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PREFACE

This report was prepared under NASA Grant NCR 05-003-406, Lunar Soil

Properties and Soil Mechanics, for the National Aeronautics and Space Admin-

istration. Technical liaison for this work is conducted by the Assistant

Administrator for University Affairs.

James K. Mitchell, Professor of Civil Engineering, served as Principal

Investigator for these studies; Franklin C. Hurlbut, Professor of Aeronautical

Sciences, served as co-investigator; Dr. H. John Hovland, Assistant Research

Engineer, served as project manager; and Mr. C. Robert Jih, Graduate Research

Assistant, participated in and executed much of the research described in

this report.
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ABSTRACT AND SUMMARY

This report brings to a conclusion research on the fluid conductivity

of lunar surface materials under this grant, and summarizes investigations

conducted on such phenomena between 1969 and 1971.

Within the initial period preliminary investigations indicated that:

1. Gas flow in lunar surface materials would be of the continuum,

transitional and free-molecular types with the latter types always

occurring at sufficient distances from gas sources.

2. New theoretical studies were needed to extend the framework within

which analysis of experimental flow data might proceed.

3. Experimental studies were required to provide the physical basis

for additional conceptual development.

Results of the theoretical and experimental programs responding to

the above may be summarized as follows:

1. Theoretical methods were developed by Raghuraman for the analysis

of transitional and free-molecular flows, and for analysis of

lunar permeability probe data in general as described by Witherspoon

9 13
and Katz (Mitchell et al ), Witherspoon and Willis , and Hurlbut

et al.5

2. Experimental studies of rarefied flows under conditions of a large

pressure gradient (described in the body of this report) have

shown flows in the continuum regime to be responsible for the

largest portion of the pressure drop between source and sink for

one dimensional flow, provided the entrance Knudsen number is

-2
sufficiently small, i.e., Kn < 10 .
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3. The concept of local similarity (see Ref. 13 and present report)

leading to a "universal" nondimensional function of Knudsen number

was shown in the experimental work to have approximate validity.

By means of this universal function flows in all regimes may be

described in terms of an area fraction and a single length para-

meter. However, slightly differing behaviors of the various samples

in the free-molecular regimes were found, suggesting the desirability

of an extension of the analysis to include two length parameters.

k. Synthetic porous media prepared from glass beads exhibited flow

behavior similar in many regards to that of a natural sandstone.

It is suggested that studies using artificial stones with known

pore configurations will lead to new insight concerning the

structure of natural materials.

5. The experimental method developed in this work involving the use

of segmented specimens of large permeability has been shown to be

fruitful in the context of these investigations.
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INTRODUCTION

An experimental investigation of one-dimensional gas flows through

porous bead beds and sandstone was undertaken for flow Knudsen numbers

in the range 10 3 to~102 based upon characteristic pore diameters. It

is the purpose of this final report to describe the experimental apparatus

and procedures and then to report and discuss the results.

The motivation for this study derived initially from an early objec-

tive of the lunar soils program to discover and develop means for the

determination of the permeability of lunar surface materials through

Q

measurements in situ . It was anticipated that such measurements might

be accomplished through the use of a portable probe which would introduce

gas at a measured pressure and flow rate into the material and which would

then make use of a sampling of pressures at nearby points.

In the lunar environment the gas pressures associated with the probe

may be expected to vary from the inlet pressure to near vacuum. It

follows that a transition from continuum flow to free molecular flow will

necessarily occur somewhere within the material. From preliminary study

it was concluded that the development of a successful lunar permeability
.'

probe would require a wider understanding of flows in porous materials

under rarefied gas conditions. To be more precise, an understanding was

needed of flows which suffer transition from the continuum to the Knudsen

(also termed free-molecule) flow regimes when passing from one region of

the sample to another. We may assume these regimes of flow to be well

characterized by the value of the Knudsen number, Kn, which in this context

is given by the ratio of the molecular mean free path to the pore diameter.

Thus an understanding was required of flows in which the Knudsen number

changes within the material from values much smaller than unity near the
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probe source to values much greater than unity as the flow approaches the

sink region some distance away.

