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1.0 SUMMARY

Two principle areas studied on this contract were stress corrosion crack

growth rates of a titanium alloy in liquid environments containing halide

ions and pitting corrosion of titanium in bromide solutions. Examination

of the simpler pitting process gives some new insights into the electro-

chemistry of stress corrosion cracking.

Crack Growth in Liquid Environments Containing Halide Ions

The question that this work attempted to answer was "what is the rate

limiting process that controls the rate of region II (plateau) velocites

observed in many titanium:environment couples during SCC?" Two initial

assumptions were made, that the rate of propagation was controlled by a

macroscopic solution parameter and that this parameter was viscosity. A

series of solutions were prepared using lithium chloride as the solute and

water, methanol, glycerin, formic acid, acetone, dimethyl sulphoxide, etc.

as solvents, these solutions were prepared with a 5:1 solvent-solute ratio.

Viscosity was varied by changing the temperature and it was found that:

in all solvents the velocity of cracking was proportional

to the reciprocal of the viscosity;

each solvent gave a separate relationship;

the temperature dependence and numerical values

for the apparent activation energy of cracking

and viscosity were the same.

Various other parameters were studied in an attempt to obtain a single

relationship for all solvents or to account for the differences between sol-

vents. It was found that a conductivity;crack-velocity correlation existed

for all solutions over a wide range of values. However, differences could

also be attributed to potential and chemical effects. Detailed evaluation of

the results lead to the conclusion that although some surprising good relation-

ships were established no simple explanation based on fluid flow or various

types of chemical reactions could account for all the results. Several other
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experiments grew from the main program which resulted in a much improved

knowledge of the influence of potential, pH and temperature on crack veloc-

ity in aqueous halide solutions.

Pitting of Titanium

Small diameter titanium rods were cast in epoxy resin rods like a pencil .

Pitting corrosion on one end with anode facing up gives uniform current dis-

tribution and conditions in the electrolyte applicable to one-dimensional

analysis of mass transport. Current-potential curves, morphology of the

corroding surface, gas analysis, valence of titanium, potential gradients

in the pit electrolyte, and open-circuit potential transients were studied

in bromide solutions. The evidence indicates that titanium dissolves at

close to the reversible potential for Ti(IV) and that a salt film covers

the metal surface.
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2.0 INTRODUCTION

This is the final report on the fundamental investigation of stress cor-

rosion cracking of titanium in this series of NASA/Headquarters contracts

at The Boeing Company. Studies of stress corrosion cracking were initiated

at the Boeing Scientific Research Laboratories in 1965 (1) and continued

under NASA sponsorship beginning July 1966 (2). Work from July 1966 through

June 1971 was contract NAS7-489 (3). The present report summarizes work

completed in the period of July 1, 1971 through April 1972 on contract

NASW-2244. Brief letter reports were submitted on a quarterly bases.
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4.0 TECHNICAL DISCUSSION

4.1 STRESS CORROSION CRACKING OF A TITANIUM ALLOY IN CHLORIDE

CONTAINING LIQUID ENVIRONMENTS

INTRODUCTION

Stress corrosion cracking (SCC) of titanium alloys, or any material,, is

a complex subject— for example, the scale (size) that one may examine the

problem ranges from the failure of large structures to atomistic descriptions

of events at a propagating crack tip. In recent comprehensive reviews (1,2)

the range of the subject was demonstrated and it was shown that the myriad

variables render any really complete and quantitative description of SCC

unlikely at least in the near future. Thus, in selecting any aspect of the

problem the contraints on experimental and theoretical analyses emerging from

the investigation must be realized. The work which is described in this

paper is an attempt to explain the controlling factors that determine the

plateau velocity of a stress corrosion crack in some systems. The origin

of this problem can be understood by examination of Figure 1 which illus-

trates the extensive range of plateau velocities which may be observed in

one heat treatment condition of one alloy. It is noted that the environ-

ments contain liquids and gases, and in fact, if results for cadmium embrittle-

ment (3) were present could also include solid environments. Contemplation

of Figure 1 raised the obvious question of the factor(s) that controlled

the plateau velocity and the point was selected as being worthy of further

study. It was clear that one single physical property could not form

the basis of an explanation of growth velocity— for example, it is difficult

to see the connection (if any) between liquid mercury, molten halide salts

and hydrogen gas. Thus, an initial restriction was placed on the range of

these experiments and this paper only considers cracking in fluid environments.

It was considered that viscosity could at least provide a partial correlation

in liquid environments although there was little evidence in the literature

to support this guess. Sedriks (4) had shown that the time to failure of

smooth specimens of titanium tested in a series of alcohols containing iodine

could be correlated with the viscosity of the solution. Beck, et al., (5) had

also shown that the velocity of cracking in water-glycerol-HCl mixtures
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varied as the viscosity to the half power. These results showed if nothing

else that viscosity was indeed a variable. It was considered at the in-

ception of this program that viscosity could control velocity in several

ways of which the most probable were:

• fluid flow within the crack cavity;

• through its influence on mass transport

processes by affecting values of the diffusion coefficient

(B)or conductivity (K).

During the course of this study several other points such as the influence

of concentration of halide ions and potential effects were investigated.

A brief description of these results are included to elaborate on some of

the statements made in Refs. 1 and 2. It should be noted that in any

investigation that purports to study the influence of a variable such as

concentration, temperature, etc., one should consider the viscosity changes

produced by varying the test conditions.

An additional complication in alloy selection became clear during the course

of this study. The alloy selected was Ti-8Al-lMo-lV which is renowned

throughout the stress corrosion world for its splendid susceptibility to SCC.

The degree of susceptibility for any alloy is best demonstrated in practice

by the position of a velocity (V) versus applied stress intensity (K) in the

V:K plane, which defines both the plateau velocity and the stress intensity

value below which cracking will not occur, K- . It is well established that
J-OdLi

the presence of Cl , Br and I ions in aqueous solutions either induce crack-

ing or accelerate cracking with respect to any crack growth that occurs in an

inert environment.* The latter form of crack growth, first reported by

Sandoz ( 6), may be due to residual hydrogen in the metal or a creep type

failure. In the alloy Ti-8Al-lMo-lV this (inert environment) form of crack

growth is strongly dependent upon heat treatment and the variation is

* Such crack growth in inert environments does not occur in all alloys. For
example, it is prevalent in the alloy Ti-8Al-lMo-lV but is rare in Ti-4Al-
3Mo-lV. The extent appears to be related to the hydrogen content of the
alloy (6,7).
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represented semischematically In Figure 2. It can be seen that in the

lowest toughness condition the difference between the salt solution and

an inert environment is at a minimum but the difference increases as the

rate of cooling from the solution treatment temperature in the ot+g region

increases. The behavior of the sheet of Ti-8Al-lMo-lV selected for this

study was similar to that shown in Figure 2. Unfortunately,

an earlier study (see Ref. 1) indicates that after the 820°C, water quench

treatment of the plate of Ti-8Al-lMo-lV used, crack growth in inert envi-

ronments at room temperature was extremely slow >10 cm/sec, and this

result was prematurely extrapolated to the present study. Crack growth in

Ti-8Al-lMo-lV alloy used in this study after the same heat treatment

occurred at 'v-lO cm/sec, in inert conditions.

As in all SCC experiments the experimental variables must be recognized and

controlled. Thus in these tests:

• the alloy and heat treatment, specimen orientation,

loading rate, etc. were constant

• the test solutions in the first part of the work described

herein contained chloride or bromide ions added in the form

of the lithium salt, but other solutions were studied later

in the program. These solutions were prepared with a con-

stant mole ratio - 1 mole of salt being added to 5 moles

^ of the solvent.

4.1.1 Experimental Techniques

The techniques used are summarized briefly in the following sections. More

complete descriptions may be found in Refs. 5 and 8.

