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Scopé of Contract NAS2-4151

Work under Contract NAS2-4151 started on February 1,
1967. Phase I Report of September 1967 develops analytical
concepts for a random loads and vibration analysis of lift-
ing rotors. Phase II Report of August 1968 presents a per-
turbation solution method for random blade flapping. Phase
III Report of June 1969idevelops a more general method to
include high rotor adv;nce ratios and makes use of a speci-~-.
fic atmospheric turbulence model. Phase IV Report of June

1970 extends the method to the computation of threshold
éro#sing statistics for random blade flapping and introduces
non-uniformity of the vertical turbulence velocity in the
longitudinal direction. Phase V-A Report of June 1971 treats
the effects of torsioﬁal‘blade flexibility on single blade
random éust response statiétics° Phase V-B Repoft of June
1971 presents a multiblade coordinate analysis of coupled
blade dynamic stability and random response, studying various
gust alleviation methods. Phase V-C Report of June 1971
describes the development of experimental methods of suﬁ—
stantiating the random loads and vibration analysis.

During FY 1972 the work was extended in two directions,
resulting in two separate Phase VI reports. Phase VI-A
Report covers three refinements of the preceding ana;ysis.

The effects of blade torsion on dynamic stability and random
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response has been analyzed beyond Phase V-A Report, adding
new insights into this subject matter. The effects of
blade‘fiap bending flexibility on rotor stability and ran-
dom response have been studied leading to a simple methoa
of correcting the‘rigid blade analysis. Finally the
effects of rotor support‘flexibility have been analyzed,
solving the problem of whirl flutter in high advance ratio
oblique flow. Phase VI-B Report covers the experimental |
work performed in FY 1972 to substantiate the analysis.
The work sqmmarized in Phase VI-A énd Phase VI-B Rgports
was performed under Modification‘7 to subject cdntracf,
which covers also FY 1973. The scope of the work planned
for FY 1973 is to further remove limitationé to the present
analytical model and at the same time to simpiify.the
methods of analysis, and to conduct further tésts in suppdrt
of the analysis. | |
The following is a list of publications sponsored uqdef.
subject reseérch.contract issuea to date.
1. Gaonkar, G. H. and Hohenemser, K. H., "Flapping Responsé
of Lifting Rotor Blades to Atmospheric Turbulence",

Journal of Aircraft, Vol. 6, No. 6, Nov.-Dec. 1969,
pp. 496-503. First presented as AIAA Paper 69-206 at

the AIAA/AHS VTOL Meeting, Atlanta, Georgia, February 1969.v

2., Gaonkar, G. H. and Hohenemser, K. H., "Stochastic Pro-
perties of Turbulence Excited Rotor Blade Vibrations",
AIAA Journal, Vol. 9, No. 3, March 1971, pp. u4l9-H424,
First presented as AIAA Paper 70-548 at the AIAA Atmos-
pheric Flight Mechanics Conference, Tullahoma, Tennessee,
May 1970. :
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Gaonkar, G. H. and Hohenemser, K. H., "Comparison of

Two Stochastic Models for Threshold Crossing Studies of
Rotor Blade Flapping Vibrations", Presented as AIAA Paper
71-389 at the AIAA/ASME 12th Structures Conference,
Anaheim, California, April 1971.

Gaonkar, G. H. and Hohenemser, K., H., "An Advanced
Stochastic Model for Threshold Crossing Studies of
Rotor Blade Vibrations", AIAA Journal, Vol. 10, No. 6,
July 1972,

Yin, S. K. and Hohenemser, K. H., "The Method of Multi-
blade Coordinates in the Linear Analysis of Lifting
Rotor Dynamic Stability and Gust Response", Presented
as AHS Preprint No. 512 at the 27th Annual National
Forum of the AHS, Washington, D. C., May 1971.

Hohenemser, K. H. and Yin, S. K., '"Some Applications of
the Method of Multiblade Coordinates", Journal of the
American Helicopter Society, Vol. 17, No. 3, July 1972.
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by
Kurt H. Hohenemser
and
S. K. Yin
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St. Louis, Missouri

Organization of Report

Because of the relative indepehdence of the three sub-
ject matters treated in this report, each of the three parts
has its own abstract, nomenclature, introduction, list of
references, figure captions and appendices. For the sake of
completeness the first part includes in abbreviated form
also material from Phase V-A Report of June 1971. The remain-
der of Part I and Parts II and III contain new results obtained
in FY 1972, The addendum by D. A; Prelewicz*, though not spon-
sored by subject contract, has been stimulated by the contract
research and is presented here because it views the various
applied stochastic methods in a broader frame of reference.

®
Assistant Professor, Dept. Applied Math & Computer Sciences,
Washington University, St. Louis, Missouri
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Part 1

Random Gust Response Statistics
for Coupled Torsion-Flapping Rotor Blade Vibrations

Abstract

An analysis of coupled torsion-flapping rotor blade
vibrations in response to atmospheric turbulence revealed
that at high rotor advance ratios anticipated for future
high speed pure or convertible rotorcraft both flapping and
torsional vibrations can be sevefe. While appropriate‘
feedback systems can alleviate flapping, they have little
effect on torsion. Dynamic stability margins have algg
no substantial influence on dynamic torsion loads. The
only effective means found to alleviate turbulence caused
torsional vibrations and loads at high advance ratio was a
substantial margin with respect to static torsiomal diver-

gence of the retreating blade.



Nomenclature

A(t) | ' : state matrix
AT(t) traﬁspose of A(t)
a = 2u/(L/R) nondimensional turbulence parameter
B tip-loss factor
C(t),CG(t),Ce (t) aerodynamic damping
c ° blade chord
E[. . .] mathematical expectation of [. . .]
ECN_ o (z,t)] time variable expected number of

! positive crossings per unit time of

threshold ¢ for response component Xj

F = (Il/If)(c/uR)2 nondimensional quantity
fQ | blade torsional frequency
I identity matrix
I, flapping mass moment of inertia
If feathering mass moment of inertia
K(t),KG(t) aerodynamic stiffness
Kf flapping feedbgck gain
Ko coning feedback gain
L scale of longitudinal turbulence

er(t)'lré(t)'lreo(f)’lrk(t) aerodynamic lift, reversed flow

region
me (t),mel(t),mx(t) aerodynamic flapping moments
N ° nuhber of blades per rotor
n(t) white noise input vector

PQ blade flapping frequency
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Q = (Il/If)(C/UR) nondimensional quantity

R rotor radius

Rxx(tl,t2) ' . corrglation matrix of X(t)

Rxx(t,t) = P(t) variance matrix of X(t)

t nondimensional time, time unit 1/Q

v flight velocity

w - vertical turbulence velocity

X(t) state or output vector

XT(t) transpose of X(t)

8 blade flapping angle

Y blade Lock inertia number

s , torsional elastic deflection from
root to blade tip

8(...) Dirac delta function

4 response value exceeded in a
threshold crossing

eo blade root pitch angle

A = w/QR nondimensional vertical turbulence
velocity

u = V/QR rotor édvance ratio

[ real part of characteristic value

oxj(t) = [Rx'x“(t)]l/2 standard deviation of xj(t)

Og 2 standard deviation of B8

O standard deviation of ¢

T nondimensional time, time unit 1/Q

¢(t,1) state transition matrix

Q angular rotor speed



Introduction

The problem of random rotor blade flapping vibrations
caused by atmospheric turbulence has been studied earlier.
It was found that at high rotor advance ratios anticipated
for future high speed pure or convertible rotorcraft, severe
random vibrations and dynamic loads can occur, unless flap-
ping or hub moment feedback systems are applied.2 The blade
representation used in these studies was a rigid straight
blade flexibly attached at the rotor center? using quasi-
steady linear aerodynamics including reversed flow effects
but excluding non-uniform inflow, stall and compressibiiity
effects.3 Extensive wind-tunnel tests have shown that this
representation gives useful approximations to the flapping
response for low lift high adéance ratio conditions, if the
root flexibility is appropriately selected to represent the
actual blade.u Even if the elastic center, the center of
gravity and the aerodynamic center of the rotor blade cross-
section coincide, as they usually approximately do in prac-
tical blade designs, large blade torsional moments occur in
the region of reversed flow, because the aerodynamic center
is then shifted from the quarter chord point to the three
quarter chord point.5 It is, therefore of interest to study
the effects of atmospheric turbulence on the coupled torsion-

flapping rotor blade vibrations.



Blade Representation and Method of Analysis

It is assu@ed that the blade torsion mode is a straight
line through the rotor center, that in regions of normal flow
direction the aerodynamic center, the center of gravity and
the shear center of blade cross-sectioﬁ coincide, and that
linear quasi-static aerodynamics are used. Because of the
higher frequency of the torsional vibrations the last assump-
tion is more questionnable than for the flapping case and as
yet no tests are available to substantiate the analysis of
Reference S. Though quantitatively the results to be pre-
sented here may require some corrections due to over simpli-
fied aerodynamic assumptions the established important trends
should remain valid, if reversed flow stall flutter is avoided.6

When the dynamic equations of blade flapping and blade

torsion, given in Reference (5), are extended to.include the

effect 6f root pitch angle eo, one obtains

(2/¥)8 + C(£)6 + [(2P2/y) + K(£)IB - my (£)6 = m ()X + my (E)6,

1 o
- \ (1)
(1/37)8 + Feg(e)d + [(£7/3v) + QK ()16 + Q2 _s(t)B + Q2 (t)B
+ (1/2v)6  + FCa(t)6, = -Qe, (£)r + zreo(t)eol (2)

The flapping feedback is assumed to occur without producing
a mechanical flapping moment. The only periodic coefficient not
defined in either Reference (3) or (5) is %8 with the value

: o

in the normal flow region, -

1 =0
re
o]



1= u¥[-(1/32) + (1/24) cos 2t -(1/96) cos ut]
; |

in the mixed flow region, and

[
3
"

S8 /u) + (B2u%/8)1 - (2/3)8%usin t + (BZu?/4) cos 2t

in the reversed flow region.

