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Summary

Part I, Classical Laser

_ In this paper a completely classical model for laser
action is discussed. An active medium consisting of clas-
sical anharmonic oscillators interacts with a classical
electromagnetic field in a resonant cavity. Comparison
with the case of a medium consisting of harmonic oscillators
showsthe significance of nonlinearities for producing self-
sustained oscillations in the radiation field. The results
for the classical model are found to be similar to those
for a semiclassical model of the ammonia beam maser.
The conclusion is that laser action is not intrinsically a
quantum mechanical effect. The classical laser theory as
given in this paper can also be applied to the case of the
electron-cyclotron maser.

Part II. The Effect of Ve1001ty Changing Colllslons on the
Output of a Gas Laser.

A theoretical model for the pressure dependence of the
intensity of a gas laser is presented in which only vel-
ocity-changing collisions with foreign gas atoms are in-
cluded. This is a special case where the phase shifts are
the same for the two atomic laser levels or are so small
that deflections are the dominant effect of collisions.

- A collision model for hard sphere repulsive interactions is
derived and the collision parameters - persistence of
velocity and collision frequency - are assumed to be inde-
pendent of velocity. The collision theory is applied to a
third order expansion of the polarization in powers of the
cavity electric field (weak signal theory). The resulting
expression for the intensity shows strong pressure depen-
dence. The collisions reduce the amount of saturation and the
laser intensity increases with pressure in a characteristic
fashion. It is recommended that the best way to look for
this effect is to make the measurements under conditions of
constant relative excitation.: The velocity-changing
collision theory is also applied to a high intensity laser
theory. The results for the velocity dependence of the
population inversion are evaluated in the rate equation
approximation. The equations contain terms not considered
by Smith and H&nsch in their work on thg cross-relaxation
effects in the saturation of the 6328 A~ neon laser line.



R L AT T

Acknowledgements

The help and guidance of Willis E. Lamb Jr. was
invaluable in the pfoduction of this work. Especially
significant are Professor Lamb's insight in elucidating
the consequences of otherwise empty mathematical results

and his skill in clear presentation of complicated concepts.

The assistance of Marlan Scully and the background
work of Murray Sargent made the completion of the work on

Part I, "Classical Laser," possible.

" The work of Paﬁl Berman and many discussions with
him were essential in overcoming many difficulties in

completing Part II.




...all the knowledge on earth will give me nothing to
assure me that this world is mine. You describe 1t to me
and you teach me to classify it. You enumerate its laws .
and in my thirst for knowledge I admit that they are true.
You tmke apart its mechanism and my hope increases. At the
final stage you teach me that this wondrous and multi-
colored universe can be reduced to the atom and that the
atom itself can be reduced to the electron. All this is
‘good and I wait for you to continue. But you tell me of

an invisible planetary system in which electrons gravitate
around a nucleus. You explain this world to me with an
image. I realize then that you have been reduced to poetry:
I shall never know.

Albert Camus, The Myth of Sisyphus
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' I. INTRODUCTION

In recent years, there have been many advénces in the thepry

&of the lasen. For a gas laser tne active medium was treated . |

A-aS-a.qnantum mechanical ensémble 6f two level atoms and the radia-

‘tion as a classical electromagnetic field.l'Scully and Lamb2 have
generalized this theory by treating both atomé and flelds quantum

mechanically. Other authors have given alternate formulations

of this theory.3 Results of these calculations hnve been in good
agfeement with experiments, and except for possible refinements,
the understanding of laser theory appears to be Sa%isfactory.

There.is, howevef,-a fundamental question still to be con-
sldered. Is the operation of the laser a result of quantum
effects.(an avalanche.of.photons caused by stimulated emissiong)

or can the laser be described completely in classical terms?®

(Maxwell's equations for the fleld and Newton's equations of
motion for the medium) | |

The laser is an example of a self-sustained oscillator.

- Such devices are well known in electronies, The first of these
devices for which a theory was developed was the triode oscillator.5
In that case, the energy required for sustaining oscillations was .
provided by a battery. The nonlinear characteristics of the
triode-battery system served to’provide a negative nonlinear

-pesistance which could drive an L-C circuit into a state of sus-

. tained oscilllations.
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' In this paper, a totally classical model of a laser is
investigated. The possibility of such a system was first

6

discussed by Gapanov. The model‘here was independently
suggested by one of»the:authors in a later'publication.7

It is shown that the essential features of laser'éction

. arise from nonlinearities in the active medium and not from

quantum effects. The calculation closely parallels the

semiclassical theory of Ref. 1.
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II. MODEL FOR CALCULATION

. Thefmodel to be used 1is similareto the one used by Helmer8
and Lamb9‘”to describe the ammonia beam maser. An unpolarized
beam of classical molecules passes thrqugh a resonant radiation
cevity, and interactswith the radiation field. The induced
" polarization of the beam of molecules is calculated from the
dynamlcs of the interaction. It is required that thie polariza-
tion be the source for the radiation,field.v The equations for
this self-consistency requirement will be introduced in the
next section.

The following simplifying aseumptions_will also be used:
(1) The-mechanicél oscillators move with a single, constant
velgcity through the cavity in a uniform one-dimensional beam
perpendicular to the electric field, | |
(II) Only one cavity mode 1s considered and the spatial variation
of its electric field along the beam will be neglected. Loss
in the cavity is described by a phenomenological Q-factor,
(III) The mechanical oscillators are represented by a particle
of mass m and charge e vibrating in one dimension parallel
- to the electric field 1n the cavity.
(IV) Internal damping of the mechanical oscillator is neglected.
(V) The mechanical oscillators enter the cavity with a fixed
internal energy but with random phase with respect to the
electric fileld. _
The geometry of the model 1s shown in Figure 1.
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III. SELF-CONSISTENCY CONDITIONS
Tﬁe following discussion, based on Maxwell's equations,
can be found in Ref. 1 in greater detail. Only one mode of
a high Q electromagnetic resonator is considered. Let its

frequency bg Q in the absence of an active medium. The

electric field is taken in the form
(1) E(z,t) =A(t) U(z)

where U(z) satisfies the cavity mode eigenvalue problem.

Maxwell's equations can be combined to give ; o 'gizfﬁhﬁ

P is the pelarization of the medium and o is a fictional conductivity-
adjusted to gilve the required damping of the radiation field in |
the cavity, i.e., ‘

€ VvV

(3) o=_2_
Q.

Further assume that the electric field and polarization
can be taken in the slowly verying amplitude and phase approx-

imation
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(Ma) A(t) = E(t) cos (vt + o(t))

(4b) P(t) =c(t)[cos[vt + o(t)] + S(t) sin[vt + o(t)]

" where v is a constant frequency yet to be determined. Inserting
(43 and (4b) into equation (2) and neglecting small terms

in ﬁ, etc.; the following self-consistency equations are

obtained
- 1 1
(52) E=-5gE-3(3)s

(50) (v+ - )E ==5(F )0
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IV, POLARIZATION OF THE MEDIUM

Let the internal motion of the mechanical oscillator
in the presence of the cavity electric field be x(to,eo;t).
The oscillator entered the cavity at z = 0 at time to with
phase §_ with respect to the electric field A(t). The
‘oscillators move with a constant single velocity so that they
are at z = v(t-to) at time t. The dipole moment p of each

osclllator is

‘The-macroscopiQ polarization of the medium is obtained by
summing up contributions of individual oscillators. For a
collection of oscillators that entered the cévity with phases
between 6 and 6 + deo around time to,,the contribution to
the macroécopic polarization dP(eo;z,t) (dipole moment/unit
length) is '

(7) aP(8y32z,t) = N p(t,, 8,5t) de/2m

where N = the number of molecules/unit length in the cavity.and

the entry time t  replaced by

(8) t, =t - (a/v)
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Summing the contributions from all 1initial phases 9 glves
2
(9) P(z,t) = (N/27) jO" do p(t s6,5t).

The component of the polarization which 1s the source of
the cavity radiation is found by projecting P on the uniform

cavity mode., Thus,
(10) P(t) = (1/L) f’;dzp(z,t)

where L 1s the length of the cavity.




-9-

V. LINEAR OSCILLATOR

“The equation of motion of a linear oscillator of frequency
- w in the presence of the assumed cavity field is |

(11) %+ «Px = [eE/m] cos(vt)

“The phase of the electric field o has been set = O. The
phase of the oscillator is then measured relative to that of the
cavity field. The solution of (11) subJect to the initial‘con-
ditions x(t,) = i(tb) = 0 is »
(12) x(t) = A, cos(u(t-t)) + 8,) + [eB/m] (u - V?)1
'  X[cos(wt) - 592; v) Acos(w(t-to) + v§o)‘ »
' - (w - v) cos(w(t-to) - vto)]

2w :

From equation (8) the polarization>of a collection of
- oscillators with initial phase eo is '

(13) ap(sy3z,t) = (N/2m)els cos((w-v) t - b + 6,) - [eE/m]
X (P- v?)7H(1 - cos((w - v)z/v))] cos (vt)
_;(N/Qr)e[-Aosin((w - v)t - wty + 90)‘+ [eE/m]
- X (@2- v) L sin((w -v)z/v)] sin (vt)

- where nonresonant ferms have been neglected.

Equations (9) and (10) give
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(14) P(t) = We?E/m] (B~ v3) M1 - sin((w-v)T) ] cos (&)

T(w-v) '
+ [2Ne®E/m] (0®- v2) Yrsin®((w-v)T/2) ] sin (vt)
' T T v)
~where
(15) T =1L/v

is the time spent by a molecule in the cavity. Comparing (14)
-wifh (4v), and lettihg v be close to resonance,the coefficients

C and S ‘can be determined.

