N72. 26 TlC

010021-F

FINAL REPORT

FOR
NASA Marshall Space Flight Center
CONTRACT NAS 8-26929

CASE FILE COPY

CONJUGATE GRADIENT OPTIMIZATION PROGRAMS
FOR SHUTTLE REENTRY
by

W. F. Powers, R. A. Jacobson, and D. A. Leonard

Department of Aerospace Engineering
The University of Michigan
Ann Arbor, Michigan 48104

FINAL REPORT

FOR

NASA Marshall Space Flight Center
CONTRACT NAS 8-26929

CONJUGATE GRADIENT OPTIMIZATION PROGRAMS FOR SHUTTLE REENTRY

by

W. F. Powers, R. A. Jacobson, and D. A. Leonard

Abstract

Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase I Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed and altitude are included in the performance index. The Phase II Program is developed in an Euler angle system for a nonrotating spherical earth, and crossrange, downrange, total heating, maximum heat rate, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.

TABLE OF CONTENTS

Page
Abstract i
Chapter 1 Introduction 1
Chapter 2 The Conjugate Gradient Method 4
2.1 Finite-Dimensional Conjugate Gradient Method 4
2.2 Infinite-Dimensional Conjugate Gradient: Unconstrained 10
2.3 Infinite-Dimensional Conjugate Gradient: Constrained 16
Chapter 3 Phase I Program 19
3.1 Basic Description 19
3.2 Subroutine Map 21
3.3 Subroutine Description 22
3.4 Phase I Program Notes 24
Chapter 4 Phase II Program 25
4.1 Basic Description 25
4.2 Subroutine Map 27
4.3 Subroutine Descriptions 28
4.4 Phase II Program Notes 30
Chapter 5 Conclusions and Recommendations 31
5.1 Summary 31
5.2 Conclusions and Recommendations 31
References 34
Appendix A Listing of Phase I Program 36
Appendix B Listing of Phase II Program 67

CHAPTER 1 INTRODUCTION

The forthcoming Space Shuttle Program will involve vehicles which possess both rocket and aircraft characteristics. Because of the interplay of gravitational, thrusting, and aerodynamic forces, the trajectories that the vehicle will fly are more complicated than the trajectories of the SaturnApollo class. Thus, the need exists for efficient, reliable shuttle trajectory optimization programs.

This report describes two computer programs which were generated for shuttle reentry. During the time period of this contract, the national emphasis shifted from a small, low-crossrange, straight-wing orbiter to a larger, high-crossrange, delta-wing orbiter. This definitely influences the reentry trajectory in that the straight-wing trajectory usually encounters the 3 g deceleration constraint whereas the delta-wing trajectory rarely (if ever) encounters the 3 g -constraint but instead has high heat-rate problems. Thus, instead of making a large cumbersome program for all possible vehicles, two programs were developed. Since the Phase II-deck was developed after the Phase I-deck, it has the advantage of some improvements learned in the development of the Phase I-program.

It has been noted by numerous investigators in the last two years that shooting (or initial Lagrange multiplier guessing) iteration schemes have been almost useless in determining shuttle reentry trajectories. There exist other techniques which might be applicable to the problem and they are briefly described below:

1) Classical Gradient Method: This method iterates on the total control function and does not require any second-order information (i.e., second-derivatives of the Hamiltonian). This method is well-known for having excellent properties far away from the solution, but slow convergence near the solution. With respect to boundary conditions, either penalty functions ${ }^{1^{*}}$ or projections ${ }^{2}$ may

[^0]be employed. A modified gradient projection approach for shuttle reentry is under development at TRW-Systems ${ }^{3}$.
2) Second-Order Gradient Method: This method is essentially a function space Newton's method which iterates on the total control function and requires full second-order information. The method is described in Ref.4, and a shuttle-version of the program is in use at NASA-Manned Spacecraft Center ${ }^{5}$. It has been found that although this program obtains accurate trajectories and control histories, the deck is difficult to work with and modify, and requires extremely long computer time.
3) Conjugate Gradient ${ }^{6}$ and Function-Space Davidon ${ }^{7}$ Methods: These methods iterate on the total control function and do not require any second-order information. These methods are mainly motivated by deficiencies in the classical gradient and second-order gradient (or function space Newton) methods. That is, they require only first-order information and may have better convergence characteristics near the minimum than the classical gradient method. This study involved the generation of two conjugate gradient programs. It appears that the function-space Davidon method needs further analysis before it should be employed in a shuttle computer program.
4) Parameter Optimization Methods: In the last decade a number of efficient parameter optimization techniques have been popularized, e.g., conjugate gradient (CG), Davidon-Fletcher-Powell (DFP) variable metric. These schemes have proven their worth, and the DFP method is probably the most popular parameter optimization scheme in use today. Both the CG and DFP methods are available in Fortran subroutines ${ }^{8}$. The DFP method has been applied successfully to shuttle optimization by Johnson and Kamm ${ }^{9}$.10. They represent the control variables by sequences of straight line segments and then use DFP to iterate for the optimal slopes of the segments subject to continuity and inequality constraints. By computing their gradients numerically, the deck is easily modified to
include additional parameters, different vehicles, and various missions. Thus, for design purposes, this is a very efficient approach.

From the discussion above of the various approaches to shuttle optimization, it would appear at first glance that parameter optimization is the superior iterative procedure. For preliminary design this is probably the case. However, the parameter optimization approach requires either prior knowledge of approximate optimal control histories or an undeterminable amount of working time devoted to selecting workable but accurate representations for the controls. In reentry this may be especially difficult because a change in terminal boundary conditions may cause a completely different bank angle control, and in many cases the bank angle wo uld require a large number of segments to approximate it adequately. Thus, the parameter optimization approach is by no means automatic or even desirable in some cases.

Because of the deficiencies noted above for the parameter optimization approach, the need still exists for a relatively flexible and efficient function space technique. At the present time it appears that both the projected gradient and the conjugate gradient methods are the leading candidates for such a scheme, and which scheme is best is probably problem dependent. For example, the projected gradient technique is probably best for problems which are strongly influenced by boundary conditions and do not contain singular arcs. The conjugate gradient technique is probably best for problems with singular arcs and/or problems which exhibit slow convergence near the minimum with a standard gradient technique. However, not as much work has been done with the conjugate gradient technique as the projected gradient technique, so improvements in the conjugate gradient approach are occurring more frequently than in the projected gradient method. It should be noted that the conjugate gradient and gradient projection tech nique have been combined ${ }^{11}$, but the results were not promising. However, there may exist more efficient ways of combining the two techniques, and, thus, a "projected conjugate gradient" technique may be feasible.

CHAPTER 2

THE CONJUGATE GRADIENT METHOD

In this chapter, a tutorial treatment of the conjugate gradient method will be given in both finite- and infinite-dimensional spaces. The methods for treating inequality constraints in the programs are discussed, also. 2. 1 Finite-Dimensional Conjugate Gradient Method

Consider the problem of minimizing

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right) \tag{2.1}
\end{equation*}
$$

where $x \equiv\left(x_{1}, \ldots, x_{n}\right)$ is an element of a bounded, connected, open subset of R^{n} and $f \in C^{1}$. If equality and/or inequality constraints are present, it is assumed that they are incorporated into (2.1) by means of penalty functions.

Before we develop the algorithm, let us consider a few general remarks about the minimization of a quadratic function. Consider

$$
\begin{equation*}
q \equiv x^{T} A x \tag{2.2}
\end{equation*}
$$

where $x \in R^{n}, A$ is a positive definite matrix. The contours of constant $q-$ values are n-dimensional ellipsoids centered on the global minimum $x=0$. In 2-space, the eccentricity of the elliptical contours is dependent upon the relative magnitudes of the eigenvalues of A; the contours are circular if the eigenvalues are equal and the contours become more eccentric as the ratio of the eigenvalues increases from one. Of course, similar results are true in n -space.

If the contours of (2.2) are noncircular, the gradient method (with a one-dimensional search) will take an infinite number of iterates to converge to the minimum if the method does not converge on the first iterate. (If the initial guess is on a principal axis of the n-dimensional ellipsoid, then a single gradient step results in $x=0$.) On the other hand, no matter what the eigenvalues are, Newton's method will converge in one iterate.

The reason why the quadratic problem is of interest is that in the terminal stages of an iterative minimization of many nonlinear functions, the
the function may be well-approximated by a second-order expansion. Thus, an efficient algorithm for general functions should have good convergence characteristics for quadratic functions. As noted above for quadratic functions, Newton's method is excellent in all cases, while the gradient method is strongly problem dependent. However, Newton's method requires the computation of second-order information while the gradient method requires only first-order. In addition, for general nonlinear functions, Newton's method may diverge whereas the gradient method will, at least, never result in an iterate which increases the quantity to be minimized.

Because of the properties discussed above, researchers in the 1950's attempted to develop techniques which combined the advantages of the gradient and Newton methods while minimizing their disadvantages. With respect to the quadratic minimization problem, two techniques with the following properties were developed: (i) the methods are stable, (ii) the minimum is obtained in at most n iterations, (iii) no second-order information is required. The methods are the conjugate gradient method ${ }^{12}$ and the Davidon variable metric method ${ }^{13}$ (or Davidon-Fletcher-Powell ${ }^{14}$ method).

With respect to general nonlinear functions, the methods retain properties (i) and (ii) mentioned above. For certain classes of functions, rates of convergence are known for all of the methods mentioned except the DFP method. These show that when the methods work, Newton should be faster than the CG method, and the CG method should be faster than the gradient method. However, Newton's method does not possess either property (i) or (ii) mentioned above.

The CG formula will now be stated, the sequence of steps required in the development of the formula will be outlined, and then the steps will be developed in detail. The CG algorithm is as follows:
(1) Guess x_{0}. Define $g \equiv f_{x}$.
(2) $p_{0} \equiv g_{0}, p_{J+1}=g_{J+1}+p_{J}\left(\frac{g_{J+1}^{T} g_{J+1}}{g_{J}^{T} g_{J}}\right) \quad(J=0,1, \ldots)$.
(3) $x_{J+1}=x_{J}-\alpha_{J} p_{J} . \quad\left(\alpha_{J} \geqq 0\right)$

In the formula above, x_{J} is an n-vector, g_{J} is the n-vector gradient, p_{J} is the n-vector search direction, and α_{J} is a scalar.

The formula development involves the following sequence of steps:
(A) Assume $x_{J+1}=x_{J}-\alpha_{J} p_{J}$ with $p_{J}=g_{J}+b_{J}$, and devise a means for defining b_{J}.
(B) Show that $\mathrm{g}_{\mathrm{J}} \mathrm{T}_{\mathrm{b}}=0$ implies the method will be stable.
(C) Show that the largest decrease in f is obtained if $g_{J+1}^{T} p_{J}=0$.
(D) Note that (B) and $b_{J} \equiv C_{J} p_{J-1}$ imply (C), where C_{J} is a constant to be defined.
(E) Show that finite convergence for the quadratic function $f=x^{T} A x$ is guaranteed if $p_{I}^{T} A p_{J}=0(I \neq J)$, i.e., the search directions are "A-conjugate."
(F) Combine all of the above steps to show that

$$
\begin{equation*}
\left.\left.\left.b_{J}=k g_{J}, g_{J}\right\rangle /<g_{J-1}, g_{J-1}\right\rangle\right) p_{J-1}, \tag{2.5}
\end{equation*}
$$

where $\left\langle g_{J}, g_{J}\right\rangle \equiv g_{J}^{T} g_{J}$ is an inner product in R^{n}. The inner product notation will be used from here on instead of the transpose notation.

Let us now develop the results noted in steps (A) to (F). First, we assume a form for the update formula

$$
\begin{align*}
& x_{J+1}=x_{J}-\alpha_{J} p_{J} \tag{2.6}\\
& p_{J}=g_{J}+b_{J} \tag{2.7}
\end{align*}
$$

The motivation for this form is that the method is basically a gradient method with a correction vector (i.e., b_{J}) which, hopefully, will aid the convergence characteristics of the gradient method in the neighborhood of the solution. The only undefined quantities in Eqs (2.6) and (2.7) are α_{J} and b_{J}. The scalar α_{J} will be determined by a l-D search in each iteration, so the only quantity which must be characterized is the n-vector b_{J}.

PROPERTY 1: If

$$
\begin{equation*}
\left\langle g_{J}, b_{J}\right\rangle=0 \tag{2.8}
\end{equation*}
$$

then the method is stable.
Proof: Expand $f\left(x_{J+1}\right)$ about $f\left(x_{J}\right)$ to first-order:

$$
\begin{align*}
& f\left(x_{J+1}\right)=f\left(x_{J}\right)+\left\langle g\left(x_{J}\right), x_{J+1}-x_{J}\right\rangle \\
& \left.f\left(x_{J+1}\right)=f\left(x_{J}\right)-\alpha_{J}\left\langle g_{J}, g_{J}\right\rangle-\alpha_{J}<g_{J}, b_{J}\right\rangle \tag{2.9}
\end{align*}
$$

For α_{J} small, a sufficient condition for $f\left(x_{J+1}\right)$ to be less than or equal to $\mathrm{f}\left(\mathrm{x}_{\mathrm{J}}\right)$ is $\left\langle\mathrm{g}_{\mathrm{J}}, \mathrm{b}_{\mathrm{J}}\right\rangle=0$.

Note that Property 1 is a sufficient condition for stability. Thus, there exist numerous possibilities for techniques which could also be stable; one need only insure that the interaction of the two terms on the right-hand side of Eq. (2.9) be negative (when the first-order expansion is valid).

PROPERTY 2: Let α_{J} be the value of the search parameter which minimizes $f\left(\mathrm{x}_{J}+\alpha \mathrm{p}_{J}\right)$. Then,

$$
\begin{equation*}
\left\langle\mathrm{g}_{\mathrm{J}+1}, \mathrm{p}_{\mathrm{J}}\right\rangle=0 . \tag{2,10}
\end{equation*}
$$

Proof: By definition of α_{J} :

$$
\left.\frac{\mathrm{df}}{\mathrm{~d} \alpha}\right|_{\alpha_{\mathrm{J}}}=\left[\frac{\partial \mathrm{f}^{\mathrm{T}}}{\partial \mathrm{x}_{\mathrm{J}+1}} \frac{\partial \mathrm{x}_{\mathrm{J}+1}}{\partial \alpha}\right]_{\alpha_{\mathrm{J}}}=\left\langle\mathrm{g}_{\mathrm{J}+1}, \mathrm{p}_{\mathrm{J}}\right\rangle=0 .
$$

PROPERTY 3:
If Eq. (2.8) holds and

$$
\begin{equation*}
b_{J}=C_{J} p_{J-1} \quad(J=1,2, \ldots) \tag{2.11}
\end{equation*}
$$

(where $C_{J} \neq 0$ is a scalar to be defined), then Eq. (2.10) is satisfied.
Proof: By Eq. (2.8):

$$
\left\langle\mathrm{g}_{\mathrm{J}+1}, \mathrm{~b}_{\mathrm{J}+1}\right\rangle=0 \Rightarrow\left\langle\mathrm{~g}_{\mathrm{J}+1}, \mathrm{C}_{\mathrm{J}+1} \mathrm{p}_{\mathrm{J}}\right\rangle=0
$$

Thus, Eq. (2.10) is satisfied when $\mathrm{C}_{\mathrm{J}+1} \neq 0$.
Because of Property 3, we shall assume that the correction vector, b_{J}, is linearly related to the previous search direction, i.e., we shall assume that b_{J} is defined by (2.11). In this case, the only thing that remains is the characterization of the constant C_{J}.

PROI'SRTY 4: Consider $f=x$ ' Ax , where A is positive definite. If the search directions are A-conjugate (i.e., $p_{I}^{T} A p_{J}=0, I \neq J$) and Eqs. (2.6) and (2.10) hold (or, equivalently, (2.6), (2.8), (2.11)), then the global minimum $x=0$ of f is obtained in at most n iterations.
Proof: At the unique global minimum of f, the gradient $g=A x$ must equal zero. If in the application of the algorithm either g_{0}, g_{1}, \ldots or $g_{n-1}=0$, then the property is proved. Thus, assume $g_{0}, \ldots, g_{n-1} \neq 0$. At each iterate, we have

$$
\begin{equation*}
g_{J}=A x_{J} \tag{2.12}
\end{equation*}
$$

By repeated use of Eq. (2.6) we have:

$$
x_{n}=x_{J+1}+\sum_{i=J+1}^{n-1} \alpha_{i} p_{i}
$$

for any $J \in\{0, \ldots, n-2\}$. From Eq. (2.11):

$$
\begin{equation*}
g_{n}=g_{J+1}+\sum_{i=J+1}^{n-1} \alpha_{i} A p_{i} \tag{2,13}
\end{equation*}
$$

The inner product of g_{n} and p_{J} is

$$
\begin{equation*}
\left\langle g_{n}, p_{J}\right\rangle=\left\langle g_{J+1}, p_{J}\right\rangle+\sum_{i=J+1}^{n-1} \alpha_{i}\left\langle p_{i}, A p_{J}\right\rangle \tag{2.14}
\end{equation*}
$$

The first term in this equation vanishes because of Eq. (2.10), and the summation vanishes because of the A-conjugacy property. Thus,

$$
\begin{equation*}
\left\langle g_{n}, p_{J}\right\rangle=0 . \quad(J=0,1, \ldots, n-2) \tag{2.15}
\end{equation*}
$$

By Eq. (2.10) we also have

$$
\begin{equation*}
\left\langle g_{n}, p_{n-1}\right\rangle=0 \tag{2.16}
\end{equation*}
$$

Equations (2.15) and (2.16) may be written in matrix form as

$$
\begin{equation*}
\left[p_{0} p_{1} \cdots p_{n-1}\right] g_{n}=0 \tag{2.17}
\end{equation*}
$$

It can be shown that $\mathrm{n} A$-conjugate vectors are linearly independent (note that A-conjugate is a generalization of orthogonality), and thus, Eq. (2.17) implies

$$
\begin{equation*}
g_{\mathrm{n}}=0 \tag{2,18}
\end{equation*}
$$

We now have enough information to define the constant C_{J} in Eq. (2.11). PROPERTY 5: Consider $f=x^{T} A x$, where A is positive definite. If: the update formula is defined by Eqs. (2.6) and (2.11), the search directions are A-conjugate, and α_{J} and C_{J} are chosen to give the maximum decrease in the function f, then

$$
\begin{equation*}
C_{J}=\left\langle g_{J}, g_{J}\right\rangle /\left\langle g_{J-1}, g_{J-1}\right\rangle \tag{2.19}
\end{equation*}
$$

Proof: At a given iteration f is given by

$$
\mathrm{f}\left[\mathrm{x}_{\mathrm{J}}+\alpha_{\mathrm{J}} \mathrm{~g}_{\mathrm{J}}+\alpha_{\mathrm{J}} \mathrm{C}_{\mathrm{J}} \mathrm{p}_{\mathrm{J}-1}\right]
$$

At a minimum of f with respect to α_{J}, C_{J} :

$$
\begin{align*}
& \mathrm{f}_{\alpha_{\mathrm{J}}}=0 \Rightarrow\left\langle\mathrm{~g}_{\mathrm{J}+1}, \mathrm{p}_{\mathrm{J}}\right\rangle=0 \tag{2.20}\\
& \mathrm{f}_{\mathrm{C}_{\mathrm{J}}}=0 \Rightarrow\left\langle\mathrm{~g}_{\mathrm{J}+1}, \mathrm{p}_{\mathrm{J}-1}\right\rangle=0 . \tag{2.21}
\end{align*}
$$

Expansion of Eq. (2.20), noting $g_{J+1}=g_{J}+\alpha_{J} A p_{J}, p_{J}=g_{J}+C_{J} p_{J-1}$, gives

$$
\left\langle\mathrm{g}_{\mathrm{J}}, \mathrm{~g}_{\mathrm{J}}\right\rangle+\mathrm{C}_{J}\left\langle\mathrm{p}_{\mathrm{J}-1}, \mathrm{~g}_{J}\right\rangle+\alpha_{J}\left\langle\mathrm{p}_{\mathrm{J}}, \mathrm{Ap}_{J}\right\rangle=0,
$$

which implies

$$
\begin{equation*}
\alpha_{J}=-\left\langle g_{J}, g_{J}>/\left\langle p_{J}, A p_{J}\right\rangle\right. \tag{2.22}
\end{equation*}
$$

Before we obtain the desired result, note that Eqs. (2.20) and (2.21) imply

$$
\begin{equation*}
\left\langle\mathrm{g}_{\mathrm{J}+1}, \mathrm{~g}_{\mathrm{J}}\right\rangle=0 \tag{2.23}
\end{equation*}
$$

To obtain the expression for C_{J}, we first form the inner product of $g_{J}=p_{J}-C_{J} p_{J-1}$ with $A p_{J-1}$:

$$
\begin{equation*}
\left\langle\mathrm{g}_{\mathrm{J}}, \mathrm{Ap}_{\mathrm{J}-1}\right\rangle=\left\langle\mathrm{p}_{\mathrm{J}}, \mathrm{Ap}_{\mathrm{J}-1}\right\rangle-\mathrm{C}_{\mathrm{J}}\left\langle\mathrm{p}_{\mathrm{J}-1}, \mathrm{Ap}_{\mathrm{J}-1}\right\rangle . \tag{2.24}
\end{equation*}
$$

The first inner product on the right vanishes because of A-conjugacy. The desired result is obtained by substituting $\left(g_{J}-g_{J-1}\right) / \alpha_{J-1}$ for $A p_{J-1}$ on the left and $\left\langle\mathrm{g}_{\mathrm{J}-1}, \mathrm{~g}_{\mathrm{J}-1}>/ \alpha_{\mathrm{J}-1}\right.$ for $-<\mathrm{p}_{\mathrm{J}-1}, A p_{\mathrm{J}-1}>$ on the right:

$$
<\mathrm{g}_{\mathrm{J}}, \mathrm{~g}_{\mathrm{J}}>/ \alpha_{\mathrm{J}-1}-<\mathrm{g}_{\mathrm{J}}, \mathrm{~g}_{\mathrm{J}-1}>/ \alpha_{\mathrm{J}-1}=\mathrm{C}_{\mathrm{J}}<\mathrm{g}_{\mathrm{J}-1}, \mathrm{~g}_{\mathrm{J}-1}>/ \alpha_{\mathrm{J}-1}
$$

or,

$$
C_{J}=\left\langle g_{J}, g_{J}\right\rangle /\left\langle g_{J-1}, g_{J-1}\right\rangle
$$

As noted previously, the algorithm defined above, along with the Davidon-Fletcher-Powell method, are available as Fortran subroutines in Ref. 8.
2. 2 Infinite-Dimensional Conjugate Gradient: Unconstrained

In this chapter the conjugate gradient method is treated separately in finite- and infinite-dimensional spaces because of applications. However, one could describe the method in a Hilbert space setting and, thus, cover both the finite- and infinite-dimensional cases in one development. Such is the approach taken in Refs. 15, 16, and 17.

The main references for Sections 2.2 and 2.3 are Refs. 6 and 18. In this section we shall consider problems which do not possess control or state variable inequality constraints; these will be included in the next section.

The infinite-dimensional problem which we are mainly concerned with is the following:

BASIC PROBLEM: Determine the control $u *(t), t \in\left[t_{0}, t_{f}\right]$, which minimizes:

$$
\begin{equation*}
J[u]=\tilde{\phi}\left(t_{f}, x_{f}\right)+\int_{t_{0}}^{t_{f}} L(t, x, u) d t \tag{2.25}
\end{equation*}
$$

subject to:

$$
\begin{align*}
& \dot{x}=f(t, x, u) \quad, \quad x\left(t_{0}\right)=x_{0} \tag{2.26}\\
& \psi\left(t_{f}, x_{f}\right)=0 \quad, \quad(p \text {-vector } ; p \leqq n+1) \tag{2.27}
\end{align*}
$$

where x is an n-vector, u is an m-vector.
The algorithms in this report treat all of the terminal conditions (i.e., Eq. (2.27)) except one by the method of penalty functions; the remaining condition is employed as a stopping condition. Without loss of generality,
assume that

$$
\psi\left(t_{f}, x_{f}\right) \equiv\left[\begin{array}{c}
x_{1 f}(t)-x_{1 f} \tag{2.28}\\
\psi_{2}\left(t_{f}, x_{2 f}, \ldots, x_{n f}\right) \\
\cdot \\
\cdot \\
\cdot \\
\psi_{p}\left(t_{f}, x_{2 f}, \ldots, x_{n f}\right)
\end{array}\right]=0
$$

and that $x_{1}(t)$ is a variable which: (i) cannot reach the value $x_{1 f}$ until the terminal portion of the trajectory (e.g., a specified altitude or Mach number in reentry), (ii) will always be reached in a reasonable time, and (iii) will probably have a nonzero derivative at t_{f}. In this case, $x_{1}\left(t_{f}\right)=x_{1 f}$ is a suitable stopping condition for the iterations.

