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Scope of Contract NAS2-4151

Work under Contract NAS2-4151 started on February 1,

1967. Phase I Report of September 1967 develops analytical

concepts for a random loads and vibration analysis of lift-

ing rotors. Phase II Report of August 1968 presents a per-

turbation solution method for random blade flapping. Phase

III Report of June 1969i develops a more general method to

include high rotor advance ratios and makes use of a speci-

fic atmospheric turbulence model. Phase IV Report of June

1970 extends the method to the computation of threshold

crossing statistics for random blade flapping and introduces

non-uniformity of the vertical turbulence velocity in the

longitudinal direction. Phase V-A Report of June 1971 treats

the effects of torsional blade flexibility on single blade

random gust response statistics. Phase V-B Report of June

1971 presents a multiblade coordinate analysis of coupled

blade dynamic stability and random response, studying various

gust alleviation methods. Phase V-C Report of June 1971

describes the development of experimental methods of sub-

stantiating the random loads and vibration analysis.

During FY 1972 the work was extended in two directions,

resulting in two separate Phase VI reports. Phase VI-A

Report covers three refinements of the preceding analysis.

The effects of blade torsion on dynamic stability and random
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response has been analyzed beyond Phase V-A Report, adding

new insights into this subject matter. The effects of

blade flap bending flexibility on rotor stability and ran-

dom response have been studied leading to a simple method

of correcting the rigid blade analysis. Finally the

effects of rotor support flexibility have been analyzed,

solving the problem of whirl flutter in high advance ratio

oblique flow. Phase VI-B Report covers the experimental

work performed in FY 1972 to substantiate the analysis.

The work summarized in Phase VI-A and Phase VI-B Reports

was performed under Modification 7 to subject contract,

which covers also FY 1973. The scope of the work planned

for FY 1973 is to further remove limitations to the present

analytical model and at the same time to simplify the

methods of analysis, and to conduct further tests in support

of the analysis.

The following is a list of publications sponsored urder

subject research contract issued to date.

1. Gaonkar, G. H. and Hohenemser, K. H., "Flapping Response
of Lifting Rotor Blades to Atmospheric Turbulence",
Journal of Aircraft, Vol. 6, No. 6, Nov,-Dec. 1969,
pp. 496-503. First presented as AIAA Paper 69-206 at
the AIAA/AHS VTOL Meeting, Atlanta, Georgia, February 1969.

2. Gaonkar, G. H. and Hohenemser, K. H., "Stochastic Pro-
perties of Turbulence Excited Rotor Blade Vibrations",
AIAA Journal, Vol. 9, No. 3, March 1971, pp. 419-424.
First presented as AIAA Paper 70-548 at the AIAA Atmos-
pheric Flight Mechanics Conference, Tullahoma, Tennessee,
May 1970.
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3. Gaonkar, G. H. and Hohenemser, K. H., "Comparison of
Two Stochastic Models for Threshold Crossing Studies of
Rotor Blade Flapping Vibrations", Presented as AIAA Paper
71-389 at the AIAA/ASME 12th Structures Conference,
Anaheim, California, April 1971.

4. Gaonkar, G. H. and Hohenemser, K. H., "An Advanced
Stochastic Model for Threshold-Crossing Studies of
Rotor Blade Vibrations", AIAA Journal, Vol. 10, No. 6,
July 1972.

5. Yin, S. K. and Hohenemser, K. H., "The Method of Multi-
blade Coordinates in the Linear Analysis of Lifting
Rotor Dynamic Stability and Gust Response", Presented
as AHS Preprint No. 512 at the 27th Annual National
Forum of the AHS, Washington, D. C., May 1971.

6. Hohenemser, K. H. and Yin, S. K., "Some Applications of
the Method of Multiblade Coordinates", Journal of the
American Helicopter Society, Vol. 17, No. 3, July 1972.
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Organization of Report

Because of the relative independence of the three sub-

ject matters treated in this report, each of the three parts

has its own abstract, nomenclature, introduction, list of

references, figure captions and appendices. For the sake of

completeness the first part includes in abbreviated form

also material from Phase V-A Report of June 1971. The remain-

der of Part I and Parts II and III contain new results obtained

in FY 1972. The addendum by D. A. Prelewicz , though not spon-

sored by subject contract, has been stimulated by the contract

research and is presented here because it views the various

applied stochastic methods in a broader frame of reference.

Assistant Professor, Dept. Applied Math & Computer Sciences,
Washington University, St. Louis, Missouri
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Part I

Random Gust Response Statistics
for Coupled Torsion-Flapping Rotor Blade Vibrations

Abstract

An analysis of coupled torsion-flapping rotor bla4e

vibrations in response to atmospheric turbulence revealed

that at high rotor advance ratios anticipated for future

high speed pure or convertible rotorcraft both flapping and

torsional vibrations can be severe. While appropriate

feedback systems can alleviate flapping, they have little

effect on torsion. Dynamic stability margins have also

no substantial influence on dynamic torsion loads. The

only effective means found to alleviate turbulence caused

torsional vibrations and loads at high advance ratio was a

substantial margin with respect to static torsional diver-

gence of the retreating blade.
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Nomenclature

A(t) state matrix

A (t) transpose of A(t)

a = 2u/(L/R) nondimensional turbulence parameter

B tip-loss factor

C(t),Cd(t),Ce (t) aerodynamic damping
0

c blade chord

E[. . .] mathematical expectation of [. . .]

E[N (;,t)] time variable expected number of

positive crossings per unit time of

threshold C for response component X.

F = (/If)(c/4R)2 nondimensional quantity

fQ blade torsional frequency

I identity matrix

I1 flapping mass moment of inertia

If feathering mass moment of inertia

K(t),K (t) aerodynamic stiffness

Kf flapping feedback gain

K coning feedback gain

L scale of longitudinal turbulence

lrB (t) ,l(t),le (t),lrX(t) aerodynamic lift, reversed flow

region

e (t),me (t),mA(t) aerodynamic flapping moments

N number of blades per rotor

n(t) white noise input vector

PQ blade flapping frequency
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Q = (I1/If)(c/4R)

R

Rxx(tl't2
)

R (t,t) = P(t)xx

t

V

w

X(t)

XT(t)

B

.6

6( . . )

C

0

X = w/QR

U = V/QR

a (t) = rR (t)] 1
/
2

;j I 

aa

aa

*(t,T)

n

nondimensional quantity

rotor radius

correlation matrix of X(t)

variance matrix of X(t)

nondimensional time, time unit 1/Q

flight velocity

vertical turbulence velocity

state or output vector

transpose of X(t)

blade flapping angle

blade Lock inertia number

torsional elastic deflection from

root to blade tip

Dirac delta function

response value exceeded in a

threshold crossing

blade root pitch angle

nondimensional vertical turbulence

velocity

rotor advance ratio

real part of characteristic value

standard deviation of x.(t)
s

standard deviation of 6

standard deviation of 6

nondimensional time, time unit l/X

state transition matrix

angular rotor speed
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Introduction

The problem of random rotor blade flapping vibrations

caused by atmospheric turbulence has been studied earlier.

It was found that at high rotor advance ratios anticipated

for future high speed pure or convertible rotorcraft, severe

random vibrations and dynamic loads can occur, unless flap-

ping or hub moment feedback systems are applied.2 The blade

representation used in these studies was a rigid straight

blade flexibly attached at the rotor center, using quasi-

steady linear aerodynamics including reversed flow effects

but excluding non-uniform inflow, stall and compressibility

effects. 3 Extensive wind-tunnel tests have shown that this

representation gives useful approximations to the flapping

response for low lift high advance ratio conditions, if the

root flexibility is appropriately selected to represent the

actual blade. Even if the elastic center, the center of

gravity and the aerodynamic center of the rotor blade cross-

section coincide, as they usually approximately do in prac-

tical blade designs, large blade torsional moments occur in

the region of reversed flow, because the aerodynamic center

is then shifted from the quarter chord point to the three

quarter chord point. It is, therefore of interest to study

the effects of atmospheric turbulence on the coupled torsion-

flapping rotor blade vibrations.
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Blade Representation and Method of Analysis

It is assumed that the blade torsion mode is a straight

line through the rotor center, that in regions of normal flow

direction the aerodynamic center, the center of gravity and

the shear center of blade cross-section coincide, and that

linear quasi-static aerodynamics are used. Because of the

higher frequency of the torsional vibrations the last assump-

tion is more questionnable than for the flapping case and as

yet no tests are available to substantiate the analysis of

Reference 5. Though quantitatively the results to be pre-

sented here may require some corrections due to over simpli-

fied aerodynamic assumptions the established important trends

should remain valid, if reversed flow stall flutter is avoided.6

When the dynamic equations of blade flapping and blade

torsion, given in Reference (5), are extended to include the

effect of root pitch angle e0 , one obtains

(2/y)O + C(t)6 + [(2P2 /y) + K(t)]B - m (t) = m(t) + me )e
1 o

(1)

(1/3y)6 + FCe(t)d + £(f2/3y) + QK (t)] + Qzr (t)B + QrM(t)B

+ (1/2y)o0 + FC (t)6O -Q[trAXtx sr (t)) + (2)

The flapping feedback is assumed to occur without producing

a mechanical flapping moment. The only periodic coefficient not

defined in either Reference (3) or (5) is Lre with the value
o

in the normal flow region,

1 = o0
re
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1 = 4 [-(1/32) + (1/24) cos 2t -(1/96) cos 4t]
o

in the mixed flow region, and

1 = -[(B4/4) + (B 2/4) .] - (2/3)B3 sin t + (B 22/4) cos 2tre

in the reversed flow region.

For the blade without feedback, 00 = 0. In case of

pitch-flap coupling, 60 is to be replaced by

e
o

=-KfS (3a)

In case of coning angle feedback, 00 is to be replaced by

o = -K(/N ok) (3b)

where all blades are assumed to perform the same flapping mo-

tion except for appropriate phase shifts.