For the blade without feedback, eo 0. In case of

pitch-flap coupling, eo is to be replaced by
0 =-K.B (3a)

In case of coning angle feedback, eo is to be replaced by
N
o, = -K (a/® fgl By (3b)

swhere all blades are assumed to perform the same flapping mo-
tion except for appropriate phase shifts. '
In order to obtain from Egqs. (1) to (3) the response to
the random vertical gust velocity A, it is assumed that this
gust velocity at a point in time is uniformly distributed
over the rotor disk, an assumption which has been proven ap-
proximately valid for current ratios of turbulence scale L
over rotor radius R.7 If one approximates the widely used
von Kérman-Taylor Turbulence spectrum by one with exponential
autocorrelation function,l the dimensionless vertical turbu-

lence velocity A is determined from -8

1/2

A+ a\ = oA(2a) n(t) (%)
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where n(t) has the autocorrelation function
R (1) = 6(1) (5)
We now express the dynamic equations (1) to (4) in state variable form
X(t) = A(t) X(t) + B(t) n(t) (6)
The response variance P(t) can then be determined from the matrix
equat::l.ona’9 »10
B(t) = A(t) P(t) + P(t) AT(t) + B(t) B'(t) )

with zero initial state, and the response covariance matrix is obtained

from
Rxx(tl,tz) = ¢(t1,t2) P(tz) for t; > ty

= P(t;) ¢T(té,t1) for t; € t; ' (8)
where the state transition matrix is defined by
$(t,T) = A(t) ¢(t,1), ¢(1,7) = I (9)
Once the response covariance matrix is known, the threshold érbssing
expectations can be determined from expressions given in the 11terature.7

For an alternagive method1 the covariance matrix 1is

Reg(t1otx)= | B¥(w,t7) 8, (0) B (u,t,)dw | (10)

-0l

with

Sk(w)[oi = a/n(a2+m2) . (11)
and H(w,t) the response vector to the input A(t) = u(t)exp iwt, u(t)
being the unit step function. The numerical exampies weré computed with
the second method, truncating SA(m) at |w| > 3. The first méthod gives

slightly different results with about one third the computational effort.



I-5

Numerical Results

As beforel, the numerical data are.for a lifting rotor
operating with a rotor advance ratio of u = 1.6, which cor-
responds at a flight speed of 280 Knots to a blade tip speed
of QR = 300 fps. In the stochastic analysis the standard
deviation of the dimensionless vertical turbulence velocity
A = w/QR is assumed to be o, = 1, which results in Eq. ( 4).

8 fps is a representative valuel for the standard deviation

of the vertical turbulence velocity, occurring at low altitudes
with .1% probability. Using this value and QR = 300 fps we have
o, = 1.5°, The non-dimensional standard deviations Ogs T4

for flapping and elastic blade twist respectively, and the
thresholds showﬁ in the figures must then be multiplied by
1.5 to obtain the diménsional values of these quantities in
degrees. The remaining rotor parameters are also the same

as beforel: Tip loss factor B = .97, Lock number y = 4 and
turbulence scale over rotor radius L/R = 12, which corresponds
for a rotor radius of 33 ft to 400 ft turbulence scale length,
typical of low altitude turbulence. The flapping frequency
ratio is assumed as P = 1.3. Further assumed is a flapping
over feathering inertia ratio of Il/If = 940 and a radius over
blade chord ratio of 15.6, resulting in F = .24 and Q = 15. The
torsional blade frequency is assumed to vary between f = 8

and £ = 12. In addition to the response data of Figs. 3 to 8

dynamic stabilify data for the blade are shown in Figs. 1l and
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2. These figufes give the real part § of the characteristic
values of the Floquet state transition matrix2 vs. pitch-flap
coupling gain Kf. The curves indicated by crosses represent
conjugate complex characteristic values; the curves indicated
by circles represent a single chaiacteristic value. Figure 1
is for £ = 8. The blade is very stable (negative E) up to
about Kf = .5, has a minimum of stability of about Kf = 1.5,

reaches a relative stability maximum of Kf = 2.0 and becomes

unstable at K. = 2.4. Figure 2 is for f 10. The stability
is almost unchanged up to Kf = .5 and at Kf = 2.0, but is
improved at Kf = 1.5, and the stability limit is raised to

K 3.0. The dash-dash line indicates that an increase in

f -
Lock number is destabilizing, the dash-dot 1line indicates
that for a pure flapping blade without elastic flapping re-
straint (P = 1) the blade reaches almost its stability limit

at K. = 1.7.

f
Figures 3 and 4 show the time variable standard deviations
of the basic blade with torsional frequency ratio £ = 8 for
zero feedback, for flapping feedback with Kf = ,4 and for
coning angle feedback with Ko = ,4, The flapping maximum
standard deviation is reduced by either of the feedbacks from
2.3 to 1.5, the torsion maximum standard deviation is very high
- about 6 - and not much affected by feedback. The figures
show the second revolution after imposing the turbulence exci-

tation, when the response standard deviations are almost sta-

bilized and periodic. The blade is in the aft position at
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t = 0, 27, 4n, etc. The maximum flapp&ng standard deviation
occurs when the bl&de is approximately?in the forward position,
the maximum torsion‘standard deviation occurs, when the blade
is in the region of maximum reversed flow.

Figures 5 and 6 show for the basic blade withbut feedback
the effect of torsional frequency ratio f on the standard de-
viations. From Fig. 5 it is seen that flapping is little af-
fected by a variation in f. Fig. 6 shows a very large effect
of f on the torsional standard deviation, much more than would
be expected from the increase in torsional stiffness. TFor
example this increase would account for a reduction factor of
.64 when changing froﬁ f = 8 to f = 10. The actual‘reduction
factor for the maximum standard deviation is .37. It was found
that for constant feathering moment of inertia the blade ex-
periences static torsional divergence in the reversed flow re-
gion at £ = 6.6. Though dynamic instability would not occur
at £ = 6.6, the torsional deflections would be extremely high.
The closeness to the static torsional divergence limit is pre-
sumably the reason why an increase in torsional stiffness from
£ =8 to £ = 10 causes a decrease in torsional maximum standard
deviation substantially larger than normally expected from the
torsional stiffness increas?, see also the discusion of Fig. 21
in Ref. 1l1l. .

Figure 7 shows the responses B and & of the basic Blade
with £ = 10 to a step gust %nput A =1 at t = 0, when the blade
is in the aft position. Thg dash line is obtained when the

coupling terms in Egs. (1) and (2) are omitted. Flapping is
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hardly affected, however, the torsional response is much re-
duced without the coupling terms. While qualitatively the
torsional response to turbulence could be studied without
coupling with flapping, the results would be quite unconser-
vative. |

Figures 8 and 9 show the expected number of upcrossings
per unit of time of the positive levels c.= 2 and ¢ = 3 for
flapping and torsion respectively. The solid lines are for
£ = 10, the dash lines for f = 8. Note for torsion the very
large reduction in the number of crossings when changing from
£ =8 to £ = 10 (Fig, 9), while this change hardly affects
the number of crossings for flapping (Fig. 8).

Unlike the configuration f = 8, the torsiohally stiffer
blade with £ = 10 shows upcrossings of the levels L = 2 and 3
only within a short time period of the order of the period of
the natural torsional mode. One can, therefore conclude that
in most casesban upcrossing will lead to a single peak value
within a revolution. The number of peaks per revolution above
the level [ can then be approximated by integrating the curves

of Fig. 9 over one revolution. This method is not applicable

at the shown [ levels for £ = 8. For flapping with its natural

period close to 2n this method of obtaining the number of peaksv

per revolution exceeding the level =2 or z=3 is justified both

for £ = 8 and £ = 10, as is seen from Fig. 8. The ciossing ex-

pectations for the levels f=-2 and z=-3 are similar to those



shown in Figs. 8 and 9, except that the curves are somewhat
shifted on the time scale.

The case of f = iO and an advance ratio of u = .8 has
also been computed. In this case the torsion response is
quite small, since the torsional divergence limit is reduced
from £ = 6,6 to £ = 1.4, so that a very large torsional

stiffness margin exists.

Conclusion

In summary, it can be concluded from the numerical exam-
ples that blade torsional response to atmospheric turbulence
at high rotor advance rafio (u = 1.6) can be very severe
unless the torsional blade stiffness is several times greater
than that for the static torsional divergence limit in the
region of maximum reversed flow. Flapping-torsion coupling
has little effect on flapping but has a large detriméntal
effect on torsion. The preceding analysis of blade responses
to atmospheric turbulence is for rigid rotor support’omitting
higher blade modes. The effects of elastic rotor supports,
of second mode blade bending and of random rotorcraft motions

due to turbulence remain to be determined.
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Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Real Part £ of Characteristic Value vs.
Flapping Feedback Gain Kf, f = 8

Real Part & of Characteristic Value vs.
Flapping Feedback Gain Kf, f = 10

Flapping Standard Deviation ce(t) for zero
feedback, Kf = .4 and Ko = 4, f = 8
Torsion Standard Deviation o,(t) for zero
feedback, Kf = .4 and Ko'= .&, f = 8

Flapping Standard Deviation ae(t) for £ = 8,
10, 12, No feedback

Torsion Standard Deviation OG(t) for £ = 8,
10, 12, No feedback

Flapping and Torsion Response 8(t), §(t) for
unit gust Input (Dash lines: no torsion-
flapping coupling)

Expected Number of Flapping Upcrossings per
Unit Time of Levels [=2 and ¢=3, No feedback

Expected Number of Torsion Upcrossings per
Unit Time of Levels ;=2 and =3, No feedback
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Part II

Flap Bending Corrections ,
to the Rigid Blade Analysis of Lifting Rotors

Abstract

A modal analysis was performed using the undamped
natural modes of the rotating blade. Two types of mass
and stiffness distributions were assumed: a uniform one,
and one corresponding to a blade strongly tapered in thick-
ness. The response to cyclic pitch input at low and high
advance ratio could be reasonably well approximated by a
simple analysis using a single elastic mode whereby all
moments are balanced about the rotor center. This result
is different from recently published single mode analyses
without moment balance about the rotor center, where under
certain conditions larger er;ors were found., The difference
is attributed to the use of rotating blade modes rather than
the non-rotating modes used in the previous work. The
single elastic mode model is then applied to the problem
of dynamic stability and random loads at high advance
ratio which had previously been solved with the help of a
rigid blade model. Substantiél corrections were found due

to the flap bending flexibility of the blades.
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1ift slope

number of blades per rotor
blade chord

rotor thrust coefficient

rotor rolling moment coefficient,
positive to right

rotor pitchihg moment coefficient,
positive up

blade flapping moment coefficient,
positive down

aerodynamic damping coefficients
flap bending stiffness of blade
reference stiffness of blade

nondimensional blade load per unit
length, positive up

aerodynamic stiffness coefficients

rotor rolling moment

rotor pitching moment

blade flapping moment

blade mass per unit length, or flap moment

flap moment derivatives

reference blade mass per unit length

‘nondimensional reference stiffness of

blade
rotor radius

radius at blade station
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cross correlation coefficient

]

Brfr1
t nondimensional time, time unit 1/
T tension or rotor thrust
Tb blade thrust
Ur nondimensional tangential velocity
component
8] nondimensional normal velocity
P component
x = r/R nondimensional radius of blade station
y(x,t) nondimensional flapwise deflectxon of
blade, length unit R
Bi(t) generalized coordinate
wi nondimensional generalized force, or azimuth

y = pacR2/1}2dm rigid blade Lock number

pacR2<fn12dm modal Lock number

Yy =

Yo © pacR27 xndm Lock number for first mode moment equation

K adaptation factor for first mode
representation: n = x + Knh

A inflow ratio, positive up

M advance ratio

aQ rotor angular speed

w : nondimensional frequency of harmonic
blade motion, frequency unit &

P | air density

g = be/nR rotor solidity ratio

0, = c/nR blade solidity ratio

aBI, GBII standard deviations

¢] blade pitch setting
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blade linear twist
blade natural mode

first elastic mode of uniform hinged-
free beam

real part of characteristic value
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Introductlon Linde Llinedr tWist

! e 3 Lla v puTuDal mode . ‘
" ‘A rigid blade”dynamic rotor analysis provides a rea-

'@éﬁﬁ;pﬁéﬁgs;é and has been applied

[31

sonable approximaté?ﬁéfgé
both to artiéulateg,iqd:Q;Qgg}e§§£ngqg§zul;g ghgdlatfer

case the rigid blade model involves an elastically restrained
hinge. Because of our present uncertainfies regarding the
rotor wake structure particularly at low advance ratio,l it
is difficult to assess the errors from the rigid blade ana-
lysis by a pomparison between analytical and test results.
Errors in the assumed rotor wake structure may well mask

the effects of blade flap-bending elasticity. Though good
cofrelation between a rigiqlblade analysis and tests with a
7.5 ft.,hingeless rotor model was found at .79 advance rafio
for hub moment response to harmonic cyclic pitch input,2 the
omittéd wake effects may have been substantial,3 casting
doubts on the claimed accuracy of the rigid blade analytical
model.