(16a) ¢ = [Ne?p/zmgj (@-v)-a T‘l[T(w-v) - sin((w - v)T)]

A(i6b) S = [NeeE/mv] (1/T) sin2((w—v)T/2)

(w=v)*

“The amplitude equation (5a) gives the following result for the
eavity field |

-

L)
fon
-q
N®
t=1.
~~
ct
S
]

-3 + (We®/egm) sin®((w-y)1/2) 1 E(t)
’ T(w—v)2

Equation (17) shows that an injected stream of ran-
;domly phased harmonic oscillators will aiways increase the
damping of the field in the cavity. Stéady state oscil-
,lations.cannot be achieved with such a medium. The familiar

10

result that a randomly phased linear oscillator can only

absorb energy from an electric field has been rederived.
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If the'phases of the oscillators before entering the
cavity had been properly correlatéd to the electric field,
S as calculated from (13) with a constant eokcould have been °
negative for suitable transit times T. That is equivalent to
coupling a signal generator to the resonant cavity. The prob-
lem under consideration, however, is to construct a model

for a generator{
In order to see more clearly why the harmonic oscillator
will not sustain oscillations in the radiation field, evaluate
(12) for x(t) at resonance (w = v)

(18) i(t) =& cos(u(t - t) +6,) + [eB/2mw] (t - t_) sin(ut)

The power absorbed by the oscillator 1s

(19) gw t = F(t) z(¢t) where F(t) is the force on the oscillator
- ysing (11), (19) becomes

20 aw(t) ' 2 '

( ) a_E_(_l = [weEA,/2] sin(-uty+ 8,) + [(eE)*/Am] (t-t;)

where high frequency 2w terms " have been neglected. The

osclllators that are 1nit1a11y phased to gain energy from the



-]2=

electric field will do so for all times. The others initially
lose energy, but eventually gain. The average of (20) over the
Injection phase eo 1s positive definite which corresponds to

the result derived earlier for the entire ensemble,
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VI. NONLINEAR OSCILLATOR

The frequency of oscillation in the case of a noﬁlinear
or anharmonic oscillator 1s amplitude dependent. Consider
the situation where such an oscillator is introduced into
the resonant cavity at an amplitude corresponding to a frequency
slightly lower than the cavity frequency (See Figure 2).
As 1in the case of the harmonic oscillator, upon entering the |
cavity some oscillators will gain energy from the field and some
will lose, depending on the phase., As any oscillator gaihsvenergy
it gradually goes out of resonance with the electric field in the
cavity since the frequency is amﬁlitude dependent. The energy
absorption is thus severely limited in comparisoq with fhe linear
oscillator.

| Those oscilllators that initially lose energy come closer

to resonance with the driving field (and may even pass through
resonance) and could lose a substantial amount of energy
.before rephasing or beilng removed from the cavity. Under certain
. conditions a neﬁ loss of energy to the cavityvfield 1s therefore
possible. |

This rough descriptlon gives some motivation for 1hvestigat1ng
a nonlinear osclllator as a medium for laser action. o

The model for a classical, nonlinear oscillator will be
-the famillar but nontrivial case of a simple penduluh of mass m,

length a, and charge e, The equation of motion is




=14

(21) ¥+ adf sin(x/a) = [eE/m] cos (vt)

»Ewhere w denotes the small amplitude resonant frequency. _
- Using the series expansion of sin(x/a) to third order,(21)

becomes
(22) X +'w2(x -'%(x3/a2)) = ([eE/m] cos(vt)

‘which is known as Duffing's equation. There is extensive

literature on the problem.l There are subharmonic solutions,

stable and unstable oscillations, and Jjump phenomena.ll' The

following treatment corresponds most closely to that of
Bogoliubov and Mitropolsky. Assume a solution with slowly.

varying amplitude and phase which can be expressed as a Fourler

-series in odd harmonics of the driving frequency v. Let

o

(23) x(8) = = By, (¥)cos] (2n4)vt + Opmyg (£)]

a2n+l 2n+l1
~ in comparison with cos(vt). Only the component of the polari-

ﬁhere the amplitudes B and phases 3

are slowly varying
zation varying at the fundamental frequency v is of interest
in this problem. Since numerical analysis has shown that the
most significant elements of the motion vary at this frequency,

(23) 1is replaced by
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¢(24) x(t) = B(t) cos (vt + 8(t))

Inserting (24) into (22), equating coefficients of cos(vt + 8) -
and sin(vt + 8) and neglecting terms inﬁ,éz,é,é?;,éé . (slowly
varying amplitude and phase approximation) yields two coupled,

first order differential equations for B(t) and o(t)

(25a) B = -[eE/2mv] sin @

(25p) 8 = (w2- v?l - w?B® - [eE/2mv] B™L cos o
2

v 16va2

Equatibns (25) can be rewritten in terms of a dimensionless force

"pafameter - .
(26a) G = [eE/2mawv] |
.and dimensionless varilables
(26b) A = B/a
for amplitude and
| ~.(é60) T =t

for time as

(27a)- GA/dt = -Gsin 9



=16~

(é?b) de/d% = A -{QA2/16\D- [G/A] cos»e
where
(28) A = (w2 - v2)/2vw.

When G = O the solutions}of (27) are

(28a) A(‘;r) = A  =B/a

(28b) (<) -{%6185 T + eo)

so that the motion of the osciliator is
(29) =x(t) =B, cosfw(l - (3:)42)t + g_J
o) | 16’70 o)

The familiar (%G)Ag correction to the frequency of a simple
pendulum is confirmed by this analysis. »

Some of the properties of the solutions of equations (27)
can be found by investigating the stationary - poinﬁs. These

occur when dA/HT =0 and d§/dt = O giving stationary solutions

(30a) " ; o 8 =nm for n = %1, %2, %3, ...

and A determined as ‘a root of the cubic equation

(30b) . . AlA - mA2/i6v] - (-1)"¢ =0. forn = +1,
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'Withouf loss of generality, consider»oﬁly the solutionéf
with A > O, Figures 3a and 3b showAthe solutions of (31b) for
A >0 and A < O respectively. For A > O, Fig. 3a, there are three
possible stationary points: a and b wifh 8 = 0,2Ty..., and ¢ with
8 = T,3M>+.. By linearizing equations (27) about these points,
~a and ¢ are found to give stable solutions and b to give an
unstable solution. When G > [4A/3]3/2(G2 in Fig. 3a), a and b
disappear leaving c¢c as the only possible stationary solution.
When A < 0, Fig. 3b, only one stationéry is fouhd with the
séme stability as pointic‘in Fig. 3a.

Equations (27) have been solved numericaliy on an IBM

12 Figures

7094 computor using a predictor-corrector method.
Ja-lc exhibit the solutions in a phase diagram where o(t) is
plotted as a function of A(t); The relationship between the
amplitude and phase of the.oscillator can be used to determine
some 1mportant qualitative aspects of the motion under the
influence of a driving field.

In Fig. (4a), A >0 and G < [14A/3]3/2.' ‘The stabiiity
prbperties of the stationary points a,b,c are easily seen,

3/2

Figure (4b) corresponds to A > 0 and G > [4A/3] while in

Fig . l(hc) A <0, In each of the latter two cases only the
one stable point ¢ is found. '

Figures 5 show the time evolution of a collection of Duffing
oscillators which enter the radiation cavity at a fixed‘ampli-
tude, A = 0.32, but with random phase. The amplitude A 1is an




-18-

indicator of the energy of the osciliator (i.e., energy =
w2a2[(%0A2 - (%ﬂ)Au]), The rough description of the nonlinear.
oscillator given'at the beginning of thils sectlion can be made
more explicit by examining Figs. . 5. In Figure 5a, the
oscillators have been in the cavity for a time wt = 150.
The oscillators with initial phase greater than'v are increasing
in amplitude while those with initial phase less than T are
decreasing in amplitude. By wt = 900, Fig. 5d,'most of the
oscillators have lost energy. Those oscillators that initially
gained energy have "rephased" so as to lose energy. Those
,6sc111ators that initially lost energy haﬁe not yetlreturned to
their original amplitude. If the oscillators are removed from
the cavity at such a time, a net transfer of energy to the
cavity radiation field can be expected. Therefo;e, a beam of
nonlinear molecules injected with a suitable energy and removed
'fromrthe cavity at the proper time could produce laser action,
The next section treats equations (25) to first order in
the driving field. That analysis will find-a threshold condition

for the onset of laser oscillations and frequency pulling effects,
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VII. WEAK SIGNAL THEORY

To first order in the force parameter G, the amplitude and

phase of the Duffing osclllator are

(31a) A = A(O) +aa(®)

(31b) g = (%) 4+ ¢ (1)

Using (31) in the differential equations (27) gives

et

(32a) dA(O)/dT'= 0

(32b) dA(l)/dT = ~sin 9(0) -

(32¢) dego?/dr =A - w A(O)2/16v

(32d) de(l)/d’t' =mA(O)A(l)/8V. _ (l/A(@)) cAOS e(O)

with solutions for w ~ v

(336) A(O) =4, = qonstant
(33v) 9(0) = (1 = v)(t-t,) + o,

(33¢) (1) o [w/(n-v) Jleos((u-v)(t-t ) + 6,) - cos g ]
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3. os
(33d) 9(1)= w AOCOS 901-(t_to) - 1+ szg ]
- Ownlu-y) Kotu-v} o] Ty

X'[sin (u-v)(t-to) + 90) - 8ln So]

where ,
(34) w = (1 - A.02/16) “ .
is the free oscillation frequency of the injected oscillestor,

Using equation (9) the polarization of a collection of

- osecillators with initial phase S is

(35) aP(6,52,t) = [N/2rlex(t - 2, -6, ;t)de,
[Ne/2w] A[cos 6 cos vt - sin ¢ sin vt 1de,

"Identifying the coefficients of sin vt aﬁd cos vt gives
(36a) dC(eo;z,t) = [Ne/27w] A cos 8 CE
" (36b) as( e sz,t) = -[Ne/2r] A sin 6 dg

The first order contribution to C and S can now be found by

using the solutions (33)

.(373) dC(l)(eo;Z,t) = [Ne/2r][Ao cos e(o) + G(A(l) cos 9(0)- .
- | - Aoe(l)sin e(o))] de,
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~ (37p) ds(l)(eo;z,t) = - [Ne/év][Ao sin 9(0) 4 G(A(l?sin a(0)
+ Aoe(l)cos e(o))] de

Averaging equations (37)according to the prescription of equations

(9) and (10) gives

(382) 1) = [uNeat/(u-v)2J[fw-v) - [(w-p) + (w-v)] sin((u-v)T)
' : : : - . T(p.—v) A :

+ (w-p) cos((u-v)T)]

(38b) S(l) = [wNeaG/(u-v)zj[(w-u) sin((v-p)T) - ej(wa%z +)(w-v)]
o _ . — T(V-i

x 81n2((v-p)7/2)]

In the limit of a linear oscillator, w=u, and equations (38) are

identical to (16).
Using (38b) in the electric field amplitude equation (5a)
the conditions necessary for the onset Qf laser oscillatidns

.can be determined. At steady state, ﬁ = 0 and

2 .

-(39) 1/Q = Ne ‘hg X 2/¢0- /5). - é T
e EmQEQT(v-u)E {(;:57f81p ((v=p)T/2) sin“((v g)?/é)

-Td sin((v-p)T)}
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where

(40) d = (w-p) = As/16

is a measure of the initial excitation of the oscillator.

For a given cavity transit time T = L/v, the self-consistency
condition (39) can be satisfied within finite frequency bands.
If the R.H.S. of equation (39) is positive, then N and Q can
be adjusted to gilve threshold. . Figure 6 shows a plot of the brack-
~ eted expression on the R.H.S, of (39) as a function of

(41) ¢ = (v-u)1/2

for various values of the parametér Td. The domains where the
R.H.S. of (39) is positive occur when '
+

(42) nra ¢ = ¢

-NT 2 w 2 !I!;l - where n = 1,2,.3,600

The angles ¢; and w; are solutions of the transcendental equation |

(43) tan(y) = §$§2"t :

For the remalnder of this paper, oniy»the region w'z ¢'z w{
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will be considered. This corresponds to the widest frequency _
band which gives a self-consistent solution and is closest to the linear
resonance v = w (frequency for small amplitude oscillationé);' The

frequency band to be considered is then
(44) Voin, S r <(27/T)+ n
where v . =p + 2¢1/T

Figure 7 shows a plot of the width of the above region
as a function of transit time in the cavity. There is a
linear variation for short transit times and 1/T dependence

for long exposures, Figure 8 is a plot of v as a function

min
of transit time. For this frequency band, Vmin is always

’greater than u. Shorter transit times require that the Duffing

osc1llators be sent through a cav1ty tuned to a hlgher frequency.
As the transit time increases, the driving frequency must be
- proportionally decreased so that the oscillators do not begin

to absorb energy.

