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1 - FACTUAL INFORMATION

1.1 The work during this quarterly period has been essentially as

anticipated in the second Quarterly Report. A description is given in

section 2, subdivided in tasks as defined in the previous Quarterly

Report.

In section 3 the work planned for the next period is described.

1.2 Meetings, attendance^ papers

A paper "Structure of a Communication Network and Its Control Com-

puters" with I. Cappetti has been prepared for presentation to the

Symposium on Computer-Communication networks and teletraffic of the

Polytechnic Institute of Brooklyn.

A paper "Abstract Models as a Programing Language" has been

written and submitted for presentation.

During this quarter, attendance has been made to the IEEE Inter-

national Convention and to the Conference on Information Sciences and

Systems of Princeton University.

1.3 Personnel

The personnel active on this contract during the third quarter are:

Prof. Norman A. Phillips, Project Supervisor - Advisory Capacity

Mario R Schaffner 2.2 months

Programmer • in hours

Drafting, clerical and technical assistance 90 hours

Dr. Pauline M. Austin and Spiros G. Geotis of the Weather Radar

Research Project at M.I.T. are also participating in consulting and

advisory capacity for the applications to weather radar.
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2. SUMMARY OP THE WORK PERFORMED IN THE THIRD QUARTER

The work under this contract has been subdivided into tasks

labelled according to the chapters in a tentative table of contents

for the Final Report; this table is here repeated and updated.

During the previous quarterly periods, attention was given to

tasks 1, 2, and 3 and an account of the development reached was given

in the corresponding sections of the second Quarterly Report. In this

report, the main points of those tasks, with some additional comments,

are repeated (Sections 2.1, 2.2, and 2.3) as a background to the task

developed during the period referred to in the present report.

During the past three months the main emphasis has been on the

language, and a first draft of the corresponding chapter of the Final

Report is given here (Section 2.5).
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TENTATIVE TABLE OF CONTENTS OF FINAL REPORT
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2.1 Task 1 - Motivation for a new approach

The activities and the inconveniences related to the use of com-

puters were depicted symbolically by Fig. 1.

modeling
effort

high- level
program

compiling
effort

process
in the user's mind

debugging
effort

machine
program

Fig. 1 - Process transformations in the use of a computer

It was pointed out that if a mode could be found to shorten the

arrows of Fig. 1, in fact the efforts which they represent, the in-

conveniences would be lessened. The method which is proposed to

accomplish this was stated as follows:



Given an activity A to be produced, described in what-

ever form,

rather than developing an algorith L, executable by a

real machine B (or alternatively translatable by a compiler

C of B) such that B (or C + B) produces A,

develop an abstract machine M such that M produces A

as its natural response; then describe M in a form m acceptable

by a given loose real system S, in order for S to become a

real machine equivalent to M.

A loose system S can be thought of as an ensemble of operating and storage

elements that can be organized to form desired operational networks. From

automata theory viewpoint, it can be regarded as a giant, unmanageable,

finite-state machine with a very large number of states and input signals.

The state diagram of such a machine, which we call the total state

diagram, is practically undescribable. Now, the input signals are

divided into two categories which we call problem inputs and p inputs.

For each set of values of the p inputs, a particular "component" of the

total state diagram is selected, while all the rest disappear (Cfr.

Minsky, 1967, sections 2.4 and 2.5). Such a component can be regarded

as a specific computation. In dealing with this component, the user

needs to be concerned only with the few problem inputs and the few

states of that component.

The description m (that we can see as the program for the loose

system S) consists of the management of those p inputs. The key point

is that in this approach the p inputs are not prepared in terms of a
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given real machine that has to simulate the desired activity A: the

management of the inputs p results, almost completely, from the process

of modeling the activity A in the form of an abstract machine M. The

words "almost completely" account for the difference between M and m,

due to possible limitations of the system S. In other words, the user

is concerned only with the problem he is dealing with, in the terms he

finds more appropriate for that specific problem. At the end of the

construction of the abstract machine M, the management of the p inputs

results almost completely established, without need for the user to

think of any given computer.

2.2 Task 2 - Why Abstract Machines?

The justification for having chosen abstract machines was accounted

in the Second Quarterly Report (Section 2.2). Further discussion is

presented here from a viewpoint of interest for the issue of the language

to be considered in Section 2.5.

In past decades there was strong interest in comparing the working

of biological neural systems and of computers, at that time in their

first emerging. McCulloch and Pitts (1943) made the first well known

work. Then von Neumann worked increasingly in analyzing similarities

and diversities between brain and computers (1948, 1958, 1966). Clear-

ly, he was expecting to develop a general theory of automata that

could be a useful model both of the brain and computer functioning.

Today, on the one hand, new specific technologies have been developed

for the implementation of computers. Computers themselves have become a

new discipline with its specialists, theories, and jargons. On the other
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hand, continuous work in neurology has increased the realization of

the complexity and multifacets of the neural system. As the two fields

developed separately, there has been a decreased interest in comparing

approaches and techniques used by the biological system with those

appropriate for the man-made systems.

As a matter of fact we do not need a system compatibility between

biological organisms and computers. Vie do not envision, for computer

use, the application of electrodes to people for establishing direct

communication with man-made devices. The communication we seek is

through modes of expression with which human beings are normally familiar,

e.g., languages and visual images.

In the last decades, automata theory has become of interest to other

human fields besides neurology, namely, psychology and linguistics.

In theory of thinking, developmental structures constitute new powerful

models. (Cfr. Handler, 1964: Piaget, 1950; Flavell, 1963; Miller, 1964).

These models, of completely independent formation, find interesting

parallelisms in automata theory. In linguistics, automata models give

new possibilities for analyzing languages (Blumenthal, 1970: Chomsky,

1957, 1965).

It appears of interest now to compare the working of computers with

the models used in psychology and linguistics. The aim is to reach a

better compatibility of expression and communication between human users

and computers.
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2.3 - Task3 : FSM model and CPL automaton

The basic abstract machine - called FSM - to be used for model-

ing the processes is repeated in Fig. 2.

X X

[IFTR],

[IFTR

z z z . . . . z z

Fig. 2 - The basic automaton

A read-only tape contains a finite string of input symbols x, from

an alphabet A. A "blackbox" contains a finite set Y of symbols y

(internal variables) from A and is capable of assuming a finite set S

of internal configurations (networks of logical elements capable of

reading the symbols of A in some coding) called the states of the auto-

maton. A state s is defined as a quadruplet (I, F, T, R), where I

(input prescription function) is a mapping that makes available to the
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black box a subset X of the symbols x in the input tape: F (data trans-

formation function) is a mapping of X Y into a new set Y; T (trans-
f

ition function) is a mapping of X Y into the next state in S; and R

(routing function) is a mapping of a subset of Y into a string of out-

put symbols z in a write-only output tape.

The time is quantized in discrete moments i. The process is

modeled by means of the two recursive functions (1) and the related

state diagram.

(1)

The work of the automaton can be visualized in Fig. 2 as an activation

of one of the k quadruplets at each moment i.



Turing showed the power of an infinite tape added to a finite-

state machine. But engineers, unlike mathematicians, are unable to

handle infinity. Therefore our automaton, called the CPL automaton,

has a structure as shown in Fig. 3: the black box is the basic auto-

maton shown in Fig. 2: the 0 memory, a finite First-Innut-First-Outnut

storage, plays a role analogous to the tape in the Turin? machine, and

the connections with the environment allow us to extend the memorv

capacity as needed.