There is a rather extensive literature on flap bending
effecfs of both articulated and hingeless rotors. Leoneu
showed that flap bending of an articulated blade in forward
flight produces compared to the rigid blade analysis sizeable
corrections to lateral flapping and to retreating blade tip
angle of attack. Daughaday et éls showed for zero advance
ratio experimentally with a mechanically excited articulated

rotor blade and theoretically, that the first flap‘bending
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mode has a nery high load amplification factor which can be
substantially reduced by coupling with the carefully tuned
torsion mode with the help of a forwardly located blade tip
weight. Perisho showed for an articulated blade with 63
hinge that the rigid blade high advance ratio flapping
instability is substantially modified when including elastic

TR A S

torsion and elasti i st mode flap bending. Curtiss and

i Tow

Shupe7 found for hingeless rotors surprisinél§ large dif-
‘ferences in analytical hub moments‘oetneen a one mode and a
two mode elastic analysis.' With one or’two elastic modes
used they also found‘significant differences befween hub
moments computed from the ‘elastic bending moments and from
the moments of the airloads. Ormiston and Petevs3 compared
hingeless rotor moment and thrusf'chanéesifrom cyclic pitch
inputs computed with elastically restrained rigid blades

with and without hinge off-set to those computed with the
first elastic flap-bending mode and with the first two elas-
tic modes. Up to about .4 advance ratio the rigid blade
analyses agree nell with‘the two tynes of.flexible blade
analysis. At an advance ratio of one nather large dif-
ferences hetween the results of these four methods of ana-
lysis were found. It.should’be noted that Curtiss and Shnpe’7
neglect the aerodynamic coupling between elastic modes. BOtP
~Curtiss and Shupe and Ormzsﬁon and Peters3 use elastic

natural blade modes at zero notor speed: Particularly the

first elastic flap bending made is substantially affected
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by rotation, and the relatively large differénces of the
one mode and two mode analysis found. in References 3 and 7
for low first mode natural frequencies pqint toward the
possibility that the error in the single mode énalysis may
in ﬁart be due to the assumption of a non-rotating first
mode rather than a rotating first mode. The use of non-
rotating modes may élso have contributed to the surprisingly
large differences between elastic and airload hub moments
shown in Reference 7.

In order to clarify the questions raised by References
3 and 7 and in order to provide a basis for a flap bending
correction of the multiblade dynamic stability and random
loads analysis of Reference 8, a linear flap bending modal
analysis was performed with the natural modes of the
rotating blade, including the aerodynamic coupling terms

and including reversed flow effects.
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II

Problém Formulation

One way of.detérmining the effects of blade flép
bendingvis to formuléte a finite element analysis as was
Vdone, for example, by Blankenship and Harveyg which
‘included large angle effects and coupling with chordwise
and4torsional blade motions. Each blade is subdivided
into several rigid segments connected to each other by
appropriate flexures. Although this has not been done as
yet one could perform for the linearized problem, after
transformation to state variable form, a normal mode ana-
lysis by extracting eigen values and eigen vectors from the
Floquet state transition matrix. At a zero advance ratio
natural mode the various-finite elements will oscillate with
the same frequency but with différent phase angles. At a
non-zero advance ratio natural mode the various finité ele-
ments will oscillate with a product of a periodic function
witﬁ period 27 and a harmonic functionm with the natural fre-
quency  u, . Both factors will differ between finite elements,
except that all harmonic féctors of one mode will have the.
same w, but different phase angles., In addition there will
be a third factor, common to all finite elements, consisting
of a real exponential functi?n exp EKt.

, A modal analysis of this type has been suggestedlo bqt

work performed since then has Shown that under certain coq-

ditions basic difficulties arise in performing a normal mode
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expansion for a periodic system. We will, therefore, use
here the conventional approach, 3, 5, 6, 7 of a modal analy-
sis, not with the actual uncoupled natural modes but rather
with a set of normal modes whi;h are natural uncoupled modes
only under very restricted circumsfances: at zero advance
ratio and neglecting aerodynamic or other damping. Such
modes reflect the elastic and kinetic energies of the system
and the effects of centrifugal loads. They become coupled
in the presence of aerodynamic loads although the coupling
terms are sometimes neglected.6 The problem can be formu-
lated now in terms of generalized céordinates associated
with the elastic modes. A state variable form is again
required and eigen values and eigen vectors can be extracted
from the Floquet state transition matrix. If a sufficient
number of elastic modes is used, the natural frequencies

W, and real exponents EK of the natural modes should be the
same as in a finite element analysis with sufficient numbers
of elements. Usually only 2, at most 3 elastic blade modes
suffice at least as far as dynamic stability studies are
concerned. The ratio of elastic energy over the energy of
the aerodynamic springlike or damperlike forces increases
very rapidly for the higher elastic modes, so that they
become almost uncoupled from the lower modes, thus contri-

buting almost nothing to the dynamic stability problem. Of

course, for the purpose of evaluating noise and high
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frequency vibrations from rotor induced turbulence, the high
elastic blade modes are of significance and cannot be dis-
regarded.

For hingeless rotors - but also to a lesser degree for
'articulated rotors - there are elasfic and inertial coupling
terms between flap bending, lag bending and torsion modes,
whereby mean flapping or lagging displacemenfs of hingeless
blades are particularly effective in causing couplings. At
high advance ratio there also is in the reversed flow region
an aerodynamic coupling between torsion and flap bending.

If torsional divergence and flutter margins for torsion-
bending flutter as well as margins for chordwise motion
instabilities are adequate and if inertial torsion-flap
bending coupling is kept small by design (coinciding section
c.g. and a.c;), the low frequency flap-bending dynamics can
be expected to be only mildly affected by torsion or lag
coupling terms..»With respect to torsion coupling this
expectation is supported among others by References 6 and 11,
with respect to chordwise coupling by Reference 12,

The following then is a linear flap bending type of
analysis of lifting rotors with constant chord blades using
generalized coordinates associated with the undamped elastic
modes of the blades rotating in vacuum. Quasi-steady aero-
dynamics is used and wake effects are neglected.

In view of the steady wake effects revealed among

others in References 1 and 3, the latter assumption is likely
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to require corrections. However, as of now there exist
neither a theory nor systematic tests which would allow the
inclusion of unsteady wake effects in the analysis of

lifting rotors.

Outline of Modal Analysis

Though basically of the same type as the modal analyses
used in References 3, 5 and 7, the following analysis differs
from the referencés in essential details. As compared to
Daughaday et al5 it is in part less general since torsion
is omitted, in part more general since it is not limited to
zero advance ratio. As compared to Curtiss and Shupe7 the
following énalysis is more general since aerodynamic coupling
between modes and reversed flow are included; As compared
to both Curtiss and Shupe7 and Ormiston aﬁd Peters3 the fol-
lowing analysis is, for a given number of modes more accurate
since modes of the rotating blade rather than those of the
non-rotating blade are used. While in References 3 and 7
the emphasis is on first harmonic excitation of the blades
to determine rotor derivatives, the purpose of the following
analysis is to provide the basis for a flap bending correction
of the multi-blade dynamic stability and random load analysis
previously performed with the rigid blade model.8

The basic units for the non-dimensional quantities arF:

Time unit 1/f, length unit R, mass unit was. The derived
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units are: velocity unit QR and linear acceleration unit

Q2R. The force unit would be npRuQ2. However, sincé all
aerodynamic for;es have the factor ac, we include this
factor in the definition of the force unit, which then is
npRuﬂzac = pacR392b (1)
The moment unit is
npR592ao = pacRuQQb : (2)
The selection of these units results in non-dimensional

blade thrust and flapping moment values

3.2
CT/aol Tb/pacR y) | (3)

y 2
CM/ao Mb/pacR Q (4)

1
The elastic natural flap-bending modes and natural
frequencies of the blade in a rotating frame of reference
are determined from the equation
(EIy")" - (Ty')' - mQ2w2y =0 ' (5)
Instead of solving this differential equation, the blade
is replaced by a number of point masses connected by mass-
less flexible beam segments. Following Myklestad,13 a
state transition matrix is established which relates the
state vector at one end of an elastic segment to that at
the other end. At the outer end of the blade the shear and
bending moment are zero, defiectibn and slope are unknown.
The state vector at the blade root is related to that at the

blade tip by the product of the state transition matrices of

all blade segments. The inner state vector is computed for
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2 values of the tip staté vector, corresponding to tip deflec-
tion one and tip slope zero and tip deflection zero and tip
slope one. The-inner boundary conditions of zero deflection
and slope result in a two by two frequency determinant which
is solved by iteration of the entire process, For eaéh
natural frequency the modal deflections, slopes, bending
moments and shear forces can then'be determined. The dimen-
sidnless natural frequencies depend only on

q = EIé/moRéﬂz o (6)
The natural modes nj are nofmalized such that the blade
tip deflection or a certain fraction of it is unity. A
‘non-dimensional deflecti&n y(x,t) of the blade can now be

represented by a linear combination of natural modes

o o}
y(x,t) = ;z% nj(x) Bj(t) . (7)

Both the "j and the Bj are nondimensional, This separétion
of variables is possible because of the general expansion
theorem according to which any arbitrary deflection can be

represented by a convergent series of eigen functions. The

Bj(t) are generalized coordinates. Because of the ortho-
gonality relations |
.[“1 ny dm = 0 O (8)
one obtains from Eq. (7)
= 2 o
By -.j.y "i_dméfhi dm (73)

For the nondimensional aivlo§ds df there exists the
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expansion :
. e}

af(x,t) = 37 nyx) dm wj(rnfnj? dm )

, i71
‘Thé‘generalized forces wi are obtained because of Eq. (8) by
v, = 'fni df ' N : (9a)

Because of Eq. (8) the Lagrange equations in generalized
coordinates Bi and generalized forces wi read ‘

