 

R E 2nnA -1 n n (30)  

Equations  (29)  and (30) are  valid  for 0 = n/2  as well as  for  all  other 

physically  realizable  values of 8 .  

Selecting  equation  (22)  as  the  second of the  two  independent  continuity 

constraints,  and  substituting  the  appropriate  series  expansions  for g and 

(eqs.  (27')  or  (27) , depending  on  whether or not B = 7~12) , one  finds  that 

A ( z )  + A ( z )  = 0, whence - 
A ( z )  = - A ( z )  

Displacements. - The displacements  in  the  plane of the  cross  section are 

given  by  equations (17) and (18). Substituting  into  these  equations  the  series 

already  developed  for f ,  f , g and  (eqs.  (25) , (26), (27)  or (27')), and  making 
- 
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u s e  of equat ions   (29)   and   (31) ,   one   ob ta ins  series e x p r e s s i n s   f o r  w, v ,  w 

and v. F o r   t h e   c a s e  8 # ~ / 2 ,  t h e s e   e x p r e s s i o n s   a r e  

- 

m 

w = A(z)  s i n  + 4R8 1 An a n ( z )   s i n  - nns 
2R0 R n= 1 

w = -A(z)  s i n  f + 4RB 1 ( - l ) n  A n  a ( z )  s i n  - nn s 
n 2RB 

- 
n= 1 

(33) 

For B = n / 2  t h e   c o r r e s p o n d i n g   e x p r e s s i o n s  are 

m 

W = A ( z )  s i n  - + cos  E + 4RB 1 A a (2) s i n  __ 
S nns 
R 2 R   n n  2RB n= 2 

m m 

+ R[C an a n ( z >  cos - - 1 nn s 
2RB fin a n ( Z ) l  n=  2 n = 2 , 4 , .  , 

- - - m 

W = - A ( z )  s i n  .- - ring a’ ( z )R  2 cos  + 4RB 1 (-l), A n  a n ( z )   s i n  - 2RB R 2 R  R n= 2 
- 

V = [ -A(z)  + a ]  ( z ) R  s a1 ( z ) R  S ] COS”+” 
- 

2 R 
S s i n  - R 

It i s  to   be   unde r s tood   t ha t   equa t ions   (32 )   and   (32 ’ )   app ly   on ly   i n   Reg ion  1, 

while   (33)   and  (33’)   apply  only  in   Region 2 .  

It i s  e v i d e n t  from equat ions   (32)  , (33 ) ,   (32 ’ )  and ( 3 3 ’ )   t h a t  A ( z )  

r e p r e s e n t s   r i g i d - b o d y   h o r i z o n t a l   t r a n s l a t i o n s  of t h e  cross s e c t i o n s .  
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Constraints on A ( z )  and  the an(z) arising  from  the  end-attachment 

conditions. - Certain  constraints  exist  on  the  end  values  (at  z=+b)  of 
- 

w, v, w and v, depending  upon  which  of  the  four kinds of  end  attachments 
- 

(see  fig. 2)  is present.  Some o f  these  constraints are automatically 

satisfied  by  the  series  expressions  for w,  v, and G developed  above. 
Those  constraints not automatically  satisfied are the  following: 

For  the  type (a) end  attachments, 

v(O,-+b) = 0 (34a) 

For  the  type (b) end  attachments, 

v(O,+b) = 0, v(0,fb) = 0 (34b) 

For  the  type (c) end  attachments, 

w(RB,fb) = 0, v(R8,fb) = 0 (34c) 

For  the  type (d) end  attachment 

;(O,tb) = 0, v(O,+b) = 0, w(RB;+_b) = 0, v(R8,fb) = 0 (34d) 

By  substituting  into  equations  (34)  the  series  expressions €or w,  v, 

w and v,  'one  obtains  the  following  constraining  relations for the  end  values 

of  A(z)  and  the  an(z): 

For  type  (a)  attachments  and 8 # 1 r / 2 ,  

m m 

-A(+b) + R[ 1 (-l)n Rn an(+b) - (-l)n/2fin  an(+b)] = 0 (35a.l) 
n= 1 n=2,4,. . 

For  type (a) attachments  and 8 = r/2, 

-A(+b) + *OR+ RC E Q an(+b) - 1 
cn 

2 n= 2 n n=2,4,. . (-1)"/2nn an(+b)] = 0 

(35a.  2) 

For  type  (b)  attachments  and 0 # ~ 1 1 2  (writing  actually  the  sum 

and  difference  of  eqs (34b)), 

(35b. 1) 



For type (b) attachments  and 0 = 1112 (again  based on the sum and 

m 

A(fb) - - Ral(+b) + R 1 Rn an(kb) = 0 1 
2 n=3,5,. . 

For type (c) attachments  and 0 # ~ / 2 ,  

A(kb) = 0 
m 

c 
n- 1 - 

An(-l)  an(fb) = 0 
n=.l,3,. , 

(35.b2) 

(35c. 1) 

For  type  (c)  attachments  and 8 = 1~12, 

n-1 m - 
A(kb) + 2 ~ r R  1 A a (kb) (-1) = 0 n n  n=3,5,. . 

(35c. 2) 
a1 (+b) = 0 

For  type (d) attachments  and 0 # ~ / 2 ,  

Eqs.  (35b.l)  together  with  eqs.  (35c.l) 

For  type (d) attachments  and 8 = 7 ~ 1 2 ,  

Eqs.  (3523.2) together  with  eqs.  (35c.2) 

Variational  form  of  the  constraints  on A ( z )  and  the  an(z)  arising 

(35d.l) 

(35d.  2) 

from  the  end-attachment  conditions. - We  note  for  later  use  that  each  of 
equations  (35a.l)  through  (35d.2)  has a variational  form  implying a constraint 

on  the  variations 6A(kb)  and 6a (kb)  of  the  boundary  values  of A(z) and  the n 

an(z). For  example,  the  variational  form  of  equation  (35a.l)  is 

m m 

-GA(fb) + R[ 1 (-lIn fin 6an(+b) - 1 (-l)n12fin  6an(?b)] = 0 
n=l  n=2,4,. . 

This  equation  and  the  corresponding  ones  arising  from  the  rest of equations 

(35)  give  rise  to  the  following  relationships: 
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For type (a) attachments  and 8 # n/2, 
m m 

6A(?b) = R[ 1 (-l)"hn6an(tb) - 1 (-1)n/2Qn6an(kb)] 
n= 1 n=2,4,. . (36a.l) 

For type (a) attachments  and 8 = n/2, 

m W 

6A(+b) = R*al(fb) + R[ (-l)nQn6an(cb) - 1 
2 n= 2 n=2,4,. . (-1)n/2Qn6an(?b)]  (36a.2) 

For type (b) attachments and 8 # n/Z,  

6A(+.bj = - R 1 Rn6an(+b) 
n=1,3,. . 

For type (b) attachments  and 0 = n / 2 ,  

m 

6A(+b) = y k&al(+b) - R 1 Rn6an (tb) 1 

n=3,5,. . 
For type (c) attachments  and 8 # 1~12, 

6A(+b) = 0 
m 

n- 1 - 

(36b. 1) 

(36b.2) 

(36c. 1) 

For type (c) attachments  and 8 = ~ / 2 ,  
03 - n-1 - 

6A(_+b) = -2nR 1 A n ( - l )  ' 6an(kb) 
n=3,5,. . 

(36c.  2) 

For type (d) attachments  and 0 # n/2, 

2 1  
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For  type (d) attachments  and 8 = n/2, 

R26a2(kb) = -[n66ag(kb) + Rlodalo(kb) + . . .] 

6al  (kb) = 0 
m 

6a3(kb) = 1 Tn (I1)6a  (tb) 
n=5,7,. . n 

m 

6A(kb) = R Tn (12)6an(+b) 
n=5,7,.. 

where 
n-1 

Series  Expansions  for 

Longitudinal  Displacements 

The  longitudinal  (2-wise)  displacements of points on the  middle 

surface will be 

which  is  linear 

U(S,Z) = 

denoted  by  u(s,z)  and  assumed  in  the form of  a  term 

in s plus a Fourier  series  in s: 

m 

(36d. 1) 

(36d.2) 
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where  b (2) are as  yet  undetermined  functions  of z, and s is measured  from 

a  crest  (see  fig. la or  fig. 5 ) .  Equation (38) satisfies  the  requirement 

that  u(s,z) be odd in s .  It  gives  a  relative  longitudinal  displacement  of 

2u per  corrugation,  as  required.  This  can  be  verified  by  substituting 

s=-2RB and s=+2RB into  it.  The  linear  term  of  equation (38) represents 

a  uniform  shear  deformation,  such  as  could be obtained  by  means  of  continuous 

attachment  of  the  end  cross  'sections  to  diaphragms  which  prevent  deformations 

of  the  end  cross  sections  in  their own planes  but  offer no resistance  to  the 

warping  of  the  end  cross  sections  out  of  their  planer  condition.  The  Fourier 

series  part  of  equation (38) represents  deviations  from  this  uniform  shear 

condition,  arising  because  of  the  absence  of  the  above-described  continuous 

end  attachment. 

n 

0 

Equation (38) is  valid  for  both  Regions 1 and 2 of  figure 5 .  However, 

it  will  be  convenient , for  later use, to introduce  the  function ~(S,Z) to 

denote  the  longitudinal  (2-wise)  displacements  of  middle-surface  points in 

Region 2. The  functions ;(s,z)  and  u(s,z) must  have  identical  values  for 

the  same  material  point;  they  are  therefore  related  as  follows: 

