
2 - 1 i g 4

Technical Report 71-108 May 1971

The GENREL Teletype Package

by

Brian K. Reid

CASE FILE
COPY

UNIVERSITY OF MARYLAND
DEPARTMENT OF PHYSICS AND ASTRONOMY

COLLEGE PARK, MARYLAND

https://ntrs.nasa.gov/search.jsp?R=19720018468 2020-03-11T18:06:49+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/85232909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This is a preprint of research carried out at the University
of Maryland. In order to promote the active exchange of research
results, individuals and groups at your institution are encouraged
to send their preprints to

PREPRINT LIBRARY
DEPARTMENT OF PHYSICS AND ASTRONOMY

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

U.SJV.

Technical Report 71-108 May 1971

The GENREL Teletype Package

by

Brian K. Reid

The development of the GENREL teletype package was supported in part by the
National Aeronautics and Space Administration Contract //NAS 9-5886 and in
part by the National Aeronautics and Space Administration grant number NsG-398
to the Computer Science Center of the University of Maryland.

INTRODUCTION

Although the UNIVAC 1108 system under EXEC 8 is capable of processing
both batch and teletype jobs, most of the software and application programs
available are oriented more towards batch processing. These programs will
execute from a teletype, but their use is generally less convenient in the
demand mode.

The GENREL Teletype Package is a collection of programs designed
specifically for use on a teletype (or similar conversational time-sharing
terminal). They are not restricted to conversational usage, but will
generally be less convenient to use in the batch mode, much in the same way
that it would be less convenient to use the standard collection of batch
programs on a teletype.

Some of the criteria which were kept in mind when designing these
teletype-oriented programs were:

—They should be "conversational" in operation, i.e. they should
not expect the user to enter unsolicited data images, but will
ask for each piece of information as it is needed.

—The printed output generated by each program should be minimal.
The wording of all output will be kept terse and to the point.

—Any bulk output to be generated by the program should be.entered
into a data file so that it may be selectively examined by the
text editor or printed in toto onsite.

—Each program should print a sign-on line and a sign-off marker to
^better enable the user to follow the progress of his programming.

—Where applicable, the program functions are controlled by calling
option letters on the program execution card, so that the user
may use the programs to perform those functions and only those
functions in which he is interested.

Access

All of the GENREL Teletype Package programs are designed to be run
from the user's temporary program file (TPF$), except those which are
relocatable library subroutines. A user must first load his TPF with a
copy of the programs before he may use them; this is done with a COPY
statement to copy the library file into his own file:

@COPY,P GENREL*TP.

The programs are stored in a permanent file whose name is "TP" (for
Teletype Package), and this file is catalogued under the qualifier. GENREL.
It is a public, read-only file, which means that its contents cannot be
changed without destroying and re-building the file. This file should never
be referenced in an assign (@ASG) statement, as the @COPY,P program will
assign the file and free it as needed.

A number of the programs in the Teletype Package will not work unless
executed from a temporary program file; for this reason it is not a good
idea to copy the Teletype Package anywhere else except to TPF$.

The relocatable elements cannot be stored in GENREL*TP, because in
general the collector will include all relocatable elements from TPF$ into
every collection, regardless of whether they are needed or even wanted. The
relocatable elements which form part of the GENREL Teletype Package are stored
in a different file, the relocatable library, GENREL*RLIB. All that need be
done to access these subroutines is to insert the card

LIB GENREL*RLIB.

into the set of collector commands. The MAP processor will do the rest.

Feedback

If any difficulties should arise or errors be detected, please direct
complaints to

Brian K. Reid
General Relativity Group
Physics Department
University of Maryland
College Park, Maryland 20742

Acknowledgements

Although the majority of the programs in this Teletype Package are
from the General Relativity research group of the University of Maryland
Department of Physics and Astronomy, some are from other places and have
been included here out of convenience to the teletype user. All were
produced at the University of Maryland.

For FILES, INSERT, AND RINGTEST, we thank Mr. Hans J. Breitenlohner
of the Computer Science Center research staff. For EDIT, we thank Mr.
Kern E. Sibbald of the Computer Science Center Systems Staff. For CSF,
thanks to Mr. Jeffrey S. Jewett from the High Energy Physics group.

The Teletype Package project was conceived, edited, and acid-tested
by Dr. Jerry Larson of the General Relativity group.

Summary

This chart gives a quick overview of the programs in the GENREL
Teletype Package. All programs are described in detail on the pages to
come: this section is intended as a reference or as a table of contents.

Program Name

CATALOG

COMM

COMMENT

CPMD

CSF

DRUMPLOT

EDIT

FILEDIT

FILES

GARBLE

INSERT

ISTTY

MIMIC

OPT ,

READY

RINGTEST

SENTINEL

TAPE

TIME

TOCGEN

TTPLOT

WHO

Brief Description

List names of user cataloged files

Allows teletype-to-teletype communications.

Prints.commentary from @ADD elements

Conversational Post Mortem Dump

Edits read and write keys out of assign images

CALCOMP package modified for teletype usage.

Improved text editor

Generalized conversational absolute editor

Prints a table of the user's assigned files

Scrambles a symbolic element for security
•i
Reads paper tape into a program file

FORTRAN subroutine to determine batch/demand mode

Conversational MIMIC processor.

Recovers options from @XQT card from FORTRAN

Signals end of block of control images

Determine presence of a ring in a tape.

Allows teletype to monitor a batch run

Assigns, switches, and labels tapes

Prints current and elapsed CPU and memory time

Table-of-contents generator. Analyzes program files.

High-efficiency auto-scaled teletype line plot

Identifies teletype site code and channel/unit

CATALOG — List Table of Catalogued Files.

The CATALOG processor allows a teletype user to print a table of
catalogued files catalogued under his project number and/or account
number and/or qualifier. At the time of this writing, the EXEC 8 file
security is minimal enough to permit any user to list a table of anyone
elses' files, regardless of whether or not they are private. This
situation will probably change in the not-too-distant future; any tightening
of file security will reduce the capability of the CATALOG program in
printing other peoples' files, but not ones' own.

The basic processor call to the CATALOG program is simply:

©CATALOG, options [keyword]

The [keyword] field is a sort key: all files which match the keyword will
be listed. If, for example, the keyword is an account number, then all
files which were created under that account number will be listed. It
may be an account number, a project, or a qualifier.

From this point, the best documentation is probably by example.

Processor call Action Taken

©CATALOG, P PROJ List all files catalogued under project "PROJ"

©CATALOG, Q PROJ List all files with qualifier "PROJ"

©CATALOG, N ACCTNO List all files created by account no. "ACCTNO"

©CATALOG QUAL*FILE. List all cycles of the requested file.

©CATALOG, P _ List all files with the same project as this run.

©CATALOG List all files with the same account number as
this run.

Each time the CATALOG processor is called, it must obtain a copy of
the master file directory from the system. This can be rather slow. In
order to facilitate multiple calls to CATALOG, two options have been added
to speed things up. They are:

D Create a copy of the master file directory in a drum file
for later use.

W Use a previously stored copy of the master file directory
instead of getting a new one from the system.

The sequence of using these options for multiple calls to CATALOG is:

©CATALOG,D
@CATALOG,W
©CATALOG,W

©CATALOG.W

COMM — Teletype-to-teletype communications.

It is occasionally useful to be able to leave a message for another
teletype user, or to have one left for you. Ideally, this would be performed
by the executive system, with provisions for message storage, duplication,
broadcasting, recording, etc. However, this not being the case at this time,
a less sophisticated technique may be used.