Although there is a modest body of work in the literature, on rarefied

flows through capillaries as for example in references 1, 2, 3, 4, 6 and 7,

none is of value in displaying the details of transitions occurring under

conditions of large gas density gradient. Experimenters for the most part

have arranged entrance and exit conditions to be sufficiently alike to

preclude a change in regime within the test body, and corresponding limitations

in boundary condition have ordinarily been imposed in theoretical studies.

The experimental work of Sreekanth on short tube flows constitutes a

modest exception, but the ratio of exit to entrance Knudsen numbers was only

26 at maximum and pressure distributions over the tube length were not

measured.

Perhaps the most direct theoretical attack on the problem of transition

flow with arbitrary pressure ratios was completed recently by Raghuraman

using both a discrete ordinate method and a moment method. The configuration

was that of a two dimensional slot. Unfortunately, the pressure ratio was

limited to ten by problems of convergence and computation time. Exten-

sion to a cylindrical geometry seemed possible but more difficult.

Another kind of approach, essentially one of fitting and interpolation,

14 12
is exemplified by the work of Zhdanov and more recently of Wakao

Parametric formulas for capillary flow are produced which give the flow

rate as a function of Knudsen number for all regimes. However, it is

assumed that the pressure ratios are never large enough to cause a transition

of flow within the capillary. Thus the background in the field of our

investigation is not rich. The most promising theoretical and experimental

studies deal not with flows in porous media but with slot and capillary flows.



3

The present experiment is designed quite straightforwardly to examine

flows in which transition occurs within the test body and to perform tests

on porous solids rather than upon straight capillaries. Since it was es-

sential that transition occur over a substantial distance along the axis

of flow to permit the physical resolution of details of the pressure

distribution, it was recognized that a volumetrically large, low density

flow would be required. Such flows can be established only in materials

of very high permeability; hence our initial decision to fabricate high

permeability specimens from aggregates of coarse granular materials.

Examination of the requirements relating to pressure measurements

at points intermediate to the ends of the specimen led to the present

sample design. The specimen consists of a series of cylindrical segments

co-axially alligned within a chamber which provides a gas seal along the

perimeter of each segment. The planar interfaces are separated by small

settling volumes, and pressure taps connect each of these volumes to

the pressure metering system. Flow is axial and one-dimensional. A

schematic of the geometry is shown in Figure 1 and more details of apparatus

and sample construction are given at a later point in this report.

THEORY

It is our purpose in this section to develop generalized expressions

which permit the display of certain features of flow behavior and of

certain useful parameters as functions of Knudsen number. It is an assump-

tion of this development that we may scale all phenomena in terms of Knudsen

number based upon a single length parameter. The utility of this assumption

is itself among the questions to be examined. The work follows very closely

that already reported in an earlier project report by the present group
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FIG. 1 SAMPLE CHAMBER SCHEMATIC (PARTIALLY SECTIONED)
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Flows in porous media whether of liquids or gases are characteris-

tically associated with low Reynolds numbers, the Reynolds number being

based upon average flow speed and viscosity and upon the average pore

size of the material. An expression which relates the mean flow speed,

V, to the gradient of pressure, Vp, may be written from Darcy's law for

one-dimensional flow as

V = - c Vp (1)

in which c is a dimensional constant. For incompressible continuum flow

(2)

where k is the permeability with dimensions of length squared and y is the

absolute viscosity. In general, however, c will be a function of the

pressure as well as the viscosity and also of the appropriate pore dimen-

sions which characterize the particular system.

We now define a generalized coefficient, c(p), such that

c(p) = ̂ 2 c(p) (3)

from which one may see that c(p) is a dimensionless function of local

pressure or Knudsen number only. Knudsen number and pressure are in-

versely proportional in this context. L2 has dimensions of area and can

be thought of as a generalized permeability, applicable in all flow regimes.

We also assume steady isothermal flow in a porous medium which is homogen-

eous and isotropic. We assume that the steady condition of flow once

established is independent of the initial state of pressure in the medium.

These are the basic local similarity assumptions. We confine our attention

to the one-dimensional case but recognize that the extension to more general

cases can easily be made (see Ref. 12).