Therefore  the  series  expression  for ;(s,z) can 

in equation (38) by  2R0 - s .  The  result  is 

- m 

1 

be  obtained  by  replacing s 

Constraints  on  the b (2) arising  from  end-attachment  conditions. - n 

Apart  from  the  requirement  that  the  relative  longitudinal  displacement  be 
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2u  per  corrugation,  there are,  for  attachment  conditions (b),  (c) and (d) 

of figure 2, additional  requirements  due  to  the  presence of attachment 

points  intermediate  between A and C .  These  additional  requirements are 

that  in  each  case  attachment  point B have  a  longitudinal  displacement  that 

is  the  mean  of  the  longitudinal  displacements  of A and C y  and in case (d) 

the  attachment  point A '  have  a  longitudinal  displacement  which  is  the  mean 

of the  longitudinal  displacementsof A and B y  while C' similarly  have  a  dis- 

placement  which  is  the  mean  of  those of B and c, 

0 

Expressed  mathematically,  these  additional  requirements  are  as  follows: 

For  type (b) end  attachments, 

u(o,+b) = - [~(-2Re,+b) + u(2RBY+b)] 1 
2 

For  type (c) end  attachments, 

u(R@,+b) = - [u(-RB,+b) + u(3RB,+b)] 1 
2 (ii) 

For  type (d) end  attachments, 

u ( o , + b )  = - [~(-2Re,+b) f ~(2R@,tb)] 1 
2 (iii) 

u(-RB,+-b) = 2 [~(-2Re,+b) + u(o,tb)] 

u(RB,+b) = - [u(o,+b) + u(2R@,+b)] 

1 
(iv) 

1 .  
2 (v 1 

Requirements (i)  and  (iii)  are  automatically  satisfied  by  equation ( 3 8 ) .  

However,  in  order  for  requirements (ii),  (iv)  and  (v)  to be  satisfied,  the 

following  constraining  relation  must  be  imposed  on  the b (+b) :  n 

n-1 
m - 
L bn(+b) (-1) = 0 

n=1,3,. . (39) 
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In variational form,  with  the b,  term  separated  from  the rest, this 

relation  is 
m 

L 

- n-1 
2 6bl(kb) = - ' 6bn(+b) (-1) 

n=3,5,. . 
Equations (39) and (40) are  needed  only  for  the  type (c) and (d) end 

attachments. 

Andlys'is  of  Strains 

In preparation  for  the  writing  of  a  strain  energy  expression,  ex- 

pressions  will now  be developed  for  the  strains  at  a  typical  point 

in the  corrugation  a  distance c from  the  middle  surface.  Point R in 

figure 6 represents  such  a  point,  and  RS  is  an  infinitesimal  material  fiber 

through  R  in  the  plane  of  the  undeformed  cross  section  and  parallel  to  the 

middle  surface.  Its  undeformed  length  is [l + ( c / p ) ]  ds,  where  ds  is the 

length  of  the  corresponding  middle-surface  fiber  PQ.  Through  point  R  one 

can  also  imagine  an  infinitesimal  fiber  segment RT, of  length dz, running  in 

the  longitudinal  direction.  (Point T is not  shown  in  figure 6.) Fiber 

segments  RS  and RT are  at  right  angles  to  each  other  in  the  undeformed  corruga- 

tion.  During  the  deformation  of  the  corrugatioq  points R, S and  T  move  to 

new  positions  R', S' and T'. The  resulting  changes  of  length of the  fibers 

RS and RT  will  define  the  extensional  strains  of  a  lamina  a  distance 5 above 

the  middle  surface,  and  the  change of angle  between  them  will  define  the 

shear  strain of  this  lamina. In determining  positions  R', S' and T', the 

usual  assumption will  be made  that  lines,  such  as PR, normal  to  the  middle 

surface  before  deformation  are  also  normal  to  the  middle  surface  after 

deformation. 
+ 

One  can  start  by  writing  the  displacement  vector Vp of  the  middle-surface 

point  P.  This  vector  is  the  vector sum of  the  displacement in the  plane  of 
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the  cross  section  (the  vectox U of  fig. 4 )  and  the  longitudinal  dis- 

placement  ku. Thus, utilizing  equation ( 3 ) ,  

+ 

+ 

+ + +  
Vp = U + ku 

The displacement  vector  V  of  point R will differ  from  V  by an amount 

depending  on  the  (assumedly  small)  rotations  of  line  segment PR, which 

+ + 
R P 

are B in  the  plane  of  the  cross  section  and  aw/az in the  longitudinal 

plane, in  view of  the assumptim of  normal  line  segments  remaining  normal. 

The  displacement  vectors  Vs  and $ of  points S and T will  differ  infinite- 

simally  from  V by amounts  which  depend  upon  the  partial  derivatives,  with 

respect  to s and z respectively,  of  the  right  side  of  equation ( 4 1 ) .  

Symbolically, 

+ 
T 

+ 
R 

Evaluating  the  two  partial  derivatives  of  the  right  side  of  equation (41) 

(taking  into  account  the  relations  at/as = -n/p,  az/as = t/p)  and sub- 
+ + -+ 

stituting  their  expressions  into  equations ( 4 2 ) ,  one obtains 
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It w i l l  be convenient  to  define  vectors R'; and I& coinciding  with 

the  undeformed  fiber  .segments RS and  RT,  as well as  vectors R'% ' and 
R1$' coinciding  with  these  fiber  segments in their  deformed  state. The 

expressions  for  the  first  pair  of  vectors are 

RS = t[l + (s/P)] ds + +  

(44) 
RT = k dz 
- + +  

The  vector  polygon  formed  by  RS,  R%' , v' and  Vs  (see  fig. 7) readily 

gives  the  following  expression  for R'S': 

-+ -+ 

R 
-+ 

Similarly, 
-+ "+ -+ R'T' = VT - VR + RT -+ 

Equations ( 4 3 )  and ( 4 4 )  can  be  used to eliminate Vs - VR, VT - V -+ - + +  -+ 

R' 

& and €?T in  equations ( 4 5 )  and ( 4 6 ) .  The resulting  right-hand  side  of 

equation ( 4 5 )  can  then be simplified  somewhat  through  the  use  of  the 

transverse  inextensibility  condition,  equation ( 7 ) ,  and  the  compatibility 

condition,  equation (8),  which  for  small  rotations  becomes 

In this  way  the  following  expressions  are  obtained  for R ' S '  and  R'T' 
+ -+ 

from  equations ( 4 5 )  and ( 4 6 )  : 
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The  magnitudes of these  two  vectors,  correct  to  terms of the  first  degree 

in u, v, w and B ,  are 

The transverse  strain E longitudinal  strain cII ,  and  shear  strain t' 

y at  point R of  the  lamina  parallel  to  the  middle  surface  can  now be 

evaluated  through  the  formulas 

Substituting  expressions ( 4 4 ) ,  ( 4 8 )  and (49), neglecting  terms  of  higher 

t h a n  the  first  degree  in  the  deformation  quantities,  and  neglecting < / p  

in comparison wi th  unity,  one  obtains 

E =-<,, 
a o  

t 

These  results  are  in  agreement  with  equations (2.17) of reference 7. 
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Stress-Strain  Relations - 

For  the  sake  of  generality  in  these  derivations,  the  material. will 

be assumed  to be orthotropic  with  the  following  stress-strain  relations: 

where u and aa. and  the  transverse  and  longitudinal  normal  stresses, 

positive  for  tension, T is  the  shear  stress in the s and z directions, 

E and v are  the  Young's  modulus  and  Poisson's  ratio  associated  with 

uniaxial  tension  in  the  transverse  direction  (the s - direction),  E'  and 
v '  the  corresponding  quantities  associated  with  uniaxial  tension  in  the 

longitudinal  direction  (the  z-direction),  and G is  the  shear  modulus 

associated  with r .  In  inverted form, equations  (52a)  are 

t 

It will  be  assumed  that a strain  energy  density  exists,  and  therefore  that 

W E '  = w'E 

Eliminating  the  strains  in  equations (52b) by use  of 

equations (51), one  obtains  the  following  stress-displacement  relations: 

(53) 

where G'  has  the  same  meaning  as G, the  prime  mark  being  merely a tracer 

to  distinguish  those  contributions in the  strain  energy  expression  (presently 
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to  be  developed)  due  to  torsional  shear  stress  from  those  due  to  middle- 

surface  shear  stress. 