In order to obtain from Eqs. (1) to (3) the response to

the random vertical gust velocity X, it is assumed that this

gust velocity at a point in time is uniformly distributed

over the rotor disk, an assumption which has been proven ap-

proximately valid for current ratios of turbulence scale L

over rotor radius R.
7

If one approximates the widely used

von Karman-Taylor Turbulence spectrum by one with exponential

autocorrelation function,l the dimensionless vertical turbu-

7,8
lence velocity X is determined from

i + ax A(2a)/2n(t) (4)
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where n(t) has the autocorrelation function

Rn(T) = 6(T) (5)

We now express the dynamic equations (1) to (4) in state variable form

X(t) = A(t) X(t) + B(t) n(t) (6)

The response variance P(t) can then be determined from the matrix

equation 8 9 10

P(t) = A(t) P(t) + P(t) AT(t) + B(t) BT(t) (7)

with zero initial state, and the response covariance matrix is obtained

from

Rxx(tlt2 ) = (tlt2 ) P(t 2) for tl > t2

= P(t
1
) OT (t2,tl) for t1 . t2 (8)

where the state transition matrix is defined by

~(t,T) - A(t) O(t,T), O(T,T) = I (9)

Once the response covariance matrix is known, the threshold crossing

expectations can be determined from expressions given in the literature.7

For an alternative method! the covariance matrix is

Rxx(tl,t2 )= i H*(,tl) SX(t) HT (W,t2 )d (10)

with

2 2 2
SX(w)/Io - a/ir(a2+m2 ) (11)

and H(w,t) the response vector to the input A(t) D u(t)exp iwt, u(t)

being the unit step function. The numerical examples were computed with

the second method, truncating SX(w) at IwI > 3. The first method gives

slightly different results with about one third the computational effort.
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Numerical Results

As beforel, the numerical data are for a lifting rotor

operating with a rotor advance ratio of U = 1.6, which cor-

responds at a flight speed of 280 Knots to a blade tip speed

of nR = 300 fps. In the stochastic analysis the standard

deviation of the dimensionless vertical turbulence velocity

X = w/nR is assumed to be ao = 1, which results in Eq. ( 4).

8 fps is a representative value1 for the standard deviation

of the vertical turbulence velocity, occurring at low altitudes

with .1% probability. Using this value and nR = 300 fps we have

a
A

= 1.50. The non-dimensional standard deviations o,, ad

for flapping and elastic blade twist respectively, and the

thresholds C shown in the figures must then be multiplied by

1.5 to obtain the dimensional values of these quantities in

degrees. The remaining rotor parameters are also the same

1
as before : Tip loss factor B = .97, Lock number y = 4 and

turbulence scale over rotor radius L/R = 12, which corresponds

for a rotor radius of 33 ft to 400 ft turbulence scale length,

typical of low altitude turbulence. The flapping frequency

ratio is assumed as P = 1.3. Further assumed is a flapping

over feathering inertia ratio of I1/If = 940 and a radius over

blade chord ratio of 15.6, resulting in F = .24 and Q = 15. The

torsional blade frequency is assumed to vary between f a 8

and f = 12. In addition to the response data of Figs. 3 to 8

dynamic stability data for the blade are shown in Figs. 1 and
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2. These figures give the real part C of the characteristic

values of the Floquet state transition matrix2 vs. pitch-flap

coupling gain Kf. The curves indicated by crosses represent

conjugate complex characteristic values; the curves indicated

by circles represent a single characteristic value. Figure 1

is for f = 8. The blade is very stable (negative F) up to

about Kf = .5, has a minimum of stability of about Kf = 1.5,

reaches a relative stability maximum of Kf = 2.0 and becomes

unstable at Kf = 2.4. Figure 2 is for f - 10. The stability

is almost unchanged up to Kf = .5 and at Kf = 2.0, but is

improved at Kf = 1.5, and the stability limit is raised to

Kf = 3.0. The dash-dash line indicates that an increase in

Lock number is destabilizing, the dash-dot line indicates

that for a pure flapping blade without elastic flapping re-

straint (P = 1) the blade reaches almost its stability limit

at Kf = 1.7.

Figures 3 and 4 show the time variable standard deviations

of the basic blade with torsional frequency ratio f = 8 for

zero feedback, for flapping feedback with Kf = .4 and for

coning angle feedback with K
°
= .4. The flapping maximum

standard deviation is reduced by either of the feedbacks from

2.3 to 1.5, the torsion maximum standard deviation is very high

- about 6 - and not much affected by feedback. The figures

show the second revolution after imposing the turbulence exci-

tation, when the response standard deviations are almost sta-

bilized and periodic. The blade is in the aft position at
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t = 0, 2w, 4w, etc. The maximum flapping standard deviation

occurs when the blade is approximately in the forward position,

the maximum torsion standard deviation occurs, when the blade

is in the region of maximum reversed flow.

Figures 5 and 6 show for the basic blade without feedback

the effect of torsional frequency ratio f on the standard de-

viations. From Fig. 5 it is seen that flapping is little af-

fected by a variation in f. Fig. 6 shows a very large effect

of f on the torsional standard deviation, much more than would

be expected from the increase in torsional stiffness. For

example this increase would account for a reduction factor of

.64 when changing from f = 8 to f = 10. The actual reduction

factor for the maximum standard deviation is .37. It was found

that for constant feathering moment of inertia the blade ex-

periences static torsional divergence in the reversed flow re-

gion at f = 6.6. Though dynamic instability would not occur

at f = 6.6, the torsional deflections would be extremely high.

The closeness to the static torsional divergence limit is pre-

sumably the reason why an increase in torsional stiffness from

f = 8 to f = 10 causes a decrease in torsional maximum standard

deviation substantially larger than normally expected from the

torsional stiffness increase, see also the discusion of Fig. 21

in Ref. 11.

Figure 7 shows the responses B and 6 of the basic blade

with f = 10 to a step gust input X = I at t = O, when the blade

is in the aft position. The dash line is obtained when the

coupling terms in Eqs. (1) and (2) are omitted. Flapping is
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hardly affected, however, the torsional response is much re-

duced without the coupling terms. While qualitatively the

torsional response to turbulence could be studied without

coupling with flapping, the results would be quite unconser-

vative.

Figures 8 and 9 show the expected number of upcrossings

per unit of time of the positive levels C = 2 and C = 3 for

flapping and torsion respectively. The solid lines are for

f a 10, the dash lines for f = 8. Note for torsion the very

large reduction in the number of crossings when changing from

f = 8 to f = 10 (Fig. 9), while this change hardly affects

the number of crossings for flapping (Fig. 8).

Unlike the configuration f = 8, the torsionally stiffer

blade with f = 10 shows upcrossings of the levels C = 2 and 3

only within a short time period of the order of the period of

the natural torsional mode. One can, therefore conclude that

in most cases an upcrossing will lead to a single peak value

within a revolution. The number of peaks per revolution above

the level C can then be approximated by integrating the curves

of Fig. 9 over one revolution. This method is not applicable

at the shown C levels for f = 8. For flapping with its natural

period close to 2w this method of obtaining the number of peaks

per revolution exceeding the level C=2 or C=3 is justified both

for f = 8 and f = 10, as is seen from Fig. 8. The crossing ex-

pectations for the levels 4=-2 and C=-3 are similar to those

:r~-l7
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shown in Figs. 8 and 9, except that the curves are somewhat

shifted on the time scale.

The case of f = 10 and an advance ratio of i = .8 has

also been computed. In this case the torsion response is

quite small, since the torsional divergence limit is reduced

from f = 6.6 to f = 1.4, so that a very large torsional

stiffness margin exists.

Conclusion

In summary, it can be concluded from the numerical exam-

ples that blade torsional response to atmospheric turbulence

at high rotor advance ratio (u = 1.6) can be very severe

unless the torsional blade stiffness is several times greater

than that for the static torsional divergence limit in the

region of maximum reversed flow. Flapping-torsion coupling

has little effect on flapping but has a large detrimental

effect on torsion. The preceding analysis of blade responses

to atmospheric turbulence is for rigid rotor support omitting

higher blade modes. The effects of elastic rotor supports,

of second mode blade bending and of random rotorcraft motions

due to turbulence remain to be determined.
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Figure Captions

Fig. 1 Real Part X of Characteristic Value vs.
Flapping Feedback Gain Kf, f = 8

Fig. 2 Real Part X of Characteristic Value vs.
Flapping Feedback Gain Kf, f = 10

Fig. 3 Flapping Standard Deviation a (t) for zero
feedback, Kf = .4 and K .4, f = 8

Fig. 4 Torsion Standard Deviation a (t) for zero
feedback, Kf .4 and K f 8~~f =0

Fig. 5 Flapping Standard Deviation a (t) for f = 8,
10, 12, No feedback

Fig. 6 Torsion Stdndard Deviation a (t) for f = 8,
10, 12, No feedback

Fig. 7 Flapping and Torsion Response S(t), 6(t) for
unit gust Input (Dash lines: no torsion-
flapping coupling)

Fig. 8 Expected Number of Flapping Upcrossings per
Unit Time of Levels C=2 and 5=3, No feedback

Fig. 9 Expected Number of Torsion Upcrossings per
Unit Time of Levels A=2 and g=3, No feedback
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Part II

Flap Bending Corrections
to the Rigid Blade Analysis of Lifting Rotors

Abstract

A modal analysis was performed using the undamped

natural modes of the rotating blade. Two types of mass

and stiffness distributions were assumed: a uniform one,

and one corresponding to a blade strongly tapered in thick-

ness. The response to cyclic pitch input at low and high

advance ratio could be reasonably well approximated by a

simple analysis using a single elastic mode whereby all

moments are balanced about the rotor center. This result

is different from recently published single mode analyses

without moment balance about the rotor center, where under

certain conditions larger errors were found. The difference

is attributed to the use of rotating blade modes rather than

the non-rotating modes used in the previous work. The

single elastic mode model is then applied to the problem

of dynamic stability and random loads at high advance

ratio which had previously been solved with the help of a

rigid blade model. Substantial corrections were found due

to the flap bending flexibility of the blades.
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0

Nomenclature

a

b

c

CT

C
z

C .=
m

= T/pfR 4 2

= L/pSR Q2

M/pR R5l 2

C Mb/pnR n2

'C, C1, C2,9 Cij

EI

El!

f(x,t)

K, K1 , K2 , Kij

L

M

Mb

m

mA, me, me1

m
o

q = El /m R4 2

R

r

lift slope

number of blades per rotor

blade chord

rotor thrust coefficient

rotor rolling moment coefficient,
positive to right

rotor pitching moment coefficient,
positive up

blade flapping moment coefficient,
positive down

aerodynamic damping coefficients

flap bending stiffness of blade

reference stiffness of blade

nondimensional blade load per unit
length, positive up

aerodynamic stiffness coefficients

rotor rolling moment

rotor pitching moment

blade flapping moment

blade mass per unit length, or flap moment

flap moment derivatives

reference blade mass per unit length

nondimensional reference stiffness of
blade

rotor radius

radius at blade station
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BIB II
t

T

Tb

UT

U
P

x = r/R

y(x,t)

ai(t)

y = pacR2 /fx2 dm

Yi = pacR2/fni2 dm

Ym = pacR
2

'/fxndm

K

p

a = bc/wR

o
1

= c/wR

0a8 , a0
I II

cross correlation coefficient

nondimensional time, time unit 1/l

tension or rotor thrust

blade thrust

nondimensional tangential velocity
component

nondimensional normal velocity
component

nondimensional radius of blade station

nondimensional flapwise deflection of
blade, length unit R

generalized coordinate

nondimensional generalized force, or azimuth

rigid blade Lock number

modal Lock number

Lock number for first mode moment equation

adaptation factor for first mode
representation: n = x + Knh

inflow ratio, positive up

advance ratio

rotor angular speed

nondimensional frequency of harmonic
blade motion, frequency unit n

air density

rotor solidity ratio

blade solidity ratio

standard deviations

blade pitch setting
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e1 blade linear twist

nh(x) blade natural mode

nh Ifirst elastic mode of uniform hinged-

free beam

X real part of characteristic value
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Introduction

''A rigid blade dynamlc rotor analysis provides a rea-

sonable approximati6h for ma purpose and has been applied

both to articulated and h4inge .ess tQtor.! ,In the latter

case the rigid blade model involves an elastically restrained

hinge. Because of our present uncertainties regarding the

rotor wake structure particularly at low advance ratio,l it

is difficult to assess the errors from the rigid blade ana-

lysis by a comparison between analytical and test results.