Alloy—The Titanium-SAluminum-lVanadium-lMolydendum (Ti-8-1-1) was selected

for this study as it had been widely studied both in this laboratory and by

other workers. A sheet 0.25 inches thick was selected which showed an

extreme transverse (0002)a texture which results in preferential crack pro-

pagation in the longitudinal direction. The heat treatment selected was

820°C for one hour and water quenched as this resulted in the occurrence crack

extension over a wide range of K levels.
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Specimens—Double Cantilever Beam (DCB) specimens were cut from the sheet

in the WR orientation. These were loaded to a constant deflection using

wedges of a Ti-11% Mo alloy heat treated to a strength level of 180 ksi.

The applied stress intensity levels were computed from the standard equa-

tion for this specimen ( 9). The specimen dimensions for these tests were

one inch wide and five inches long, utilizing an initial crack length of

2.5 cm. Crack extension could be measured over a length of ̂ 5.0 centimeters.

Properties
2

Mechanical Properties—Yield strength 12A Ksi (87.2 Kg/mm ),

ultimate tensile strength 134 Ksi (94.2
2

Kg/mm ), 15% elongation.

Fracture Toughness—90-100 Ksi/Ln", although this value is invalid

as a plane strain fracture toughness value

specimens did not comply with the thickness

criteria of t >2.5( ~ )2.Jx.
Microstructure—The heat treatment resulted in the conventional

equiaxed a+$ structure. There was no evidence

of the ou-phase within the a-phase.

Environments—A wide range of environments were studied in these

experiments, these were prepared from analyt-

ical grade chemicals. The bulk of the exper-

iments were conducted using solvent-halide

mixtures usually in molar ratio of 5

solvent:! solute (halide). The halide (chloride,

bromide, iodine) was in the form of the acid

or alkali metal salts.

Test Procedure—Tests were conducted at several temperatures between -70°C

and 220°C, and the general technique was as follows. The solution in which

the test was to be conducted was held at the required temperature (+4°C) in

a constant temperature bath. Unloaded specimen were cooled or heated to

approximately the same temperature, rapidly loaded and immersed in the solu-

tion. Crack extension was measured optically with reference to a grid

scribed on the specimen surface. During the tests at open circuit the

potential was monitored with reference to a room temperature saturated
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calomel electrode (SCE). In tests performed under a controlled potential

a Wenking potentiostat was used in conjunction with a platinum counter

electrode and a room temperature SCE.

Physical Property Measurement—The viscosity of many of the solutions used

in this program was measured using calibrated falling-ball or Ostwald vis-

cometers. In some instances data from the literature was used. The

conductivity of each solution was measured using an AC bridge with the normal

capacitance compensation (10). The measurements were made at a fixed fre-

quency of 1000 cycles/sec. The conductivity cell was calibrated with a 1.0

denial solution of KC1. The electrodes of the conductivity cell were bright

platinum because it is known that some nonaqueous solvents (e.g., DMSO (11))

decompose at platinized-platinum electrodes.

4.1.2 Viscosity-Velocity Relationships

Lithium Chloride - Water

This environment was selected because of the wide range of temperatures (and

viscosities) over which tests could be performed. Using the 1:5, LiCl:H?0

mixture it was found that tests could not be performed below ̂ -70°C due to

precipitation of LiCl which occurred preferentially on the specimen. Tests

were performed over the temperature range +112°C to -70°C in this solution.

Some viscosity data for these solutions was obtained from Ref. (12) and some

from Ref. (13) and the two were in excellent agreement where they overlapped.

The variation of plateau velocity with temperature is shown in Figure 3,

and shows a similar trend to the viscosity data. It is immediately apparent

that the velocity does not show a linear relationship over this tempera-

ture range, and thus the apparent activation energy for the process is

not constant— in fact, the value varies from 4.4 Kcal/mole at the higher

temperatures (̂ 80°C) to 8.4 at the lower temperatures (̂ -50°C).

The apparent activation energy of the viscosity exhibits both a similar

variation and approximately the same numerical values over this range (see (12))

Figure 4 shows the variation of the logarithm of the velocity of crack growth

with the logarithm of the reciprocal of the viscosity which illustrates that
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a linear relationship is obtained with a slope of 1.14. A smaller number

of tests was performed in which the halide ion or the action were dif-

ferent. Figure 4 includes data for LiBr-water and HCl-water solutions and

it can be seen that these points are close to the LiCl-water results.

Other Solutions

Having obtained this relatively good correlation between velocity and

viscosity the program was extended to include other solvents. The choice

of such solvents was restricted by the requirement that the solubility of

LiCl or LiBr had to be sufficiently high to produce a 5:I/solvent:solute

solution. The following solvents were found to fulfill this requirement:

Methanol

Glycerine

Dimethyl Sulfoxide

HexamethylPhosphoric Triamide Lithium Chloride

N, N-DimethylAcetamide

Formic Acid (.9% HO)

Acetone-Lithium Bromide (t>_60°C).

Before describing the results obtained in these solutions some of the

experimentally imposed limitations should be noted. The methanol solu-

tions could only be studied over a limited temperature range the upper limit

(̂ 60°C) being dictated by the evaporation rate of the methanol and the lower

limit by the rapid fall in solubility of LiCl at temperatures below 20°C.

Glycerine solutions could be utilized over a wider range of temperatures

although some decomposition appeared to occur at temperatures >230°C. Some

ambiguity was introduced using this solvent due to the absorption of water—

this was minimized in these tests by using fresh glycerine (water content

<0.1%) and by heating the solution to 210°C which appeared effective in

removing water introduced with the LiCl. Dimethyl sulphoxide would not dis-

solve sufficient LiCl at room temperature to produce a 5:1 mole ratio and

some tests were performed in 6:1 mole ratio solutions. However, at tem-

peratures above ̂ 100°C 5:1 mole ratio solutions could be prepared and the

supersaturated solution was stable on cooling to room temperature. The

acetone solution also had a limited temperature range available for study
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for the same reasons as the methanol: LiCl solutions. Tests in the other

solutions were only performed at room temperature. Similar tests were

performed in these solutions as those in the LiCl:water mixtures— stress

corrosion tests in which the plateau velocity was the parameter of interest

coupled with viscosity (and conductivity) measurements on the solutions.

The results of these tests are summarized in Figures 5 (a),(b) and (c), and

the following points can be made although it should be recognized that the

data are less numerous than those for Lid-water mixtures.

• The apparent activation energies for the plateau velocity

crack growth are vLl Kcals/mole for glycerine, ^9 Kcals/mole

for DMSO and ̂ 5 Kcals/mole for methanol;

• The apparent activation energies are similar to the activation

energies of the viscosity in these temperature ranges (data

not shown);

• The log viscosity-log reciprocal viscosity lie on two curves.

Results in glycerine and methanol lie on the same curve

which is parallel to but displaced downwards from the LiCl-

water results. The results in acetone, DMSO, etc. lie on a

line of similar slope displaced downward from the other curves .

LiCl:Water:Glycerine Solutions

In the above experiments the viscosity of the solutions was changed by

varying the temperature. It was considered that an investigation of solutions

in which the viscosity was varied at a constant temperature would provide

useful confirmatory evidence for the data generated at this stage of the in-

vestigation. Thus, a series of tests were performed on LiCl-H^O^-glycerine

mixtures— these results are included in Figure 5 (a) and it can be seen that

these results do not conform with the results obtained in other solutions.

In fact, over the viscosity range 0.1-1 poise the relationship between vis-

cosity and velocity is very similar to that obtained in an earlier investiga-
i f2

tion in which a r\~ relationship was obtained (5 ). However, at very high

viscosities the plateau velocity shows a much stronger viscosity dependence.

It is also of interest that the points lie above both the glycerine-LiCl and

-13-
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water - LiCl mixtures which indicates a synergistic effect when comparison

is based on viscosity and molarity (but not on an absolute velocity scale).