In addition we define, F(Kn), a function of Knudsen number, as
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F(lcn) = . (4)

Thus the permeability k is given by the expression

* F(Kn)

The Knudsen number is related to the viscosity and pressure through the

expression

^- \ , - 2 m
— 1/2

in which v is the mean molecular speed, equal to [8RT/TT] , R is the gas

constant and A is the molecular mean-free-path. In the present report

the Knudsen number is calculated on the basis of L = 2a where a is the

mean pore radius.

In accordance with the foregoing assumptions and definitions we write

for the mass flow rate, Q,

In the above f is an area fraction equal to the total pore area divided

by the total cross sectional area, A is the cross sectional area of the

•

sample, po is the upstream density and Vo is the upstream volumetric flow

rate. From (7) we obtain

F(Kn) , |A Li AH!
Ax 2y poVo

in which finite differences have been introduced to reflect the physical

nature of the experiment.

The function F(Kn) is a "universal" function based upon the local

similarity concept. The utility of F(Kn) in the correlation of results

obtained for the various regimes of flow will presently be examined.



Since F(Kn) is a function of pressure only we may also write from

Eq. 7

Pi

po Vo dx = fL2A
F(Kn)

(9)

Integration of the term on the left yields po Vo&i,2 which is equal

to an integral function of pressure only taken between the limits

pi = pxi and pxa- In examining the significance of Eq. 9 we find it

useful to consider the following schematic of flow through the sample.

INLET

CONDITION
T*~

po Vo

3 >:, x 2 x

— « —

3 >:4 >r
^ 5 >f

tg

i Px x > m

p
*4i m

^.

X

^—

EXIT

CONDITION

^TO PUMPS

m

Pressures are measured at Xj, x2, x3, etc. to yield a particular

distribution pi, p2 etc. for a particular setting of the quantity po Vo.

By changing the setting of the flow control valve we could, for example,

arrange that the pressure which had been observed at x4 would now be
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measured at xa and we would now find a new distribution of pressures

over the length of the sample. If the transition zone were formerly

in the region &i«, n it would now occur within the region £2, n and would

be of similar configuration but somewhat more extended along the axis of

flow, assuming of course that the down stream condition remained essentially

unchanged. A further reduction in flow would result in a further extension

of the transition region.

The foregoing considerations lead to a technique for scaling pressure

related data obtained for several variations of inlet condition. These

variations are introduced as a part of the experimental procedure to

produce a scaling in length of the transition process. Accordingly we

first pick a reference flow condition (po Vo)o such that all regimes are

present in the sample. If now in some other more rarefied condition of

flow with initial conditions (po Vo)i we have observed a particular

pressure at X2, we scale from Eq. 9 to predict that it would have been

observed at location x under the reference condition. Thus we may write

I = ^2,n (poVo)i ,1Q.
X'n (PoVo)o

The length £ is a "reduced length". Similarly one may find reduced
X} n.

lengths for any other measured pressure in corresponding terms. Applica-

tions of the concept of reduced lengths in the reduction of data will be

made at a later point in the report.

An interesting question, and one which is of importance from the

design viewpoint concerns the identification of the flow regime which

may be dominant during probe operation. In an earlier report the concept

of the "sudden freeze" model was used to estimate the proportionality

between the continuum and free-molecule regimes. Here we apply this



concept in the one-dimensional case.

po

X = XO

Specimen
Pexit

x = x
exit

x = xi 1 sudden freeze

p = pi I section at which
' X * 2a

Darcy's Law for the continuum regime gives the mass flow, Q, as follows:

n fAkp dp_
^ \RI dx

We integrate to the freeze section xx and obtain

Q =
fkA (po2-?,2)

2uRT (XI-X)
(ID

For the free molecular regime, Q is given by the expression

Q - -*F
8 fA 2a dp

v dx

which we integrate from xi to x exit to obtain

_8_ f A 2a (pl"Pexit) (12)

From liquations (11) and (12), letting p exit > 0 ami a s s u m i n g po •• p ,

we find

. ..
exit

Xj-X

Ao2 (13)



2uRT
in which we have substituted for pi; pi = —~ , 2a being equal to the mean

free path AI at this point. If the permeability k at the continuum end is

r)

now set equal to a constant of order one multiplied by 4a , the ratio of

free-molecule flow length to continuum flow length is approximately equal

to the square of the upstream Knudsen number. Thus

The applicability of this model remains to be examined in light of the

experimental results.