Errors in the assumed rotor wake structure may well mask

the effects of blade flap-bending elasticity. Though good

correlation between a rigid blade analysis and tests with a

7.5 ft. hingeless rotor model was found at .79 advance ratio

for hub moment response to harmonic cyclic pitch input,2 the

3omitted wake effects may have been substantial, casting

doubts on the claimed accuracy of the rigid blade analytical

model.

There is a rather extensive literature on flap bending

effects of both articulated and hingeless rotors. Leone4

showed that flap bending of an articulated blade in forward

flight produces compared to the rigid blade analysis sizeable

corrections to lateral flapping and to retreating blade tip

angle of attack. Daughaday et al 5 showed for zero advance

ratio experimentally with a mechanically excited articulated

rotor blade and theoretically, that the first flap bending
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mode has a very high load amplification factor which can be

substantially reduced by coupling with the carefully tuned

torsion mode with the help of a forwardly located blade tip

weight. Perisho6 showed for an articulated blade with 63

hinge that the rigid blade high advance ratio flapping

instability is substantially modified when including elastic

torsion and elastic First mode flap bending. Curtiss and

7 i
Shupe found for hingeless rotors surprisingly large dif-

ferences in analytical hub moments between a one mode and a

two mode elastic analysis. With one or two elastic modes

used they also found significant differences between hub

moments computed from the elastic bending moments and from

the moments of the airloads. Ormiston and Peters compared

hingeless rotor moment and thrust changes from cyclic pitch

inputs computed with elastically restrained rigid blades

with and without hinge off-set to those computed with the

first elastic flap-bending mode and with the first two elas-

tic modes. Up to about .4 advance ratio the rigid blade

analyses agree well with the two types of flexible blade

analysis. At an advance ratio of one rather large dif-

ferences between the results of these four methods of ana-

lysis were found. It should be noted that Curtiss and Shupe?

neglect the aerodynamic coupling between elastic modes. Both

Curtiss and Shupe
7

and Ormiston and Peters3 use elastic

natural blade modes at zero rotor speedi Particularly the

first elastic flap bending mqde is substantially affected
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by rotation, and the relatively large differences of the

one mode and two mode analysis found in References 3 and 7

for low first mode natural frequencies point toward the

possibility that the error in the single mode analysis may

in part be due to the assumption of a non-rotating first

mode rather than a rotating first mode. The use of non-

rotating modes may also have contributed to the surprisingly

large differences between elastic and airload hub moments

shown in Reference 7.

In order to clarify the questions raised by References

3 and 7 and in order to provide a basis for a flap bending

correction of the multiblade dynamic stability and random

loads analysis of Reference 8, a linear flap bending modal

analysis was performed with the natural modes of the

rotating blade, including the aerodynamic coupling terms

and including reversed flow effects.
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Problem Formulation

One way of.determining the effects of blade flap

bending is to formulate a finite element analysis as was

done, for example, by Blankenship and Harvey9 which

included large angle effects and coupling with chordwise

and torsional blade motions. Each blade is subdivided

into several rigid segments connected to each other by

appropriate flexures. Although this has not been done as

yet one could perform for the linearized problem, after

transformation to state variable form, a normal mode ana-

lysis by extracting eigen values and eigen vectors from the

Floquet state transition matrix. At a zero advance ratio

natural mode the various finite elements will oscillate with

the same frequency but with different phase angles. At a

non-zero advance ratio natural mode the various finite ele-

ments will oscillate with a product of a periodic function

with period 2w and a harmonic function with the natural fre-

quency wk. Both factors will differ between finite elements,

except that all harmonic factors of one mode will have the

same wk but different phase angles. In addition there will

be a third factor, common to all finite elements, consisting

of a real exponential function exp t t.

A modal analysis of this type has been suggestedl° bit

work performed since then has shown that under certain co
9
-

ditions basic difficulties arise in performing a normal mode
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expansion for a periodic system. We will, therefore, use

here the conventional approach, 3, 5, 6, 7 of a modal analy-

sis, not with the actual uncoupled natural modes but rather

with a set of normal modes which are natural uncoupled modes

only under very restricted circumstances: at zero advance

ratio and neglecting aerodynamic or other damping. Such

modes reflect the elastic and kinetic energies of the system

and the effects of centrifugal loads. They become coupled

in the presence of aerodynamic loads although the coupling

terms are sometimes neglected.6 The problem can be formu-

lated now in terms of generalized coordinates associated

with the elastic modes. A state variable form is again

required and eigen values and eigen vectors can be extracted

from the Floquet state transition matrix. If a sufficient

number of elastic modes is used, the natural frequencies

mK and real exponents CK of the natural modes should be the

same as in a finite element analysis with sufficient numbers

of elements. Usually only 2, at most 3 elastic blade modes

suffice at least as far as dynamic stability studies are

concerned. The ratio of elastic energy over the energy of

the aerodynamic springlike or damperlike forces increases

very rapidly for the higher elastic modes, so that they

become almost uncoupled from the lower modes, thus contri-

buting almost nothing to the dynamic stability problem. Of

course, for the purpose of evaluating noise and high
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frequency vibrations from rotor induced turbulence, the high

elastic blade modes are of significance and cannot be dis-

regarded.

For hingeless rotors - but also to a lesser degree for

articulated rotors - there are elastic and inertial coupling

terms between flap bending, lag bending and torsion modes,

whereby mean flapping or lagging displacements of hingeless

blades are particularly effective in causing couplings. At

high advance ratio there also is in the reversed flow region

an aerodynamic coupling between torsion and flap bending.

If torsional divergence and flutter margins for torsion-

bending flutter as well as margins for chordwise motion

instabilities are adequate and if inertial torsion-flap

bending coupling is kept small by design (coinciding section

c.g. and a.c.), the low frequency flap-bending dynamics can

be expected to be only mildly affected by torsion or lag

coupling terms. With respect to torsion coupling this

expectation is supported among others by References 6 and 11,

with respect to chordwise coupling by Reference 12.

The following then is a linear flap bending type of

analysis of lifting rotors with constant chord blades using

generalized coordinates associated with the undamped elastic

modes of the blades rotating in vacuum. Quasi-steady aero-

dynamics is used and wake effects are neglected.

In view of the steady wake effects revealed among

others in References I and 3, the latter assumption is likely
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to require corrections. However, as of now there exist

neither a theory nor systematic tests which would allow the

inclusion of unsteady wake effects in the analysis of

lifting rotors.

Outline of Modal Analysis

Though basically of the same type as the modal analyses

used in References 3, 5 and 7, the following analysis differs

from the references in essential details. As compared to

Daughaday et al 5 it is in part less general since torsion

is omitted, in part more general since it is not limited to

zero advance ratio. As compared to Curtiss and Shupe7 the

following analysis is more general since aerodynamic coupling

between modes and reversed flow are included. As compared

to both Curtiss and Shupe7 and Ormiston and Peters3 the fol-

lowing analysis is, for a given number of modes more accurate

since modes of the rotating blade rather than those of the

non-rotating blade are used. While in References 3 and 7

the emphasis is on first harmonic excitation of the blades

to determine rotor derivatives, the purpose of the following

analysis is to provide the basis for a flap bending correction

of the multi-blade dynamic stability and random load analysis

previously performed with the rigid blade model.8

The basic units for the non-dimensional quantities are:

3Time unit 1/f, length unit R, mass unit wpR The derived
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units are: velocity unit nR and linear acceleration unit

2 4 2
n R. The force unit would be wpR4 2 However, since all

aerodynamic forces have the factor aa, we include this

factor in the definition of the force unit, which then is

wpR n2ao = pacR 3 b (1)

The moment unit is

npR 2aa = pacR4 2b (2)

The selection of these units results in non-dimensional

blade thrust and flapping moment values

CT/aal = Tb/PacR3a2 (3)

CM/aol = Mb/pacR4 a2 (4)

The elastic natural flap-bending modes and natural

frequencies of the blade in a rotating frame of reference

are determined from the equation

(EIy")" - (Ty')' - ma 2 y = 0 (5)

Instead of solving this differential equation, the blade

is replaced by a number of point masses connected by mass-

13
less flexible beam segments. Following Myklestad, a

state transition matrix is established which relates the

state vector at one end of an elastic segment to that at

the other end. At the outer end of the blade the shear and

bending moment are zero, deflection and slope are unknown.