The COMM program maintains a catalogued file (the same one, in fact,
which is used by the SENTINEL processor) to store a message. When a user
executes the COMM program, it will print out the contents of the file, and
then during execution it will print out the new contents each time the file
is changed.

To execute:

@XQT COMM

No options. A sign-on line will be printed, then the current contents
(if any) of the communications file. To enter something into the file,
just type. Anytime anybody else types something, i't will be printed at
your teletype. No more, no less.

COMMENT — Print comments from an ADD file.

It is convenient to be able to assemble a package of control statements
and data images into elements which will be added to the run stream via the
@ADD statement. It is equally convenient to be able to follow the progress of
the statements in the added element; the executive currently provides no means
of doing this. The COMMENT program provides a satisfactory, although not ideal,
solution by allowing the added element to print a running commentary of what
it is doing. The program itself is absurdly simple, it is in fact included
more as a suggestion of teletype technique than as a valuable piece of
software, To use, simply insert, as frequently as desired, the following
sequence of images into the @ADD element:

@XQT COMMENT
line image
line image
line image (etc.)
@EOF

Each image will be printed exactly as.it stands, with no adornments or
trappings.

As a utilitarian example, consider the following un-narrated sequence:

@ELT,DI F.MAP/APEX
@PREP F.
@RALPH,RN PROG
@MAP,NI ,PROG
IN .PROG
LIB F. .
LIB LIBR.
CLASS APEX
END
@XQT COMMENT
APEX VERSION READY AS TPF$.PROG
@EOF
@END

CPMD — Conversational Post Mortem Dump

Since the dawn of computer technology, the major weapon in the arsenal
of debuggery has been the Post Mortem Dump: a complete labelled printout
of the entire contents of the computer's memory, taken just after the
termination (normal or otherwise) of the program being debugged. The very
thought of a full core dump sends the average teletype programmer screaming
for aspirin, yet no reasonable alternative has ever really been devised.

The GENREL Conversational PMD is a program designed to allow the
teletype user all of the conveniences of a full core dump (and then some),
with none of the obvious drawbacks. For example, most core dumps are
taken in octal (or hexadecimal, or whatever), but most of the real information
to be gleaned from a dump can be gotten only be converting the octal
numbers into another format. The CPMD program will automatically convert
to any one of a number of useful formats, thus saving the tired programmer
the work of conversion.

When a program terminates on the 1108 system, the final contents of
its memory are written to a drum file whose name is 'DIAG$'. The CPMD
program allows the teletype user to selectively examine the contents of
this file (which is equivalent to selectively examining a core dump).

To initiate the CPMD program, one need only type:

@CPMD

with no options or fields. The program will respond with:

GENREL CPMD LEVEL x
IBANK: xxxxxx TO yyyyyy
DBANK: xxxxxx TO yyyyyy

The 'IBANK' and 'DBANK' numbers are the lower and upper limits respect-
ively of the program's instruction and data banks. The word '(NONE)1 will
be printed instead of the limits if one bank does not exist. CPMD will
next ask the question

FUNCTION?

and wait for an answer. The rest of this description details the various
possible answers to the question.

Notes:

In the VARIABLE dump mode, CPMD operates in conjunction with the RALPH
compiler to allow the teletype user to dump program variables by name
rather than by address. Any element which was compiled by RALPH using the
'D' (diagnostic) option will contain the necessary symbol table, and may
be dumped in VARIABLE mode.

Short Table of Conversational Post Mortem Dump Commands

Command Name

OCTAL *)
ALPHABETIC)
FLOATING)
INTEGER)
PROGRAM)

DECK (name)

MAP
Ll-IAP
MAP (name)

VARIABLE

LOCATION

DIMENSION a,b,c,...

SUBSCRIPT a,b,c,...

IDENTIFY n .

FIND x

LIMITS m,n

Purpose and short description

These five commands are the 'output' commands of
the CPMD. They will print the designated core
locations in the desired format. The calling
sequence of each output command is the same:

command start, count
command start/Ice, count

The first form dumps 'count' words starting at
absolute address 'start' in the format specified
by 'command'. The second form dumps 'count' words
starting at relative location 'start' control
counter 'Ice' in the deck last specified in
a 'DECK' command.

This command specifies the deck to be used as the
base of relative addressing, and also as the
deck for variable-name dumping (see below).

These commands list the location-counter allocation
information that would have been printed by the
collector as a storage map. The 'MAP' command
prints a map of all user subroutines. The 'LMAP'
command prints a map of all library subroutines.
If a name (deckname) is specified on the MAP
command, then it will print out the allocation
information for that deck only.

Causes CPMD to enter VARIABLE-name print mode.
Dumps by symbol name rather than by location.

Leave VARIABLE mode and enter normal (LOCATION)
dump mode.

Specify (for use with the SUBSCRIPT command) a
dimension vector.

Calculate a multiple subscript from dimension
information.

Translate the absolute location 'n' into a
relative location with deck name.

Search core for the next occurrence of 'x'.

Specifies search limits for FIND command as
to "n".

Command Description

OCTAL The OCTAL command causes CPMD to print out the
contents of selected cells of memory in an octal
format. Four words of twelve digits each are printed
on each line. The format is 'OCTAL m,n' , where
'm' is the starting address and 'n' is the count of
words to be dumped. If the field 'n' is omitted,
it will be taken as 1. The field 'm' is always
treated as octal, regardless of the presence or
absence of a leading zero. The address 'm1 may
be relative or absolute; see the section entitled
'RELATIVE ADDRESS SPECIFICATIONS' for a description
of relative addresses.

ALPHA

FLOATING

The ALPHA command causes CPMD to print out the
contents of selected cells of memory in an
alphabetic format. Eight words of six characters
each are printed on each line. The format is
'ALPHA m,n', where 'm' is the starting address and
'n' is the count of words to be dumped. If the
field 'n' is omitted, it will be taken as 1.
The field 'm' is always treated as octal, regardless
of the presence or absence of a leading zero.
The address 'm1 may be relative or absolute; see
the section entitled 'RELATIVE ADDRESS SPECIFICATIONS'
for a description of relative addresses.

The FLOATING command causes CPMD to print out the
contents of selected cells of memory in an edited
floating-point format, five numbers per line. The
calling format and restrictions are exactly as
described above for OCTAL and ALPHA.

INTEGER The INTEGER command causes CPMD to print out the
contents of selected cells of memory in a base-10
integer format. Five numbers per line are printed.
The format and restrictions are as described above
for OCTAL and ALPHA.

-PROGRAM The PROGRAM command causes CPMD to print out the
contents of selected cells of memory in a
reconstructed assembly language format. Operation
mnemonics and register names are printed. The
format is one instruction per line. When relative
addressing mode is used, all u-field addresses
printed which reference the same relocatable element
that contains the instruction are un-relocated
and printed as "address/lcctr" rather than "address".

Command

MAP

LMAP

DECK

Description

The MAP command causes CPMD to access the diagnostic
tables in the absolute element from which the
program was executed and from these tables to
reconstruct the storage allocation map which re-
sulted from the program collection. Only user-
generated subroutines and the main program will be
listed: no information about library and system
subroutines will be printed.

If a deck name is specified on a MAP command, then
only the allocation information for that deck will
be printed.

The LMAP command is identical to the MAP command
except that it prints all subroutines, both user-
generated and system library-provided.

t

The DECK command is used to specify a deck name
for use as the base of relative addressing.
(See the section, following, which describes
relative addressing). All relative addresses are
taken as relative to the specified deck name. The
call is simply "DECK deckname", where "deckname"
is the l-to-12 character name.