éi jrniz dm + 8, wi292 jfniz dm = pacR292¢i (10)
The“integréls are to be taken in thé Stieltjes sense to
include discrete masses. The dimensionms of each term are
force per unit length. The right hand side is obtained by
ﬁultiplying the non-dimensional generalizéd forces wib
by the unit for force per uﬁit_length. The mass and stiff-
ness matrices-are diagonal.because of the orthogonality
relation Eq. (8). The set of Lagrange equations (10) can

be written in the non-dimensional form (time unit ./Q)

N 2 - . _
, (l/vi)(si o, Bi) = wi, i=1,2, . .. (1)

The 1ift force on a blade element c R dx is

2 2
(1/2)p(QR)C ac U," (Up/Up + © + x 8,) R dx

‘The non-dimensional elemental lift force is with Eq. (1)
2

af = (1/2) Ug (Up/Up + 0 + x 8,) dx (12)
where

Up = X + u sin t : (13)

. . 1

Up = A - uy' cos t -y = A - 2: (u ny Bj cos t + nj

W

3
(1)
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The non-dimensional generalized forces are

v ylnidf = (1/2) jf n (u /Up +© + x6))dx  (15)

Writing
20, = Ay, + Op, + elweli - Ej:(xi]. By + Cyy By) (16)

we have

wli'= erTnidxv : : 'Kij = uJﬁcos t}UTninj dg
2 | o
17 = er n,dx
0i T i _

R
@
N

' 2
11 = erT nixdx

Inserting Eq. (16) into Eq. (11):

5+ /vy wizﬁ + (1/2)§;1<j

(1/yy) By + (1/2) Docys By
. : 3 v | i

= (1/2)Oy, +ebg, + 0¥ ) (18)
. 1l

In order to include the effects of tip loss, root cut-out

and reversed flow, the integrals in the three regions of

normal flow, mixed flow‘énd reversed flow are respectivelyl”
B, ‘B, -usiny B |

. /o . o ') /o'o_ - -2f 'Y -fo e o - (lg)

A A A A S

The region limits are define% by azimuth angles of 0 to =«
for normal flow, m to n + €, and 27 - € to 27 for mixed

flow and v + € to 27 - ¢ for reversed flow, € being obtained

from sin e = B/u,

3
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Hub Moments

For studies of hub moment feedback stability or whirl
stability8 expressioﬁs for the hub moment are needed and
the question arises, how many modes are required to obtain
a reasonably accurate hub moment. In a rotating'refefence

system the dimensionless hub moment for a single blade is

2

CM/aal = -j}df + RQ(j}ydm +fh2xydm)/oacRuﬂ (20)

The first integral represents the moment of the aerodynamic
loads, the second the inertia moment and the third the
centrifugal force moment about the rotor center. Inserting
Eqs. (7) and introducing yj:
. o ,2
. ¢y /ag, = - jfxdf~+ Y (v (B, + 8. [xn dm{/'. dm  (21)
~ ML j=1 37073 ] i j
A simpler expression can be obtained by computing the
elastic bending moment at the rotor center as the sum of
the inertia moments and centrifugal force moments for each

natural mode. This is the infinite sum in Eq. (21) for

By + uy%8y = 0 | N €3
Inserting Ej from Eq. (22) into the infinite sum'of Eq. (21):
CM/aol = - ?; (l/yj)(wj2-l)8j -/;"jdm{/‘j2dm - (23)

In both Eqs. (21) and (23) the hub moment is positive down,
As pointed out by Curtiss and Shupe,7 the series in

Eq. (21) converges faster than the series in Eq. (23). For
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example, for harmonic oscillation of Bi with frequency of
unity (once per rev.)
B, + B, = 0 . (24)
3 3

and Eq. (21) reduces to

CM/aOl = - fx daf (25)

Truncating this equation, one omits the aerodynamic effects
of the neglected éj’ Bj terms, however one includes all of
the aerodynamic terms not dependent on éj or Bj. Eq. (23),

because of Eq. (1l1), can also be written
R
c,/aoc, = - Z Vs fxn.dm{/n.%lm (26)
Mol j=1 3 ] ]

Truncating this equation, one omits in addition to the neg-
lected éj’ 8j terms in wj also the terms in wj not dependent
on éj or Bj’ Thus the truncated Eq. (23) is less accurate
than the truncated Eq. (21). This does not mean that the
simpler Eq. (23) cannot be used to advantage. The series of
Eq. (23) also converges quite rapidly and its somewhat 4
reduced accuracy as compared to the truncated expression
Eq. (21) appears to have been overstated in Reference 7,
For the case of one per rev excitation of the blade, CM/acl
is periodic with 2n. One then determines the Fourier

coefficients CMc and CMs of cos t and sin t respectively

and obtains pitching and rolling moment in a space fixed
reference system by

c /Jaoc = C, /2ac
m He 1 (27)

Cc/ao = CMS/Zaol
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where o0 is the solidity of the entire rotor.

\

Single Mode Analysis

In Reference 3, Fig. 4 it is shown that for values of

the first natural frequency of w, = 1.4 and above the second

mode has only a small effect on the hub moment from longi-

tudinal cyclic pitch. The case refers to a uniform beam

representation of the hingeless blade at an advance

ratio

of unity. For values w, < l.4 Reference 3 indicates for

1

this case substantial effects of the second mode, particu-

larly on the hub pitching moment. As will be shown later,

the second mode effects are smaller if rotating modes are

used instead of the non-rotating modes. For many purposes

if would then appear adequate to consider only first mode

elastic bending effects. This can be done in a rather sim-

ple way by replacing the generalized force expressions of

Eq. (10) by moments about the rotor center. Leaving out

the subscript j for B and n we have instead of Eq. (7)

y(x,t) = n(x) B(t)
and instead of Eq. (10)

8 fxndm + Bw1292fxndm = pachnzfxdf

or in non-dimensional form

(l/Ym)(g + wl2B) = fodf

Eq. (15) now becomes

m = ‘/}df = (1/2) J(UTQ x(Up /Uy + 0 + %8 )dx

(28)

(29)

(30)

(31)
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Writing

we have

=]
>
1}
[
-3
%
o
®
S
i}

1
u./&os t)UT x n dx

fUTxndx

3
@
]
C
-3
N
®
(o}
»
(@]
"

(33)
me = fUT2 x2 dx
1
Inserting Eq. (32) into Eq. (30):
(1/ym)§ + (1/2) B + (L/y_Du 8 + (1/2) K8 =
(1/72)(A my + 6my + el mel) (34)

mys My, mel are the same as in Reference (1lu4) for rigid
blades, C and K are different.

Since Eq. (34) represents the moment balance about the
rotor center, the elastic moment is equal to the sum of
aerodynamic moments, inertia moments and centrifugal force
moment. Instead of Egs. (21) and (23) which resulted in
different hub moments after truncation, we now have a single

equation for the hub moment

cy/as, = - (l/Ym)(wl2-l)B (35)

This follows from Eq. (23) when only the first term is used

and Y, is replaced by A

1
In many cases one can replace the actual first mode by
the following closed form expression

n = x + «[sinh(3.93x)/2 sinh 3.93 + sin(3.93x)/2 sin 3.93]

(36)
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The term in brackets represents the second mode of a uniform
hinged-free beam normalized for unit tip deflection. « is
an adaptation féctor-selected for best fit. For a wide
variety of blades the fit was found to be excellent. Using
the mode shape Eq. (36) the straigﬁt line n=x for the rigid
blade analysis passes through the .73 point of the mode
shape, see Fig. 3 and 5. The closed form mode has the
advantage that the airloads can élso be expressed in closed

form. Writing Eq. (36) as

no= X + KN (37)
we have

K =y ./ﬁos t) UT x(1 + Knh)dx = Kl + x K2 (3s)

c = erT x(x + xnh)dx = Cl + K 02 (33)

The coefficients Kl and Cl are the same as K and C for rigid
blades in Reference (lu4). For reversed flow neglected,
zero root cutout and .97 tip loss factor the coefficients

defined in Egs. (33), (38) and (39) are

\ .304 + .470 u sin t -\\

m -
. 2 ., 2
mg = .221 + .608 u sin t + 470 u sin t
my = ,172 + .442 py sin t + .304 u2 sin2 t
1l .
Kl =y cos t (.304 + .470 u sin t) .
K = Kl + ¢ K (40)
K, =u cos t (.886 + 1.070 u sin t) ?
Cl = .,221 + .304 u sin t
cC = Cl + K C2
C = ,028 - ,028 u sin t

For uniform mass .fx nh dm = 0, therefore Ym z Y.
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Fof reversed flow it is more convenient to present the
Fburieh coefficients of the periodic functions. This is done
for p = .8 and 1.6 in Appendix B. vathg first mode cannot
be represented by Eq. (37), K and C must be obtainedvby

evaluation of the expressions in Eq. (33).

K4

. Hub Moment Derivatives '

Before applying the analysis of the preceding sections
. to stability and random loads problems, we will use the
computation of some hub moment derivativés at advénce ratio
one as a fest case to check the accuracy of the various
ana;ytical models against each other. We will use two types
of blades for this check: First a blade with uniform.ﬁass
and stiffness distribution, second a bladg with tapered

" thickness characterized by the mass and thickness distribu-,
fions of Fig. 1. The first two natural frequencies of the‘

-1/2

uniform blade vs. nondimensional rotor speed g are shown

in Fig. 2. The ordinates, wq-l/2 must be multiplied by
(EI/RL’m)’L/2 to obtain the dimensipnal circular frequencies.
The straight lines represent w = 1, w = 2, etec. The

first mode shape for w, = 1.2 to 1.4 are shown in Fig. 3.
The difference in mode shape between wy, = 1.2 and 1.4 is too
small to be shown in Fig. 3. The difference between fhe
@ctuai mode shépe and the cloied form x + x U is also negf
}igible. The first two natural frequencies of the tapered

in thickness blade vs. nondimensional rotor speed q—l/2'
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are shown in Fig. 4, the first mode shape of this blade at
wy F 1.47 in Fig. 5. Again actual and closed form mode shape
are indistinguiéhable.

We first assume.uniform mass and flap-bending stiffness
of the blade and determine the dlmenSLOnless pitching and

rolling moments C /aol)c /ac due to unit longltudlnal cyclic

pitch input. The parameters, same as in Fig. 4 of Reference

(3) are: ¥ 5, B = .97, u = 1.0, zero root cutout. When
using two modes it waé found that there is little difference
in the results between rotating or non-rotating modes. It
was also found that in case of two modes there is little
difference between using the elastic mément Eq. (23) or the
air moment Eq. (25). The two mode solution is considered
to be the "exact" solution; against which the others are
checked. With respect to the single mode analysis it was
found that there is almost no difference between using the
actual mode or using the closed form mode of Eq. (37) with
an appropriate value of «x.

However, there were sbme differences of results in the
single mode analysis between the generalized force approach
of Eq. (18) leading either to the hub moment expression of
Eq. (23) or of Eq. (25), and the moment approach of Eq. (34)

leading to the hub moment expression Eq. (35). In all of

the analytical models the first natural frequency of the

rotating blade was w, = l.2 or W, l.4. The following is
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a list of the mefhods used:

A

B

Rigid blade elastically hinged at rotor center
Singfe non-rotating mode with genefalized force
balance, hub moment from Eq. (25). This is the
single mode method of Réferende (3).