Supplementary Tests

In this section we note two further groups of experiments that were con-

ducted that certainly influence any interpretation of results but do not

fall into any well defined category.

Inert Environments

As mentioned in the introduction results from any group of SCC tests can be

complicated by the tendency of a very susceptible alloy to exhibit crack

growth in any (and all) environments. The following is a list of aqueous

environments in which crack growth was also observed but which did not

contain any deliberate additions of the halide ion.

80% sulphuric acid

nitric acid (15.8 M)

saturated AgNCk (̂ 10 M).

In all these environments crack growth occurred at rates between 1 and

5 x 10 cm/sec, (a complete V:K curve for nitric acid is shown in Figure 11)

As cracking was observed to occur at the same rate in dry argon gas such

crack growth appears independent of the environment and certainly of its

viscosity. Crack growth in any solvent cannot occur at slower rates at room

temperature which sets a lower limit on any relationship established (cf.

glycerine:LiCl results).

Additions of chloride ions to nitric acid was briefly studied and it was

found that crack growth was not accelerated in 3:1 and 2:1 mixtures of

15.8 M HN03 and 12.1 m HC1.

The variation in the crack growth in inert environments with temperature

was also not studied in detail although such data are of importance in the

interpretation of the temperature dependence in more aggressive environments.

One test in silicone oil at 1008C showed that cracks propagated slowly

(velocity of 10 cm/sec.) at high K levels (65 ksi/in) which indicates that

a low or perhaps negative temperature dependence of cracking in such solu-

tions, and a large increase in K with temperature.
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Influence of Concentration in "Aggressive" Solutions

The data reported in this section is for 5:1 molar ratio mixtures. In the

course of this work several tests were run in which the chloride concentration

and the cation was varied. It has been shown (14) that in 0.6 M solutions

the nature of the cation has little influence on crack growth rate as long
i 1

as the cation does not influence the potential of the system, e.g., Cu

can lead to low velocities due to the establishment of an anodic potential
I | _(.

set by the Cu ->• Cu ->• Cu couples. Tests in which chloride ion concentration

was varied with the cation H , Na , and Li indicated that at a constant

potential (̂ 200 mV) :

0 In H solutions, velocity varied as the chloride con-

centration to the half power;

• In Na solutions, velocity showed a somewhat low de-

pendence especially in solutions with molarity >1 M;

• In Li solutions, velocity remained essentially con-

stant at molarities >0.1 M.

However, if the influence of viscosity is considered, these results can

be at least qualitatively accounted for since increasing the concentration

of solute increases the viscosity most in LiCl and least in HC1. For

example, the viscosity of a 9 M LiCl solutions is ̂ 5 centipoise while that

of a 9 M HC1 solution is 1.8 centipoise.

Also, it may be noted that increasing the concentration of LiCl in glycerine

to a mole ration of 1.3 glycerine-1 LiCl produced a solution of higher viscos-

ity than the 5-1 mole ratio solution. The crack velocities in this solution

also:fall on the glycerine curve as shown in Figure 5(a).

Recapitulation

It was obvious at this stage of the investigation that viscosity provided

a good correlation with velocity in one solvent. However, changing the

solvent displaced the velocityrviscosity plots and thus viscosity did not

provide any overall correlation. Further, the water-glycerine-LiCl results

-17-



indicated that any extrapolation from pure solvents to mixed solvents

further complicated the relationships. The next logical step it appeared

was to look for some factor that was obviously different in the solvents

examined and one such possibility was the conductivity of the various

solutions. (The reason why conductivity could be expected to lead to

differences will be outlined later.)

4.1.3 Velocity-Conductivity Relationships

The conductivity of the test solutions was determined either from existing

data or by direct measurement. Next the logarithm of the plateau velocities

determined above were plotted against the logarithm of these conductivities

with the resulting relationship shown in Figure 6. It can be seen that at
-4 -1

least between velocities of 10 and 10 a linear relationship is obtained

in which velocity varies as the conductivity to the three-halves power.

In passing it could be noted that the results for two molten salt mixtures

LiCl-KCl at 375°C and NaCl-KCl-AlCl, at 120°C also lie near but somewhat
-4

above the curves for the solvent:chloride mixtures. At velocities <10 cm/sec,

the curves tend to deviate from the linear relationship at least in the

aqueous and glycerine solutions. This immediately raises the question why

such deviation occur (assuming of course that the relationship observed is

not fortuitous). Two possibilities which occurred to the authors were:

* Firstly, reaction products generated within a crack during

its propagation produce local modifications of viscosity

and conductivity and these changes assume more importance

in high viscosity solutions at low temperatures. It is

known that the H ion is generated during the propagation

of a crack (15) and thus is seemed logical to investigate

the viscosity and conductivity of LiCl-HCl-water mixtures

at low temperatures. Such solutions were prepared (keeping

the HI :H«0 mole ratio constant at 1:5) and the measurements

on the solutions at temperatures as low as -70°C indicated

no significant differences from the LiCl:water solutions.

This indicated that this hypothesis could not explain the

deviation.

-18-



10"

10,-1

10,-2

©

H

D

A

9

_ Q

8 i°':
LLJ

2cc
o

10"

10,-5

10"

Ti-8AI-1Mo-1V (DA)
DCB WR ORIENTATION

5 H20

5 H20

5 H20 - 1 L\C\

5H20-1 LiBr(23°C)

1 LiCI - 1 LiNO3 (23°C)

1 HCI (23°C)

5 H20 - 1 NH4CI (96°C)

5 DMSO - 1 LiCI

5 N, N - DIMETHYLACETAMIDE - 1 LiCI (23°C)

5 HEXAMETHYL PHOSPHORIC TRIAMIDE - 1 LiCI (23°C)
5 FORMIC ACID - 1 LiCI (23°C)

AICI3 - NaCI - KCI EUTECTIC (120°C)

LiCI - KCI EUTECTIC (375°C)
5 GLYCERIN -1 LiCI w
5 METHANOL - 1 LiCI
5 ACETONE - 1 LiCI (60°C)

10

Fig.

rv3 rv! -010'° 10^ ,, 10"' 10
CONDUCTIVITY (fi'1 CM'1)

6 - The variation of region II (plateau) velocity with conductivity
of several solutions containing the halide ions (5:1 mole ratios)
Results lie in a scatter band through which a line of slbpe 1
could be constructed. The line present on this figure is drawn
through the LiCl:water and LiCl:DMSO points and has a slope of
3/2. Note that earlier results (Ref. 9) obtained in molten salt
mixtures lie near this line.
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Secondly, that potential has a much larger effect at

low temperatures and thus open circuit might not be the

appropriate potential at which crack velocities should be

compared. Measurement of the open circuit potential in

the aqueous solution during SCC testing indicated a range

of values for open circuit potential of-600 mV + 150 mV

and that during a specific test the value also varied over

about the same range. Thus, a series of tests were per-

formed at fixed potentials at +95°C,, +23°C, -25°C and -47°C

These tests were not as detailed as could have been desired

due to the number of specimen required and the time involved.

At +95°C, cathodic protection still occurs at potentials

more negative than -1300 mV but there is little influence

of potential in the range -1000 to +1000 raV. At +23°C

both anodic crack retardation and cathodic protection are

exhibited,* as may be seen in Figure 7. Reducing the test

temperature below room temperature results in only minor

modifications of the shape of the potential velocity curves.

These results indicate that there may be some merit in the

suggestion that the basis of comparison may be suspect

and— the conductivity:velocity relationship could be

modified considerably by selecting results from several

potentials.

The terms anodic and cathodic protection are relative, at cathodic potentials
(>1300mV(SCE) cracking rates are reduced to those observed in 'inert' envi-
ronments. At anodic potentials (>0 mV(SCE) the cracking rates are reduced
but in most cases are faster than those in inert environment, thus, in
this case anodic crack retardation is probably a better description. It
should be noted that such anodic retardation is a strong function of heat
treatment and probably preferred orientation, impurity content, etc. of
any given alloy. For example, in the alloy studied in this investigation
when heat treated to precipitate the «2 phase within the a phase, which
increases SCC susceptibility, essentially eliminates the anodic retardation
region at room temperature.