In the CPL automaton several FSMs are circulating through the

black box and the 0 memory, either independent]^ or concurrently ex-

changing data through the storage H. Eash FSM is active onlv when it

is in the black box. Therefore for the user dealing with each FSM,

all the data stay in the array shown in Fig. 2. As a consequence,

a random access memory, with all the apparatus of addresses, is not

needed. To relate different FSMs, and devices and storages in the.

environment, variables pertinent to the processes are used.

Pig. 3 - The CPL automaton
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2.4 Task 4 _-_ An implementabde system

The description of a realizable CPL automaton., called CPL system,

will be the work of the next quarterly period. Here an anticipation is

given in so far as it is necessary for the discussion of the language.

Such a system is composed of (Fig.4 ):

(a) A programable network including an array of registers

imbedded in a loose ensemble of operating elements that can assume

specialized configuration C, in response to digital words F and T.

(b) An assembler that, receiving a page of data from the

memory and new data from the environment in response to digital

words I, prepares in an array of registers ft all the necessary
Cl

data for a cycle of operations of the operating unit.

c

O)

E

c

o

<u

a s s e m b l e r

1 1 1

prog ro m a b le
n e t w o r k

p a c k e r

\

t i l /

p a g e

m e m o r y

Fig. 4 - The CPL system
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(c) A packer that, receiving a page of data into a

register array ft , at the end of each cycle of the operating unit,
s

routes some data to the environment in response to digital words

R, and some to the memory.

(d) A memory with a loose structure capable of holding a

large number of pages. The memory receives one page at a time

from the packer when requested, and furnishes one page at a

time to the assembler again when requested.

A process to be performed is described as an FSM. The FSM des-

cription is stored in the form of a page of digital data. As the page

circulates through the assembler, operating unit, packer, and page

memory, the process is executed.

Main features of the system are:

(i) A mapping is implemented between functions F and configurations

C, in accordance with the correspondance between logical behaviors

and logical networks discussed in the Second Quarterly Report,

(ii) A loose structure similar to that of written pages is used

for organizing in an independent manageable set of symbols all

the information necessary for the performance of an FSM.
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2.5 Task 5 - The language

2.5.1 The role of the language

As symbolized in Fig. 1, typically, three languages are involved

in the use of computers: (1) a spoken language, typically mixed with

expressions of mathematical languages, for describing a process origin-

ated by some human mind; (2) a high-level language for modeling that

processes in a rigorous form acceptable by the available computing

system (hardware plus software): and (3) a machine-language for actually

instructing the computer to execute the process.

These three languages are independent. The process originator,

during the description of his process, does not think of the other two

languages. Even if the originator himself later programs the computer,

he does not use, say, Fortran statements or machine instructions in

delineating the process. He may have continuously in mind constraints

and possibilities of the computer he is going to use, but he does not

use computer languages in conceiving and clarifying the process he is

dealing with. Several are the reasons for this. The elements of com-

puter languages are too rigid for coping with the flexible, loose,

self-adapting ways of human minds in search of a solution for a problem.

Any expression of computer language requires that all the details be

already established; clearly this is not the situation when one is

constructing a process. All these points are highly relevant to our

study and will be recalled repeatedly in the following.

The high-level language is used by the programer and, once chosen,

does not have any relation either with the originator language or with

the machine language. Each high-level language is developed independently,

with the intention to be practical for particular types of processes, or

of users.
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The machine-language is used by the computer, and it does not

have any connection with the other two languages. Each computer has

its own machine language as a consequence of its design.

It is legitimate to wonder if three languages, foreign among

themselves, are really necessary to communicate with a computer. As

it can be seen in Sammet (1969), or in the most recent panel dis-

cussion on the subject (IEEE, 1972), the present trend is to accept

this situation and to develop a set of the most appropriate high-level

languages and to look for some standardization in the machine languages.

The optimists hope that in so doing, each user will find a high-level

language particularly efficient for his problem, while all these

different languages will tend to have similarities in their structure.

It is not clear if this hope is feasible or there is a contradiction.

The pessimists simply worry about the proliferation of languages.

Let us consider the opposite approach: to search for possible

universals in the expressions of the process originators in order to

form a single high-level language appropriate for the different prob-

lems and users. In other words, rather than to follow the different

jargons proliferating for the different problems, let us come back to

the roots, if such there are, common to all, or majority of problems

and users.

There are justifications for considering such an approach. An

elementary part of mathematics, the arithmetic operations, are used,

like universal notions, in all applied fields. We are all trained to

that, in the elementary schools of all the world. As a matter of fact,
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the universality of general purpose computers is based on their capa-

bility to execute the arithmetic operations. But the monstrosity into

which software has grown shows that those universals alone are not

capable of implementing our aim.

In philosophy also the perennial aim has been to seek universals

in nature and human thoughts. More recently the same aim is exhibited

by psychology and linguistics. This suggests that our search should

not be confined to mathematics and engineering, but should share also

the efforts made in other disciplines.

The language which is being developed is based on the premise that

abstract machines constitute a language common to users and computers

(see discussion in the second Quarterly Report). More precisely, that

abstract machines play the role of machine languages, high-level

languages, and be closely related to the process image in the user's

mind. It has already been shown (Schaffner, 1971 ) that a form of

abstract machine suitable to be a high-level model of processes can at

the same time be an actual machine program for a particular type of

computer. The experience gained with a first computer of this type

confirms the practicality of the approach. More insight is needed on

the claimed closeness between abstract machines and process image in

the user's mind.

2.5.2. Psycholinguistic considerations

If a programing language is intended for use by nonspecialists,

its psychological aspects have to be considered no less that its formal

aspects. Spoken languages, which developed as a result of human needs
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and characteristics, are undoubtedly compatible with these character-

istics. Conversely, artificial languages need conscious attention in

order to be appropriate to the psychological characteristics of the

users. The first programing languages completely concentrated on

making possible the use of existing computers, and few concessions could

be made to psychological considerations. The present level of technology

should allow much higher priority to the user's dispositions.

Two fields of psychology are highly relevant to a programing language,

structures of thinking and of languages. A survey from a psychological

viewpoint of the studies of thinking, from Aristotle's images to the

present is given in Handler (1964); mathematical modeling is discussed

in Miller (1964); and a modern view of developmental structures can be

found in Flavel (1963). A historical review of psychological studies

of language can be found in Blumenthal (1970), and a modern approach of

generative grammar is given by Chomsky (1957, 1965).

In the second Quartely Report (Section 2.2), similarities

between abstract machines and models of the brain work were noted.

Now we find analogies with models used in psychology and linguistic.

We can not escape pointing out that the developmental

structures of modern psychology and the syntactic structures

of modern linguistics are types of self-adapting finite state machines,

while similar models are suggested in our work for programing computers.

Functions F and T of our modeling, in a sense, have a similarity with the

grouping of mental.operations of Piaget (1950). One may be tempted to

conjecture that the greater insight achieved in psychology by using develop-

mental structures rather than association schemes might have a parallel in a
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greater efficiency that could he ohtnined in computer programing hv usin?

abstract machine models rather than conventional command languages.

Even without becoming involved in thought theory, it is clearly

recognizable that a process can be represented more easily by means of

the multidimensional structure of an abstract machine than by means of

an array of symbols as in conventional programing languages. It is

common experience that a sketch is more easily understood than a set of

formal phrased sentences. Therefore it seems likely that a nonprofessional

user will need less effort to describe and read a process in the form of

an abstract machine than in the form of formal sentence description.