Define

$$
\begin{equation*}
\phi\left(t_{f}, x_{f}\right) \equiv \widetilde{\phi}\left(t_{f}, x_{f}\right)+\sum_{i=2}^{p} P_{i-1} \psi_{i}\left(t_{f}, x_{f}\right)^{2} \tag{2.29}
\end{equation*}
$$

where it is assumed, also, that $\widetilde{\phi}\left(t_{f}, x_{f}\right)$ does not depend upon $x_{1 f}$ (this is the usual case in trajectory analysis; the assumption is not restrictive, however) and the

$$
\begin{equation*}
P_{i}>0 \quad(i=1, \ldots, p-1) \tag{2.30}
\end{equation*}
$$

are selected by the investigator. With the definitions (2.28) and (2.29) we have the following problem:

BASIC PROBLEM WITH PENALTY FUNCTIONS: Determine the control $u *(t), t \in\left[t_{0}, t_{f}\right]$, which minimizes

$$
\begin{equation*}
J[u]=\phi\left(t_{f}, x_{f}\right)+\int_{t_{0}}^{t_{f}} L(t, x, u) d t \tag{2.31}
\end{equation*}
$$

subject to:

$$
\begin{align*}
& \dot{x}=f(t, x, u), \quad x\left(t_{0}\right)=x_{0} \tag{2.32}\\
& x_{1}\left(t_{f}\right)=x_{1 f} .
\end{align*}
$$

(Note: t_{f} is usually not specified.)

Before we list the formulas in the conjugate gradient method, we shall define a Hamiltonian function and adjoint variables which are useful in any function space iteration scheme. First, define

$$
\begin{equation*}
H \equiv L(t, x, u)+\lambda^{T} f(t, x, u) \tag{2.34}
\end{equation*}
$$

where the n-vector $\lambda(t)$ will be characterized later. With this definition we have:

$$
\begin{equation*}
J[u]=\phi\left(t_{f}, x_{f}\right)+\int_{t_{0}}^{t_{f}}\left[H(t, x, u, \lambda)-\lambda^{T} \dot{x}\right] d t \tag{2.35}
\end{equation*}
$$

where the performance index (2.31) has been augmented to include $\int_{t_{0}}^{t_{f}} \lambda_{(f-\dot{x})} d t$.
Let $u^{(\theta)}(t)$ be an initial control estimate, and integrate $\dot{x}=f\left[t, x, u^{(0)}(t)\right]$ forward from $x\left(t_{0}\right)=x_{0}$ to form a corresponding trajectory, $x^{(q)}(t)$. Suppose there exists a vector $\lambda^{(0)}(t)$ and define

$$
\begin{align*}
& u^{(1)}(t)=u^{(0)}(t)+\delta u(t) \tag{2.36}\\
& x^{(1)}(t)=x^{(1)}(t)+\delta x(t) \tag{2.37}\\
& t_{f}^{(1)}=t_{f}^{(0)}+d t_{f} \tag{2.38}
\end{align*}
$$

Expand $J\left[u^{(1)}\right]$ about $J\left[u^{(0)}\right]$ to first-order:

$$
\begin{align*}
J\left[u^{(1)}\right]= & J\left[u^{(0)}\right]+\phi_{t_{f}}^{(0)} d t_{f}+\sum_{i=2}^{n} \phi_{x_{i f}}^{(0)} d x_{i f} \\
& +\left[H\left(t_{f}^{(0)}\right)-\lambda^{(0)} T_{\left(t_{f}^{(0)}\right)}^{\left(\mathbf{x}^{(0)}\right.}{\left.\left(t_{f}^{(0)}\right)\right] d t_{f}}^{t_{0}^{(0)}}\right. \\
& +\int_{t_{0}}^{0}\left[H_{x}^{(0) T} \delta x+H_{u}^{(0) T} \delta u-\lambda^{(0) T} \delta \dot{x}\right] d t \tag{2.39}
\end{align*}
$$

Integration by parts of the third term in the integrand gives

$$
\begin{align*}
\Delta J[\delta u]=J\left[u^{(1)}\right]-J\left[u^{(0)}\right]= & \left(\phi_{t_{f}^{(0)}}^{(0)}+H^{(0)}\right)_{t_{f}^{(0)}} d t_{f}-\lambda_{1}^{(0)}\left(t_{f}^{(0)}\right) d x_{1 f} \\
& +\sum_{i=2}^{n}\left(\phi_{x_{i f}}^{(0)}-\lambda_{i}^{(0)}\right)_{t_{f}^{(0)}}^{(0) d x_{i f}} \\
& +\int_{t_{0}}^{t_{f}^{(0)}}\left[\left(H_{x}^{(0)}+\dot{\lambda}^{(0)}\right)^{T} \delta x+H_{u}^{(0)}{ }^{T} \delta u\right] d t \tag{2.40}
\end{align*}
$$

subject to:

$$
\begin{equation*}
\mathrm{d} \mathbf{x}_{1 \mathrm{f}}=0 \tag{2.41}
\end{equation*}
$$

We now characterize $\lambda^{(0)}(t)$ so that a stable iterative algorithm is defined.

$$
\begin{array}{ll}
\text { SPECIFY: } & \lambda_{i}^{(0)}\left(t_{f}^{(0)}\right) \equiv \phi_{x_{i f}}^{(0)} \quad(i=2, \ldots, n) \\
& \lambda_{1}^{(0)}\left(t_{f}^{(0)}\right) \equiv-\left(\phi_{t_{f}}^{(0)}+H^{(0)}+\sum_{i=2}^{n} \lambda_{i}^{(0)} \dot{x}_{i}^{(0)}\right)_{t_{f}^{(0)}} / \dot{x}_{1}^{(0)}\left(t_{f}^{(0)}\right) \\
& \dot{\lambda}^{(0)}(t) \equiv-H_{x}\left[t, x^{(0)}(t), u^{(0)}(t), \lambda^{(0)}(t)\right] \tag{2.44}
\end{array}
$$

Definitions (2.42), (2.43), (2.44) uniquely define the vector $\lambda^{(0)}(\mathrm{t})$ and it is formed by a backward integration.

Substitution of Eqs. (2.41)-(2.44) into Eq. (2.40) gives

$$
\begin{equation*}
\Delta J[\delta u]=\int_{t_{0}}^{t_{f}} H_{u}^{(0)} \delta u d t \tag{2.45}
\end{equation*}
$$

The quantity $H_{u}^{(0)}(\mathrm{t})$ is the gradient in function space for this iteration, and the gradient method is defined by

$$
\begin{equation*}
u^{(\mathrm{J}+1)}(\mathrm{t})=u^{(\mathrm{J})}(\mathrm{t})-\alpha_{\mathrm{J}} \mathrm{H}_{\mathrm{u}}^{(\mathrm{J})}(\mathrm{t}) \tag{2.46}
\end{equation*}
$$

(Note that if $t_{f}^{(J+1)}>t_{f}^{(J)}$, then a scheme must be devised to define $u^{(J+1)}(t)$ on the interval $\left[t_{f}^{(J)}, t_{f}^{f}(J+1)\right]$, but there are numerous ways of doing this.) As with the parameter optimization problem, there exist numerous techniques which result in a stable method, e.g., one need only guarantee that the first-order expansion term dominate the expansion for $J\left[u^{(J+1)}\right]$ and that δu be chosen in such a way that

$$
\begin{equation*}
\int_{t_{0}}^{t_{f}} H_{u}^{(0)}(t) \delta u(t) \leqq 0 \tag{2.47}
\end{equation*}
$$

In analogy with parameter optimization, a possible choice for δu is

$$
\begin{equation*}
\delta u^{(J)}(t)=-\alpha_{J}\left[H_{u}^{(J)}(t)+C_{J} p^{(J-1)}(t)\right] \tag{2.48}
\end{equation*}
$$

where $\alpha_{J}>0$ is the search parameter, $\mathrm{p}^{(\mathrm{J}-1)}(\mathrm{t})$ is the previous search direction with the property $\int_{t_{0}}^{t_{f}} H_{u}^{(J)} T_{p}(J-1) d t=0$, and C_{J} is a constant to be defined. As shown in Ref. 6, the following function space conjugate gradient scheme satisfies these conditions:

UNCONSTRAINED CONJUGATE GRADIENT ALGORITHM

1) Guess $u^{(0)}(t)$ on $\left[t_{0}, t_{f}^{(0)}\right]$.
2) Compute:

$$
\begin{gather*}
X^{(J)}(t), \lambda^{(J)}(t), H_{u}^{(J)}(t) \\
p^{(J)}(t)=H_{u}^{(J)}(t)+\frac{\int_{t_{0}}^{t_{f}} H_{u}^{(J)^{T}} H_{u}^{(J)} d t}{\int_{t_{0} f^{\prime}}^{(J-1)^{T}} H_{u}^{(J-1)^{T}} d t} p^{(J-1)}(t) \tag{2.49}\\
\left(p^{(0)}(t) \equiv H_{u}^{(0)}(t)\right)
\end{gather*}
$$

3) Perform 1-D search to determine α_{J} in the formula

$$
\begin{equation*}
u^{(J+1)}(t)=u^{(J)}(t)-\alpha_{J} p^{(J)}(t) \tag{2.50}
\end{equation*}
$$

4) Check on appropriate cutoff criterion (e.g., $\left.\left|\frac{d J}{d \alpha_{J}}\right|_{J=0} \right\rvert\, \leqq \epsilon$);
5) Return to 2).

In Eq. (2.49) above, the constant which multiplies $\mathrm{p}^{(\mathrm{J}-1)}$ may be written as

$$
\left\langle\mathrm{H}_{\mathrm{u}}^{(\mathrm{J})}, \mathrm{H}_{\mathrm{u}}^{(\mathrm{J})}\right\rangle_{\mathrm{l}} /\left\langle\mathrm{H}_{\mathrm{u}}^{(\mathrm{J}-1)}, \mathrm{H}_{\mathrm{u}}^{(\mathrm{J}-1)}\right\rangle_{1},
$$

where

$$
\begin{equation*}
<a(t), b(t)>_{1} \equiv \int_{t_{0}}^{t_{f}} a(t)^{T} b(t) d t \tag{2.51}
\end{equation*}
$$

is an inner product on the function space whereas

$$
\begin{equation*}
\langle\mathrm{a}, \mathrm{~b}\rangle \equiv \mathrm{a}^{\mathrm{T}} \mathrm{~b} \tag{2.52}
\end{equation*}
$$

is an inner product on R^{n}. Thus, the formula is the same as the finitedimensional formula; one need only interpret properly the gradient and
inner product functions.
In Ref. 6, a few theorems concerned with the convergence of the function space conjugate gradient method are presented for both general functionals and functionals which result from linear-quadratic optimal control problems. For general functionals, the convergence theorem (which is only sufficient for convergence) essentially requires that one show that the second variation is "strongly positive" (i.e., there exists a constant $M>0$ such that for all admissible $\left.u, \delta u, \delta^{2} J(u ; \delta u, \delta u) \geqq M\|\delta u\|^{2}\right)$.

As with parameter optimization, the quadratic case plays an important role in functional optimization; again, the argument being that when the solution is approached the general optimal control problem may be well-approximated by a linear-quadratic optimal control problem (formed by expanding the differential equations and boundary conditions to first-order, and the performance index to second-order). The theorems in Ref. 6 assume the resultant quadratic functional to be of the form

$$
\begin{equation*}
\Delta J=\langle\delta u, A \delta u\rangle_{1}, \tag{2.53}
\end{equation*}
$$

where A is a positive definite, self-adjoint linear operator. Note that since δu is infinite-dimensional there is no reason to expect finite convergence even in a small neighborhood of the solution. (Of course, on a digital computer, one is really only interested in a good rate of convergence since problems are never converged to the limit.) Reference 7 shows how one may transform a class of linear-quadratic problems into the form of Eq. (2.53).

For the case of Eq. (2.53), Ref. 6 shows that the conjugate gradient method has certain desirable features which the classical gradient method does not possess. However, it has never been proved mathematically that the conjugate gradient step is better than the gradient step on every iterate. In fact the statement is probably untrue because of numerical experience which indicates that a gradient step every so often in a conjugate gradient algorithm (i.e., a "reset" step) improves the convergence characteristics. Finally, as with general functionals, to show that the linear operator A in

Eq. (2.53) is positive definite usually requires a conjugate point test if the operator results from linearization of a nonlinear optimal control problem.

2.3 Infinite-Dimensional Conjugate Gradient: Constrained

In this section, the modifications of the Basic Problem With Penalty Functions (Eqs 2.31-2.33) and the Unconstrained Conjugate Gradient Algorithm to include state variable inequality constraints (SVIC) and control inequality constraints will be presented.

First, suppose that in addition to the equality constraints (2.32), (2.33), the problem contains the SVIC's:

$$
\begin{equation*}
S_{i}(t, x) \geqq 0 . \quad(i=1, \ldots, q) \tag{2.54}
\end{equation*}
$$

There are two main ways of treating an SVIC:
(i) Transform the problem into a multiple-arc problem with intermediate point equality constraints; this is the approach of Ref. 19.
(ii) Augment the performance index to include the SVIC's by means of penalty functions; this is the approach of Ref.l.
The main goal of the computer programs described in this report is to generate reasonable, near-optimal reentry trajectories with a minimal amount of guessing and analysis required of the user. The (i) approach above requires knowledge of the location and the number of times the inequality constraint boundary is encountered, which requires both analysis and additional programming by the user. Thus, the (ii) approach was chosen since this requires no additional programming and only the initial penalty coefficients must be estimated.

If the SVIC's (2.54) are present, then the performance index (2.31) is modified to

$$
\begin{equation*}
J[u]=\phi\left(t_{f}, x_{f}\right)+\int_{t_{0}}^{t_{f}}\left[L(t, x, u)+\sum_{i=1}^{q} S_{i}(t, x)^{2} H_{i}\left(S_{i}\right)\right] d t \tag{2.55}
\end{equation*}
$$

where

$$
H_{i}\left(S_{i}\right)=\left\{\begin{array}{lc}
C_{i}>0 \text { if } S_{i}<0 \tag{2.56}\\
0 & \text { if } S_{i} \geqq 0
\end{array}\right.
$$

and the constant penalty coefficients $C_{i}(i=1, \ldots, q)$ are selected by the investigator.

Second, suppose that inequality constraints

$$
\begin{equation*}
G_{i}(t, x, u) \geqq 0 \quad(i=1, \ldots, r) \tag{2.57}
\end{equation*}
$$

which satisfy the following constraint condition are present:

This condition is required to guarantee that the control may be determined from the appropriate $G_{i}=0$ when a boundary is encountered. The condition is satisfied trivially if the constraints only contain control variables, e.g., $G=1-u^{2} \geqq 0$, and are independent.

Since the adjoint variables (or Lagrange multipliers) are continuous across corners where control boundaries are encountered, constraints of the form (2.57) may be treated directly with little modification of the program. Let us first describe the procedure for treating a constraint of the form (2.57) before we justify the method.

CONTROL CONSTRAINED CONJUGATE GRADIENT ALGORITHM

Suppose the control is a scalar and $|u| \leqq 1$; the generalization to more than one control and other control constraints is straightforward:

1) At the beginning of the $J^{\text {th }}$ iteration, we have a control $u^{(J)}(t)$, $J \in\{0,1,2, \ldots\}$. Define $W_{J} \equiv\left\{t:\left|u^{(J)}(t)\right|=1\right\}$, i. e. , the set of points where $u^{(J)}(t)$ is on the boundary. Integrate forward $\dot{x}=f\left[t, x, u^{(J)}(t)\right]$ to the stopping condition and set $\lambda^{(J)}\left(t_{f}^{(J)}\right)$.
2) Integrate $\dot{\lambda}^{(J)}=-H_{x}\left[t, x^{(J)}(t), \lambda^{(J)}, u^{(J)}(t)\right]$ backwards from $t_{f}^{(J)}$. Evaluate $H_{u}^{(J)}(t)$ in the usual way on $\left[t_{0}, t_{f}^{(J)}\right]$. However, the inner product $\left\langle\mathrm{H}_{\mathrm{u}}^{(\mathrm{J})}, \mathrm{H}_{\mathrm{u}}^{(\mathrm{J})}\right\rangle$ is defined by:

$$
\begin{equation*}
\left\langle\mathrm{H}_{\mathrm{u}}^{(\mathrm{J})}, \mathrm{H}_{\mathrm{u}}^{(\mathrm{J})}\right\rangle=\int_{\left[\mathrm{t}_{0}, \mathrm{t}_{\mathrm{f}}\right]-\mathrm{W}_{\mathrm{J}}} \mathrm{H}_{\mathrm{u}}^{(\mathrm{J})^{2}} \mathrm{dt} . \tag{2.59}
\end{equation*}
$$

3) Perform the l-D search with Eqs. (2.49), (2.50). In the search, truncate $u^{(J+1)}$ at the boundary if $\left|u^{(J+1)}(t)\right|>1$, i. e., for a trial α_{J} :

$$
\begin{align*}
& \stackrel{(J)}{\text { if } u^{(t)}-\alpha_{J} p^{(J)}(t)}>1 \text {, set } u^{(J+1)}(t)=1 \\
& \text { if } u^{(J)}(t)-\alpha_{J} p^{(J)}(t)<1, \text { set } u^{(J+1)}(t)=-1 . \tag{2.60}
\end{align*}
$$

(This step gives us the means for adjusting the set W_{J} from iteration to iteration.) Return to (l) after α_{J} and W_{J+1} are determined.

Let us now justify the approach listed above; the method is developed in Ref. 18. The main difficulties in generating a method for treating control constraints are: (i) ensuring that the method is defined in such a way that it can converge to the true minimum (and not a false minimum), and (ii) developing a method consistent with (i) for defining $\left\langle\mathrm{H}_{\mathrm{u}}^{(\mathrm{J})}, \mathrm{H}_{\mathrm{u}}^{(\mathrm{J})}\right\rangle /\left\langle\mathrm{H}_{\mathrm{u}}^{(\mathrm{J}-1)}, \mathrm{H}_{\mathrm{u}}^{(\mathrm{J}-1)}\right\rangle$ when the iterate has bounded subarcs.

First, we shall consider how the algorithm should behave near the minimum. Suppose that the set W is known beforehand, i.e., the points $t \in\left[t_{0}, t_{f}\right]$ for which $u *(t)= \pm 1$ are known. Then, the algorithm need only be concerned with "fine-tuning" the interior control segments. In this regard, we would want $H_{u}^{(J)}$ and $p^{(J)}$ to be such that it only changes the interior control segments and not the boundary segments. Thus, in the computation of the coefficient of $p^{(J-1)}(t)$ in Eq. (2.49), the effect of the boundary arcs is not included because of the form of Eq. (2.59), and this rule is consistent with requirement (i) above.

In reality, we do not know the set W beforehand, so we must devise a mechanism for the sets W_{J} to change from iterate to iterate and such that $W_{J} \rightarrow W$. This is accomplished by Step (3) of the procedure defined above; that is, the set W_{J} is modified in the $1-D$ search.

CHAPTER 3

PHASE I PROGRAM

3.1 Basic Description

The Phase I Program is designed to minimize a weighted performance index which includes the following effects:
i. Cross range
ii. Downrange
iii. Aerodynamic loading
iv. Terminal total heat
v. Terminal altitude

The equations of motion are written in a cartesian coordinate system defined by:

$$
\begin{aligned}
& \hat{\mathrm{I}}=\frac{\overline{\mathrm{r}}}{|\overline{\mathrm{r}}|} \\
& \hat{\mathrm{K}}=\frac{\overline{\mathrm{r}} \times \overline{\mathrm{V}}}{|\overline{\mathrm{r}} \times \overline{\mathrm{V}}|} \\
& \hat{\mathrm{J}}=\hat{\mathrm{K}} \times \hat{\mathrm{I}}
\end{aligned}
$$

The Aerodynamic Angles are defined by the following coordinate system:

$$
\begin{gathered}
\hat{i} p=\frac{\bar{r} \times \bar{V}_{R}}{\left|\bar{r} \times \bar{V}_{R}\right|} \quad \hat{i} q=\hat{i} p \times \frac{\bar{V}_{R}}{V_{R}} \\
d_{1}=\frac{\bar{u}}{|u|} \cdot \frac{\bar{V}_{R}}{\bar{V}_{R}}, d_{2}=\frac{\bar{u}}{|u|} \cdot \hat{i} q, d_{3}=\frac{\bar{u}}{|u|} \cdot \hat{i} p \\
\tan \alpha=\frac{d_{2}}{d_{1}}, \quad \tan \beta=\frac{d_{2}}{d_{3}}, \tan \alpha_{t}=\frac{\sqrt{d_{2}^{2}+d_{3}^{2}}}{d_{1}}
\end{gathered}
$$

The state equations are ${ }^{20}$:
$\dot{\bar{r}}=\overline{\mathrm{V}}$
$\dot{\bar{V}}=-\frac{\mu}{|\bar{r}|^{3}} \bar{r}+\rho A\left|V_{R}\right|^{2} C_{L_{\alpha}}\left[-\left(\frac{C_{A}}{C_{L_{\alpha}}}+2 \eta\right) \frac{\bar{V}_{R}}{V_{R}}+\left[I+(2 \eta-1) \frac{\bar{V}_{R} \bar{V}_{R}^{T}}{V_{R}}\right] \frac{\bar{u}}{|\overline{\mathrm{u}}|}\right]$
$\dot{Q}=C_{q} \rho^{\frac{1}{2}} V_{R}^{3.15}$
$\overline{\mathrm{V}}_{\mathrm{R}}=\overline{\mathrm{V}}-\overline{\mathrm{V}}_{\mathrm{A}}$
where $\overline{\mathrm{V}}_{\mathrm{A}} \equiv$ inertial velocity of the atmosphere. The equations involve the following assumptions:
a. The relative velocity vector $\overline{\mathrm{V}}_{\mathrm{R}}$ is in the plane of the vehicle that produces the greatest lift.
b. No aerodynamic moments exist about the center of mass.