-20-



10,-1

10-2

o
LLJ

O

O og io"J

Ol

DC
O

10"

10,-5

10r6

T1-8AI-1MO-1V9DA)

DCB WR ORIENTATION

5 H2O - 1 LiCI

10'

cc
Z>
o

<J
z,

o
o

10'10

cc
o

10',-2

-1,500

Fig. 7

-1,000 -500 0 500

ELECTRICAL POTENTIAL (mV VS SCE)

1,000 1,500

The Region II (plateau) velocity vs. potential for Ti-8Al-lMo-lV
measured at several temperatures in 5:1, water:LiCl solutions.
Note that cathodic protection occurs at all temperatures but
anodic crack retardation does not occur at +96°C although present
at lower temperatures.
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4.1.4 Potential Studies

Potential Effects in Acid Solutions

Several related series of experiments were performed to check the influence

of potential on crack growth in highly acidic environments. Solutions of

HCl:water with the same mole ration (i.e., 1:5) were prepared and crack

and crack growth measured over a range of potential. The results are shown

in Figure 8 in the form of velocity (V) versus stress intensity(K)curves

from which it can be seen that as reported previously the region of cathodic

protection is eliminated in this solution (16). The plateau velocity shows

only a small variation between -1500 and -200 mV and there are indications

that the V:K curve at +2000 mV is again similar. However, potentials in

the range 0 to +1500 mV again result in rather slow cracking indicating

another range of anodic retardation similar to that found in neutral aqueous

chloride solutions. There is also evidence indicated in Figure 8 that the

velocity is strongly dependent on the test conditions in the anodic retar-

dation region. Results for two tests at +500 mV are recorded, the lower

V:K curve is for a test run at potential for the complete test while the

results at higher velocity were obtained by switching a crack propagating

at -200 mV to +500 mV.(the results from dynamic tests are used in subsequent

figures)

The influence of potential on crack growth in 9 M HBr and 5.5 M HI was also

studied and the results are shown in Figure 9 . In these solutions there

was a more pronounced effect of cathode potentials in that the velocity of

cracking was lower at -1000 mV than at -500 mV. However, further reduction

of potential led to no further decrease of velocity. Thus in all three

acids complete cathodic protection was impossible but the level of plateau

(cathodic) velocities is in the order HC1 > HBr > HI. (Note that the con-

centrations of the acids are slightly different.) On the anodic side the

behavior in these concentrated acids is more complicated as has been shown

previously in neutral solution (14). That is, anodic retardation is observed

in chloride and bromide solution while no anodic retardation is found in

iodide solutions.

Finally, an attempt was made to extend the passive range in hydrochloric

acid, especially to reduce the potential at which hydrogen was evolved to

more cathodic values. This was accomplished by adding acetic acid to the HC1
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which reduced the potential for copious hydrogen gas evolution (controlled

by the iR drop) on an oxide covered specimen from ̂ -400 mV to 'v̂ SOO mV.

The results shown in Figure 9 illustrate that the velocity of crack

propagation is reduced in such solution mixtures but the general potential:

velocity results parallel the results in hydrochloric acid.

From these and additional tests (17), it appeared that the influence of

potential on crack growth is strongly temperature dependent which if no-

thing more complicates the establishment of any relationship involving

velocity determination at open circuit potential. It is of interest that

the influence of potential decreases at elevated temperatures which is

parallel to the behavior observed in molten salt solutions where again the

plateau velocities are independent of the applied potential(8).

Potential and pH

It had been suggested previously by proponents of both the anodic

dissolution Cl8) and hydrogen embrittlement C19) postulates for the

mechanism of SCC in aqueous solutions that the essential reason for cathodic

protection is that OH ions are generated at the crack tip. The arguments

on the influence of such OH ions on crack propagation are obviously slightly

different for the two cases but the details need not concern us here. To

study solutions with high pH and coupled high concentration of halide ion

is rather difficult due to the relatively low solubility of the hydroxide in

the case of lithium and the low solubility of the chloride in the case of

sodium and potassium. Thus we used a compromise solution containing 3.5 M

sodium chloride and 3.5 M sodium hydroxide. The influence of potential on

crack velocity in this solution is shown in Figure 10 compared with those

observed in acidic and neutral solutions. It can be seen that the behavior

is very similar to that in neutral solution. However, the region of cathodic

protection is shifted from potentials more negative than -1300 mV (neutral)

to more negative than -900 mV (basic).

Addition of Ti Ions

It has been proposed that dissolution of titanium is the critical step or

at least forms part of the process of SCC (20). The titanium species
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that forms in acid solutions (pH=0) at potentials between -800 and 0 mV
3+

should be Ti and thus it was considered that the presence of this ion
3+in solution could influence SCC behavior. The Ti ion is unstable in

neutral aqueous solutions and thus an acidic solution was utilized,

specifically a solution of 9 M HC1 saturated with TiCl_. (The solubility

of TiCl- in the solution is high, >1 M in 9 M HC1.) A test was performed

in this solution at open circuit (-350 mV) and the resultant V versus K

curve is shown in Figure 11. Comparison of this result with the V:K curve

for 9 M HC1 at -400 mV (Figure 8 ) indicates the two curves are identical

below a K value of 42 ksi/tn". The plateau velocity in the HClrTiCl- solu-

tion was slightly lower than that in the HC1 solution. One final point

of interest is that a strongly stress intensity dependent crack growth

(Region I type growth) is observed in concentrated HC1 solutions at low

K levels appeared to be eliminated in the TiCl~:HCl solutions, as
-4

crack growth did not occur below a velocity of 10 cm/sec.

4.1.5 Solutions Containing Non-Ionic Chloride

A reasonably logical extension of these tests in liquid environments con-

taining the chloride ion appeared to be a study of solutions which contain

chloride in other forms. It had been established that some titanium alloys

are very susceptible to stress corrosion cracking in carbon tetrachloride

(CC1,). In order to see if the crack velocity in this solution varied with

temperature (and thus viscosity) three tests were performed over the

temperature range +50 to -25°C. These results indicated that in this solution

the crack velocity does not depend on viscosity in any simple way. The

approximate apparent activation energies determined from these SCC tests

were ^4 Kcals/mole above room temperature and ̂ 9 Reals/mole below room tem-

perature.

Two further tests were conducted in chloroform (CHC'l,) in order to evaluate

the influence (if any) of replacing one -Cl by -H in the solvent. Both tests

indicated that initially the crack grew at very slow rates, ̂ 10 cm/sec,

but after induction times' varying from 8-70 hours the cracking accelerated

and reached comparable values with those observed in CC1,.

Finally one test was performed in titanium tetrachloride (TiCl,) which yielded

the velocity stress intensity curve shown in Figure 11. The velocity of
-27-
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cracking was relatively slow in this solution yielding a plateau velocity

of 'W x 10 cm/sec, coupled with a low K r level. However, the existence

of Region I behavior could not be excluded on the basis of one test.