Strain  Energy  Expression 

The  strain  energy  of an infinitesimal  rectangular  parallelepiped 

of  material  of  thickness  dz;,  length  dz,  and  width [l + (</p)]ds is 

(dU)1 = ~ ( u ~ E ~  + u R ~ R  + TY) (1 + 5, dy, ds  dz 1 
P (55) 

Neglecting z;/p in  comparison  with 1, substituting  expressions ( 5 4 )  for 

the  stresses  and  (51)  for  the  strains,  and  integrating  through  the 

thickness,  from 5 = -t/2  to z; = +t/2,  one  arrives  at  the  following 

strain  energy  associated  with  the  element ds dz of  the  middle  surface: 

where 
E' E' t3 Et3 - G't3 E E- 

z 1-vv' z 12(1-vvf) s 12(1-vu')' - 1 2  , D !  D !  " (57) 

Equation  (56)  applies  to  both  Regions 1 and 2 of  figure  5.  However, 

another  form of (dU), especially  suitable  for  Region 2 can  be  obtained 

by  merely  replacing s , u,  v, w and B everywhere  in  equation (56) by 

s ,  u, v ,  w and 2 respectively. "" 

By  integrating  equation (56),  and its  counterpart  for  Region 2 ,  with 

respect  to z from -b to +by and  with  respect  to s and s from  -Re to R e ,  

one  can  obtain  the  strain  energy of an  entire  corrugation.  Considering 

the  symmetry  properties of the  displacements,  it  is  evidently  sufficient 

to  integrate  over  half a  corrugation  (i.e.,  from s = 0 to Re  and = 0 to Re)  

and  multiply  the  results  by 2. The  following  expression  is  thus  obtained 

€or the  strain  energy U of a single  corrugation: 
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. .  
-b o 

a2w + v -) a 0  + D (- + -) ] ds dz a 0  a2w 2 
+ DZ a ~ 2  (TZ as s z  az  asaz 

The following  series  can  now be substituted  for  the  deformation 

quantities  appearing in equation (58): 

For 8 :  Eq. (25) 

For 8: Eq. (26) 

For  u:  Eq. (38 )  

For u: Eq. (38’ )  

For w and v: Eqs. (32) if 8 # 7~12; eqs. (32’.)  if 8 = a / 2  

For  and v: Eqs. (33) if 8 # n/2;  eqs. ( 3 3 ’ )  if 8 = 1 ~ 1 2  

If  these  substitutions  are made, the  integrations  with  respect  to s and s 
carried  out,  and a eliminated  through  equation ( 2 9 ) ,  one  obtains  the 

following  strain  energy of a single  corrugation  for  the  case 8 # 7 ~ 1 2 :  
0 

3 1  



U = /{EztR8 1 (b:) 2 + GtR[  ($) u 2  + 28 (1 Tn 'R) 
29 

-b n even 
U U b n-1 

+ S(l) 2 A '  + 2 1 TL2) aiR - 4 (1 T(') a,lR).l y (-1) n 2 

+ S ( 2 ) ( A ' )  + A '  1 bn T(3)  + A'  1 aAR T, ( 4 )  

- 
R n odd n even n odd n 

2 

n even n odd 

+ - n 2  1 n2 (-z) bn 2 + 0 l(QnaAR) 2 + 1 1 Smn bn 
413 - ( a ' N  1 

mi-n odd 

Ds n 2  Ds u '+Dz o 

+ - - 1 nza; + 

t - DZ [S ( 3 )  (A"R) + A"R 1 TA7)a"R' + 1 TA8) (aiR2) ] 

+- Ds z [ 2 e ( I  Tn (1) aAR) + S(2)(A ' )  + A '  1 T(')a'R 

R 413 R [-A"R 1 T(5) a - 1 T(6)an(a iR2)]  
n oddn n n 

2 2 2 

R n add 

2 

n even n oddn 

(lo) (aAR) ]] dz 
2 

+ z' Tn (59) 

where 

,- m-n-1 -1 m+n-1 

n- 1 

(equat ions   cont inued  
on next page) 
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and  the  following  interpretations  are  to  be  understood  for  the sumation 

symbols: Where  a  summation  sign  appears  with  no  qualifying  notation 

beneath  it,  the  summation  is  over  the  range  n=1,2,3, ...,m. The  notation 

‘In odd” underneath  a  summation  sign  means that the  summation  is  over 

n=1,3,5 ...,a; and  the  notation ‘In even” means  summation  over  n=2,4,6, ...,a. 

The double  summation,  with  the  notation  “m+n  odd,”  covers  only  those  com- 

binations  of  positive  integral  values of m  and  n  for  which  m+n  is  odd  (e.g., 

m=1, n=2,4,6, ...; m=2, n=1,3,5, ...; etc.). 
An equation  similar  to (59) is  obtained for the  special case, 0 = n/2. 

However,  for  the  sake of brevity,  this  expression  will  not  be  given,  and  the 

remainder  of  the  derivations  will  apply  only  to  the  general case, 8 # n/2. 

Total  Potential  Energy  and  its  First  Variation* 

The total  potential  energy (TPE)  of a  single  corrugation (AC in fig. 2) 

consists  of  the  strain  energy U plus  the  potential  energy  of  any  prescribed 

loads.  Regarding  the  resultant  shear  forces F along  the  sides (A and C) of 

*From  this  point on, the  analysis  is  restricted  to  the  case 8 # n/2 
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the  corrugation  to be prescribed  (rather  than  the  relative  shearing  dis- 

placement 2u ), and  considering  the  fact  that  these  forces are acting on 

inextensible  generators,  their  potential  energy is seen to  be  -Fo2u . The 

total  potential  energy  of  the  single  corrugations is therefore 

0 

0 

TPE = -F.~u + U 
0 

(63) 

where U is  given  by  equation (59) when 8 # ~ / 2 ,  F is regarded as  given, 

and  u  is  now  regarded  as an unknown  deformation  constant  resulting  from 

the  application of F. 
0 

The  TPE,  equation (63) , is  a  functional of u ,A(z) , a1 ( z ) ,  a2(z). . . , 
0 

bl(z), b2(z), ... . In accordance  with  the  method  of  minimum  total 

potential  energy, we seek  that  value  of  u  and  those  forms of A ( z ) ,  al(z), 

etc.  which will  make  the  TPE  stationary  with  respect  to  all  small  variations 

0 

in  u A ( z ) ,  al(z),  etc. 
0, 

The first  variation  of  the TPE, obtained  by  means  of  the  standard 

technique of variational  calculus,  is 

tS(TPE) = -2F-6u O J  + '{2EztR8 1 bA(6bn)' 
-b 

u  6u 
- - + 4 0 [  1 1 0  0 TA1)aAR] [ 1 TL') (6amR) '1 

e~ R n  even  m  even 
U 6U  6U 

+ S(')[* ( 6 A ) '  + A '  $1 + 1 T(2)a'R 
n  oddn 

U m-1 
+ $ 1 T(2)  (6anR) ' - 41: 1 Til)aiR] [ 1 7 bm (-1) 1 

- 
n odd" n even  m  odd 

bn 
- n-l 

- 4 [  1 R (-1) 1 [ 1 T, (6amR) '1 + 2s (2)A' (6A) ' 

+ (6A) ' 1 $ TL3) + A' 1 - bbn T(3) + (6A) ' 1 aAR  Tn ( 4 )  

n  odd  m  even 
b 

n  even R n  n  even n odd 

(equation  continued on next  page) 
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+ A' 1 (6anR) ' TP) + TI 1 n2 - - 2 bn 6bn 

n odd 213 R R  

Ds .2 D v'+Dzv +" R 213 L n2an6an + S { n odd 
- A"R  Ty)6an - (6A-R)" 1 Ty)a 

n odd n 

- 1 T:6)  [a:R26an + an(6anR2)"] 1 
+ 5 R {2 S(3)A''R(6A*R)" + A"R 1 T(7)(6anR2)" 

n odd 

+ (6A-R)" 1 T(7)a"R2 + 2 1 Tr)a:R2(6a R2)" } 
n odd n 

+ %[4I3[ R 1 T(')a;R] [ 1 T(')(6amR) 'I + 2s(2)A'(SA) 
m even n even n m 

+ A' 1 T:')(6anR) ' + (6A) '1 T(')a;R 
n odd n odd 

+ 2 1 TY'a'R n (6a n 

Any  term in  equation (64) vhich  involves  derivatives  of  variations 

can  be  integrated  by  parts a sufficient  number  of  times so that  the  resulting 

integrands  will  involve  only  the  variations  themselves,  not  the  derivatives 

of  the  variations.  For  example, 
b 

bf: ( Sb,) ' dz = b; (6bn) If- f b"(6bn) dz 
J 
-b -b  -b 

Applying  this  technique  and  some  straightforward  simplifications,  one 

can  reduce  equation  (64)  to  the  following  form: 
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Lb -2 EZtf3b"R f Gt(Am2T:)A' 
m m 

- m- 1 

- 4 Am,(-1) 1 T P ' a A R  + 1 S a ' R  
n  even n+m odd m n  

" 2  
213 R 

b + - m2 -1 m 

b 
B GtR 2 (S > + 2 s ( 2 ) A '  + 1 T ( 4 ) a ' R  + 1 T(3) A n oddn n  even n R) 

+ D ( 1 T(')a 'R + 2S(2)A' )  
sz n  oddn n 

- D (2S(3)A' "R2 + 1 T ( 7 ) a 1 1 ' R 3 )  
Z n  oddn n 

+ (D u'+D u) 1 Tf'aAR s z  n odd 
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with 

(1 if m is  odd A :  ml 10 if m is  even 

A .( 0 if m is  odd 1 if m  is  even m2 

The  boundary  terms (B.T.)  in  equation ( 6 5 )  (i.e.,  those  with  the 

symbol I ) contain  variations  which  are  not  completely  independent  of 

one  another  because of the  constraints,  equations ( 3 6 )  and (40), arising 

b 

-b 

from  the  end-attachment  conditions.  Using  equations ( 3 6 )  and ( 4 0 )  to 

eliminate  the  variations  which  appear  on  the  left-hand  sides  of  these 

equations,  one  reduces  the  boundary  terms (B.T.) of equation ( 6 5 )  to 

forms  in  which  the  variations  are  entirely  independent  of  each  other. 