Inserting (39a) 1nto the "frequency determining" equation

(5b) at steady state gives

(45) (v-0) = -(v/2¢, )[Ne /2m(v u)? ][(w-V) - (dT-(fvfzf)v)) Sin((v p,)T)

+d coe((v-u)T)] |
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-Using N at threshold in (41) gives

(46) (v-0) = vT [(w-v) - (d + (w-v)) sin((v-p)T) + d cos((v-p)T)]
2Q T({v-p) :
[ -2(d_+ (w-v)) sin®((v-p)T/2) + Td sin((v-p)T)]
V-l .

Figure 92 is a plot of the R.H.S. of (46) as a function of (p-v)
for wT = 800 while Figure (9b) has wT = 200. For short transit
times (e.g. Figure 9b) the frequency is double valued. Thus

‘4t is possible to have two different types=oonscillation under
‘the single cavity mode. However, the analysis here 1s only of a
single frequency. The equations of motion whould have td be
solved with a two frequency driving‘force in order to determine
whether they could coexist. Therefore,the analysis will be

' restricted_to longer transit times such at wT = 800 (Figure 9a).
- The frequency 1s then single valued and the pulling has a well
defined linear region, To examine‘linéar pulling, expand}equation

~(42) avout the zero point, v = v, giving
(47)  (v-0) = -&(v T)(v-v,)
where

(48) 8 =T _F(voT) where F 1s a complicated dimensionless function.
Q .
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8 is known as the stabilization factor which abart from F
is the ratio of the cavity bandwidth (v/Q) to the transit time

band width (1/T) of the molecules
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VIII. COMPARISONS WITH AMMONIA BEAM MASER WEAK SIGNAL THEORY

It is instructive to compafe the classical theory with one
in which a simple, quantum mechantcal, nonlinear oscillator is
'used. The results of the Helmef(7)-bamb(8) small signal theory
of an ammonia beam maéer will be used. The mechanical systems
~are two level atoms with energy difference hw injected into the
resonant cavity in theilr upper state. With the simplifying
assumptlons of section (II), equation (5a) at threshold gives

(49) 1/Q = Np2 o s1n°( (v-w)T/2)
‘ EEO (v-fw)eT '

and the frequency equation (5b) becomes

-

(50) (v-0) =- NP2 4  [(v-0) - sin((v-w)T)]
. 'é’Heo (v_w)z : . T

~

where P 1is the dipole matrix element for the radiative transition.

The similarity between equation (39) and (49) and (45) and (50)

should be notedl3 The second sin® term in the expression for the Duffing
oscillator (39) is always négative. That term is exactly the

same as the total expression fOor the linear oscillator, Eq. (16).

The other two terms in (39) combine to make the expression positive
under certain conditlons. They are both proportional to d=w-)

which 1s a measure of the non-linearity of the oscillator.
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IX. STRONG SIGNAL THEORY

It has been seen that,at least for,sméll signals,a completely
classical systeh providesvreésonable-model for laser action. An
unpolarized beam of anharmonic oscillators of fairly high ampli-
tude is injected into a radiaﬁion cavify and the conditions for
- the buildup of laser oscillations are not very different from
those of a simple quantum mechanical model, |

‘The nonlinearities of molecular medium play an eséential
‘role in that they provide for a coupling between the amplitude
and phase of the mechanical bscillator in the presence of an
electric field. This coupling,}ﬁot present in the linear
oscillator, allows the phases to readjust giving‘the medium
a net active'polarization.

The next problem is to determine the intensity and frequency
of the classical laser, Ideally, the perturbation expansion in
the dimensionless parameter G could be.continued to‘high orders.,
’Uhfortunately, the amount of algebra involfed is enormous. Using
a computer,however, it was relatively easy to use numérical
methods to calculate the polarizatlon of an ensemble of Duffing
osclllators, |

 The technique employed was to solve equations (27) simul-
taneously with the same initial amplitude A  for a set of
-equally spaced initial phases between O and 2. ' The phase averages,
-equation_(9),of S and C were found usihg Simpson's rule at

each time. Since the molecules move at uniform velocity, the
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mode projection of equation (10) is Jjust the time average. In
terms of the numericaliproceduré this time average is just the
cummulative sum for previous times divided by the total elapsed
time. For small amplitudes,'these.coarse phase and time averages
are in excellent agreement with the‘first'order theory. |
Figure (10) is a plot of -S asAa function of G for various
values of A = (w-v)/w with T = 800, Figure (11) shows a plot
of -C as a function of G. The amplitude equation at steady
-state (é = 0) givés |

(51) E/Q = [6/Q][2mwva/e] = -(1/¢,)5(c)

The intersection of a straight line through the ofigin‘in Fig. 10
with slope (1/Q) [2mwva/e ] with any one of the -S curves will
give an operating point of the laser., Figure 12 is a plot of a set
of such intersection points showlng E2 as a function of v-p for
several values of Q. Thus, the theory'has given the intensity
as a function. of v-p. | o e

Figure 10 shows the characteristic behavior of séturation
phenomena: -S increases 1inear1y for sméll amplitudes and then
curves back dowﬁward for larger valués of the electric field,
The gain (-S) becomes negati&e ét very high amplitudes.

From the values of the electric field obtained for the
operating points and the numerical values of C(E), the frequency
of the laser can be determined. Figure (13) is a plot of C(E)/E
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as a funcfioh of (v-p) for different values of Q. The form
0(1)(E)/E of Fig. 92 is also included to show the pulling 1is
apparently lineér. |

The next section will show thgt the classical laser theory
can be applied to a physical problem of the electron-cyélotron

maser,

" i s il

tETEE T O

T
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X. ELECTRON-CYCLOTRON MASER

The electron-cyclotron maser14

is an example of a real

physical system for which the classical laser theory is applicable.
This oscillator uses a system ef energetic free electrons in a

dc magnetic field‘(Hz) field which undergo radiative transitions

- in a microwave cavity. In quantum mechanical terms, the transitions
are induced between adjacent Landau levels L where

2)1/2

(52) ‘wn = mc? [(1 + 2(n+1/2)hw/me - 1)

with
(53) w = eH,/me (eyelotron frequency)

For slightly relativistic electrons (~ 5Kev) and for typical
laboratory magnetic fields (H ~ 2000 gausé) the relevant
quantum numbers are of the order of lO (i.e., 108hw 5Kev).

A classical treatment of this problem should be used for such
high quantum numbers.

COnsider electrons moving in a uniform magnetic fileld H
in a rectangular microwave cavity. Assume a TE mode in the
cavity with the d¢ magnetic field HZ perpendicular to the
electric fleld. Neglect the transverse spatial variations of

the cavity mode and the rf magnetic fields. Also, assume that
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most of the electronic energy is in its transverse motion (i.e.,
x, y > 2

The equations-of'motion of an electron with charge e and
mass m injected into a cavity according to the above scheme
are

~(54)__g,c_tvm5c]-%nz§.—.ezx

(55) & [ ymyl+eH x = eE
dt . ¥

where
(56) v=11- (& +yAB2

'As in the case of the Duffing oscillator, let Ey = E cos vt
and let Ey = 0, Integrating (55) gives

(57) ¥ = -eH,x
Ve

Substituting (57) into (54) gives

(58) %E.[y mi]_+ ezHix = eEcos(yt)A

_ymc2
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Assume the following solutions for x(t) and y(t) for

single mode operation

(59) x(t) = r(t) cos(vt + o(t))
y(t) = -r(t) sin(vt + 8(t))

~ where r(t) is the radius of the orbit of the electron and r(t)
and 8(t) are taken in the slowly varying amplitude and phase

approximation. Neglecting terms in r2, r , re, 6, and for
8lightly relativistic electrons.

USing’(59),.(60), and (61) in (58) the following first order
differential equations for r(t) and g(t) are obtained

(62) r =-G(1 -r v2)s1n )
-
c
w® - V2 _ rov(w® + v
2v : 402

(63) 0 2) _ Gr-lcos o

]

where G = [eE/2mv ]
Since reve/c2 is small compared to unity in (57), (62) and (63)
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are identical to the equations (25) for A and § in the Duffing

~ problem.

(64) r = -G sin §

D e

- (65) = w- vZ - rav(w2+v2) - ar ! cos 9
2v )402 )

The electron-cyclotron maser can therefore be treated using

the theory given in the last section.
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XI, SUMMARY

A totally classical model of‘a laser has been treated;

in which no mention has been made of photons or stimulated
emission. A beam of randomly phased classical anharmonic
oscillators passes through a resonant cavity and gives up énérgy
to the radiation field., Nonlinearities in the medium are eséential
for producing self-sustained oscillations; ‘A medium consisting
of randomly phased harmonic oscillators (linear medium) can
only~absorb energy froh the radiation_field.

~ This model has been used to calculate the intensity and
frequency of the resulting 1aser.ﬁ.The theory can be applied t6
Hirschfield'.s/électron cyclotron maser since extre}nely high.

quantum numbers are involved,
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Figuré Captions

1. Geometry of the classical laser. A one‘dimensionél beam of
molecules moves through a resonant radiation cavity with velocity v.
The direction of internal oscillation of each oscillator (x axis) is

parallel to the electric field.

2. Anhafmonic oscillator potential. The frequency of oscillation is
amplitude dependent. The oscillators are injected into the cavity
with amplitude Ao and corresponding fregquency p = u(Ao). This gives
an energy slightly higher than if they were oscillating at the
cavity electric field frequency v > u. ' Depending on the initial
phase, some oscillators gain enérgy from ﬁhe fielq and move away
from resonance while others lose energy and move toward resonance

with the electric field.

3a.Plot of A(A - wh® )y for A > 0. The intersection of this curve

16v .
| | 3/2
with horizontal straight lines of ordinates |G| < (44/3) give
stationary points a, b, c¢. The intersection with -G,

3/2 .
|G21 > (4a/3) gives only stationary point c.

3b. Plot of A (A - ® A2 ) for A <O. The intersection with

‘ 16v | |
horigontal line of ordinate -G1 gives ohly one stationary pointvc.
La. Duffing phase plot with G = 10 and A = 4.625 x 1073,
Solutions of Egs. (27) where 8 is plotted as a function of A with
A>0 and G < (MA/3)3/2 . The stationary poihts a and ¢ are stable

while point b is unstable.



n

4b. Duffing phase plot with G = 6.0 X 10 * and A = 4.625 X 10 3,

Solution of Eqs. (27) where 8 is plotted as a function of A for
3/2 A . . .
A>0 and G > (NA/B) . The only stationary point is c.

he, . Duffing phase plot for G = lO-u‘

and A = 103, Solution of
BEqs. (27) where @ is plotted as a function of A for A < O. The

only stationary point is ec.

5. Time evolution of Duffing oscillatoré. Sblutions of Egs. (27);
8 (moduld'ew) is ﬁlotted as functions of A stopped at times

wt = 0, 300, 600, 900, 1200, 1500. Fifteen oscillators start at
‘equally spaced initial phases between O and 27 with amplitude

L : '

A 50.32and G =1L4,03X%X10

. and A = 3 X 1073,

6. Plots of y = 2 (Td - §) sin®y - (Td) sin2y

¥
where $ = (v-p)T/2 for Td = 0, 1, 2. The parameter d = @ - p of
Eq. (40) is a measure of the injection energy of the oscillators.