Single rotating mode with generalized force
balance, elastic hub moments from Eq. (23)
Single fotating mode with generalized force
balance, éirload hub moment from Eq. (25)
Single rotating mode with moment balance about -
rotor center, hub moment from Eq. (35)

Two rotating or non-rotating modes with generalized
force balance, hub moment from either Eq. (23)

or (25)

The following table shows fhe results:

Table 1

Uniform Blade Mass and Stiffness

y=5,B=.97,uc=1.0,808_=1
z ‘ T
W, | A B c D E F |
1 i
) o R e e e ot et o e e s e e s i =~ g
¢ /ao L111 .158 .139 .136 .139 .126
1.2 ™ ‘
c,/ac .028 .019 .018 .023 .0l9 .025
c /ac ,103 L142 .133 .13y .137 .131
1. ™
i c,/ac .086 .08l .080 .08l .080 .081
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The laét column in the table can be considered to
give the "correct" values; The rigid blade model, column
A exhibits errors up to about 12% for w, = 1.2 and up to
20% for W = 1.4, Considering the uncertainties of the
omitted wake effect, this represeﬁfs a reasonable engineering
accuracy. The single non-rotating mode model used in
References (3) and (7), column B, exhibits errors up to
25% in cm/ao for w, = lfz, which is worse than the rigid
blade model. Ffor w, = 1.4 the error is only 9%. The
columns.C and D for the single rotating blade model show
a‘considerable improvement over column B for the non-
rotating single mode, whereby Eq. (25) used in column D
is clearly superior to Eq. (23) used in column C. This
corresponds to the trend found in Reference (7). Column
E computed from the moment balance about the rotor center
with the rotating first'modeAis identical to column D for
W, = 1.4 and somewhat less accurate for w, = 1.2. In view
of the greater simplicity of the moment balance method,
reflected 1n Eqs. (34) and (35), ‘the accuracy of column E
is considered to be adequate, certalnly for the higher
Valués of dl.

In order to check on the accuracy of the various
methods for'other hub moment derivatives, the responsé tov
collective pitch eo = 1, to lateral cyclic pitch Bc =1,

to inflow A = 1 and to blade twist el = ] was determined
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and presented in Table 2. Only cases A (rigid blade), E
(single mode moment balance) and F (2 modes) were computed.
Again the single mode method yields satisfactory results,

while the rigid blade method is in general not reliable.

Table 2

Uniform Blade Mass and Stiffness

Y =5, B= .97, u = 1.0, wy = 1.40, W, 6.08
INPAT TES PCNSE
A E F
‘ c /ao .137 |} .175 .168
8o = 1
Cz/ao .108 .100 .102
| c./ac .062 .066 .065
8_ =1 |
¢ :
i
i c,/ac .025 .025 .025
|
| |
Cm/ac .084 .109 .102
A =
c,/ao .051 .045 .0u47
c./ao .096 .124 . 125
6, = 1
Cz/ao .075 .069 .068
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Next we assume the tapered in thickness blade with
mass and stiffness distribution of fig. l. By comparing
Figs. 2 and 4 it is seen that the two first natural fre-
quencies are spread less apart than for the uniform blade.
By comparing Figs. 3 and 5 it is séen that the first mode
shape is stronger curved than for the uniform blade,
indicated by a higher value of x. The effects of flap-
bending flexibility should, therefore, be larger than for
the uniform blade. The closed form mode, Eq. (36), is
again indistinguishable from the actual mode. Only the
=z 1.47 was considered for which, according to

1l
g. 4, q = 7.15, and only the cases A, E and F are

case of w

shown in the following table.
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Table 3

Tapered in Thickness Blade

Yy =5, B=s .97, u = 1.0, wy, = 1.47, w, 3.90
Input Response A E F
'cm/ao .093 .176 .163
Gs = 1
Czlao .097 .071 .073
Cm/aa 124 .218 .200
Oo = 1
Czlao .123 .088 ,091
Cm/ao .066 .068 .060
Gc s )
c,/ac .022 . 026 .026
Cm/ao .077 .138 119
A =1
Cz/aa .060 .037 04l
Cm/ao .087 .154 .159
61 = 1
Cl/ao ,085 .060 .057
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Assuming as before, that the column F represents the
"exact" values, it is seen that, as expected, the rigid blade
analysis is much less accurate than for the.uniform blade.
However, the single ﬁode analysis using moment balance about
the rotor center, Eq. (35), is very much better than the

rigid blade analysis and appears to provide adequate

‘engineering accuracy, at least for W, = 1.47. From Tables

1 and 2 one can expect, that the accuracy of method E will
improve for higher values of Wy which is also evident from
Fig. 4 indicating that the ratio w2/wl increases with
increasing W) Method E will be used throughout the remain-

der of this report.

Multiblade Analysis

The multiblade analysis with generalized éoordinates
follows the same pattern set up in Reference 8. Letting the
subscript k refer to the kth blade and assuming a single
elastic mode in the form n = X ¢+ « nh, the generalized
coordinate Bk represents now the angle of the straight line
through the .73 point of the mode shape, see Figs. 3 and 5,
so that B, -can be interpreted as the "equivalent" flapping
angle of the kth blade. The relation of the multiblade

coordinates Bo, Bd, BI, BII’ etc. to the individual blade

coordinate By, is given by

B, = Bo + Bd(-l)k + B, cos ¢, + B

K I K sin ¥,

II
(41)

+ 8 cos 2wk T BIV sin 2wk + ¢ ¢ .

III
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with the inverse

w0
"

b
() 2 8,
, k=1

b

™
n

k=1

II1I =

I (2/b) Z:Bk cos wk'

b
8 = (2/b) 2: B, cos 2¢, Brv

k
B, = (1/b) B, (-1)
d =1 k

: b
. \
BII = (2/b) Eg% Bk sin ¥, p (42)

k=1

b
(2/b) 2: B, sin 2%2}

The first of the multiblade equations is obtained by

inserting Eq. (41) into Eq. (34) for each individual blade

and adding the b blade 'equations under consideration of

b 0, if m is not a multiple of b
zz:cos my, =
k=1 k :
b cos mt, if m = sb, s = 1,2 . . .
(43)
b 0, m is not a multiple of b

2: sin mwk

k=1

b sin mt,

if m=5sb, s =1,2 . . .

If b is even, the second of the multiblade equations is

obtained by adding the equations for even blade number k

and subtracting the equations for odd k, again making use

of Eq. (43). The remaining multiblade equations are obtajined

by multiplying each individual blade equation by cos wk and

adding them, by sin ¢y, and adding the, by cos 2y, and addin
k k LNE »

by sin 2wk and adding etc., always considering Eq. (43).
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For neglected reversed flow one then obtains in the case of
a 4 bladed rotor Equations (9) to (12) of Reference 8 plus
terms originating from the elastic blade bending corrections
to the rigid blade analysis; The equations are given in
Appendix C with terms from the elaétic blade bending effects
underlined. In the numerical examples reversed flow is
included. The periodic coefficients become then non-
anaiytic and are given in the form of truncated Fourier
series (see Appendix B for the single blade), whereby the
truncation is selected in such a way that the error is 1

per cent or less. The effect of blade elasticity can be
determined by comparing the solution for ¥ = 0 (rigid blade)
with the solution for the value of «x corresponding to the

first elastic blade mode.

Applications to Stability Problems

Lagged tilting feedback, described by

is assumed, whereby L remains fixed at L = .1 as Ki is
increased to the stability limit. Two blade types are
assumed: the blade with uniform mass and stiffness distri-
bution with w, = 1.40 and the'tapered in thickness blade

with wy = l1.47. Two advance ratios have been studied,
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u=,8andu = 1.6, and two blade numbers, b = 3 and b = 4.
In each case the stability analysis was performed for the
rigid blade, x = 0, and for the flexible blade with x = .13
(uniform blade) and «x = .27 (tapered blade). Figs. 6 to 13
show the characteristic values of the Floquet state transi-
tion matrix, whereby the frequencies were selected as
explained in Reference 8. The dash lines refer to x = 0

- rigid blade - the solid lines to k = .13 or .27. It is
seen that stability suffers from inclusion of blade elasticity
in all cases. For the uniform blade at u = .8 the effect

of blade elasticity is quite small, for the tapered in
thickness blade at u = .8 the elastic effect is much larger,
while for u = 1.6 the destabilizing effect of blade elasti-

city for both types of blades is very substantial.

Applications to Random Loads Problems

The time variable response covariance matrix with the

components ¢ o has been determined using

r
k
Br® By’ ByByg

Eqs. (4) and (7) to (9) of Part I for the tapered thickness
blade with w, = 1.47, b = 3, u = 1.6, vy = 5, comparing the
rigid blade result with the flexible blade result for zero
feedback and for lagged moment feedback with Ki = ,2. The
scale of longitudinal turbulence over rotor radius has been

assumed as L/R = 12, and the standard deviation of A as

oy l. Figs. 14, 15 and 16 show the components of the
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response covariance matrix for zero feedback. The large
unfavorable influence of blade flexibility is evident.

Figs. 17, 18, 19 show the components of the covariance

matrix for Ki = .2 lagged feedback gain. The values aré
lower, however the unfavorable efféct of blade flexibility

is greater than the favorable effect of the feedback. In
order to substantiate this surprising result with a much
simpler and independent case, the deterministic responses

of BI and BII to a step gust A = 1 were determined and are
presented in Figs. 20 and 21 for Ki = 0 and in Figs. 22

and 23 for Ki = .2. It is seen that for Ki = 0 similar order
of the effects of blade flexibility exist as for the standard
deviations g and Og - For Ki = .2 the feedback is very

1 11
effective, contrary to the random gust case.

Conclusions

A variety of methods of applying blade flap bending
corrections to the rigid blade analysis of hingeless lifting
rotors were checked out with regard to the problem of hub
moment response to longitudinal cyclic pitch input at rotqr
advance ratio of unity, leading to the following conclusi?ns:
1. Using two elastic blade modes, the result is insensitive

to assuming either the modes of the non-rotating or those
of the rotating blade. In the latter case the result

is also insensitive to computing the hub moment either
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from the air loads or from the elastic blade root

bending moment.

'Using one elastic mode of the non-rotating blade, the

error in the result can be even larger than for the

rigid blade analysis.

Using one elastic mode of the rotating blade the error

in the result is substantially less, whereby the air

load hub moment is more accurate than the elastic bl#de
root bending moment.

Using one elastic mode of the rotating-bléde with fhe
moment balance about the rotor center rather than the
generalized force balance as in conventional analyses,
air load hub moment and elastic blade root bendihg
moment are equal and the result is almost as accurate
as that for the best of the previously listed single
mode methods.