For  the  case 8 # a/2, these  forms  are  as  follows: 

For  type (a)  end attachments, 

For  type (b) end  attachments, 

B.T. = [ ( & A ) '  BAl + R 1 (dam)' Ba, + 2E  tRB 1 (6bm) bi + 1 (6am)  (Ba - QmBA) 
m  m  m  m odd m z 
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" 

For  type (c)  end attachments, 

W - m-1 
+ 1 (6bm)  Ib; - (-1) bill + 1 (6am) Ba 
m=3,5,. . m  even m 

For  type (d) end  attachments, 

+ 2EZtRB[ 1 (fibm) b: + f (6bm){bA - (-1) * bi)] 
m  even  m=3,5,. . 

It is to  be  understood,  from  this  point on, that  the  boundary  terms  in 

equation (65) are  considered  to  be  replaced  by  the  appropriate  one  of  the 

above  B.T.  expressions,  depending on the  type of end  attachments. 

Differential  Equations  and  Boundary  Conditions ~- 

In accordance  with  the  method  of  minimum  total  potential  energy,  the 

best  u A ( z ) ,  a ( z )  and  b (2) for  a  given  F are taken  to be those  which 

minimize  the TPE; i.e.,  those  which  make  the  6(TPE)  (eq.(65)  with  the  boundary 

0 )  n n 
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terms  replaced by the  appropriate  B.T.  expression  from Eqs. (75) through 

(78)) vanish. The vanishing of the  ftrst  term  and  the  integrals in  the 

right-hand  side of equation ( 6 5 )  necessitates  the  following  conditions , 

on u A(z) , the am(z) , and  the bm(z): 
0 ’  

I = O  

LA = 0 

La = 0 for  m = 1, 2 ,  3 ,  ... 
m 

Lb = 0 for  m = 1, 2 ,  3 , .  . , 
m 

(Equation (80) is  an  algebraic  equation,  while  equations (81) are 

differential  equations.) The vanishing  of  the  boundary  terms  (i.e.,  the 

vanishing  of  the  appropriate  B.T.  expression  from  eqs. (75)  through (78)) 

leads  to  the  so-called  natural  boundary  conditions  on  the am(z), the bm(z) 

and A ( z ) .  For  example,  for  the  type (a)  end attachments,  the  vanishing 

of expression (75) leads  to  the  following  conditions  to be satisfied  at 

z=kb : 
BAl = 0 

Bal = 0 for  m = 1, 2 ,  3 ,  ... 
m 

b’ = 0 for  m = 1, 2 ,  3 , .  .. m 

Ba -SZB = o  for  m = 1, 3 ,  5 ,  ... m A  m 

Ba m A  + SZ B {l-(-l)m’2} = 0 for  m = 2, 4 ,  6 ,  ... 
m 

The corresponding  natural  boundary  conditions  for  the  other  types  of  end 

attachments  can  easily  be  discerned  from  equations (76) through (78). 

In  addition  to  the  natural  boundary  conditions  discussed  above,  there 

are also the  geometric  boundary  conditions,  equations ( 3 5 )  and (39) , to be 

satisfied. 
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The,differential equations (81) and  the  boundary  conditions (82), 

(35)  and  (39)  permit A ( z ) ,  the am(z> , and  the bm(z) to  be  solved  for in 

terms  of  u  Equation (80) will then  give  u in terms  of F (i.e., 

essentially  the  ,stiffness). 

0 0 

Inasmuch as equations (81) constitute an infinitely  large  system, 

they  can be solved  only  in an approximate  sense.  This  is  done  by  assuming 

that all  the  an of  equation (25) for n greater  than  a  specific  integer M y  

and  all  the  b  of  equation  (38)  for  n  greater  than a specific  integer N, 

are  identically  zero.  This  reduces  the  infinite  system (81) to  a  finite 
n 

system,  which  consists of  linear  differential  equations  with  constant  co- 

efficients,  whose  solution  can  in  principle  be  obtained  by  standard  techniques. 

Improvements in  the  solution  are  effected  by  increasing M and N until  no 

further  significant  changes  are  observed  in  the  main  numerical  results,  namely 

the  stiffness  furnished  by  equation (80) and  the  flexural  strains  furnished 

by  the  first  of  equations (51). 

An  examination of the  definitions of L A Y  La Y and Lb (eqs* (67)-(69)) 
m  m 

shows  that  the  system  of  differential  equations (81) can  be  split  into  the 

following  two  sub-systems  containing  different  sets  of  unknowns: 

LA = 0 

La = o  for  m = 1, 3, 5,.. . 
m 

Lb = 0 for  m = 2 ,  4 ,  6, ... 

La = 0 for  m = 2 ,  4 ,  6 ,  ... 
m 

m 

Lb = 0 for  m = 1, 3, 5, ... 
m 

J 

J 
The sub-system  (83a)  involves  only A(z)  , the  a ( z )  with  m odd, and  the 

b ( z )  with  m  even,  while  sub-system  (83b)  involves  the  remaining  unknowns, 

namely  the  a (2) with  m  even  and  the  b ( z )  with  m  odd.  This  splitting is  a 

very  fortunate  circumstance;  without  it  the  solution  of  equations (81) would 

require  much  more  work. 41 
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It  should be noted  that  although  the  two  groups  of  unknowns are un- 

coupled in the  differential  equations,  they are not  completely  uncoupled, 

for  they are brought  together  again in the  boundary  conditions. 

Simplification  of  differential  equations  and  boundary  conditions. - 
The contributions  to  the  strain  energy  (eq. (58)) arising  from  the 

longitudinal  curvatures  a2w/az2  and a2w/az2 can  be  expected  to  be  small 

compared  to  those  arising  from  some  of  the  other  terms.  If  these  con- 

tributions  are  neglected, a considerable  simplification,  including  a  lowering 

of  the  order,  results  in  the  differential  equations  and  boundary  conditions. 

The neglect  of  the  longitudinal  curvature  terms  can  be  effected  by  setting 

D and v '  both  equal  to  zero  in  the  strain  energy  expression  (eq. (58)) and 

all  subsequent  equations. 

2 

Alternate  Solution,  Based  on  Algebraic  Equations 

In the  foregoing,  the  requirement  of  the  vanishing  of  the 6(TPE), 

equation (65 ) ,  was used  as a basis  for  obtaining  the  differential  equations 

and  some  of  the  boundary  conditions  governing A ( z ) ,  the am(z), and  the bm(z). 

An alternate  procedure is possible  which  leads  to  algebraic  rather  than 

differential  equations. In this  alternate  procedure  one  expands  the  unknown 

functions A(z),  am(z), and b ( z )  into  appropriate  series  (e.g.,  Fourier  series 

and/or  power  series)  in  the  z-direction  with  unknown  coefficients,  constraining 

the  coefficients,  if  necessary,to  satisfy  the  geometric  boundary  conditions 

(eqs. (35) and (39)).  The variations 6A(z) , dam(z) , and  6b ( z )  called  for  in 

equation (65) will  come  from  simultaneous  variations  in  these  coefficients. 

With  the  series  and  their  variations  substituted  into  equations (65) through 

( 7 3 ) ,  the  requirement  that G(TPE) = 0, for  any  and  all  variations  in  the  co- 

m 

m 
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efficients  of  the  series, will lead  to a system of algebraic  equations 

which  can be solved  simultaneously  for  the  coefficients in terms  of  u 

and  another  equation  which will then  give F in terms  of  u . 
0' 

0 

If  this  alternate  procedure is used,  there is  no significant  advantage 

in  neglecting  the  longitudinal  curvature  terms in the  strain  energy  ex- 

pression  by  setting D and v '  equal  to  zero. 
2 

NUMERICAL  ANALYSIS 

Numerical  results  for  stresses  and  stiffness  were  obtained  for 

corrugated  plates  with  the  type  of  end  attachments  illustrated  in  figure 2(a),  

namely  point  attachments  at  the  ends  of  the  trough  lines  only.  The 

differential  equations,  simplified  through  the  neglect  of  the D and v '  

terms as noted  above,  were  used as the  basis  of  the  numerical  analysis. 

In  this  section  the  main  steps  of  the  numerical  analysis  will  be  described, 

and  in  the  following  section  the  computed  resul'ts  will  be  given. 

z 

System of differential  equations. - A finite  system  of  differential 

equations  is  obtained  by  assuming  that  all  a  in  equation (25)  are  identically 

zero  for n.M, and  all bn in  equation  (38)  identically  zero  for n>N. Trial 

calculations  with  successively  larger  values  of M and  N  showed  that  for  all 

practical  purposes  convergence  for  the  stiffness  is  obtained  with M=4 and 

N=3.  Convergence  for  the  maximum  stresses  is  not  quite as good as for  the 

stiffness;  however  the  results  based  on M=4 and  N=3 were considered  to be 

sufficiently  good  for  practical  use.  Further  details  regarding  the  conver- 

gence  will be  given  in  the  section  NUMERICAL  RESULTS. 

n 
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For M=4 and N=3,  the  two  sub-systems (83a) and (83b) are 

LA = 0 

La = 0 for m = 1 and 3 
m 

Lb = 0 
m 

for  m = 2 

and 

La = 0 for m = 2 and 4 

Lb = 0 for m = 1 and 3 

m 

m 

respectively, 

Solution  of  differential  equations. - The solution of the  sub-systems  (84a) 
and (84b) is  facilitated  by  the  fact  that v and w must  be  odd  in z ,  u must  be 

even  in z ,  and  that  only  even  derivatives  of A and a and  only  odd  derivatives 

of bmyappear in these  equations. The solutions  may  therefore be assumed  in  the 

f o m  

my 

A = RCo sinh (Xz/R) 

a1 = C ,  sinh (Xz/R) 

a3 = C 3  sinh (Xz/R) 

(85a) 

b 2  = RD, cash (Xz/R) 

a2 = C 2  sinh  (Xz/R) 

a4 = C, sinh ( h z / R )  

bl = RDI cosh (AZ/R) 

b 3  = R D 3  cosh (AZ/R) 

where co3 c1, c 2 ,   c 3 ,  c,, Dl D 2 ,   D 3  and X are  dimensionless  undetermined 

constants. 