IDENTIFY

LIMITS

The IDENTIFY command causes CPMD to search its
diagnostic tables in an attempt to determine the
deck, location counter, and relative address
corresponding to the specified absolute address.
The call is "IDENTIFY nnn", where "nnn" is an
address (octal). If the address "nnn" is in the
program being dumped, then CPMD will print out
the corresponding deck name, location counter,
and relative address, otherwise an error message.

This command is used to specify the area to be
searched by the FIND command. The call is
"LIMITS aaa,bbb", where "aaa" is the first address
to be examined and "bbb" is the last address to be
examined. Both addresses are octal, and must be
absolute addresses.

FIND The FIND command causes CPMD to search the
specified region of core for a given word or
character string. 'The call is "FIND xxx", where
"xxx" is one of the following: octal integer,
decimal integer, floating point number, alphabetic
string of -up to six characters. Alphabetic
strings must be delimited with quotes (').
All searching is done on a fullword basis; no
partialword or sliding-character searches will
be made.

Command

ADD

DIMENSION

SUBSCRIPT

VARIABLE

Description

The ADD command causes CPMD to add a list of
numbers and print the sum in both octal and decimal.
It may be used for subscript calculations, link
tracing, etc. If only one number is provided to
be added, it will be printed out in both octal
and decimal, thus serving as a converter.

The DIMENSION command is used to specify dimension
information for use with the SUBSCRIPT command.
The call is "DIMENSION aa,bb,cc, . . .", where
"aa" etc. are decimal integers.

The SUBSCRIPT command computes multiple subscripts
for FORTRAN variables. Supposing, for example, that
one wanted to dump VAR(4,2,1), where VAR had been
dimensioned at (5,6,7). The statement DIMENSION
5,6,7 would enter the appropriate dimension in-
formation. Then, typing SUBSCRIPT 4,2,1 will cause
CPMD to print the equivalent linear subscript.
Using the ADD command to add the base address to
the linear subscript will give the address to dump;
or this linear subscript may be used directly with
the VARIABLE dump mode.

The VARIABLE dump mode allows the CPMD user to dump
RALPH-compiled programs by variable name instead
of by address. The only requirement is that the
program being dumped must have a symbol table. This
symbol table will be generated automatically by
RALPH if the 'D' (diagnostic) option is present
during compilation.

To enter 'VARIABLE1 dumping mode, type "VARIABLE".
To leave 'VARIABLE1 dumping mode, type "LOCATION".
After entering VARIABLE dumping mode, a deck name
to be dumped must be specified. If the deck does
not contain a symbol table, it will not be accepted.

Once a deck has been specified, then the dumping
commands will expect variable names (with possible
subscripts) instead of addresses.. The calling
format is
(command) NAME,count
(command) NAME(subscript),count

This will cause CPMD to dump, in the format dictated
by (command), "count" words starting with NAME or
NAME(subscript). For example, to dump the variable
"I" as an integer and then X(I) as floating point, type;

INTEGER I
FLOATING X(n)

Where "n" is the number which was printed as the
contents of "I".

RELATIVE dumping mode.

T* *.UA address portion of a dump command (described as "m" in the
A Hntions of the dump commands) is coded as "address/counter"
fSteid of lust "address", then the address will be interpreted as
i^nta relative address relative to the specified location counter in
^ LrV declared in the last DECK command. For example, supposing
vlei- tS«e existed a deck 'UUu' which contained data in location counter
3 from addresses 013044 to 023266, then the fwe fallowing commands would

print identical values?

OCTAL 13050,2
OCTAL 4/3,2

Thus location 13050 is relative location OOOQQ4 Q0 eetilrel counter 3
.LIH-LQ **- (ItnTTT**
in the deck under study, uUU .

When dumping in PROGRAM format, any addresses prin.Ud as U-fields
will be printed as addreiS/counter with relative ajeeess value if they
refer to the deck which is being dumped.

CSF — Control Statement Processor

The EXEC 8 system as defined provides for security keys of up to
six characters each for use with catalogued files. The 'read key' must
be specified on an assign statement before a file may be read, and the
'write key' must be specified before it may be written or deleted.
Unfortunately, any batch run which contains assign cards specifying keys
will list out all of the cards, including the assign card. Thus, each
time you run a batch job which assigns a file with keys, you are displaying
your keys for all the world to see. A lot of good keys are!

The CSF program accepts modified assign/catalog statements as input,
and produces a batch listing with the read/write keys replaced by a
string of asterisks.

For example, suppose that one were to assign the file 'GLURK' with
its read and write keys. The assign image as printed on a batch listing
would be

@ASG,A GLURK/READ/WRITE

Anyone passing by would be able to look at the listing and see that the
keys were "READ" and "WRITE". To prevent this sort of thing from
happening, substitute the sequence

@XQT CSF
ASG,A GLURK/READ/WRITE

The onsite listing will be:

@XQT CSF
ASG,A GLURK/*****/*****

thereby leaving everyone in the dark as to what the keys are. Notice that
column 1 of the assign card image has been left blank. If the letter 'N'
is punched in column 1, then nothing will be printed. The card will
sneak through undetected. This effect may also be had by placing the 'N'
option on the XQT card: @XQT,N CSF.

DRUMPLOT — Teletype-oriented CALCOMP plot system.

Normally, the use of the CALCOMP plotter requires that the program
write directly to a plot tape, which may not be rewound or otherwise
edited, and which must stay mounted, thus tying up a valuable tape unit.
The GENREL package for the CALCOMP plotter consists of two parts:

1) A version of the CALCOMP subroutines which records its
output in a program file instead of on tape.

2) A program (DRUMPLOT) which will transfer the plot from the
program file to the tape.

Plots are stored in program files as symbolic elements. They may
be copied, deleted, and so on: they may be handled in the same way as
any other symbolic element. It is not recommended that one try to edit
a plot element, as its contents look like complete gibberish when inter-
preted as print images.

The modified CALCOMP package to transfer plots to a drum file is
contained as a relocatable element in the file GENREL*RLIB. This program
will behave in the same way as the standard CALCOMP package when run as
a batch program, but when run from teletype, the first call to any
CALCOMP subroutine will produce the question

ENTER PLOT FILE.ELEMENT/VERSION

to which you should respond with a FILE.ELEMENT or FILE.ELEMENT/VERSION
name. It is not recommended that plot elements be stored in the same
file as other programs, because they tend to be rather large and can
easily exceed the maximum allowed file size of a catalogued file. It
is best to store the 'plot elements in a temporary file.

If, at any point during the execution of the program, it is desired
to terminate a plot element and begin another, simply code:

CALL NEWPLT

which will re-ask the question to enter the plot file and element name.
If the program terminates in error, the plot element will be closed and
a 999 block written automatically at the end.

To transfer a plot to a tape named PLOT-TAPE (which will be
assigned by the program if none is present), one need only type

@DRUMPLOT file.element/version

The DRUMPLOT program will copy the requested plot to tape. If another
call to DRUMPLOT is made, the second plot will be adjoined to the
first one, etc.

EDIT -- New Improved Text Editor

There exist several versions of an "improved text editor" for the
1108 EXEC. No two of these seem to be completely compatible. This editor
is a re-worked compendium of all of the juicy extras which anyone has seen
fit to put into an 1108 text editor, along with some tidbits stolen from
the GE-600 TSS II editor, along with some good old-fashioned innovations.

If you are familiar with the operation of a text editor, please skip
the remainder of this page.

Theory of Operation of a_ text editor.

A text editor operates in three distinct phases:

1) Copy the text to be edited into a scratch file.
2) Edit the text.
3) Copy the edited text back into the original program area.