The single mode method with moment balance aboﬁt the
rotor center is sufficiently accurate also for hub
moments froﬁ lateral cyclic pitéh, from cdl;ective
pitch, from blade twist and from inflow changes,
assuming both a'ﬁniform blade and a strongly thickhess
taperéd‘blade. The rigip:blade.method in the latter
case results in largé hub moment errors.

A closed form expression for the first vofating blade

mode was found which includes an empirical factor
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allowing to accurately represent the first rotating

blade mode for blades with widely varying stiffness and
mass distributions. Closed form aerodynamic coefficients
are given to account for the aerodynamic effects of

blade elastic flap bending. '

The method of using the moment balance about the rotor
center for the first mode in closed form was then applied to
the problem. of multiblade dynamic stability and random loads
of a lifting rotor with lagged hub moment feédback, leading
to the following conclusions:

7. vThe rigid blade analysis is unconservative with respect
to multiblade dynamic stability. Particuiarly for a
tapered in thickness blade large reductions in stabiiity
margins.aré obtained froh the elastic blade flap-bending
corrections.

8. The time variable standard deviations of the hub moments
as a result of random gust inputs are substantially
increased by cohsidering elastic blade flap bending .
corrections. |

9, While lagged hub tilting moment feedbéék is very effective
in alleviating step gust responses , it is little effective

in alleviating random gust responses.
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Figure Captions

Fig. 1 Mass and Stiffness Distribution of Tapered in
Thickness Blade

Fig. 2 First and Second Natural Frequencies of Uniform
Blade vs. Rotor Speed

Fig. 3 First Mode Shape of Uniform Blade for w, = 1.2
to 1.4
Fig. 4 First and Second Natural Frequencies of Tapered

in Thickness Blade vs. Rotor Speed

Fig. 5 First Mode Shape of Tapered in Thickness Blade

for w, = 1.47
1

Fig. 6 Stability for Lagged Moment Feedback, u = .8,
b = 3, Uniform Blade

Fig. 7 Stébility for Lagged Moment Feedback, u = .8,
b = 4, Uniform Blade

Fig. 8 Stability for Lagged Moment Feedback, u = .8,
b = 3, Tapered Thickness Blade

Fig. 9 Stability for Lagged Moment Feedback, u = .8,
b = 4, Tapered Thickness Blade

Fig. 10 Stability for Lagged Moment Feedback, u = 1.6,
b = 3, Uniform Blade

Fig. 11 Stability for Lagged Moment Feedback, u = 1.6,
b = 4, Uniform Blade : :

Fig. 12 Stability for Lagged Moment Feedback, w = 1.6,

: b = 3, Tapered Thickness Blade

Fig. 13 'Stability for Lagged Moment Feedback, u = 1.6,
b = 4, Tapered Thickness Blade

Fig. 14 - Effect of Blade Flexibility on Og s Ki =0

I
Fig. 15 Effect of Blade Flexibility on Og Ki‘= 0
II
Fig. 16 Effect of Blade Flexibility on r » K, = 0
BIBII i
Fig. 17 Effect of Blade Flexibility ono, , K, 2 .2
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Computation of Undamped Blade Modes

1. R
b 2

X

Nomenclature

rotor angular speed (1/2 is the time unit)
rotor radius (length unit).

mass per unit,lengtb of blade root

mass unit

force unit

centrifugal force in ith massless segment

point mass between massless éegments

distance of mi from rotor center

centrifugal force of ith point mass

- up deflection of m,

slopé of deflection curve at m,
length of ith segment

bending stiffness of ith segment assumed
constant

bending stiffness at blade root
bending moment at m.
shear force to the left of L

frequency of harmonic oscillation of blade

non-dimensional bending stiffness of blade
root

‘state vector at m, with the 4 components

yi’-wi’_Mi’ si v ‘
state transition matrix relating Xi to
i+l
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(1)

Xi state vector for free end conditions
. 'yl =,1‘ @1 :’Ml'g sl~= 0
Xiz) state vector for free end conditions

¥, =l,y, =M =5 =0

Fig. A-1 shows a massless blade_segment with point
ﬁéss at the left end in ité maximum up position during a
hérménic oscillation with circular freguency w, The cen-
trifugal force Ti along the element is assumed to be con-

stant and to change only at the mass:

Ty R Ty b ATy (A-1)
where
AT, = m x, (A-2)
Since the blade tip is to the'left
T, = AT (A-3)
i K=l k |

We resolve the centrifugal force 'l‘i at the léft end of the
éegment - but to the right of the mass - intb a component
along the deflected blade axis and a componeﬁt wiTi pefpen-
‘dicular to it. Deflection and slope at i+l are
R TR T M1212/2qBIi + (5, + yimim2 +'¢i'ri)zialsqsxi
- CA-4)
Vi = ¥ + M L. /QEI, 4 (S, + yimim2,+ v,T,) 2, %/2qE1,
| | (A-5)
Thé moment equilibrium.about the right end of the segment
yields '

2 v
H1+1 = M, ¢ (Si + ygmeu” ¢ wiTi) ‘i , (A-6)
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The vertical force equilibrium yields

= 2 -
Sgpp = Sg + myyye (A-7)

Using the state vector

x, ={ & o . {(A-8)

the transition from X; to Xi41 is according to Eqs. (A-4)
to (A-7) *

X, = ¢, X (A-9)

with the state transition matrix

- 2, 3 3 2
1+ muw e, /6QEI, &, + T;2,7/6qEI; &, /2qET,
m, w2t 2/2qEl 1+ T,0,2/2qE1, &,/qEI, - %,2/2qEI
i i Rl S i1 i i i i i
01 = ,
mw zi~ Tizi 1 zi
: 2
-mim 0 0 1
(A-10)
Combining the n fields:
X 41 % %5 %n . o o °1x1 (A-11)
xl at the tip of the blade has the unknowns yl,wl, while
Ml = Sl‘s 0. We compute x(ii and ngi for free end condi-
0
tions
(1) 0 (2) 1
xl = 10‘ , and xl 2ol °
0
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(1) (2) _
Yy Yool Y V1 Yper 5 0
' (A-12)
(1) (2) _
Yl wn+1 ty wn+l =0
The'frequency equation is
(1) (2)
Yn+1. , Yn+1
= 0 (A-13)
(1) (2)
wn+1 wn+1

The only unknown in Eq. (A-13) is . By iterating w until
Eq. (A-13) is satisfied, one obtains‘fhe natural fréquencies.
For each natural ffequency one obtains for 9 = 1 from the
first of Eqs. (A-12)

- (1) (2) ' -
v, = - Y .1 /Y | | (A-14)

so that now Xi can be computed for each i beginning with
thg known state vector
1

x, = %1 o . (A-15)
0

For regions of large curvature small segments zi are required,
thle for regions with little curvature the lengths ﬁi can

be larger. .Using 20 segments the computation of two natural
frequencies with associated médés takes on the IBM 360-50
computer about 10 CPU seconds. For'given miAand'EIi the
naturallfrequepcies | depend only on q. For small q we

have w, = 1.0,'for large q we have

u1/q1/2 . ‘ : (A-16)
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whereby

‘ gr \ /2 - S
w,f = ;g-(—m—°-> S (A-17)
R ‘
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Appendix B

Fourier Coefficients of Reversed Flow Blade AnaLysis

For reversed flow, zero root cut out, tip loss factor
B = .97 the expressions of Eq. (40) are replaced by the
folléwing truncated Fburier series: '

u = 0.8

m = .340 - .043 cos 2t + .006 cos 4t 4+ .312 sin t + .021 sin 3t
mg = .359 - .134 cos 2t - .004 cos 4t + .510 sin t - .01l0 sin 3t
mg = «265 - .,092 cos 2t - .002 cos 4t + .361 sin t - .004 sin 3t

K, = .255 cos t - .0Ll5 cos 3t + .003 cos 5t + .133 sin 2t

+ .008 sin 4t

R
t

.700 cos t + .005 cos 3t + .007 cos 5t + .353 sin 2t
.+ .003 sin 4t

0234 - ,017 cos 2t % .00# cos 4t + .220 sin t ¢+ .010 sin 3t

(o]
i

oo
"

.009 ¢ ,022 cos 2t - .003 cos 4t 4+ .01l0 sin t - .0ll sim 3t

= 1.6

.524 - .237 cos 2t - .001 cos 4t 4+ .013 cos 6t

3
[

+ .372 sin ¢t + .089 sin 3t .+ .024 sin 5t

.642 - ,370 cos 2t - .0U5 cos Ut - .007 cos 6t

oF

# 1.297 sin t - .128 sin 3t

my = 469 - .266 cos 2t - ,030 cos 4t + .B74 sin t
l .

- .074 sin 3t + .005 sin 5t

Kl = ,648 cos t - .190 cos 3t + .009 cos 5t + .01l4 cos 7t

+ .369 sin 2t + .091 sin 4t + .021 sin 6t
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1.611 cos t - .327 cos 3t + .084 cos 5t + .057 cos 7t

+ 1.055 sin 2t + .227.sin bt + .02u.sin.6t - .028 sin 8t
.345 - ,143 cos 2t + .006 cos 4t + .01l cos 6%t

+ .270 sin t + .062 sin 3t + .0l4 sin 5t

- .019 + .035 céé 2t 4+ .013 cos 4t + .004 cos 6t

¢ .031 sin t - .006 sin 5t
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Appendix C.

Multiblade Equations for Four Bladed Rotor

without Reversed Flow Effects

For a 4 bladed rotor without reversed flow effects the
multiblade equations are as follows. Terms originating from

elastic flap bending. are underlined.

8+ 'm ( 221 + .028k)B_ + w.2B_ + 'm (.152p -.01lupx)B
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Part 111

Effects of Rotor Support Flexibility

Abstract

The multiblade stability and random loads Analysis
of Phase V-B Report has beéen extended to include angular

rotor support flexibility about the 1ongitudinal and

lateral axes. The stabllity analysis results in whirl

flutter or divergence conditions which have previously

been studied'only for the constant coefficient case of prop-
rotor axial flow. .Whiie stiffening of the rotor support
résults in the removal of a divergence condition, which
occurs gt high advance ratio;_tﬁe régressing whiri flutter
ﬁargin is reduced by the higher support stiffness. Blade
flép-bending flexibilify which hés at high advance ratio a
greatly destabiliziné effect is included in the analysis.

A constant coefficient.approximation is possible up to .8

advance ratio. Pitch-flap coupling stabilizes the diver-

gence mode but destabilizes the regressing whirl flutter

°

'Amodeo The results of a random load analysis reflect the

reduction in stability margin of some of the multiblade modes

because of the coupling with the flexible support.