EXPERIMENTAL

APPARATUS

The low pressure permeability apparatus is connected with the large

vacuum pumping system of the UC Rarefied Gas wind tunnel through a port

and gate valve. The speed of the pumps and connecting manifold is more

than adequate to maintain the exit pressure at the downstream end of the

specimen to values of the order on one micron Hg. A schematic of the

apparatus appears in Figure 2 and a photograph is shown in Figure 3. The

specimen test section, flow control apparatus and pressure measuring

system are described in the following paragraphs.

1) Gas Source. Bottled dry nitrogen gas is supplied through pressure

regulators and precision needle valve.

2) Flow metering system. A set of laboratory flow raters (Fisher

Porter Model 10A-1017A-LK) was installed in a suitable manifold. These

mete'rs permitted flow rate measurements over the range 600 to 5 x 10 3

cm3/sec at standard conditions. At the lowest flow rates, that is in the
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Fig. 2. System assembly.



Fig. 3. View of the permeability apparatus
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range 10 2 to 10 3 cm3/sec, the well known pipette method was used. In

this method the rate of travel of a soap film was measured.

3) Test Section. The test section is constructed of two demountable

sections of stainless steel tubing with appropriate end flanges. Each

section can contain up to five specimen segments and the necessary spacers.

The specimen sections consist of a plexiglass outer ring 2 3/4" OD by 1"

in length within which is cemented the sample itself. "0" rings provide

the seal between the peripheral surface of the specimens and the inner

wall of the chamber. At each mid-position of the space between samples

there is a wall pressure tap. Each tap is connected to a single manifold

through a toggle valve. Thus each intermediate region can be connected

as required to the pressure manifold which in turn is connected to the

transducer of the differential pressure gauge. Appropriate shut-off

valves are incorporated.

4) Differential pressure gauge. The basic instrument is a

differential pressure gauge of the diaphragm type manufactured by MKS

Instruments Inc. (MKS Baratron, Type 77M-XR, 30 Torr to 0.01 Torr

full scale). The manufacturer has provided a calibration chart which

shows the accuracy to be within .3% on the lower range and .002% on

the high range. The reproducibility is claimed to be better than 0.02%

of full range on each scale. A mechanical and diffusion pumped vacuum

system is attached to the reference leg of the metering system.

SAMPLE PREPARATION AND CHARACTERIZATION

In the initial period of this work it was determined that cast

cement and sand samples were insufficiently permeable to permit effective

testing at low gas densities. Flow rates were too small to be easily
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measured and the response time of the gauging system was too large. After

a little experimentation we found it possible to make suitable samples

by sintering glass beads in a ring-shaped form of graphite. We also

found that a grade of Boise sandstone was sufficiently permeable for our

tests. Accordingly samples used in experimental program were of three

types, 3 mm diameter glass beads, 4 mm diameter glass beads and natural

sands tone.

In preparation of the sintered samples, beads of a particular size

were placed in the graphite ring to a standard depth and then covered by

a weight. The assemblage was shaken to achieve closer packing and then

placed in an electric oven. The oven was slowly heated to 890-895°C,

held at that temperature for 40 minutes and allowed to cool. Several

samples were sintered at one time to insure a uniform history of

preparation. A selection was then made of the eight or nine samples

showing the most nearly equal permeability under atmospheric pressure

conditions. Some shrinkage was observed to occur, being somewhat greater

for the samples constructed of 4 mm diameter beads than for those constructed

of 3 mm beads. The resultant pore configuration in the later case

resembled more closely that for ideal close packed spheres. Photographs

showing characteristic packing patterns in these samples are shown in

Figures 4 and 5.

The sandstone specimens were cut from the natural Boise sandstone

material to fit the specimen holding rings. Photographs of surface and

pore configuration in this material are shown in Figure 6.

All specimens were cemented into ring holders using an epoxy cement

which retained the samples and prevented gas from flowing between the

sample edge and the ring holder.



Fig. 4. 3 mm Sintered glass beads specimen



Fig. 5. 4 mm Sintered glass beads specimen



Fig. 6. Sand stone specimen
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The porosity of the samples was measured by the gas expansion method.