It is interesting to observe that before any development of automata

theory, in mathematics, Turing (1936) needed an abstract machine in

order to ascertain the computability of functions, and in engineering,

Kutti (1928) used abstract machines to work on the operation of complex

telephonic systems. Referring to the processing capability of the human

brain, von Neumann (1948) argued that such a function as the recognition

of visual analogies perhaps could not be described in sentences, while

it is actually performed by the finite neural machine. Then he suggested

(1966) that for complex automata their description should be simpler

than a symbolic description of their behaviour. He was referring to mathe-

matical complexity; here we are interested in the subjective complexity

as felt by a user. While it is reasonable to think that a mathematical

complexity has a counterpart in the subjective complexity, we do not

have a basis for the reverse. The approach taken here on this subject

will be discussed under task 6, and consists of comparing (under certain

criteria) test processes described (1) by means of conventional procedural
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programing-languages, and (2) by means of the description of abstract

automata modeling the process.

Echoing Whorf's (1956) hypothesis that the structure of the

language influences the manner in which humans understand reality and

behave, one can simply mention the possible influence on those who use

computers of changing from a command language to that of abstract

machines. At least, when programing in the form of abstract machines,

the user will not feel himself to be a slave of the computer since he

will have designed its characteristics.

2.5.3. _An .experiment toward ̂applying modes of thinking to computer
programing

A first experiment has been undertaken on determining computer

characteristics in accordance with natural inclinations of general users.

A specific computer feature has been chosen, one which we feel is of such

a general nature that it can be considered, a priori, related to a natural

feature of our thinking: the transition between states. Undoubtedly,

the notion of transition between items, times, actions, situations,

places, etc., is familiar and "natural" for everyone, independently of

the training, specialization and professional activity. A variety of

people of different activity and age are being interviewed in order to

collect patterns, usages, frames in the notion of transition, and the

results have been considered for defining the modes in which transitions

can be organized in a GPL system.

2.5.3.1. The interview

The form of Fig. 5 is used to facilitate the extraction of the

wanted information from the interviewed people. In order to bring

the interviewee to the issue, transition is presented first as physical
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I O

i O

age sex profes

date place

simple transition

condlt. "

one stopover

several stopovers

conditional stopover

a plan

several tentative plans

eudden diversion

change of mind

Fig. 5 - Form used for the interview
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transfer from one place to another. Eight modes (upper part of the

form) are presented as applicable to planning a trip, for business or

pleasure. The relative applicability of these modes is asked and

results recorded as ordered numbers in the form. At this time the

person being interviewed is already "in" the notion of transition, and

sometimes is able to mention some other ways of looking at it, ways

that are transcribed if different from the eight examples given.

Then the notion of transition is presented in the sense of "chang-

ing mind", "changing situation", "changing status". The different ways

of reacting and sayings of the interviewed are interpreted and if an

interesting pattern of the transition appears it is noted in the second

half of the form.

The population interviewed includes students, professionals in

different fields, and people in a variety of occupations; their ages

range from 11 years to mature age. Some distributions of the different

viewpoints will be derived from the data. The following is a sample of

some interesting expressions obtained.

T A B L E 1

1. I will go there, and then I will see.

2. I will go to C, and I might stop in B.

3. I will stop there for a certain time.

4. Temporary block.

5. Several plans performed sequentially.

6. Cancelling the plan, and making another.

7. Discuss this, before you forget.

8. If I think many things at a time, the efficiency decreases.
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2.5.3.2. _Featû 5!L ?f_t!]!?_tEfl!Lsi.t*.?n

From the material gathered with the interviews, and from the

experience of programing the CPL 1 processor, features for the trans-

ition between states have been defined. Some of these have already

been implemented in the CPL 1 processor, some were already planned,

some are new extensions of the previous ones, and some are new forms

of transitions in an FSM.

The effectiveness of the transition function T in describing a

complex process in a simple form had already been recognized. The work

done in connection with the reported interview has further confirmed

that effectiveness, and demonstrated, at least for this case, the possi-

bility and the convenience of modeling computer features after common

features of people thinking.

Selected feature for the transition are described in Table 2,

and corresponding graphical symbols that have been chosen are shown in

Fig. 6. The usefulness of these features in modeling complex processes

will be apparent in some of the programs that will be discussed under

task 6, and in the example given in Section 2.5.7 .

Sentence 3 of table 1 suggested that stopover transition can be

generalized to include general loops. In this case we do not need to

occupy an operating register of the programable network for counting

an index, and also the work of programing will be simplified. In accord-

ance , features for the function T has been introduced by which we can

prescribe loops of a given length or referring to any variable as index.

Their graphical representation is shown in Fig. 6 (f) , (g) , (i) .

The emphasis expressed by people on the conditionality of stopping

over and in changing plans suggests a feature for specifying priority or
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T A B L E 2 - Selected Transitions

(a). No prescription of any sort for T function means that the machine
remains in the present state (until some action from the outside of
that FSM occurs). In the state diagram, this case is represented by
absence of any arrow emerging from the circle representing that state,
Fig. 6 (a).

(b). Unconditional transition to the state with the next label (in
the natural numerical order). Note that this is the simplest coded
transition, no state labels need to be indicated. The adopted graphical
representation consists of drawing adjacent the circles representing
the states, Fig. 6 (b).

(c). Unconditional transition to state h. This prescription needs
simply the state label h. Its graphical representation consists of an
arrow pointing to state h, Fig. 6 (c) . (Each specific example in Fig. 6
is shown in heavier lines).

(d). Transition to different states depending on conditions. The T
function and the related state labels need to be prescribed. The
graphical representation consists of several oriented arrows emerging
from the state, Fig. 6 (d).

(e). Forced transition (produced as a consequence of actions by part of
some other FSM). No prescription is made in this FSM. The graphical
representation consists of a dashed arrow, Fig. 6 (e). This symbol is
usually used also to indicate the starting state.

(f). Go to state h and stay there for n cycles (then the transition
prescribed in state h will act). The prescription needs a code, the
label h and the value n. The graphical representation consists of an
arrow with open head where the value of n is written, Fig. 6 (f).

(g). Stay in the present state for n cycles (then the other prescriptions
will act). The prescription needs a code and the value n. The graphical
representation consists of an arrow looping into the state with the value
of n written inside, Fig. 6 (g).

(h). Go to state h stopping over sates 1, m, . . . (stopover transition).
The prescription consists of the multiplicity of state labels in an
established order. The graphical representation consists of a jagged
arrow with notches pointing to the states where stop is made, Fig. 6 (h).

(i) . As in h, but staying in the stopover states for assigned numbers of
cycles. The prescription is as in h with added number of cycles. The
graphical representation is as in h, with the number of cycles written
in the notches , Fig. 6 (i).

( cont. )
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(j). Priority is assigned to one or more transition branches. Priority
means that that branch (if chosen by the function T) will occur first,
regardless of other conventions. The prescription consists of a code
added to the description of that branch. The graphical representation
consists of a dot superimposed to the arrow representing that branch,
Fig. 6 (j).

(k). Transfer of page. This feature is used when the page movement is
controlled by function T, rather than following the automatic circulation.
The prescription consists of a code added to the description of the
branches for which the page remains in operation. The graphical repre-
sentation consists of a square added to those branches, Fig. 6 (k) .

(1). End of page. This transition produces the disappearing of the page.
It is described as a special state label. It is represented graphically
by a triangle, Fig. 6 (1).
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(a)
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(c)

(e)

(f) (g)
Fig. 6 - Symbols for transitions ( cont. )

- 24 -



(0

( j )
I

6

(K)

o
o

) '

Q (J!)
Fig. 6 - ( cont.) Symbols for transitions
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conditions on several options for a transition. Tn accordance, sinnle

hardware features have been devised by which these possibilities can be

prescribed as forms of the function T. Corresponding symbols for the

state diagrams are in Fig. 6 (j) .