4 4  



Substituting  the  assumed  solutions  (85)  into  the  differential  equations 

(84a)  and  (84b),  and  assuming an isotropic  material,  that 

properties 

v '  = . v  

E' = E 

G' = G = E/[2(1+~)] 

one  obtains  the  following  two  sets  of  relationships  among 

coefficients,  provided  that X # 0: 

I 

S12A S32A RcX '+4Rd 
- 

'6 

= o  

0 

0 
- 

is, one  with  the 

(86) 

the  undetermined 

The constants S and TS3) appearing in the  above  equations  have 

already  been  defined  (see eqs. (61) and (62)). With 

mn 

the  remaining  constants in equations  (87a)  and  (87b)  can be defined 

as  follows: 
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Non-trivial  solutions of equations  (87a)  and (87b) require that the 

determinants of the  two  systems  vanish,  which  leads  to  characteristic 

equations of the  following form for X associated  with  systems (87a) and (87b),  

respectively: 

X2(P,X6 + P4X4 +- P2A2 + Po) = 0 ( 8 9 a )  

QgX’ + Q 6 x 6  f Q 4 X 4  f Q2X2 + Qo 0 (8%) 

where P o , . . . ,  Pg and Q o , . . . ,  Q6 are known coefficients. 
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The r o o t s  of  equation:  (89a) w i l l  be   denoted  by 20, + - X 2 ,  2x3, f X 4 .  

The  non-zero  roots X 2 ,  h 3  and A, l e a d   t o   t h r e e   i n d e p e n d e n t   s o l u t i o n s   o f   t h e  

f o r m   ( 8 5 a ) .   I n   e a c h   s u c h   s o l u t i o n   t h e   r e l a t i o n s h i p  among t h e   c o e f f i c i e n t s  

Co,  C l ,  C 3  and D 2  c a n   b e   o b t a i n e d   b y   s o l v i n g   t h e   f i r s t   t h r e e   o f   e q u a t i o n s  

(87a) for C , ,  C 3  and D2 i n  terms of C w i th  X r ep laced  by A2, X3 o r  X4, 
0’ 

depending  upon  which o f  t h e   t h r e e   s o l u t i o n s  i s  be ing   sought .   The   zero   roo ts  

o f   e q u a t i o n   ( 8 9 a )   i n d i c a t e   t h a t   t h e r e  is  an   independent   so lu t ion   of   equa t ions  

(84a)  of a form  o ther   than   (85a) .  To d e t e r m i n e   t h i s   s p e c i a l   s o l u t i o n ,   o n e  

c a n   r e t u r n   t o   t h e   d i f f e r e n t i a l   e q u a t i o n s   ( 8 4 a )   a n d  by i n s p e c t i o n   n o t e   t h a t  

t h e s e   e q u a t i o n s  do indeed  have  the  fol lowing  solut ion  which is not  of t h e  form (85a) 

but   which   has   the  same p a r i t y :  

A = R C O I  (z/R) 

a l  = 0 

a3 = 0 
(90) 

b2 = R COlElO 

where 

E l  0 f -T32/(4Rd) 

and C o l  i s  a n   a r b i t r a r y   c o n s t a n t .  Combining t h i s   s p e c i a l   s o l u t i o n   w i t h   t h e  

three   which  are of   the   form  (85a) ,   one   ob ta ins   the   fo l lowing   comple te  

s o l u t i o n   o f   e q u a t i o n s   ( 8 4 a ) :  

A = R I C O I  (z/R) + C o 2  sinh(X2z/R) + C o 3  sinh(Agz/R) + C o 4  sinh(Xt,z/R)] 

a l  = E l  C o 2  sinh(X2z/R) + E, C o 3  sinh(X3z/R) + E7 C o 4  sinh(Abz/R) 

a3 = E2 C o 2  sinh(X2ziR) + E5 C o 3  sinh(Xgz/R) + E8 C o 4  sinh(Aqz/R) 

b2 = R [ C o l E l o  + E3C02 cosh(X2z/R) + E g C 0 3  cosh(Xgz/R) + EgCO4 cosh(X4z/R) 

(92a) 
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._. . . _ _ _  .. . . 

where Col, C02,  C03,  Co4  are  arbitrary  constants,  and E1  through E9 are 

known  quantities.  They are the  ratios  of  determinants  formed  from  certain 

matrices  of  the  elements  of  equations  (87a)  with X replaced  by X2, X3 or A b .  

They  arise in solving  the  first  three  of  equations  (87a)  for C1, C3 and D2 

in  terms  of  C  with A equated  successively  to X2, X3 and h 4 .  
0 

The roots  of  equations  (89b),  all  non-zero, will be denoted  by ? X 5 ,  

?Ag, f X 7 ,  and f X 8 .  They  give  rise t o  four  independent  solutions  of  the 

form (85b). When  these  are  combined,  one  obtains  the  following  complete 

solution of  equations  (84b): 

a2 = C25  sinh(Xgz/R) + c26 sinh(Xgz/R) + C27 sinh(X7z/R) + C 2 8  si$Xgz/R) 

a4 = Ei C25  sinh(Xgz/R) + E l  c26 Sin(XgZ/R) + E;C27sinh(X7z/R) + EioC28  sinh(X8z/R) 

bl = R[E;C,5  cosh(X,Z/R) + E;C26  COSh(XgZ/R) + EkC27 COS~(X~Z/R) $. EilC28COSh(X8Z/R)] 

b3 = R[E;C25 COS~(X~Z/R) + EkC26  cOsh(XGz/R) + E4C.77  cosh(A7z/R) + Ei2C28COSh(XgZ/R)] 

(92b) 

where  C25, C26,  C27 and  C28  are  arbitrary  constants,  and  E;  through Ei2, like 

E1 through E9,  are  the  ratios  of  certain  determinants;  they  are  obtained in 

the  course  of  solving  three of equations (87b) for C4, Dl  and D3  in  terms  of 

C2 with X replaced  by As, A 6 ,  X7 and A8 successively.  The  three  equations 

selected  for  this  calculation were the  first,  third,  and  fourth  of  (87b). 

Satisfaction of boundary  conditions. - Equations  (92a)  and  (92b)  con- 
stitute  the  general  solution  of  the  system  of  differential  equations  (84a) 

and (84b). The  eight  unknowns Col through  Co4  and  C2,  through c28  will  be 

determined  from  the  boundary  conditions. The boundary  conditions  are  in  two 

groups:  the  geometric  boundary  conditions  and  the  natural  boundary  conditions, 

For  the  case  under  consideration,  (35a.l)  is  the  only  geometric  boundary 

condition.  Taking  into  account  the  fact  that  all  a  with n>4 are  being  con- n 

48 



s i d e r e d   t o   b e   z e r o ,   a n d   t h a t  w e  have  a l ready  imposed  ant isymmetry on 

A(z)  and  an(z) , it  becomes 

-A(b) + R[-n,a,(bj + 2Q2a2(b) - Q3a3(b)] = 0 (93) 

The n a t u r a l   b o u n d a r y   c o n d i t i o n s   f o r   t h e  case u n d e r   c o n s i d e r a t i o n  are e q u a t i o n s  

.( 82 ) .  C o n s i d e r i n g   t h e   d e f i n i t i o n s   i n   e q u a t i o n s  (70)  through  (73) ,   and 

t h e   f a c t   t h a t  D and v '  are being  taken as z e r o   ( i n   o r d e r   t o   n e g l e c t   t h e  

l o n g i t u d i n a l   c u r v a t u r e  terms i n   t h e   s t r a i n   e n e r g y   e x p r e s s i o n ) ,   t h e   f i r s t  

two  of equat ions   (82)  are i d e n t i c a l l y   s a t i s f i e d .   C o n s i d e r i n g   i n   a d d i t i o n  

t h e   t r u n c a t i o n   b e i n g   e m p l o y e d   i n   t h e  series (25)   and   (38 )   fo r   f ( s , z )   and  

u ( s , z ) ,   t h e  rest of  equations  (82)  become 

Z 

b i ( b )  = 0 , b;(b) = 0 , b i ( b )  = 0 (94) 

( 9 5 )  

where ,   i n   v i ew  o f   equa t ions  (57) and (86), 

= GtR2[S(') 2 + 2S(2)A' + (T1(4)a; + T i 4 ) a i ) R  + T2 

+ DsZ[(T1(''a: + Ti9)a;)R + 2S(2)A'] 

U 

BA R 

U 

B = GtR2(T[2) < + T!4)A' + 2 e Q f a i R  + S12 R) b 2  
a1 

+ DsZ(Ti9)A' + 2T:")a;R) 
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+ Dsz (T$')A' + 2T,(lo)aiR) 

Equations  (93)  through (96) constitute  eight  equations  from  which 

i:i,e eight  unknowns C O ~  through Cob and  C25  through  C2g  can  be  determined 

in  terms of u . These  equations  can  be  solved  to  obtain  numerical  values 

f o r  the  following  eight  dimensionless  parameters: 
0 

(C27R/uo) cash (X7b/R) = K7 

(C28R/~o) cash (XBb/R) = K, 

Determination  of  stiffness. - Equation (80), in  conjunction  with (66),  

(92a),  (92b)  and (102), gives  the  following  relationship  between  the  shear 

force F and  the  relative  shearing  displacement  parameter u : 0 
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The quantity  F/(Gtu ) given  by  equation  (103)  is  a  dimensionless  measure 

of  the  shear  stiffness.  From  it  any  other  dimensional  or  dimensionless 

shear  stiffness  measures  can  be  determined. 