The pore size was measured by the capillary pressure distribution method

and checked by measurements on the micro photographs. Results of these

measurements are given in Table I.

Table I

Sample Characteristics

Effective area
fraction f

Averaged pore
size radius
a (cm)

Sample disk
diameter (in)

Cross-sectional
Area A (cm2)

Thickness
Ax (cm)

fA
Ax (cm)

3 mm Sintered
Glass Beads

26.0%

1.88 x 10"2

1.960

19.5

1.61

3.15

4 mm Sintered
Glass Beads

5.74%

1.23 x 10~2

1.991

20.1

1.49

0.775

Boise Sand
Stone

I

29.0%
i

i
j
i

3.46 x 10~3 i

i

1.991

,

20.1

1.62

I

3.60 ;

In the foregoing we have assumed the effective area fraction to be

the same as the .porosity. For the sandstone samples the pore is assumed

to be circular. The pore shape in the case of the glass beads is more

likely to be that of an equilateral triangle. We assume the characteris-

tic length to be the hydraulic diameter which in this case is the diameter

of the inscribed circle.
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PROCEDURE

The specimens were set into the test chamber and allowed to degass

under vacuum conditions. After the pressure had become stabilized and

uniform throughout, nitrogen was introduced to the sample and allowed to

flow for some time. Thereafter the sample was again evacuated. This

process was repeated twice in order to insure that the gas flowing was

indeed primarily that intended. Following this procedure the initial

flow was established and pressure measurements obtained. The flow rate

was readjusted repeatedly to expand the scale of transition according to

the prescription outlined in the section on theory.

RESULTS AND DISCUSSION

All observations of pressure and flow rate together with computed

values of permeability, Knudsen number and other quantities of signi-

ficance are given in Tables II, III and IV. The samples were numbered

in manufacture for identification and introduced in arbitrary order into

the test sections. As is evident, the columns of data are ordered

according to the physical arrangement of samples and not their numerical

designators.

fA Ap2
Calculated values of the quantity -. v A are plotted as functionsM J Ax po Vo ^

of Kn in Figures 7, 8 and 9 for the three sets of samples. For comparison

the interpolation formula due to Wakao was used to obtain predicted values

over the same range of Knudsen numbers. Wakao's equation may be written

(see Ref. 12) as

(15)

1
k f A Ap
2y Ax poVo

DkA DkA
1 + 2a '

A

2p

TT 2 a
^ } ,
2_a

M2 1
8U
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2 uRT 1
If we substitute for Kn from Kn = „ ,-> we may rewrite the above as

2a(v) p

2avin which D . = —— .KA j

The data as plotted clearly show the asymptotic behavior for the

continuum and Knudsen regimes with a well resolved transition between.

We may observe a mid-transition point occuring at Kn * 0.2. The Wakao

model behaves well in the continuum regime but predicts permeabilities

which are a little too large in the Knudsen flow regime. Transition occurs

more abruptly for the experimental results than for Wakao's prediction,

suggesting on physical grounds that a sudden freeze model may be found

useful.

In these figures we have also plotted the permeability, k, versus

Kn for each of the samples. The transition region is again approximately

centered about Kn = 0.2. It is evident that in the Knudsen regime flows

experience a much larger permeability than those in the continuum regime.

That does not mean, however, that the greatest impedance to flow is

necessarily experienced in the continuum regime. The measure of local

impedance may be considered to be.proportional to the pressure gradient

per unit of mass flowing, which we may represent by the quantity P.

except for a factor .of proportionality. This quantity is shown as a function

of Kn in Figures 10, 11 and 12. We note in each instance that the normalized

pressure gradient rises in approximately linear fashion over the region

where the permeability is essentially constant. Thus we may show from Eq.

8 that Ap/Ax ~ Kn ~ 1/p for k=const. and we find this prediction confirmed
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by the observations. In the next section of these plots, from Kn ~ 0.3

the flow has entered the transition regime and the permeability (Figures

7, 8, 9) is now found to undergo a steep rise. From this point on, the

behavior of the pressure gradient is determined by a competition between

the tendancy for that quantity to rise as a result of increasing rarefaction

and its need to decrease as a result of the swiftly increasing permeability.