The state vector at the blade root is related to that at the

blade tip by the product of the state transition matrices of

all blade segments. The inner state vector is computed for
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2 values of the tip state vector, corresponding to tip deflec-

tion one and tip slope zero and tip deflection zero and tip

slope one. The-inner boundary conditions of zero deflection

and slope result in a two by two frequency determinant which

is solved by iteration of the entire process. For each

natural frequency the modal deflections, slopes, bending

moments and shear forces can then be determined. The dimen-

sionless natural frequencies depend only on

q EI /m R
4
a2 (6)

o o

The natural modes n. are normalized such that the blade

tip deflection or a certain fraction of it is unity. A

non-dimensional deflection y(x,t) of the blade can now be

represented by a linear combination of natural modes

y(x,t) = E nj(x) aj(t) (7)

j=1

Both the nj and the Sj are nondimensional. This separation

of variables is possible because of the general expansion

theorem according to which any arbitrary deflection can be

represented by a convergent series of eigen functions. The

B(t) are generalized coordinates. Because of the ortho-

gonality relations

ti "j dm = 0 i ( j (8)

one obtains from Eq. (7)

i i= fy ni dm/fi 
2

dm (d7)

For the nondimensional airloads df there exists the
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expansion

df(x,t) = E nj(x) dm j(t)/n, dm (9)
j-l

The generalized forces Hi are obtained because of Eq. (8) by

hi 
=

/rni df (9a)

Because of Eq. (8) the Lagrange equations in generalized

coordinates S
i
and generalized forces .i read

S fi 2 ±. 2 2 / 2 d PcR (10)5i ni dm + Bi Xi Q dm PacR Si (10)

The integrals are to be taken in the Stieltjes sense to

include discrete masses. The dimensions of each term are

force per unit length. The right hand side is obtained by

multiplying the non-dimensional generalized forces ~i

by the unit for force per unit length. The mass and stiff-

ness matrices are diagonal because of the orthogonality

relation Eq. (8). The set of Lagrange equations (10) can

be written in the non-dimensional form (time unit l/a)

(1/Yi)( i +W .i) = Bi i = 1, 2 . ()

The lift force on a blade element c R dx is

(1/2)p(QR)2 ac UT (U/UT + 0 + x 1) Rdx

The non-dimensional elemental lift force is with Eq. (1)

df = (1/2) UT (Up/U
T

+ 0 + x 81) dx (12)

where

UT = x + p sin t (13)

Up = X - vy' cos t - y = - (P ni . cos t + nj 

(14)(l~r)
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The non-dimensional generalized forces are

=Jnidf = (1/2) JUT2 ni(Up/UT + 0 + xel)dx (15)

Writing

2 5i = xAi + 0~i + 0 - Z (Kij 0j + Cj j) (16)

we have

iP - UTindx Kij Op Jcos t)UT in j dx

Gi = f UTnidx (17)

8i1 = UT nixdx

Inserting Eq. (16) into Eq. (11):

(l/Yi) + (1/2) E.Ci Bj + '(l/yi) i (/2) Kj
·.i. j +(1/2)

= (l/2),(Axi + eei + 01 el i ) (18)

In order to include the effects of tip loss, root cut-out

and reversed flow, the integrals in the three regions of

normal flow, mixed flow and reversed flow are respectively1 4

B B -usin B

A· . . · f·, -2.... (19)

A A A A

The region limits are defined by azimuth angles of 0 to w

for normal flow, w to v + c, and 2w - e to 2w for mixed

flow and w + e to 2w - c for reversed flow, c being obtained

from sin e = B/u.
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Hub Moments

For studies of hub moment feedback stability or whirl

stability. expressions for the hub moment are needed and

the question arises, how many modes are required to obtain

a reasonably accurate hub moment. In a rotating reference

system the dimensionless hub moment for a single blade is

CM/aol =-fxdf + R2 (fxydm +a 2xydm)/PacR 4 2 (20)

The first integral represents the moment of the aerodynamic

loads, the second the inertia moment and the third the

centrifugal force moment about the rotor center. Inserting

Eqs. (7) and introducing yj:

CM/aol - f xdf + E (lyj)(Bj + .j) fxnLdm/f,2dm (21)
j=l

A simpler expression can be obtained by computing the

elastic bending moment at the rotor center as the sum of

the inertia moments and centrifugal force moments for each

natural mode. This is the infinite sum in Eq. (21) for

2
in Bj ; 0 (22)

Inserting 8; from Eq. (22) into the infinite sum of Eq. (21):

CM/aol - (l/yj)( 2-1)B Jfxnjdm/fj2dm (232

In both Eqs. (21) and (23) the hub moment is positive down,

7
As pointed out by Curtiss and Shupe, the series in

Eq. (21) converges faster than the series in Eq. (23). For
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example, for harmonic oscillation of 0i with frequency of

unity (once per rev.)

+ = O (24)

and Eq, (21) reduces to

CM/a I = -x df (25)

Truncating this equation, one omits the aerodynamic effects

of the neglected Bj, 0j terms, however one includes all of

the aerodynamic terms not dependent on Aj or 8.. Eq. (23),

because of Eq. (11), can also be written

CM/al = - j fxn idm/fn.2dm (26)
j=l 1

Truncating this equation, one omits in addition to the neg-

lected 8j, 8a terms in ij, also the terms in .j not dependent

on Bj or B . Thus the truncated Eq. (23) is less accurate

than the truncated Eq. (21). This does not mean that the

simpler Eq. (23) cannot be used to advantage. The series of

Eq. (23) also converges quite rapidly and its somewhat

reduced accuracy as compared to the truncated expression

Eq. (21) appears to have been overstated in Reference 7.

For the case of one per rev excitation of the blade, CM/aao

is periodic with 2w. One then determines the Fourier

coefficients CMc and CMs of cos t and sin t respectively

and obtains pitching and rolling moment in a space fixed

reference system by

Cm/ao = C c/2ao1

m/ac c Mc /2ac1 ,(27)

Cc/a CMs/2a I1
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where a is the solidity of the entire rotor.

Single Mode Analysis

In Reference 3, Fig. 4 it is shown that for values of

the first natural frequency of xl = 1.4 and above the second

mode has only a small effect on the hub moment from longi-

tudinal cyclic pitch. The case refers to a uniform beam

representation of the hingeless blade at an advance ratio

of unity. For values WI < 1.4 Reference 3 indicates for

this case substantial effects of the second mode, particu-

larly on the hub pitching moment. As will be shown later,

the second mode effects are smaller if rotating modes are

used instead of the non-rotating modes. For many purposes

if would then appear adequate to consider only first mode

elastic bending effects. This can be done in a rather sim-

ple way by replacing the generalized force expressions of

Eq. (10) by moments about the rotor center. Leaving out

the subscript j for B and n we have instead of Eq. (7)

y(x,t) = n(x) S(t) (28)

and instead of Eq. (10)

8 Jxndm + Bw12l nf xdm PacR 22 xdf (29)

or in non-dimensional form

(1/Ym)(8 + I12 ) xdf (30)

Eq. (15) now becomes

m Jxdf = (1/2) JUT2 x(UP/UT + 0 + xel)dx (31)
, fx f ~TT 
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Writing

2m = Am + Om + m - K C (32)