Because all editing is performed on a scratch file, the user may
at any time abort the editing and start over again without harming his
original program. This is accomplished by bypassing step 3, and is caused
by typing the command 'END'.

During editing, the text may be thought of as a long vertical list of
statements, with a cursor which moves up and down the "stack". The "top"
of the stack refers to the first statement in the text, and the "bottom"
of the stack refers to the last. The line to which the cursor points at
any given time is referred to as the "current line". The process of editing
consists of moving the cursor up and down the stack and altering, deleting,
or inserting images into the stack. All changes to the stack are made at
the cursor, so that it is relatively easy to keep track of what is going
on.

There are two basic "modes" of editing with the editor. The first,
"EDIT" mode, is the normal mode. The second, "INPUT" mode, is used for
typing in straight text; i.e., for using the editor as a sort of keypunch.
In "INPUT" mode, the editor takes each line exactly as typed and inserts it
into the stack after the current line. Any image save one which has a
master space in column 1 (@) may be entered in "INPUT" mode. To leave
or enter INPUT mode, type a null line (carriage return only).

The editor is called via the statement

@EDIT, opt ions sped, spec2

where "options" is the string of option letters, "specl" is the input
specifier, and "spec2" is the output specifier. If either specification
is of the form (name) followed by a period, it will be taken as a data-format
file rather than as a program file. These may be mixed—i.e., the input
may be from a program file and the output to a data file, or vice versa.
A name with no punctuation is considered to be an element in TPF$.

The option letters available and their meaning are listed below.

Option Meaning

U "Update"—Specification 2 is not specified, and the output
of the editor overwrites the input, producing the next

: cycle. For example,

@EDIT,U GP.LIN

will edit the element "LIN" in the file "GP", and then
at editor termination will write the edited text back into
file "GP", calling it "LIN" with a cycle level one higher.

If the specification field is a data-format file,
the editor will, in the presence of a "U" option, first
try to assign the next higher file cycle of the specified
file. If it does not exist, then it will overwrite the
existing file with the edited contents.

I "Input"—The editor needs only a Specl field, and creates
it from scratch. The editor will start off in "input"
mode, but may be toggled back and forth to EDIT mode
in the standard manner.

R "Read-only"—The editor bypasses step (3) as listed on
the previous page, which means that it will produce no
output. The "R" option is used for examining files
or elements without the danger of altering them.

0 This option causes the editor to use permanent files
for its internal scratch files. Thus, if there is a
system failure while in the midst of a long edit run,
you may pick up exactly where you left off after the
system has been rebooted. The mechanism is as follows:
When the "0" option is specified, the editor looks to
see whether or not there exist catalogued files with
the correct name ("EDITA" and "EDITB"). If these files
exist, then step (1) of the editing process as described
previously is bypassed, and editing resumes on these
permanent files. If however, these filed do not exist,
then they will be created by the editor. As editing is
terminated, they will be decatalogued, but only after
the output has been safely filed away.
CAUTION: Permanent files are SLOW.

E Designed for batch program use. Causes the editor to
print an echo of each command before it is processed.

Where no options have been specified, the editor will produce Spec2
from Specl. The output element Spec2 will have cycle level 0 regardless
of the cycle level of Specl.

The next two pages contain a quick summary and table of contents of
the editing commands available. For descriptive purposes only the
editing commands have been grouped into four groups:

1) Normal editing commands
2) • Block editing commands
3) :Editor mode-control commands
A) Miscellaneous commands

Normal Editing Commands

TOP
HEAD
BOTTOM
NEXT n

BACK n
UP n
PRINT n
OUTPUT n
NPRINT n
NOUTPUT n
DELETE n
INSERT string
IB string
RETYPE st'ring
LOCATE string
FIND string

NLOCATE string
NFIND string
GOTO n
CHANGE
HOLD
DUP n
DHOLD

Move the cursor to line zero.
Move the cursor to line one.
Move the cursor to the last line and enter INPUT mode.
Move cursor by 'n1 lines, forward or backwards depending
on the sign of 'n'.
Move the cursor backwards 'n' lines.
Move the cursor backwards 'n' linesv
Print 'n1 lines including the current line.
Print 'n1 lines not including the current line.
.Print 'n' lines including the current line, with line no.

lines excluding current line, w/line number.Print 'n'
Remove 'n' lines starting with current line.
Insert specified character string as an image in the text.
Insert 2 line before the current image.
Replace the current image with the specified string.
Locate the image which contains the specified string.
Locate the next image with the specified string in the
first columns.
Locate command with line number prefix on print.
Find command with line number prefix on print.
Move the cursor to line 'n1.
Perform character editing on text images.
Make a copy of the current image for use with the DUP command.
Insert 'n' copies of the held image after the current line.
Same as "HOLD" except it deletes after holding.

Block Editing Commands

BEGIN Declare beginning of block to be edited.
SPLIT f.e Move a block of code to specified file.element and delete.
COPY f.e Move a block of code as specified, without delete.
ADD f.e Begin editing from specified external block of code.
STOP End editing from specified external block of code.
CLOSE Copy all of ADD block into edit file and leave ADD mode.

Miscellaneous Commands

TIME
SEQUENCE

Print header line with signon time.
Insert card sequence date in columns 73-80.

Editor Mode-Control Commands

ALLOW n Allow 'n1 columns of editing area, where 0 n 133.
MARGIN n Print only 'n1 columns, regardless of the image size.
SAVE n Do not alter text past column 'n1 with the CHANGE command.
TAB x Declare the character 'x1 to be a tab character.
SET a,b,c, . . . Set tab stops in columns a, b, c, etc.
BRIEF ' Do not print the new current image whenever the cursor moves.
VERIFY Print the current image each time the cursor moves.
SQUEEZE Enter squeeze-print mode. Compress out multiple blanks.
EXPAND Leave squeeze-print mode. Print all blanks as they occur.
LINE Print the current line number.
END Abandon text editing, release all edit files. Do not save

results of editing.
TYPE typ Declare the element type of the output element (ASM, FOR, etc.)

Notes on using a_ text editor:
<.

It is useful to note that the text editor provides several methods
to recover from some stupid blunder in editing. For example, suppose that
you are editing along and delete a block of 8'lines, but accidentally
type 'DELETE 88' instead. Chances are, your program will not be working
up to snuff at that point, unless you are very very prolific with comment
cards, you have probably deleted a large part of the program. If you realize
your mistake right away, you may merely type 'END'., and the editor will go
away, leaving your original element unharmed. If you do not notice the
mistake until later, when you try to compile the program and get hundreds
of error messages, you may recover by going back to edit from the previous
cycle. If you did not do a U-option update, you are in trouble. Moral:
save your skin by always doing a U-option edit.

The 'UP' and 'BACK' commands are relatively inefficient; they work by
recording the current cursor position and then performing the sequence
'TOP', then 'NEXT n'. It has to be this way because of the structure of
the standard-data-format intermediate files. When the system is heavily
loaded down, it might be judicious to use as few upwards-moving commands
as possible.

If the editor is busily printing away and you want to stop it, you
may use the 'BREAK' key in the following way: Hit the 'BREAK' key on
the teletype. The computer will answer with 'INTRPT LAST LINE' , which
means that you have interrupted it in the middle of printing the last line.
It pauses. Type a carriage return. Nothing else. The computer will
re-print the previous line, print three or four more, then print EDIT.
You are now safely out of the print-loop and still editing. Be more care-
ful next time.

Where applicable, the 'FIND' command should be used, as it is much
faster than the 'LOCATE1 command. For example, if you are going to move
the editor to a statement label halfway down the text, use 'FIND1 instead
of 'LOCATE'. It will use much less computer time and also make your wait
time less. (You rub my back and I'll rub yours.)