The net effect produces a maximum in Ap/Ax for Kn ~ 0.4 to 1.0 followed by

a decrease which is rather large for the 3mm bead specimen but rather small

for the 4mm bead specimen and the sandstone. This maximum bears a strong

qualitative relationship with the minima in Q observed for transition flows

in several previous studies.

It is interesting to note the very substantial similarity between the

latter two materials in this regard. One may conjecture that these materials

are in fact quite similar in respect to some relevant shape factor which has

not been considered in our analysis but which is of particular importance

in Knudsen flows. We identify this point as one for further study.

The total impedance to flow experienced in any particular regime is

given by the integral of the pressure gradient over the length of specimen

in that regime. Accordingly in Figures 13 and 14 we have shown the

variation in Kn over the length of the specimen for typical reference flow

conditions. The concept of reduced length has been applied in the construc-

tion of these plots and the reference condition in each case has been

chosen to produce continuum flows in the initial portions of the samples.

In Figure 13 the Knudsen number for the 3mm bead specimen is plotted

as a function of its physical length, arbitrarily normali/ed to 8 units.

We see a smooth curve, increasing evermore rapidly in slope- ;is UK- down-

stream end of the sample is approached. Plots for the other specimens
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(not included in this report) show very similar behavior. Typically the

-2
initial value of the Knudsen number is of the order of 10 , and mid

transition at Kn ~ 0.2 occurs within 2% to 7% of the total length from the

downstream end. A representation which is more sensitive to behavior at

large Knudsen numbers, Figure 14, shows Kn as a function of the ratio

of the length between a data point and the downstream end to the total

length. Results for the three materials are shown on this plot. In the

_2
continuum regime, where (£ - & )/£ , ^_ 2 x 10 , the data points

for the three materials lie along well defined curves which are more or

less parallel. At smaller values of the length ratio the curves coalesce

to a degree and assume a greater slope. The behavior is most consistently

exhibited for the 4mm bead samples but the difficulties associated with

the measurement of very small flow rates at the larger Knudsen numbers make

a more precise description problematic. A comparison of Figure 14 with

Figures 10, 11 and 12 leads however to the conclusion that in flows where

-2
the Knudsen number is initially as small as 10 the integrated pressure

drop in the continuum regime dominates. It is evident at the same time that

the relative pressure drop between the limiting regimes is determined by

the initial Knudsen number as well as by the Ap/Ax behavior discussed in

the foregoing.

We return to the question of the value of the sudden freeze analysis

given in the section on theory. From Figure 13 it would appear that the

Knudsen number variation over the entire sample is continuous although more

pronounced over the final 10 to 15 percent of the sample. Thus the abrupt

upturn of the Knudsen number required for consistency with the sudden freeze

analysis is not present. While the analysis would predict the ratio of

X — X
length up to the freezing surface to that beyond, 1 exit, to be of the

xo- xi
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-4
order of 10 , the point of mid-transition in the variation of Knudsen

_2
number would actually appear at a ratio of about 10 or larger. We must

conclude that the physical behavior is not well described in such simple

terms.

In the final plot, Figure 15, we have shown a comparison of the be-

havior of F(Kn) as a function of Kn for the three kinds of material. It

is seen that the dimensionless function succeeds quite well in scaling the

behavior for the continuum regime but that there is somewhat poorer

agreement for the Knudsen regime. As we have suggested at an earlier point

it is possible that some resolution of the observed differences might

be made through an analysis which introduces a pore shape factor. This

may be found to be equivalent to the introduction of a second Knudsen number.

CONCLUSIONS

The present study has demonstrated the applicability of the concept

of local similarity to flows of gases in porous media in which the flow

may undergo transition from the continuum to the Knudsen regimes. The

reduction of data herein which has been based on this concept shows an

entirely acceptable degree of internal consistency throughout the range of

flow regimes. The same length parameter, the mean pore diameter, is used

throughout, and this is derived from continuum flow measurements. The

formulation is more successful than the interpolative Wakao formula but

fails to account exactly for behavior in the Knudsen regime.