we have

mX =f UTx dx K = p i(cos t)UT x n dx

m
e

= JUT2 x dx C = JUT x n dx

~~~~~2 2 ~~~(33)
m
8
1 U T2 dx

Inserting Eq. (32) into Eq. (30):

(1/Y )B + (1/2) CB + (1/y m) + (1/2) K 

(1/2)(A mA + Ome + 01 m ) (34)

mA, me, ms are the same as in Reference (14) for rigid

blades, C and K are different.

Since Eq. (34) represents the moment balance about the

rotor center, the elastic moment is equal to the sum of

aerodynamic moments, inertia moments and centrifugal force

moment. Instead of Eqs. (21) and (23) which resulted in

different hub moments after truncation, we now have a single

equation for the hub moment

2
CM/al - (1/Ym)( -1)B (35)

This follows from Eq. (23) when only the first term is used

and Y1 is replaced by Ym.

In many cases one can replace the actual first mode by

the following closed form expression

n = x + K[sinh(3.93x)/2 sinh 3.93 + sin(3.93x)/2 sin 3.93]

(36)
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The term in brackets represents the second mode of a uniform

hinged-free beam normalized for unit tip deflection. K is

an adaptation factor selected for best fit. For a wide

variety of blades the fit was found to be excellent. Using

the mode shape Eq. (36) the straight line n=x for the rigid

blade analysis passes through the .73 point of the mode

shape, see Fig. 3 and 5. The closed form mode has the

advantage that the airloads can also be expressed in closed

form. Writing Eq. (36) as

n = x + K nh (37)

we have

K = U J(cos t) UT x(l + Knh)dx = K
1

+ K K2 (38)

C = /UT x(x + Knh)dx = C
1

+ K C
2 (39)

The coefficients K1 and C1 are the same as K and C for rigid

blades in Reference (14). For reversed flow neglected,

zero root cutout and .97 tip loss factor the coefficients

defined in Eqs. (33), (38) and (39) are

m .304 + .470 P sin t

me = .221 + .608 p sin t + .470 U2 sin2 t

m
8

= .172 + .442 u sin t + .304 2 sin2 t

K1 a u cos t (.304 + .470 u sin t)
K K

1
+ K K (40)

K
2

= P cos t (.886 + 1.070 U sin t)I

C1 = .221 + .304 p sin t

C = C1 + K C
C2 = .028 - .028 U sin t C K C

For uniform mass fx nh dm= 0, therefore Ym = .
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For reversed flow it is more convenient to present the

Fourier coefficients of the periodic functions. This is done

for U = .8 and 1.6 in Appendix B. If the first mode cannot

be represented by Eq. (37), K and C must be obtained by

evaluation of the expressions in Eq. (33).

Hub Moment Derivatives

Before applying the analysis of the preceding sections

,to stability and random loads problems, we will use the

computation of some hub moment derivatives at advance ratio

one as a test case to check the accuracy of the various

analytical models against each other. We will use two types

of blades for this check; First a blade with uniform mass

and stiffness distribution, second a blade with tapered

thickness characterized by the mass and thickness distribu-

tions of Fig. 1. The first two natural frequencies of the

uniform blade vs. nondimensional rotor speed q-l/2 are shown

-1/2
in Fig. 2. The ordinates, wq must be multiplied by

(EI/R4m)
1

/
2

to obtain the dimensional circular frequencies.

The straight lines represent w l, w = 2, etc. The

first mode shape for wl = 1.2 to 1.4 are shown in Fig. 3.

The difference in mode shape betweenl 
=

1.2 and 1.4 is too

small to be shown in Fig. 3. The difference between the

actual mode shape and the clo ed form x + a nh is also neg-

ligible. The first two natural frequencies of the tapered

in thickness blade vs. nondimensional rotor speed q /2
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are shown in Fig. 4, the first mode shape of this blade at

m
1

= 1.47 in Fig. 5. Again actual and closed form mode shape

are indistinguishable.

We first assume uniform mass and flap-bending stiffness

of the blade and determine the dimensionless pitching and

rolling moments C 1/a) C/ao due to unit longitudinal cyclic

pitch input. The parameters, same as in Fig. 4 of Reference

(3) are: y = 5, B = .97, U = 1.0, zero root cutout. When

using two modes it was found that there is little difference

in the results between rotating or non-rotating modes. It

was also found that in case of two modes there is little

difference between using the elastic moment Eq. (23) or the

air moment Eq. (25). The two mode solution is considered

to be the "exact" solution, against which the others are

checked. With respect to the single mode analysis it was

found that there is almost no difference between using the

actual mode or using the closed form mode of Eq. (37) with

an appropriate value of K.

However, there were some differences of results in the

single mode analysis between the generalized force approach

of Eq. (18) leading either to the hub moment expression of

Eq. (23) or of Eq. (25), and the moment approach of Eq. (34)

leading to the hub moment expression Eq. (35). In all of

the analytical models the first natural frequency of the

rotating blade was l1 = 1.2 or 1
I

= 1.4. The following is
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a list of the methods used:

.A Rigid blade elastically hinged at rotor center

B Single non-rotating mode with generalized force

balance, hub moment from Eq. (25). This is the

single mode method of Reference (3).

C Single rotating mode with generalized force

balance, elastic hub moments from Eq. (23)

D Single rotating mode with generalized force

balance, airload hub moment from Eq. (25)

E Single rotating mode with moment balance about

rotor center, hub moment from Eq. (35)

F Two rotating or non-rotating modes with generalized

force balance, hub moment from either Eq. (23)

or (25)

The following table shows the results:

Table 1

Uniform Blade Mass and Stiffness

Y = 5, B = .97, ~ = 1.0, 0 = 1
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The last column in the table can be considered to

give the "correct" values. The rigid blade model, column

A exhibits errors up to about 12% for xl = 1.2 and up to

20% for w = 1.4. Considering the uncertainties of the

omitted wake effect, this represents a reasonable engineering

accuracy. The single non-rotating mode model used in

References (3) and (7), column B, exhibits errors up to

25% in cm/aa for w = 1.2, which is worse than the rigid

blade model. For = 1.4 the error is only 9%. The

columns C and D for the single rotating blade model show

a considerable improvement over column B for the non-

rotating single mode, whereby Eq. (25) used in column D

is clearly superior to Eq. (23) used in column C. This

corresponds to the trend found in Reference (7). Column

E computed from the moment balance about the rotor center

with the rotating first mode is identical to column D for

1 1.4 and somewhat less accurate for w 1 = 1.2. In view

of the greater simplicity of the moment balance method,

reflected in Eqs. (34) and (35), the accuracy of column E

is considered to be adequate, certainly for the higher

values of w1.

In order to check on the accuracy of the various

methods for other hub moment derivatives, the response to

collective pitch O = 1, to lateral cyclic pitch 8 = 1,

to inflow A = 1 and to blade twist 81 = I was determined
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and presented in Table 2. Only cases A (rigid blade), E

(single mode moment balance) and F (2 modes) were computed.

Again the single mode method yields satisfactory results,

while the rigid blade method is in general not reliable.

Table 2

Uniform Blade Mass and Stiffness

Y 5, B = .97, U = 1.0, 
1

= 1.40, 2 = 6.08

I
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Next we assume the tapered in thickness blade with

mass and stiffness distribution of Fig. 1. By comparing

Figs. 2 and 4 it is seen that the two first natural fre-

quencies are spread less apart than for the uniform blade.

By comparing Figs. 3 and 5 it is seen that the first mode

shape is stronger curved than for the uniform blade,

indicated by a higher value of K. The effects of flap-

bending flexibility should, therefore, be larger than for

the uniform blade. The closed form mode, Eq. (36), is

again indistinguishable from the actual mode. Only the

case of w1 = 1.47 was considered for which, according to

Fig. 4, q 1 / = 7.15, and only the cases A, E and F are

shown in the following table.
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Table 3

Tapered in Thickness Blade

y = 5, B = .97, v = 1.0, w
1

= 1.47, m2 = 3.90
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Assuming as before, that the column F represents the

"exact" values, it is seen that, as expected, the rigid blade

analysis is much less accurate than for the uniform blade.

However, the single mode analysis using moment balance about

the rotor center, Eq. (35), is very much better than the

rigid blade analysis and appears to provide adequate

engineering accuracy, at least for
I

= 1.47. From Tables

1 and 2 one can expect, that the accuracy of method E will

improve for higher values of wl, which is also evident from

Fig. 4 indicating that the ratio w2/W1 increases with

increasing xl- Method E will be used throughout the remain-

der of this report.

Multiblade Analysis

The multiblade analysis with generalized coordinates

follows the same pattern set up in Reference 8. Letting the

subscript k refer to the kth blade and assuming a single

elastic mode in the form n = x + K nh, the generalized

coordinate 8 k represents now the angle of the straight line

through the .73 point of the mode shape, see Figs. 3 and 5,

so that Ok can be interpreted as the "equivalent" flapping

angle of the kth blade. The relation of the multiblade

coordinates 8o, 8 d' 8I' Ii, etc. to the individual blade

coordinate 8 k is given by

Bk = + 8d(-l) + BI Fos o k + 8II sin *k
(41)

+ aIII cos 2c k t aIV sin 2k +.

k = 1, 2, . . . b

C.2N,
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with the inverse

b b

a= (l/b) E ak Id = (l/b) E Bk(-)
0 k=l k d. k=l

b b

(2/b) k cOs B = (2/b) E k sin k (42)
k=l k=l

b b

8III (2/b) 8 cos 2 k , 8IV = (2/b) E B sin 2*
k=l k=l

The first of the multiblade equations is obtained by

inserting Eq. (41) into Eq. (34) for each individual blade

and adding the b blade equations under consideration of

b O, if m is not a multiple of b

cE os m k =

b cos mt, if m = sb, s = 1,2 . . .

(43)

b O, m is not a multiple of b

E sin m 
k

=

sin mkfk b sin mt, if m = sb, s = 1,2 . . .

If b is even, the second of the multiblade equations is

obtained by adding the equations for even blade number k

and subtracting the equations for odd k, again making use

of Eq. (43). The remaining multiblade equations are obtained

by multiplying each individual blade equation by cos Ok and

adding them, by sin ik and adding the, by cos 2 *k and adding,

by sin 2 ~k and adding etc., always considering Eq. (43).
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For neglected reversed flow one then obtains in the case of

a 4 bladed rotor Equations (9) to (12) of Reference 8 plus

terms originating from the elastic blade bending corrections

to the rigid blade analysis. The equations are given in

Appendix C with terms from the elastic blade bending effects

underlined. In the numerical examples reversed flow is

included. The periodic coefficients become then non-

analytic and are given in the form of truncated Fourier

series (see Appendix B for the single blade), whereby the

truncation is selected in such a way that the error is 1

per cent or less. The effect of blade elasticity can be

determined by comparing the solution for K = 0 (rigid blade)

with the solution for the value of K corresponding to the

first elastic blade mode.

Applications to Stability Problems

Lagged tilting feedback, described by