The feature of the priority allows the mechanization of a variety

of rules. The following, that will be used often, refers to the stop-

over transitions. When the states connected with priority transition

are adjacent (in the state-label order), the next destination of a

stopover transition will be reached at the end of the priority trans-

itions, as in the example 3 of Fig. 6 (j). When the states connected

with priority transition are not adjacent, the occurrence of that

transition cancels every previous stopover prescription.(ex. A of Fij». 6 j).

Transitions f and g of Table 2 and transition h in the second

example given in Fig. 6 (h) produce the same thing. But this redundancy

is in fact a flexibility which eases the programing. In the case of

transition g, the prescription of staying is made once and it holds for

all the transits through that state. In the case of transitions f

the stay can be different for different arrivals to that state. In

the case of transition h, the stay can be different in accordance with

events occurring in that state.

Note that two symbols of forced transition are used, Fig. 6 (e):

a dashed arrow connecting two states, if the forced transition is

supposed to occur when the machine is in that indicated state; a notched arrow,

if the forced transition may occur when the machine is in any one of several

different states.
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2.5.A - Abstract machine as a formal language

Formal language theory defines a language as a set of strings of

symbols over a finite alphabet. Such a broad definition covers natural

languages, programing languages, and certain mathematical systems studied

in automata theory. The approach taken in formal languages also clari-

fies how a language makes it possible to express infinite information

(the enumerable infinite set of strings) with finite means (the finite

alphabet and grammar).

Our abstract machines as a language are multi-dimensional entities

(as opposed to the linear strings of symbols), with a grammar left open

(in a sense) to the imagination of the user. While it is expected that

such a language, used as a programing language, can be brought under

said definition of formal languages, there is not yet an available

theoretical treatment. This fact does not limit the use of our language.

In fact, we are using a very simple type of abstract machines, that is

readily translatable in a normal string of symbols.

As an example, an actual program, referred to under task 6, is

shown in Fig. 7 in its state diagram form. Five FSMs can be distinguished,

all engaged concurrently on the same task. The constituent elements

of such a program are: states, transitions, I, F. T, R's and data.

The program of Fig. 7 can be transformed into the string of symbols,

(2), by very simple rules. The items constituting the FSMs are indicated

sequentially, each state is delimited with square brackets, the states

are ordered following their label number, the items of a state are
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recognized by an established sequential order, and the symbol ; IB

used for missing items.

M215[IoFoTo(i, 2)111̂ ^ (0,5) ][I2F1T2(3,A)R2][I3Fo(0)'][I4F4(0)]

[I5F5T5(6,13)R2] [I6F6

[ ;F9T9(10. 13) ] [I10F10

[I14FoT14(2,13)]#

tflll2[ ;FoTo(0,l) ] [1^^(

[;F5T5(6/5,5)][;F6;R6]#

mi3[ ;FQ] [IjF^] [I2F2T2(3,2) ] [1^] [ ;F4(0) ]#

The unit that in spoken languages is the sentence, here is the state.

The syntactic structure of a state description is simple enough to be

understood by a nonspecialist. Each state is composed of the four

elements I, F, T, and R, some of which can be missing; the order of the

elements can be used for their recognition, in conjunction with the

symbol ; for a missing element. Clearly the syntactic structure to

be developed by a reader, or the parsing by a computer system are

reduced to an elementery symplicity.

It should be clear that Fig. 7 is not a graphical representation

of sentences in a language that (in turn) describes some procedure for

implementing a process; rather it is the chosen model of the process,

and the expression (2) is a string representation of that model. This

inverted direction in the translation of the process description is a

fundamental point.
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For the same reason, Fig. 7 can not be assimilated in the con-

ventional program flow charts. A flow chart is a summary (made a

posteriori) of a command-language description of a procedure. The

elements of this description are typically computer-oriented. Fig.

7 is the actual original model; its elements are typically problem-

oriented. A flow chart is a graphical representation of point C in

Fig. 1; Fig. 7 is a graphical representation of point A in Fig. 1.

2.5.5. FSMs as a programing language

2.5.5.1 General remarks

The use of abstract machines as a language for programing a com-

puter is actually the subject of the entire work undertaken. In this

section we attempt to clarify the relations between our language and

the other known programing languages.

A real comparison between the language for programing a CPL system

and languages for programing conventional computers is not possible,

because the two types of computers are dissimilar. Conventional com-

puters are factory-configurated and the task of the user programing-

language is the management of the Instruction sequences. The CPL system

is configurated by the user and the task of the user programing-language

is the implementation of these configurations. However, because in both

cases the final goal is the same, that of obtaining a certain result

by means of a man-made machine, a discussion on the relations and divers-

ities of the two types of languages should have meaning.

Following a classification of Burkhardt (1965), programing languages

for conventional computers range from
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- machine codes

to - assembly languages

- procedural languages

- specification languages

and - declarative languages,

in accordance with the use made of interpretive or translating routines

(compilers). Languages were also proposed that simply state the problems,

without indicating the solution to be used (Cfr. Schlesinger, Sashkin,

1967). This extreme case could not be viewed simply as a programing

language, but should be considered more as a system of solution finding.

It is a characteristic of conventional programing that a process is

described in several forms: in the user language, possibly in an inter-

mediate language of the compiler, in an assembly language, and finally

in the actual binary codes of the computer. In each one of these forms

the process is completely described; each form is obtained from the

previous one by translation.

In programing the CPL system, the solution is completely given by

the user, in the form of an abstract machine that produces the desired

process. The program consists precisely of describing that machine.

We can say that the programing language is not procedural: neither is

it descriptive of the process; it is descriptive of a machine that pro-

duces the process.

This description is made only once. There are not several forms,

each translated from another, as in conventional programing. What is

diversified, instead, is the degree of definition of this description.

First, the user conceives the state diagram for his machine which is a

model of the process . This diagram is composed in terms of the four
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building blocks I, F, T, R. Then he, or somebody else, comes back to

that machine and the building blocks are described in complete details.

Finally each resulting piece of the program is written in the proper

form and medium to be fed to the computer.

2.5.5.2. Aspects common with previous languages

APL

Among the programing languages that have been developed, APL

(Iverson, 1962a)is one that suggests some similarity in structure and

goals with the language here described. However, the similarity is

more in the appearance because the two languages are in different frames.

First of all, more than a language for actually programing computers,

APL is a system of concise and powerful notations applicable to a variety

of descriptions and analyses. In particular, it can be used for describ-

ing a process for a computer if suitable compiler, or interpretive

routines, are available (Falkoff, Iverson, 1967). APL per se does not

provide data structuring, input and output, which are crucial points in

computer use. The language described here, instead, is a method for

actually programing a particular type of computer, the CPL system.

In APL, the emphasis is placed on conciseness in describing algorithms;

this is inevitably paid for with a compulsory notation system that is

difficult for the non-expert . Consideration to computers appears only

in the structure as sequences of statements, clearly motivated by the

hope that simple interpretive routines will be able to apply the languages

to the different computers. Because these sequences often are very con-

cise and use arrows for jumps, APL programs have some diagramatical
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appearance, thus resembling structures of FSMs. However, there is

complete absence of the notion of state, which is helpful both for

visualizing the structure of a given process, and for gradually con-

structing a complex program. The viewpoint is fully that of sequence

of statements.

The point is that APL reaches conciseness by means of elegant

notations and not becoming involved in the execution. Iverson himself

(1962a) says that the goal actually is to provide a language with such

a descriptive and analytic power to repay the effort required for its

mastery. He shows (Iverson,196A) the interesting analytical possibility

of the language. In a sense, programing a computer is incidental. The

language described here on the contrary reaches conciseness by

prescribing an execution that is tailored to the model chosen by the

user for visualizing the process. The notation to be used is not of

primary relevance for the method, at least at the present state of

development. We see that the scopes of the two languages are in

different areas.