TOP
T

HEAD
H

This command moves the cursor to line zero. This line
is a dummy line kept by the editor which is always
above all text lines. In this way, one may insert
before the first program image by inserting after the
zero image.

This command moves the cursor to the first line of the
text. It is equivalent to the pair of commands "TOP"
then "NEXT".

BOTTOM
B

NEXT n
N n'

BACK n '
UP n

PRINT n
P n

OUTPUT n
0 n

NPRINT n
PN n

NOUTPUT n
ON n

SQUEEZE

EXPAND

DELETE n
D n

This command moves the cursor to the last line of the
text and then enters INPUT mode. In this way, one may
easily append lines to the end of an existing program.

This command will move .the cursor over "n" lines of text.
If n is positive, the cursor will be moved forward. If
n is negative, the cursor will be moved backward. If
n is zero or not given, it will be taken as one and
the cursor will be moved to the next image. If a move
backwards attempts to move the cursor past the beginning
of the text, it will be moved to'line one instead. If
a move forwards attempts to move the cursor past the
end of the text, it will stop on the last image in the
text and the message "n LINES TALLIED AT EOF" will be
printed, where n is the number of lines which were
actually skipped before the end of text was encountered.

This is equivalent to NEXT -n, and moves the cursor back
by n lines.

This command prints "n" lines of text starting with the
current line.

This command prints "n" lines of text starting with the
image after the current line.

This command prints "n" lines of text starting with the
current line, but prefixes each line with its line
number.

This command prints "n" lines of text starting with the
line after the current line, but prefixes each line with
its number.

This command causes all printed lines to have multiple
blanks compressed out of them before they are printed.

This command restores printing to normal un-squeezed
mode, with all blanks printed as they occur.

This command deletes "n" images starting with the current
image. After execution of the DELETE command, there is
no current image, a "NEXT" or "UP" command must be
executed to define a current image.

INSERT string
I string

INSERT'»m string
I,m string

IB string

RETYPE string
R string

RETYPE,m string
R,m string

LOCATE string
L string

LOCATE,m string
L,m string

LOCATE,* string
L,* string

FIND string
F string

FIND.m string
FIND,* string.
F,m string

F>* string

The specified string of characters, starting with the
first character after the first blank in the typed
line, is inserted into the text as a line, its position
being just after'the current line. The cursor is
moded to the new line. If "string" is not specified,
this command will cause the editor to enter INPUT mode.

The string is inserted into the text as described
above, except that it is inserted starting in column
"m",

This command is the same as the INSERT command, except
it inserts before the current image.

The current line is replaced with the specified string.
This command is equivalent to the sequence "DELETE"
then "INSERT string".

The specified string is inserted into the current
image starting in column "m" . The remainder of the
current image is left intact.

This command causes the editor to search for the next
occurrence of the character string "string" in the
text after the current image. Blanks are ignored, so
that a command "LOCATE X Y Z" would treat "X Y Z"
as a valid occurrence. If there is a blank in the
string to be located, then it must be matched by at
least one blank in the text string, but any number
of blanks in the text string will not affect the find.
The cursor will be left at the located line. If the
end of the text is reached before the required string
is located, the message "END OF FILE ENCOUNTERED."
will be printed and the cursor left at the bottom of
•the text. If, however, another LOCATE or FIND command
is given immediately, an automatic TOP command is
performed first, so that one need not keep restoring
the cursor to the top for multiple searches.

This command is identical to the LOCATE command, save
that it will locate the next "m" occurrences of the
string and position the cursor on the last one.
Lines printed will be prefixed with a line number.

This command will locate all occurrences of the speci-
fied string and leave the cursor at the end of file.
Lines printed will be prefixed, with a line number.

This command causes the editor to search for the next
occurrence in columns 1 through n, where n is the
length of the specified string. Unlike the LOCATE
command, the FIND command treats blanks as characters.

These forms of the FIND command are identical to the
same forms of the LOCATE command as far as the
meaning of the "m" and the asterisk. See above for

this description

NLOCATE string
LN string

NFIND string
FN string -

GOTO n
GO n

CHANGE /S1/S2/
C / S1/S2/

This command is identical to the normal LOCATE command
save that it prefixes the line with a line number
before it prints it.

This command is identical to the normal FIND command
save that it prefixes the line with a line number
before it prints it.

IfThis command moves the cursor to line number "n".
"n" is larger than the number of images, then the
cursor will be left at the bottom of the stack and
there will be no current image.

The CHANGE command allows the edit user to replace a
portion of the current image and/or following images
with a substituted character string. In its simplest
form, it simply replaces the first occurrence of the
character string "SI" with the character string "S2".
In the sample commands at the left/ the virgule (/)
has been used as a string delimiter. Any character
may be used for this purpose as long as neither of
the strings SI or S2 contains that character.

As an example of the use of the CHANGE command,
suppose that the current image is the line:

HORSES HAVEN'T ELEVEN FEET.

We shall enter the change command:

CHANGE /HAVEN'T/HAVE/

And the line will now read:

HORSES HAVE ELEVEN FEET.

Once more, the line

CHANGE *ELEVEN*FOUR*

will cause the current image to read :

HORSES HAVE FOUR FEET.

Notice that the characters to the right of the changed
portion of the string were moved in as needed.

If the string S2 is null, then the string SI will
be deleted from the image. If the string SI is null,
then the string S2 will be inserted before the first
character of the line.

CHANGE/S1/S2/G
C /S1/S2/G

CHANGE /Sl/S2/n
C /Sl/S2/n

LINE

This form of the CHANGE command causes all occurrences
of the string SI to be replaced with the string S2 in
the current image. The big "G" does not stand for
Goodness (as the Cheerios folks would have us believe),
but for Global.

This form of the CHANGE command operates on more than
one image—on "n" of them, to be precise. The editor
will search the next "N" images starting with the
current line for "SI", and will replace the first
occurrence (if any) of "SI" in each line with "S2".
The final position of the cursor will be the same
as would have been caused by a "NEXT n-1" command.

If the letter "G" is appended to the change command
in this form, then all occurrences instead of the
first occurrence of SI will be changed in each of
the "n" images.

i.

This command will tell you the line number on which
the cursor is resting—i.e. the line number of the
current line.

TAB k

SET nl, n2,n3.

BRIEF
VERIFY

This command declares a tab character for use with
the INSERT and RETYPE commands and the INPUT mode.
The tab character may be any character except a
blank; the tab stops are set by the SET command.

This command sets the tab stops for the specified
tab character. If not set, there will be three stops
set in columns 11, 21, and 39 assumed by the editor.

These •commands control the print/no-print option for
cursor control. In VERIFY mode (entered via the VERIFY
command), the current line is printed whenever it is
changed or the cursor is moved. In BRIEF mode, only the
commands which specifically print (PRINT and OUTPUT) will
cause text lines to be printed. Until directed, the editor
is in VERIFY mode.

HOLD

DHOLD

DUP
DUP n

ALLOW n

This command causes the editor to make a copy of the
current image and hold it for use with the DUP command.
Each occurrence of the HOLD command overrides the previously
held line, if any.

This command is like HOLD, but deletes the current image
after holding.

The DUP command causes the editor to insert a copy or
"n" copies of the held line (held by the HOLD command,
above) into the text after the current image. If there
is no held line, a warning message will be printed.

This command declares the width of the editing area
in columns. The value "n" must be between 2 and 132
inclusive.

MARGIN n
PL n

SAVE n

SPLIT file.element
SPLIT file.

This command declares the width of the print area.
The number "n" is the margin, or print limit. No
characters past column number "n" will be printed
under any circumstances until the print limit is
changed.