4.1.6 The Value of

For completeness the values of K determined in the above tests are
XoUCj

listed in Table I. It should be noted that Region I type behavior was

found in some solutions which are marked with an asterisk(*) and the value

of K.. „„„ is quoted for a crack velocity of 10 cm/sec. As there is no

really quantitative explanation of the value of K... at this time (1)

the table is presented with no further comment.
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(i) PURE SOLVENTS
CARBON

SOLVENT WATER METHANOL GLYCERIN TETRACHLORIDE CHLOROFORM

Klscc (Ksi/inV 26 (23) 13.8 (23)* 26 (23) 19.4 (-11) 21 (23)

and 20 (23)

(Temperature °C) 42 (96) 19.5 (50)

(ii) SOLUTIONS CONTAINING CHLORIDE OR BROMIDE IONS, 5:1 SOLVENT: SOLUTE RATIO

(a) Open Circuit

SOLVENT
SOLUTE

Klscc KsiVET

(Temperature

WATER METHANOL
LiCl LiCl

>20 (-46) 13 (23)*

22.7 (-26)

20.3 (-3) 13 (58)*

17.0 (+2)

14.7 (23)

21.8 (60)

20.8 (96)

22.7 (113)

GLYCERINE
LiCl

19 (23)

26 (96)

26 (210)

DMSO
LiCl

19 (23)

>25 (55)

(b) Open circuit, room temperature, 23°C

Hexamethylphosphoric Triamide 27.8

N,N-Dimethylacetamide 30.6

Water-Lithium Bromide 19.5

(c) Open Circuit - other temperatures ( °C)

Acetone-Lithium Bromide >30 (66)

Water-Ammonium Chloride 26 (95)
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(ill) MIXED SOLVENTS CONTAINING CHLORIDE IONS; 5:1 SOLVENT-SOLUTE RATIO,

OPEN CIRCUIT (ROOM TEMPERATURE 23°C)

Eormic acid, water, Lithium Chloride 25 (23)

Water, HC1, 1 M TiCl3 16.3 (23)

Water, 9 M LiNCL, 9 M Lithium Chloride 23.2 (23)

Water (3.4), DMSO (1.6), Lithium Chloride 19.5 (23)

Water (4), Glycerine (1), Lithium Chloride 19 (23)

Water (2.5), Glycerine (2.5), Lithium Chloride 18 (23)

Water (1), Glycerine (4), Lithium Chloride 24.5 (23)

(iv) SOLUTIONS CONTAINING CHLORIDE IONS, 5:1, SOLVENT:SOLUTE RATIO

VARIOUS TEMPERATURES AND POTENTIALS (mV vs SCE)

SOLUTION TEMP °C (POTENTIAL VS SCE)

Water:LiCl 23°C 23.2 (-1000)

95°C 29 (-1000)

Water:HCl 23°C 17*(-1000)

19.9 (-200) 20 (+20000)

22.2 (0) 21.3 (+10000) 23.9 (+2000)

15.5*(-200) 27.7 (+500) 20.8 (+2000)

(v) MISCELANEOUS

Water, 0.1 M Lithium Chloride, Open Circuit

Water, 0.6 M Sodium Chloride (-500 mV)

Water, 3.5 M NaCH, 3.5 M Sodium Chloride

23.1 (2), 24.8 (23), 30.2(90)

20 (23)

21.4 (23)

(vi) INERT ENVIRONMENTS

Room Temperature

100°C (Silicone Oil)

- 36-45

6̂5
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4.1.7 DISCUSSION

The essential points established by the experimental work described above

are that Region II or plateau velocities can be correlated with the

viscosity and conductivity of the solution. This discussion is divided

into three parts in which we examine possible influences of these physical

properties on processes that could occur in stress corrosion cracks.

Anticipating the result of these speculations we shall conclude that no

simple explanation for a rate controlling process is possible and thus add

a fourth section on a more detailed analysis of chemical factors that con-

tribute to cracking. It should be noted at this point that several factors

recur in the following paragraphs as follows:

• There is an implicit assumption that the basic process that

controls the rate of crack extention is (more or less) the

same in all the environments studied;

• In many cases chemical reactions that occur in cracks are

assumed. It can be noted in passing that the chemical

conditions in cracks are certainly not well defined. Further,

controversy exists on the basic thermodynamic equilibrium

in the titanium-water system (21,22) and the study of the

kinetics of these reactions is still in its infancy;

• Reference will be made to the so-called theories of stress

corrosion cracking which fall into three groups, hydrogen

embrittlement, dissolution and adsorbtion processes. We

shall not be concerned with providing a critical evaluation

of these theories but to examine if their rather vague

formulations are in any way consistent with our results.

Fluid Flow

The fluid flow characteristics in a propagating crack have not received much

attention in the past. Some attempts have been made to treat the hydro-

dynamics in liquid metal embrittlement (23), but have employed models which

are not generally useful. The problem is of importance for two reasons: (i)

the fluid flow could limit the velocity of cracking, by the onset of

-32-



"cavitation" In the crack, and; (ii) even if cavitation is not important

in limiting the crack propagation, the fluid flow characteristics may be

important in determining concentration distributions in a crack where mass

transfer is critical to crack extension (see next Section).

For a wedge-shaped crack propagating through a material immersed in a

liquid, the hydrodynamics may be shown (24) to depend on the crack geometry,

the physical properties of the fluid, the total pressure drop down the crack,

and the velocity of crack propagation. In the outer part of the crack,

inertial and pressure forces are predominant, but nearer the crack tip

only viscous and pressure forces are important. The viscous shear stress

increases as one approaches the crack tip, creating a pressure drop. If

the shear stress becomes large enough, the pressure could be lowered enough

to produce a "cavity" of vapor. This would interrupt the fluid flow,

decreasing the crack velocity until a balance could be attained between

the velocity of crack propagation and the tendency to form a cavity, ar.d thus

a maximum steady-state velocity of cracking. The velocity would be expected

to be inversely proportional to the viscosity for a constant crack geometry

and pressure drop.

The results for an individual system in Figure 5 (a-) reveals that the velocity

of Region II cracking indeed is inversely proportional to the viscosity.

However, the different systems are displaced (parallel) with respect to one

another. This indicates that the absolute value of the viscosity is not

controlling the absolute velocity of cracking for all these systems. The

water, methanol, and glycerin data could probably be made to coincide at one

temperature by accounting for differences in crack geometry and vapor pres-

sure, but the dimethyl sulfoxide and acetone data are too low (on a velocity

basis) to be "corrected" in this way.

One effect of temperature on the liquid would be to increase its vapor pres-

sure. This should lead to a lower velocity at higher temperature, if the

cavitation phenomenon determines the plateau velocity, for it should facili-

tate cavity formation. This could be compensated to some extent by the

reduction of viscosity at higher temperatures which would tend to allow

higher crack velocities. From the data in Figure 5(a) there is no indication

that the vapor pressure change for the indivisual liquids influences the
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limiting velocity of a crack. Since data were taken near the boiling

point for the methanol and water solutions, some effect of vapor pressure

should have been found there if cavitation was the rate controlling step.

We have assumed that cavitation would occur when the pressure in the liquid

drops below its vapor pressure. It is known that vapor bubbles are hard

to nucleate in narrow passages (25) with the result that one

may not observe cavitation until very "negative" pressures are attained.

The properties of liquids under such tensile loads have been measured (26),

and the ultimate tensile strength of a van der Waals liquids have been

calculated (26). The ultimate tensile strength decreases with temperature,

again leading one to predict a decrease of velocity with increasing temperature.

The description of fluid flow characteristics used here (24) has been for

the case where there is no transfer (.dissolution) of the solid into the

liquid. If there were dissolution, it could influence the fluid flow so that

cavitation would occur below a certain velocity for a given rate of dis-

solution. Dissolution would act to decrease the viscous shear stress and

thus to decrease the pressure drop in the crack. We conclude therefore,

that fluid flow cavitation does not control Region II velocities in these

systems as the separate curves obtained coupled with the lack of vapor

pressure or strength effects near the boiling point indicate a more complex

phenomenon. The effects of "negative" pressures and of dissolution may be

of importance in situations (i.e., near the boiling point) where the greatest

influence of cavitation would be expected to occur. The interrelation between

fluid flow and mass transfer (e.g., dissolution) will be discussed more

fully in the following section.