The ranges where y is positive give self-conSiStent solutions of the

threshold condition eguation (41).

T The dimensionless width of the first frequency band of laser

oscillations . ?max Yoin

dimensionless transit time T in the cavity.

Y/w 1is plotted as a function of the

8. The minimum frequency of 1aser103cillations Ymin ,' is plotted .

“as a function_of:the dimension;ess transit‘timé for the first band.

qu large,T{ Voip ~ B -

9a. Frequency pulling. A plot of Eq. (46) as a function of v for
@T = 800. Intersection with the straight line (v - Q) gives the
‘operating laser frequency. The quantity (v/?Q)(C(l)/S(l)) is

an abbreviated form of the r.h.s. of Eq. (46).



'Ob. Frequency pulling. A plot of Eq.’(46) as a function of v for
-mml= 200. In this case the>laser frequency is double valued. The

stabilify properties of these oscillations are yet to be determined.

10. -S plotted as a function of G for strong signals for various
values of A = 105 A " with oT = 800. Intersection of the
curves with the straight line -S = (2mwva/e)(G/Q) will give the

laser operating points as a function of A,

11. -C plotted as a function of G for strong signals for various
velues of Al = 105 A ~ for T = 800.

12. Laser intensity I as a function of (v - 1) for various values of Q.
13. Plots of C(E)/E as a function of v for strQng'signals and various
values of Q. Intersection with the straight line (v - Q) gives

the laser frequency. The dashed curve shows C(E)/E of Eq.. (46)

.- in the first order'theory for comparison. .
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PART ITI: THE EFFECT OF VELOCITY-CHANGING COLLISIONS

ON THE OUTPUT OF A GAS LASER



I. Introduction

The radiation emitted by an atomlc system can be
signlflcantly affected by collisions with neighboring atoms.
The parameters which determine the shape of a spectral line
(atomic energy level separation, decay rate, velocity) fluc-
tuate due to random collisions during the radiative life-
time of the atomic system. There is an extensive liter-
ature on the effects of collisions on the shape of spectral
lines covering about 70 years. A recent paper 1 gives a
comprehensive list of references on this subject.

In a previous publicaﬁione, a model for a laser
oscillator was presented in which the active atoms undergo
~ collisions during their lifetimeé. The result was a theore-
tical expression for the pressure dependence of the in-
~tensity of the laser in satisfactory agreement with the
-experiﬁental studies of Szdke and Javan3 and Cordover .
Other authors have derived similar theoreticdl expressions.

5

In I, two types of dynamic collisions were considered.
The first effect of a foreign perturbing atom on-a radiating
atom was regarded as a van der Waals interaction which
caused the'atomic transition frequency to change adiabatically
with time (phase changing collisions). "~ In the second effect, '
considered as independent of the first, the forces on the
active atoms caused them to follow some complex zig-zag path.
A model in which the atoms return to equilibrium after each
collision was used to describe the velocity changes.

The calculations in this paper are.similar in form to
“those of I. The main difference is that a more reasonable
model for deflectlng collisions is used. It has recently
been found6 that the simultaneous consideration of deflect-
ing and phase changing colliéions'requires a complete quantum
mechanical treatment of the collision process. A radiating




(2)

atom is in.a mixture of'two atomic states‘and'the'center of
mass motion of this system, after a collision, cannot in
general be described classically..

However, the special case where the van der Waals
interaction is the same for both atomic states, can be
treated classically. In that situation, phase effects.are
absent and collisions only produce velocity changes. This
paper will only deal with velocity changing collisions. The
resultihg theoretical expression for the laser intensity may
be helpful in isolating the effects of deflecting collisions.




(3)
II. Nature of Collisions

The collisions in this‘paper will be described by the
binary interaction of a foreign gas (perturbing) atom with
the radiating (emitter) atom. The collision time can be
approximated by the quantity tc = bo/vrel where bO is the

impact parameter and v is the relative velocity of emit-

rel
ter and perturber. The time between collisions for a typ-

ical impact parameter bo is approximately T = [mrbo‘gvrel]_l
where n is the number density of perturbers. For pressures

of about one Torr, T ~ lO-7

seconds, while for most sig-
nificant collisions tc is less than‘lO-ll'seconds. The_éase

- where T°>> tc is called the impact limit for collisions.

The assumption of impact collisions permits a greatly
simplified mathematical treatment of the collision problem.
The properfies of the system after the collision only depehd
on the properties before the collision. This situation is
chatacteristic of a Markoff process and facilitates the |
computation of complicated statistical averages. In the
case of binary impact collisions, the Boltzmann equation may
be used to obtain a fairly simple mathematical descriptidh

of the collision history of the atoms.

The next Section gives a formal presentation of the
laser problem which includes the effects of deflecting

collisions.



)
III. Laser Model

The following model for a gas laser is taken from
- 7
an earlier paper, . Suitable modifications are

made to allow for collision processes.,

The laser operates in a one-dimensional, high-Q
resonant cavity of length L. The cavity contains a medium
of active atoms which acquire nonlinear dipole moments threugh
interactioh with a single mode electromagnetic field of the
‘ cavity. The requirement for self-sustained‘oscillations is
that the macroscopic polarizatien of the medium acts as the
source for the assumed electromagnetic field (self-consistent

field). The electric field in the cavity mode is

E(z,t) = E(t) cos[vt + @(t)]} sinKz (1)
and the macroscopic polarization'projected on that mode is
P(z,t) = [C(t)cos(yt +bm(t)) + S(t)sin(vt + ©(t))]IsinKz (2)

Using the assumption of slowly varying amplitudes and

phases the self-consistency requirement is

E+ 3(bR)E = (/e )s ~ (3a)

(v + & -0)E.

1
3V/e5)e | D
where ) is the cavity frequency with no active medium present.
The active medium consists of an ensemble of atoms with
levels a, b and with natural decey rates Yar Yp- The active

atoms are introduced into the cavity at rates Aa’-Ab' If the

atoms move through the cavity, the position z at time t of a




(5)

an atom is given by

t .
z =z + ft v(t)at o - (4)
o

The integral on the r.h.s. of Eq. (4) allows for the
possibility that the atoms undergo deflecting collisions
'which cause the Z-COmponent of velocity to change. If the
-atomic energy levels are shifted by collisions with neigh-
boring atoms, the transition frequency will be a function
lw(t) of time. As explained in the introducﬁion, these changés

wiil be neglected.

A
An atom is introduced into the cavity at the position

zo at the time to in state a or b, The atomic transitions

& <« b are caused by the perturbation
‘ t A a .
hW(z,t) = -PE(z,t) = -PE(t)sin[K(z  + [, v(%)at)Icos(vt + )
: o
| (5)

where Pis the electric dipole matrix element
P= e¢a|x|b) _ - (6)

The equations for the time'development of the density-

matrix p for one atom are

baa = YaPas * 1V(2,t) (0., T ppy)

5b»b = YpPpp ° iV(z,t)(pab - pba) : | : (7)
ﬁab = -Yabpab ) impab + iV(z’t)(paa ) Pbb)
* - '

Poa = Pab



(6)

: 1 . s
where Yap = E(Ya + Yb) and @ is the transition frequency
between levels a and b. Removing the optical frequency
v from the off-diagonal elements of the density matrix
by writing

' -ivt . '
Pab = P © (8)
' N : : +2ivt -
and neglecting terms with time dependence e™ > Ea. (7)

can be rewritten as

6a.a = YaPaa - %i(PE/'h)sinKz('pl T %)

Pob = ~YpPup + %i(PE/h)sinKz(Pl - pp*) (9)
b= (Vg + (@ - v))p; - %‘-i(PE/h)sinKz(,paa © Pyp)
P = “(vap - 1(® - v))p % 4'%i(PE/h)sinKz(paa " opp)
where z is given by Hq. (4). ’ ‘.'..

The initial conditions for equations (9) are

paB(a’zo’to’to) = GaséaaA
(10)

Il

paB(b’zo’to’to) 6aBéba.

depénding on whether the -atom has been introduced into the

cavity in state a or b. Formally solving Egs.(9) gives

| — o Y (t-t )
paa(a,zo,t,to) = e 'g o) aaa
t ) tl' .
l. - t‘t' ~ A .
- 5i(PE/n) It dtre Yal )sip[K(zo+ It v(t)dat)]

o] o]

x-[pl(a,zo,t',to) - "1*(“’20"""%)]



(7)

' _ aTYp(t-t )
pbb(a,zo,t,to) =e 'b o 6ab

t - -+1 t'f\'\
+ %i(PE/h) jt atre Yp(t~t )sin[K(zo+jt v(t)dt)]

o )
X [pl(a,zo,t',to) - pl*(a,zo,t',to)]

' t S s .
PL(@2:ts80) = = FHPE/M) [ apre[Vaptt{em)1(e7er)
1 A
x sin[K(z_ + ft-v(%)dt)]
O

X [Pagl(@s25,t"5t,) = pppla,zg,t',t )]

(11)

‘The macroscopic polarization P(z,t) is obtained by summing
the dipole moments of all active atoms that arrive at z at
‘time t -- no matter where or when they were excited or how
‘they got to (z,t), i.e.,
P(z,t) =P at (faz A (2gst)8(2z=2 - [ v(t)dt)
o
xl[pab(a’zo’t’to) + °ba(a’zo’t’to)])path
(12)
The symbol ¢ >path in Eq. (12) denotes a statistical
average over all collision histories of atoms which start
at (zo,to) and end at (z,t). This average will be considered
in detail in subsequent sections. In order to find the
appropriate path averages, the history of each atom must be
traced using the microscopic equations (11). It is con-

- venient at this time to define microscopic versions of
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tmacroscopic variables to be used later. Let

n(a,zo,t,to)_= [paa(a,zo,t,to) - pbb(a,zo,t,to)] - (13a)

s(a,zo;t,to)- -iP[pl(a,zo,t,to) - pl*(a,zo,t,to)] (13b)
where n(a;zo,t,to) is the microscopic version of the popula-
tion inversion density of the atomic ensemble and s(a,zo,t,to)
is the microscopic version of the out-of-phase part of the '

polarization S defined in Eq. (2).

Using Egs. (11) two coupled integral equations for n and

s can be obtained,

| -y (t-t_) “v, (t-t
p(a,zo,t,to) = [e Ya(_ O)éaa - e Yb( o)aab]

f 1 -y [+ -+1
+ %’(E/h) J‘t d?t[e-Ya(t-t ) - e Yb(t t )]

t [ " A : .
xsin[K(z  + It v(t)dt)] s(a,zg,t',t,)  (14a)
o |

-i(w-v)](t-t')+ c.c.]

1, 2 t -
s(a,z _,t,t ) = - Z(P°E/h) f dt'fe Yab
o o 2 t
o

. : ! ' :
x sin[K(z_+ [ v(})at)] n(a,z,t',t)  (1kb)
t
(o]

For the perturbation treatment in this section, Eqs. (14)

will be reduced to a single integral equation. First defing
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s(z_,t,t)) = Zéa . A (2,5t )s(a,z ,t,%)) (15)

Substituting (1llka) into (14b) and using (15) gives a single

integral equation for s(z_,t,t )

‘ 1,,2 t Y A
s(zgstst,) = - 5(P°E/n) jt dt'sin[K(z_+ yt v(t)dt)]
O (o]

K [eh(E7E), gX(Emt"),;

X [Aae-Ya(t'-to) - Abe-Yb(t'fto)]

| . ' o A
- F(PPEP/MP) [ at'[ at't sin[K(z+ [ v(E)dt)]
b, by | - t
1Y A A _ e ) s '
x sin[K(z_+ [ v(t)af) e (¥ ) 4 e h¥(tt")]
t - |
(o]

x [e Yalt! t'") L o vp(trott )y s(zo,t",t;)
(16)

where 1 = Y, -i(w-v).