The Save command declares the width of the editing
area which is succeptible to the CHANGE and RETYPE,
m commands, and to being searched by the LOCATE
and FIND commands. When altering the current image,
no characters past the save margin will be altered.
For example, -of one were editing an assembly program
and wished to keep the comments in columns 39 to 80
unchanged, then a "SAVE 39" command would do the
trick. When using the LOCATE and FIND commands, a
character string will not be found if it occurs past
this margin.

The SPLIT command moves a block of the program to
another file or element. The execution of a SPLIT
command causes all images from and including the
line specified by a BEGIN statement (below) to but
not including the current line to be removed from the
edit file and transferred to the specified file and
element. If no element is specified, the split will
be taken in data-file format. The first image
transferred is the image specified by the BEGIN
command; the last image transferred is the image
before the current image at the time of execution of
the SPLIT command.

BEGIN

COPY file.element
COPY file.

SPLIT,n f.e or f.
COPY,n f.e or f.

ADD file.element
ADD file.

The BEGIN command declares the first image to be
'transferred via a SPLIT or COPY command. If none has
been specified, line 1 is assumed.

The COPY command is identical to the SPLIT command
except that it does not delete the original from
the edit file.

This form of the SPLIT and COPY commands redefines the
BEGIN pointer at line number "n" and then precedes as
usual with the execution of the SPLIT or COPY.

The ADD command causes the editor to temporarily use
an external block of images as part of the edit stack.
The execution of an ADD command followed by a NEXT
command will cause the cursor to rest on the first
image in the element or file which is being added.
As the cursor passes over each image in the added
text, that image is made a part of the edit file.
Any image which the cursor passes over will be auto-
matically included in the text unless it is deleted
via a DELETE command.

STOP

CLOSE

TYPE sym

END

The STOP command causes the editor to stop reading
images from an ADD block, close the ADD file, and return
to the original text file. All images which the cursor
has passed over and which have not been deleted will
be a part of the text file now; any images after the
current image at the time of execution of the STOP
command will not be included.

This command causes the editor to move to the end of
an ADD block and include all remaining images in the.
file or element as a part of the text file, then close
the ADD file and return to the text file.

The TYPE command is used optionally to declare the
language code of the output element. If no TYPE
command is entered, the output element will have the
same type as the input element, or remain untyped
if the input element was untyped. The field "sym"
is the mnemonic for the type code, and may take
any of the following values:

ASM Assembler
FOR Fortran
COB Cobol
ALG Algol
ELT Data element
MAP Collector symbolics
MAD Mad symbolic
SEC Secure symbolic
SSG Skeleton
MIM Mimic source program

The END command causes the editor to stop dead in its
tracks, to abandon editing. All editing which has been
performed up to this point is discarded. The END
command is an emergency exit for people who have made
big mistakes and who want a way out.

FILEDIT — Conversational File Editor

This program allows the user to examine, and if.necessary to modify,
the contents of any drum file in any format. It deals strictly with
sectors and tracks, and makes no attempt to conform to any particular
data format. Observations may be taken in octal or alphabetic format,
while corrections may be made in any combination of octal, alphabetic,
integer, or floating point. Further documentation is best made by example.

To initiate the program, one need only type

@FILEDIT •

to which the program will respond with the signon line and -question

GENREL FILEDIT LEVEL x
FILENAME?

Answer the 'FILENAME?' question with the complete file name, including, if
necessary, qualifier, read key, write key, etc. FILEDIT will assign the
file if it is not already assigned, print the assign status if non-zero,
and then query

FUNCTION?

This question can be answered in any number of ways. Possible answers,
along with their meanings, are listed in tabular form below.

Function Meaning

GET n • Sector 'n' (octal or decimal integer, octal denoted
by a leading zero) is loaded into the sector buffer.

ALPHA m,n Prints 'n' words beginning with word 'm' in alphabetic
format. The words in a sector are numbered 1 to 28.
Any attempt to print a word numbered less than one
or greater than 28 will result in an error message.

OCTAL m,n Same as the ALPHA command, except that it prints in
an octal format.

CHANGE m,Wl,W2,... Changes the contents of the sector buffer beginning
with word 'm1. The words Wl, W2, etc. are written
over the existing contents of words m,m-H, etc. in
the sector buffer. The drum file itself is not
changed until the execution of a "WRITE" command.
The change words Wl, W2, etc. may be any combination
of octal (leading zero), floating point (decimal in
the number), integer, or alphabetic (delimited by
quotes). An alphabetic item which is longer than
6 characters will occupy more than one word.

WRITE

NEXT
NEXT n

TOP

SEARCH target

LENGTH n

TRACK n

(blank line)

Writes the current contents of the sector buffer
back to the drum. This command must be executed
after any CHANGE commands if the changed values are
to be saved.

Loads the sector buffer with the contents of the
"n"'th sector after the current one. If
left blank, it is assumed to be one.

"n" is

END

Loads the sector buffer with the contents of sector
.zero. This command is primarily used in conjunction
with the 'SEARCH1 command described below.

Searches the drum file for the next occurrence of
the item 'target' in or after the current sector.
The search target may be any number of words long,
and may be any comma-separated mixture of octal,
decimal, floating-point, and alphabetic items.
See the 'CHANGE' function above for a description
of format differentiation of octal from integer,
etc. The search is performed up to and including
the track specified in the LENGTH directive, or
to the 'next write address' if it is a program file.

Declare the length (in tracks) of the working file,
for search purposes only.

Loads the sector buffer with the first sector of
the specified track.

A blank line in response to the 'FUNCTION?'
question causes FILEDIT to re-ask the question
'FILENAME?', after freeing the old file if
necessary.

Typing 'END' will terminate the file editor and
free the current file, if necessary.

FILES — List user's assigned files.

The FILES program prints a compact tabular listing of all files and
all @USE names currently assigned to the run.

The call is simply

@FILES

The output is in two parts:

1) Table of @USE names.
2) Table of assigned files.

The information printed about each file is as follows:

a) Device code: 'F2', '8CB', 'F4', or whatever. File medium.
t

b) Permissions: 'R1, 'W?, 'N', or blank. These stand for
read-only, vnrite-only, no permission, and all permissions.

c) Status. 'T* indicates a temporary file.
'A' indicates a catalogued file.
'C1 indicates file being conditionally catalogued.
'U' indicates file being unconditionally catalogued.
"D* indicates file being conditionally deleted.
'K' indicates file being unconditionally deleted.

d) File name and cycle.

@FILES,A and @FILES,U will print only the table of assigned files or
the table of @USE names respectively.

GARBLE — Program Security Scrambler

If, for any reason, a programmer would like a level of security for
a symbolic element beyond that which can be had through the use of read
and write keys on files, then the GARBLE processor can come to his aid.
GARBLE scrambles a symbolic element beyond any possible recognition or
reconstruction except by ungarbling using the same combination. For example,
if it is desired to protect a program named 'MONEY' in a file named 'J',
then one would enter

@GARBLE J.MONEY

The GARBLE program will respond with a header line, and then the question

ENTER 3 6-DIGIT COMBINATION NUMBERS.

At this time, the GARBLE program will pause. You must enter three numbers
of six digits each for it to use as the combination. After you have typed
in the three numbers, it will scramble the element J.MONEY so that it
cannot be examined, compiled, printed, punched, or copied.