Convective Diffusion (Mass Transfer)

In the first part of this section it will be assumed that the viscosity

of the solution controls the rate of stress corrosion crack propagation by

influencing the rate of mass transfer. The kinetics of some electrochemical

reactions can be controlled by such transfer rates, an example being the

deposition of copper under certain conditions. Diffusion will occur as the

result of a nonuniform concentration distribution and convective flow

usually determines the distances over which the concentration changes. A
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simple example is the rate of dissolution of a solid salt into a solution

which does not contain the salt which may be expressed approximately by

the equation

J -^J 8

where D is the diffusion coefficient of the salt

C is the concentration of the salt

6 is the diffusion layer thickness.

The viscosity of the solution can influence the rate of reaction in two

ways:

• The diffusion coefficients of salts are changed by the viscosity

and for many systems may be expressed by the empirical cor-

relation

T
Dtt n

where T is the absolute temperature and

n is the viscosity

• The diffusion layer thickness 6 is also influenced by the

viscosity and by the prevailing hydrodynamic conditions.

For flow past a flat plate and flow to a rotating disk,

6 varies as the one sixth power of the viscosity.

It is therefore concluded that the influence of viscosity on a mass trans-

fer controlled SCC reaction will be predominately through changes in dif-

fusion coefficients.

Returning now to the assumption that the velocity of cracking is controlled

by a mass transfer limited chemical reaction, it is obvious that our results

are consistent with this hypothesis. The linear viscosity: velocity relationships

shown in Figure 5 (a) also shows three separate curves are obtained for the
T

individual solvents. Plotting the results as log V vs log (—) changes the

pattern very slightly, making the slopes more nearly unity but leaving

separate curves for different solvents. This in turn could be consistent
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if the absolute values of the diffusion coefficients were different for

the various solvents. As may have been predicted, data on diffusion

coefficients are not available. However using the values for infinite

dilution (a situation far removed from these solutions) one would predict

that as the diffusion coefficients fall in the order

H20 > MeOH > DMSO

that the SCC velocities would fall in the same order which indeed they do.

Unfortunately, the absolute values do not correspond to the relative

displacement of the curves especially in the case of the DMSO solutions

Having shown a general correlation it is pertinent to examine which processes

in a stress corrosion crack could be mass transport limited, and more

specifically consider the species that may be involved in the rate limiting

step. For the systems investigated, it is considered that the solvent mol-

ecules may be excluded due their high concentrations which leaves—

• The Li ion

• The H ion derived from the solvent or some chemical

reaction

• The Cl~ ion
3+

• The Ti ion derived from a chemical reaction

• The (TiO)2+ ion

The alkali metal cation derived from a chemical reaction'is not likely to

be important in a diffusion limited process as it is not consumed by raction

that could occur. Further it has been shown (14) that the nature of the

cation does not have a marked influence on SCC rates.

The hydrogen ion is a more serious candidate as it has been suggested that

SCC in titanium alloys is related to a hydrogen embrittlement process (19 )•

The rate of reduction of hydrogen ions in aqueous solutions could be quite

large under diffusion-limited conditions. However, hydrogen gas bubbles

would begin to form at much lower currents than this limit tending to block

the surface and reduce the reaction rate. This would prevent one from
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observing a current limited by hydrogen ion diffusion. However, blocking

the surface by a gas bubble would impose a limit on the amount of hydrogen

ion reduction which could take place. The rate of diffusion of dissolved

hydrogen (into the metal, or into the solution) would be balanced by the

rate of production of hydrogen by hydrogen ion reduction. This general

idea is not new, and has been discussed elsewhere (27)(for a discussion of

gas bubbles blocking an electrode in another application, see Ref. (28)).

This does not appear to be a likely process for controlling cracking in all

our studies for the following reasons:

• There should have been no influence of (cathodic) potential

on crack velocity;

• There should have been no cathodic protection;

^ It conflicts with trend of solubility of hydrogen as a

function of temperature and solvent;

• Hydrogen is probably not generated in the DMSO and

other solutions.

The chloride ion could be involved in a mass transfer limited reaction in

two ways:

• Oxidation to Cl« gas, which is unlikely as cracks may propagate

at potentials far removed from that required for the formation

of chlorine gas;

• The formation of a solid chloride film (TiCl~) or the formation

of a titanium ion complex. Discussion will be restricted to

the former case although the arguments based on complex form-

ation would be similar.

This latter suggestion could also be considered to be relevant to the process

of crack extension, which may occur by a (selective) dissolution mechanism.

The limiting step in such a dissolution process could involve the formation

of a solid film of TiCl, (20) on the crack surface, and the diffusion of the

salt from this surface. This diffusion rate would depend on the concentration

of TiCl_ at the interface (determined by solubility) and the magnitude of the

total anodic current would be an inverse function of the chloride ion con-
3+

centratlon. Such a process also involves the diffusion of Ti ions and
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indicates one way in which these ions could be involved in a mass-transfer

limited process.

However, limiting the cracking rate by an anodic dissolution process con-

trolled by solid solubility is inconsistent with our results in the fol-

lowing ways :

• The influence of temperature on cracking rates reflected

only changes in viscosity. Thus, the solubility of the salt

would have to be temperature invariant to be consistent

with the results;

• Cracking rates should be inversely proportional to chloride

ion concentration due to the influence on solubility. This

is inconsistent with earlier results (1) and some data re-

ported here.

• Saturating the bulk solution with TiClg should have de-

creased or even stopped cracking which it did not (see Fig. 11).

If no solid film is formed to control the process, dissolution will probably

be controlled by ohmic and/or kinetic factors. Again such processes could

well be complicated by film formation such as oxides.

3+
The fourth possibility, the Ti ion, for a mass transfer limited reaction

3+
also involves a dissolution step. For example, if Ti were formed at the

crack tip and oxidized to a four valent species at some distance from the
3+

crack tip the process could be limited by the diffusion of the Ti ion to

the oxidation position. As the distribution of the oxidation reaction along

the crack wall is the current distribution it will determine the potential

drop within the crack. This potential distribution will be of importance

in setting the potential at the crack tip with respect to the external po-

tential and thus will determine the anodic dissolution rate. The total

potential drop would be proportional to the conductivity of the solution,

and this is another way conductivity might be important to crack extension

rates. Thus, if dissolution controls the rate of crack advance overall con-

trol would be exercised by the diffusion limited oxidation rate along the

crack wall. It should be noted that a similar argument could be constructed
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3+
if the reduction of the Ti ion was possible in these solutions. Con-

trolling the cracking rate through a mass transfer limited reactions of

titanium ions on the crack walls appears unlikely for the following reasons:

* The only stable species in aqueous (and methanolic) solutions
3+ 2+

are Ti and (TiO ) (in alcoholic solutions, the four valent

species is probably an alcoxy—chloride complex (29)). it is

improbable that potentials within the crack deviate from the

applied potential sufficiently to allow the oxidation or

reduction of these species for the range of potential over

which cracking is observed. For example potentials of 0 to
3+ 2+

+200 mV would be required to oxidize Ti to (TiO ) and

cracking occurs in neutral solutions at -1000 mV. (See Fig. Q ).

• In several solution such as DMSO, formic acid, N-N dimethyl-

acetamide, etc. only one species of titanium is stable,
2+

(TiO ) (or a compound similar to the methny species

formed in methanol), which can neither be oxidized nor re-

duced. The solvent is reduced more easily than four valent

titanium.

Thus we may conlude that a simple mass-transfer limited process cannot be

rationalized as the limiting process for SCC in these solutions at present.

In many chemical reactions at current levels lower but at appreciable fractions

of the mass-transfer limited current» kinetic and ohmic contributions can

be substantial. Diffusion effects may still be contributed and be sensitive

to viscosity,stirring etc. Therefore, although we find none of the above

processes to control cracking, they could make a contribution to overall

control. It may prove that a more complex model is appropriate but at

present insufficient data exists to aid in its formulation. The model due

to Beck and Grens (30) may indicate the direction in which such a formulation

should take but in its present form is probably an oversimplification of

the processes occurring in SCC.

