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Introduction
ILE

In Reference 1 an empirical Bayes estimator was developed

for estimating the unknown random observation error variances

in a discrete time linear system. There it was assumed that

each unknown variance could be represented as the product of

a known nominal value and an unknown random scale factor which

is to be estimated.

A continuous empirical Bayes smoothing technique is

developed in Reference 2. This technique provides estimators

possessing smaller average squared error losses than the type

of empirical Bayes estimator employed in Reference 1. A

similar smooth empirical Bayes estimator was developed in

Reference 3, where a continuous prior density function approxi-

mation was "smoothed" through a suitable function of the

observation data.
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In this note a smooth "empirical Bayes estimator is

developed for estimating the unknown random scale 'component

of each observation error variance. This estimator will be

shown to possess a smaller average squared error loss than the
i

estimator presented in Reference 1.

Scale Factor Estimation

Consider the linear discrete dynamic system given by

xi = *ixi-l + ui-l . (1)

augmented by the linear observation - state equation

yi = Hixi + vi' i = lf2' ••'

with the same assumptions as in Reference 1. As in Reference

1 the observation error covariance matrix R. is represented

by the diagonal matrix

2where q is the number of observation types available, r. .

is a known nominal value of the observation error variance
I T_^

associated with the j observation type at time epoch i.

Also, the scale factors { 6..: i = 1,2, ... } are independent

realizations of a random variable 0 . having a completely un-

known and unspecified prior density function g. (9) which is

zero on the negative real numbers and which may be different

for each observation type.



From the usual Gaussian assumption on v. in Eq. (2), it

follows that

Zij = (^ij - hijxi)/rij' i = I' 2 ..... nj

conditional on 6 . . , is distributed with probability density

function given by

f(Z |6 ) = 0 * (27T)-35 exp[-9 Z.!:/2] (5)
- L J - L J J - J J . J X J
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Here h. . is the j row of H. and n. is the total number of

observations of type j available up to the present time. For

simplicity, we let n. = n and shall drop the subscript j for

the remainder of this section.

The Bayes estimator for 6 is given by

/ n 8 f (zj Q ) 9(0 )3e^
E(e |z ) = ° n n n n - S.

According to a technique developed in Reference 4 and used

in References 2 and 3, the prior density function g (e ) may

be estimated by means of the approximation given by

9n(V = - ̂  I exp[- i.(!B_F_!i)2]/ 0<e
n n ^ 2 "

where h = h (n) = n~ ' , 9. is a suitably chosen estimate of

9. to be discussed later, and where

K = [i - | I M-e.n 1



In Equation (8), $ (•) denotes the standard normal cumulative

distribution function.

Inserting Equations (5) and (7) into Equation (6),

collecting terms, performing the indicated integrations, and

simplifying, yields the smooth empirical Bayes estimator for

6 given by

n
I exp[- aj U(2,bi)

"n = Venlzn> = ( lh > ¥-
I exp[- a ] U(l,b.)

i=l x 1

where

44 2" 22 "2 " } 2 " 2
a. = (3z h + 8z 6 h + 49 - 4hz 0 . ) /16h (10)i n ni i n i

bi = (znh2 ~ 26i)/2h d1)

and where U(c,x) is the parabolic cylinder function ' defined

by

U(c,x) = [e-x2/4A(c + 1/2)] II e-
xy-y2/2yc-1/2dy (12)

Numerous asymptotic expansions exist for evaluating U(c,x).

In particular the form given in Reference 5 in Section 19.12.3,

in conjunction with the asymptotic expansion in Section 13.1.2,

was used here for evaluating Equation (12) .

The entire preceding development was undertaken on the

assumption that the true state vector x is known. Specific-

ally, x was used in obtaining z in Equation (4). This is



clearly not the case, and the estimate for x given by

i

where x -. is the Kalman, Empirical Bayes filter estimate for

x _, given in Reference 1, is .used.

^
Now consider the estimates e. required in Equation (9).

The preceding estimates obtained from Equation (9) for i = 1,2,
a. a. 'v

..., n-1, i.e., 6,-, 92, ..., 0 , , can be substituted for 9,,
~ ^
eo' "** ' e -1 resPectively when calculating 6 . Also, the

2
maximum likelihood estimate for 6 given by l/zn may be sub-

y\

stituted for 6 in Equation (9) or an estimate of 9 such

as that provided by Reference 1 could be employed. For sim-

plicity the maximum likelihood estimate was used here.

Per f ormance Comp ar i s on

Monte Carlo simulation was employed to examine the average

squared error loss, incured in using the estimator given by

Equation (9). For purposes of comparison the same dynamic

system exemplified in Reference 1 was again used here. The

^ 2squared estimation errors (0 -0 ) were averaged for all

five observation types over twenty-five replications for the

standard estimator presented in Reference 1 as well as for

the estimator given here. The average squared errors are

plotted in Figure 1 at every fifth observation stage for both

types of estimators. We observe that except for the first

five stages, the smooth empirical Bayes estimator has an



averaged squared error which is somewhat smaller than the

standard empirical Bayes estimator. The same basic results

were observed for numerous simulation runs using different

sets of parameters. Thus it appears that the estimator in

Equation (12) is somewhat superior in average squared error

performance to the estimator in Reference 1 and any gains

should, in theory at least, be passed on to the Kalman state

estimation procedure presented in Reference 1.
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