Nomenclature

n

Yy © pacR2<fxndm
Yy = pachlfizdm

Bps By
Wys Wy
b
Ib = fx2dm
Ips Iyg

%
Ib =f§ndm
Oy
"
w3
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pitching angular deflection of rotor support,
positive down

rolling angular deflection of rotor support,
positive to the left

angular deflection of rotor support about
flapping axis of kth blade, positive up

- equivalent flapping angle of kth blade,

defined by straight line through first

mode deflection at .73R

first blade mode shape
flexible bla&e Lock number
rigid bléde Lock number

damping ratio of rotor support less blades
in pitch and roll

undamped natural frequencies of rotor sup-
port less blades in pitch and roll

blade number per rotor
blade moment of inertia
Pitch and roll support moments of inertia

blade moment of inertia of first blade
mode shape : '

pitch angle of kth blade
pitch-flap coupling ratio

blade flap-bending flexibility coefficient
in first blade mode: n = X + K S '

first natural blade frequency when rotating,
time unit 1/0

azimuth of kth blade
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Introduction

It is known from the 1iteraturel

that in prop-rotor
flight minimal rotor support stiffnesses are.required t§
prevent whirl flutter or divergence."The‘required support'
stiffnesses are maximum if the natural frequenéies for -
pitch and yaw of the rotor support are equal. In this.case,

assuming a rigid blade and realistic nacelle to blade

inertia ratidé,'and assuming an advance ratio of one, a

‘nacelle frequency of about 1.8 is required. For a blade

flapping frequency of w, = 1.3 the>min1mal nacelle frequency
at the whirl stability limit is peduced to .6. For the
prop-rotor dynamic dnalysis cqns£§nt coefficient dynamic
equations are used. 'This is not possible for the cor-
responding prdhlem of high advance ratio lifting roto;
operation, for which no whirl flutter analysis exists as
yet.. The multiblade analysis of Phase V-f Report has,
therefore, been extended to include elastic rotor supports;'
and thé characteristic values of_the Floquet state transi-
tion matrix have been determined.vs. support stiffness.

Blade flaprending flexibility, using the concept of Part

II, is 1nc1udea'1n the analysis.
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Dynamic Equations

The rotor support is assumed to be capable of a
pitching angular aeflection Grs ppsitive downward, and a
rolling angular deflgction Grps positive to the left. The
Kth blade fhen experiences.an angular support deflection

) =,mi cos ¥, + miI sin ¥, (1)
Horizontal and vepticai linear hub deflections are neglected.
The.horizontal hub deflections couple essentially with the
.cﬁordwise.blade modes which are here omitted. The vertical
hub ‘deflections ébuple essentially with collective blade
flapping, but only weakly with the progressing or regressing
whirl modes and were considefed of secondary importance. In
a cpmplete.dynamic analysis they should be included.

| Using afsﬁacé fixed reference system, and applying the
single mode #néiysis of Part 1I, Eq. (30) ﬁow becomes for
the kth blade » _

17y 0B, + (w,2-1)(8, - a) + 81 = fx as (2)
As comp#ged to Eq. (30) the term - (w12 -l)ak(l/Ym) has been
addéd to.the left hand side to account for the change of the
elastic bladé root moment due to‘mk. This term gives rise
to terms with factors ay and Grg when the transfqrmation to
multiblade coordinates;is performe& according to the section
A"Mﬁltibladé Analysis" of Part II. For example, the second

‘and third of the % multiblade equations for the U4-bladed
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rotor presented in Appendix C of Part II will now have the

additional terms on the right hand side:

2
1l

Eq. (C-3) -(u,?

Eq. (C-2) ~(w.” -1) a

I | (3)

-1) ars

Fuprthermore, there are two new dynamic equations expressing

the pitching and rolling equilibrium of the rotor support

a;y + 25, W a. + w2

. 2 3 @ .
I 1 %1 wr® @y = (wl -1)(b/2)(Ib/II)(BI aI)

I

' o 2 .7 2 - v Yy -
Grp ¥ 2CII Wrp %pp ¥ @py %gp ° (wl —l)(h/2)(Ih /III)(BII

'For some cases flapping feedback is considered in the form
9, = -Axfsk , (6)
In this case we have the following additional multiblade

aquations:

o * - KB
8; mop = Ke(Byyp - opp) (N
Orr =~ 9pp = - Kg(B; = o)

which reduce for K; = 0 f§ 9, ='aI, O11 = %y1° ‘The effect
of bladé.flap-bgndingAflexibility is included in the form
of Eq. (36) of Part II for the first mode, whereby the
coefficient x is zero for é rigid blade analysis and éssumes
various non-zero values depending on blade characteristics
and rotationalvspaed.' For some'caséa at advance ratio |

¥ = .8 the multiblade equations were simplified to constant

(4)

agg)

(s)
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coefficient equations by omitting'fhe periodic tefms in the
coefficients. For an advance ratio of 1.6 the constant
coefficient system of gquations is invalid and the full
system of equations with,ﬁeriodig céefficients must be used.

Reversed flow effects are included in all numerical examples.
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Applications to Stability Problems

We will apply the prededing'theory to three cases.
Case I

Stability of a 3 bladed rotor with uniform rigid blades,
Ib/II = Ib/III = ,20, 8y = &yp ¢ 0, W= .8 and 1.6, vy = 5

and B,VK = 0 and 1.5, w, = 1.15 and 1.30° w, = variable.

£ 1 S S § |

The characteristic values of the Floquet state transi-

tion matrix are determined vs. w - The study provides

S § & |
data on the effect of blade.hatural frequency (w1 = 1.15

and 1.30), of Lock_nuﬁber (v = 5 and 8), of pitch flap
coupling (Kf-=.0 and 1.5), of advance ratio (um =..8 and 1.6)
aﬁd of omitting the periodic terms for a cése.at u = .8,
Case II

| Stability of a 3 bladéd rotor with tapered elastic

b].a.cles‘f Ib/II = Ib/II z ,20, CI = CII = 0, w = .8 and 1.6,
1 = 1.u47, Kf = 0, k. =0 and 027, Wy = Wry

Again the characteristic values are determined vs. W 2 Wype

The study gives data on the effect of advance ratio (v = .8

y = 5, variable.

and 1.6) and of blade flexibility (x = 0 and .27).
Case III _

Stability margins of a(h bladed rotor with thickness
tapered elastic blades when slowly reducing rotor speed

from ﬁ = ,30.. Heﬁe ufis qsed'as the parameter for the

characteristic values. y = E;S, Ib/II s .10, Ib/-III E flﬁ,
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= 0. The value of «x varies with u. ‘x = ,27 for
"w o= .30,k = .33 for w = .80, ¥ = .36 for u = 1.6, the values

I II 1

w ;= .6, L.6, 3.2, respectively for u = .3, .8, 1.6.

of w, and also vary with u. w = 25, 1,33,.2.65,

Piguree 1 to 5 show the characteristic curves in the
'complex plane for the case 1. The only modes affected by
support stiffness are zero or low frequency modes, which can
be interpneted as regressing flapping modes..'They indicate
that an increaee in rotor support stiffness mesults.in |
improved stability of the zero frequency mode and in reduced
stability of the next higher modes. Figure 1 shows for
w o= ,8,'7 = 5 the effect of blade stiffness."The minimum.
support etiffnese'mi for avoiding'divergenee is-sligntly less
than 0.4 for the case o, =z 1‘15 and is slightly‘lafger than -
o.u fonm1 = 1.3. At 0y = 0. 6 the regressing mode has less
damping for oy =el.15.,Figure 2 shows for u = .8, wy = 1.15
the effect of blade Loek number. The'minimum support stiff-.
ness

I

is slightly less than otu for y = 5 and is 0.4 for
vy = 8, Figure 3 shows that the constent coefficient |
approximation is at u = .8, Y = 8, wy = 1.15 and w4 = 0.6
epproximatelylcorrect. The effect of piteh-flap coupling
isvshown in Figure 4., With Kf

even for a very low eupport stiffness, wI.=_Q.2. Howeuen, the

= 1.5 divergence is avoided

next higher mode héezless demping. Figure 5 shows the effeCt
of advance ratio. At py = 1.6 a support'stiffness'ml'of ‘ B

'slightly larger than 0.8 ie required ‘to avoid divergenee0
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At this mI value the next mode has little damping. It is
interesting to note that the rotor support stiffness require-
ments for thé liftihg.rotor are at the same advance ratio
roughly the same és for thé ?rop rotor, and the whirl flutter
ﬁroblem appears to be equally dﬁitiéal. |
E Pigureé 6 and 7 sﬁow the‘characteristic curves in the
complex plane for.tﬁe case 1I. At u = .8,'as shown in
Figure 6, the minimum éupport stiffness for avoiding diver-
gence is clbse.to wy 0.4 when figid blades are assumed.
If blade flexibility is include& in the anélysis, the minimum
sﬁpport stiffness required for stability is increased to a
value largér fhan‘mI = 0.5. Figuvre 7 shpws the effect of
blade flexiﬁility on the required minimum support stiffness
at 4 = 1,6, It is seen tﬁat whén figid blades are assumed,
AI = 1.6 or even less is satisfdctory to avoid divergence.
However, as biade flexibility is considered, it appears that
the instability cannot be prevented'in the entire region
1<w < l.u, | -
Figure 8 shows the characteristic éurves in the complex
plahé fér the case III. It indicates that during the rotor
stopping process, as u increaseé from 0.3 to 1.6, the sta- |
bility mérgins improve. Although not shown in the figure,
the ana;ysis also reveals no 1nstaﬁi;ity, as p-is further
1nérqased'to 5.2, go. that stopping the rotor appearé to be

safe.
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Applications to Random Load Problems

One point of Case IIi of the preceding section per-
taining toithé thickness fapefed elastic blades.at advancev
ratio w = ,8 was selééted for a random loads aﬁalysis,
comparing the rigid rotor supporf with the flexible rotor
support. The method descriﬁed in Part I Egqs. (%) to (7)
was used to determine the variance matrix with the com-
PORERtS I(gy - ap)” “(Byy - ayy) M T8y - ap), (Byp - apy)
Multiblade coordinates for the 4 bladed rotor, as described

in Reference (2) were used. For rigid rotor support

I @ry ° 0. For flexible rotor support the quantities

8 are pbqportional'to the rotor pitching

1 "% f1r T °%n
and rolling moments. '

Plg. 9 shows the time variable standard deviation’
o for rigid and flexible rotor support. It is
periodic with 4 per rev. Support flexibility increases the
maximum sténdard deviation by about 20%. Fig. 10 shows thé
time variable standard deviation o » also ﬁith and.

(BII - aII) ,

without support flexibility. Finally, Fig. 11 shows the
time variable cross.coniqlation coefficient between Bi - ay
and BII - aII; As can be seen fromlrig. 8, the case
analyzed here has ample stability margin which is the reason

why only modest increases of random ;oad‘ievels with support

flexibility occur.
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Conclusion

1.

Whirl flutter of hingeless lifting rotors at high advance
ratio appears to be as critical as for‘prop.rotong though
the whirl modes gre_differeqt.

For a rotor support Qith high éngular flexibility diver-
gence occﬁrs. As the rotor sﬁpport is stiffened, the
divergence disappears, but a whirl flutter mode bécomes'
unstable. |

A hingeless rotor with'§ good stabilify margin when
operating on an.elastic shpporf experiences only minor
increases in random rotor loads due to fhe suppobt

flexibility.

‘A refinement of the analysis by including axial motion

of the rotor support is desirable.