Conductivity

It was shown in the experimental results section that there was a

reasonably good correlation of crack velocity with the bulk conductivity

of the solution. For a chemical reaction which is under ohmic control the
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conductivity determines the level and distribution of current for a given

overpotential. This primary current distribution is such that the smallest

current flows to the points of the electrode most distant from the counter

electrode. For an electrode with a wedge shaped crevice it can be shown

that zero current would flow to the tip. Thus is is doubtful that reactions

giving a primary current distribution could contribute to crack extension.

However, if the kinetics of a reaction are important the primary current

distribution can be moderated, i.e., made more uniform. Of special

relevance are the influence of surface films such as oxides which change

kinetics dramatically and thus dominate the electrochemical properties

of many metals. Such passivation effects level the current distribution

making it possible to conduct current into a crack and probably to the

crack tip.

There is considerable evidence that the walls of an advancing SCC crack are

passive which results in a relatively small potential drop down a crack

(in most situations). For example, reaction products (which depend on the
2+

solution and potential) such as hydrogen, (TiO ) and iodine are observed
X

to form near the crack tip at least at the intersection of the crack with

the external surfaces of a specimen. These observations have been confirmed

more directly by propagating a crack in a specimen in a neutral iodide solu-

tion at a potential (+500 mV) at which iodine was liberated. The crack

was arrested by rapid immersion of the specimen in liquid nitrogen and

subsequently broken open a.t low temperatures. Visual and microscopic (10 X)

observation showed that iodine, confirmed using a starch indicator, was

present to the stress corrosion crack tip. Thus, it is concluded that there

is only a small potential drop down a propagating crack at least in neutral

solutions. This appears to be consistent with the ohmic drop measured when

SCC tests under potential control were open circuited (20), also, the Beck-

Grens model was unable to account for any large potential drop down a crack.

Thus, if the tip of a crack is more active than the walls, current may go

preferentially to the tip region and thus result in greater control of a

reaction in this region by any externally applied potential. If the current

flowing to a specimen is small in the absence of cracking then the current

flow during cracking may be indicative of reactions occurring at the crack

tip. In experiments in neutral solutions at potentials between -800 mV
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and 0 mV where the background current is low It has been demonstrated

(14) that an anodic current is produced during cracking, indicative of

an overall anodic reaction. This is a net̂  current however, and both

anodic and cathodic processes may be occurring within the crack.

Thus, with the assumption that the crack tip is sensitive to the applied

potential we may examine the possibility that crack tip reactions are

ohmically controlled. It could be predicted that the crack velocity

should be proportional to the conductivity for a constant potential drop

or proportional to the potential drop for a constant conductivity, both

types of data are reported in the experimental section. Figure 6 includes

the stress corrosion crack velocity and conductivity for LiCl-H-O solutions

as a function of temperature. At high temperatures the relationship is

linear but the points tend to deviate at lower temperatures. The high

temperature results lie on a line of slope 1.5 which is greater than the

slope of one expected for simple ohmic control for a reaction. It should

be noted that the data in Figure 6 was taken at open circuit and this may

not represent a constant overpotential for the reaction. Measurement of the

open circuit potential with respect to a room temperature calomel electrode

showed that this remained relatively constant with temperature at-600 mV

(+100 mV). However, as the potential dependence for the rate of crack

growth varies with temperature the exact meaning of the open circuit poten-

tial is not clear. The influence of potential and temperature on crack

velocity is shown in Figure 7 which reveals that

• Cathodic protection is observed at all temperatures;

• Anodic protection (or more exactly crack retardation)

is observed only at low temperatures.

The data in Figure 6 is taken at potentials which are near the peak veloc-

ity for all the temperatures studied but as the potential dependence is

temperature dependent the constant overpotential assumption is suspect.

We defer discussion of the regions of anodic and cathodic protection to the

section on Chemical Effects.

Turning now briefly to the behavior in the other solvents, the results in

glycerine and methanol lie close to the results for water solution with
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the glycerine results agian deviating at low temperatures. In both

solutions the open circuit potentials were ̂ -500 mV and cathodic pro-

tection was possible at -1500 mV. The DMSO results lie on the extrapola-

tion of a line drawn through the high temperature water-Lid points. In

these solutions the open circuit potential was -̂200 mV and there was

little influence of potential although at high temperatures (96°C) there

was some evidence of cathodic protection. In the other solutions, tests

were only conducted at ambient temperatures (23°C).

The correlation between SCC velocity and conductivity of all solutions

tested is surprisingly good— in fact, a line with a slope of 1 could be

constructed through the scatter and the conclusion that SCC occurs by

an ohmically controlled chemical reaction would seem quite convincing.

However this implies that

0 the same reaction occurs in all solvents— which is most

unlikely (see Chemical Effects Section);

• the reaction occurs at a constant overpotential;

O the effect of concentration (of Cl~, Br~ of I~)

could be accounted for by their influence on the con-

ductivity of the solution.

In connection with this last point it should be emphasized that we have

only considered crack growth in solutions with 5:1 mole ratios of solvent:

salt. Changing the concentration of the Cl ion produces large deviations

from the velocity-conductivity relationship established in these solutions

as illustrated semischematically in Figure 12, which shows that the points

lie above the curve. It is possible (but not proven) that points below

the curve could be obtained by mixing chloride with high conductivity

"inhibitors" such as nitric or sulphuric acid. A final point on mixing

solutions is that deviations can also be produced by mixing solvents at

a constant chloride ratio. This is illustrated in Figure 7 for water-

glycerine-LiCl mixtures. None of these observations support the ohmically

controlled reaction hypothesis.

Thus we must again conclude that although the evidence is at first sight

suggestive, the controlling step in the propagation of cracks in these

solutions cannot be simply accounted for by a chemical reaction under

ohmic control. -42-
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Chemical Factors Influencing Crack propagation

At this stage we have reached the unsatisfactory state of having established

rather attractive experimental correlations and provided at least three

superficially logical explanations, most of the discussion had been con-

cerned with demolishing these explanations. This again leads to the conclusion

that any elementary explanation of SCC is unlikely. In this section we shall

deal with selected aspects of the chemical part of the problem emphasizing

some of the more positive points and correlations that have been established

in this work.

Velocity-Viscosity Correlation

It was noted earlier that in Figure 6(a) the viscosity-velocity results fall

into two general groups of solvents which occur on parallel but separate

lines. These groups are

• Aqueous and alcoholic solutions

* Dimethyl sulfoxide, acetone etc.

We shall consider here the possibility that these groupings result from

differences in the chemical behavior of unpassivated titanium in these

solvents. The most important factors would appear to be the stability of

hydrogen, the stability of titanium ions in the solvent and the presence

and type of bonding of oxygen in the: solvent.

Hydrogen chemistry is different in the various solvents. Aqueous and

alcoholic solutions are somewhat similar in that they both have a great deal

of hydrogen bonding, the hydrogen is present in -OH groups (except for the

methyl hydrogens), and hydrogen gas may be liberated upon cathodic polarization

of an electrode. In dimethyl sulfoxide, acetone and several of the solvents

in the second group, hydrogen is present in inert methyl (-CH») groups, there

is little hydrogen bonding, and solvent reduction may occur without hydrogen

generation. Even when hydrogen gas is generated, it occurs at very negative

potentials (more negative than -2 volts) of an aqueous saturated calomel

electrode. In our tests the open circuit potential of a specimen containing

a propagating stress corrosion in these latter solvents was observed to be

only -200 mV (+200 mV) versus an aqueous saturated calomel electrode. It
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should be noted that velocities of cracking in neutral chloride aqueous

solutions, in the "anodic protection" region (at room temperature) is

the same magnitude as for the second group of solvents. In the "anodic

protection" region, hydrogen is not generated (on the outer specimen sur-

face at least). The major exception to this grouping of solvents is the

formic acid solution. It falls into the dimethyl sulfoxide group of

solvents on the basis of the velocity—viscosity correlation, but hydrogen

gas is generated at low cathodic polarization voltages on active metal

surfaces. On a high-overvoltage metal (sucfo_as one which is passivated),

reduction of formic acid takes place without hydrogen generation.