0 

Determination  of  strains. - It  is  anticipated  that  of  the  two  strains 
E and E & ,  the  former  will be of  much  greater  magnitude  and  its  maximum  value 

will  occur  at  the  extreme  fibers  (5=+t/2)  somewhere  along  the  edges z = +b. 
t 

The expression  for  evaluating  the  extreme-fiber  values  of E along  these  edges 

can  be  obtained  by  substituting 5 = t/2  and z = b into  the  first  of  equations 
t 

(51), after  first  eliminating f3 via  equation (25). The result  is 
m 

or, in  a  form  more  suitable  for  computing  and  plotting,  and  with  terms 

corresponding  to n>4 dropped, 

The coefficients an(b)R/u are  to  be  evaluated  from  equations  (92a)  and 

(92b) in conjunction  with (102). 

0 

There  is  not  much  point  in  evaluationg  the  shear  strains y ,  given  by 

third  of  equations (51), inasmuch  as  those  strains  should  theoretically 
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become  infinite at  the  idealized  attachment  points  employed  in  the 

analysis. A s  a practical  matter,  one  would  have  to  estimate  the  actual 

stress  conditions  at  the  attachment  points  by  taking  into  account  the 

actual  nature  and  finite  size  of  the  attachments. 

NUIERICAL  RESULTS 

Using  equetions (103) and (105), numerical  results  for  stiffness  and 

extreme-fiber  flexural  strain  were  obtained  for a wide  variety  of  geometries 

for  the  case  of  point  attachments  at  the  ends  of  the  trough  lines,  assuming 

a Poisson's  ratio  of 0.3. The calculations  were  programmed  in  FORTRAN IV 

WATFN and  performed  on  the 1BM 3 6 0 / 5 0  computer.  The  results will  now  be 

presented  and  discussed. 

Results  for  shear  stiffness. - The  results  for  shear  stiffness  can  be 

most  efficiently  presented  in  terms  of a dimensionless  shear  stiffness 

parameter Q.  This  parameter  is  defined  as  the  ratio  of  the  shear  stiffness 

measure F/Gtuo, as  given  by  equation (103), to  the  corresponding  shear 

stiffness  measure  in  the  case of continuous  end  attachments  of  such a  nature 

as  to  produce a state  of  uniform  shear  stress  throughout  the  corrugation . 
Such a state  of  stress  would,  in  principle,  be  developed  if  the  ends  of  the 

corrugations  were  continuously  attached  to  diaphragms  which  were  perfectly 

rigid  with  regard  to  deformations in their own planes,  but  perfectly  flexible 

with  regard  to  deformations  normal  to  their  planes.  With  such  end  attachments 

the  straight-line  generators  of  the  corrugations  would  merely  slide  longitudinal- 

ly  with  respect  to  each  other  and  the  shape  of  the  cross  sections  would be 

preserved.  Corresponding  to a relative  sliding  of  2u  per  corrugation,  the 
0 

homogeneous  shear  strain  in  such a case  would  be  simply  2u  /p',where p 1  is the 
0 
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developed  width  (4R0)  of  one  corrugation. The shear  force  F'  required  on 

every  longitudinal  section  in  order  to  maintain  this  sliding  would  therefore 

be 

whence 

Thus,  division of  equation  (103)  by  b/(RB)  gives  the  dimensiondess  shear 

stiffness  parameter R. Having  a  numerical  value  of R ,  one  can  recover 

F/Gtuo  as  follows: 

Using  equations (lb), one  can  put  this  result  into  the  following 

alternative  form: 

" - R .  4(2b/p) 
Gtuo C(p/h) + 4(h/p)]  tan-1(2h/p) 

Figure 8 shows  a  typical  set of computed  curves  of R versus b/p 

(or  L/2p). The cross  section  to  which  figure 8 applies  is  defined by 

8=1.1612  radians = 66O32',  implying  an  h/p  ratio  of  .328.  (These  are  the 

proportions  of  some  commercially  available  corrugated  sheeting.) A s  is  to  be 

expected,  as  b/p  becomes  large Q approaches  unity;  however,  b/p  must  be 

extremely  large  (probably  beyond  the  range  of  practicality)  before  unity 

becomes  an  acceptable  approximation  for R .  For  the  larger  ratios  of  thickness 

to pitch,  is  seen  to  approach  unity  faster  than  for  the  smaller  ratios, 

as  b/p  increases. 

Figure 8 also  shows  that  the  curves  of $2 ve.rsus  b/p  for  different  t/p 

values  have  nearly  the  same  shape,  and  therefore  they  can  be  made  nearly  to 
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coincide  by  incorporating  into  the  abscissa  parameter some  function of 

t/p. The  appropriate  modified  abscissa  parameter  is  found  to  be 

(b/p) (t/~)~'~. By  plotting R versus  this  parameter,  the  curves  for  all 

different  t/p  values  (but  fixed h/pj  fall  within  a  narrow  band,  as  shown 

in  figure 9 .  

By  employing  the  same  plotting  technique  as in  figure 9 ,  one  can 

summarize  the  results  for  various  h/p  ratios  in a  single  graph,  figure 10. 

Figure 10 shows  that,  all  other  things  being  equal,  the  flatter  the 

corrugation  (i.e.,  the  smaller  the  h/p)  the  larger  will  be  the Q .  

It should  be  mentioned  that  h/p = 0.5  corresponds  to 8 = goo, a 

special  case  to  which  the  general  analysis  presented  earlier  does  not  apply. 

Rather  than  develop  the  special  analysis  and  computing  program  for 8 = 90°, 

it  was  decided  to  use  the  general  analysis  for 8 = 89' and 91' and  average 

the  results. The curves  given  in  figure 10 for  h/p = 0.5 were  obtained in 

this  manner. 

The six  bands  of  figure 10 are  seen  to  have a similar  shape.  This 

suggests  that a further  coalescence  of  the  results  into a  single  band ' 

can  be  accomplished  by  incorporating  h/p  into  the  abscissa.  The  coalescence 

which  results  from  using  (b/p)  (t/p)  /(h/p)le6  as  the  abscissa  parameter 1.5 

is  shown  in  figure 11, where  no  attempt  is  made  to  distinguish  the  individual 

curves.  If  the  exponent 1.6 is  changed  to  1.5,  the  somewhat  simpler  abscissa 

parameter  (b/p)  (t/h)lS5  is  obtained  at  the  expense  of a slight  widening  of 

the  scatter  band,  as  shown  in  figure 12. 

Figure 11 or 12 is recommended  as  the  most  expeditious  way  of  obtaining 

Q, provided  that  one  can  tolerate  the  uncertainty  represented  by  the  vertical 

thickness  of  the  scatter  band.  For  greater  accuracy one should  interpolate 

among  the  curves  of  figure 10. 

54 



As noted  earlier,  the  numerical  analysis  leading  to  figures 9 

through 12 was based on a solution  with M ='4 and N = 3; that is,  all 

of the  unknown  functions  were  taken  to be zero  except A ( z ) ,  ao(z) through 

a4(z) , and  bl(z)  through b3(z). In order to check  whether  these  terms 

were  sufficient  for  practical  convergence,  conputations  of SZ were  also 

made  using  smaller  values  of M and N .  The  curves  of SZ versus (b/p)(t/p) 3/2 

for  two  cross  sectional  geometries  and  various  sets  of  values  of M and N 

are  shown  in  figures 13(a)  and  (b) . (The N=O case in figure 13(a) refers 

to a calculation  in  which  all  the b of  equation  (38)  were  taken  as  zero.) 

In both  figures  the  results  for  approximations 5 and 6 are  indistinguishable 
n 

from  each  other. It was  therefore  judged  that  convergence  of S2 had  been 

essentially  achieved  with  approximation 6, i.e., M = 4, N = 3. 

Results  for  maximum  flexural  strain. - The parameter  appearing  on  the 
left-hand  side  of  equation (105) is  proportional  to  the  extreme-fiber 

flexural  strain [E~(s,~)]~,~,~ in  the  end  cross  section, z=b. Equation (105) 

was  used to evaluate  this  parameter  for a series  of  closely  spaced  values  of 

s in  order  to  determine  its  maximum  absolute  value. A typical  variation  of  this 

parameter  with  respect  to s is shown in  figure 14. A s  indicated in this 

figure,  thepoints of maximum  flexural  strain  were  found  to  be  approximately  at 

s = f(25/16)RB; thus  each  such  point  is  in a trough  and  lies  about  midway 

between  an  attachment  point  and a crest-to-trough  junction  point. 

The  absolute  values  of  the  maximum  extreme-fiber  strain  parameter  for a 

wide  range of  geometries are summarized  in  figure 15. Because  of  the  particular 

parameters  employed  as  ordinate  and  abscissa,  the  curves  for  different  t/p 

values  are  fairly  close  together,  thus  facilitating  interpolation  with  respect 

to  t/p.  Since u rather  than F, appears in the  ordinate  parameter  in  figure 

15, it  is  evident  that  these  curves  are  best  suited to the  situation  in  which 

one  wishes  to  find  the  maximum  extreme-fiber  flexural  strain E resulting 

0' 

t  max 
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from  a  given  value of  the  apparent  overall  shear  strain,  2uo/p.  Using 

figure 15 in  conjunction  with  figure 9 ,  10 or 11, however,  one  can  find 

instead  the  maximum  flexural  strain  resulting  from a  given  shear  load F. 