There is only one way to access a symbolic element once it has been
garbled: you must ungarble it using the GARBLE processor and the same
three combination numbers. If you attempt to ungarble it using any other
combination numbers, you will only compound the garbling. To ungarble,
one types

@GARBLE,U J.MONEY

The GARBLE program will again ask for the combination numbers, and if they
are correct, it will ungarble the program. If they are not correct, then
the program will just be further garbled. If, for some reason, you
accidentally type the wrong combination while ungarbling, the element has
not been destroyed, for the garbling algorithm is symmetric: typing
©GARBLE file.element will reverse the action of an erroneous @GARBLE,U in
exactly the same way that normal use of @GARBLE,U will reverse the action
of a @GARBLE.

There is absolutely no way that the combination numbers can be
analytically reconstructed from a garbled element, even if the actual
contents and the garbled contents are available printed side by side.
As long as the combination numbers are kept a secret, then a garbled
program is completely secure from unauthorized access.

INSERT — Read a paper tape with minimum overhead.

One of the problems inherent in the design of the 1108 Teletype
Handler is that it provided no easy way to read a paper tape with any
degree of reliability. The paper-tape reader transmits characters
at a fixed rate of 10 characters per second: if the Teletype Handler
cannot process them at that rate, then characters are lost and chaos
results as a ***WAIT*** message is transmitted to the teletype while
the paper-tape reader is churning away.

This ***WAIT*** message is sent whenever the input buffers of
the teletype handler are full. The buffers will fill whenever the
input rate is higher than the output rate. Thus, optimally, the
buffers should be emptied as fast as they are being filled. To
guarantee one's ability to empty the buffers at a minimum speed even
during periods of system overload, the reading program must tie itself
in knots to avoid being swapped out or stalled: If the reading program
is ever swapped out, the teletype will keep transmitting, and after 7
seconds the buffers will be full.

The INSERT program uses a sneaky trick involving interrupt I/O
and multiple activities to guarantee that it will never be swapped
out while a paper tape is being read. For this reason, the INSERT
program is guaranteed to be able to keep up with a paper-tape reader
regardless of system loading.

To Use:

@INSERT file.element

This call will Icted the INSERT program; it will answer with

READY

when it is ready to read paper tape. At this point, you must
enter an "X-ON" key (control/Q), and then start the paper-tape reader.
On some teletypes the X-ON will start the reader automatically.

When the paper tape has been read in, you must type

@EOF

followed by two successive occurrences of the character "X-OFF"
(control/S). The message "END OF TAPE" will appear, and you are done.

ISTTY — Determine Program Environment.

The FORTRAN function ISTTY permits the FORTRAN programmer to code
his programs to be aware of when they are being run from a teletype
and to respond accordingly. The function returns a logical value of
'true' when the program is being run from a teletype and 'false' when
it is not. To use, the declaration statement

LOGICAL ISTTY

must be entered at the beginning of the program, along with DIMENSION
statements and type declarations. Then, whenever the program wishes
to test its environment, it would call the function in an 'IF' statement:

IF(ISTTY(0)) GO TO 14

This example will cause the program to transfer to statement number 14
if the program is being run from a teletype and to continue to the next
statement if it is not being run from a teletype.

The argument of zero must be provided so that the FORTRAN compiler
can distinguish between the function 'ISTTY' and a simple program
variable.

If the program makes a large number of references to ISTTY, a slight
increase in efficiency of execution can be had by using a local logical
variable in each 'IF' statement:

LOGICAL ISTTY,LTTY
LTTY=ISTTY(0)

IF(LTTY) GO TO 14

MIMIC — Conversational MIMIC processor enhanced for Teletype usage.

MIMIC is a high-level programming language designed to allow digital
processing of analog equations with a minimum of work. The MIMIC language
itself is far too complex to describe here, rather .refer to one of
several publications. The most thorough, if not the best, treatment
of MIMIC is contained in the first few chapters of the book Digital Simulation
of Continuous Systems (1969, McGraw-Hill) by Yaohan Chu.

The GENREL version of MIMIC differs from the standard universal
version of MIMIC in the following ways:

1) It is a processor rather than a program, and expects its
input from a symbolic program element instead of from cards.

2) It has been slightly enhanced in its input capabilities to
permit conversational entry of parameters during the execution
of the program.

3) The plot feature has been extensively re-written to accomodate
the teletype as a plotting device, and to include CALCOMP
plotting capabilities.

4) A large amount of error-checking has been added to the compiler
phase of the program to make it easier for the MIMIC programmer
to locate an error in his source program.

5) The Runge-Kutta integrator portion of the program and the
mechanism of the LIN function have been completely re-written
to correct errors which arose under certain conditions and
to improve the'accuracy of the integrator. The new integrator
is capable of achieving approximately half the error (one
more bit of significance) of the previous version, with no
appreciable change in speed.

Previous implementations of the LIN function were apt
to overflow when the derivative was very large with respect to
the integrator resolution. The new LIN function implementation
will not overflow under any circumstances.

MIMIC programs for use with the GENREL conversational MIMIC'processor
should be entered with the text editor. The TAB features of the editor
may be used to make the 10/19 column convention quite painless. In any
event, let us assume that there exists a MIMIC program in an element
called TEST in a file called FILE. The program may.be run by simply
typing

@MIMIC FILE.TEST

using no options on the processor call. The MIMIC program will be run,
and any output will be placed into a file called MIMOUT, which may be
examined with the text editor. Plotting will be performed directly on
the teletype.

Certain options are available for use with the MIMIC processor call; they
are as described below.

Option Meaning

S Print the source statements which comprise the MIMIC program.

L Print the generated MIMIC function-language program.

0 Print all output of the program directly to the teletype
instead of to the drum file MIMOUT.

Z Suppress generation of plots.

C Print out the values of all constants.

P Print out the values of all parameters. i

V (for video) plot format is for CRT screen rather than teletype,
(specifically 'designed for UNISCOPE and DATAPOINT 3000).

Two new input functions have been added to provide for interactive
input of constants and parameters. They are TCN and TPR (for Teletype
Constant and Teletype Parameter). They are used in exactly the same way as
the CON and PAR functions, save that instead of reading from the MIMIC
source program, they cause the variable name to be printed, followed by
a question mark, allowing the user to type in the value of the variable.

The OPT function, designed to specify plot options, is used to
declare the length (in rows) of a teletype plot: OPT(N) causes the plot
to be scaled to fit into N rows. If not specified, it will be assumed to
be 50. The remaining fields of the OPT function behave as described on
page 35 of Chu, with the exception that logarithmic scaling has not been
implemented. It is in the works, but just hasn't worked yet.

OPT — Access calling options from XQT card.

One of the primary design principles of a teletype-oriented program
is that it be as flexible as possible in its use. The 1108 Executive
allows a user to specify twenty-six 'option' letters on the XQT card
when he executes his program. The OPT function allows the user to probe
these option letters to modify program behavior correspondingly.

To use the OPT function, it must first be delcared 'LOGICAL' in the
declaration section of the program: •

'LOGICAL OPT

This declaration will allow OPT to return a true/false value for
the presence/absence of calling options. In use, one merely references
the function OPT wherever he would normally reference a logical variable.
For example, one might enter: <

IF(OPT('W')) PRINT 900,X,Y,Z testing for XQT,W

IF(OPT('U')) STOP testing for XQT.U

IF(OPT('A').AND.OPT('B')) GOTO 10 testing for XQT,AB

The OPT function returns a value of TRUE if the option corresponding
to the argument has been specified; it returns a value of FALSE if it
has not. .

READY — Record Program Execution Progress

The READY program causes the message "READY." to be printed on
the teletype. It is intended to be used to signal the end of
execution of a program which does not print its own signoff message.