OI + L OI = -Ki B
I

OII + II Ki -II

is assumed, whereby L remains fixed at L = .1 as Ki is

increased to the stability limit. Two blade types are

assumed: the blade with uniform mass and stiffness distri-

bution with 1 = 1.40 and the tapered in thickness blade

with m1 = 1.47. Two advance ratios have been studied,
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P = .8 and u = 1.6, and two blade numbers, b = 3 and b = 4.

In each case the stability analysis was performed for the

rigid blade, K = 0, and for the flexible blade with K = .13

(uniform blade) and K = .27 (tapered blade). Figs. 6 to 13

show the characteristic values of the Floquet state transi-

tion matrix, whereby the frequencies were selected as

explained in Reference 8. The dash lines refer to K = 0

- rigid blade - the solid lines to K = .13 or .27. It is

seen that stability suffers from inclusion of blade elasticity

in all cases. For the uniform blade at u = .8 the effect

of blade elasticity is quite small, for the tapered in

thickness blade at u = .8 the elastic effect is much larger,

while for u = 1.6 the destabilizing effect of blade elasti-

city for both types of blades is very substantial.

Applications to Random Loads Problems

The time variable response covariance matrix with the

components a , a , r has been determined using
I II 8IBII

Eqs. (4) and (7) to (9) of Part I for the tapered thickness

blade with w = 1.47, b = 3, U = 1.6, y = 5, comparing the

rigid blade result with the flexible blade result for zero

feedback and for lagged moment feedback with Ki = .2. The

scale of longitudinal turbulence over rotor radius has been

assumed as L/R = 12, and the standard deviation of A as

°A = 1. Figs. 14, 15 and 16 show the components of the
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response covariance matrix for zero feedback. The large

unfavorable influence of blade flexibility is evident.

Figs. 17, 18, 19 show the components of the covariance

matrix for K. = .2 lagged feedback gain. The values are

lower, however the unfavorable effect of blade flexibility

is greater than the favorable effect of the feedback. In

order to substantiate this surprising result with a much

simpler and independent case, the deterministic responses

of B
I
and SII to a step gust X = 1 were determined and are

presented in Figs. 20 and 21 for Ki = 0 and in Figs. 22

and 23 for K. = .2. It is seen that for K. = 0 similar order
i1

of the effects of blade flexibility exist as for the -standard

deviations aB and a II For Ki = .2 the feedback is very

effective, contrary to the random gust case.

Conclusions

A variety of methods of applying blade flap bending

corrections to the rigid blade analysis of hingeless lifting

rotors were checked out with regard to the problem of hub

moment response to longitudinal cyclic pitch input at rotor

advance ratio of unity, leading to the following conclusiqns:

1. Using two elastic blade modes, the result is insensitive

to assuming either the modes of the non-rotating or those

of the rotating blade. In the latter case the result

is also insensitive to computing the hub moment either
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from the air loads or from the elastic blade root

bending moment.

2, Using one elastic mode of the non-rotating blade, the

error in the result can be even larger than for the

rigid blade analysis.

3. Using one elastic mode of the rotating blade the error

in the result is substantially less, whereby the air

load hub moment is more accurate than the elastic blade

root bending moment.

4. Using one elastic mode of the rotating blade with the

moment balance about the rotor center rather than the

generalized force balance as in conventional analyses,

air load hub moment and elastic blade root bending

moment are equal and the result is almost as accurate

as that for the best of the previously listed single

mode methods.

5. The single mode method with moment balance about the

rotor center is sufficiently accurate also for hub

moments from lateral cyclic pitch, from collective

pitch, from blade twist and from inflow changes,

assuming both a uniform blade and a strongly thickness

tapered blade. The rigil blade method in the latter

case results in large hub moment errors.

6. A closed form expression for the first rotating blade

mode was found which includes an empirical factor
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allowing to accurately represent the first rotating

blade mode for blades with widely varying stiffness and

mass distributions. Closed form aerodynamic coefficients

are given to account for the aerodynamic effects of

blade elastic flap bending.

The method of using the moment balance about the rotor

center for the first mode in closed form was then applied to

the problem of multiblade dynamic stability and random loads

of a lifting rotor with lagged hub moment feedback, leading

to the following conclusions:

7. The rigid blade analysis is unconservative with respect

to multiblade dynamic stability. Particularly for a

tapered in thickness blade large reductions in stability

margins are obtained from the elastic blade flap-bending

corrections.

8. The time variable standard deviations of the hub moments

as a result of random gust inputs are substantially

increased by considering elastic blade flap bending

corrections.

9. While lagged hub tilting moment feedback is very effective

in alleviating step gust responses , it is little effective

in alleviating random gust responses.
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Figure Captions

Fig. 1 Mass and Stiffness Distribution of Tapered in
Thickness Blade

Fig. 2 First and Second Natural Frequencies of Uniform
Blade vs. Rotor Speed

Fig. 3 First Mode Shape of Uniform Blade for = 1.2
to 1.4

Fig. 4 First and Second Natural Frequencies of Tapered
in Thickness Blade vs. Rotor Speed

Fig. 5 First Mode Shape of Tapered in Thickness Blade
for m

1
= 1.47

Fig. 6 Stability for Lagged Moment Feedback, U = .8,
b = 3, Uniform Blade

Fig. 7 Stability for Lagged Moment Feedback, p = .8,
b = 4, Uniform Blade

Fig. 8 Stability for Lagged Moment Feedback, p = .8,
b = 3, Tapered Thickness Blade

Fig. 9 Stability for Lagged Moment Feedback, U = .8,
b = 4, Tapered Thickness Blade

Fig. 10 Stability for Lagged Moment Feedback, U = 1.6,
b = 3, Uniform Blade

Fig. 11 Stability for Lagged Moment Feedback, U = 1.6,
b = 4, Uniform Blade

Fig. 12 Stability for Lagged Moment Feedback, p = 1.6,
b = 3, Tapered Thickness Blade

Fig. 13 Stability for Lagged Moment Feedback, p = 1.6,
b = 4, Tapered Thickness Blade

Fig. 14 Effect of Blade Flexibility on aBi Ki = 0

Fig. 15 Effect of Blade Flexibility on a Ki = 0
II

Fig. 16 Effect of Blade Flexibility on rBi , K i - 0

Fig. 17 Effect of Blade Flexibility on ao, K
i

2 .2
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Effect of Blade Flexibility

Effect of Blade Flexibility

Effect of Blade Flexibility
81, Ki = 0

Effect of Blade Flexibility
8 II, Ki = 0

Effect of Blade Flexibility
BI , Ki : .2

Effect of Blade Flexibility

BII, Ki = .2

on 08 , Ki= .2
.II

on r0 8 , K
i

= .2
I II

on Step Gust Response

on Step Gust Response

on Step Gust Response

on Step Gust Response

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

18

19

20

21

22

23
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Appendix A

Computation of Undamped Blade Modes

Nomenclature

R

m
o

m R
0

m R2a2
0o

T moR Q

m i moR

x. R

AT mo R22

Yi R

'Pi

1. R

(EI i ) q moR n2

El
0

Mm oR3a2

S m R Si
i 0

422
q = EIo/m R a

X.
I

rotor angular speed (1/i is the time unit)

rotor radius (length unit)

mass per unit length of blade root

mass unit

force unit

centrifugal force in ith massless segment

point mass between massless segments

distance of m
i
from rotor center

centrifugal force of ith.point mass

up deflection of mi

slope of deflection curve at mi

length of ith segment

bending stiffness of ith segment assumed
constant

bending stiffness at blade root

bending moment at m.

shear force to the left of mi

frequency of harmonic oscillation of blade

non-dimensional bending stiffness of blade
root

state vector at mi with the 4 components
Yi' is' Mi' Si

state transition matrix relating X
i
to

i+l



II-59

X(1) state vector for free end conditions
'Y li xi1 =yM1 = S 0

X(2) state vector for free end conditions
*1 1, Y1 = M1 = S = 0

Fig. A-1 shows a massless blade segment with point

mass at the left end in its maximum up position during a

harmonic oscillation with circular frequency w. The cen-

trifugal force Ti along the element is assumed to be con-

stant and to change only at the mass:

T =T +AT (A-1)Ti ° ?i- ti A-i

where

ATi = mixi (A-2)

Since the blade tip is to the left

T i = ATk (A-3)
k=l

We resolve the centrifugal force Ti at the left end of the

segment - but to the right of the mass - into a component

along the deflected blade axis and a component ViTi perpen-

dicular to it. Deflection and slope at i+l are

2 2 3
Yi+l 

=
Yi + Mini + Miti /2qEIi + (Si + YimiW + + iTi)Ii/6qEIi

(A-4)

*i+l =i + Mii/qEIi + (Si + Yimiw + AiTl) ti2 /2qEIi

(A-5)

The moment equilibrium about the right end of the segment

yields

i+1 N Mi + (Si + Yimiw + Fili) ti (A-6)
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The vertical force equilibrium yields

Sil = S + miyiw2 (A-7)

Using the state vector

Xi .1 (A-8)
, i

S.

the transition from X
i to X is according to Eqs. (A-4)

to (A-7)

X~i P gi Xf (A-9)

with the state transition matrix

1 + miw i3 /6qEI1 Li + TiLi /6qEIi Li /2qEIi L3 /6qEII

miW2 i2/2qEI 1 + T,i 2 /2qEI I 2qEi/qEI

m2 i .i Tit i 1 ti= 2

mi2a O 0 1

(A-10)

Combining the n fields:

X n-l (A-lI)n+l 'n fn-l.' (A-ll)

X
1

at the tip of the blade has the unknowns yl, 1, while

(1) X(2)M1 S1 0. We compute X n+
1
and X n for free end condi-hin ) 2l ll 9 an Xt2 2nl fn+l

tions (1)
XI , and 2) = a1

I 0
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The frequency equation is

(1) (2)

n+l n+l

-0° (A-13)(1) (2)
n+l nal

For each natural frequency one obtains for y = 1 from the

first of Eqs. (A-12)

(1) (2)

1 n / Ynl (A-14)

so that now Xi can be computed for each i beginning with

the known stating uvector

1

X 1 = (A-15)

For regions of large curvate curvature small segments i are required,

while for regions with little curvature the lengths ki can

be larger. Using 20 segments the computation of two natural

frequencies with associated modes takes on the IBM 360-50

computer about 10 CPU seconds. For given m
i

and EI
i

the

natural frequencies depend only on q. For small q we

have w1 = 1.0, for large q we have

w /ql/2 =a (A-16)u1 q



whereby

. (EI)
a V

.

F;t . A -
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(A-17 )

Root --.T . m Tpe
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Appendix B

Fourier Coefficients of Reversed Flow Blade Analysis

For reversed flow, zero root cut out, tip loss factor

B = .97 the expressions of Eq. (40) are replaced by the

following truncated Fourier series:

= 0.8

mi = .340 - .043 cos 2t + .006 cos 4t + .312 sin t + .021 sin 3t

me = .359 - .134 cos 2t - .004 cos 4t + .510 sin t - .010 sin 3t

me = .265 - .092 cos 2t - .002 cos 4t + .361 sin t - .004 sin 3t

K
1

= .255 cos t - .015 cos 3t + .003 cos 5t + .133 sin 2t

+ .008 sin 4t

K2 = .700 cos t + .005 cos 3t + .007 cos 5t + .353 sin 2t

+ .003 sin 4t

C1 = .234 - .017 cos 2t + .004 cos 4t + .220 sin t + .010 sin 3t

C
2

= .009 + .022 cos 2t - .003 cos 4t + .010 sin t - .011 sin 3t

= 1.6

mA = .524 - .237 cos 2t - .001 cos 4t + .013 cos 6t

+ .372 sin t + .089 sin 3t + .024 sin 5t

mo = .642 - .370 cos 2t - .045 cos 4t - .007 cos 6t

+ 1.297 sin t - .128 sin 3t

m
e