The performance index is

$$
\begin{aligned}
J= & C_{1} r_{c}+C_{2} r_{d}+P_{1}\left(h-\bar{h}_{f}\right)_{f}^{2}+P_{2}(Q)_{t_{f}}^{2} \\
& +P_{4} \int_{t_{0}}^{t_{f}}\left(\frac{L^{2}+D^{2}}{m^{2}}-9 g^{2}\right) \cdot U\left(\frac{L^{2}+D^{2}}{m^{2}}-9 g^{2}\right) d t
\end{aligned}
$$

where

$$
\begin{aligned}
& r_{c}=\text { cross range } \\
& r_{d}=\text { down range } \\
& U(\cdot)= \begin{cases}1 & \text { if }(\cdot)>0 \\
0 & \text { if }(\cdot) \leqq 0\end{cases}
\end{aligned}
$$

The Hamiltonian is

$$
H=\lambda_{r}^{T} \dot{\bar{r}}+\lambda_{V}^{T} \dot{\bar{V}}+\lambda_{Q} \dot{Q}+P_{4}\left(\frac{L^{2}+D^{2}}{m^{2}}-9 g^{2}\right) \cdot U\left(\frac{L^{2}+D^{2}}{m^{2}}-9 g^{2}\right)
$$

3.2 Subroutine Map

SEKALF

3.3 Subroutine Descriptions

MAIN: Reads in all necessary data, sets integration coefficients, computes initial values, and calls on the conjugate gradient subroutine (WPRJCG). On Return, MAIN prints out a message concerning the results of the iteration and prints out the control obtained by that iteration.
A. Namelist Input Data

PI $=\pi$
$R E=$ earth's radius
$\mathrm{XMU}=\mu$, gravitational constant
OMEGE (3) = angular velocity of the earth
AREA = aerodynamic reference area
ECOEF = heating coefficient
$\mathrm{XO}(3)=$ initial position vector
$\mathrm{VO}(3)$ = initial velocity vector
TO = initial time
ALTF = desired final altitude
XMACH = desired final Mach number
FLTANG = desired final flight path angle
QMAX = desired final heating value
XMASS = vehicle mass
IOUT = print frequency for forward integration
IOUT2 = print frequency for backward integration
IPRINT1 = print control flag
IPRINT2 = print control flag
DELTS = integration stepsize
IKEY = call flag for output (see FWDINT)
ERRMX = error tolerance for integration routine
ERRMN = not used
TCUT = upper time limit on trajectory
EPST = cutoff tolerance for norm of control change
EPSTF = not used
EPSA = cutoff tolerance for integration altitude cutoff

EPSIT = cutoff tolerance on gradient norm $E R R=$ cutoff tolerance for small cost change

ITMAX = limit on number of conjugate gradient iterations
ITMX = limit on steps in l-D search
KOUNTM = limit on iterations for altitude cutoff
CSTR = guess of final cost value
$B=$ control bound (see SEKALF)
PFUN (4) = penalty coefficient vector
$\operatorname{CCOST}(2)=$ coefficients in cost functional
DTFM = maximum allowable final time change
XDTFM = fraction of DTFM used to start l-D search

B. Control Vector Data

IJKU = total number of control points
$\mathrm{U}(\mathrm{IJKU}, 4)=$ control vector and time point
WPRJCG: This subroutine controls the application of the conjugate gradient algorithm. It calls the forward and backward integration routines, directs the one dimensional search, and updates the control vector and terminal time. It checks for algorithm termination on small cost change, total number of iterations, errors in the l-D search, failure to generate an admissible trajectory on the first trial.

SEKALF (One-Dimensional Search Subroutine): Determines the parameters for the new control value in the conjugate gradient algorithm. Fits a cubic in α to known values of $\mathrm{J}(\alpha), \partial \mathrm{J} / \partial \alpha$, to obtain $\min \mathrm{J}(\alpha)$ and then α^{*} for J min. FWDINT: Subroutine performs the forward integration of the state variables and calls the subroutines to evaluate the cost functional and final multiplier values.

RK713: 7th Order Runga-Kutta integration scheme called by both FWDINT and BAKINT.

BAKIWT: Subroutine performs the backward integration of the state variables and multiplier equations, and calls on GRADFW to calculate the
gradients and store the value at each integration step. The subroutine also determines the new search direction.

DERIV1: Subroutine which calculates the time derivatives of the state variables.

DERIV2: Subroutine which calculates the time derivatives of the multipliers.
ATMOS: Calculates atmospheric parameters.
AEROD: Calculates aerodynamic parameters.
XLAMFN: Computes final multiplier values.
COSTFN: Computes cost functional.
OUTPUT: Subroutine called by FWDINT which prints out desired trajectory data.
3.4 Phase II Program Notes
i) The program obtains the state for the multiplier equations by integrating the state backward from the terminal conditions of the forward state integration (as opposed to storing the state in the forward integration).
ii) Each iterate is terminated on an assumed t_{f}, which is part of the iteration procedure. The value of t_{f} for the base trajectory is determined by the trajectory as the time when the desired altitude is reached (thus, the program also has an altitude-cutoff capability).
iii) See Appendix A for a listing of the Phase I Program.

CHAPTER 4

PHASE II PROGRAM

4.1 Basic Description

The Phase II Program is designed to minimize a performance index which includes the following effects:

1. Crossrange
2. Downrange
3. Total heat
4. Peak heating rate
5. Final speed and flight path angle boundary conditions.

Phase II Program uses a nonrotating earth centered spherical coordinate system with an Euler angle body-axis system to define the aerodynamic forces.

The equations of motion assuming a nonrotating earth and no aerodynamic moments are

$$
\begin{aligned}
& \dot{\mathrm{R}}=\mathrm{V} \sin \gamma \\
& \dot{\theta}=\frac{\mathrm{V} \cos \gamma \cos \psi}{R \cos \phi} \\
& \dot{\phi}=\frac{\mathrm{V} \cos \gamma \sin \psi}{R} \\
& \dot{V}=-\frac{\mu \sin \gamma}{R^{2}}-\frac{D}{m} \\
& \dot{\gamma}=-\frac{\mu \cos \gamma}{R^{2} V}+\frac{V \cos \gamma}{R}+\frac{L}{m V} \cos \beta \\
& \dot{\psi}=\left[-\frac{V \cos \gamma \cos \psi \sin \phi}{R \cos \phi}-\frac{L \sin \beta}{m V \cos \gamma}\right]
\end{aligned}
$$

where the drag (D) and lift (L) are defined by

$$
\begin{aligned}
& \mathrm{L}=\frac{1}{2} \rho S V^{2} \mathrm{C}_{\mathrm{L}}(\alpha, \mathrm{M}) \\
& \mathrm{D}=\frac{1}{2} \rho S V^{2} \mathrm{C}_{\mathrm{D}}(\alpha, \mathrm{M})
\end{aligned}
$$

The cost functional to be minimized is:

$$
\begin{aligned}
J= & C(1) R_{e} \phi_{f}^{2}+C(2) R_{e} \theta_{f}^{2}+C(3)\left(V\left(t_{f}\right)-\bar{V}_{f}\right)^{2}+C(4)\left[\gamma\left(t_{f}\right)-\bar{\gamma}_{f}\right]^{2} \\
& +C(5) \int_{t_{0}}^{t_{f}} \dot{q} d t+C(6) \int_{t_{0}}^{t_{f}} \ddot{q}^{2} d t
\end{aligned}
$$

The term $\int_{t_{0}}^{t_{f}} \ddot{q}^{2} d t$ is an approximate method for minimizing the peak heat rate. The Hamiltonian is

$$
\begin{aligned}
H= & C(5) \dot{q}(R, V)+C(6) \ddot{q}^{2}(R, V, \gamma)+\lambda_{1}(V \sin \gamma) \\
& +\lambda_{2}\left(\frac{V \cos \gamma \cos \psi}{R \cos \phi}\right)+\lambda_{3}\left(\frac{V \cos \gamma \sin \psi}{R}\right) \\
& +\lambda_{4}\left(-\frac{\mu \sin \gamma}{R^{2}}-\frac{D}{m}\right)+\lambda_{5}\left(-\frac{\mu \cos \gamma}{R^{2} V}+\frac{V \cos \gamma}{R}+\frac{L}{m V} \cos \beta\right. \\
& +\lambda_{6}\left(-\frac{V \cos \gamma \cos \psi \sin \phi}{R \cos \phi}-\frac{L \sin \beta}{m V \cos \gamma}\right)
\end{aligned}
$$

Forward integration of the state variables is cutoff on a desired altitude.
4.2 Subroutine Map

4.3 Subroutine Descriptions

MAIN: Reads in all necessary input parameters, sets up spline interpolation of aerodynamic coefficients and calls the conjugate gradient subroutine WPRJCG. On Return, MAIN prints out message concerning the results of the iteration and prints out the control obtained by that iteration.
A. Namelist Data
$P I=\pi$
$R E=$ radius of the earth
$\mathrm{XMU}=\mu$, gravitational constant
OMEGE = not used
AREA = aerodynamic reference area
ECOEF = heating coefficient
DELT = integration stepsize
IKEY = call flag for OUTPUT
ERRMX = not used
ERRMN = not used
TCUT = upper time limit on trajectory
EPST = cutoff tolerance for norm of control change
EPSTF = not used
EPSA = cutoff tolerance for integration altitude cutoff
EPSIT = cutoff tolerance on gradient norm
$E R R=$ cutoff tolerance for small cost change
ITMAX = limit on number of conjugate gradient iterations
ITMX = limit on steps in 1-D search
KOUNTM = limit on iterations for altitude cutoff
CSTR = guess of final cost value
$B=$ control bound (see SEKALF)
$C(7)=$ coefficients in cost functional
DTFM = not used

XDTFM = not used
$S \operatorname{VARO}(6)=$ initial state variables
$\mathrm{TO}=$ initial time
ALTF = cutoff altitude
$\mathrm{XMACH}=$ not used
FLTANG = not used
GAMMF = final flight path angle
$\mathrm{VF}=$ final velocity
XMASS = vehicle mass
IOUT = print frequency for forward integration
IOUT2 = print frequency for backward integration
IPRINTI = print control flag
IPRINT2 = print control flag
B. Control Data

IJKU = total number of control points
$\mathrm{U}(\mathrm{IJKU}, 3)=$ control vector and time points
C. Aerodynamic Data

N1, N2 = dimensions of coefficient array
$\mathrm{Y}(\mathrm{N} 1, \mathrm{~N} 2,2)=$ coefficient array
(See sample program for input format)
See Chapter 3.3 for descriptions of:
WPRJCG
SEKALF
DERIV1
DERIV2
ATMOS
XLAMFN
GRADFN
COSTFN
OUTPUT
FWPIWT
BAKINT

SETUP - SPLINE - Subroutine computes aerodynamic coefficients based upon piecewise cubic spline interpolation. Input is angle of attack (α) and Mach number (M); returned are the values of $C_{L}, C_{D}, \partial C_{L} / \partial M, \partial C_{D} / \partial M$, $\partial \mathrm{C}_{\mathrm{D}} / \partial \alpha$.
(For test runs the aerodynamics were approximated by:

$$
\begin{aligned}
& C_{D}=2.2 \sin ^{3} \alpha+.08 \\
& \left.C_{L}=2.2 \sin ^{2} \alpha \cos \alpha+.01 .\right)
\end{aligned}
$$

4.4 Phase II Program Notes
i) The state values for the backward integration of the multiplier equations are stored during the forward integration (as opposed to backward integration for the state). The program currently can store the state at 999 time points.
ii) All trajectories terminate at a specified, desired altitude. The modification to the transversality conditions is discussed in
Chapter 2. Since the terminal time of the $N+1$ trajectory, say $t_{f}^{(N+1)}$, may be larger than $t_{f}^{(N)}$ (since h_{f} is the cutoff condition), a linear extrapolation of the control is used on $\left[\mathrm{t}_{\mathrm{f}}^{(\mathbb{N})}, \mathrm{t}_{\mathrm{f}}^{(\mathrm{N}+1)}\right]$.
iii) See Appendix B for a listing of the Phase II Program.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

Two computer programs for shuttle reentry optimization have been developed. The programs make extensive use of subroutines so that they may be adapted to other atmospheric optimization problems with little difficulty. Because of contract budget restrictions and the long flight times of realistic shuttle reentry trajectories, the programs have only been checked out with respect to programming errors. In the next section, suggestions for a study of the convergence properties of the programs will be presented. Also, our limited experience obtained with the programs will be discussed. However, with respect to these comments, it should be remembered that no controlled study was performed, and thus, the comments are somewhat tenuous.

5.2 Conclusions and Recommendations

1. Before an extensive analysis of the optimization of reentry trajectories is undertaken, it is recommended that a carefully controlled study of numerical integration procedures be performed for reentry problems in which: (a) the controls are piecewise linear (or possibly higher-order splines) in an integration step, (b) the aerodynamic data is given in tabular form, and (c) the vehicle is a relatively low-drag vehicle (e.g., the high-crossrange shuttle). Much of our time was devoted to determining an acceptable numerical integration package while the optimization procedure was the major goal of the study. We found that RK 7-13 was an excellent scheme with constant aerodynamics and smooth controls; however, with piecewise linear controls and splinefit aerodynamics, its performance was reduced substantially. For this reason, a fourth-order, predictor-corrector scheme with fixed stepsize is employed in the Phase II-Program. Research should be conducted to make the problem suitable for use with RK 7-13 (or some other high-order scheme) to shorten the long integration times.
2. Because of the relatively low-drag characteristics of the
high-crossrange shuttle, arbitrary initial estimates of the controls in any optimization program may cause highly oscillatory trajectories. This is due to the fact that the path angle may become positive (positive path angle is above the local horizontal) and oscillate about zero degrees. Thus, it is recommended that, if possible, initial control estimates be chosen so that γ remains negative. Some investigators have used artificial means to insure $\gamma \leqq 0$, e.g., impose a state variable inequality constraint, add damping to the initial iterates, increase the drag in the initial iterates. This problem may be accentuated by an inaccurate numerical integration scheme because $\dot{\gamma}$ is essentially the difference between two terms of the same order of magnitude. Thus, $\dot{\gamma}$ may become positive because of numerical error when its true physical value is negative.
3. Neither program uses nondimensional variables. If the rate of convergence is slow in simulations, nondimensionalization of the variables may improve the rate.
4. Most of the investigations which have applied the conjugate gradient method to optimal control problems have been of low-dimension, near-linear, and fixed final time. Two exceptions are Refs. 21 and 22. In these studies, it was found that the method did not perform satisfactorily on a problem with tight terminal conditions ${ }^{21}$ and a free-final time problem ${ }^{22}$. Since the two programs of this report treat the free final time problem in two different ways, trends as to which method is best would be useful information.
5. In the Phase II-Program, $\int_{t_{0}}^{t_{f}} \ddot{q}^{2} d t$ is used in the performance index to penalize large heat rate slopes, and, thus, should aid in "flatteningout " the heating rate. This conjecture should be tested since if it serves to flatten the peak heating rate, it might be a simple way of controlling peak heating rate in an on-board, optimization oriented guidance scheme.
6. A convenient test problem for reentry is the maximum crossrange
problem. In this problem, the optimal control should consist of an angle of attack which causes ($\mathrm{L} / \mathrm{D})_{\text {max }}$ and a bank angle which is initially near 90° and which decreases (nearly linearly) toward 0° as time increases to t_{f}. In our limited testing of the Phase II-Program on the IBM 360/67, a typical iterate (including the l-D search) required about one minute of CPU time for a double precision, 2000 second (real-time) trajectory with a fixed stepsize of four seconds.
7. As noted above, a typical iterate requires approximately one minute of CPU time. Of course, the large amount of computer time is mainly due to the numerical integration requirements. Hopefully, more efficient numerical integration schemes will be developed for use in conjunction with function-space gradient-type algorithms. In this development one should keep in mind that both forward and backward integrations are required, and this heavily influences the choice of a variable stepsize integration scheme. A possibility in this direction is spline numerical integration schemes since they result in "global" information as opposed to discrete data.
1.) H. J. Kelley, "Method of Gradients," in Optimization Techniques (G. Leitmann, Ed.), Academic Press, New York, 1962, Chapter 6.
2.) A.E. Bryson and Y. C. Ho, Applied Optimal Control, Blaisdell, Waltham, Mass., 1969, Chapter 7.
3.) P. Salvato, Personal Communication, TRW-Systems, Houston, Texas, 1971.
4.) H. J. Kelley, B. R. Uzzell, and S.S. McKay II, "Rocket Trajectory Optimization by a Second-Order Numerical Technique, " AIAA J., Vol.7, No.5, pp.879-884, May 1969.
5.) H. C. Sullivan and B. R. Uzzell, "Optimal Boost Trajectories for the Shuttle Vehicle," MSC Internal Note No.71-FM-4, January 13, 1971.
6.) L. S. Lasdon, S.K. Mitter, and A.D. Waren, "The Conjugate Gradient Method for Optimal Control Problems," IEEE Trans. on A. C. , Vol. AC-12, pp.132-138, April 1967.
7.) L.B. Horwitz and P.E. Sarachik, "Davidon's Method in Hilbert Space," SIAM J. Appl. Math., Vol. 16, No.4, 1968, pp. 676-695.
8.) IBM System/360, Scientific Subroutine Package, (360A-CM-03X) Version III (1968) IBM Technical Publication Dept., pp. 220-225. (Corrected by IBM Memo, May 1969)
9.) I. L. Johnson and J.L. Kamm, "Parameter Optimization and the Space Shuttle," Proceedings of the 1971 JACC, St. Louis, Mo., August 1971, pp. 776-781.
10.) J.L.Kamm and I. L. Johnson, "Optimal Shuttle Trajectory-Vehicle Design Using Parameter Optimization," AAS/AIAA Paper No. 329, presented at AAS/AIAA Astrodynamics Conference, Ft. Lauderdale, Fla., August 1971. (Also, see Paper No. 328.)
11.) J.K. Willoughby and B.L. Pierson, "A Constraint-Space Conjugate Gradient Method for Function Minimization and Optimal Control Problems," to appear in International Journal of Control, 1972.
12.) M. R. Hestenes and E. Stiefel, "Method of Conjugate Gradients for Solving Linear Systems," J. of Res. of the Nat. Bur. of Stds., Vol.

49, No.6, pp. 409-436, 1952.
13.) W.C. Davidon, "Variable Metric Method for Minimization," A.E.C. Research and Development Report ANL-5990 (Rev.), November 1959.
14.) R. Fletcher and M.J.D. Powell, "A Rapidly Convergent Descent Method for Minimization," Computer J., Vol.6, No. 2, 1963, pp.163168.
15.) R. M. Hayes, "Iterative Methods of Solving Linear Problems on Hilbert Space," Natl. Bur. of Stds. App. Math. Series, Vol. 39, pp. 71-104, 1954.
16.) H. Antosiewicz and W. Rheinboldt, "Numerical Analysis and Functional Analysis," in Survey of Numerical Analysis (J. Todd, Ed.), McGrawHill, 1962, Chap. 14.
17.) J.W. Daniel, "The Conjugate Gradient Method for the Numerical Solution of Linear and Nonlinear Operator Equations, "SIAM J. on Num. Anal., Vol.4, No.1, pp. 10-26, 1967.
18.) B. Pagurek and C.M. Woodside, "The Conjugate Gradient Method for Optimal Control Problems with Bounded Control Variables, " Automatica, Vol.4, pp. 337-349, 1968.
19.) W.F. Denham and A. E. Bryson, "Optimal Programming Problems with Inequality Constraints II: Solution by Steepest-Ascent, " ALAA J., Vol.2, No.1, pp. 25-34, Jan. 1964.
20.) K. R. Brown, E. F. Harrold, and G. W. Johnson, "Some New Results on Space Shuttle Atmospheric Ascent Optimization," AIAA Paper No. 70-978, August 1970.
21.) R.K. Mehra and A.E. Bryson, "Conjugate Gradient Methods with an Application to V/STOL Flight-Path Optimization," AIAA J. Aircraft, Vol.6, No. 2, pp. 123-128, 1969.
22.) C.L. Pu, "Numerical Solution of Dynamic Optimization Problems," MIT Draper Lab Report E-2549, Feb. 1971.

APPENDIX A

LISTING OF PHASE I PROGRAM


```
            1 FRR,ITMAX, ITMX, KR|MTA.IKEY
            CHMM,MA/C,INS3/C.STP,H,PFHN, C.CAST,DTFM,XOTFM
```



```
            CO#MMNA/STATF/AIT,XMASS,UTH.UTMAF,
```



```
            NASFI, IST/ANMMF./P:,RF,XIFO,OMFGF,AREA,FCGFF,!REITS,IK:Y,ERKMX,ERRMN,
        1 ICI:T,FPST,EPSTF,FPSA,FPSIT,FRR,ITMAX,ITMX,KOINTM,ZSTR,B,PFUN,
    2 CGOST, OTFN, XOTFM, XO,VO,TI, ALTF,XMACH,FLTANG, DMAX, KMASS
    3.IHUT, IHUTT.IPRNT1.IPRNT?
C. RFCN TM DFTA
```



```
        2:A!!`.700) 1.1%|
```



```
            {,N+1) - x:1|/N1%%,
            ||, 1, 1-j.i
```



```
            AmF(i)}(1,2)=-niat:G,t(3
            Ma,G\cap(1,3)= IME(FE())
            1)\omegaF(:1)(?,3)= -rimF(BF(1)
G CIMSTANTS FOK INTEGRATION SUAROUTTNE R RT
```



```
    250 स.{\(1,.)}=0\mathrm{ .
```



```
    NLPH!T)=0. 
    CH(6)=34./105.
    C:1(7)=0.135.
    CH(:2j=C,till)
    CH(3)=0-1980.
    C.H(1\cap)=CHi:;
```



```
    O|(1+1)={:H(1) )
    \1FH(2)\cdots7.177.
    Mト!(3)=%./9.
    M|{H(4)=1./F. 
    A!f+!(4)=10/6.0
```



```
        A1F!.(T)=5;-A.
        \\:(9)=1./6.
        A1PH(9)=?./3.
        alPH(10)=1.1?.
        AIPH(II)=].
    ALPH:T)=0. 
B 93
    H
A 96
    H00
        lon
1) 101
|10%
H 10:
H 104
M lo:
H lot
H 10%
|4 107
A 108
1; 104
```

```
    41.1H(13)=1. . M 110
    HFTA(7.1)=?./7%.
    MFTA(3,1)=1./36.
    RFTA(4,1)=1./7.4.
    HE1^(5,1)=5./12.
    HFTA(6.1)=.05
    HET^(7,1)=-?5./1\capR.
    RETA(K,1)=31./300.
    RETA(9,!)=2.
    RFTA(1\cap,1)=-91./10%.
    RFT^(11,1)=2383./4100.
    AETA(1?,])=3.1205.
    RETA(13,1)=-1777./4100.
    rFTA (3,7)=1./12.
    BETA(4,3)=1./R.
    BFTA (5,3)=-25./16.
    AF1A(5,4)=-{RTA(5,3)
    BETA(t,4)=. 25
    &!TA(7.4)=17.5.110R.
    RFT^(0,4)=-5?./6.
    BFTA(10.4)=73.1108.
    HFTA(11,4)=-341./164.
    Mf\^(1%,M)={&「^(11,4)
    HEIA(!,ち)=./
```



```
    アト1A(4.5)=61./つつ「;.
    R&:TN(4,n)=%\cdots./45.
    HF|A(10,5)=-9/0./135.
    HFTA(1).,5)-44.46.1]0つ5.
    i&FTA(13,4)=!トTN()1.,ち)
    HETA(7, (:)=175./54.
    BETN(R,K)=-7./9.
    HFTA(G,K)=-107.19.
    RETA(10,6)=311./54.
- HETA(11,(6)=-301.182.
    RFTA(12, ()=-6./4,.
    RFTA(13,K)=-289./9?.
    BETA(8,7)=13.1900.
    RETA(9,7)=67.190.
    RETA(10.7)=-19./60.
    AFTA(11,7)=2133./4100.
    FF1A(12,7)=-3.1205.
    RETA(13,7)=2193./4100.
    BFTA(9, H)=3.
    AETA(1O, A)=17./6.
    AFTA(11, () = 45./R2.
    RFTA(17,8)=-3./4.1.
    RFTA(13,8)=51./42.
    RFTA(10,9)=-1./12.
    RFTA(11,9)=45./164.
    BETA(17.0)=3.141.
    RFTA(13.9)=33./164.
    BFTA(11,10)=14.141.
    4F}^(12.10)=6./41.
    HF1N(13.10)={2./41.
    AFTA(13.12):1.
C．CAI．I．CTIM，IURATE GRADIFMY ROUTINE
CAI．L WPRJCGIEK）
GOT TO（10．20．30，40．50．60．70．80．90．100）．IER
10 CONTINUF
```

```
        20 WRITE(6,520)
        c;O TM 101
        30 WRITE(A.530)
        Gii TrilOl
    40 URITE(6.540)
        GOTH lतl.
    50 URITE(6.550)
        GO TO 101
    *O WRITE(6.56O)
        GI) TO 1.Ol
    70 URITF(6,570)
        GO TO 1Ol
    80 wRITF(6,58n)
        GM In lOl
    O0 WRITE(6.590)
        Gn) Tr] 101
    100 जRTTE(6,GOO)
    1Ol C,IMTIMHF
        HP|TF゙(&,大准) I.JK\
```



```
        Sirip
    non F-1WMAl(つI4)
    &on FGWMAT(MF10.0)
```



```
    570 FIPMAT (IHO,SX,'INITIAI. TRAJFC,TORY FAILED)TO REACH CIIT-(IFF ALT')
    SAO FGRHAT(IHO,!X, 'TOM MANY INTFGRATIGNS STEPS RFOUIREU 'I
    570 FOOMAT(1HO,5X,'RACKWARO INTFGRATED TRAJECTORY FRRURS')
    AOO FOKMAT(1HI, 5X, 'CONVERGENCF ON ZERO GRADIENT NORM')
    n25 FTIPMAT(1 1,15)
    i5n FMPMAT(' 1,31)26,j6)
700 FORMAT(I5)
    750 FORMAT(30)26.16)
        ENT:
```