It will be noted  from  figure 15(f) that  calculations  were  made  for  h/p = .495 

(8 = 89.5') in place of  h/p = .5 (8 = 90°) ; this was  done  in  order to  avoid  the 

special  analysis  and  special  programming  that  would  be  required  for  the 

latter  case. 

The  results  presented  in  figure 15 for E are  based  on  the  same t max 

approximation  as  those  presented  earlier  for R ,  namely M=4, N=3. The degree 

of  convergence  achieved  for E with this M and N is  indicated in  figure 16 

for a particular  cross-sectional  geometry. It will be  noted  that  the  con- 

vergence  here is not  as  good  as  it  was  for  with  the  same M and N. There 

is  an  appreciable  difference  in  figure 16 between  the  curve  for M=4, N=3 and 

that  for M=3, N=3. If more terms were used in  the  calculations,  the  change  in 

the  curvesof max versus  (b/p) ( t / ~ ) ~ / ~  would  undoubtedly  be  discernible. 

It  is  felt,  however,  that  further  refinement  in  the E calculation  may  not 

t max 

t max 

ice this  strain  is  probably 

, which  in  the  present  analysis 

be warranted in  view of the  fact  that  in  pract 

affected  by  the  finite  size of the  attachments 

were  taken  to  be  mathematical  points. 

It  is of interest  to  examine  the  possible order  of  magnitude  of  the  extreme- 

fiber  flexural  strains.  From  figure 15 it  is  seen  that  (p/uo) (tip) max 

can  be  of  the  order of unity.  Thus ht max/(2uo/p)  can  be  of  the  order  of 

(p/t)ll2;  that is, f o r  some  geometries  the  maximum  extreme-fiber  flexural 

strain E can  be  several  times  as  large  as  the  apparent  overall  shear  strain 

2uo/p,  for  the  type  of  end  attachments  being  considered  here.  The  use  of  more 

attachments,  as  in  figures 2(b),  (c)  and  (d), would  tend  to  reduce  the  end-cross- 

sectional  deformations  and  thereby  the  extreme-fiber  flexural  strains. 

1i2 

t max 
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In order  to  convert  the  extreme-fiber  transverse  flexural  strain 

into a corresponding  extreme-fiber  transverse  flexural  stress E t max 

t max' U it  is  suggested  that  the  following  formula,  based  on  the  assumption 

of  negligible  longitudinal  curvature of the  generators , be  used: 

U - -  (108) 

COMPARISON OF PRESENT  THEORY AND McKENZIE'S 

K.I.  McKenzie,  in  reference 4 ,  presented  an  analysis  for  the  shear 

stiffness  of  corrugated webs with  circular-arc  corrugations  and  two  types 

of  end  attachments -- point  attachments  in  the  troughs, as  in  figure 2(a), 

and  point  attachments  at  mid-height,  as  in  figure 2(c). 

There  appears  to  be  an  appreciable  difference  between  the  numerical 

results  presented  by  McKenzie  and  those  computed  by  the  present  theory,  for 

the  stiffness of a web  with  point  attachments  in  the  troughs,  which  is  the 

only  case  for  which a numerical  comparison  of  the  two  theories  has  been  made. 

The  discrepancy  between  the  two  theories  for  this  case  is  shown  in  figure 17, 

where  the  solid  curves  are  based  on  the  present  theory,  and  the  dashed  curves 

are  from  figures 3 and 6 of  reference 4 .  

It is  believed  that  the  difference  between  the  present  results  and 

McKenzie's  is  due  mainly  to  the  assumptions  on  which  the  latter  results  are 

based. The  main  assumption  in  McKenzie's  theory  is  that  the  middle  surface 

undergoes  inextensional  deformation  (in  contrast to the  assumption  of  merely 

transverse  inextensibility  in  the  present theory). A s  a result  of  this 

assumption  the  straight-line  generators  parallel  to  the  corrugations are 

forced  to  remain  straight  and  unstrained,  although  they  may  undergo  rigid-body 

movements. The shear  stiffness r obtained on this  basis  is  then  corrected in 
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an  apprcximate  way  for  the  middle-surface  shear  strain  in  order  to 

obtain  a  corrected  shear  stiffness Y 1 .  The correction is embodied 

in  the  formula 

" 1 1 1  
r l  ro r "+ -  

where r is  the  shear  stiffness  assuming  pure  homogeneous  shear  strain 

with  no  cross-sectional  deformation.  That  is,  the  actual  flexibility, 

l / F 1 ,  is  assumed  to  be  the  sum  of  two  other  flexibilities:  the  flexibility 

l/r due to shear  deformation  of  the  middle  surface  with  flexural  deforma- 

tions  suppressed,  and  the  flexibility l / r  due  to  flexural  deformations  with 

all  middle  surface  deformations  suppressed.  The  present  theory,  on  the 

other  hand,  has  all  flexibilities  (except  for  transverse  extension)  present 

simultaneously. 

0 

0 

Another  possible  cause  of  the  difference  between  the  present  results 

and  FlcKenzie's  may  be  the  continuity  conditions  employed  in  reference 4 

at  the  junction  between  a  crest  and  a  trough  and  already  alluded  to  in  the 

footnote  on p .  I I . A s  mentioned in the  discussion  following  equation (8) 

of  the  present  paper,  v  and B must  be  continuous  at  the  junction  of  a  trough 

and  crest;  however, p is  discontinuous  at  such  a  junction,  changing  from 

+R to -R, o r  vice  versa.  Consequently,  equation (8) dictates  that  awlas 

must  also be discontinuous  there.  However,  equations (11) of  reference 4 

violate  this  requirement  by  imposing  continuity  of  awlas as one of the 

continuity  conditions  at  the  junction.  Thus,  McKenzie's  -aw/ay + v/R  is 

discontinuous  at  a  junction  of  crest  and  trough,  in  effect  permitting  a  kink 

to  develop  there.  Consequently,  his  quantity  -a2w/ay2 + (1/R) av/ay  is  in- 

finite  at  the  junctions  and  should  make an infinite  contribution  to  the 

58 



strain  energy (eq. ( 8 )  of ref. 4 ) .  McKenzie  seems  to  have  avoided  this 

result  by  not  integrationg  the  strain-energy  density  across  the  junction. 

By  permitting  kinks to develop  but  not  integrating  the  strain-energy  density 

across  the kinks,  it appears  that  McKenzie  may  be  solving  a  somewhat  different 

problem,  namely  the  shearing of a  corrugated web  with  crests  and  troughs 

hinged  together  along  their  junctions. 

It  is  difficult  to  assess  what  the  sense  of  the  discrepancy  should  be 

between  the  present  results  and  McKenzie's.  If  the  surmise  just  above, 

regarding  the  hinges, is  correct, on that  score  alone  McKenzie's  stiffnesses 

should  be  lower  than  the  present  ones.  However,  McKenzie's  assumption  of 

inextensional  deformation would, on the  other hand, lead  to  a  raising of 

the  stiffness,  and  his  correction  for  middle-surface  shear  (eq. (109) of  the 

present  paper)  would  have an unknown  effect. Thus, we cannot  conclude  that 

one  theory  or  the  other  should  lead  to  higher  stiffnesses;  and  in  fact  figure 17 

shows  that,  while  the  present  stiffnesses  are  generally  lower  than  McKenzie's, 

they  can  also be higher. 

ILLUSTRATIVE  APPLICATION 

Shear  stiffness. - Let  us  consider  a  hypothetical  corrugated  spar web, 

with  the  corrugations  running  vertically  and  fastened  to  the  spar  caps  by 

means  of  a  single  small  rivet  at  each  end  of  a  trough line, and  with  the 

following  additional  characteristics: 

Young's  modulus: 

Shear  modulus: 

Poisson's  ratio: 

Corrugation  length: 

Pitch: 

Depth : 

Thickness: 

E = 30,000,000 psi. 

G = 12,000,000 psi. 

v = .25 

2b = 48 in. 

p = 4 in. 

h = .4 in. 

t = .04 in. 
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I n   o r d e r   t o  make a s h e a r   f l o w   a n a l y s i s  of t h e  box beam of wh ich   t he  

web is  a p a r t ,  i t  i s  u s u a l l y   n e c e s s a r y   t o  know t h e   e f f e c t i v e   s h e a r   m o d u l u s ,  

G e f f ,  of t h e  web.  The c a l c u l a t i o n   o f   t h i s   q u a n t i t y   b y  means of f i g u r e  10 

w i l l  now be   demons t r a t ed ,   a s suming   t ha t   t he  stresses are n o t  so  h i g h  as t o  

i n v a l i d a t e   t h e   a s s u m p t i o n  of Hooke’s law on  which t h i s   f i g u r e  i s  based ,  

a n d   n e g l e c t i n g   a n y   p o s s i b l e   e r r o r   d u e   t o   t h e   f a c t   t h a t  i t  i s  based  on a 

P o i s s o n ’ s   r a t i o   o f   0 . 3 ,   r a t h e r   t h a n   0 . 2 5 .  

From t h e   g i v e n   d a t a  

h / p  = .4 /4  = 0 . 1  , t / p  = . 04 /4  = .01, 

Entering  .006 as a b s c i s s a   i n   f i g u r e  10 ,  a n d   r e a d i n g   t h e   o r d i n a t e   t o   t h e  

c u r v e   f o r  h / p  = .1 and t / p  = .01, o n e   o b t a i n s  R = .66.  