The experimental method has been shown to have promise for the study

of the details of transition flows. It has been shown that flow bc-havior

in synthetic specimens follows the same general patturns as LliaL .in out;

kind of natural material. It appears reasonable to suggest that study of
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additional forms of synthetic materials could lead to more detailed under-

standing of configuration effects in natural materials. The concept of

sample segmentation, employed for the first time in these studies, has been

demonstrated to have merit both through the general consistency of all the

reduced data and particularly through the internal consistency of the plots

of Knudsen number dependence on length, Figures 13 and 14.

It would appear that development specifically directed to a lunar

permeability probe could now be undertaken with some confidence. From

the present studies we learn that flow in the continuum regime will be

dominant for one dimensional flows provided the entrance Knudsen number is

sufficiently small, i.e., Kn < 10 . Practical consideration in a par-

ticular range of permeabilities may preclude the high entrance pressures

appropriate in some cases in which event interpretations must take

cognizance of flows initially in the rarefied regimes. Since the local

similarity assumptions would appear to be adequately verified, techniques

for interpreting pressure distributions determined from probe observation

in terms of area fraction and pore diameter already discussed in previous

reports (see Ref. 13 and Appendix B) will doubtless prove satisfactory.

It would appear from a consideration of our laboratory experience

that the measurement of pressure distribution involving two or more points

of observation will require sophisticated handling of the mechanical design

of pressure seals. It is suggested that rock samples will probably require

small bore holes for pressure instrumentation and that the development of

a practicable probe system might follow this approach.
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NOMENCLATURE

a Average pore radius, cm.

A Cross sectional area of specimen, cm2

c Conductivity, defined Eq. .1

c(p) Generalized conductivity, defined Eq. 3

f Effective area fraction

F(Kn) Dimensionless function, defined Eq. 4

k Permeability, cm2

Kn Knudsen number, Kn = -—£. a

L Characteristic length

&j,2 Length of sample between coordinates Xj , x?_

p Pressure, torr or microns Hg, as noted

p Arithmetic mean pressure

pc Gas inlet pressure

Ap Pressure difference

Q Mass flow rate gm/sec

R Gas constant, for Hz R = 2.97 x 10 erfK

T Temperature, °K

V Average flow speed, cm/sec

v Mean molecular speed cm/sec
• _
Vo Volumetric flow rate (cm /sec) at po

Ax Thickness of a sample disk, cm

po Gas density at po, gm/cm

p Gas density at p

u Absolute viscosity, poise

A. Molecular mean-free-path, cm
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r^ • • • t^ i

o
0)
CO
1 .
cu
(3

-d

X

•i
PJ

Ol
CO
•H
o
ft

•iH
4-1

r~- in vo o • o C
CM rH rH 0)

II II U X 0
II II

0 0
ft H •> 3-

o
rH



A-15

CM

m

CM

1
m

-3"

i
m

m

O
iH
I

in

m
m

<*•
I

m.

r--
I

m

s
tr

e
a

m
 —

 *•
 

5
-6

Q

c

. 
S

a
m

p
le

 D
e
s
ig

n
a
ti
c

CO

rH
y
CO
m

c
u
la

te
d

 R

u

CO

CO

cfl
Q

U
n
it
s

6
CO
4J
M

T
e

s
t 

C
o
n
d
it
io

n

ON m
00 rH rH

in VO rH
rH

O vO -*
OO rH CM

m co CN

rH VO
O O CO

-<r CO CM

-3- rH CN
CN CM CN

CO CO CM

O m rH
oo oo m

• • *

CM CM CM

CM VO
1 1 CM
O OS 0
rH rH CJ rH

a M ' •-!
tu

0
rH

m
vO

CM i~» m
O CO O

o
r̂  00 rH rH
ON

m
O ON

oo o o
0
CO rH rH CN
VD CM

CM CM
ro r-» CO
in vO O

• • •
O rH O CM
ro CO

m
CO CO

o m
00 -J" »*

o • • • •
O f» O -H
rH CO

o
o m

o m o• • •
CO O CM

§ •*
ON

in

•
CJ

3. CO | CJ CM
O O 0) O
rH rH CO rH

p. IP, 10 3
pj 0

' <\ * M
0

<3

r-i
o
H

CJ
vO O CO

0 CO CM
CM co — . r^c^
r*N, • in • ' r*^ i
r^ m rH o • c

CM • rH •-
II II U

II II
O O
CX H •>

rH
rH

" CM CM CM
O O -3-

» t •
ON in rH

O rH CM
co in oo
CO CM . CM

OO C^ "̂
CM vO f-»

CM CM CM

St CM vO
00 vo ON

rH CO rH

r>. in r̂
vo m r^

• • •
•H CN CM

CJ

CO
1

CO CM vO
ti 1 1 <M
> * 0 0 0 O

T3 rH rH CJ rH

X

I o xs ^s ;2

* O I*
0.