So far only flaﬁwise whirl flutter at high advance ratio
was studied.l It is desirable to extend the ahalysis.to
;ncludeledgeﬁLse and combined edgewise and flapwise

yhirl flutter and'divergence;
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Comparison .

Stability for b = 3, vy = 5, y = .8, w, = 1.3,
vs. Support Frequency w, = s Rigid“Uniform
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vs. Support Frequency w. = w._, Thickness Tapered
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Stability for b = 4, y = u.s; of Stopping Rotor
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Standard Deviation %¢B. - a.) V8: Time for

b=4,vy = 4,5, 0 =»2¥S7, & = .8, Thickness
Tapered Flexible ﬁlade, Effect of Support Flexi-
bility

Standard Deviation G(B .

b=1Uu4,y =14,5, v, = 2¥§7, uli'.e, Thickness
TaperevalexlbleAﬁlade, Effect of Support
Flexibility : -

) vs. Time for

Cross correlation Coefficient, r(a - mI)’(BII<' °II)

vs. Time for b = 4, vy = 4,5, w, = 5.57,
u = .8, Thickness Tapered Plex*ble Blade,
Effect of Support Flexibility
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Addendum

RESPONSE OF LINEAR PERIODICALLY TIME VARYING SYSTEMS

TO RANDOM EXCITATION -
1

D.A. Prelewicz

Washington University, St. Louis, Missouri

INTRODUCTION

Recently developed stochastic models for the flapping
v1brat10n of helicopter rotor blades [llzlglve rise to
the problem of. determlning the reSponse of perlodlcally
time varying llnear systems to random excitation. Mathe=~
matically, the problem is to determlne the statistical
properties of a response process x(t) satisfying

o ax _ = . =
a? = A(t)x + f (1)

A(t) = A(t+f)

where f(t) is a random input process and the matrix A(t)
is given in terﬁs of system parameters. o |

In this.note, the class oflweakly'periodiornonstatiohary
processes is shown to arise-in.a natural way in connection
with the system‘(l)' In particular, it is shown that the
‘steady state. response of the system (l), if it exists; to
a weakly perlodic nonstationary process with period T is
.also a weaklyﬁperiodlc nonstationary process,with perlod T,
lAssistant‘Professor
Associate Member AIAA

2Num‘bezl's"in braokets»desighate references at~ehd of Note
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In regerences‘[1—4] both time domain and'mixed time .
freéﬁency’ddmain methods have been used.tO'eaiculate
response statistiCS'fof (1). These relations are

‘generalized within the framework of weakly periodic

nonstationary processes.

DETERMINISTIC CASE

A solution of (1) for t > t, is [5].

R(e) = 2(t,t)R(e,) + [ 2(t,0)F(a)ds (2)
t ,
where Z(t, t,) is the transition matrix satisfying
- dz :
gF = Al®)Z  , t >ty

(3)
z(to,t ) = I (identity matrix)

Furthermore, the periodicity of A(t) implies that (6]

C(t-t, )

a(t,t, ) = P(t)e (to) e £ 2L, (4)

where C is a constant matrix and P(t+T) = P(t). The

steady state response is given by

x(t) = J[ z(tps)f(s)ds L | . - | _ (5)

¥

RANDOM EXCITATION ‘ *

Letting u = t-s in equation (5), using (4) and taking
expectations gives the following expressions for the steady

state mean and autocorrelation of the output process

E{x (t) }=p (t) = /;'P(t)eChP-l(t-u)ﬁf(t-u)du (6)
E(X(t,)X" (t,)}=R__ (£, ,t,) =~/o.-/¢; p(t,)eculpfl(t,-un)

(7)
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Suppose that £(t) exists in a'meén‘sqﬁaréfSenSe and

that |
g (t) = g (esT) - (8)
Reg(tyrty) = Rep (€47, £,4T) _ (9)

Such a'process is said to be weakly period nonétationary
with period T. It is precisely these prbéesses which are

of interest in the rotor'vibration problem. From (6),

(7) and the periodicity of P(t) it is apparent that if the

steady state response existg then it is also weakly periodic

nonstationary of.period T.u'Hence linear periodically time
- varying systems with period T "preserve" weakly periodic
nonstationary processes of period T in the same sense that
linear-tiﬁe invariant systemé fpreserve" weakiy stétionary
processes. '».

' The periodicity can now be used to simplify the

calculation of the mean and the autocorrelatlon. From (2)

. | . t -
g (8) = Z(e, )i (8) + f Ta(eoi e 0)
: 0

Using the periodicity of i ()

E,+T '
ux(t°)=u*(t°+T¥=z(t°+T,t°)ﬁx(t°)+Jf .Z(to+T,s)ﬁf(s)ds
| t, -
Solving for ﬁx(to)‘gives
) | o E 4T o
e (tg) = (-2t 0,617 [ z(eormoiugtedas  (12)

t,

{11)
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Now from (2) we obtain

T
1
Rxx(tl+T,t2+T)=Z}tl+T,tl)Rxx(tl,t2+T)+./£ 2 (t +T,s )

tl
fo(sl,t2+T)dsl (13)
Rxx(txrtz+T)=Rxx(tirtz)zT(t2+Tit2)t/. Rxf(tlosz)
t,
T .
Z2” (t,+T,s,)ds, (14)

Substituting (14) into (13) and using the periodicity

of Rxx(tl’tz) gives

t,+T .
[ Ryettisn st ta47,8,) a8, | (15)
t .

t,+

-

271 (6,47, £,) 2 (£, 4T, 8,) R, (81 ,£,4T)ds,
t, | |

where in the steady state
t,
Rxf(tl,sz)'=J/. Z(t,,5,)Re(s,,8,)ds, -
- : - (16)
t2+T |
fo(sl,tzﬂ:‘) =f Rff(sl,.s,z)zT(t:2+'I‘,sz)ds,z

Combining (15) and (16)

z'l(t;+T,t,)Rxx(t4,t,)-Rxx(t,;tz)zT(t2+T;t,) =

f f Z(‘l:l,'sl)Rff,(sl,sz)Z'r(tz-‘i-T_,s'z)dslds2 {(17)
t - OO .

t4T 2 4o -
f f -z(t,,s,)Rff(s,.s,_)z (t,+T,s,)ds,ds,

t, %=
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where Z(tl,sl) in the second integral on the. right is
z(t,,s,>=z‘1(tl+T.t,)z(t,+T.sl)=p(cl)eC‘tn'sx’p'l(sl) (18)

It is convenient to use (17) to obtain the instantaneous

autocorrelation matrix Rxx(t{t) and to determine Rxx(tl'tz)

from
t, b '
(t,,t )=z (t,,t, )R (tz,t2)+././~ Z(tl,sl)Rff(sl,sz)
v t, -
2T (t,,s,)ds,ds, , t; > t, (19)

obtalned from (2) by 1ett1ng t,=t,, postmultlplylng by
x (t ), taking the expectatlon and then using the second of
(16) .- This approach gives an explicit expression for
R (£, ,t,). | | |
In the variables-r=tl—t2 and gz=t,;+t, it is apparent
that, for fixed «, Rxx(T'CJ is periodic in r with period
2T. 'Also, using: (7) it is easy to show that
Ry (T,T) = RxxT(-r.c) (20)
Hence.Rxx(T}C) is completely determined if it is known on
a strip 0 < T < ™, ¢ <7 <t + 2T,
In the special case of weakiy.periodic nonstationary
white noise excitation, i.e.
Rep(ty,t,) = F(E)S(E,-ty) (21)
where F(t,)=F(t,+T) and 6( ) is.the Dirac delta function,

(17) gives
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t+T
z"](tw,t)Rxx(t,f)-nxx(ft,t)z'r(t+rr,t)=f 2 (t,s)F (s)
t
2T (£+T,s)ds (22)

and (19) reduces to

2

For the white noise case, a differential equation satisfied
by R, (t,t) is given in (3,4]. Equation (22) gives the
periodic solution of that equation. Also, the above
analysis shows that the direct time dbmain approach is not

limited to thte noise excitation.

SPECTRAL DENSITY

Reg(T,8) is, for fixed T, periodic in ¢ with period 2T.
Hehce, if Rff(r z) is absolutely integrable in t, then it is

apparent that R f(r Z) has the spectral representation

inn;
| : iwr T '
Rff(ToC) =Z f : ¢ff(w,n)e e dw (24)
n=-oo -0
Inversion yields
inng

opplw,n) = i ff Rff‘(r,c)e"i“’f‘e”T dgdr  (25)

Substltutlng (24) into (7), ‘using (4) and rearranging

terms glves

ax(E1rty) -2 f H(Ey o) 0gelwom T (e, B + widn  (26)

ng-m

t | |
H(t,2) = f 2(t,s)el?® ag (27)

where
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Equation (26) is a generalization of the mixed time
'frequénéy'rélation used in :[1] to include Qeakly period
nonstationary excitation,
If Rff(tl,tz),can Ee expressed in the product fdrm
 Rerltty) S R R(G6)6T ey (28)

where R(tl,t ) has a Fourier transform ¢(w), then
. o0
R x(t,;tz) b./ﬂ H,(tl,-w)¢(w)ﬂz(tz,w)dw (29)

h
vwhere .

H, (t,1) = [ e, 0F ) as o)

-
H, (t,1) =f z(t,s)c(s)ei"s

Excitation satisfying (28) is treatéd in Reference [3].

It is interesting to note tﬁat a direct relationsﬁip
existS'between'the spectral densities of the input and
output processes., First noticevthat for fixed T, Z(t,z)
is periodic in ¢ with period 2T. Hencé assuming that
z2(t,z) is absolutely integrable in T, it has the same type

of spectral representation as‘Rff(TpC) namely
inwc

2(c, ) =E f o, n)ei“"' duw (31)

n=—-o

Inverting gives
1nwz

T _
f 2(g,mei%%e T arar (32)

1
¢ (w,n) = ——
z'\! o

4nT

f“sa |
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Substituting (31) into (7), changing variables t,, t, to
T, ¢ and simplifying using the appropriate Fourier ortho-

gonality relations yields
LT0T) = 4n? 3 f o (x+(z+j) T30 0,0
J'k £=_w -—00
it{(3- k)— + Al 1c(3+k+2)~ dax

(33)
o7 (-A+(2+K) T k) e

Now substituting (33) into the expression for Qxx(m,n)
(equation (24) with £ replaced by x) yields after
éimplification |

9, (w,n)= 4n? j’; ¢ (w+(n-j) iFed) O g (wt (k= ])_vn"k 3j)

o7 (~ut (n-k) T k) o (34)

CONCLUSIONS

When viewéd within the-framework of weakly periodic
nohstationary processes, the steady state analysis of the
random response of periodically time varying syétems is quite
similar to the well known analysis of timeninvarianf systeﬁg
-subject,to weakly stationary excitation. _Thaﬁ is, all of the
~results derived herein reduce to weil known results for
linear time invariant systems subject fo weaklyvstationdry
excitationf These results should prove useful in the

further development of rotorjvibfationmodels°
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