Equation (16) is still a microscopic equation. The

solution of Eq. (16) to first order in the electric field

E is
1

o Lio2oan o e Tooal A
t,t ) = - 3(P<E/h) jt dt'sin[K(z_+ ft v(t)dt)]
lo] . (o] :

) [eh(E7E), gHX(Emet) )

X [Aaefya(t1-to) - Abe-Yb(t'-to)].

(17)

and the third order solution_is
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- t £ )
sz ,t,t) = %(P”E3/h3)jt dt! jt g jz U
: (o] (o] (o]

tit a A
sin[K(z + ft v(t)dt)]51n[K (z+ I v(t)dt)]

. O 0
L1t

X 51n[K(z + f v(t)at)jre” w(t=t') | otu¥(t-th)y

O

x [e
- LI B - 1! -
x [Ae Ya(trtroty) Aye Yb(tf ' to)]
(18)
The atoms under consideration arrive at the point z at
time t. If s(n)(zo,t,to) is the nth iteration of Eq. (16),
then define .
' ’ t
n n ' ,
o )(z,t,to) fdz s )(z Jtt.) 8(z -z, -,jt v(t)dt)
| °  (19)
The nth order contribution to the out-of-phase macroscopic

polarization is

S(n)(z,t) = f dt (s(n)(z t,t ))path

(20)

The path average is taken beforevsumming over all initial -
-excitation times, to. The first order contribution then

.becomes
' t

S(l)(z,t) = - 2(P°E/n) I-mdtojz dt'{sin[K(z~ f:'v(%)d%)]
| .

 x [eH(E781), omp*(t-t!)

(21)

][Aée-Ya(t'-to)' Abe-Yb(t'-to)])

-Ya(tl-tll) + e—Yb(tlfttt)][e-u(tlt-tlrt)+ e'u*(t"'t"')]

path
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and the third order contribution is

, ot t t! 1
53 (z,1) = 3B 3 | at [ at'[ atrtf atres
- t t t

o] O O

t A t A A t A A
(sin[K(z-ft'v(%)dt)]sin[K(z-It'Y(t)dt)]sin[K(z-f v(t)dt)]

11
X [eH(ETEY) | g X (EEN) (g Y (E17611) | oy (-t
y [e'u(t"‘t"')+ e-u*(ttt—tt!t)] '

« [AaefYa(t"f-to) - Abe‘Yb(ttll-to)]>path

(22)
When the product of the three sine functions is written

in exponential form eight terms will result.

-

The next section will deai with'path'averages.

e v b st R o Do g ¢ srdas
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IV. Path Averages

The path averages may be célculated using a classical
density function f(zo,vo,to|z,v,t) for the motion of the
active atoms. The mathematical formulation of the problem
.is given by the Boltzmann equation for the z-component

motion of the atoms

3f /3t + v, 3f/3z = J(f) . (23)
where J(f) is an integral operator describing the collisions.

The initial condition for Eq. (23) is
f(zo,vo,tolz,v,to) = 8(v-v)) §(z-2 ) (2h)

If the'proéess under consideration is stationary in

time and' the medium spatially homogeneous then f may be

rewritten in the form

f(zo,vo,to|z,v,t) = f(vo|z-zo,t-to) (25)

The path average of a function R(V6|v,z-zo,t-to) is then
given by8
- .
(R_(volv,z-zo,t-to))path = f_advoW(vo) fdv‘fd(Az)
- R(volv,Az,t-to)f(vo|v,Az,t-to)
(26)

where W(vo)_is_the initial velocity distribution and

AZ = z-2 .
o
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The path averages to be evaluated must take into
consideration the complete history'df each atom. Therefore,
the quantity to be averaged in Eq. (21) is

t | ’ | - -+t - .- 1
5(1) & sin[K(z -[ v(%)d%)][e w(t-t ).+ e W¥(t-t )]
t'
! -
(27)

YA (ETTEL) - a7
X [Aae a o Ape '

In order to compute the path average of 3(1) two density
functions f(volv',z'-zo,t'-to) and f(v'|v,z-z',t-t') must be

used since (1) is a product A(t"to)R(z-z',t?t') where

A(tr-t,) = [Aae'Ya(t"to) -'Abe'Yb(t"to)]
‘ ‘ (28a)

and

R(z-2',-t') = sin [Kz- K(z-z")][eH(¥78") 4 e WH(E7EN)

(28b)
I (1)
where z-z' = [ v(t)dt. The path average of I'~/ can
) t' .
" then be defined as

1 ' - <
¢af )>path = deOW(vo)jdv'jd(Azo)f(vo|v',Azo,t'-to)
x A(t'-t ) favfa(az')£(v! lv,az, £~V )R(az", t-t1)
| | (29)
where Azo = zf—zo and Az' = z-z!' ,

Tt is useful to define the quantities

(30)

TotD ettt e e Y O

13 athadue w
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so that Eq. (29) becomes

<3(1)>path = Javu(vo) fav! fav ey(v lvt,er-t )
| X [eiKzG+l(v'|v,t-t') - e'iKZG_l(v'lv,t-t')]'
; [Aae-Ya(£'-to) - Abe'Yb(t"fo)][e’“(t't')+ e BW¥(T7tT),
(31)

Then from Eg. (21), the first order contribution to S(z,t) is

t t
1 - 12 1
s()(z,¢) = 5(PE/M) [ at jt at1 (3 )>path
o .
(32)
Using the same procedure for the third order term, Eq. (22)

-becomes -

t I AR A \
5(3)(z,1) - (1/32)(PAE3/h3)‘I_bdtoft:ttft:t"ftdt"'<3(3))paﬁh

(33)

The function <3(3)>path is the integrand of Eq. (22) and

can be written in the following form
1 .
(3(3))path:= 53 Jav favt s faver fav fav Go(volv"',t"'-to)

' 1Kz (vrvt vttt g vyt gr-gr ' -1
x {e TG (virt]vr, gt )Go(vit]|vr,tr-t NG (v v, t-tr)
+QG_l(vltl|vlt,tlt-tlll)G_2(vlt|vl’t!-tt!)G_l(vl|v’t—tl)
+ G+l(v|yc[vcv’tzt-ttvt)go(vtl|vt,t|-tvv)G_l(v||V’t-t:)]
-ikKz

¢ [ G =0G,]] (continued on next page)
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BB R (B V()
X [e‘u(t"-t.'") + e'U*(t"’t'”)] A(t""‘to)

(34)

where A(t'''-t ) is given in Eq.(28) and the two terms

in et3iKz have been heglected.

By changing orders of time integration, S(l)(z,t) and
S(3)(z,t) can be written in terms of Laplace transforms

1
Qn of the Gu s where

Qn(V"V,a)-= fodr e_aTGi(v'\v,T)
(35)

Then
s(M)(z,t) = - (i/ui)(PQE/h)fdeW(vo)fdv'fd;
TG0Vl aYa) T Ao (velvTsvy)]
X {éiKZ[(}fl(V'lv,u) + 9-1(V'lv,ﬁ*)1
| - efiKz[941(V'|V,u) + G (v lv,e®)]}

(36)

~and
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(16)

s(3)(z, 1) =(1/641)(Puﬁ3/h3)‘ ~ Jav_u(v_)fave

[Aaqo(volv' ! "Ya) - AbQo(volv-' ! "Yb)]

X ‘rdv' 'de'J‘dV{eiKz[(Qf+l(v' 1 |vl o) + q+l(v' 1t |v| NTED)
+ 9_1(V""V":I-L) + Q_l(V”'|V",P~*))
X (QG(V"|V':Ya) +IQO(V"lvf’Yb))b

X (Q-l(v'|v:u).+ Q-l(V'lV,u*))]

-iKz . . |
e UL G, ~ G, 1]
(37)
In the third order contribution only the terms corresponding
to the high Doppler limit have been included. The next
"section will be devoted to finding a reasonable collision

operator J(f) used in Eq.(23) so that expressions for qﬁ in

Eqs. (36) and (37) can be calculated.

A o et
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V. Binary Collisions and

the Boltzmann Equation

For the following calculations, assume that the
active atoms have mass m and undergo binary collisions with
inactive atoms of mass M. The gas of inactive atoms is
considered to be in thermal equilibrium. At any time let
the velocity of the active atom be denoted by v and the
velocity of the perturbing atom by ; both measured in the

laboratory frame.

Viewed in the center of mass system (cm) the scattering
_process changes the velocity of the active atom from ch to
V'cm by rotating it through an angle 8. (See Eig. l)f

The velocity of the active atomrin the cm system before the

collision is given by

Vo = [M/(msM)] (¥ - %)

(38)
where (V - V) is the relative velocity of the emitter and
perturbing atoms. The velocity of the center of mass in the

laboratory system is

T = (m¥ + MT)/(m+M)
(39):
Since the magnitude of the relative velocity does not change

after the collision G'cm is given by

-h ¢ A

Vop = M/(msM) 1|7 - VB
- (ko)
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where the unit vector 6 makes an angle 6 with the relative
velocity (¥ - 7) (see Fig. 1). The velocity of the active

atom in the laboratory system after a collision is

bod’ o ﬁ
A\ =V
cm +

(k1)
Adding and subtracting 7 from the r.h.s. of Eq. (41) and
using (39) and (40) Eq. (41) becomes
T o= T4 (M/(n) 11T - T8 (¥ - T))
| (42)
Let ﬁ and a be unit vectors parallel and perpendicular
respectively .to (v - ¥) (see Fig. 1). Projecting the
vectors in curly brackets in Eq. (42) onto D and a gives

the result

gl

tH

T+ (/(mi)] |7 - F| {sined - (1-cos6)P)
(43)

or

o= ¥ - [2M/(m+M)]{sin(8/2)D - cbs(G/Q)&ﬂéin(G/Q)lV-Vn
- | (144)

The quantity in curly brackets in Eq. (44) is a unit vector
8 meking an angle [(6-7)/2] with the relative velocity
(V - V) and the quantity in square brackets is the inner

product 8+(¥ -¥). Equation (44) then becomes

= - [2a/(ma) 5[5 (F - D))

Sy

(45)
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If the potential between the two atoms is U(r) then

8 is given by9
8 = |7 -28 |
, L
where j dr [(2nE/3°) -(2nu( r)/J ) ~(1/f)1 8072
Tmin o P
and n = [mM/(m+M)] (reduced mass)

E

(n/2)|¥ - 712'(kinetic energy in cm system)

' J2 = 2nb2E.(square of angular mdmentum)

b = impact parameter.

(46)

The collision operator in Eq. (23) in generai'is 10
J(£) = Ja¥fanl¥ - ? ( V- }, ) £(FHR(T) - £(HFT)]
(47)

e ' 3/2

where F(V) = N(By/7) exp[-BMVQ].