Iverson talks of common language for hardware, software, and

applications (Iverson, 1962b). But what he means is that APL is very

effective (concise) for describing and analyzing the working of a given

piece of hardware, for describing and manipulating a given piece of

software, and for expressing a given algorithm. All this is very

valuable but is different from the goal expressed in Section 2.1 of

the second Quarterly Report, that of merging the three points of Fig. 1.

We are not interested in describing hardware, software, or algorithms

per se and separately. In our approach, hardware, software and algorithms
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are all aspects of the same structure. In this sense not only does

a single language describe them, but it is actually a single description.

For APL, there are three different descriptions for the three aspects.

This different situation is a consequence of the fact that Iverson worked

only on the language, accepting the computers as they are. Here also the

computer is re-examined and changed together with the language.

Decision Tables

For more than ten years (Kavanagh, 1960) decision tables have been

recognized to be a very effective programing method, easily understood

by humans regardless of their background, and to be machine independent.

One item of the FSM description, the function T, has in a sense the

same philosophy of decision tables. Therefore similar advantages can be

expected.

One difference is that conventional decision tables need to be

compiled, in order to be understood by a computer. Here functions T

are directly implemented by the loose hardware of the CPL system.

Another difference is that common decision tables need some interface

with the other general purpose programing languages. Here functions T

are one of the constituents of the language, therefore they are well

integrated in all kinds of programs.

Flowchart ing

Flowcharting started with Goldstine and von Neumann (1947),

"We therefore propose to begin the planning ... by ... the flow

diagram . . .". The first computer programs were flow diagrams with

an accompanying list of codes. Then computers developed, and today

programers do not use flowcharts, except as a secondary, simplified

documentation coming after the program has been written. Conversely,



in programing the GPL system, the first step (Section 2.5.6.1) is the

production of a state diagram, which is the analogous of a flowchart.

The reason for all this is very simple. A graphical representation

of the type of a flowchart is the most effective description of the be-

havior of a processing machine. At the early times programers were

dealing directly with the actual actions of the computer, thus flow-

charts were the most effective program representation. Then programers

freed themselves from the actual working of computers and dealt with

problems more and more in descriptive mathematical terms. In this

situation, flowcharts are completely useless. Now, the FSM is a machine,

and the programer deals directly with it, actually conceiving and con-

structing it; therefore a representation of the type of the flowchart

becomes again the most effective program description. The difference is

that in the early times of computers, the flowchart was describing the

behavior of mechanical or electronic devices that exhibited no resemblance

with the problem as seen by the user; here the state diagram describes

the behavior of an abstract machine that is the concise model of the

problem that the user is dealing with directly. Once this situation is

achieved, it is not difficult to enrich the flowchart with a variety of

features and notations to make it a very expressive, user-oriented repre-

sentation of the problem.

The power of expression of a graphical representation is so obvious

that program theorists often were intrigued with it, aside from its use

for representing the actual work of the computer. It has been proposed

to use flowcharts not only as a notation but even as a programing language

(Burkhardt, 1965); however, it never has been adopted. Caller and Perlis

(1970), in a general analysis of programing languages, raise the question,
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"The clarity and precision we have achieved in representing algorithms

by means of flowcharts leads one to ask what it is about flowcharts

that makes them so much clearer than the verbal description". They

recognize that it is not the two-dimensionality of the representation,

because any flowchart can be easily transformed into a linear sequence,

but they do not elaborate further.

In our interpretation, we recognize that the effectiveness of a

graphical representation has a psychological basis. Starting in child-

hood we develop our model and our forecast of the behavior of the out-

side world in terms of an abstract mechanism that we construct in

accordance with sensations, mainly visual. Therefore a graphical repre-

sentation of an abstract mechanism is able to promote very rapidly, and

without effort, a corresponding mechanism in our mind. A sequence of

symbols, conveying the same information, needs first to be memorized

in its entirety (and that implies an effort), then it is analyzed, and

finally the mental mechanism starts to take shape. In the case of a

program, we can say: when an algorithm is represented in a list form,

what we perceive first as a unit is a single command, or declaration,

and it requires a certain amount of work to reconstruct the entire

mechanism from the many commands; when the algorithm is represented in

graphical form, what we perceive first as a unit is the entire mechanism,

and we then need little effort to focus on the single parts in order to

make precise our knowledge of the algorithm.

2.5.5.2. A view of the language for the FSM description

From the programing language viewpoint, our FSM can be summarized

as follows. Four primitive elements are identified:
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1. Data transformation function F. This element is obviously always

present if an activity on certain data has to be performed. Only at

particular moments, F can be null because the process in those moments is

in idle state, waiting for some events.

2. New-input-data prescription I. This element will be present at least

in some initial part of the process, if manipulation of given data has to

be accomplished. Even if the process consists only of the creation of

data, certain initial conditions will always have to be given from the

outside.

3. Output prescription R. This element also will aways be present, at

least in some terminal part of the process, if an activity useful for the

outside has to be produced.

4. Next state transition function T. Every time the process is not

described as a single function F, transition functions are necessary.

In fact, even in the case vrtien the process is accomplished with one F

description, the fact that the process should stop at that point can be

viewed as a particular transition.

The FSM is a management of these four primitive elements. This

management is described as a state diagram, where each state is a unit,

a block, defined by a specific ensemble of the four elements F, I, R and

T. In some states, some of the elements can be null.

It should be noted that only new input data need to he described,

and not the current data (as in conventional languages), because the

processing machine keeps in its structure all the data that has been

inputed (by previous prescriptions Is) and not outputed (by previous

prescriptions Rs, or substituted).
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It should be noted also that common, quasi-steady Information that

in conventional programing is given in form of declarations, here is

given in terms of code words that preconfigure the processing machine in

such a way that the storage assumes the structure of the data and the

operating network assumes a general structure corresponding to the activity

to be performed.

The six types of data, y, k, I, F, T, and R (see Fig. 2), interact

with each other during processing, but they are handled independently by

the user, a fact that keeps the programing simple.

The language is not procedural for a given computer; it is not

descriptive of the problem in terms of a given set of notations; but it

is descriptive of a particular machine that executes the problem as its

natural response. Because these particular machines are described in

accordance with the abstract mechanisms we conceive in our mind, the

language is claimed to be user oriented. Because these abstract mechanisms

are those we choose for dealing with the problem at hand, the language is

claimed to be problem oriented. It is a fact that the language is the

machine language for a CPL system. This method of modeling processes may

also have potential for programing conventional computers or for an inter-

mediate language like the suggested UNCOL (Strong et al. 1958). Inves-

tigation of such potential is not undertaken here.

The work usually performed by the compiler is here done by the user;

and the user knows a great deal about the data, the purposes, and the

desired choices. Therefore many declarations that are needed in con-

ventional programing, but constitute a somewhat artificial necessity of

the language are not necessary here. One may think that in this way the
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user might be overloaded by clerical activities, but this is not the case

because the actual machine follows the image that the user has of the

process.

It should not be overlooked that for humans what is difficult is

what differs from the familiar, not what is complex in analytical terms.

We can walk for hours through mountain paths without falling a single

time; we can talk for hours with a close friend on sophisticated subjects,

feeling the enjoyment rather than tiredness. Such activities are extreme-

ly complex from an analytical viewpoint. Conversely, a simple process

.such as the counting of objects moving on a line, a process that can be

implemented with one photocell, a dozen flipflops and a simple circuit,

is very tiring for humans and it is unlikely that one can do it for more

than one minute without making a mistake.