C SIMRROUTINE WPRJRG
SIMROUITINE WPRICG(IFH)
IMPIICIT REAL: R (A-H, (1-Z)
DIMENSIIN X.1(R, 1), XLAMF(7),SERCH(999,4),11(999,4),TEMPU(999,3)
1, PFON(4), CCOST(2), GRAN(999,4)
COMMON/CITNS? IOFLTS, E ERRMX, ERRMN, TCUT, EPST, EPSTE,EPSA,EPSIT,
1 ERR, ITMAX, ITAX, KMIINTM,IKFY
CTIMMON/CONS $3 / C$ STK, R, PFIIN, CCOST, OTFM. XOTFM
COMAMN/CNTKL/GRAD, SFRCH,H,ASTR,STF,TF,KJIS, IJKIU, ISTAR
ITER=0
C. PFRFIRM FOPIIARD integratirin to altitude cilt-off
$8 \quad$ ISTAR $=0$
IFI. $\Delta C=1$
CAIL FUDINT(COST, X.I,TF,XIAMF,DCDTF,IFLAG)
IF(IFIAG .NE. 1) GO TH 94
C. PERFORM RACKHARO INTFGRATION

9 CALI HAKINT(XJ, XIAMF,TF,ITFR,DCOST, XNORMS, DCDTF) IF(ITFR-!TMAX) 7,95,43
$7 \quad$ CSAVF=CHST
$I T H M=I T F R+1$
WRITF(G, GO3) ITNIIM
AO3 FOKMAT(IHO,5X.'ITERATIIMN NUMRER', I5//)
C ENTER 1-11 SHARC.H
I $S T A R=1$
|F|AGS=?
$\mathrm{KHFO}=0$
JKMP $=0$
TFS:TE
$1+16=0$
IF(1)TFM A.F. O.OnO) GO TO 10
C. HAVF A RFFTRICTION IN FINAI TIME CHANGES, COMPITE FIRST GUESS $A S T R=$ OAHS $(X I) T F M * 1 T F M / S T F)$ IFIG $=-1$
10 CAIL S:KAIFICOST., DCHST,ASTR,CSTR,XNDRMS,B,TO,TF,ITMX,IFI.GI .IKNT = JKNT + 1 IF(IPRNTI.GT.OI WRITFIG, 600) JKNT, ASTR
60C FORMAT(5x,11-1) SFARCH TRIAL = ', I5.5X,'PARAMETER =1, ח24.16) IFIIFIG.GT. ITMXI GO TO 11 nTF =ASTR*STF IFONTFM .LF O.OUO) GOU TO 15 IF(DABS(DTF) - AF. DTEM) ($\because \cap \mathrm{O}$ TO 15 WRITF: H, ? On (
200 FIDMAT(1HG), SX,'PARAMETER VALUE CAIISES LARGE TF CHANGE') ASTR=DAHS (I)TFM/STF) OTF $=A S T R * S T F$
15 TF=TFS-ITF CAII HHOINT(COST, XJ,TF,XLAMF,DCDTF,IFLAG) GON TOI 10
11 IF (IFIG .GT.ITMXXI)GO TH 99
C. CHFGK FIIR SMAII. CONTROII. NORM CHANGF HNORM $=$ ASTR*XMIRMS
IF(INNTRM.LT.FPST) GOI TO 98
OTF = ASTR*STF
TF = TFS - HTF
C. PFRFGIRM FIRGARO IMTFGRATIGIN

I FI. $A G=3$
CA!L FWISINT(COST,X,J,TF,XLAMF,DCDTF,IFLAG)
If(COST.I.T. CSAVFI GO TO 1 ?
IFIAG = ?
$K F I G=K F L F+1$

IF（KFI．G．GE．ITMX）GU TII 99
JFI．G $=1$

Gत $1 n 1 n$
（．HAVE FOUINI INTEPPOLATED VALIJE，UPDATE CGNTROL AT FRFOUEIVCY OF SEARCH
1？KTA！＝1
RHAB $1 .=1, K, 1 I S$
TA1I＝SFPC．A（1．，4）

KIんい＝K，IAI＋1．
fir）Til $ら$ ？

54 lFtKJAll of O．J）Gill TH5
C．ISF I fNFAK IMTFHPIMATIMN IN CNTKL．DIRFCTIIN GENFRATIGM
けいち $K=1,3$
TH，Hi（L，K）＝－ASTR＊SFRCH（L，K）＋（U（KTAU，K）－H（KTAU－1，K））＊（TAU－U（KTAU－1， 24）／（H（KTAU，4）－11（KTAU－1，4））＋1（KTAll－1，K）
CWWTIMAF
GO TOA
C ISE LINFAR EXTRAPCILATION
$56 \quad$ KT11j＝？
57 \quad กn 5 \＆$K=1.3$

2）／（（I）KTA（1，4）－1）（KTAU－1，4））＋U（KTAU，K）
58 C．ONTINIF
GO CONTINIIE
C．COMPMTH NFG FINAL YIMF
TF＝TFS－ASTR＊STF

in $k i=1,3$

1．161：－＜．11＂
\therefore 解 ratilititr
1 $\because: \wedge$ 日 $=0$
C．CHFER CHANGF IM ROIST VAI．IIFS
IF（niMs，（COST－C．SAVF）－LT．FRR）GO TO 96
$!T F R=11 / K K+1$
rij TAG 9
C． $1-1$ SFAKCH FRRORS
¢9 IF？＝？
IFIIFIG．FO．ITMX＋2IIFR＝3
RFTIRE
C HAVE CRINFRGFNCE OHE TO SMALL CONTROL NORM CHANGE
$9 R$ IFR $=4$
RFTIR W
C HAVF CGMVERGFNGE DUF TO NO COST CHANGE
9 K IFR $=5$
NFTURM
C HAVF FXCFFDFD PERMITTEO NIIMKER OF CG STFPS
$95 \quad I F R=6$
RETIRN
C HAVE FAILED TO REAC．H AITITIJDF CUT－OIFF
$94 \quad I F K=7$
QFTURN
93 IFIITFR－11TMAX＋21）97．91．90
C．NOT FNIIIGH STOKAGF SPACF FOR GRAOIFNT
$92 \quad I F R=8$
RFTHRN
C CAMMNT FINO INTFGRATION COT－DFF POINT

$91 \quad I F R=9$

RETIRN
C. HAVF CONVFRGED INN GRAIIENT NORM
$90 \quad I F R=10$ RETIJRN
FND

```
| It|A(;)
    MGMOLFF HRFGIS|ING CIST, DCHST, ASTAR, CSTAR, SNORN, B, TO ,TF,
```


Ir (IFIAC.。GT.n) rin Til 20

IFIASTAR GF. O.OOOI GO TO 11

C．COMPUTF FIRST PGRAMFTFK ASTAR＝2．ONO～（CSTAR－COSTI／DCOST IF：A．I．F．O．OONI GO TO 10 XNORM $M=14$ ：ISSORT（TF－TOI／SMORM
11 IF（ASTAR．IF．O．ODO．OR．ASTAR．GT．XNORM）ASTAR＝XNORM
FlNTIII＝C．OST
$\triangle L F(1)=0.0 \cap 0$
TFIAG＝ 1
RFTIRM
$10 \quad$ XAORM $=1 . \cap O \cap / S M O R M$
GO TO 11
C．SIADF MF CAST IS MOT NFGATIVF
15 Wiश TF（h， 1 OO）DCOST
 HFI $\therefore G=1$ TMAX + ？

AIF（ $)=$ ASTAK
－1WT（ $)=$ C．IST

$|F| A G=$ ？
KFTIRN
75 TFIAF＝？
ROT T 31
c．COMFUTF THIPII PARAMETER
30 IF（IFI．AF．I．T． 3 ）Gח TO 59
$A F(I H I A G)=\Delta S T A R$
HIFITIFLAG）$=$ C．OST
IF（FHIT（IFLAG）．GT．FINT（IFLAG－I））GO TO 50
31 ASTAR $=A 1 F(2) *(2.000) * *(I F L A G-1)$
IF（IFIAG．GE．ITMAX） f （H）TO 40
$I F I A G=I F I A G+1$
FF TIIPA
C CAMFOT FIGM A MINFIAIM
40 に！リन（6，101）

HFING＝1ranx＋？
LHETHEN
C．GFT IATA FOIRR PIINT INIFRPGLATIIIN

IHIAF $=1$ ILAC -3
（1）ら1 $1=1,4$

HM（I，D）$=\left(\mathrm{A} . F\left(I F L A C_{i}\right)+A!F(I F I A(;+I)) * R M(I, 3) / 2.01\right)$
HM（I，I）$=\left(A I F(I F L A G) \times x=3-A I F\left(I F L A G_{i}+I\right) * * 3\right) / 3.000$
51 G（1）＝FIINT（IFIAG）－FIUNT（IFIAG＋I）
GOTO 70
C GET IIATA FOR THREF POINT AND SLOPEF INTFRPOLATION
59 ALF（3）$=\triangle S T \Delta R$
FINT（3）$=$ COST

```
    G0 G(1) = (ALF(3) - ALF(?))*(ALF(3)*ALF(?))***2
        G(2) = F(JNT(2)*ALF(3)**2 - FINT(3)*ALF(2)**2 - ALL(2)*ALF(3)
    1*(ALF(3)-ALF(7))*DCOST - (ALF(3)**2 - ALF(?)**こ)*FUNT(1)
        G(2) = -3.01)0*(F(2)/G(1)
        G(3)=F(INT(2)*ALF(3)*2*3-FUNT(3)*ALF(2)**3-ALF(2)*ALF(3)
    1*(ALF(3)**2-ALF(?)**2)*OCOST - (ALF(3)**3-ALF(2.2**3)*F(INT(1)
        G(3) = 2.01)O*(;(3)/(;1)
        \DeltaA = G(2)
        HH}=0(3
        CC= nCOST
        GO Tn 71
C SMLVE FOR CONEFFICIFMTS RY CRAMFR'S RILLE
    70 11FTERM= = KM(1,1)*(BM(2,2)*BM(3,3)-AM(3,2)*AM(?,#).)
    1+RM(1,?)*(RM(3,1)*KM(2,3)-RM(3,3)*RM(2,1))
    ? + BM(), 3) %(BM(2,1)*HM(3,7) - HM(3,1)*{M(?,?):
```



```
    1+(5(2)*(1BM(1,1)*sM(2,3)-HM(3,1)*14M(1,3))
```



```
        CC= = (G(1)*{1:M(7,1)*,M(3,?) - HM(3,1)*14M(7,?))
```



```
    ? + G(7)*(BM(1,1):HM(2,2)-MM(?,1):HM(1,2)))/DETERM
C CIMPIITE MININI/ING NIPHA
71 IF|HR.GT.O.OnO) T,O TO 73
        ASTAR = (-SH + OSORT(BH**2 - 4.ODO*AA*CC))/AA/2.0DO
72. IFIANF = ITMAX + I
    PFIURN
73 ASTAR = -2.0DON*CC/(AR + OSORT(BH**? - 4.ONO*AG*(C))
    (.1) in 72
    Fin
```


111111．11 P1－ヘ1： 11 （ヘ－11．11－7）

（IIACIIN／C，HWS／／HFI．TS，FKPMX，FRKMN，TCUT，EPST，EPSTF，EPSA，EPSIT，ERR，
1 ITHAX，IT
COMMOM／C，THSB／C，STR，H，PFIN，CCOST，DTFM，XDTFM

CR，mi円IM／STATH／ALTF，XMACH，FI．TANG，OMAX，SINCR，COSCR，SINDR，COSDR

CGHMON／PRINT／I OUT，IחUT 2，IPRNTI，IPRNT 2
FXTFRNAI．DERIVI
C INITIAIITATIGN
THST＝XIMAS－RE

$1 \mathrm{Can}=0$
1PGR（1）＝0
JF（IFI．AG ．NF．I）TENI）$=T F$
1）FI T＝OFITS
（in $1 \cap \quad 1=1,3$
$10 \quad x .1(I .1)=x \cap(I)$
แf $11 \quad[=4, h$
$11 \quad \times, 1(1,1)=\mathrm{y}(1)(-3)$
Y．1（7，1）$=0 .(3 \mid) 0$
Y，1（4．1）$=0.0100$
$|A-1| \mid$
1N：＝1
1111－11PMX

1．114， $1=0$ ．nan
जC．1） $1 F=n$ ．rino
Kけいけ！ $\mathrm{f}=\mathrm{n}$
C
CRINTINIF
กIO $2.1 \quad I=1, R$
$21 \times S A V F(1)=X, 1(I, 1)$
TFSTP＝TFST
1．TFST＝Fi（3O）（LAN．IOHT）
IFIIFIAF．FO．？．ANO．IPKNTI．LT．2）LTEST＝1

 $\mathrm{T}=\mathrm{TM}$
$T M=T W+M F L T$

$1 \cdot A N=1-C N+1$

23 rimatillit

TFST＝A1 f－A1．TF
IFITFSTI 70，RO，on
C．FIMAI．AI．TITIIIF ITFKATISIN
70 C．INTIMHE
1 $\mathrm{NOX}=4$
71 JF（OAHS（TFST）•I．T．FPSA）（il）TOR R


```
            IF(rFST) 7日.ur,*%
    7) (!) 7.3 I-1, \cap
    73 xri;VF(1)=x.1(1.1)
            T!.1P=11.ST
            (i| |! /5
    7.3 1H174 !=1.8
7% x.1(1,1)=x\^VF(1)
            TN=1M
            THSTN=TH.ST
            TM:= T(A-|)FLT
    75 HFIT=THSTP*(TN-TM)/(TESTP-TESTN)
            TI=IM
            TH=TM+CHFI.T
            CAI.L RK?1.3(INX,R,2OO,M,TOL,TI,TM,XJ,XJ,OV,P,DERIVI)
            KnlW!T=K||INT + l
            ALI=OSOHTT(X, (1,1)**2+X,J(2,1)**2+XJ(3,1)**2)-RE
            TFST=AL.T-ALTF
            (:口 10 7)
            GO TH(100.105.91).IFLAG
    91 IF(IFIMG; FO. 1) GO TO 100
C. FFT FINN: PIINT
            |\cap 92 I=1.0
    97 X.l(I.1)=XSAVF(I)
            IN=TM-DHIT
            Hに!T=1F--TM
            TI=TM
            TH:= TM+1HTLT
            P,Al.I KKT13(IHK,H, 2OO,M,TOL,TI,TM,XJ,X,J,DV,P,DFRJVJ)
```



```
            (i) HH Hl
            TH=TM
81 C.HST=C.HSTFN(X,I)
```



```
C COI:PUTE COST CHINMGF WITH KESPECT TO TF
            CAII WFIIVIITF,XJ,P,1,1,R,1,RPAR,IPAR,I)
            IF(DTFM.IE.O.ONO.ANS.XDTFM.GT.O.ODO) (GOTTO 104
            nO &i> l=1.7
            DCOTF=DCDTFF+XL^MF(I)*P(I, I)
            IF(P(M,I).I.T.O.O()0) GOT TO 104
            O(1)TF=OCOTF+PF(IM(4) =P(R,1)
            WRITE(G.6\capO) TN,(X,J(I,1),I=1,R),(UTM(J),J=1,3)
            IF(IFI.AG.NF.2.ANI).IKFY.GT.O) CALL OUTPUT(XJ,IITM)
            WRITE(G,O\capI) COST,(XI_AMF(I),I=1,7),ALT
            FOPMATIJHO,5X,'COST F!INCTION=',IPO24.1G/35X,'FINAL. MULTIPLIERS'/
```



```
            RFTIIPN
105 COST= COSTFN(X.J)
            IF(JPRNT1.GF.2) GO TO 104
            RETIJRN
100 WRJTF(G,?10)
            IFI NG=IFING+I
            RETIJRN
10t WRTTE(G.2.20)
            IFIAG=IFI.AG+?
            RFTIRN
710 FIMMAT(IHO,5X, 'FXC,FFOFI) CIITOFF TIME ON RUNN WITH AITITIINF C(ITOFF')
27O FOLKMAT(IHO,5X,'FXCEFHFI) MAXIMIJM NUMBER OF ITFRASIUNS IN TERMINAL
    l CuTOFF'I
    &-N|
```

C SitatiUTINE AAKI:IT
SIIRROITTIMF: AAKINTIX.J,XI.AMF,T(;,ITFR,DCOST,XNORMS, OCOTF)
TivPIIC:T RFAI: *

4, Xil (3), vil (3), thexvil(3)
C.O*:AN/STATO/XI, VI, XIHAG, VOMAG.HRXVO.TO CHPMON/CHTRL/GRAO,SFRCH,H, ASTR,STF,TF,KJIS,I JKU,ISTAR C口MAMA/C, GIST/HELTS, FRRMX,FRRMN,TCUT,EPST,EPSTF,EPSA,EPSIT.
1 FRR, I THAX, ITAX, KOINTM, IKEY
C.IMMHN/PRINT/I OUT, IOUTZ.IPRNTI,IPRNT 2 FXTERAAL IOFRIV?
C IMTFGPATIOA IMITIAI.IZATION 1.RAM $=0$
r. RFMOVFO FIRST STEPFR CMII DFi T=iFFLTS
Mก $10 \quad 1=1.7$
$10 \times 5(1,1)=x J(1,1)$
nn 11 $I=8,14$
$11 \times S(1,1)=X \operatorname{AMF}(I-7)$
$T M=0.0 n 0$
C PEMFIVF THF SECDMM STFPFR CALI
$\mathrm{iNX}=1$
THI = FRRMX
CAII. DFRIVZ(TM.XS, P.6.1.14.1,RPAR,IPAR.1)
I.JK=909
C. PFQFIKM IWIFGRATION AND GRAOIENT COMPUTATION

ว COHTJMHF
$H F S T=T F-T M$

CA1. GKANFN(XS, TH,JJK)
I.TFST $=$ MinOM(IMN, IHHT?)

IF (I.TEST.FO.O) WPITF(A,GOO) TEST. (XS(I,I),I=1,14), (GRAD(IJK,J),
$1 . J=1,3)$
$1 \mathrm{MO}=1+\mathrm{N}+1$
(n) $21 \quad \mathrm{I}=1,14$
$21 \quad X S S V F(I)=X S(1,1)$
$I J K=I J K-1$
IFIIJK I.T. II (in TI 90
C REPLACFI STEPFR WITH RK713
$T I=T M$
$T A=T i=1+F I T$
CALI. PK. 713 (INX, 14, ? ON, MK,TOL,TI,TM, XS,XS, DV,P,DERIV?)
(.n Tn ?n
C. TFRMINAI ITFRATITIN

70 IF(TEST.FO.TH) GO TO 30

1) $791=1,14$
$79 \times S(1,1)=\times S A V F(I)$
TM=TM-1)ELT
IVFLT $T=(T F-T O)-T M$
C. RFPIACFG STFPFR INTTH RK713
$\mathrm{TI}=\mathrm{T}$
$11=T M+M F 1 T$

TF:T $=T F$ - TM
30 CAII CRADFN(XS,TM,J,IK)


```
    21P3D24.16/38X.'GRADIFNT'/6X.1P3D24.161
c. SHIFT GRADIENT STORAGF
    KJI=1000-1.J
    101 31 1.=1,K.11
    nO 31 }\textrm{m}=1.
```



```
c. FGRM GRADIFNT gUADRATIRF hy trapEzGIDAL RUlEE
    !n 40 K=1, K.II
    G(K)=(GRaU(K,1)**2+GRAD(K,?)**2+GRAD(K,3)**2
40 CHNTINME
    RETAN=O.ONO
    III 41 :=?.K.II
41 RFTAN=HETAN+(C(L)+G(L-1))*(GRAO(L,4)-GRAO)(L-1,4):/2.0nO
    HFTIN = HFTAN + DCITF**:?
    IF(BEINM -L.F. FPSIT) GO TO 101
C. GFT LIFPIVNIIVF HF GOST WITH RHSHFCT TOI PAKAMFTER
    HCHGT*-MG-TAN
```



```
    |F(ध|!日.|(1. O) (:| TO द?
    XMH&MS=OSONT(AFTAN+(AFTAN*XNOIRMS/RFTAO)**2?)
    (in) TO 4.3
\angle2 XOMIRMS=WSORT(AFTANI
4 3 ~ C O N T J N \| I F .
    IF(IPMFT?.GT.O) WPITF(G,GO1)BFTAN, XNORMS,DCOST,DCUTF
```



```
        16X,'SFARC.H NIRFCTION NORM ='.OOU.16/6X,'COST SI.OPE IN SEARCH
```



```
        31pfi>4.10́l
C GFT HFW SHARCH DIRFCTIIN
    IFIITER -NE. O) GO TOS 5l
    |i! 50 K=!,K,il
    Mf 50 I. =1,4
    SFRCH(K,H.)= CRAD(Y,L)
    STF=O(OTF
    *! TO 80
    51 K TA!t=?
        DG &O L= 1, KJI
        i\Delta|=GRA\cap(I.,4)
    52 IF(IAU .LT. SFRCH(KTAU-1,4)) GOTO 54
        IF(TAN!!E. SFRCH(KTAU|4)) (GOTO 57
        IF(K.TAl| .SF. K.lIS) (;O) TO 56
        KTAH=K.7AUI+1
        (i) T\cap h?
    C. TAHIIS RFIHN THH IHHIFR I.IMIT
    54 1F(KTAl) &.t. 2) lin TO 5h
        K\All=KTA|I-1.
        (;) TO 5?
    r. FIND SFARCH DIRECTIIN HY LINFAR EXTRAPOLATIGN
    56 !\753 K=1.3
        TEMPS(I.,K)=GRAD(I,K) +(RFTAN/BETAD)*(SFRCH(KTAU,K) +(SERCH(KTAU,K)-S
        2ER(H(KTAU-1,K))*(TAU-SERCH(KTAU,4))/(SFRCH(KTAU,4.)-SERCH(KTAU-1,4)
        3))
    53 CONTIMHF
        (a) TO hO
    C. FIND SFARCH DIRICTIINN RY LINFAR INTERPOLATION
    57 11! 55 K=1.3
        IF1.PS(1,K)=GRAD(I.,K) +(AFTAN/HETAD)*((SERCH(KTAll,K.)-SERCH(KTAll-I,K)
        2) :(TAU-SFRCH(KTAU-1,4))/(SFRCH(KTAll,4)-SFRCH(KTAl!-1,4)) +SERCH(KTAU
        3-1,k)!
            C.IINTIMHF
```

ho rindithert
C STIRF SEARC.H DIRFCTION
lifl $1.2 \mathrm{~F}, \mathrm{KJI} \quad 49$
n() $1.1 \mathrm{M}=1.3$
$S F(S(H)(1, M)=$ TFMPS (L, M)
61 SFUCH(L,4) 6 GTRAD(L.,4) $S T F=$ DCDTF $\quad+($ RFTAN/RETAD $) * S T F$
$80 \quad$ KJIS=ふJI RETATI=RETAN RETHRM
90 FIRTE 6,200$)$ I TFP = I TMAX +1 RFTURN
200 FIRMAT (IHO. $5 \times$, 'HAVE EXCEEDED ALLOTTED STORAGE SPACE FOR GRADIENT')
101 WRITE 6,270$)$ $I T F R=1$ TMAX +3 RETURN
220 FGRMAT(1HO. 5 X , 'GRADIENT NORM LESS THAN TOLERANCE') END