(with By = [M/2K 0] and © = temperature) .

is the velocity distribution of the perturber atoms multi-
"plied by the number density of perturber atoms. The ‘
différenﬁial cross section for the collision (¥,¥) - (¥',T)
which turns the relative velocity through the angle 8

is o(|5-7],0)

In practice, J(f) is difficult to express in closed

" form for specific laws of force. In only one case, that of
Maxwell molecules (U(r) = B/r5), can a usable form of J(f)
be obtained. In that situation the product ‘V'VTG depends

.only on 9.
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For most applications it is sufficient.to choose a
phenomenological collision'kernéls W(?l?'),(probability_per
unit time for going from velocity v to velocity \7'). In that
case tﬁe Boltzmann equation may be written in the following

three-dimensional form

AF/3t + VoTf = [aVi [W(TV'[V)E(V',F,t) - W(TIV)E(T,T,¢8)]
| | | (48)

L

Comparing Bq.(48) and Bq.(47) for J(f) gives an equation

for W(V|¥')

WEIT) = [aTlanlF-Tlo(17-V],0)F()a (T - T (7,7,0))

"
L
s

wheré v (¥,¥,8) is given by Eq.‘(h5).

For the laser problem, only velogity changes along
the.cavity axiz (z-axié) will affect the polarization.
Therefore, a collision kernel W(vzlv'z) can.be used which
only describes the z-velocity changes. Averaging Eq.(49)
over all possible initial v, and v, with a Maxwell dist-

y
ribution and integrating over all final vx' and vy' giveé

fav i (v, favou (vo) fav, ! fav (7|9

W(vz|vz')
- Idvxwm(vx)jdvywm(vy)defdoIV—Vlo(IV-VI,B)F(V)

X fdvx'fdvy'b(vx' - vx'(V,V{Q))b(vy' -v_'(¥,7,0))

y
x 8(v,' -v,'(V;7,0))

(50)
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Doing the vx' and vy' integrations gives the expected

one-dimensional counterpart of equation (49)
Wi, lv,t) = favgi (v,) fav i, (v.) favfan | 9-T]o(5-71,0)
o F(T) b(v,' v, (@9.0)
| (51)

The quantity V (V v, 9) is given by Eq. (45) as '

v U(ET,0) = v, - [20/(nan)] s, (8 (F-T)]

(52)

Flgure 2 shows a typical intermolecular potential " The
potentlal usually varles as l/r for large values of r. The
repulsive part of the potential is not very 3 ell determined
and fits of l/r and higher ihverse powers ef r have been
used. Ih order to simplify the calculatien, the repﬁlsive
part of the intermolecular potential will be represented by
a hard core. The petential U(r) to be used then becomes

(see Fig. 2)

-B/r6 for r > r ‘(van der Waals: potential)

u(r) =

» for r =rg (hard sphere potential)

(53)

where B is the dipole-dipole interaction coefficient and

ro is the hard core radius.
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It is very difficult to calculate a closed form for
W(vzlvz') from equation (51) using the potential (53). An
approximate form can be deduced using a computer’to simulate
the integrals in Eq. (51). The following procedure was
used to determine W(v,|v,') for the potential in Eq. (53):

Choose and fix Ve The following steps are repeated many times:
(i) Choose Vo and vy from a Maxwell velocity distr;bution. |
(ii) Choose Vx’ V'y,VZ from a Maxwell velocity distribution.
(iii) Choose impact parameter b at random in the range O - 10-6cm.
(iv) Calculate v,' from equations (46) and (52) for the
potentialm(53) by integrating the equations'of motion.
(v) Assign weight NbAbIVfV| (probability of collision per
unit time associated with impact parameterAin the range
[b,b+Ab] and with relative velocity (V-V)).
(Vij Construct frequency table, i.e., sum up all the weights

NbAb|V-V| of final z-velocities in bins of size sz.

56

For the computor calculation B = 4.22 x 10~ erg-cm6 and

r, = 5.0 x 1078cm.

Considering only collisions vhich miss the hard core,
the final z-velocity distribution is sharply peaked around
the initial velocity v, with over 957, of the vz' within

1% of»vz. Collisions reaching the hard core, however, lead
Jto more significant velocity changes. For these collisions,
the resulting W(vzlvz') has the form of a displaced

Gaussian (see Fig. 3).
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The following discussion on one-dimensional, hard
sphere,‘elastic collisions may give some insight into fhe
above result for hard core collisions. Assume all the
particles are constrained to move only in one dimension and
make elastic collisions. The same notation will be used as

in the three-dimensional case.

Using conservation of energy and momentum

vt = [M/(m+M)]{ V+ (mM)v = |v-v] )} ,
(54)

In the case of a collision (v' # v)

vt = [2M/(m1M5]Vﬂr[(m-M)/(m+M)]v
| | | | (55)
The probability of going from v to v! is analogous to Eq. (49)
1 . .
W(vlvt) = (1/T) (8,/m)? fav e By |
X 8(v'e [2M/(maM) ]V -[ (m-M)/(m) ]v)

| (56)
where (1/T) = the frequency of collisions.
Let U = [2M/(m4M)]V. Then Eq. (56) becomes
1
W(vivt) = (1/T)(B/ﬁ)2exp[-B(v'-rv)Q]
- (57)

,,Qhere = [(mM)/(mtM)] and B ; BM[(m+M)/2M]2 '
(58)
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The results of the above one-dimensional calculation
suggest fitting the numerical results for the three-dimen-

sional hard core collisions to a kernel of the form
1

(v, lv,) = (1/7)(8/m)7 exp[-B(v,' - Tv,)]

_ As‘in the one dimensional problem, B8 andAPvare functions of
the mass ration (m/M) (see Fig. 4). 1In addition B and T
and (1/T) are functioﬁs of v, However, the vzdependencé 
of those parameters will be neglected in ordef to simplify

subsequent calculations.

Note: Henceforth v, will be denoted by v since only one

. el
o

velocity component is under consideration.

The conditions of equilibrium-impose certain restrainfs
on the values of 8 and T'. At equilibrium, the collision
operator in Hq. (23) must vanish. Writing J(f) in terms
of the collision kernel (59) in the form of Eq. (48) at

equilibrium gives

Javrw(vlvt)w (v) - w(v'{v)w (v')] =0

(60)
where W(v|v') is givén by Eq. (59) and
-]:- .
W (v) = (8,/m)2exn[-8,v"] |
(61)

Doing the v' integral in Eq.(60) gives
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1
(1/T)exol -8,v°] = (L/T)[8/(8T%+8,) 1 expl -88,v2/(BT"+8,) ]

=0
(62)

Simplifying Eq. (62) gives
: 1
[8/(BT%48,)1°

s

(63);‘

exp{'B$V2<[B(l'rz)'ﬁm]/(BT2+Bm))} -1

Equation (63) is satisfied .for every v only if

B(1-T%) = 8, -
h (64)

For the collision kernel (59) as obtained by numerical
methods, it was found that the quantity [B(l-re)/sm] rangéd
from .982 to .962 for mass ratios (m/M) = 1.0,'2.9, 4,0,

5.3 when 5000 collisions were used in each case.

In the one dimensional model of Eqs. (54) - (58) g and
T fulfill the same equilibrium condition. Taking B and T

from Eq. (58) gives the required relationship

B(1-T%) = (mAN)By = (m/M) (M/2K0) = [m/2Kg0] =8,
- (65)

The significance of the parameter T can be determined
by finding the average velocity, {v'}, after a collision in

a8 time T

(v'y = Tfav! viu(vlv') = TV.
(66)
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Therefore, T is the ratio of the mean Vv after a collision
to the velocity before a collision. It can also be con-
sidered as the fraction of the original velocity that is

"remembered" or the "persistence of velocity."

In the case of the one-dimensional model it wasti:

found that after a collision

v' = [2M/(m4M) ]V +[(m'M)/(m+M)]V -

The mean value of v' is

(v = [aVi (V)v' = [(m-M)/(m+M)]v
" - (68)
This direct calculation gives a T of [(m-M)/(m+M)] which
was obtained in deriving W(v|v') of Eq. (57).
For the three-dimensional case T can be calculated
11

exactly for hard sphere collisions from first principles.

The result given by Chapman and Cowling is

' - e ol
[m/(m+M)]  + %[M/(m+M)]}{x 3(l-exe)Erf(x) - x %X }
. ) _ 2 : _ -
x {e* 4+ (2x + x l)Erf(x)} .

(69)

-T

— - 1/2
where x = v/*V with V = [2KB®/M] .

IfM >>m, x> 1 for most of the range of v and

T =~ m/M<<l
(70)
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-This situation corresponds to what is usually called a
"strong collision model." For T = 0 in Eq. (59)

» 1/2 o
w(v|v') = (1/T)(8/T)  exp[-8V'"]

i

A(v')

which is an equilibrium distribution. i
When m >> M, x << 1 for most of the fange of v and

' -n 1 - (3/2)(M/m)

or

(1 -T) <1

- (73)

This case is called the "weak collision model." If the

collision operator J(f) is expressed in terms of the kernel
of Eq. (59) and expanded to first order in (1-'T), the
Boltzmann equation reduces to a Fokker -Planck diffusion

equation.12

In intermediate cases T depends on v in contrast to the
aésumption of constant B and T following equation (59).
For the remainder of the paper it will be assumed that
B, T, and (1/T) are independent of velocity and that the
kernel of Eq. (59) is a reasonable‘good model for elastic,

hard sphere collisions.
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VI. Strong Collision Model

When the velocity after a collision is totally

indepéndent of the velocity before a collision

W(viv') = A(v')

Itlis required that the gas approach equiiibfium with the

()

passage of time. Therefore, the collision operator in Eq. (23)

must vanish at t = «, giving

f(v,=)A(v') =.f(v',w)A(v)
(75)

- This gives

| A(v') = cf(v!,=) | ;

(76)

or A(v') is an equilibrium distribution. This was the result

obtained in Eq. (71).

 s———
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VII. Weak Collision Model
If the active atoms are scattered by light perturbing
particles, the velocity undergoes significant changes only
after many collisions. Section V, Eq. (73) gave (1-T) << 1.
Expanding the collision integral J(f) of Eq. (23) in a

Taylor series in (1-T) gives12
' ioe '
af /3t + vaf/az = Zl(l/h!)[an/avn] {An(v)f(v,t)}
n=1

(77)
where
An(v) = jdvf(v-v')nW(vlv') |
o o (8)
- _ 1/2. o »
Using W(v|v') = (L/T)¢B/m)  exp[-B(v'-Tv)"] and keeping

only first order terms in (1-T) gives
3f /3t + vaf/d3z = [(1-T)/T1a/av[vE] + [l/EBT]BQf/ave
(79)
Equation (79) is a Fokker-Planck diffusion equation for

Brownian motion.

The kernel W(v' - Tv) of Eq. (59) can be used for a

wide range of collisions problems with T between O and 1.
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VIII. Solution of Boltzmann Equation
with Persistence of Velocity

1/2 5
exp[ -B(v'-Tv)“] the

With w(viv') = (L/T)(g/m)
Boltzmann equation, (48), can be written in terms of
G, (defined in Eq. (30) as the Fourier transform of f)

as follows,
3q, /3t = ~[(1/T) - inkv]Q, (v, v, )

1/2 :
+(1/T)(B/7) Idv'exp[fs(v-rv')2]Gn(vo|v',1)
| . (80)
The formal solution of Eq. (80) with the initial condition

Gx(volv,o) =¢6(vo-v) is
GK(VO'V{T) = 6(vo‘v)exp[~((l/T) - ixKv)T]

1/2 .1
+ (1/T)(8/7) .j,d dr'exp[ - ((1/T) - ixKv)(7-7')]

X Idv‘exp[-s(v-fv')E]Gﬁ(vo|v',7')
(81)
The expressions for S(l)(z,t) and S(3)(z,t), Egs.