To call the READY program:

@READY

As an example of its use, consider the following sequence of
commands:

@COPY,P FILE1.FILE2
@PACK FILE2
@READY

When the COPY and the PACK have completed, a process which may
take a few minutes, the message 'READY;' will be printed on the
teletype.

RINGTEST — Determine whether or not a tape has a ring.

The RINGTEST program detects the presence or absence of a ring
without actually writing on the tape. To use, type

@RINGTEST [filename]

One of the following messages will be printed:

TAPE HAS RING.

NO RING (OR INTERLOCK)

DEVICE IS NOT TAPE.

DEVICE STATUS: XXXXXX

The program cannot differentiate between an interlocked tape (i.e.
one which is not mounted or not readied) and a mounted tape without
a ring. It is not possible to determine whether a tape is in ready
status without actually moving the tape.

An unusual device status returned from the RINGTEST program is
usually indicative of the tape being in the middle of a rewind
operation.

SENTINEL — Batch-to-teletype communication system.

When a batch run is submitted from a demand terminal via a START
statement, there is no direct way of knowing whether or not said batch
run has started, completed, or error-terminated. The SENTINEL processor
provides a means by which the teletype user may monitor the progress of
batch runs.

The SENTINEL processor maintains twenty-six "sentinels", or message
cells, one for each letter of the alphabet. Each sentinel may be set with
a date, time, and run id, as well as an optional one-card message. If
a batch- run sets these sentinels via @SENTINEL cards placed in its
runstream, then a teletype run may examine the contents of the sentinels
to see whether or not the batch run has passed the specified mark points.
A separate set of sentinels is maintained for each project identity, so
that a teletype run must have the same project field on the RUN card as
the batch run being monitored in order that the same set of sentinels
is referenced by both runs.

To set sentinel "Y", for example,"one need only include the statement

@SENTINEL,Y

followed by an optional one-line message. The sentinel processor will
record the date, time, and run id, and write this information into sentinel
"Y", If there is a message card, it will also be written to the sentinel.
Later on, a teletype run may probe the sentinel: A teletype run would enter

@SENTINEL

with no option letters. 'The SENTINEL processor will ask

SENT?

to which question the user would respond with the letter name of the sentinel
which he wishes to examine. The two possible responses are:

SENTINEL Y IS NOT SET

or

Y — SET 4 AUG 70 AT 13:45 BY JONES
(if a message is present, it will be printed here)

All sentinels are kept in a file whose name is SENT$; this file is
automatically catalogued by the SENTINEL processor if it is not already
present. Because of this feature, it is necessary for the run which tests
a sentinel to have the same project field as the run which sets it.
To set or test sentinels set by another project, the "@QUAL" card may be
used.

TAPE — Verify and write tape labels.

The TAPE processor allows the teletype user to protect himself against
operator errors of mounting the wrong tape. The TAPE processor reads
and writes standard-format tape labels, and checks them to make sure
that the tape label matches the intended reel number.

TO CHECK THE LABEL ON A TAPE:

@TAPE,options (filename)

This call will cause the TAPE processor to read the label on the
tape whose name is (filename) and check that the label matches the
reel number. If there is no such tape assigned, the TAPE processor will
exit after printing a message to that effect. The various options
available are:

Option Meaning of option *

(none) If the reel number does not check, print a message
to the teletype user and ask for instructions.

V If the reel number does not check, remove the tape
and print a message to the operator asking him to
mount the correct tape.

X If the reel number does not check, abort immediately.
This option is intended for batch processing only.

TO WRITE A LABEL ON A TAPE:.

@TAPE,options (filename),reel

This call will cause the TAPE processor to read the label on the
tape, rewind, and then possibly write a new label. The "options" must
include the letter "W" (for "write") if any label writing is to be
performed. The exact action performed by the TAPE processor depends on
the options.

Option Meaning of option

W only If there was no label on the tape previously, then
write a label with the specified reel number. If
there was a label, then print the reel no. from the label
and ask the teletype user for instructions.

WV If there was a label on the tape, ask the operator for
hand verification of the reel number. If the reel
number given by the operator checks with the intended
new reel label, write it. If it does not check, print
labels to teletype user and ask for instructions.

WF Write a label on the tape regardless of its original
contents. This option should be used with extreme
caution if the label protection is to be of any
utility whatever.

The format of the tape label is as follows:

Word 1: '1HDR ' (BCD label sentinel)
2: BCD representation of reel number
3: Time and Date that label written (TDATE$ format)
4:
5:
6: '
7:
8:

9:
10:
11:
12:
13:
14: '1HDR ' (BCD label sentinel)

(end of file)

All labels are written at 200 BPI and odd parity. All labels are
followed immediately with an end-of-file. If the reel number entered
has the letter 'N' or 'R' (for NORING or RING) as the last character,
it will be replaced with a blank. This letter serves only to inform
the operator whether or not the tape should be mounted with a ring.

TIME — Examine clocks of various kinds.

This program analyzes the run's Program Control Table (PCT) to
extract the information pertinent to program timing. The three
relevant items are

1) Time of day
2) Elapsed processing time (CPU time)
3) Elapsed memory time

Each call to TIME causes it to note and print all of the above
quantities. The second and successive calls to TIME will cause it
to subtract previous values from current values and print an increment
as well as the current value, i.e. , the amount of time which has elapsed
since the previous call to TIME.

1.

The call to TIME is simply

@TIME

The values printed out are labelled in a short fo,rm notation:

Symbol, Meaning

CT Total elapsed CPU time
DCT Differential elapsed CPU time
MT . Memory time
DMT Differential elapsed memory time.
DT/DMT Ratio of elapsed differential CPU to memory, which

is a rough indicator of the billing efficiency of
the program.

TTPLOT — Teletype Plot Routine with Automatic Scaling

The ability to plot data with a high efficiency on the teletype is
a very desirable feature of a time-sharing system. Lacking a pen-and-
ink electronic plotter, the next best thing is a line plot on the
teletype, using the print characters as plot symbols. Subroutine
TTPLOT was written to permit ultra-simple high-quality line plots on
a teletype.

TTPLOT can plot up to four ordinates against one abcissa. The
points must be stored in core arrays, but they need not be in any
particular order. The function plotted need not be single-valued:
plots of circles and spirals are just as simple as plots of polynomials.
To set up data for TTPLOT, one needs an array of X values, and one
array for each Y to be plotted against this X. To represent a point
(X,Y), one merely lets X(J)=X and Y(J)=Y for some J.

^
The calling sequence to TTPLOT is as follows:

CALL TTPLOT(X,NPTS,LENGTH,WIDTH,Y,Y2,

Where X
NPTS
LENGTH
WIDTH
Y,
Y~

etc.

is the array of X values
is the number of points to be plotted
is the length of the plot in print rows
is the width of the plot in print columns
is the first array of Y values (for variable 1)
is the second array of Y values

Up to four Y arrays may be specified. The plot will be square if
LENGTH and WIDTH are in the ratio of 3 to 5. WIDTH may not be more

than 50; there are no restrictions except the patience of the user
on LENGTH. X and the Y arrays are floating-point, while NPTS, LENGTH,
and WIDTH are integers.

As an example, the following program will plot a circle:

COMPLEX THETA,VAL
DIMENSION X(150),Y(150)
DO 10 1=1,150
THETA=CMPLX(0,6.29*1/150)
VAL=CEXP(THETA)
X(I)=REAL(VAL)
Y(I)=AIMAG(VAL)

10 CONTINUE
CALL TTPLOT(X,150,30,50,Y)
STOP
END

,0 — Identify Site ID.

One of the simplest programs in a whole passel of simple programs:
ype in @WHO and it will tell you your site-id, channel and line number.
Jo options, no variations, no nothin1.