A
J
-U

c
e
n
ti
p
o
is

e

m
m _^

h» rH CO
o rH m o
oo • • *
CM 1 — rH rH

A

' rH

m o <t
>3- rH O

0
CM ON rH CM
VO rH

CN m
oo in <3"
rH f- O

O 00 O CM
m CM

rH
CO ON

CM o CM
VO vo O

O
O -31 O CM
m co

CO CM
r- o

CM U1 CM

o o CM
O -3"
o
ON

CM

O

o
3- co ~~

3. co I O CM
O 0 CO O
rH rH CO rH

, 1 0 M-l
cx ID. •[>

cxJ o
<1 CX cs

<3

M
0
H

O
m u co

• o CO CO CM
!••» O • *^x f~~CM
vO • CM • r^ I
r~ in rH o • c

CM • rH r-
II II U )

II U
0 0
O, H •!> 3.

CM
rH

a
CO
CO

co

13

X

0
• r>
0
ex

co
CO
•H
o
a
•H
4-1

:> c
H 01
< 0



m in

I
m

CO
Q

I
m

ca
0)

CM vO

o o^a
rH t-H O

no

COa
•H
CO
Ol
Q

O

4-1

A-16

I
in

O OO

• •

ro CM

vO

I
m

in
m

oo
in

vO

CM

I
m

03
t-i

oo
o
CM

vO

CN

on

I
m

in
m

0)
4J
td

I-H
o
r-l
n)

to



B-l

APPEI&IX B

Utilization of .Permeability;; Probe Data for Determination of

Area Fraction and Pore Diameter

The interpretation of pressures determined by probe measurements at

various distances, r, from a gas source undertaken with the objective of

determining the area fraction and pore diameter has been described in earlier

reports of this series (Ref. 8.and 13). A brief account of the method

proposed will be repeated here. Only one-dimensional flows will be dis-

cussed in this note but one can easily make the extension to two and three

dimensional axi-symmetric flows.

Since the flow is one-dimensional we replace r by x. We also

let F(kn) = FI (C) where (IB)

C = I (2B)
Kn

The foregoing substitution, which states that a function F of the

Knudsen number is equivalent to a function FI of the inverse of the Knudsen

number, is made for convenience and to bring the notation of this note

into accord with the earlier work.

From Eq. 7 and the above definition we find that

F! (O = fA L^_p_ dp_ . (3B)
(poVo) n RT dx

also we may write, from Eq. (6)

Kn" = c = SRT ' . (4B)

We now take the logarithms of Eq. (3B) and (4B) with the result that

in t, = £n [p] + £n j - r J (5B)
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and

in FjCO = in |"pdpj + in \ f AL2 j (6B)
L dxj : potf oyRT j

The ratio of the derivatives of these expressions may be written

d *n P
d £n ? " d Jin [p]

It follows that the curves of Fj(C) vs C and p -~ vs p, plotted on

identical log-log scales, differ only in the positions of their respective

origins of coordinates. Thus, measured values of p ~ are plotted vs p

on log-log paper, and FjCC) vs C is plotted on identical paper. The two

plots are adjusted until the data points lie on the known curve. The

coordinates of the origin of the experimental plot relative to the universal

curve clearly yield both f and L. The superposition of experimental data

points and universal curve is illustrated in Figure B-l.

Since experimental error will influence the supposed relative posi-

tions of the two origins it should be evident the statistical reliability

of determinations of f and L will depend upon that of the data points.

Thus it appears probable that study of probe design and performance

will show the desirability of obtaining several measurements per sample.
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FIG. B-l EXAMPLE OF MATCHING PROCEDURE IN DETERMINING
PORE DIAMETER AND AREA FRACTION