= .469 - .266 cos 2t - .030 cos 4t + .874 sin t

- .074 sin 3t + .005 sin 5t

K
1

= .648 cos t - .190 cos 3t + .009 cos 5t + .014 cos 7t

+ .369 sin 2t + .091 sin 4t + .021 sin 6t
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K2 = 1.611 cos t - .327 cos 3t + .084 cos 5t + .057 cos 7t

+ 1.053 sin 2t + .227 sin 4t + .024 sin 6t - .028 sin 8t

C
1

= .345 - .143 cos 2t + .006 cos 4t + .011 cos 6t

+ .270 sin t + .062 sin 3t + .014 sin 5t

C2 - .019 + .035 cos 2t + .013 cos 4t + .004 cos 6t
2

.031 sin t - .006 sin 5t
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Appendix C

Multiblade Equations for Four Bladed Rotor

without Reversed Flow Effects

For a 4 bladed rotor without reversed flow effects the

multiblade equations are as follows. Terms originating from

elastic flap bending are underlined.

(.221 + .028)B 2 l -m om 2 II

2 I 2 d 2 2+ 2 -(. 57p:)8 -2 (.235y2 + 9B535p2 )d = 2 (.221 + .235pS )8

2 ~~2

B1 2I +1 (12 - 1)B
I

+ (.221 + .028K)(BI + BII

Ym 

(.304 + .886K)B ° + -2 (.118U2 ; .268p2K)B sin4t
+2 ( . I

Ym 2 2 Y+ (.118p2 + .268V2 )(1 - cos4t)Bii -I (.304#

- .028Ki)Bd sin2t 2 (.304. + .8 8 6UK)Bd cos2t

2m 2 sin 2 
(.118.2)O sin 2t + (.221 + .118 - .18 cos4t)Oi

(C-2)
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II - 2 I + ( - ) + 2 "2 (.304P - .028PK)3

Ym(221 P m 2 2

2 221 + .028)( - BI
) + 2 (.1182 + .268P K)

¥m 2 2
(1- cos4t)

I
- 2 (.1181 + .26 8p K)BII sin4t

+ 2 (.30#4 - .028K)B cos2t 2 (.304p + .8861K)

Ym m 2 2
d sin2t 2 (.608P)O - 2 (.221 ,.354 V + .118P2
Bd sin2t= 2 ( '608)2)-

cos4t)e - 2 (.1182 )1II sin4t + (.4700)A (c-3)
I 2 I

¥m ¥'2t -
(.152u - .014)( I + BII) sin2t (.152

Tm 2 2
o014#K)(i - B

I
) cos2t - 2 (.235i + .535) K)

B0 sin2t - 2 (.152, + .443Ka)BI cos2t

(.152P + .443pK)B sin2t + d+ - (.221 + .028K)
2 II d 2 d

1 d 2 2

Ym

+ w1 0d -2 (.2353u ))0 os2t 2 (*304t )I cos(-

2m (*304$)6)II sin2t (C-4)
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Part III

Effects of Rotor Support Flexibility

Abstract

The multiblade stability and random loads Analysis

of Phase V-B Report has been extended to include angular

rotor support flexibility about the longitudinal and

lateral axes. The stability analysis results in whirl

flutter or divergence conditions which have previously

been studied only for the constant coefficient case of prop-

rotor axial flow. While stiffening of the rotor support

results in the removal of a divergence condition, which

occurs at high advance ratio, the regressing whirl flutter

margin is reduced by the higher support stiffness. Blade

flap-bending flexibility which has at high advance ratio a

greatly destabilizing effect is included in the analysis.

A constant coefficient approximation is possible up to .8

advance ratio. Pitch-flap coupling stabilizes the diver-

gence mode but destabilizes the regressing whirl flutter

mode, The results of a random load analysis reflect the

reduction in stability margin of some of the multiblade modes

because of the coupling with: the flexible support.

\x



III-ii

Nomenclature

m '=
pacR2 /fxqdm

r = pacR2 /fx2 dm

:Ii' CII

WI, wil

b

I
b

= fx 2 dm

II, III

Ib =fxndm

ek

Kf

pitching angular deflection of rotor support,
positive down

rolling angular deflection of rotor support,
positive to the left

angular deflection of rotor support about
flapping axis of kth blade, positive up

equivalent flapping angle of kth blade,
defined by straight line through first
mode deflection at .73R

first blade mode shape

flexible blade Lock number

rigid blade Lock number

damping ratio of rotor support less blades
in pitch and roll

undamped natural frequencies of rotor sup-
port less blades in pitch and roll

blade number per rotor

blade moment of inertia

Pitch and roll support moments of inertia

blade moment of inertia of first blade
mode shape

pitch angle of kth blade

pitch-flap coupling ratio

blade flap-bending flexibility coefficient
in first blade mode: n - x + K nh

first natural blade frequency when rotating,
time unit 1/Q

azimuth of kth blade
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Introduction

It is known from the literature that in prop-rotor

flight minimal rotor support stiffnesses are required to

prevent whirl flutter or divergence. The required support

stiffnesses are maximum if the natural frequencies for

pitch and yaw of the rotor support are equal. In this case,

assuming a rigid blade and realistic nacelle to blade

inertia ratios, and assuming an advance ratio of one, a

nacelle frequency of about 1.8 is required. For a blade

flapping frequency of w1W 1.3 the minimal nacelle frequency

at the whirl stability limit is reduced to .6. For the

prop-rotor dynamic analysis constant coefficient dynamic

equations are used. This is not possible for the cor-

responding problem of high advance ratio lifting rotor

operation, for which no whirl flutter analysis exists as

yet. The multiblade analysis of Phase V-B Report has,

therefore, been extended to include elastic rotor supports,

and the characteristic values of the Floquet state transi-

tion matrix have been determined vs. support stiffness.

Blade flap-bending flexibility, using the concept of Part

II, is included in the analysis.
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Dynamic Equations

The rotor support is assumed to be capable of a

pitching angular deflection GI, positive downward, and a

rolling angular deflection aII, positive to the left. The

Kth blade then experiences an angular support deflection

Qk 
=

aI cos ok + aII sin ok (1)

Horizontal and vertical linear hub deflections are neglected.

The horizontal hub deflections couple essentially with the

chordwise blade modes which are here omitted. The vertical

hub deflections couple essentially with collective blade

flapping, but only weakly with the progressing or regressing

whirl modes and were considered of secondary importance. In

a complete dynamic analysis they should be included.

Using a space fixed reference system, and applying the

single mode analysis of Part II, Eq. (30) now becomes for

the kth blade

(1/Ym)Bk + (w12-)(Bk - k ) Bk ] = x df (2)

As compared to Eq. (30) the term - (w1 2 -l)ak(l/ m) has been

added to the left hand side to account for the change of the

elastic blade root moment due to ak' This term gives rise

to terms with factors a I and aII when the transformation to

multiblade coordinates' is performed according to the section

I'Multiblade Analysis"' of Part II. For example, the second

and third of the 4 multiblade equations for the 4-bladed
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rotor presented in Appendix C of Part II will now have the

additional terms on the right hand side:

Eq. (C-2) (2 -1) a
12 (3)

Eq. (C-3) -1) 

Furthermore, there are two new dynamic equations expressing

the pitching and rolling equilibrium of the rotor support

aIX + 2 I aI = (W1 -1)(b/2 )(Ib/II)(I aI) (4)

II 2CII WII'aII + XII aII I b II II - II

For some cases flapping feedback is considered in the form

ok = - KfBk (6)

In this case we have thbe following additional multiblade

equations:

O °_ - Kf o

o a I Kf(ii- a II)

il - eI = - Kf(BI I- I )

which reduce for Kf = 0 to 01 = a I , 611 a II The effect

of blade.flap-bending flexibility is included in the form

of Eq. (36) of Part II for the first mode, whereby the

coefficient K is zero for a rigid blade analysis and assumes

various non-zero values depending on blade characteristics

and rotational speed. For some cases at advance ratio

# = .8 the multiblade equations were simplified to constant
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coefficient equations by omitting the periodic terms in the

coefficients. For an advance ratio of 1.6 the constant

coefficient system of equations is invalid and the full

system of equations with periodic coefficients must be used.

Reversed flow effects. are included in all numerical examples.
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Applications to Stability Problems

We will apply the preceding theory to three cases.

Case I

Stability of a 3 bladed rotor with uniform rigid blades,

Ib/ I =Ib/III .209 I 0(, I .8 and 1.6, y = 5

and 8, Kf = 0 and 1.5, 1 = 1.15 and 1.30. wI = WII variable.

The characteristic values of the Floquet state transi-

tion matrix are determined vs. HI = CII' The study provides

data on the effect of blade natural frequency (w1 = 1.15

and 1.30), of Lock number (y = 5 and 8), of pitch flap

coupling (Kf 0 and 1.5), of advance ratio (p = .8 and 1.6)

and of omitting the periodic terms for a case.at V = .8.

Case II

Stability of a 3 bladed rotor with tapered elastic

blades. lb/I = Ib/I .20, I 
=

II 0 = .8 and 1.6,

y = 5, 1.47,9 Kf = 0, K = 0 and .27. XI = XII variable.

Again the characteristic values are determined vs.. w
I WI.

The study gives data on the effect of advance ratio (a = .8

and 1.6) and of blade flexibility (x = 0 and .27).

Case III

Stability margins of a'4 bladed rotor with thickness

tapered elastic blades when slowly reducing:rotor speed

from P = .30. Here {is used as the parameter for the

characteristic values. = 5 Ib/II = 0g Ib/III .16,
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(I = (II-= 0. The value of K varies with P. K = .27 for

-= .30, K = .33 for p = .80 c =- .36 for p = 1.6, the values

of WI and 'II also vary with p. I = .5, 1,.33,.2.66,

wii = .6, 1.6, 3.2, respectively for 1 = .3, .8, 1.6.

Figures 1 to 5 show the characteristic curves in the

complex plane for the case I. The only modes affected by

support stiffness are zero or low frequency modes, which can

be interpreted as regressing flapping modes. 'They indicate

that an increase in rotor support stiffness results in

improved stability of the zero frequency mode and in reduced

stability of the next higher modes. Figure 1 shows for

p = .8, ¥ a 5 the effect of blade stiffness. The minimum

support stiffness .
I
for avoiding divergence is slightly less

than 0.4 for the case m 1 = 1.15 and is slightly larger than

0.4 for 1l = 1.3. At woI 0.6 the regressing mode has less

damping for w1 = 1.15. Figure 2 shows for U = .8, w1 = 1.15

the effect of blade Lock number. The minimum support stiff-.

ness (h is slightly less than 0.4 for y = 5 and is 0.4 for

y = 8. Figure 3 shows that the constant coefficient

approximation is at p .8, y = 8, W1 = 1.15 and w
I

= 0.6

approximately correct. The effect of pitch-flap coupling

is shown in Figure 4. With Kf = 1.5 divergence is avoided

even for a very low support stiffness, wI = 0.2. However, the-

next higher mode has less damping. Figure 5' shows the effect

of advance ratio. At p = 1.6 a support stiffness w' of

slightly larger than 0.6 is required to avoid divergence.
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At this WI value the next mode has little damping. It is

interesting to note that the rotor support stiffness require-

ments for the lifting rotor are at the same advance ratio

roughly the same as for the prop rotor, and the whirl flutter

problem appears to be equally critical.

Figures 6 and 7 show the characteristic curves in the

complex plane for the case II. At p = .8, as shown in

Figure 6, the minimum support stiffness for avoiding diver-

gence is close to mI = 0.4 when rigid blades are assumed.

If blade flexibility is included in the analysis, the minimum

support stiffness required for stability is increased to a

value larger than wI 0.5. Figure 7 shows the effect of

blade flexibility on the required minimum support stiffness

at U = 1.6. It is seen that when rigid blades are assumed,

w
I

= 1.0 or even less is satisfactory to avoid divergence.

However, as blade flexibility is considered, it appears that

the instability cannot be prevented in the entire region

1 < 1.4.