SIHRRIITINF RK713
SUAROUTINE RK713（INOX，N，KT，M，TOL，TI，TF，XI，X，XI）IM，TE，DERIV）
r．SEVFNTH RRIFR KINIGF：KITTA INTEGRATION WITH STEFSIZE CONTROL
C M IS THE NHMUFK IF STEPS NEFDED
M IS IHE NHMUFK IIF STFPS NEFIOE
N IS THF NUMISFR IIF HIFFFRENTIAL FOHATIONS
KT IS MAX NUMBER IIF ITFRATIINS
ARRAY F STORFS THE 12 FVALIIATIONS OF THF DIFFFPFATIAL FOIIATIUNS
SIMSCRIPTS FGR MIPHA，MFTA．AND CH ARF＋I GRFATFR THAN FFHLHERGS
F（l）IN FEHIRFROS RYHORT IS IN F（I，J）
F（I）IS JNF（I＋I，J）
PARAMFTFKS FIIR HEO SURROUTINF MISST RF STORED IN CUMMON
IIIMFNSIINNS MUST AGRFF WITH NUMRFR OF DIFFFRFNTIAI EOUATIUNS AND
MHIMER OF COMSTANTS IN THE PARTICILAR FEHLRFRG FORMILA USED

！RFTA113，12），CH113），RPAR（1），IPAR（1）

$1 \mathrm{HRR}(1)=0$
$T=T 1$ 1） 18
1） $\boldsymbol{T}=1=1$
$\mathrm{m}=0$
（in） $10 \quad 1=1 . N$
$10 \times(1)=x \mid(1)$
20 1，AII IH：KIVIT，X，TH，IMIXX，MM，N，I，KPAR，IPA！，I）
10 $30 \quad 1=1$ ，M
$101 \cdot(1,1)=11 \cdot(1)$
（1f $70 \quad \mathrm{H}=9.13$
$1)!40 \quad 1=1, N$
$40 \times 1) 1 \mathrm{M}(1)=\mathrm{X}(\mathrm{I})$
NM＝K－1
Mi $5 n!=1, N$
（）ी $50, J=1$ ，NN

TOHA：$=T+A 1 . \mathrm{PH}(K) *$ OT
CAI．IHFRIV（TOUM，XIUM，TF，INDX，MM，N，I．，RPAR，IPAR，I）
（10）$n 01=1, N$
1） 19
？0
i） 71

F（K，I）＝TE（I）
7n CONTIDIIF
กП $8 \cap I=1, N$

nn go $I=1, N$
ก） $90 \quad L=1.13$
$90 \times(1)=\times(1)+1) T \div C . H(1) * F.(1 ., 1)$
1） $1201=1, N$
1F $1 \times(111110.100 .110$
$10 \cap A=1$ ．
（：1）T11 1 20
$110 \quad A=x(1)$

$F R=1) A B S(T F(1))$
DO $140 \quad I=?$ ．N
IF（OABS（TFII））－FR） $140.140 .13 n$
$130 \mathrm{FP}=\mathrm{P}=\mathrm{A} 4 \mathrm{~S}$（TF：（1））
14n（a）NTINUE
OTL＝DT
$M=M+1$
$A K=.8$
（）$T=A K * \cap T 1 \approx(T \cap L / F R) \div * \cdot 125$
IF（ER－TOL） $150,150.180$
$150 \mathrm{~T}=\mathrm{T}+\mathrm{DTl}$

2
1） 3
D 4
$0 \quad 5$
i） 6
1） 7
$11 \quad R$
D） 9
I） 10
1） 11
1） 12

IF (OT-(TF-T)) 170.170.160

51
(1) AO

1AO $111=\mathrm{rf}-\mathrm{r}$
170) r.ONTINHE

1) hl
(an $\mathrm{Tn}>00$
(D) 1,3

180 in $190 \quad I=1, N$
$190 \times(1)=x 1)\left(1 M_{1} 1\right)$
200 IF (M-KI) 210,2.20,220

1) 64
(1) 65

210 IF (T-TF) 20.220.220

1) 66

220 RETIUP.N
D 68
END
68

1) 69-
C. SURROITINE DERIVI

SURROUTINE DERIVI(T,X,P,L,M,N,NE,RPAR,IPAR,NO)
JMPLIICIT REAL:
RFAL* \because IOADF
WIFFMSION X(N, NE), P(N, NF), ROAR (ND), IPAR (ND), חMEGE(3), TEMP (3),

3. I! 1 F 6,1$)(3.3)$

 1 Irn.til! 10

י(1, 1) $=x(4,1)$
$p(?, 1):=x(5,1)$
P(2, 1) = $x(6,1)$
RMAriz=n.OUO
m $10 \quad 1=1.3$

RNAG1 = OSORT (RMACO)

RPAAG3 $=K M A G 2 * P M A G 1$
C. COMPIITE ACCFLFRATIFINS DUE TO GRAVITY In $] l=4,6$

C. CIMPIITF RFIATIVF VEIICITY CAI. ACROSA(JWFGE,X,VR,O, UNITC) กO $12 I=1,3$
1.2. $\quad V R(1)=x(I+3,1)-V R(I)$

YRNAG=OSORT (ANHTH (VR,VR))
C COMPIITF ATMRSHHFRIC OITAMTITIES AND AEROOYNAMIC PARAMETERS
AITI=RNACT - RT:
CALI. ATMISIMITI, TFMPK, PKES,RHO,VS, DVS, DRHO, DPRFS:
PHO = OAKS(RUM)
XMACH=VRMAGIVS
CAIL AFROD(XMARH,CIA,CA,ETA,DCLA,DCA,DETA)
C COMPIIF AFRTIFYNAMIC. COFFFICIFNTS

COFF $(2)=-(2 . \cap \div+T A+C A / C(A) / V R M A G$,

1) (1) $13 \quad I=1,3$
in $13,1=1,3$
13 COFFM $1 . J)=V R(1) * V R(J) *(2.0 D O * E T A-1 . O D O) / V R M A G * * \%$ (m) $14 \quad 1=1,3$
$14 \operatorname{COEFM}(I, I)=\operatorname{CIFFM}(I, I)+1 . \cap$ OO
C ADO AFRGOYNANIC ACCEIERATIONS TO GRAVITY
กn $15 \quad I=4,6$
$15 \quad P(I, 1)=P(I, 1)+\operatorname{COEF}(1) * \operatorname{COEF}(2) * V R(I-3)$
IF(IPAR(1).EO.1) GO TO 28
C. FIND CINNTRITL VFCTIIR FROM TARLF

GO TO (2n, 70.70,70,70,70).L 22 IF(KT.GF.IJKU) GO TO 25°
$K T=K T+1$
IF(T.LF.U(KT, 4)) GD TO 30
rin $T \cap$ 2?
. $70 \mathrm{kr}=$?
2n IF(T.C.T.ll(KT,4)) GO TU 22
IF(T.RF.H(KT-1,4)) HO TO 30
IF(KT.I.t.2) GOTO 25
$K T=K T-1$
GOT TH 20
C INTFRPOLAIF FOR CIONTRIL WHICH LIES IN INTERVAL II(KT-1.,4). U(KT, 4$)$

つ).4才)
33 TFMPM=USORT(ADITM(TFMP, TEMP))
(in) $37 I=1.3$
32 T T MP (I) 2 TEMP(I)/TFMPid
GO TO 40
C TIMF LIFS OUTSIOF GITNTROL ARRAY IISF LINEAR EXTRAPOLATIUN
25 กก $26 \mathrm{I}=\mathrm{i} .3$
TEMP(I) =U(KT,I)+(U(KT,I)-(J(KT-1,I))*(T-U(KT,4))/(U(KT,4)-U(KT-1,4)
2)
26 CONTINIIF
GO TO 33
r. C.HFCK. IIN R IONTROI. OPTIMN FIAS,
40 IF(ISTAR .FO. OI GO TO 28
C FIND SFARCH OIHFCTION FRIMM TARLE
(in $\operatorname{Tn}(50.53 .61 .53 .61,60), L$
50 IFIT .I.T. SFRCH(KTS-1,4) GO TO 60
52 IF(T.I.F. SERCH(KTS.4)) GOTO 65
IF(KTS-K,IIS) 5l.55.55
51. $K T S=K . T S+1$
(:l) T!) 5?
$60 \quad K T S=?$

(i) $111 \quad b, ?$

(ill TI) かん

(.) lu on 1 1.3

fo ciluillimet
(if) TH 19
55 lin $56 \quad 1=1,3$
TFM(I) = SFPC.H(KTS.I) +(SFRCH(KTS,I)-SERCH(KTS-I.I) \# (1゙-SERCH (KTS.4))
3/(SFRCH(KTS.4)-SFRC,H(KTS-1.4))
56 rnivilgmif:
C FARM CIINTROL
GR IOT $6,9 \quad 1=1.3$
69 TFMP(I) =THMP(I)-ASTR*TFM(I)
1トAPM= ISSART (ADПTM (TFMP, TFMP))
un $67 \mathrm{I}=1,3$
67 TFifP(J)=TFMP(I)/TFMPM
C ADO COMTROI ACCFI.ERATINNS
28 frintimhF
lin $41 \quad 1=4,6$

41 CONT1 Wlll
C. CRNMIIIF HFATING; HFY: IVATIVF

C C.Implltr IHIPGPATil \{inSt ilt:RIVATIVF
CAI 1 ACROSGIVR, IFMP, TFM, O, IINITC)
() 1 4? $\quad 1=1.3$
$42 \quad$ TFM(I) $=1$ FM(I)/VRMAC;

IUADF $=$ IUADF/XMASS*?
$P(8,1)=L$ חAD F $-(3.0 \cap) \cap * x M(1 / R F / R E) * * 2$.
IF(P(R.1).LT.O.ONO) $\mathrm{P}(8.1)=0.000$ D! ! TURN
FWU

C.INIMON/CONS $3 / C S T R, ~ B, ~ P G U N, C C O S T, D T F M$ • XIDTFM
C, IMMIIM/DERIVS/RMAG1, VR, VRMAG; RHO, DRHO, VS, DVS,CLA, 二A, ETA,DCLA,
1 DCA, OFTA
C, MMMON/STATE/ALT,XMASS,UTM,IITMAG
CПMMOM/CNTRL/GRAN,SFRCH,II, ASTR,STF,TF,KJIS,IJKU,ISTAR
C COMPIITE FISRURA) TIMF
$T: T F-T$
C. FIND ROMTKIH. VFCTHR
(in 10 (10,19,10,19,10,8),1
5 IF(KT.(it. IJKII) (in TH 15
$k I=k I+l$

ril II 1
$8 \quad k 1=1.1 F, 11$
10 1H(TM.C.1.11(KT,4)) (il TH b

$K I=K T-1$

(シ) TO 10
C FIMI GINTPGL HY INTGRPOLATION OR EXTRAPOLATION
15 आ口 $1.6 \quad I=1,3$
UTM(I) $=\|(K T-1, I)+(U(K T, I)-U(K T-1, I)) *(T M-()(K T-1,4) j /(J(K T, 4)-1 J(K T-$
21.4)
16 GITNTIHUF
17 IITAAG=FISQRT(AI)TTA(UTM, UTM))
i) 1 1R $\quad i=1.3$
18 IITIVII)=UTM(I)/UTMAG.
rin TII 19
C. FIMD COMTROL RY EXTRAPOIATION
$25 \quad \mathrm{KT}=$?
(in) 1015
C PRFPAPF FIF IIFRIVI CAEL.
10 (IN $20 \quad I=1,7$
$20 \quad x \leqslant(1,1)=x(1,1)$
1队品R(1)=1
(CAII. HFEIVI(TM, XS,PS.1, M, H, I,RPAR, IPAR,1)
C. CIFIAII: AのCKUAPD \&TATF HFRIVATIVES
$11130 \quad I=1.7$
30 $\quad P(1,1)=-1)(1,1)$
C COMPIIF MACH NHMHFK IHFRIVATIVE WITH KESPFCT TOR
CAII ACROSRUUNFGF, VR, VFCVR, D, UNITCI
MO $31 \mathrm{I}=1,3$
31 「HIIR (I) = -VRMAG*DVS*X(I.1)/VS**2/RMAGI + VECVR(I)/VS/VRMAG
C COMPIITF MACH MUMKFR DFRIVATIVE WITH RESPEGT TO V
1) 1 3? $1=1.3$
32. DMMV(I) = VR(I)/VS/VRMAG,
C COMPIITF WHT PRSINISTS
$X L V R=0.00 n$
$X L V R S=0.000$
XI.VII $=0.000$
กi) $40 \quad \mathrm{~J}=11.13$
$x_{1 . V(1)}=X_{1 .} V\left(1+X(1.1) * 11 T M\left(.1-1_{0}^{*} 0\right)\right.$
$X_{\text {LVR }}=X_{I}$ VR $+X(1,1) \div V R(. J-10) / V R M A R$,
$40 \times$ VIVRS $=X: V R S+X(1,1) \div \times(1-10.1)$
VRU $=$ AFOTR(VR, UTM)/VRMAG.
C COMPIITF COEFFICIGNT TFEMS IN MILTIPLIFR FOIIATIONS
CFA $=R H H O A R F A * C L A / X M A S S / 2.010 O$
$H A=C F A * 12.0 * X L V I I-(C A / C 1 A+2 . \cap * F T A) \neq X I V R)$
$H A=C F A \%(-V R M A G *(C A / C L A+2.0 * E T A)+(2.0 * F T A-1.0) * V R U * V R M A G)$
$H C .=C F A * V R M A G *(7 . \cap * F T A-1.0$ O) $=X L V R$
C COMPIITE CROSS PROUMICTS FOK PUSITIUN MULTIPLIER EOUATIUNS

C CTMPUTF STATF MIH.TIPIIERS
(1) $41, J=9,10$
$p(1.1)=-(X M 1 /$ MMAG $1 * * 3) *(\times(J+3,1)-3.0 * \times L V R S * \times(J-7,1) / R M A G 1 * 2)$
$1+H A * V F C V R(J-7)+H P$ *VFCIV $(J-7)+H C * V E C U(J-7)$
? $+: 4 \cap * \times(, 1-7,1) / R M A(i)+H H \approx D M D R(J-7)$
41 CONTINUR
C GOMPHTE VEIMCITY MHITIPLIERS
م! 42 ! $: 11.13$
$P(1.1)=X(1-3,1)+H B * X(J, 1)+H A x V R(J-10)+i H C \cup M T(J-10)$

47 CONTIMIE
C AOD IN HEATIMG FFFECTS
RHOT $=1.22501$
$\operatorname{COFE}=E$ COEF $^{*}\left(1.262 D-4^{*} \text { VRMAG }\right)^{* *} 3.15^{*}$ DRHO/2.0/DSQRT(RHO*RHOO)

(W) R2 1=8, 10

$1111421=11.13$

C CHECR INFOINIITY UN $\because: U E T$ INTE(GRANI
If(PS(A, I) -1.1. O. (.1) O) (i) Tri 300)
C. COMPUTF AERTISYMAMIC 'AKTIAIS
(M) = (RH:

MOT $=4$ MOTH(VR, IITA:

2 /VRMA(i))

LПETA $=00 *\left(4.0 * C L A *(C A+2.0 * F T A * C L A) * V R M A F_{2}-101 T *(4.0 * C L A\right.$

TFRM = LDCLA*OMLA + LDCATICA + LDFTA*OETA
C. ADO \triangle FROUYNAMIC LOAO TH MILTIPLIFRS

90 「ON:TINMF
णก $92.1=11,13$
$P(1.1)=P(I .1)+(T F R M * D M I) R(I-10)+D L D V R * V R(I-1 J) / V R M A G$
$1+$ OLOVR(J*UTM(I-10))*PFIIN(4)/XMASS**2
92 CISN TINHF
300
COMTINIE
$P(14,1)=0.0 \cap 0$ P.FTIIRN

FNin

C SIIBROUIINF GRADFN
SIJHROIITINF GKADFN（XS．TM．I．JK）
IMPLICIT REAL＊$\%(A-H, 1)-7)$
RFAL\％R I．MAOF

C CHFCK CRADIFRT TIMA PUIMT－FIFFCT（IF VARIABIE STEPSILE
TAF $=1 F-T M$
IF（IJK．CiF．©99）（in 1119
IF（TMF．LT．（HNAO（I．IK＋1．4））（in TO 9
$7!I K=1 . I K+1$
IF（TMF．LT．（GKム1）！I，IK＋1，4））GO TO 9
IF（IJK．FO．99日）G，TO 8
（G）TO 7
8 I．ik $=909$
C SET TIME
9 （GRA）（IIK，4）＝TF－TM
C COMPIIF RFI．ATIVE VFIDCITY CAIL ACRISSH（OMEGE，XS，TEMP，O，INNITC） （a） $10 \quad 1=1,3$
$\operatorname{VR}(J)=X S(1)+3 \cdot 1)-\operatorname{TFMP}(J)$
VR阶 \wedge（ $=$ OSORT（AMUTH（VR，VR））
C．EIMDLITF AI TITHIF
A！．II＝ISORT（AO）TB（XS．XS））－KE
C．COMPIIT：ATM！SSHHFHF ANH AFKII DYNAMIC OUANTITIES

C．COMPUTI AIMISPHFPF AMD AFRO IYYNMIC OUANTITIES

XAACH：$=$ VMAAF／VS
CALI．AFROO（XMACH，CIA，CA，ETA，DCLA，DCA，DFTA）
C．COMPUTE IUTT PRIJIICTS
IVVRII＝AIOTH（VR．HTM）／VRMAG
OH． $\mathrm{VO}=0.0 \mathrm{O}=0 \mathrm{O}$
HIVVR $=0.0(1)$
no $11 \quad I=1.3$
IIIVU $=\mathrm{DLVU}+X S(10+I, 1)$＊1ITM（I）
11 OLVVR $=$ DIVVR $+X S(10+1.1) * V R(I) / V R M A G$
C COMPUTE CONSTANTS
CKA $=$ RHIT＊ARFA＊VRMAG＊＊2＊CLA／XMASS／2．ODO
CKH $=(2.0 \div E T A-1.0) * 1) L V V R / J T M A G / V R M A G$ ，
$C K C=-(D L V U+(2.0 * E T A-1.0) * O I . V V R \neq D V R U) / U T M A G$
C GIMPUTE GRADIENT
（I） $12, J=1,3$
12 GRAD（IJK．J）$=(X S(10+J, 1) / 11 T M A G+C K B * V R(J)+C K C * U T M(J)) * C K A$
C．COMPUTE \triangle FROIOYNAMIC．LMAB
CKI）$=(R H 11) * A R E A * V K M A G * * 2 / 2.0 D O) * 2$

LUAUF $=1.11 A \cap F-4.0 * 1=T A * C(A *(C A-2.0 * F T A * C L A) * \| V R U$

C．CHFCK IOAD MACNITHIH
IF（LOAHF．I．－O．ODO）RETUKN
C C．IMPIITF RORADIFNT IIF LOAD

CKE $=$ (RHO*AREA*VRMAG/2.0) $* * 2 / 11 T M A G$
CKF = CKF* ($2.0 *(4.0 * E T A * * 2-1.0) * C L A * * 2 * D V R U * V R M A C$,
1 -4.0*F1A*C.LA*(CA-2.0*ETA*C.IA)*VRMAC)
กก $13 \quad 1=1.3$
13 TFMP(I) = CKF*\{VR(I) - DVRU*\|TM(I)*VRMAG)
C. ADD LMAD GRADIFNT TO TITAL GRADIENT

1) $14 \quad I=1,3$

14 GFA[I(IJK,I) = GRAD(I,iK,I) + TEMP(I)/XMASS**2 RETURN
END
C. FIINC,TIIN ROICTFN

C,OMEROM/STATF/h!T, XMASS, IlTM,IITMAC,
CHMMOH/STATH/XH, VO, XIMAG, VOMAG, lRXVI, YO COMMCIN/STATF/AI.TF, XMACH,FITANG, OMAX,SINCR,COSCR,SINDR,COSDR ज口 $10 \quad 1=1,3$
$10 \quad \times(1)=x 1(1.1)$

CAI L. ACRUSR(URH1P, (IRXVO.TFMP, 1. UNZ)

SINiCR = AnOTR (X, HRXVII)/XMAG,

C. CIMPIITH NI. II IHHF

C. FH:M (.1)ST Vhalll

KF 11 M R :
HMO

UIMFNSTMN XJ(E. $11, \mathrm{XI}$, AMF (7), DHI)RF(3), IOCDRF (3), DOURF (3),

3 (JRXVII (3)
CDWMON/CONS I/PI,RE, XIMI, INNEGF, $\triangle R F A, ~ E C O F F, ~ G N N O T, ~ I M M F G U ~$ CTOMMDM/CONS $3 / C S T R, H, P F I N, ~ C C O S T, D T F M, X I T F M ~$ CTH:MON/STATF/ALTF, XMACH, FLTANG, OMAX, SINCR, COSCK, SIFYDR, COSDR COV.MrM/STATE/AIT, XMASS,IITM. HTMAG

C. SFI FIMAI. VFIGCITY MHITIPLIFRS (1) $) 101=4,6$

10 xinmf(l)=0.0no
C. SET FINAI. HFATING MHIT TIPI IER

सi $=\therefore 1 \mid+k F$
(if) $\because j=1,3$
 in $21 \quad 1=1,3$
21 リCORF(I)=-SINCK*XJ(I.1)/CISCR/KF**2+IJRXVO(I)/COSCK/RF ओา 2 ? $\dagger=1,3$

22 CnlwTIM:It
COA= 2. ODO: PFIN(I): (ALT-ALTF)

1) $23 \mathrm{I}=1.3$
$X \operatorname{XMF}(I)=\operatorname{CCOST}(1) * R F * O C D R F(I)+C C O S T(2) * R E * D D D R F(I)+C(O N * D H D R F(I)$. CONTINUE
QETIRN
FND
C. VFCIHR NHFPATIONS SIMPROHGRAMS
C. CRISS PRIMHIST

DIMEASIGN A(1). H(1). (C(1), IINITC(1)

C(3$)=A(3) \times B(1)-A(1) \div 1(3)$

iFilluil T .LE. (o) RETURN
CMAG=OSORT(ADOTH(C,C))
in $1 k=1,3$
1 UNITC(K)=C(K)/C,MAG PE FTIRIM
FMi)
c. ont produrt
midhile precis gina finc.tion adotb (a,b)
DODALIE PRECISION A,H, ADOTR
IIINENSIOM A(1), H(1)
MOTR $=0$. Ono
in $1 k=1,3$

RETIIRN
END
c．SIJRROUTINE OUTPIIT
SURROUTINE BITPUT（X，IITM）
IMPLICIT REAI＊R（A－H，（1－7）
 1 LINITP（3）．INIT：（3）．INITK（3）．INITJ（3），XLIFT（3）

© COMPIITE NHIT VFCTIRS
CALL ACREISR（IMAGGF，X，VR，O，GNITC）
$\operatorname{lin} 12 \quad 1=1,3$
$12 V / 2(1)=x(I+3,1)-V R(1)$

C．Compilif atembyanmir andiats

（1151 TK（1）$=x(2,1) * x(6,1)-x(3,1) \div x(5,1)$
HFITK（2）$=x(3,1)+x(4,1)-x(1,1) \div x(6,1)$
IIF．1TK（3）$=x(1,1) * \times(5,1)-x(7,1) * x(4,1)$
HAIT＝OSORT（AIOTH（INSITK，IINITK））
（1n $151=1,3$
15 IndTK（I）＝（UAITK（I）／ANIT

C．COMPITE LINIT VEGTIR IN LIFT DIRFCTIUN
CALI．ACRASH（VR，UTM，XIIFT，H，UNITC）
CAIL ACROSK（XIIFT，VR，INNITC．I，XLIFT）
RMAG $=$ OSORT（AGTTH $(x, x))$
／ETAI＝ADOTE（XLIFT，ISNITK）