36) and (37), involve G, , the Laplace transform of G
X u

(see Eq. (35)). Taking the Laplace transform of both sides
of Eq. (81) gives the integral equation ’

Qu(volv,a) = 6(v0-v)[a'-inKv]-l

1/2 -
+(1/T)(B/7)  [a'-inKv]

x Javtexp[-B(v-Tv')?] 6, (v Iv',0)
(82)



where a' = a + (1/T)

A solution of Eq. (82) can be found by iteration with

the following sequence of equations

(0)
G, (v v,)

i

5(vo-v) [at-inKv]
(83a)

(1/7)(8/1) 2ot -1xkv] L

qk(N)(volv,a)
| X Idv'exp[-s(v-rv')Q]Qﬁ(N_l)(volv',a)

(83b)

It can be verified by induction that the solution of
- (83b) is

, - 1/2 - -
6, (M (v_lv,a) = (/D) (8/m) 1N[at-inkv ) Mot -inkv)

x exp[ - (8/8y) (v-Tv_)?]
N
x Jo..Javye..dv, T exp{-(8ap /Ay o) [V, (TVy,
n=2
+ rn_lvo/An_l)(An_l/An)]g} [cL'-'inKvn]-l

(84)

A . _en 2. _
where A = (1-T77)/(1°T7)5 vy, =V and

Q%(vélv,a) = ﬁng%(N)(volv,a).

For # = O, Eq.(84) simplifies to

6™ (vlv,a) = (1/ar)(1/(ar )1 Vexp[ - (B/ay) (v-T v )]
x [8/(my) 12
(85)
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so that
Go(volvia) = 8(vy-v)/al

'l-]r “3‘ t - -
+ a -Nf;,l(Ta ) N[B/(WAN)]l/geXp[-(B/AN?(V-INVO)?]

- (86)

Equation (86) is identical to the result of Keilson and =

St6rer12.
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IX. Calculation of Intensity Profile

For both S(l)(z,t) and 8(3)(z,t) (Egs. (36) and (37)),

the following integral R(v') is required:

R(v!) = Idvowm(vo)[AaQO(volv"ya')-AbQO(Volv"Yb'j] ‘

(&7)
where Wm(vo) = [l/(umgv)]l/éexp[—voz/qu] and ,'ﬁfgﬁyg
w Z-8 = B(1-T) = u 2(1-19).

Using (86), (87)‘becomes
R(v') = ﬁ'W;tv')
(88)
where )
T = [(A/%g) ~ (Ay/Yy)]
' (89)

is the unsaturated population inversion of the active medium.
The significance of the result given in Eg. (88) is that a

gas.starting_in equilibrium will remain in equilibrium,

. Using the solution for ¢ (Eq. (84)) to first order in

(1/T) for low pressures, in Eq. (36) gives

S(l)(z,t) = - %ﬁ(PzE/h)sinKzfdv'Wh(v')Idv{é(v'—v)[u'-iKv]-l

+ (/D) [1/(Br) 120 - k] Tt -aker ) 7

X exp[;(l/uz)(v-rv')z]} +c.c,
(90)



(34)

where u' = y_. -i(w-v) + (1/T)

Recognizing the plésma dispersion function7

Z(u'}u) = iKu[l/(u2W)]l/?fdvexp[fQQ/hQ][u'iiKv]-l e

(91)
Eq. (90) reduces to
s(1)(z,t) = -1F(P2E/n)sinkz {(iK%)'lZ(_u',um)
2
+ (1/0)[1/(uBr) 12 (1xu) "L
o x'fdem(v)[u'-iKv]_lz(u'-iTKv,u)} +c.c,
(92)
In the Doppler limit where [Yab'/(Kum)] %< 1 the
plasma dispersion function is approximately
2(u'su) ~ 17 2expl -uy12/(ku)?) - 21t /(Ku)
- (93)
where p.' = Im(u') = -(w-v)
p.' = Re(un') = Yap + (1/7)

The expression for S(l)(z,t) in the Doppler limit is then

S(l)(z,t)=-w§ ﬁ(PeE/h)(Kum)-lsinKz {exp[-(w-v)e/(Kum)e]
x[ 1+ evl/zexp[-(w-v)z(l-r)e/(Ku)z]]
- —2Yab'/(Kum)}

(94)



(35)
where € =(,Ku’1:‘)-l

The expression for 8(3)(z,t), Eq. (37), can be evaluated

using similar techniques. To first order in (1/7)

s(3)(z,t) = (1/32) (PYE3 /%3 )Fsinke T (1/\rOL')(iKum)-l

a=a,b
x [t 2 () +(2véb')_l(z(u',um) +Z(n'*,0,)]

+-(1/T)(1Kum)’1(1/ya'){(zu')'ljdem(v)[Z(u'+irKv,u)

+ Z(pt-iTKv,u) ][ (p' -ikv) “Te(ut+iKv) )
+ (2Yab')-ldeWh(v)[Z(u'*+irKv,u) + Z(p'-iTKv,u)]
L x [(w'-1Kv) La(pt*#+ikv) ]

ey, B(/T) ik )’1§dem(v)z(u'-irKv,u)(u'+iKv)'1

+ 2ya"2(1/T)(1Kum)”1jdem(v)z(u'-irKv,u)(u'*+iKv)'1 |
(95)
In the Doppler limit, Eq. (95) reduces to
s(3) (2, 1) ~ (1/8) (PHE3/m3) T2 (v, v,) “exol - (@v)?/(Ku ) ?]
X {1+ 8 (0mv) + er/2er (@v)(exp ~(0-v)?(1-T)?/(Ku)?)
+ expl - (0-9)2(141)2/(k0)?1) + 267 2exp( - (0-v)?(1-1)2/(xu)?]
, ewl/QYa'yb'(va?’2+vb'"Qj(gxp[-(w-v>2<1-r>2/(ku>2] |
+ expl-(@-v)?(141)%/(xw)?])

(96)



(36)

where S'(w-v) = Yab'e [Yab'2 + (w-v)?]‘l

Taking the projections of S(l)(z,t) and S(3)(z,t)
on .the cavity mode (this merely eliminates the factor

sinKz in Egs. (94) and (96)) and substituting the result

into the amplitude equation (3) at steady state ( E = 0)

the following equation results:

0 = e m/+ s (8) + s3)(v)
| (97)
Define the dimensionless intensity as
1(a-v) = (FPER/A0) (vvp)

(98)

and the threshold population inversion density ﬁT as
N when I}= 0 and ® = v, i.e.,
= (cg/Q) (nkuy) /(P2r/2) (1 + er/? - 2y, ) /(7 ki) 17
(99)

Let

(100)



(37)

To first order in ¢ = [KuT]-l the intensity of the laser

is

I(w-v)

8[ (Ya'Yb' )/(YaYb)]

(/2

{1+ em/20_ - expl (@) 2/(ku) P10 (2v," )/ (7 2Ry

x

- 1
F L+ ert/? - 2]y
Kumﬂ"’*

X

{ &' (ov)[1 + ewl/2(2+ + 21+ 1 + 2emt/?g

1/2 -1, .2, ,2 P |
+ ert/ (vg'Yp') “(v " +yy! )(£++E_)}
| | 101
where £, = e;p[-(w-v)z(lir)g/(Ku)Q] ( )
The frequency of collisions (1/T) is directly
proportional to the number density of atoms ip the laser

cavity and is therefore directly proportional to the pressure

p. Thus,

¢ = [KuT] ! = [KuTl]-lp
(102)

where (l/Tl) is the collision frequency per Torr.

Figure 5 shows a plot of Eg. (101) as a function of
(w-v) for various values of the pressure p. At each pressure

the relative excitation h is kept constant.

Figure 6 is a plot of the maximum intensity Tpax and

~the intensity at the central tuning dip I for each tuning

dip
curve in figure 5 as a function of pressure. The non-

i r iati f ' ... Wi ressure comes
linear variation o Imax and Idlp ith p o
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mainly from the coefficient A = (vg'vp')/(v,y,) in Bq. (101).
Recalling that (1/T) = (p/T,),

-1 2
A= (Ya¥p) “IYaYp + 2v,(0/Ty) + (p/Ty)7]
(103)
This increase of laser intensity with pressure comes
basically from a reduction of the third order(or satufgyion)
term. An atom gives up energy to the radiation field

- and then makes a deflecting collision before it can re-

absorb any radiation at the same frequency.

If there were no deflecting colliéiohs and only

phase changing collisions (See I, Eq. (126)), (1/&) =0

and A becomes

-1
A= Yop I Yap + 8;P]

(10L4)
where 61 is the broadening factor per Torr from phase
changing collisions ( See I, Eq. (144) for definition of
b = 6;p). In that case the maximum intensity would have

& linear variation with pressure

Thus, if the tunihg curves are measuféd as in Figure 5
with h -constant, the existencé and magnitude of the effect
of deflecting collisions can easily be determined. It is
not expected that the coefficient A ( Eq. (103)) will be
as simple as the pure velocity changing case, but the major
effects of deflecting collisions can nevertheieés be

discerned,
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The detailed.features of the tuning dip will not
be discussed here, In general, the dib includes the
effects of phase changing collisions, The fine structure
determined from Eq. (101) will ~ be useful when there
are 6nly velocity-changing collisions present.l_This

might be the case in some molecular lasers.



(ko)
. X. High Intensity Theory

Stenholm and Lamb13 have developed an extension of the
perturbation theory for applications to a high intensity
laser. They expressed the polarization as a Fourier series
in harmonics of the spatial dependence of a éingle cavity

mode.