We present the supposition that conventional programing languages

often fall in the following trap. The user is deprived of the tasks that

he is very capable of and willing to do; these tasks are automated with

very sophisticated software devices; and then, in order to control those

software devices, the user is loaded with activities which are inappropriate

because of being too clerical and extraneous to his interest.
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2.5.6 Programing the .CPL sys 1tMii

As said in Section 2.1, programing the CPL system consists of

developing an abstract machine M that produces the wanted process,

and then writing a description m of that machine in a form acceptable

by the CPL system to be used. Clearly we have two phases in the pro-

graming: (1) inventing a machine that can solve our problem, and

(2) determining all the details as necessary for the actual CPL machine.

This division of the programing in two sequential efforts at

different levels is one of the most interesting characteristics of the

approach taken. In Section 2.5.1 it was noted that in conventional

programing the user has no opportunity of starting a program until all

the details are established. Therefore there is no flexibility for

developing different strategies; and when a program is written, it has

often a form so different from the original image of the process in the

user's mind that discussion and changes are extremely difficult. Here

instead, the structure of the program is developed first in a language

suitable to the originator of the process; then the several parts of

that structure are defined in details as needed by the computer, but

still retaining the physiognomy given by the originator. At any time,

the structure and the details can be examined and changed, having an

easy overview of the entire process and an easy access to the several

detailed parts.

To concretize these considerations, the three steos of programing

the CPL 1 processor are described in the following.



1) The process we want to be executed is modelled In the form of

abstract machines of the type described in Section 2.3. In this model-

ing, the user is considering only the characteristics of the process;

there is no concern for machine limitations, because the abstract machines

do not have physical limitations.

The end product of this step is a description of an abstract machine

that performs the desired process. This description is in the form of

a state diagram where each state is composed of the four items I, F, T,

and R. This step is described in Section 2.5.6.1.

2) Operational configurations, possible for the real CPL system are

designed in order to produce the functions F and T delineated in step 1.

This phase of the programing corresponds to the mapping F —> C referred to

in Section 2.4. In this step, the abstract machine outlined in step 1

might be modified in order to meet the characteristics, the size, and

the limitations of the actual CPL system available.

The abstract machine obtained at this point is the accepted model

of our process and in the same time a realizable machine for our CPL

system. This step is described in Section 2.5.6.2.

3) The completed description of the FSMs thus obtained has to be

written in a medium readable by the machine, e.g. a punch card, with

the proper codes. In this form the abstract machine is an actual pro-

gram usable by the available CPL system. This is a clerical step, and

is outlined in section 2.5.6.3.
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2.5.6.1 Step 1: Modeling the process in the FSM form

In section 2.5.3 the innate inclination for thinking in terms of

imaginary (abstract) mechanisms was discussed. In this step of pro-

graming, we have to use this innate facility in order to model our pro-

cess in the form of an abstract machine with rigorous connotations,

namely in the form of the FSM represented in Fig. 2, or of a system

of these FSMs circulating in the structure represented in Fig.3 .

The entire process should be framed in the general expressions (1) of

section 2.3. Depending on the transitions between states (well dis-

cernable in the state diagram), expressions (1) act either as a set

of independent functions, or as recursive functions, or any mixture

of the two.

The process is thought out in its inherent phases, parts, or steps,

and correspondingly a set of "states" will be delineated. A state is

a part of the process for which is worth to define a quadruplet [IFTR].

When more than one FSM is involved in the process, each FSM will be

conceived independently in the form of the automaton of Fig.2 , and

then related through the storage P of Fig. 3.

A complex process can be modeled in several ways:

(i) through complexity of the functions F (which corresponds to a

spatial configuration as decribed in step 2),

(ii) through the complexity of the sequential behavior of an FSM (see

state diagram),

(iii) through an array of pages that interact through the auxiliary

storage P of Fig. 3,
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(iv) through complexity both of the page array and of the sequential

behavior of each page,

(v) by means of the interaction with specialized devices or auxiliary

storages in the environment.

The ingenuity of a program, its effectiveness and efficiency, are

established here by the way the problem is modeled. In conventional

computers .strategies may be used to exploit to the full, the structure

of a particular computer or of a particular compiler language. In this

case the user is forced to investigate these structures; but usually

they are not of direct interest to him. In programing the CPL system,

strategy has to be used in describing the problem, that is to say on

the structure of the problem itself. In this case we may expect the

user will be interested in expending effort in this direction.

Furthermore, later on he will not feel himself to be a slave of

the computer, because, in preparing the model of his process, he designed

the computer he is going to use.

The best use of the FSM modeling is made when the dynamic aspects

of the process are mechanized in the dynamic behavior of the FSM. A

poor use of the FSM modeling occurs when it is approached simply as a

sequence of commands.

In this stage the structure of a program is established, and there

is room here for the imaginative delineation of the program. Later, in

step 2, skill can be applied to devising single configurations, but that

will affect only the efficiency of single portions of the program. The

remaining step is a simple mechanical manipulation.
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2.5.6.2 Step 2: Design of the configurations

Specialized operating configurations have to be designed for the

operating unit of the CPL system available in order for it to perform

the functions F and T delineated in step 1 for each state.

In this step, both the requirements of the problem and the char-

acteristics of the available machine should be considered. If some

function conceived during step 1 cannot be implemented directly, other

alternatives should be examined. A general expedient is to break down

a state into several states, each containing simpler functions,

^he programable networks

It was shown that there is a theoretical and practical basis by

which for any numerical, or logical, function that we can rigorously

describe on certain variables, it is possible to design a network of

logical elements that performs that function with some coding of those

variables.

In our application, this possibility alone is not sufficient; we

need also a general procedure by which a non-professional person can

easily produce these networks from functions expressed in whatsoever

foirm. The basis for this possibility was previously discussed, and lies

in the facility that human beings have for thinking of functions as

abstract machines. In step 1 we were modeling an entire process in the

foTcm of an abstract machine, here we are modeling a function in the

form of an abstract network. The level of complexity is different, but

many points are similar.

For modeling a process, the suggested structure to think of was

automaton of Fig. 2 ; this automaton is a kind of loose sequential



machine. For modeling a function, the suggested structure is an abstract

(symbolic) loose combinational network. The term combinational refers

to the level at which the user looks at the functions: the actual elec-

tronic machine might execute those functions with some sequence of steps,

but this is irrelevant, thus it will be ignored by the user. For some

complex functions, the user may find it difficult to represent the

function in the form of a combinational network; while he would be able

to represent it easily in a sequence of few steps. In accordance to

this fact, the functions F can be represented as a set of different

networks that succeed in a given order on the same data. The processor

CPL 1 has the capability to sequence up to three different configurations

in order to implement the function F in each state.

For different types of functions, a different basic structure of

the network is given to the user: on the basic structure, the user has

to describe the operational character of the elements, the connections

between elements, and all the necessary details in order to obtain the

desired specific function. As an example, in Fig. 8, the basic structure

for the arithmetic functions is reported. The boxes labeled A, B. C and

D represent the internal variables y in the black box of the automaton

of Fig.2 , the boxes a , b , c , d the new input variables x ,

and A', B', C', D' the variables y in the auxiliary page array (ft in
1 - S

Fig. 4). Twenty-seven connections are possible between the boxes.

Several operational characters can be attributed to the connections, such

as transfer, sum, subtract, multiply, log , complement, shift, etc.

The user has to devise a combination of connections and operational

characters such that one or more networks will perform the desired data



transformation indicated as function F in that state.

Note that there is no concern for addresses or moving data from

the memory. For the user, the data are always present as variables y

and x in the operating unit. He has only to prepare operating networks;

these networks will automatically be superimposed on the data, in

succession as if transparent sheets such as Fig. 8 were succeeding on

a basic data sheet. The user can then change or move the data, between

cycles of the operating unit, by proper !:new input prescription" I,

and "routing" R.
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The language for describing the network

After having designed an operational network^ we have to describe

it in some recordable and unambiguous form. We need a language that is

easy for the user and understood by the CPL system. Moreover, for

several practical reasons, it is desirable that this description be

concise.