7ETAB＝ADOT：（ $\times 1$ IFT，INITJ

7FTA4＝AnIFM（HTM．IMJTK）
TFTAS $=$ ADOTM（HTM，X）／RMAS；
JFTAK＝AMIT以いTM，UNITJ
C．ROMDHII：ANGIFS GII VFHICIIS AXIS

ZF1A7 $=(x(1,1): x(4,1)+x(2,1) * \times(5,1)+x(3,1) * \times(6,1)) /$ RMAG

（IA：IMA＝DATAMP（ZFTAY，ZFTAK）＊18O．DO／PI
WRITF（A，GOO）AIFA，PETA，AI．FAT
600 FORMATI $1 H 0.5 \mathrm{X}$ ，＇IN PLANE ANGLF OF ATTACK $=1.1 \mathrm{PIO} 24.16 .5 \mathrm{X}$ ，
1 ANGIE GF SIDFSI．IP＝＇，1PID24．1h／GX，＇TOTAL ANGLE OF ATTACK＝＇，
2 1PO24．161
WRITF（6，大OI）PHIOITT

WRITF（G．GOZ）PSIOIT，PSIIN

WRITE（6．GOJ）GGIMMA
GOZ FIRMATILHO，SX，＇FLIGHT PATH ANGLE $=1,1$ PN24．16I
RFTHRA

END

HIMFMC！lim $\left.A\left(b_{3}\right), 4(5), 1,(5), 1\right)(f)$

5－3．191け6フトー3／
XPAACH $=$ SMGI（XPACHI）
IF（XMAGH．OT．1．OF＋1）GO 7010
$C A=A(1)+X M A C H:(A(2)+X M A C H *(A(3)+X M A C H *(A(4)+A(5)$
$1 \approx x M A(H))$
$n C A=A(2)+X N A C H *(2.0 * A(3)+X M A C H *(3.0 * A(4)+4.0 * A(5) * X M A C H))$
rin Tn 11
$10 C A=1.2 E-2$
DCA $=$ CIDFO
1］IF（XMACH．GT．G．OFO）GOT．TO 20
$E T A=C(1)+X M A C H *(C(2)+X M A C H *(C(3)+X M A C H \%(C(4)+C(5)$
1 ＊XHACH）｜）
WFTA $=C(2)+X M M C H *(2.0 \div C(3)+X M A C H *(3.0 * C(4)+4.0 * C(5) * X M A C H))$ Fint TO ？ 1
$20 \mathrm{FTA}=1.8 \mathrm{~F}+0$
HFTA $=0.0$ OR

 （1）THI $4 n$
30 IF（XMACH．GT．I．OF＋I）（ill TO 31 $C H A=H(1)+X M A C H *(H(7)+X M A C H *(H(3)+X M A C H *(H(4)+H(5) *$
$1 \times \operatorname{lin}(H) 1)$
DC． 1 A $=A(7)+X M A C H *(7.0 * H(3)+X M A C H *(3.0 * H(4)+4.0 \times H(5) * X M A C H))$ （a） $7 \cap 40$
31 CI．$A=7$. ．$F-1$
OCIA＝O．OFO
40 C．LAS＝ORLE（CIIA） C $\Delta \cap=$ OHLE $E(C A)$ ． ETAN＝IOHIF（FTA）
OCIA A ODRLE（OCLA）
DCAO＝DRL．F（DCA）
OETAO $=$ ORLE（DFTA） RETIIRN． FMID \therefore

IMPLICIT RFA！＊：（ 1 －H，O－7）
DATA AO，N1，AZ，A3．A4，A5，A6．A7，AS，A9，A10．A11，A12．A13，A14，N15．A16，

 n－10．1．1744496141）－13．3483．67635600．．202169832t10－1．5．80334458

C．AHIT THAT FORMUI A：AI：F NHIT ACCHRATF FOK ALTITUIF DUTSIUE IT TO $2 O U K M$

r．HREF IS IN IIFRRFES KFIVIN

C．VS IS IN MFTERS PER SECOND
C．MRHIIHPPFS．ANI）DVS ARE IN SAMF UNITS AS RHO，PRES，ANL DVS DVER MTS
AI．$Y=\Delta I T I$
$7=A 1 . T \geqslant 1 .(1)-3$
［F（7）1，7，？
$7=0.0$
CMNTIAUE
IF（7－）．（in）13．3．4
$Z=200.100$
Chntimity
フォニiッ！
$\mathrm{Hi}=7+\mathrm{n} 1$
$1: 7=7+A!$
トア＝7－ヘ

$1-5=1 ン-\lambda 13: 1+N 14$

$A \therefore=0.01 \times n 31.17 \%$

$\| A=-A(1 E 1 * F()+\Lambda \partial / H 2-A 4 / E 3+(2 . * A G * 7+A A B) / E 4-(2 . * A 12 * Z+A A C) / E 5$

18．$\because 48 \div 7$ ）1） 11

FESS＝いるこんK民S

IV $S=0.500 * 114 \div$ Wrimp／VS

IF（ALT－7．On？／1．0円－3） 5.5 .6
$6 \quad A=A!T-2.012 / 1-$ กルー． 3
$R+H O=R 149+1) R H 10: \Lambda$
PRFS＝1IJRES：A A PRES
$V S=V S+11 V S * A$

5		66
7	RH($=$ R H H $)+1$ RHH(1)*ALT	
	PRFS $=P R F S+$ PPRFS:ALT	
	$V S=V S+1 V V S * A L . T$	
R	C.INATINIE	
	NFPTIRN	
	EMO	

AリリはNIIX

LIS＇TING OF PHASE II PROGIRAM

NOTE：The Phase II Program is built to use either single aerodynamic approximations or spline－fit aerodynamics．Both listings are presented in this Appendix．To use the simple aerodynamic approximations，use the listing of pages 68－90；to use the spline－fit aerodynamics replace MAIN， DERIV1，and DERIV2 by the listings on pages 91－98 and add the subroutine SETUP（pages 93－94）．

```
IMDI＿IC．IT RFAI． 3 （A－H，（I－Z）
```



```
C（！！！mПN／STATO／SVART），TO
COM． \(\operatorname{CH}\) CN／STATE／AI．T，XiMASS．lITM，STVRS
CIMMON／STATF；AITF，XMACH，FLTANG，VF，GAMIAF，TF
```



```
COAMDA／STORE／DFI．SV，DFLSF，DFI．GF，DF！T，KEN
```



``` 2FPSTF，F口SA，EPSTT，FRR，ITMAX，ITBX，KGINTM，CSTR，H，C，DIFM，SVARO，TO，ALTF 3．XMACH，FLTANG，GAMMF，XMASS，IMIT，IOHTZ，IPRNTI，IPRNT？，VF
READ IN NATA
```



```
KFAD（7，700）I JKU
RFA！）（7，750）（（1；（I，J），J＝1，3），I＝1，IJKい）
wRITF（f，ANAMF）
C．CA！L COBJMGATF GWAOIFNT KOIITINFF
```



```
！！！！18111！！11
```



```
1．1 i！1！！
```



```
（1．）：い！！TF（A，ち40）
\(\therefore!\) ？lill
50 Wr ITE（A，550）
กП 7 1 ！！？
（t）whITE（t，5AO）
```



```
（c）10 101
RO）wKITE（6．58n）
（ \(\because\) ） \(\mathrm{T} \cap \mathrm{O} \mathrm{O}\)
on WRITE（6，590）
Cก TO 1 O1
100 HRITE（fogOO）
1OI RGNTIM！JF
？RITE（R，Aつ5）I IKU
，
SThP
FIRMAT（？14）
```



```
GOO FIMMATI IHO，SX，＇CONVIRGFMCF IN ZFRO CRANIFNT MIIRI：
6）S G：TRMATI＇，J！\()\)
S50 FOPMAT（1 1．30） 3.16 ）
7（O）FITMAT（15）
750 FOKMAT（3D 26．16）
END
```

```
            SIGROI:TINE MPR.JCG(IFR)
            IMPLICIT REAL**(A-H,O)-Z)
            GIMFMSIMN X,I!R,:1, XI.AMF(7),SERCH(999,3),11(999,3),(EMPIJ(999,2),C(7)
            2.Gluag(9G(, 2)
            RMMMM/CHNS?/DFLTS.TCHT,FPST,FPSTF,EOSA,FPSIT,EQR,ITMAX, ITMX,
            2<OHmTH.IKFY
                COMMRIM/CONSB/CSTR,F,C,OTFM,XOTFM
            COHAMH/CNTRI/GRAD,SERCH,U,ASIR,STF, K.ITS,IJKU,I STAK
            COMAMOM/STATF/ALTF,XMACH,FITANG,VF,GAMMF,TF
            COHMOM/PRINT/IOUT,IOHTZ,IPRNTL,IPRNT?
            I TFP=O
    ASTR=0.0)OO
C. PFRFIRM FORWARID INTFGRATION TH AI.TITIINE CIIT-OF:
8 ISTAR=O
    FGAG=1
    kMX=0
```



```
    IF(IFIAG -NE. 1) GOITO 94
    iF(ITFR.FO.O) Gn TO q
C. CHFGK CHAM,GE IN COST VAL.iFS
    5 IF(!A.,S(COST-CSAVF) -I.T. EPR) fol) Tn 96
C PFRFOIRIM RACKWARD INTECRATIMN
9 COSL HAKINT(X,I,XIAMF,TF,ITFR,OC,IST,XNOKMS,DCDTF)
    IF(ITER-ITMAX) 7,95,93
OSNVF=COIST.
    ITNHM= ITFK + 1
    WP:ITF(6,0\cap3) ITMINA
    6,O3 FOPMAT(IHO,5X,'ITFRATION NHMMFR',I5//)
C. FNTEF 1-1) SFARC.H
            KFIG: = 0
        6 ISTAR = i
            IFIAG=?
            IKNT = n
            TFS=TF
            `||F=0
    10 CAII. SEKALF(COST,DCIST,ASTR,CSTR,XNORMS,R,TO,TFS,ITMX,IFLG)
            JF(KMX .f,T. 5) GOi TO 100
            KKNT = JKNT + 1
            IF(IPRNTI.GT.O) WRITF(G,GOO) JKNT,ASTR
    GMO FONGAT(5X,'1-1) SFARCH TRIAL = ', 15,5X,'PARAMFTER =',DZ4.16)
            IF(IFIG, .fT. ITMX) (;O TO ll
            CALI. FWHINT(COST,XI, XLAMF,DCDTF,IFLAG)
            (O) Tח 10
11 IF(IFI.G .FTG.ITMX+1)SOO TO 99
            IFIAG=1
            CALI: FHGINT(COST.XI, XLAMF.DCRTF,IFIAGI
            KMX =K:NX+1
            IFLC=1
                            IF(COST .GT. CSAVE) GO TO 10
C CHFCK FOR SMALI CONTR!LL NORM CHANGE
        14 |WITRM = ASTR*XNORMS
            IF(INNRM.LT.EPST) r,O TO. 9%
            k!4x=0
c. havf founi, interpim.ntfo valie, ifpidate control at fregujency of SEARCh
12. KTA|首1
    (m) ton 1.=l,KJIS
    1A1I=SFRCH(1,7)
h? IF(H(K.1AU, 3) .GT. TAlt) GO TO 54
    IF(KTAU GFE. IJKIH) GO TOS 57
    KTAU=KTAU+1
```

```
    {i? TO 5)
C. TAU L.IFS KETHEFN U(KTAII-1,3) AND II(KTMU,3)
    &4 IFOKTAll .F゙N. l) (il) Tli 5h
```



```
        |f, !!, < =1."
```



```
    C,1%:T|M|F
    !:) TO ho
    C IISF LIMFAR EXTRAPOLATIUN
    56 KT^II=?
57 Oח 5& K=1.?
    TFMPU(1_,K)=-ASTR*SERCH(L,K)+(U(KTAU,K)-U(KTAU-1,K))*(TAU-U(KTAU,3)
    2)/(1)(KTAl!,3)-1H(KTAll-1,3))+U(KTAU,K)
    CONTIMHF
58 conmernor
    [n 6> 1.=1,KJIS
    ण! 61 जि=1,?
Gi U(I,M)=TEMPU(L,M).
G2 H(L,3)=SERCH(L, 3)
    I.!K:l=K.lIS
    65 CONTINGF
    ITFO=ITFR+1
    GOT\cap 5
c. 1-\cap S!ARCH FRRORS
    lon lri人=?
        IF(IFIG .FO. ITMX+7)IG:N=3
        &&T|!!!
```



```
        g多 |f:= = '+
            Rer.1112dim
C. HAVF CHMVHRCFNCE DHF TO NH COST C.HANGF
OG IFK=5
    !-1HKN
i. HGVF FXCFFFOFO HFPGITTFO NIIMAFR OF CG STEPS
95 IF:=な
    KトTIRN
C. HSVF FAILEO TO REACH ALTITIINE CUT-IOF
94 IFP=7
    RETIIRN
9% IF(ITFR-(ITMAX+21) 92.91.90
C MOT FMOMGG STORAGE SPACE FOR GRADIFNT
9? [FO=3
    RFTHIRM
C CAMMNIT FIND INTEGRATINN COT-DFF POINT
9I IFP=9
    RFTHRN
C. HAVF COMNERGFO OM GRADIFGT MDRM
90 JF%=10
    p:%||12的
        94 IF(IFI(G-(ITMX+3)) 110.105.100
    C. NNHW SFARCH IN GRAUIFNT IIRFCTION
        IN5 IF(KFIG.GT.O) GO TO 100
            KIFG=1
            1:! lO1 II=1,KJIS
            (0) 1O1 , \,|=1,3
    101 SFU(H(II,JJ)= GRAD(II,JJ)
            (iत) JO) 6
C. CHFCK FOR COST DFCRFASF
    110 CONTINIIF
```

IFIAG $=1$

4.1) |l| 14
1.1.11

SIIZROITINE SFKAIFICOST, ICOST, ASTAR,CSTAR, SNOKM, H, IU, TF, ITMAX,

|F(nGOBi.g.F.n.niri) fil Til 15
IF AASTAK •NF. O. OnO) GOU TO 11
C CRifillite Flest PARAMFTHR
ASTAR $=$ - OAODB (CSTAR - COST)/DCOST
HSTAR = = \#USORT (2 . Bn\#TF)/SNORM
IF(OSTAR © (;T. KSTAR) ASTAR=BSTAR

IFGISTAK - IF G. ODOI ASTAR $=X N$ IIRM

Al (1) = O. (O)
に1: Aに -
n. T1MM
C. SIGP: HF (inST IS Milt NHRATIVF

10n FOWHAT(iHO,IDX, 'TIF VMIUE OF THE NON-NEGATIVE SLOHE IS', D24.16)
$\mathrm{IF} \cdot A G=I T M \Delta X+$? $p=T 1 Q: \cdot$
(. CRMP:TF SFCRND PNRMMETFR

$\therefore I F(?)=A S T A R$
Fia $T($? $)=$ COST
IF\{F:MTI? - LE.FUNT(1) GO TO 25
ASTAR = AIF(2)/2.0nO
IFIAG = 2
RFTIRA
$75 \mathrm{~F} \because \Delta \mathrm{~F} \boldsymbol{A G}=$?
(i) Tf 31

$A+F(I F I A O)=A S T A R$
FiMT(JFLAG) $=$ COST

3] ASiAR = AtF(?)*(?.OHO) ** (IFI. $\Delta G-1)$

iFl.AG = IFIfir + 1
Fi.TiPM
 40 W4 T T: (6.1011)

 PLT1RRA
C. GFT GATA FGUP PGIINT INTHRPOLATIGN

$I F L A_{1} G=I F L A G-3$
DO 51 $1=1,3$ $R M(I, 3)=\Delta L F(I F(\Delta G)-\Delta L F(I F L A G+I)$ $B \cdots(I, 2)=(A L F(I F I A G)+A I F(I F L A T B+I)) * R M(I, 3) / 2.000$ $F B(I, 1)=(A L F(I F L A G) * 3-A L F(I F L A(;+I) * * 3) / 3.0 \cap 0$
$51 G(I)=F U N T(I F L A G)-F I N T(I F L A G+I)$ (i) $\mathrm{T} \cap 7 \mathrm{n}$

C GFT MAIA FOR THRFF PGIMT $\triangle N D$ SLOPE INTERPOLATIINN
$59 \quad A \mid F(3)=A S T \wedge R$
FIINT(3) $=$ COST
$6 \cap f(1)=(A L F(3)-A L F(2)) *(A L F(3) * A L F(2)) * 22$

```
        (:2)=F(JNT!2)*ALF(3)**2 - F(JNT(3)*ALF(2)**2 - ALF(2)*ALF(3)
    1 *(ALF(3)-ALF(2))*OCOST - {ALF(3)**2 - ALF(2)**2)*F!NT(1)
        G(2) = - 3.0D0*F(2)/G(1)
        G(3)= FINIT(2)*AIFF(3)**3 - FINT(3)*ALF(2)**3 - ALF(2)*ALF(3)
    1*(ALF(3)**2-ALF(2)**2)*DCOST - (ALF(3)**3-ALF(2)**3)*FUNT(1)
        G(3) = 2.01)0*F(5)/f(1)
        AA = G(2)
        FA}=T(3
        CC= DCOST
        OM Tn 71
C. SOIVF FIR COEFFICIENTS GY CRANERIS RULE
```



```
    ) + 3M(1, ) ) %(RM(3,1)*{M(?,3)- KM(3,3):KM(?,1))
```



```
    ? + G(3)*(KN:(I,I)*BM(?,?)- KM(2,1)*GM(1,2))),DETFRM
C COMP!ITE MINIMIZIMG; RLPHA
71 !F(GR.r,T.O.ONO) (:O) TO) }7
        ASTAR = (-13FH + DSORT(HH**2-4.01)O*AA*CC)//AA/2.050
7? IFIAG = ITMAX + I
        RFTIRN
73 ASIAR = -2.ONO%CC/(BR + OSORT(BB**2 - 4.ONO*AA*CC))
        ral TO 72
        FiN%
```

```
        SHAROHTINE FWIIMT(COST,XJ, XLAMF,DCDTF,IFLAG)
        IMDLICIT RFAL*&(n-H,O-7)
    IIMENSIMN YPR(8,4,l),I)PSAVE(R,I),riV(R,l), P(R,1),Tt:(fi,l), RPAR(1),
    2IPAR(I),SVAR|(6),XI_^NF(G),C(7),STVKS(999,6), \capFP(A,1),|TMM(2),A(4)
    3.13(4)
    CO:HBNN/CONSI/PI,PF,XMIH,IMMFSE, AREA, ECOFF,GNOT
    COMMON/CONS /I)FLTS.TCUT, EPST, EPSTF,FPSA,EPSIT, ERR,ITMAX,ITMX,
    2K\cap|NMTM.IKEY
    C.\cap\becauseMON/STATF/ALT,XMASS,IITM,STVRS
    C.ONMON/STATO/SVARO,TO
    COMMIIN/STATF/ALTF,XMACH,FLTANG,VF,GAMMF,TF
    COMMnN/PRI INT/IOUT, IUUT2,IPRNTI, IPRNT2
    CriminON/STORE/DELSV,DELSE,DFLGE,DELT,KEN
    C. IMITIAIIZATION
    TFST=SVARO(1)-RE
    TFNH=TC|T
    LNM: INHTT-1
    i MX=?
    IPAR(1)= O
    10SIK= 24.0100
                ZFRO = O.O1NO
                \Delta(i) = - 9.0.0n/sjx
            A(2)}=37.(1)/\mp@code{Six
            A(3) = -59.nion/s 1x
            \Delta(4)}=55.0\mathrm{ non/SIX
            A(l) = 1.nin/SIX
            R(?)}=-5.\operatorname{Bon}/\textrm{Si
            R(3)}=10.010n/SI
            4(4)=-N(1)
    C
            RATIN = 19.000/270.000
            SIX = 6.0DO
            TW! =2.0100
    c
    w=1
    I. =1
    A:F::1
    A=4
            N1 =4 0, 009>0
            N.2 =1 (1.3 =? 0,0430
```



```
        nf1T=1!E1TS
        |O lll l=1,k
    111 NFF(I,1)=5vAmO(J)
        ir+(7,1)=0.0ी%;
        INF(S.1)=0.0n()
        K=1
        TA=T0
    2O ASSIFN IOO TO IPL.与
            KGIIAT =0
            NE/RYA = NEIT/SIX
            IEISY? = OELT/TWO
C
    MO}21,NAY=1,N
    \square0) 22 J = 1,N
    1)PSAVE(J,JAY)= חFP(,J,JAY)
    CNLL DERIVI\TM,NV,P,L,M,N,NE,RPAR,IHAR,I)
```

23 CONTINIF
C
C．FVAIIIATING THF DFRIVATIVFS AND STORING THF VALIIFS
C
Mn $25 \mathrm{JAY}=1, \mathrm{NF}$
in $26 \mathrm{~J}=1, N$
$2 K$ YUK（J．Ml．JAY）$=P(J . J A Y)$
25 CMATINHE
IFIINX．FO． 31 GO TO 30
COST＝0．ODO
ICNTF＝O．กDO
$K!n \omega T=n$
C．PFPFIKM INTFGRATION AND CRMPUTE COST 202 COMTIUHF
$1103>0 \quad J=1 . R$
320 MOSAVF（，, 1$)=$ OFP（J．1）
1） $3>7 \quad 1=1,6$
377 STVRS（K，JI＝RFP（，I，i）
$k=k+1$

H\＆丁口＝TトST
 ว（11114（．1），$\ddagger=1,>)$

$3 \cap V=1 M$
$1 . n=V+1 n+1 . T$
C．
（i0）THIPL5．1100．200）
C．
C．FNTRY ADAMS PRFUICTIOR－CORRECTOR
C．APPLICATION OF THF PREDICTOR EOUATION AND THE DERIVATIVE EVALUATION
200 חी 220 JAY＝I．NE
On $210 \mathrm{~J}=1 . \mathrm{N}$
TF（J，JAY）$=R(3): Y P R(J, M 1, J A Y)+R(2) \approx Y P R(J, M 2, J A V)+B(1) \approx Y P R(J, M 3, J A Y)$
 $\operatorname{DV}(J, J A Y)=D V(J, J A Y)+\cap E L T *(A(2) \neq Y P R(J, M 3, J A Y)+A(1) * Y P R(J, M 4, J A Y))$
210 CONTIMUE
CAIL MFRIVI（TM，IIV，P，L，M，N，NE，RPAR，IPAR， 1 ）
220 CINTINHOF
C．APPLICATIGN OF THF CORPECTUR FOIIATION ANO THF DFRIVATIVF FVALUATIUN
0
（II） 240 JAY $=\mathrm{I}$ ，NF
$\operatorname{HO} 23 n .1=1 . N$
230 ：JV（J．JAY）＝OEP（J．JAY）＋DFLT＊（R（4）＊P（J．JAY）＋TE（J．JAY））
CAIL．HFRIV）（TM，IN，P．I．M ，N，NF，RPAR，IPAR，II
740 CNITINIIF
r.
C．SFCOND APPIICATION ITF THF CORRFCTOR FOUATION AND COMPUTING
r．THF SINGIF STFP FRROR
กก $25 \cap$ ．$\triangle \wedge Y=1, N F$
חO $250 \mathrm{~J}=1, N$
$Y D Q(J, M 4, J \wedge Y)=P(J, J A Y)$
IEP（J，JAY）$=$ DFP（J，JAY）＋DELT＊$(R(4) * P(J, J A Y)+T E(J, J A Y))$
DV（J．JAY）$=$ DFP（J，JAY）
01340
013 30
013 かO
01340
01400
01410
01420
01430
01440
01450
01460
01470