Using equationsA(IAa),.(lhb), and (15) a similar
theory can be developed which includes the effects of vel-
ocity-changing collisions.' The equations of motion of the
hicroscopic polarization and population inversion as

defined by Egq. (15) are

. _
1,,2. (-t u*(t-t') .
s(zo,t,to) = - 5(P E/M)[ dt'(e i t_) + e ,)J
4 o -
t! '
x sin[K(z  + ft-v(t)dt)]n(zo,t|,to)
© (105a)

n(z t,t ) = [Aae-Ya(t_tq) - Abe-Yb(t-to)]

E ey (- v (-t
+ %(E/h)ftdt'[e Ya(t7t') e Yp(t-t )]

‘o
t!
X sin[K(zO + ft v(t)dt)]s(zo,tt,to)

° ~ (105b)

" Now express s(zo,t,to) and n(zo,t,to) in a Fourier series

in KzO



(41)

Nn=oco .
s(zy,t,t) = -iPNnElwsn(t,to)exp(iuKzO)
(106a)
= !
n(z;,t,t ) = Nnglmd (t,t,)exp(inkz )
(106b)

LT e

The microscopic polarization and population inversion at

point z in the laser are (see Eg. (12) or (19))

| t | S
s(z,t,t,) = [dz 8(z - 2z - jtv(t)dt)s(zo,t,to) R
| o (107a)
o -t
n(z,t,t ) = [dz_8(z - z - jtv(t)dt)n(zo,t,to) |
- o - (107)

o

Performing the z_ integration of Eqs. (107) on
Egs. (106) and (105) and substituting the resulting
- Fourier expansions for s(z,t,t ) and n(z,t, t ) into the

integral equations glvesH

- t
-i2% sn(t,to)exp[inK(z-ftv(t)dt)]
o

t ' R . t
- %(PE/h)ftdt'[e-u(t-t )+e W*(t-t )JSin[K(Z-ItY(t)dt)]
(o)

. ’ t
X Z}dn(tt,to)exp[inK(z-ftv(t)dt)]
° _ (108a)



()

_ t
N Z)dn(t,to)exp[inK(Z‘Itv(t)dt)]

o
[Aae-Ya(t_to) - Abe-Yb(t-to)]

n

t N ety £
- Z1(EN/n) [ atrpe Yalt 7t ) e Yo (07t ) yginik(z-[ v(t)dt)]
t | ) £

o
t
X Z;sn(t-,to)exp[inK(z-jtv(t)dt)]
° - (108b)

Take the sﬁatial averages of the left and right hand
sides of Egqs. (108) (as per the description of Egs. (26)

and (29) respectively) with respect to the variables

Az = It v(t)at -
(o]
£

prz_ = [ v(t)dt

- t
o
t

b= t)at
Az ft'V( )

and integrate over intermediate velocities V' =v(t').
Writing the sine function in terms of exponentials,

Eqs. (108) reduce to

Z s, (t,t,) eanzfd(Az)f(vo|v,Az,t*to)e-anAz

t - -1 - ¥ -+ 1 .
= - %[(PE/h)Itdt'IdV'[e U"(_t t1) + e M (t-t )] | | (103
o .

X Z)dn(tﬂ,to)fd(Azo)f(volv',Azb,t"to)fd(Az‘)f(v'|V,Az',t-t')
x {exp[i(n+l)Kz-inKAz -i(n+1)KAz'] - exp[i(n-1)Kz-inKAz

-i(n-1)Kaz']}



(43)

Zda (t,t) e1nKZ fa(az)f(v |v Az, t-t )e “inKaz

= (1/ﬁ)[A e-Ya(t-to) - I\be-Y p(tt )rd(Az)f Iv Az, -t o)

E(PE/h)f atre Yalt” t')_+ e Yp(t7E" )y fav:
O

X Z)s (t',t )rd(Az )f(v lv',Az ,t1-t )fd‘Az' f(v'lv,Az',t-t')

X {exp[i(n+l)Kz-inKAz —1(n+l)KAz'] - exp[i(n- l)Kz 1nKAz
-i(n- l)KAz']}
(109b)

Recalling Eq. (30)
G, (v']v,t-t') = fa(az)r(v'|v,az,t-tr) eMEAZ

Eqs. (109) become

inKz'
s (t,t)e (v lv,t-t))e

t T -1 - -4t .
- %I(PE/h)\rtdt'[e u(t t ) + e_u.*(t t )]J‘dvtz dn(t"t‘o).

o

G-n(vol'vi’t'-to) { eiK(n+l)Z G-(n+l)(v"lv’t-t')

eiK(n—l)zG_(n_l)(V'|V,t’t')}

(110a)



| inKz
Zd, (t,t) G_n(volv,t-to) e

= (l/ﬁ)[Aae_Ya(t-to) - Abe_yb(t-to)]Go(volv,t-to)

t - -1 -- -t 1 '
- %{PE/h)ftdt'[e Ya(t7E') | ovp(t-t )1 [av: T s, (t',t,)
O

.(v lvr,tr-t.) o elK(n+;)zG_(n+l)(v v, t-t")

-e1K(n- l)zG_(n 1)(V lv,t-t1) }

(110b)

e
”

As in the calculation in the weak signal theory, the macro-
- scopic variables are found by averaging the microscopic
. variables over all displacements and by integrating over all

initial excitation times. Thus,
s(v lv,z,t) = j at, d(az)f(v |v,az,t-t o).

X Idzoé(z-zo-Az(t,to)) S(Zo,t,té)
(111)

Applying Egq. (111) to the Fourier series on the left - -
hand sides of Egqs. (110) gives

t > | | _ inKz
S(volv,z,t) = I-StQ sn(t,to)G_n(volv,t t))e

(112a)
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Define the .averages

dvowm(vo)sn(vo[v)

sp(v)

(116a)

Ca,(v)

fdeWh(vo)dn(volv) R
(116b)

over initial velocities v_ to give

s (V) = %(PE/h) [av? [d,,1(v") - d -1(v")]
X [Gp(v'|v,n) + G (v ]v,u¥)]
‘ (1172)

. -~
e

a_(v) =W (V)b o + E(PE/M)fav(s ,(v') - s (v')]

x [0 (v'Ivov) + Gp(viivayy)]
(117D)

In the absence of collisions, Eg. (83) gives

Q_n(v'lv,a) = 8(vt-v) [a + J'.nKv]-l
(118)
and Egs. (117) become

s (V) = F(PE/M)(d, 1 (v) - 8__; (V)1 (u+inkv) a(pr+inkv)

a_(v) = W (V)60 + F(PB/M)[s, 1 (V) = 5,1 (V)]
| X [(Ya+inKv)-l+(fb+inKv)—l)
(119)

Equations (119) are essentially equivalent to Egs (61) of
Ref. 13. |



From Eq. (117b), with collisions, the normalized

population inversion density as a function of velocity is

J(v) =W (v) + F(PE/M) favi[s (v') - sy (v))]

X [G(v' 1vavy) + Go(v! 1v,7,)]
(120)

Expressing sl(v) and s_l(v) in terms of do(v) in Eq. (117)
néglecting d+2(v), and substituting back in Eg. (120) gives
" the "rate equation approximation" for the population

inversion

—

.do(v) = Wﬁ(v) - [(PE)/(Hh)]Q fdv" do(v")
X [Gyy (v 1V9,0) + Gyp (v0 1100, 0%) +(+1-1)]
X [Qo(vt ‘V’Ya) + Q’o(v' |V’Yb)]
(121)

The strong collision model (T = 0) is used in subsequent
calculations to most easily illustrate the possibility

of using Eq. (121); From Eq. (84) with T =0

Qil(v"|v,u) = §(v'' - v')[u'?iKv']-l

+ (1/T)Wm(v')[u'$iKv']_1[u'$iKV"]_l

X[1 + iez(p',u )Tt

1 -1

Go(v' Ivavy,) = 8(v'-v) Ya-l + W (VY — 7 v )

(122)




(48)

Substituting (122) into Eq. (121) gives an integral

equation for d.,(v)

45(V) = Wy(v) < LB/ 1PN Y1+ Y1 IR(Y)

CLER/Mm)P (Lt Y Ty Ty

“ .

X fdv'R(v')do(v')

“[(PE) (4m))° (/DU (VT y 1+ 1 faviB(vt [v)dg(v)

By 12 1-.1 -1 1 -
“[(PE)/(48) ] {l/T)Wm(v)[iXa R ]

X de"IdV'Wm(V')B(V'|v")do(v")
(123)

wheré
R(v) = (2/v,," )£ (0~ v4KV) + &' (w-v-Kv)]

B(v' |v) = ‘[24iez(ut,u )7L [ (ur-ikv) D(pt-iker)
+(u'+iKv)-l(u'+iKv')-1] + c.c,
(12h)

If there are no collisions, the solution of Eq. (123)
gives the familiar inhomogeneous saturation of the population
. inversion density ("hole burning"),

:l- .

y JR(v)1 T

(125)

a_(v) = W (v)[ 1 + [(PE)/(4n)12( %a +




(49)

where (1/T) is to be set equal to zero in R(V).

Equation (123) can give'some insight into how the
velocity profile of the population inversion is modified
by collisions. The second term on the r.h.s. of Eq. (123) _
is like the usual saturation term but smaller by the fééfdf
1

. 1 _l -l - ) ‘ )
Qa + Yb' )/(Ya + Yp ). The effect can be attributed

to atoms "knocked" out of the velocity v by collisions. °
The third term then represents the number of atoms "knocked"
into velocity v. Smith and Hansch 15 called thié process
"cross-relaxation"and obtained an equation containing the
above two-terméﬁusing the rate equation for the atomic

populations as the starting point.

The last two terms on the r.h.,s, of Eq._(l23), not
included in the analysis of Smith and Hansch, represent
removal and addition of atoﬁs with dipole moments.q7A~
low intensity solutibn of Eq. (123) can be obtained by
substituting Wm(v) for'do(v) in the integrals on the

r.h;s. Thus, to first order in e and in the Doppler limit,

3(v) = () 1+ (EE/m)IF(F 3 RO

o | N )
x {1 - 46[(PE)/(”h)]2[(YaYa') +(YpYp') 1ygt/2
x expl-(v)2/(ku )2] - e[(PE)/(4n)1? 772

x R(v)[

< |-

1+ % ,‘]exp[-(w‘v)z/(Kum)g] }
a b
: (126)



(50)

Figure 7 is a plot of do(v) with Kum = 900 MHz and
w-V = Kum. The dominant effect of the collisions is a
reduction of the<saturation.terms. Figure 8 is a plot
of dy(v) with w-v = 0. The dashed curve shows dy(v)
using the equations of Smith and Hansch which is obtained -

by omitting the last term on the r.h.s. of Eq. (126).



Figure Captions

1. Scattering in center of mass (c.m.) frame. ‘Velocity
Gcm is scattered through angle 6§ and becomes ;cm" The
unit vector 8 is in the direction of ch'; the unit vector
_ﬁ is parallel to ch.(and the relative velocity); the unit

~ o, . —t
vector q is perpendicular to Vom®

o. Intermolecular potentials. The solid curve is a typical

intermolecular potential and the dashed curve is a simplified

version used to calculate W(v|v'). Note that the coeficient

B used in the text is Aro6 in the Figure.

3a. Numerical“résult for W(volv) for hard sphere collisions
with (m/M) = l.d. Five thousand (5000) numerical collisions
were used to obtain this result.

3b, Numerical result for W(volv) for hard sphere collisions
with (m/M) = 4.0. Five thousand (5000) numerical collisions

were used to obtain this result.

4. (8,/B) and T as a function of (m/M) for hard sphere
collisions based on 5000 encounters.

5. Intensity (I) as a function of detuning'[(w-v)/(Kum)]
for varibus values of the pressure.'For this plot,

Ku = 5000 M Hz, (l/Tl) = 58 M Hz, vy = 17-T M Hz,

Yy = 8.3 M Hz.
6. I .. &nd Idip
The parameters are the same as in Fig. 5.

for tuning curves as a function of pressure.
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Figure Captions ...

7. dy plotted as a function of [v/(Kum)] from Eq. (126).

The golid curve 1is the case of no collisions and the

dashed curved has p=.25 Torr with w-v = Kum. The Doppler
width, Kum = 900 M Hz.

8. d, plotted as a function of [v/(Kum)] from Eq. (126) with
w-v = 0.0, The top curve is the case of no collisions and
the bottom curves have p = .25 Torr. The dashed curve

is the Smith and Hansch result. The Doppler width, Kum = 900
M Hz.
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