In information theory it is well known that the information con-

veyed by a string of symbols over an alphabet is highly dependent on

the coding used by the source. In accordance, we might seek for an

optimum coding. But here it is not the case of a communication system

that is designed only once by specialized engineers. Here the encoding

is the language used by non-specialized people for describing the

operational networks that they conceive. Therefore the primary require-

ment is that the encoding be simple for non-specialized users.

To solve this problem a type of coding has been adopted that is

familiar to all of us because it is used in the spoken languages. All

spoken languages use some kind of coding in assembling alphabetic

symbols to form words. That coding is the part of the grammar that

governs the word inflection. Some spoken languages have little coding

and the words can be regarded simply as different combinations of the

alphabetic symbols, only constrained by an acceptable pronounciation.

The meaning of such words, usually short, can be learned only by

memorization. Other languages have sophisticated coding and the meaning

of the words, sometimes amazingly long, can be reconstructed from the



meaning of each group of symbols, following cort.-iln rulcti. Two

are given in Fig. 9. A single German noun of 28 letters (Fig. 9a) means

a place where certificate of paid fee (ticket) for passenger in flight

are given. In Fig. 9b an Italian verb of 12 letters means that you

(several people) would read again if a certain condition occurs. With

such a procedure, an extremely large number of words, with very

specialized meaning, can be constructed without the necessity of memor-

izing (or writing in a dictionary) all of them. The exact meaning of

each word can be reconstructed from the meaning of the building blocks

and the structure of the word.

number
of
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Fig. 9 - Examples of aglutinated words



Similar approaches are used here. Taking advantage of the fact

that all the information related to an operational configuration should

be simultaneously present in the operating unit, we ensemble all the

characterization of a configuration in one unit corresponding to an

highly inflected; word of spoken languages. This means that the encoding

of the user language is chosen as encoding function for the control of

the programable network.

One could suspect that in so doing, the coding will be not

optimum for the network. Or if we optimize the coding for the network,

it will be not the most appropriate for the user language. In the design

of the GPL 1 processor, the same coding turned out to be equally

appropriate for the digital design of the programable network and for

the language to be used by non-professional people. In a sense this

is an experimental confirmation of the thesis discussed in section 2.2.

One of the main requirements for a spoken language is the capa-

bility to express an infinite variety of things without requiring

people to learn a corresponding infinite number of independent utterances.

This is the reason for the natural development of agglutination of

different roots and of sintactic structures. Conversely, the shortness

of the utterances is not a strong requirement in spoken languages, on

the contrary a large amount of redundancy is required to overcome the

distortions of the speaker, listener, and environment. Observing

Fig. 9, we see a not large variation of the total number of symbols

(the total number of symbols, plus one space per word, is indicated at

the right-hand side of figure 9). In a language for computers, typically,

we do not need redundancy, given the quiet environment and the re-

liability of the system. In this case also a large reduction in the

number of symbols can be obtained.



In the processor CPL 1, twelve bit words, subdivided in parts, are

used for describing the configurations. A typical organization of the

word, one related to configurations of the type indicated in Fig. 8,

is shown in Fig. 10. The root is related to the operation performed,

the specifier describes the connections, the suffix indicates which

variables are involved, and the prefix is related to some details

peculiar for each type of configuration. All the possible choices

for each part of the word are given by 8-16 entry tables, that are

easily accessible in the dictionary of the processor, or can even be

memorized. It has been attempted to give some memoric pattern to

the assignment of the code, and in fact when a user becomes familiar

to the use of this language, he seldom needs to look into the dictionary.

prefix root specifier suffix

X1 -,X^L /
\/ W \ / • \

~T \ \ \
Fig. 10 - A word format of the CPL processor

In spoken languages certain words do not have inflections, but are

simply a coded reference to an object or action: similarly, in this

processor, certain specialized configurations that recur frequently

are not constructed in the way previously described, but are simply

called for by a coded number. Using this method, in a particular

application of the processor, very specific configurations can be

prepared in the operating unit, and in the program they are described

by an F treated as a number.
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2.5.6.3 Step 3 : Paging the program

The abstract machine described in detail in step 2 can be imple-

mented by the CPL system available; in other words, it is a program for

it. The elements of this program are I, F, T, R's, state labels, and

code words. We can add a name (a number) to the program. The form in

which the program was materialized, during its preparation, is irrelevant;

presumably it will be in the form of a state diagram, or as state

descriptions spread in note sheets.

Now it is necessary to write the program in a medium that can be

read by the CPL system, and all the items should be located follovine

certain rules known by the system. This organization we call pagination

as mentioned in section 2.4.

In the CPL 1 processor, the medium is punch cards: the pagination

is given by fixed fields in the card. Fig. 11 shows the fields for the

items constituting an FSM. Usually a same configuration appears several

times in an FSM, therefore it has been found convenient to write them

not in the state descriptions but rather in a field labelled "common

storage". Each state calls for the configurations by means of the number

of the columns where they are written.

A punch card is a binary device, therefore all the information

written in the card will be in the form of binary numbers or coded words

of binary symbols.
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code

FSM name

F's

Fig. 11 - Program card for the CPL 1 processor

In conventional computers a card is typically related to a state-

ment, here a card is typically related to an FSM, i.e. an entire process,

or part of it. This high conciseness of the programs results from

several causes:

1. Modeling the problem in the form of an FSM leads to a very concise

description of the problem.

2. Describing the functions of the problem in the form of operating

networks, and using coded words for describing the networks,leads to a

very concise description of complex functions.

3. The absence of computer overhead eliminates all the numerous com-

puter-related statements necessary in conventional programing.

4. The syntax (organization of fields, in the CPL 1 programs) used for

describing an entire program allows much greater exploitation of the in-

formation capability of strings of symbols (binary numbers in the case of

punch cards) .
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2.5.7 An example

As an example of programing with the language of Finite

State Machines, a real-time processing for weather radars is described.

This processing (Schaffner, 1972b) aims to measure wind distribution

in the atmosphere from the movement of weather scatters.

Essentially, profiles of the echo intensity along a given line s

are measured at two times differing of At, Fig. 12: then the two pro-

files are cross-correlated and the As for which the correlation is

maximum is determined. The ratio As/At is assumed as an estimate of

the mean wind velocity in that interval At. As there is interest

in ascertaining turbulence also , the echo intensity is determined

for adjacent small cells forming a cartesian tri-dimensional volume,

and cross-correlations are performed along three ortogorial axis, for

all adjacent lines of cells. The radar scans space in polar coordinates,

therefore a coordinate conversion is necessary in order to attribute

the arriving echoes to the proper cartesian cells.

t«+ At

Fig. 12 - Echo profiles to be crosscorrelated
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Undoubtedly such a process would present a very large overhead

for a conventional computer. But if a specific abstract machine is

invented for mechanizing the desired activity, execution of the process

will be straighforward. The following is a first solution for such a

machine .

Clearly this is the case of a system (Section 2.3.6 of the second

Quarterly Report), composed of several FSM's (some implemented by

several pages) all concurrently working toward the final task. In order

to visualize the system, each page is represented as an elementary box

in Fig. 13 and the flow of information among them indicated by arrows.

The system is represented in a three-dimensional space in agreement

with the fact that each page is related to a region of space explored

by the radar beam. The coordinates chosen are: a slanted range of

the radar, r, its horizontal transversal, t, and its vertical height, h.

An FSM is necessary for producing coordinated starting, stopping,

and transferring in the other FSM's: this FSM is implemented by a single,

page, which we call control page CO. This page is located at the

beginning of the circulation, in order to transmit orders directly

to the following pages.