Figure 8 shows the characteristic curves in the complex

plane for the case III. It indicates that during the rotor

stopping process, as P increases from 0.3 to 1.6, the sta-

bility margins improve. Although not shqwn in the figure,

the analysis also reveals no instability, as p.is further

increased to 3.2, so that stopping the rotor appears to be

safe.
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Applications to Random Load Problems

One point of Case III of the preceding section per-

taining to the thickness tapered elastic blades at advance

ratio ) t .8 was selected for a random loads analysis,

comparing the rigid rotor support with the flexible rotor

support. The method described in Part I Eqs. (4) to (7)

was used to determine the variance matrix with the com-

ponents a (B I) (B a and r( I I) (BII Ia

Multiblade coordinates for the 4 bladed rotor, as described

in Reference (2) were used. For rigid rotor support

a
I

= aII O. For flexible rotor support the quantities

I -as BIi - aI are proportional to the rotor pitching

and rolling moments.

Fig. 9 shows the time variable standard deviation'

o(B _ ai ) for rigid and flexible rotor support. It is

periodic with 4 per rev. Support flexibility increases the

maximum standard deviation by about 20%. Fig. 10 shows the

time variable standard deviation a(B aI ), also with and

without support flexibility. Finally, Fig. 11 shows the

time variable cross.correlation coefficient between BI - a

and BiI - a-I, As can be seen from Fig. 8, the case

analyzed here has ample stability margin which is the' reason

why only modest increases of random load levels with support

flexibility occur.
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Conclusion

1. Whirl flutter of hingeless lifting rotors at high advance

ratio appears to be as critical as for prop rotors, though

the whirl modes are different.

2. For a rotor support with high angular flexibility diver-

gence occurs. As the rotor support is stiffened, the

divergence disappears, but a whirl flutter mode becomes

unstable.

3. A hingeless rotor with a good stability margin when

operating on an elastic support experiences only minor

increases in random rotor loads due to the support

flexibility.

4. A refinement of the analysis by including axial motion

of the rotor support is desirable.

5. So far only flapwise whirl flutter at high advance ratio

was studied. It is desirable to extend the analysis to

include edgewise and combined edgewise and flapwise

whirl flutter and divergence.
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Figure Captions

Fig. 1 Stability for b = 3, y 2 5, U 2 .8, vs. Support
Frequency tI = wI, Rigid Uniform Blade, Effect
of Blade Frequency

Fig. 2 Stability for b = 3, U ' .8, w = 1.15 vs.
Support Frequency Ew

I
= WI, Rigid Uniform Blade,

Effect of y

Fig. 3 Stability for b = 3, y = 8, a = .8, w 1.15
vs. Support Frequency w = V , Rigid Uniform
Blade, Constant and PerlodicICoefficient
Comparison

Fig. 4 Stability for b = 3, y =5, SU = .8, Wl = 1.3,
vs. Support Frequency W = IRigid Uniform
Blade, Effect of Pitch Flap Ratio Kf

Fig. 5 Stability for b = 3,' y = 5, w = 1.3, vs. Support
Frequency o = WI,, Rigid Uniform Blade, Effect
of Advance Ratio

Fig. 6 Stability for b = 3, y. = 5, p i .8, w = 1.47,
vs. Support Frequency , ThickAess Tapered
Blade, Effect of Blade flexibility

Fig. 7 Stability for b = 3', y = 5, = 1.6, w 1.47,
vs. Support Frequency oT = TT , Thickness Tapered
Blade, Effect of Blade FlexiBility

Fig. 8 Stability for b = 4, y = 4.5, of Stopping Rotor
with Thickness Tapered Flexible Blades vs. u.

Fig. 9 Standard Deviation a(B - a ) vs. Time for

b = 4, y = 4.5, W = 2157, .8, Thickness
Tapered Flexible hlade, Effect of Support Flexi-
bility

Fig. 10 Standard Deviation vs. Time for

b = 4, y = 4.5, w = 2.7, I .8, Thickness
Tapered Flexiblel lade,, Effect of Support
Flexibility

Fig. 11 Cross correlation Coefficient, r(B -a )
vs. Time for b a 4, y = 4.5, W = 57,

= 2 .8, Thickness Tapered Flexible Blade,
Effect of Support Flexibility
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Addendum

RESPONSE OF LINEAR PERIODICALLY TIME VARYING SYSTEMS

TO RANDOM:EXCITATION

D.A. Prelewiczl

Washington University, St. Louis, Missouri

INTRODUCTION

Recently developed stochastic models for the flapping

vibration of helicopter rotor blades [11]2 give rise to

the problem of.determining the response of periodically

time varying linear systems to random excitation. Mathe-

matically, the problem is to determine the statistical

properties of a response process x(t) satisfying

t = A(t)x + f (1)

A(t) = A(t+T) )

where f(t) is a random input process and the matrix A(t)

is given in terms of system parameters,

In this.note, the class of weakly periodic nonstationary

processes is shown to arise in a natural way in connection

with. the system (1). In particular, it is shown that the

steady state response of the system (1), if.it exists, to

a weakly periodic nonstationary process with period T is

also a weaklyperiodic nonstationary process with period To

Assistant Professor
Associate Member AIAA

2 Numbers in brackets designate references at end of Note
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In references [1-4] both time domain and mixed time

frequency domain methods have been used to calculate

response statistics for (1). These relations are

generalized within the framework of weakly periodic

nonstationary processes.

DETERMINISTIC CASE

A solution of (1) for t > to is [5].

x(t) = z(t,to0 ) (to) + Z(t,s)f(s)ds (2)
/t

where Z(t,t,) is the transition matrix satisfying

dZ 
dt A(t)Z , t > to

Z(to,to) = I (identity matrix)

Furthermore, the periodicity of:A(t) implies that (61

Z(t,t0 ) = P(t)eC(t-to)p-l(to) , t > t
o

(4)

where C is a constant matrix and P(t+T) - P(t). The

steady state response is given by.

x(t) = f Z(ts)f(s)ds - (5)

RANDOM EXCITATION 

Letting u = t-s in equation (5), using (4) and taking

expectations gives the following expressions for the steady

state mean and autocorrelation of the output process

Elx(t)}=)x(t) = f P(t)eCUP-l(t-u)f (t-u)du (6)

Rff (t I'-U,1 ta -u )PT (tu)eC pT(t)duldu
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Suppose that f(t) exists in a mean square sense and

that

1if(t) = f(t+T) (8)

Rff(tl,t2 ) = Rff(tl+T,t2+T) (9)

Such a process is said to be weakly period nonstationary

with period T. It is precisely these processes which are

of interest in the rotor vibration problem. From (6),

(7) and the periodicity of P(t) it is apparent that if the

steady state response exists then it is also weakly periodic

nonstationary of period T. Hence linear periodically time

varying systems with period T "preserve" weakly periodic

nonstationary processes of period T in the same sense that

linear time invariant systems "preserve"
' weakly stationary

processes.

The periodicity can now be used to simplify the

calculation of the mean and the autocorrelation. From (2)

x5t) = Z(t,to)5x(to) + 1 Z(ts) f(Bs)ds (10)

Using the periodicity of x (to)

Solving for Px (to) gives

to +T

x (to ) .= (I-(to+Tto)] t Z(to+T ts)pfT(s)ds (12)
o
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Now from (2) we obtain
+T

Rxx (tl+T,tt2+T)=Z (tl+T,t )R xx(ti, t2+T)+I Z(t1 +T,s )
ti

Rfx(s ,t 2+T)ds1 (13)

T .·· ·· t2+T
Rxx (tit2+T)=Rxx tl, t2)Z (t2+Tt2)+ Rxf (t ,s2)

ZT (t2+T,s2 )ds2 (14)

Substituting (14) into (13) and using the periodicity

of Rxx(tl,t2) gives

- (t+Tt)Rxx(tt)-Rxx(tl,t2) ZT
(t2+T,t2) =

t2+T

Rxf(tl,s2)Z T (t2 +T,2 )ds 2 (15)

t -1

+ / Z (t,+ T, t l)Z (tl+T,sl)Rfx(sl,tz + T)ds l

tl

where in the steady state

tl
Rxf(tl ,s,) = Z(t l ,s ) R ff ( s ,,s2 )ds1

-'_¢~~~~~~ (16)

t2+T
Rfx (slt 2+T) = Rff (s,s. 2 )ZT (t2+Ts2)ds2

Combining (15) and (16)

Z- (tl+T,tI)R xx(ti t2)-R xx (t ,t 2 )Z (t2 +T,t2) =

t 2+T ti

J |:Z(tl,sl)Rff(sls2 )ZT(t2+T,s2)ds ds (17)

t z~~~~~f 2
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where Z(tl,sl) in the second integral on the. right is

Z(tl,sl)=Z- (tl+T,t )Z(t +T,sl)=P(tl)eC(tl-Sl)p(s ) (18)

It is convenient to use (17) to obtain the instantaneous

autocorrelation matrix Rxx(t,'t) and to determine Rxx(ti,t2)

from

tl t2

xx(tlt2)=Z(tlt2)Rxx(t2,t2)+J Z(tl'sl)R ff(Sls2)
t 2 -~

Z (t2 ,s 2 )ds2 dsl , t I > t 2 (19)

obtained from (2) by letting t0=t2, postmultiplying by

x (t2), taking the expectation and then using the second of

(16). This.approach gives an explicit expression for

Rxx(tlt 2 )o

In the variables T=tl-t2 and C=tl+t2 . it is apparent

that, for fixed T, Rx (T,;) is periodic in C with period

2T. Also, using (7) it is easy to show that

R (T,5) = R (20)xx xx

Hence R (T,4) is completely determined if it is known onxx

a strip 0 < < < -, t < ; < t + 2T.

In the special case of weakly periodic nonstationary

white noise excitation, i.e.

Rff(tllt2 ) = F(tl)6(tl-t2 ) (21)

where F(tl)=F(tl+T) and 6( ) is the Dirac delta function,

(17) gives
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t+T

TT

Z -t+T,t)RXx(t,t)-Rxx(t,t)Z (t+Tt)=f Z(t,s)F(s)

t

Z (t+T,s)ds (22)

and (19) reduces to

Rxx(tl,t2 ) = Z(tl,t2)RXX(t2,t2 ), t1 > t2 (23)

For the white noise case, a differential equation satisfied

by R (t,t) is given in [3,4]. Equation (22) gives the

periodic solution of that equation. Also, the above

analysis shows that the direct time domain approach is not

limited to white noise excitation.

SPECTRAL DENSITY

Rff (T,) is, for fixed T, periodic in 4 with period 2T.

Hence, if Rff(T,C) is absolutely integrable in T, then it is

apparent that Rff (T,C) has the spectral representation

inrrC

Rff(T,C) = f , fff(wn)ei x e dw (24)

Inversion yields

c T inrg
Qff~w'")= 1 4 -iWT T

ff(w,n) = 4T f Rff(T,)e e dgdT (25)
- A-T

Substituting (24) into (7), using (4) and rearranging

terms gives
co c

Rxx(tt ) = | H(tlT -')Off(dn)(t,,-- (26)

where
H() Z(t d27)

.H(t,X) = J Z(ts).e s ds
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Equation (26) is a generalization of the mixed time

frequency relation used in ill] to include weakly period

nonstationary excitation.

If Rff(tl,tl) can be expressed in the product form

Rff(t l,t2 ) = F (t1 )R(tl-t2 )G (t2) (28)

where R(tl,t2) has a Fourier transform ¢(w), then

Rxx(tlt 2HtwOwHt2w) (29)

where

H (tA) = j Z(t,s)F(s)ei 3 ds
(30)

t'
H2(t,A) j Z (t,s)G (s)ei dso

--m

Excitation satisfying (28) is treated in Reference [3].

It is interesting to note that a direct relationship

exists between the spectral densities of the input and

output processes. First notice that for fixed T. Z(Tr)

is periodic in C with period 2T. Hence assuming that

Z(I,C) is absolutely integrable in T, it has the same type

of spectral representation as'Rff(T,C) namely

no- (31).

Inverting gives
co T inwC

(zw(n) - O L JT Z(Cr)ei' e T d~dT (32)
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Substituting (31) into (7), changing variables tl, t2 to

T, C and simplifying using the appropriate Fourier ortho-

gonality relations yields

e TX

Now substituting (33) into the expression for x (w,n)
xx

(equation (24) with f replaced by x) yields after

simplification

x (wn)= 4f2 Z(w+(n-j)Tj)ff(w+(k-j)T,n-k-j)xx ( ,. ).ff (
j,k=-=

T (-w+ (n-k) , k) z

CONCLUSIONS

When viewed within the framework of weakly periodic

nonstationary processes, the steady state analysis of the

random response of periodically time varying systems is quite

similar to the well known analysis of time invariant systems

subject to weakly stationary excitation. That is, all of the

results derived herein reduce to well known results for

linear time invariant systems subject to weakly stationary

excitation. These results should prove useful in the

further development.,of rotor' vibration.modelso
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