01500
（1） 10
01 リン
0 ）540
01540
0）いいの
01960
01490
$015: 0$
OlaOO
01 AlO
01（A）
（1） 1640
01450
$016 n 0$
01670
250 CONTINIIE


```
C FINAI ALTITIME ITFRATION
    70 KC.INT=KC.INT+1
        [N:X=3
        IF(KGONT -GT. KIMINTM) (Si) TOI ?OL
        !ก 70 I=1,R
    79 MF'(I,l)=1)PSAVE(I,l)
        TM=TM-DFI-T
        I!FIT=1)FIT*DAHS(TESTP/(TESTP-TEST))
        (in) Tn ?n
    BO TH=TM
        IIFISV=IOFITT
        rlivi=K
    M| 3RO . }=1=1,
```



```
    H) (.1S:T=(.1!.|FM(1,F-D)
    Cん1| X ^MMFN(XI NMF,H)V,1.,M)
```



```
    1 6X.1+4[174.16/39x,'GNNTR(1,'/6X,1P3074.16)
    GOl F(HF:AI(1HO,5X,'CUST FINNCTION=',1PD)24.16/35X,'FINAL MIH.TIPLIERS'/
        l KX.1P4|つ4.1G/6X.1P7(124.16/6X)
            RFFI:!21:
105 C,GST=C.ISTFN(DFP)
        IF(IPQNTl.gt.?) GON TO 104
        KFT!RN
    400 い&ITE(R,410)
        IFI.AG=IFL.AG+I
        KETURI!
101 WRITF(6.470)
        IFI.AG=IFI.AG+3
        RFTINN
40 FOK.AT(IHO,DX,'EXCFFOFO CUTOFF TIME ON RUN WITH ALT :TUMF CUTMFFI'
4OO FORHAT(IHO.כX,VFXCFFOFO MAXIMMM NUMHER OF TTFRATILNNS IN TERMINAL C
    つ|TIFF')
C FHITPY RUN!,F KUTTA 0つつMO
```



```
    100 VV = V + OfLHY?
C
    (ii) 120 JNY=1,NE
    m%110.J = 1.M
    110 |V(J,.JNY) = जFH(J,JAY) + YPR(J,Ml.J^Y)#חFLAYZ.
    CA1 1. Dt!KIVI(VV,INV,P,i. M ,N,NF,RPAR,IPAR,I)
    170 CONTINUE
    02360
C
    NO 140, IAY=1.NE
    0ח 130 J=1,N
    0)}301
    0つ习10
    0つジフ0
    0)340
    0)340
    0)370
    02380
02390
```

```
    130 DV(J,.IAY) = DEP(,J,JAY) + P(J.JAY)*NELYY2
        C.AI.I HFP.IVI(VV,NV,TF.I.,M,N,NF,RPAR,IPAR,I)
```



```
r.
    |!1,O INY= | MF
        (if) % 50.1 = 1.N
```



```
    I50 1F(J,IAY)=2.OIN* (TF(J,IAY) + P(J,JAY))
    I50 IF(J,IAY)=2.OION* (TFI,I,IAY) + P(J,JAY))
    IOO CHNTINMF
r.
    (III 1 AN .JAY= 3.NH
        1) l70 d = 1.N
    HFP(J,IAY)= I)F|(J,JAY) + IFLKYA*(P(J,JAY)+TF(J.JAY)+YPR(J,MI,JAY))
    170 fiv(1.INY) = NFH(.1.JNY)
    CAIL, OHKIVI(TH,OV,F,L,N,N,NF,RPAR,IPAR,1)
        On 100 J = 1.W
    190 YPP(N.,M4.JAY)=P(.1.JAY)
    IRO CONTINIE
r
        Kn!NT = KOINT + 1 
        Kn!NT = KOINT + 1 
            ASSIGN 2OO TO IPI. 5
        07420
        0>4.30
    0)
    のつないか
    0)\mp@code{4,0}
        0)24%0
    440
    0アけい0
    0つい10
    0ンロつ0
        07ち30
        0つけ40
        02560
        02570
        INX=l
        GO TIT 5000
        0?590
        02540
        0?月00
        02410
        07620
        HR ITH(6,650)
        STTP
650 FOLNAAT(' ','FXCFE|FH STATE VAR. STORAGE')
    +N:
```

r.

```
    SURROIITINE RAKINT(XJ,XLAMF,TG,ITFR,DOCOST,XNORMS,DCUTF)
    IMPIIC.IT RFAI.*R(A-H.O-Z)
    |IMFNSION YPR(6,4,1),DPSAVF(G,1), DV(G,1),P(G,2),TE(G,1),RPAR(1),
    21PAR(1),TFMPSGCOQ,3),X1,NF(G),C(7),DEP(6,1),A(4),0(4)
    4,fRA)(4.99,3), FF&CH(999,3),(1(494,3),G(999),STVRS(999,6),UTM(2)
```



```
    CHR MOM/CONS2/DFITS,TCIIT,EPST,EPSTF,FPSA,EPSIT,ERR,ITMAX,ITMX,
    OKOUTMTM,IKEY
    COmMAN/CNTRL/GRAN,SFRCH,U.NSTR,STF, KJIS,IJKI,ISTAR
    COHMGM/STATE/AIT, XOASS,UTM,STVRS
    COHAODH/STATF/ALTF,XMACH,FLTANG,VF,GAMMF,TF
    COE:MON/PRINT/IGUT, IOHT ?,IPRNTI,IPRNT2
    COVGOIN/STORF/DFISV,IFI.SF,DELGE,DELT ,KFN
C
    initiAIIZATfGMi
    IO SIX = フ4.\cap|OO 00/50%
```



```
            A(1)=-9.n!m/six 0.0n/80
            A(2)=37.nH1)/:IX 0.070n
            N(3)=-59.n!n/5IX 00800
            A(4)=55.01)(1/SIX OON10
            R(1)=1.nIONSJX 00N30
            B(?)=-5.n!0%SIX 00840
            R(3)=34.0rin/SIX NOR+50
            H(4)=-N(1)
C.
            RATIN= 14.0m0/270.0DO
            SIX = 6.0110
            T1.10 = ?.0.70
    L=I JK|I
    NF=l
    N=6
            iN1 =4 0, 00970
            i.2 = 1 009.30
            i43 =2 00040
            M4 = 3 00950
    OFI.T=O=1.SV
    n! 111 I=1,h
    111 1)FP(I.1)=XI_\LambdaMF(I)
    T:l=n.?
    NiFK=K+#
    :OITF(G,O\capO) NFK,KFN
    900
    F|!MN\(1 '.2.14)
    1 JK=9ソ9
    1.MN=1 \||T2-1
    INX= = 
    20 ASSIF:* IOO TH IPLS
            KO:NNT=0
            OFLHYA = OFITT/SIX
            NFIRY2 = IVFLT/TWO
C
    IM 21 JAY = 1, ME
    mi 2? J = 1.N
    mi P2V.J, = |N NAVE(J,JAY)= OFP(J,JAY)
```



```
    MV(J.JAY)= DEP(J,JAY)
    71 CONTINIIE
    01030
    0)10t0
        01070
        OFIRY2 = DFLT/TWO 01040
        01090
        01100
    ??. DV(J,JAY) = DEP(J.JAY)
        01130
    01150
C
```

CALL GRADFN(INP.TM, IJK)

```
            TFST=TF-TM
            LINN=LMN+1
            LTEST=MON(LMN,INUT2)
            IF(LTEST .EO. n) WRITE(6,大00) TEST,(STVRS(NEK,K),K=1,6),(DV(I,I).
                2I=1,6),(GRAD(IJK+1,1),J=1,2)
C FVALIIATING THE OFRIVATIVFS AND STORING THF VALUES
```

01170
01180
01190
01200
On 26 JAY $=1, N$
YPR(I,M1,JAY) $=P(.1, J A Y)$
25 CONTINUF
PFRFORM INTEGRATIDN AND CMMPUTE GRAD.
$30 \quad V=T M$
$T H=V+C f L T$
NFK $=$ NFK-1
c
c
c
c
c
c
r.ח In IPL5, (100, 200)
C. entry anams prenictioir-Corrector

C
APPIICATIGN OF THF PRFIICTOR FOIIATION AND THE DFRIVATIVE EVAIUATION
200 (N) 220 JAY J, NF
(n) $210 \mathrm{~J}=1, \mathrm{~N}$
$T F(J, J \Delta Y)=4(3) \% Y P R(, 1, M 1, J A Y)+R(2) \neq Y P R(J, M 2, J A Y)+R(1) * Y P R(J, M 3, J \Delta Y)$

$O V(J, J A Y)=O V(J, N A Y)+D F I T *(A(?) * Y P R(J, M 3, J A Y)+A(1) * Y P R(J, N 4, J A Y)) \quad 01470$
210 Comithif
(AIL DFKIV)(TM,IVV,P,L.NFK,O,RPAR,IPAR)
? on comitivile
C
c. APPIICATION OF THF CORRFCTOR FOUATION AND THE DERIVATIVE EVALUATION

C
(1) $24 \cap \mathrm{~J} \wedge Y=\ddot{1}, \mathrm{NF}$

Dr. $23 n \mathrm{~J}=1, \mathrm{~N}$
230 DU(J.JAY) $=$ IDFP(J,JAY) + DFLT*(R(4)*P(J,JAY) + Tミ(J,JAY))
CALI. DERIV?(TM, DV,P,L,NFK,O,RPAR,IPAR)
24i) COnTIM:UE
c
C SFCONN APPLICATION OF THE CORRECTOR EOHATION AND COMPUTING THF SINGIE STEP ERROR

In 250 JAY $=1$, NE
n) $250 \mathrm{~J}=1, \mathrm{~N}$

YPR (J,M4, JAY) = P(J.JAY)
DV(J,JAY) = DFP(1)JAY) + DELY(R(4)*P(J,JAY) + TE(J*JAY))
250 CONTINIF

$M n$	$=M 4$	
$M 4$	$=M 3$	01730
$M 3$	$=M 2$	
$M 2$		017450
$M 1$	$M 1$	01760
	$=M n$	

C $\dot{\mathrm{C}}$
$0 \cap \cdot 320 \mathrm{~J}=1, \mathrm{~N}$
320 DPSAVF(J.1)=DFP(J,1)
TFST=TF-TM.
IF(TEST .LE. 1.OD-1) GO TO 500
CALL NERIV?(TM, DV,P,L,NEK,O,RPAR,IPAR)
(AI.E GRADFN(DFP.TM,1JK)

01340
01350
01360
01390
01400
01410
0) 1420

01430
$0144 n$
01450
0). 440

01 boo
01510
01520
01930
01540
01 (2)
01540
01580
01540
01600
01610 01620

01640
$016{ }^{\circ} 0$
01660

01730
01740
01750
01770

```
            LMNM= LMN+1.
            I.TFST=MON (LMN!,IOUT2)
            IF(I.TEST . EO. O) WRITE(K,GOO) TEST,(STVRS(NEK,K),K=1,6),(DVII,l),
            ZI=1.K),(GのRAO(IJK+1,J),J=1, 2)
            GO) Tती 30
C
    VOO = V + NFLRYZ
    C
            OO 12n JAY=1,NF
            OO) 110 J = 1.N
    110 חV(J.JAY) = DFP(J.JAY) + YPR(J.M1.JAY)*DELRYZ
            CAI.L OERIVZ(VV,OV,P,L,NFK,I,RPAR,IPAR)
    17O CONTINUF
C
            lin 140 .IAY=1,NE
            1:!1 130 . = 1.,N
```



```
    CAL.L DERIVV(VV,I)V,VF,L,NEK,I,RHAR,IPAR)
    140 CONTIMMF
C
    ION 160 , IAY=1,NE:
            im 150.J = 1.N
            riv(.J.jAY) = DEP(.J.JAY) + TF(J,JAY)#fOLT
    150 TE(U,JAY) = ?.مOO * (TF(J,JAY) + P(J,JAY))
    {.AII חERIVZ(TN,DV,P,L,NEK,O,RPAR,IPAR)
    1GO CROGTINUE
C
    DO) 180 .JNY=1.NF
    0n 17n J = 1.N
    OFP(J,J^Y)= OFP(J,JAY) + DELKYG*(P(J,JAY)+TE(J,JルY)+YPR(J,MI,JAY))
    170 门W(., JAY) = OFP(J.JAY)
        C.AII. O&=IV\(TM, \capV,P,L,NEK,O,RPAR,IPAR)
        m\190, = 1,N
    i90 YPR(J,M4,JNY)=P(J,JAY)
    18O CIINTINHF
C
        IF(INX FFO. 3) (GN TH RON
        K|HN| = &HWNT + 1
        IF (KOUHT -I_T. 3) GO TO 5000 0%R10
            ASSIGN 2ON TII IPLS
                0つ&20
        1NX=1
            GO T0) 5000
        07630
    900 INX=1
        IFLT=I苜TSS
        (O) TO 20
    500 CAI.L DERIV2(TM,NV,P,L,NFK,O,RPAR,IPAR)
        CAILL GRADFN(DFP,TM,IJK)
        URITE(G,GOO) TEST,(STVRS(NEK,K),K=1,6),(DEP(I,I),I=1,G),(GRAO(I JK+
        21,\),J=1.2)
    600 FПRMAT(' ', 'TIME=1,1Pח24.16/47X,'STATF'/6X,1P4D24.16/6X,1P2D24.16/
        247X,'M|NTIPLIERS'/6X,1P4D24.16/6X,1P2D24.16/30X,'GRADIFNT'/6X,1P3
        3!74.16)
C. SHIFT GRAOIENT STIRAGE
            K,II =998-iJK
            DO 830 L=1.KJI
            [O 830 M=1,3
    830 GRAD(L,M)=GRAI)(IJK+L,M)
C FORM GRADIENT OIIADRATURE BY TRAPEZOEISAL RIILE
    [On 40 K=1,KJI
```

$G,(\because)-G R A D(K, 1) * G R A D(K, 1)+C R A D(K, 2) \neq G R A D(K, 2)$
40
entiti Mluf：
BF．TAN＝0．0
$J!=K J I-1$
门П $41 \quad L=2 . J I$
41
＋（G（L）＋G（L－1））＊DELTS／2．Cกo
RF TAN＝BETAN＋（CO（KJI）＋（；（KJI－1）$\#$ \＃NELSV／2．DO
IFIRETAN LE FPSIT）GO TO lOl
C．GE 1 DFRIVATIVE OF COST WITH RSEPFCT TO PARAMETER
HCIST＝－RETAN
C GET NOIKM OF SEARCH DIRECTION
JFIITFR FO．O）GO TO 4？
XAHRTMS＝I）SORT（HFTAN＋（HFTAN：XNORMS／AFTAO）＊＊2）
（a） Ti 43
42 XAIDMMS＝OSORT（LETAN）
43 CONTHME

C．CifF NHW SHMKCH SIISHETION

（1） $50 \mathrm{~K}=1, \mathrm{~K}, 1$
（M） $50 \mathrm{I}=1.3$
$50 \quad S H R C H(K, 1)=.(; P$ AD）$(K, 1)$.
STr－0）Cい1F
1） 1 LSE＝OHISV
（il $\mathrm{TO} \quad \mathrm{O} \cap$
51 WFlf；リE゙ TS
MELS＝NELTS
กп $60 \quad L=l, K . J I$
IF（L．．FF．KJIS）GO TO 202
IF（L．EU．KJI）GO TO 400
กก $105 \mathrm{~K}=1,2$
105 TFMPS（L，K）＝GRAD（L，K）＋（RETAN／BETAD）＊SERCH（L，K）
GO TO BO
202 OELS＝DELSE
IF（I．FO．K．II）DELG＝IFLSV
nn $300 \mathrm{~K}=1,2$
$300 \operatorname{TEMPS}(1, K)=G R A D(L, K)+(R F T A N / R E T A D) * S F R C H(K J I S, K)$
（：O TO KO
$4 \cap \cap$ IFlG＝OFI．SV
nol $501 \mathrm{~K}=1.2$
 2（SFRCH（L，K）－SERCH（L－1，K）））
60 GMATIAMF
C STIRF SFARCH DIRFCTIUN
MFISE＝WFIG
（0）K2 $1=1, \mathrm{KJI}$
［） $61 \mathrm{M}=1$ ？
$61 \operatorname{SFRCH}(L, M)=\operatorname{TEMPS}(L, M)$
6） $\operatorname{SFRCH}(1 ., 3)=$ GRAD $(L, 3)$
STF＝［ICNTF＋（HETAN／RETAD）＊STF
So K．I！$S=K .1 I$
AFIAI）＝RFTAN
RETIRN
101 WRITE（6．225）
1 TFR＝ITMAX +3
RFTIJRN
225 FURNAT（1HO，5X．＇GRAMIENT NORM LESS THAN TOLERANCE＇）
END

COMMITN/STATE/ALT. XMASS. TFMP
C.OMAON: STATH/A!, TF, XAACH,FITANG, VF, RAMMF
C. T T T M F
C) $\quad X=$ SIATF AMII JMTFCIKATFD C.IST
C. $\quad P=$ IDFRIVATIVFS OF STATF AVH INTFGPATFD COST AT T
C. CHMPIJIE TRIG FUNGTIGNS IOF PHI, FAMMA,CHI
$\operatorname{TF}(1,1)=\operatorname{OSIM}(x(3,1))$
TH (1,2$)=0 \operatorname{Cos}(x(3,1))$
$\operatorname{TF}(2,1)=\square S I N(x(5,1))$

rF(3.?)=1)0,1S! $\times(6,1) \cdot 9$
CRIMPUT: PEI.ATTVF VEI.IR ITY
$\mathrm{KMA(i)}=\mathrm{X}(1)$,
$V=x(4 \cdot .1)$
VFI.AC: V

AIT:-x(1, 1)-nt

$p(1,1)=V * T+(\%, 1)$
P(2.1) $=(V: \operatorname{TH}(7,2) * T F(3,2)) /($ KMASI $* T F(1,2))$
$P(3,1)=(V \therefore T i(), 2) \times T F(3,1)) / R A A C_{1}$
$P(4,1)=(-x / 41) \div T F(7,1)) /(R M A(; 1$:RMAGI)

$\rho(A, 1)=(-V * T F(2,2) * T F(3,2) * T F(1,1)) /(R M A G I * T F(1, Z))$
\because IF(IPAR(I) •EO. 1) GO TO 100
FIng C.OMTRILL
20 IF(I. .GEE IJKU) GOTOTO 60
30 IF $(11(1 .+1,3) \quad$ LT. T) GO TO 50 IF(U(1., 3) GT. T) GO TO 55
 TFF.P($)=11(L, 2)+((1)(1,+1,2)-1)(L, 2)) /(1)(L+1,3)-1)(L, 3))) *(T-1!(L, 3))$ $\mathrm{L}=\mathrm{L}+\mathrm{I}$
(i) $\operatorname{Tn} 40$
$50 \quad 1 .=L+1$
(in) 7020

 $\operatorname{TENP}(2)=(1(1.2)+((1)(L ., 7)-11(1 .-1,2)) /(11(L, 3)-1)(L-1,2)) *(T-1)(L, 3)))$
40 IFIISTAR FOO O). GOTN 100
C FIND SHARCH DIRECTION
21 IF(M, FiF. KJIS) in TO Gl
I.F(SFERCH(M+1.3) -L.T. T) GOTO 51

IF(SFKCH(M, 3) -(BT. T) (i) TO 56

31 TFM(I) =SFRCH(M,I)+(SERCH(M+1,I)-SFRCH(M,I)/(SERCH(M+1,3)
2-SFRCH(M, 3))) $\because(T-S F R C H(M, 3))$
$\mathrm{M}=\mathrm{M}+1$
GO TO 80
r.O TH 21

56．$M_{1}=v_{i}-1$
6．1 111 ， $1 ; 1$ 1，

a！リ）リい1！1！

TF：P（1）＝TEAH（1）－ASTK：TFM（1）

100 COINTIMIF
COMPUTE AEROIN－COEF

$\left(B=0(1): \Delta R\left(-A * V * V /\left(X M A S S * 2 _\cap \cap\right)\right.\right.$
GOn COMTROL ACCFLFRATIONS
$P(4,1)=P(4,1)-1) * C(1)$
$P(5,1)=P(5,1)+(1) \div(2 * \cap C(1 S(T E M P(2)) / V$

COB：RUT：HEATING ANO HEAT RATF DERIVATIVFS
Pran＝1．225011）
？（7，1）＝F（GORF：
OVQに保 $=P(4,1)$
 IGVRMAF
$P(R, 1)=P(8,1)+(11.7620-4 * V R M A G) * * 3.15 *$ DRHO $) * P(1,1 \cdot /(2.00 * 0 S O R T(R H O$ （r！4nतl）
$\because(K, 1)=F C \cap F F * P(8,1) * F C O F F * P(8,1)$
RFT1RN
：i： 1 ）

SURROUTIAE DERIVZ(TS,XS,P,L,M,NI,RPAR•IPAR)
I:PI.IC!T REA!只R($\wedge-H, 1)-7$.
 2) $\because, \therefore P(2), X P(6,1), X(6,1), P(6,1), C(7)$

COMANN/CONSI/PI,RE, XMU, RIMECF, AREA, FCGFF, GNOT

CDOMON/CMTRL/GRMD, SFIRC.H.U.ASTR.STF, K.JIS.IJKI.ISTAR
CO:KMIN/STATF/ALT.XMASS,TEMP, STVRS
COM:ON/STATF/AITF,XMACH,FI,TANG,VF, TAMMF, TF
$T=T r-1 S$
C. PGTPGIVF STATF VAPIABIFS FROM STORAGE

1:9 $2001=1.6$
$200 \times(1,1)=$ STVKS(1., 1)
1.11 TI 40
c. IVIIRHIIATH FBIM STATF VAR.

lll $30 \quad 1=1,6$
$30 \times(1,1)=(S T V R S(M, I)-S T V R S(M-1, I)) / 2 . D O+S T V R S(M-1,!)$
40 (Glerthult
C.

TROI.