Another FSM provides to the integration of all the echoes originat-

ing inside each of the space cells presently illuminated by the radar.

The results of these integrations are then sent into the corresponding

storage cells. An independent integration should be performed for as

many space cells as are crossed by the antenna beam in the predelimited

volume, therefore several pages, called integrating pages TN, will imple-

ment this FSM. These pages circulate in appropriate synchronism with

the radar in order to receive directly the proper echoes.
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Another FSM provides the storage and data manipulation related to

the storage cells. A tri-dimensional array of cells is prescribed,

therefore a corresponding array of pages, called cell pages CE, are

performing this FSM. These pages sometimes will be at rest, simply

capable of receiving data from the IN pages; other times they will

be scanned in each of the r, t, h directions.

Then another FSM is used to collect and manipulate the results

from the cross-correlation in each column and row of the CE oaee arrav.

This FSM will be implemented by pages, called terminal pages TE, in

rt, hr, and ht planes.

Finally, an FSM will provide the accumulation of the output of

each group of terminal pages. This FSM will be implemented by three

pages AC, one for the terminal pages of the rt plane, one for those of

the hr plane, and one for those of the ht plane.

So far the strategy of an ensemble of abstract machines has been

loosely outlined. Now a precise description of these machines has to

be made, following figures 2 and 4. We think of these machines as

abstract entities, formed of states and transitions. We visualize

these machines in the form of state diagrams, representing states bv

circles and transitions by arrows as indicated in Section 2.5.3.2.

A notation system for describing functions F and T has not yet developed

in an organized form, therefore a mixture, of commonly used notations

will be used as needed. Each state (circle) will have up to four fields

for the description of the four primary elements T, F, T, and R. In

the following description of the FSMs, because they are made a posteriori

after having known the solution, there is no sharp distinction between
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step 1 and 2 of the programing: in other words, the FSMs are devised

having already in mind a machine of the type of the CPL 1 processor.

FSM IN. This machine starts in state 0, Fig. 14, where the present

coordinates rth, the present video sample, and a 1 are acquired as

three variables y (Fig. 3) labeled A, C and D (Fig. 8). The co-

ordinates rth are the cartesian coordinates (expressed as one word)

of the point presently illuminated by the radar,with a resolution that

determines the size of the cells to be considered. Then the FSM

transfers to state 1 without movement (transition s in Table 2). In

state 1, further samples are accumulated in F> and units in C. After

each accumulation, the present coordinates are compared with those

stored in A: as soon as these coordinates differ, the FSM transfers

to state 2. In state 2, the sample accumulation is divided by the

number of accumulations, range-normalized, and routed to the cell CE

that has coordinates rth equal to those in A. Then the FSM acquires

new coordinates in state 0 and continues as described. With the imple-

mentation given in Fig. 14 only one page IN is necessary for averaging

the video samples and transferring data to the CE pages; the sequence

of IN pages of Fig. 13 refers to a different implementation of this

FSM.

FSM CE. In state 0 of this machine, Fig. 15, the pages are resting in

the memory and are capable only of data acquisition as indicated.

At the end of the first and second radar scans, the pages go to state 1

by a forced transition (e in Table 2) produced by FSM CO. In state 1

the received data are normalized and transferred to a different y.
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For the execution of the cross-correlations, each row and column

of pages CE is circulated separately, under the control of FST1 CO and

transferred to state 2 by a forced transition. One of the echo nrofiles

is transferred into C (state 2) and shifted by means of interchange

between adjacent pages (state 3). In state 4 the summation of products

is produced in ft (Fig. 4). State 5 reverses the direction of relative
5

movement of the echo profiles, which is produced for k. cell steps

either side. State 6 restores the original allocation of the two pro-

files.

FSM TE. Pages TE are at the end of the rows and columns of pages CE,

therefore , when in state 2 (Fig. 16) they acquire the content of D in

fi and compare it with the content of A ; simultaneously, B is increased
s

by one . Every time D is larger than A, D, and B substitute A and

C respectively (state 3). In this way the As for the maximum of the

cross-correlation (Fig. 12) is acquired. Pages TE go to state 2 (and

connected states) 2k times in synchronism with the production of sums

of products on the part of pages CE. Then the pages go to state A, where

the mean velocity is determined, accumulated into the storage £>. , and
S

routed to the output. Because the several cross-correlations are pro-

duced serially, only one page TE would suffice, but here an entire

surface of pages Is maintained in circulation for possible

further processing on the elementary wind components. Also a more

precise determination of As is to be developed with an interpolation

algorithm.
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FSM AC. This machine consists of only one state, Fig. 17, where the

accumulation from the TK pages is acquired and routed to the output.

FSM CO. The main tasks of this machine are the control of the pre-

vious FSMs and the production of a magnetic tape record containing the

output data. In state 0, Fig. 18, the data acquisition is started by

means of a forced transition to state 0 for pages IN. In state 1 the

FSM waits for the completion of the radar scanning. In state 2 the

cell pages are forced to state 1 ;and A, used as an index, provides for

the acquisition during two scans. State 3 provides for the starting

of the cross-correlatioh of a particular column or row of the CE pages

by means of the variable coordinates a,6. In state 4 one of the co-

ordinates is increased by 1, and the cross-correlation starts for

another column or row. After m of these, in state 5 the other co-

ordinate is increased by 1, and the series of cross-correlation is

restarted. After mxm cross-correlations, a page AC is activated

(state 6) and the coordinates for selections of pages CE and TE are

rotated, in order to change the direction of the cross-correlations.

Finally, in state 7, a record is produced and all the pages ended.

The entire system is composed of 25 states. If cards of the

type of Fig. 11 are used, the entire program can be described in three

.cards, including a supervisor program for allocating in space the

volume considered and prescribing the schedule of operation.
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Fig. 1A - State diagram of the FSM IN

Fig. 15 - State diagram of the FSM CE

- 60 -



Fig. 16 - State diagram of the FSM TE

Fig. 17 - State diagram of the FSM AC

- 61 -



Fig. 18 - State diagram of the FSM CO
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3. PLAN FOR THE NEXT QUARTERLY PERIOD

Following the plan outlined in Section 3 of the second Quarterly

Report, the following three remaining tasks will be carried out in the

fourth quarterly period.

1. Specifications for a computer architecture capable .of executing pro-

cesses directly in the form of FSMs in which they are modeled by the

user. An outline of such an architecture has been given in Section 2.4

of the present report. A discussion, and a more detailed description

will be given in accordance with the abstract models described in

Section 2.3, and the programing language discussed in Section 2.5.

2. Comparative evaluation of programs. In the early age of computers,

when people were looking at this new creature with fresh minds, von Neu-

mann conjectured that for complex processes the description of an

automaton that performs the process could be simpler than a symbolic

description of the process itself. lie was envisioning a mathematical

theory of automata that could clarify this issue also. The work re-

mained uncompleted, and the issue did not receive any further

attention.

The results obtained with the restructurable processor analyzed

in the present work revives the interest in the von Neumann conjecture.

In the absence of mathematical means for evaluating the relative con-

venience of the two approaches for describing a process, we can analyze

actual programs written in accordance with the two different approaches.

A set of test programs of different nature, written for a CPL

system, have been selected. Programs for the same processes, but
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written in conventional programing languages, are under preparation.

The comparative analysis of these two sets of programs should provide

information on the relative practical advantages and disadvantage of

the two approaches.

3. Compilation of the Final Report. The entire analysis of the system,

which has been gradually exposed in the Quarterly Reports, will be

compiled and edited in a consistent form, including the results of the

last quarterly period.
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