
Abstract

This note gives a short and elementary proof of MacLane's theorem on the embedding of graphs in a 2-sphere.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE :
\because US Deportment of Commerce Springfield VA 22151

The purpose of this note is to give a short and elementary proof of a theorem by Saunders MacLane on the embedding of graphs in the 2-sphere [4]. Existing proofs are the original ones of MacLane and an algebraic topology proof by Lefschetz [3]. Our proof is by Kuratowski's theorem [2].

Terminology follows [4] and [1], with the exception that we shall call MacLane's 2-fold complete set of circuits a P-base.

Let G be a nonseparable graph.
Theorem. If G has a P-base, then G is planar.
Proof. Let C_{1}, \ldots, C_{n} form a P-base for G, and suppose that G is nonplanar. Then $n>1$ and, by Kuratowski's theorem, G has a subgraph H homeomorphic to K_{5} or to $K_{3,3^{\circ}}$. We claim that H also has a P-base. This is immediate by induction if it is first shown that G - e has a P-base for each arc e of G. But, if e is in exactly one C_{i}, say C_{1}, then C_{2}, \ldots, C_{n} form a P-base for $G-e$, and if e is in two C_{i} 's, say C_{1} and C_{2}, then $C_{3}, \ldots, C_{n}, C_{n+1}=\sum_{i=1}^{n} C_{i}$ form a P-base for $G-e$.

Thus H , hence also K_{5} or $\mathrm{K}_{3,3}$, has a P-base. We now show that this is impossible.

If C_{1}, \ldots, C_{6} form a P-base for. K_{5}, then each of the ten branches of K_{5} is in exactly two of the circuits $C_{i}, \ldots, C_{6}, C_{7}=\sum_{i=1}^{6} C_{i}$. But each circuit has at least three branches, so

```
AMS 1970 subject classifications. Primary 05 C 10.
Key words and phrases. planar graphs, 2-fold complete set of circuits.
```

$\sum_{i=1}^{7}\left(\right.$ number of branches in $\left.C_{i}\right)=20 \geqslant 21$.
Similarly, if $\mathrm{C}_{1}, \ldots, \mathrm{C}_{4}$ form a P-base for $\mathrm{K}_{3,3}$, then set $C_{5}=\sum_{i=1}^{4} C_{i}$. Since each circuit in $K_{3,3}$ has at least four arcs, then $\sum_{i=1}^{5}$ (number of branches in C_{i}) $=18 \geqslant 20$, completing the proof.

The converse of the theorem is of course also true, but the proof of this is trivial.

References

1. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
2. C. Kuratowski, Sur le probleme des courbes gauches en topologie, Fund. Math., 15, 1930, 271-283.
3. S. Lefschetz, Planar graphs and related topics, Proc. Nat'1. Acad. Sci., U.S.A., 54, 1965, 1763-1765.
4. S. MacLane, A combinatorial condition for planar graphs, Fund. Math., 28, 1937, 22-32.