Now e n t e r i n g  h / p  = .1 i n   f i g u r e  18, o n e   o b t a i n s  f3 = .393   rad ians   and  

p/R = 1.538.   Equat ion (106) t h e n   g i v e s  

F 
Gtuo 
” 

24 - .66 X 4 x 1.538 x - - - 15.5 .393 

The e f f e c t i v e   s h e a r   m o d u l u s ,   d e f i n e d  as t h e   r a t i o  of t h e   a v e r a g e   s h e a r  

stress on v e r t i c a l   s e c t i o n s ,   F / ( 2 b t ) ,   t o   t h e   a p p a r e n t   o v e r a l l   s h e a r   s t r a i n ,  

2u / p ,  can now be  computed  as   fol lows:  
0 

= (15.5)  (3,000,000)  (4124) = 7,750,000 p s i  

It is  of i n t e r e s t   t o  see wha t   t he  less a c c u r a t e   f i g u r e s  11 and 1 2  

would have   g iven   fo r  R i n   t h i s   c a s e .  The a b s c i s s a s   r e q . u i r e d   f o r   t h e   u s e  

o f   t h e s e   f i g u r e s  are ,  r e s p e c t i v e l y ,  

( b / p ) ( t / h ) I m 5  = (2414) ( . ~ 1 4 / . 4 ) ~ ”  = .190 
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Entering  the  first  of  these  abscissas  into  figure 11, one obtains Q = . 67? .03 ,  

as compared  with  the  more  precise  value  of .66 determined  from  figure 10. 

Similarly,  entering .190 as  abscissa in figure 12, one  obtains n = .66+.04. 

In this  case  the  ordinate  to  the  middle  of  the  band in figure 11 or 12 is 

quite  close  to  the  correct  value  but  its  uncertainty  would  be 25 or 6 percent. 

It should  be  noted  that  for  small  values  of  the  abscissa  in  figure 11 or 12 

the  relative  uncertainty in n can  be  much  larger  than  5  or 6 percent. 

Flexural  stress. - Suppose  that we now  wish  to  determine  for  the  same 
web  the  maximum  extreme-fiber  transverse  flexural  stress, (5 per 1000 

pounds of applied  vertical  shear  load F, again  assuming  that Hooke's law 

is  valid. 

t max' 

Entering  figure 15(b) with  (b/p)  (t/p)  3/2 = .006 and  t/p = .01, we find 

that 

whence 

E t max = .502(:) 'I2 = .502(100)1/2 = 5.02 
(2U0/P> 

That is, the  maximum  extreme-fiber  flexural  strain  is  in  this  case  5.02 

times  the  apparent  shear  strain.  Making  use  of  the  value  of  Geff  computed 

earlier, we have 

" 2uo F/ (2bt) - 1000/ ( 4 8 ~  .04)  = .671 x 10-4 - 
P 

- 
Geff 7,750,000 

Thus , 
E = (5.02) (.671 x = 3.37 x t max 
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The  corresponding  stress,  according  to  equation (108), is 

6 
U - - 
t max 1-(1/16) 30x10 x 3.37 x = 10,780 psi 

In  contrast,  the  average  shear  stress  on  vertical  sections,  per 1000 

pounds  of  applied  shear  load,  is  only 

” 
F 
2bt (48 )  (. 0 4 )  

- ’Oo0 = 5 2 1  psi 

CONCLUDING REMARKS 

A theoretical  elastic  analysis  has  been  presented  of  a  curvilinearly 

corrugated  shear  web  with  various  arrangements  of  point  attachments  at 

the  ends  of  the  corrugations,  the  purpose  of  the  analysis  being  to  obtain 

information  about  the  overall  shear  stiffness  of  such  a  web  and  the  flexural 

strains  that  develop in it  as  a  result  of  its  cross-sectional  deformations. 

On  the  basis  of  this  analysis,  numerical  results  for  stiffness  and 

maximum  flexural  strain  were  computed  and  presented  for  a  wide  range  of 

geometries  and  one  kind  of  end  attachment,  namely  point  attachments  at  the 

ends of the  trough  lines.  The  numerical  results  for  stiffness  show  that  the 

discretely  attached  web  can  have  a  markedly  lower  stiffness  than  the  con- 

tinuously  attached web, even  for  large  values  of  the  length-to-pitch  ratio  of 

the  corrugations.  The  stiffness  results  differ  appreciably  from  those 

obtained  by  McKenzie  for  the  same  problem.  The  numerical  results  for  the 

maximum  extreme-fiber  flexural  strains  at  the  ends  of  the  corrugations  show 

that  these  strains  can  be  considerably  larger  than  the  apparent  overall  shear 

strain  of  the web, and  the  corresponding  flexural  stress  can be  much  larger 

than  the  average  middle-surface  shear  stress. 
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In the  analysis  the  crests  and  troughs were assumed  to be identical 

circular  arcs  €or  simplicity. In order  to  apply  the  results  to a corrugation 

which  has  identical  but  not-quite-circular  crests  and  troughs,  it  is  suggested 

th,at a circular-arc  corrugation  with  the  same  pitch  and  depth be taken as 

approximately  equivalent  to  the  non-circular  one.  However,  the  error  in- 

volved in such a substitution  cannot  at  present be estimated. 

The present  analysis  and  numerical  results  may  be of use  in  some 

instances  in  the  design  of  the  internal  spars  of  aerospace  vehicles  if  corrugated 

shear  webs  are  used in these  spars  as a  means of  avoiding  high  thermal  stresses. 

The present  work  may  also be of use  in  the  civil  engineering  applications  of 

corrugated  sheet,  namely  as  roofing  and  siding,  provided  that  identical 

fastening  is  used  in  every  corrugation. At present a rather  sparse  fastening 

at  the  corrugation  ends is often  employed  in  the  civil  engineering  applications; 

in  such  cases  the  present  analysis  would  not  apply. 

It  should  be  emphasized  that  the  data  presented in this  report  are 

theoretical  and  based  on  an  analysis  which  idealizes  the  attachments  as 

mathematical  points  and  neglects  the  (nonlinear)  effect  of  any  possible  inter- 

ference  between  the  deformations  of  the  end  cross  sections  and  the  flanges 

to  which  they  are  attached.  Experiments of two  kinds  would  be  desirable: 

First,  experiments  in  which  one  tries  to  simulate  as  closely  as  possible  the 

idealizations  employed in the  analysis,  in  order  to  confirm  the  basic  soundness 

of  the  latter.  Secondly,  experiments  in  which  one  simulates  practical  attach- 

ment  conditions, in order  to see what  effect  such  things  as  finite  attachment 

size  and  interference  have  on  the  stiffness  and  stresses.  Pending  such 

experimental  investigations,  the  quantitative  results  of  the  present  analysis 

should be used  with  some  discretion. 
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Figure 1. - Configuration  and  notation  for  curvilinearly  corrugated  plate 
in  shear. 

Point  attachments  at  troughs 

Point  attachments  at  troughs  and  crests 

Point  attachments  at  mid-height 

Point  attachments  at  troughs,  crests  and 
mid-height 

Figure 2. - Types of discrete  attachment  considered  at  ends of 
corrugations ( z  = f. b). 
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Figure 3. - Symmetry  and  antisymmetry of displacement  components in the 
plane of the  cross  section f o r  p o i n t s  symmetrically  located 
with  respect to a  vertical  plane of symmetry. 

I" I \ '  I 

7 k = unit  vector in z-direction 
(out of the  page) 

Figure 4 .  - Displacements,  in  the  plane of the  cross  section,  of 
middle-surface points. 
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F i g u r e  5.  - T y p i c a l   r e p e a t i n g  unit o f  t h e   c i r c u l . a r - a r c   c o r r u g a t i o n .  

-b 
k: u n i t   v e c t o r  in 

z - d i r e c t i o n   ( o u t  
of   the   page)  

F igu re  6.  - Line  e lements  PQ and RS i n   t h e   c r o s s   s e c t i o n  of t h e  
undeformed  corrugat ion.  

1 
Figure  7 .  - Vector  polygon formed by p o i n t s  R, S ,  R '  and S. 
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Figure  10. - Var ia t ion  
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F i g u r e  11. - Curves   o f   f igure  10 r e p l o t t e d  wi th  a 
mod i f i ed   absc i s sa   pa rame te r .  
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F i g u r e  1 2 .  - Curves of f i g u r e  10 r e p l o t t e d  wi th  an a l t e r n a t e  
mod i f i ed   absc i s sa   pa rame te r .  
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Figure 13. - Study of convergence of shear-stiffness parameter SI. 
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Figure  15. - Summary of  computed d a t a  on maximum e x t r e m e - f i b e r   f l e x u r a l  
s t r a i n  E due   t o   de fo rma t ion  of t h e  end c r o s s   s e c t i o n .  t m a x  
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Figure 15.  - Concluded. 
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F igure   17 .  - Comparison of p r e s e n t   r e s u l t s   ( s o l i d   c u r v e s )   w i t h   t h o s e  o f  
r e f e r e n c e  4 (dashed   curves) .  

76 



0 (d,egrees) 

n 1 5  30 45 60 75 90 

.5 

. 
.4 

. s  

- h 
P 

. 2  

. 3  

C 

.5  

. 4  

. 3  

!! 
P 

. 2  

.1 

0 
1 2 3 4 

Q /R 

Figure 18. - Graphs of equations Xb). 
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