$\operatorname{TFAP}(1)=11(1,1)+((11(1,+1,1)-11(L, 1)) /(11(L+1,3)-1)(L, 3))) *(T-(1(L, 3))$

$1=1+1$
RO TM $40 \cap$
$50 \quad 1=1 .+1$
GO TB 20
$55 \quad$ I. $=1-1$
fif in 20
GO IF(II(L-1,3) •GT. T) GOTO 55
Tfip $(1)=1(L, 1)+(\cdot(1(L, 1)-(1(L-1,1)) /(1)(L, 3)-11(L-1, x)) *(T-(1)(L, 3)))$
$\mathrm{TF}: \mathrm{P}(2)=1(L, 2)+((1)(L, 2)-U(L-1,2)) /(1)(L, 3)-U(L-1,3)) *(T-1)(L, 3)))$
LON CAOTINIE
C COLFPITE TRIG OUAMTITIES
COSR = IJCOS (TFMP(2))
SIMR=IISIN(TFMP(?))
$S(M P=O S I N(X(3,1))$
$C \cap S P=\operatorname{COCOS}(5(5,1))$
SING=1OSIN(X(5.1))
Cosi $=\mathrm{nocos}(x(5,1))$
SINC= INSIN(X(6,1))
$\operatorname{cosc}=\operatorname{ncos}(x(6,1))$
$R=X(1,1)$
$R M A G 2=R * R$
$R M \Delta G 3=R * R M A G ?$
$V=X(4,1)$
C COMPIJTE ATMISSPHERIC PARAMETERS
$A L T I=X(1,1)-R E$
CAIL L ATMISS(ALTI,TEMPR,PRES,RHO,VS,DVS,DRHO,DPRES)
$X M \Delta C H=V / V S$
RHH=1) ARS (RHIS)
C COMPUTG AFRON - COEF.
$\cap=R H \cap * A R E A * V * V /(? . D O * X M A S S)$
$C \cap=7.210 \cap \square S I N(T F M P(1)) * * 3+8 . O D-2$

nc.i $M=0$. nno
OCOM=O.ODO

？FII．19 AFKCOU．PARTIAIS

CO：PIITE MULTIPLIEN DIRIVATIVFS

4CASP）－SINR＊DLDR／（V＊COSG））
$P(2,1)=0.0$
$P(3,1)=-X S(7,1) * V * C S S(; * C O S C \leqslant I N P /(R * C O S P * C O S P)+X S(6,1) * V * C O S G * C O S C$
2 （（R＊COSP＊CRSP）
$P(4,1)=-X S(1,1) * S T N G-(X S(2,1) * C O S G * C O S C) /(R * C(1 S P)-X S(3,1) * C O S G * S I N$
$2 C / K+X S(4,1) * C O H V-X S(5.1) *(X M 1 * C O S F /(R M A G 2 * V * V)+C(J S G / R-O * C L * C(1 S H /$
$3(V * V)+C \cap S \& * O L D V / V)-X S(6,1) *(-C O S G * C \operatorname{CO} C * S I N P /(R * C O S H)+0 * C L * S I N B /$
4（V：V＊C
$P(5,1)=-X S(1,1) * V \div C(1 S G+X S(2,1) * V * S I N G * C O S G /(R * C O S H)+X S(3,1) * V * S I N G$

 4）1）

piblr：＝3．9750160

ว：中1（11）

3－1：：（．）））：（6（6）

$\forall(5,1)=P(5.1) \quad-$ O（1＊FCGFF＊$(11.2620-4 * V) * * 2.15) *(1.2621)-4 * V)$
 $3 / 2 \mathrm{~m} \cdot \mathrm{C}(62)$
in $3 n+1=1,6$
$300 \quad \mathrm{P}(\mathrm{i}, 1)=-\mathrm{P}(1,1)$ PFIIRM
HOO WRITE（G，GOOO） STIS
 FR：TRY GIRADFN（XP．TM，I．IK）
 ついCI A／（V：COSG）
 （ $\because R \wedge$ A $)(I, J K, 3)=T$ $I J K=1 J K-1$
RFIURN
ENiJ

SIMAROITTINE BUTPUT (X.I.IITM)
IM\&IICIT PEAI: : 今 ($\wedge-H,(1-Z)$
DIMFNSION X.I($\mathrm{A}, 1)$, ITM(2), SVARO(6)
CITAMCIF:/CINSI/HI,RF, XMII, OMFGE, AKEA, ECIFF, GNOT
COAMON/STATO/SVARO, TH
CRANG $=(X),(3,1)-$ SVAFTI(3$)) \geq$ PC
OR ANG $=(x .9(2,1)-$ SVARTI(2) $)$ *RE
ALTI=X, (1), !)-K!
CALL A FHOS (AITI.TEMPK, PRES,RHO, VS, IVS, ITRHO, DPPES)
$X M A C H=X, 1(4.1) / V S$
HFA! $=X . J(6,1): 180.00 / \mu I$
FI TA $=X, 1(5,1+\% 1$ RO. $100 / \mathrm{PI}$
AMFAT=11TM(1) $=180$. MO/PI

FFTURM
FNI)

SIGRROUTINE XI. AMFN(XLABF,XJ,L,M)

INPIICITREAI*B(A-H.(1)-7)
HIMENSIGN XJ(R, 1), XIAMF(6), SVARI(6),C(7),UTM(2),P(B, 1), RPAR(1)

C.П!मalin: / STATO/SVARTI, TU

COI: AO: STATF/A!TF, XMAC.H,FI.TANG,VF,GAMMF, TF
C CHAPITF FIWAI. BIILTIPLIFRS
$X \mid \operatorname{AMF}(G)=0 . \operatorname{Gin} 0$

$X 1 \Delta \operatorname{MF}(4)=2.0) 0 *(,(3) *(X, J(4,1)-V F)$
$X L A M F(3)=C(1) * R E * X J(3,1) * 2.00$
$X \operatorname{LAMF}(?)=C(2) * R F * X J(2,1) * 2.00$
CAIL I)ERIVI(TF,XJ,P,L,M,R,1,RPAR,0,1)
$X!\Delta M F(1)=C(5) * P(7,1)+C(6) * P(8,1)$
ด日 $100 \quad I=?, A$

$X \operatorname{AMF}(1)=-X L A M F(1) / P(1,1)$
PETURN
END

INPIC! i RFAI: \% (A-H, (1)-7)

C. RMGFFRFWX1(3,1) \#X1(3.1)

C FOUM const value
C.OSTFH=C(1)*SRAMGF+C(2)*MRANGE+C(3)*(XI(4,1)-VF)**2+C(4)*(X1(5,1)-

PFTIRIS
Fars

```
    SIIRROUTINE ATMOSIAI.TI,TFMP ,PKFS ,RHO ,VS ,OVS ,DNHSI ,DPRES )
    IMPLICIT REAI*!(A-H,H->)
```



```
        2.ハ747930810+2., -5.7.4057299200,-1.26.60105951)-...1.8732938361)-2.
        -5.10474&53.30-4,\hbar.0501864060-6.-3.5501627350-8,1.014102927
        1)-10,1.12444961.9:1-13.3483.67635600..20216988261.0-1,5.80334458
        9100..4介187430086D+3/
C NUTE THAT FORMUI.AS ARE NOT ACCURATE FOR ALTITUDE OIITSIUE O TU 2OO KM
C ALT MIST RF IN NETERS
C TEMP IS IN OEGREFS KFLVIN
C PRES IS IN NEWTONS/IA:*2
C RHO IS IN KG/M**3
C VS IS TN METERS PER SËCONO
C. DRHO,IDPRFS, AND,IVV ARE IN SAME JNITS AS RHO, PRES, AFU DVS OVER MTS
    AIT=ALTI
    Z=ALT*l.0D-3
    IF(Z)1,2,2
    7.0.0
    r.NWTINilfe
    IF(7-2, n)2) 3,3,4
    7=30n.0n
    CHivTIMGN
    7. 7=7%7
    FI=7+A)
    FP= % + 人3
    F3.:7-4.5
    F4-7 つ-n\*%+N4
    Fの=72-A! 3*7+N14
    Fか=77-A19*7+Aつ0
```



```
    ?-A ? 3)
    AAR=0.019031\cap3A
    AAC= -0.06OB03123
    AA!=-0.0? P4?.9767
    IA=-AN/(F1*E1)+A2/E2-A4/E3+(2.*AG*Z+AAB)/E4-(2.*:A:2*Z+AAC)/E5
    1-(7.*A1R:*Z+\triangleAD)/EG
    OA=1)A*O.O\cap1
    TEMP=R0+Z*(R)+Z*(R2+Z*(B3+Z*(R4+Z*(R5+Z*(B6+Z*(B7-B8*Z)))))))
    DTFAP=*1+Z*(2**R) + Z*(3.*R3+2*(4**B4+Z*(5.*85+2*(6.* 36+7*(7.*B7-
    18.*&月*7)\))\
    OTF:AP=DTEPF*O.OO1
    P?&S=OFXP(-N1* (1)
    RH(I= O2*PRES/TERM
    PRHS= \3**PRES
    VS=OSORT (O)4*TFMP)
    1)RH(l=-R+(I)*(1) l %1In+OTFMP/TFMP)
    DVS=0. 500):(14*1)TFMP/VS
    DPRES=-N1%PR汭**11A
    IF(ALT-2.n@2/1.0n-3) 5,5,6
    6 A = AI.T-7.0n2/1.0n-3
    RHN=RHIT+URHOJ*A
    PRES=1DPRES*A+PRES
    VS=VS+DVS*A
```

$5 \quad I C(\Lambda L T) 7,8,8$
$7 \quad R H I=R H \cap+\cap R H \cap \% A I . T$
PRFS $=P R F S+D P R E S * A L T$ $V S=V S+D V S \div A L T$
CONTINIIF RFTIIRN
FMO


```
    COHGMIN/f,IFSS?/DFI.IS,TCUT,FFST,FPSTF,FPSA,FPSIT,ERR,ITMAX,ITMX,
    2KRINNTM,JKFY
    COMMON/CONSB/CSTR,H,C,OTFM,XOTFM
    COM&ANN/CHTRI./GRAD,SFRCH,H,ASTR,STF, KJIS,IJKH,ISTAR
    COM絈N/STATH/SVARO,TO
    CrINMON/STATE/ALT, XIAASS.IITM,STVRS
    CG:M员N/STATF/AI.TF,XMACH,FI.TANG,VF,G,AMMF,TF
    CRMMNM/PRINT/IOHT,IOUT2,IPRNTL,IPRNT2
    CRMMMON/STGRF/DFI.SV,DFLSF,DFLGF,OFLT,KFN
    NAMELIST/ANAAE/PI,RE, XMII,DMEGE,ARFA,ECOEF,DFLTS,IKEY,TCUT,EPST,
    2FPSTF,FPSA,FPSIT,FRR,ITMAX, ITMX,KOINNTM,CSTR,R,C,DTFM,SVARO,TO,ALTF
    3, XMACH,FLTANG,GAMMF,XMASS,IOUT,IOUT2,IPRNTI,IPRNT 2,VF
    RFAD IM! DATA
    RFAD(5,NNAMF:
    RF,N(7,7riO) I.JKI,
    RFA|(7,750) ((|(I,N),N=1,3),I=1,I JK|)
    mal TF(h, MNANMF)
    &FMT(5.50%) Nl,N?
    |110 I=1.7
    im 110 1=1.N%
```



```
        1.1: 1'N 1%1,>
```



```
        (A||<&BI!(N|,M%,Y)
C. CAII CON|:MANTE (;RAIIFNT ROGITIMF
        CHIL WFR,JC(IIFR)
        (G) T0) (10,20,30,40,50,60,70,80,90,100),IER
    10 r,OMTIGH1F
    2n 4,MITF(A,520)
        Gi% TH lil!
    3n w:ITH(A,530)
        &.пTO1n.]
    40 WPITF(6.54n)
        GO TH 1C1
    50 MOITE(0.550)
        NO Tत 101
    GE :FITE(G,560)
        GO! TO IM?
    70) HR\TF(6,57a)
        GO ||101
    an wifflf(大,5s!O)
        cij Ta) {01
    90 He\1!(6,590)
        (if [G) ]O]
    100 W&I\F(6, &OOO)
    101 CONT! U|F
```



```
        WK!TF(H,650) ((1)(K,1.),1.=1,3),K=1.), |K|)
        ST|P
50% FrFMAT(7.14)
505 FIOR.NAT(RF10.0)
    57O FORMAT(IHO,5X, 'INF-D SFARCH FAILEIS TO FINO A MINI:UUMI)
    330 FORHIATIIHO,5X,'GOST IS NOT DFCKEASING IN SEARCH IIIKECTION')
    54O FORMATIIHO,5X,'CONNVFRFNCE ON SMALL CONTROL CHAN(EG')
```

[^1]
｜MPIJCIT RFAI＊H（A－H，（1－1）

C IHIFFOIH．ATIOM GY PIFCEWISE CIJRJC SPLINES
C JNDUT：NJ．N？NHIMER OF IMTA POINTS
C $Y(N 1, N 2,2)=$ DATA TARLF
Nは＝N1－1
$1!\cdot \mathrm{M}=\mathrm{D}-1$
Iी $40 \quad \mathrm{~J}=1,2$
I） 1 ） $40 \quad i=2, N 2$
$1 \operatorname{MOX}=1-1$
$4\left(2, I M 1 x^{\prime}, j\right)=0.0$

NiN $=\mathrm{NM}-1$
on $11 \quad I=$ ？，MNI
$1) \times(I, I N D X, J)=Y(I+1,1, J)-Y(I, 1, J)$
11 חY（I，IMnX，J）$=(Y(T+1,1, J)-Y(I, L, J)) / D X(I, I N D X, J)$
$T(2)=0 . n$
กn 1 ？$\quad 1=3$ ，אim

？．．11）／rIV
in 13 I $1=7=0$ NM
$1=1 i]-1 \%$

40 C．MaTimat
1．FTHEN
FPTVY \＆PI．JNF（XX，YY，CL，CD，DCI．DM，DCLDA，DCOOM，DCOOA）
JM： $\mathrm{K}=1$
$k(T \because H)=$ ？

IF（XX－مF．Y（KIIMnX）＋1．1，1）r，
门n $28 \quad 1=1.2$
ก？？ $\mathrm{L}=$＝N？
$i=1-1$
$\omega=(X X-Y(K(I N \cap X), 1, J)) / D X(K(I N D X), N, J)$
$t=1$. กn $-\cdots$

$28 R(f, J)=(Y(K(I N \Gamma X)+1, L, J)-Y(K(I N D X), L, J)) / D X(K(I N O, 1), M, J)+D X(K(I N D X$

7．M．．il
■！TO jon

If（以（IM，•FO．J）$X X=Y(2,1,1)$
（：ी TI） 71
$34 \quad \mathrm{~K}(\mathrm{INI} \mathrm{N})=\mathrm{K}(\mathrm{INH} \mathrm{X})+1$

（；）TO 21
100 rfistinut
JF（YY．GF．Y（1．142．1））GII TO 250
กกา $4 \cap$ ก, $1=1$, ？
$19(1, \ldots)=0.0$
$4(1 \sim \mathrm{~N}, \mathrm{H})=0.0$
$C(l, J)=0.0$
$\therefore($ MN．J $)=0.0$
$K([N D X)=1$

```
    MM! = MM-1
    NO 120 l=1,MM1
    nM(I,.J)=Y(1,I+2,J)-Y(1,I+l,J)
    n&(I,J)=(S(I+1,J)-S(I,J))/DM(I,J)


```

 @| 2%O 1=!,?
 11=(YY-Y(1,K(INDX)+1,J))/OM(K(INDX),N)
 %=1.0(--1)
 COFF(J)=(J*S(K(INOX) + , j) +Z*SS(K(INDX),j)+1)M(K(INOX,,J)*DM(K(INDX),J
 2)*((1)*1)*(I-(1)*д(K(INOX)+1,J)+(Z*Z*Z-7)*&(K(INDX),J)
 COFF(J)=1*R(K(INAX)+1,J)+2*R(K(INDX),J)+1)M(K(IN: XI,J)*I)M(K(INDX),J
    ```



```

 Gก Tr: 30n
 (0) 275 J=!,?
 COFF(J)=S(%MM,J)
 CilFP(.!)=R(Mm,.J)
 275 CiINF(1)=0.0
300 C.L=r.ItF(1)
CO=CMFE(2)
*OC1m4=CODF(1)
HCDOH=(C1OF(2)
MC!MA=CMFP(1)
|COHA= (1IFP(?)
PFTURA
23n K(|NOX)=k(INOX)-1.
IF(F(Im,X) .FO.CO) YY=Y(1,?,1)
Gif Tn >lO
24!)}k(I\operatorname{InNX}=k(IN|)XI+
Gil Tfl ?lO
FNO

```
```

 SH&ROUTINE DEPIVIMT,X,P,I,M,N,NF,RPAR,IPAR,ND:
 IMPLICIT REAL*&(A-H,O-Z)
 DIMFNSION X(N,NF),P(N,NE),RPAR(ND),IPAR(ND),TEMP(2),
 1TEM(2),TF(3,2),(11990.3),SFRCH(999,3),GRAD(999,3)
 C.OUMIN/C:INS1/PI,RF,XMI,OMMFGF,ARFA,FCOFF,GNOT
 COH:OUN/RNTRL/GRAI,SERCH,U,ASTR,STF, KJIS,IJKU,ISTAR
 C.OMNGIN/STATE/ALT, XMASS,TEMP
 COINMIN/STATF/AI.TF,XMACH,FLTANG,VF,GAMMF
 T = TIME.
 X = STATF AMN INTEGRATEN COST
P = DERIVATIVFS OF STATE AND INTEGRATED COST at T
C COMPIITF TRIG FINCTIGINS OF PHI,GAMMA,CHI
TF(1,1)=NSIN(x(3,1))
TF(1,7)=ncns(x(3,1))
Tf(7,1)=05IN(x(5,1))
lf(7,))=0(0.S(X(5,0l))
IF(2,1)=15SIN(x(6,,1))
If (3,7)=DC,11S(x(t, 1))
CGNPIIT: RFLATIVE VELIISITY
p:HAG,l=X(l,1)
v=x(4,1)
V:2;a, (av
COmPMTE ATMASPHFRIC PARANMTERS
ALTJ=X(1,J)-RE
CAII ATMIS(AITI,TEMPR,PRFS,RHO,VS,INVS,DRHO,IDPRFS)
XIANCH=VRMAG,/VS
KHAR=mars(RHO)
CGMPIIF DFRTVATIVES MU ATMIS.
P(1,1)=V:TF(?,1)
P(2,1)=(V*TF(2,))*TF(3, ?))/(RMAG1%TF(1,?))
P(3,1)=(V:TF(2,))*TF(\#,1))/KMAG1
p(6,1) = (-X\&(1):T+(2,1))/(RMAGI*RMAGI)
p(b,1)=(-XM!1)*TF(2,2))/(RMAGG *RMAG1*V) + (V*TF(2,2))/KMAG1
P(6,1)=(-V*TF(2,?)*TF(3,2)*TF(1,1))/(RMAG1*TF(1,2))
IF(IPAR(1) .FO.]) GO TO l00
FINIO CONITROL
20 1F(I. .fFE. I JKU) GO TO 60
30 IF(U(I)+1.3) \&.T. T) GOT TO 50
IF(|(1, 3) .GT. T) GO TO 55
TFMP(1)=|(L,{)+((1)L+1,1)-11(L,1))/(11(L+1,3)-1)(L, 3)))*(T-1/(L, 3))
TF|P(2)=u(L,2)+(()(L+1,2)-u(L,2))/(U(L+1,3)-u(L, 3)))%(T-U(L,3))
I. =1 +1
(i) Tn 40
1:=1.+1
r,n TO >n
55 1=1-1
GO Tn 2n
60 TFMP(1)=1)(1., 1)+((1)(L,1)-1)(L-1,1))/(1)(L,3)-1)(L-1,3))*(T-()(L,3)))

```

```

 40 |F(ISTAP,FO. O) GO TO 10O
 FINH SFARCH IIIKFC.TION
 21 IF(NI OFE.K.JIS) (%O TO G1
 IF(SFRC.H(M+1,3) &.T. T) GO TO 51
 IF(SERCH(M,3) .GT, T) GO TO 56
 [解 31 I=l,?
 31 TFM(I)=SFRCH(M,I)+((SERCH(M+1,I)-SERCH(M,I))/(SERCrI(M+1,3)
 2-SrRCH(:M,3)))*(T-SFR(.H(M, 3))
 M=M+1
 GO}T\capR
 51 M:=M+1
    ```
```

 f,O TO ?l
 56 M=M-1
 G! TO 21
 61 ก0 62 I=1.2
 67. TFM(I)=SERCH(M,I) +((SERCH(M,I)-SERCH(M-1,I))/(SERCH(M, 3)-SERCH
 2(M-1,3)))*(T-SFRCH(M,3))
 8O COMTIMUE
 C. FIORM C.IONTROL
THMP(1)=TFMP(1)-ASTR*TEM(1)
TFMP(?)=TFMP(?)-ASTR*TEM(2)
100 C.CMTINHL
CH:APUTFं AFKIOD - R,NFF.
CALL SPIINF(TFMP(I),XMACH,CL,CO,DCLM*OCLA,DC,OM,DC.UA)
n=1.|!)*AkfA*V:*V/(xmASS*?.0n)
A!O C,HITRMM MCC\&IF\>IONS
P(4,1)-P(4,1)-1:*C.1)
P{5,1)=P(5,1)+1*(,1%)C(1S(TEMP(2))/V
P(6,1)=P(6,1)-(1%F,%%SIN(TEMP(2))/(V%TF(2,2))
CIIRP!ITF HFATING, AND HFAT RATE DERIVATIVFS
RHOIO=1.225010n
P(7,1)=EC\capEF*GSORT(RHO/RHOH)*(1.2G2D-4*VRMAG)*:3.15
OVRMAG=D(4.!)
P!8,1)=0SORT(R!O/RHOO)*3.15D0*1.2620-4*(1.2620-4*VRMAG)**2. 15*
IOVRMAG,
P(8,1)=P(8,1)+(.(). 2620-4*VPMAG)**3.15*DRHO)*1(1,1%/(2.DO*[OSORT(RHO
1*R!חก))
P(8,1)=EC17EF*P(8,1)*ECOFF*P(B,1)
RFTIRN
FN()

```
```

SIGRROIITINE IFFRIV$TS,XS,P,I.,M,NI,RPAR,IPAR)
```
IMPI.ICIT REAI \% \(\mathcal{H}(\wedge-11, n-2)$

2 TEAP (?), XP(A, 1), X( 6,1$), P(6,1), C(7)$
C.ПMMイIN/C ПMS I/PI,KF, Xivill, OMFGF, AREA,FCOEF, GNOT

COMPINN/CATRL/GRAN, SFRCH,II,ASTR,STF, KJIS,IJKU,ISTAR
COMFON/STATF/ALT, XMASS, TEMP, STVRS
C.ПMMON/STATF/AI.TF, XMACH,FLTANG, VF, T,AMMF, TF
$T=T F-T S$
C. RETREIVE STATE VARIARLES FROM STORAGE
JF(NI. FO. 1 ) GO) TO 10
in 20 © $I=1.6$
$200 \times(I, 1)=S T V R S(M, I)$
(G) $\operatorname{TO} 40$
C.
IMTFPPOII ATF FRGM STATF: VAR.

lin $30 \quad 1=1,0$
$30 \quad y(i, 1)=(S T V R S(i, I)-S T V R S(M-1, I)) / 7 . D 0+S T V R S(M-1,1)$

$r$
FIG! CHATRML


(1F(11(1.3) ©(BT. i) (ii) TO 55

$T F H+(2)=1(L, 2)+((1)(L+1,2)-1)(L, 2)) /(11(L+1,3)-1)(L, 3)) \%(T-1)(L, 3))$
$L=1 \div 1$
(,ก) Tn 400
$1=1 . i-1$
GO Tr) 20
$55 \quad 1=1-1$
(i) Tก 20
GO IF(11(1-1.3) GT. T) Gח TN 55
TE: $=(1)=11(1,1)+((1)(L, 1)-1 J(L-1,1)) /(1)(L, 3)-U(L-1,3)) \times(T-U(L, 3)))$

40 Con Cinite
C rranPutir TRIG ollantitifs
C口SB= FC.Cic (TFMP(?))
SIMB= OSIM(TFMP(?))






$k=x(1,1)$


$V=x(4,1)$
C. CDWPIJIF ATMUSPHFRIC HAPAMFTFKS
Al. Tl $=x(1.1)-R F$
CKI.L A TMIS(ALTI,TEMPR,PRES,RHO,VS,DVS,DRHO, DPRES)
$X M \Delta C H=V / V S$
$R H!=1) A F S(\mu+10)$
C COMPIITE aEPMi) COEF.
n=RHO\%AKEA*V*V/(2. ПO*XMASS)
CALL SPLINF(TEMP(1), XMACH,CL,CD,DCLN,DCLA,DCDM,DCJA)
C. FIND AERID. PARTIAI.S
OL $\cap R=A R F A * V * V * C I * D R H C / /(2 . D O * X M A S S)$
OI. $\cap V=A R F A * V \div C L * R H \cap / X M A S S+O * D C L M / V S$

COMCI:TE MUII.TIPISEP IOFRIVATIVES
$P(1,1)=X S(2,1) * V: C H S G * C O S C /(R M A G 2 * C O S P)+X S(3.1: * V * C O S G * S I N C / R M A G 2$



$P(7,1)=0.0$









4.)


ADO HE T TIAG トFHFCTS
phnn $=1.22501100$

ว:18H(n))














3/RAAS? 1
(m) $30 n \quad I=-1.6$
$300 \quad P(1,!)=-P(I, 1)$
- PFTHRS
SOO WRITF(G, (OOO)
STOP
GOO FORMAT('. 'EXCEEJFI LOWER ROUND FOR STATE VAR. STUKAGE')
ENTRY GKADFi:(XP, TM, IJK)

2ヵCI.A/(V*COSC)
SRAD (IN, 2) $=-x P(5,1) \div 0 * C I * S I N H /(V * C O S G)-X P(6, i) * O * C L * C O S H /(V * C O S G)$
(RRA!)(I, IK, 3) $=T$
! $\mathrm{J} K=\mathrm{I}, \mathrm{JK}-\mathrm{l}$
RFTIIRN
FO川)


[^0]:    *Numbers refer to listings in the References section.

[^1]:    550 FORMATIIHO, $5 X$, 'LITTIF COST CHANGE IN LAST TWO ITERATIONS'I
    5AO FORMAT(IHO, 5X. 'FAILFO TO CONVERGF IN ITMAX ITERATIUNS')
    与7n FORMATIIHO, $5 \times$, 'INITIAL TRAJECTIJRY FAILED TO RFACIH CUT-OFF ALT:
    
    $50 \cap$ FOWMAT(IMO, $5 x$, IOACKWARD INTEGRATED TRAJECTORY EK?URS')
    
    AこS FOKMAT(' ', IS I
    650 FiAm:T(1 1,3076.16)
    700 FORNATIJ5)
    750 FORMAT(35126.16)
    FNI)