The ionic solution characteristics in the various solvents are different

i.e., energies, number of solvation molecules, etc. This kind of chemical

influence would lead to differences in transport properties (conductivity,

diffusion coefficients) and in thermodynamic properties. Sedricks and

Green (31) have used these differences in an attempt to exclude the chloride

ion as a stress corrosion agent by comparing behavior in 0.6 M LiCl aqueous

and DMSO solutions. The much faster crack velocities observed in the

water solution are attributed to the ease of hydrogen reduction and it

was concluded that the low velocities in DMSO solutions indicated that the

chloride ion played a minor role in the cracking process. Several factors

probably make this analysis an oversimplification; for example, although

the chloride ion is solvated to a lesser degree in DMSO and thus could be

considered "freer" the mobility of the ion on an absolute scale is lower

than in water (see conductivity results). Also, the concept of unsolvated anions

(i.e., Cl ) in DMSO proposed by Parker (32) was developed from low solution

concentrations.

Little is known about the relative oxidation rates which might be observed

in these solvents. However, the thermodynamic properties of dimethyl

sulfoxide for example (33), lead one to predict that potentially it is a

better oxidizing agent than water (34), as are also acetone and formic acid (34).

This could lead to faster passivation of a fresh Ti surface in these solvents.
+3

It would certainly indicate that Ti species would be less stable (with

respect to oxidation) in these solvents than in water. More will be said

about this below.
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The possibility that the two general groupings of solvents in the velocity:

viscosity correlation might be the result of different titanium chemistry
+3

was suggested by the known relative stability of Ti solutions in water
+3

and in dimethyl sulfoxide. In aqueous solutions of pH 1 or lower, Ti

(aqueous) is stable indefinitely if protected from atmospheric oxygen. On

the other hand, acidified TiCl- reacts vigorously with DMSO to give a

yellow solution with a very foul odor (see also (35)). The reaction is
+3

most likely the oxidation of Ti to an oxychloride species of valence 4,

accompanied by the reduction of DMSO to dimethyl sulfide. We have tested

the other solvents and found that only methanol and glycerine did not

react with acidified TiCl., al all, although some reacted rather slowly. Of

course, lower valent titanium species would not be stable in any of the

solvents (3°)(in which the aqueous chemistry of titanium is discussed).

Another observation which may have some importance, is that "anodic pro-

tection" in aqueous HC1 solutions occurs in the potential range where
2+ +3

(TiO ) (or an oxychloride) is stable, rather than Ti . Also, the
X

velocity at such potentials is in the scatterband for the DMSO group of

solvents. The importance of these results could be that anodic processes
+3 2+

involving the formation of Ti or (TiO ) are important to the crack
2+ X

extension, and in conditions where (TiO ) is formed, the cracking is
+5

slower than for those conditions where Ti is formed.

Thus, we may conclude:

• Differences in the ease and rate of hydrogen production could

lead to the observed behavior in the various solvents, i.e.,

if one postulated as hydrogen embrittlement process. However,

the formic acid results are not consistent with this generaliza-

tion.

• Differences in oxidation rates of a fresh titanium surface

in the various solvents could contribute to the two group-

ings, but there is insufficient information about the kinetics

of oxidation to provide a quantitative evaluation.

• Differences in solvation do not seem to be an appropriate

explanation for the variation in behavior, although not enough
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is known about physical properties of the concentrated

solutions used here to come to any firm conclusion.

+3 2+
• Differences in stability of Ti verusus (TiO ) are

~ X

consistent with the different cracking rates observed in

the two groups.

Influence of Potential

In this section we shall discuss the influence of the electrical poten-

tial on crack growth (in Region II) in the "anodic protection" and

"cathodic protection" regions in aqueous solutions. Neutral chloride

solutions show both regions of behavior, with the maximum crack growth

rates at about -200 mV (versus SCE) , which then decrease with a change of

potential in either direction (see Fig. 7 ). A more complete discussion

of the influence of metallurgical, potential and temperature effects is

presented in reference 17 .

In the range of potentials more negative than -200 mV (versus SCE) , the

velocity was observed to decrease until there was no propagation (v
—6

cm/sec) at -1500 mV and more negative. This behavior has been

previously reported for bromide and iodide solutions as well, but at a

different concentration (1). In Figure 10 it may be noted that cathodic

protection is also observed in very basic solutions, but not in very acidic

solutions. At the same time, it was observed that hydrogen evolution on the

bulk surface of the specimen was quite vigorous in 9 M HC1 at -400 to -600 mV

(versus SCE) and more negative, while we had to go to about -1200 mV to

achieve the same level of hydrogen evolution in neutral solutions, and to

even more negative potentials for the basic solution. This is consistent

with the expected shift in equilibrium potential of the H "*"H_ reaction with

pH.

We propose that the absence of cathodic protection in concentrated HC1

(and HBr and HI) is associated with the hydrogen evolution, and may be

explained by a current distribution argument, as follows. For a reaction

under ohmic control, as the hydrogen ion reduction is at -500 mV in concentrated

HC1, the current distribution will be such that most of the current will flow

to the external surface of the specimen, and very little will flow into the

-47-



crack. Within the crack, the current will be highest at the outermost

parts of the crack. As the current is small on the walls in the tip region

of the crack, the tip will not be as highly polarized as the outer part of

the specimen (the difference being due to an iR drop in solution). In

fact, the potential near the tip cannot be changed by changing the external

potential in such a situation, and one has a constant electrochemical con-

dition (potential) at the crack tip. This would lead to a constant crack

propagation velocity which would not change with a change of external

potential. The potential near the tip is then a mixed potential, or

(more probably) the potential at which the ohmically-controlled reaction

goes into the region of nonohmic (i.e., kinetic) control. The velocity in

HC1 should level out at about the potential where the reaction (H_ evolu-

tion) becomes ohmically controlled, and this is exactly what is observed.

On the other hand, the velocity in neutral and basic should still be

sensitive to the external potential until the condition is reached where

H evolution is again ohmically controlled, at which point the velocity

should level out again. Our observations are consistent with the first

part of this statement, but we have not tried to verify the latter part.

This current distribution argument does not provide an explanation for

cathodic protection as such, but does suggest why it is not observed in

acidic solutions. On the other hand, anodic (dissolution) mechanisms would

be consistent with these cathodic protection results. The results on the

highly basic solutions also indicate that the postulate that high concen-

trations of OH ions at the crack tip produce cathodic protection is incor-

rect. We consider that it is unlikely that a pH gradient from a pH of

0-1 (at the crack tip) to 14.5 in the bulk solution exists although this

has not been checked experimentally.

"Anodic protection" is observed in chloride solutions independent of pH.

Bromide solutions exhibit it also, but to a lesser extent, and iodide sol-

utions do not exhibit anodic protection at room temperature.

There is the additional experimental observation that anodic protection is

not observed (even in chloride solutions) for alloys and heat treatments

which exhib:

of -200 mV.

_2
which exhibit SCC velocities faster than 2 x 10 cm/sec, at a potential
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The absence of anodic protection in iodide solutions may be due to the

ohmically controlled oxidation of iodide to iodine, in which case a cur-

rent distribution argument would again be appropriate. It is experi-

mentally observed that the oxidation of iodide is ohmically controlled

(on the external surface) at potentials more positive than +100 mV

(versus SCE) in ̂ 5 M solutions-consistent with a current distribution

argument. (This does not explain why the velocity increases between

potentials of -200 and +100 mV.)

The anodic protection region in 9 M HC1 Caqueous) begins at one end at

about the potential where hydrogen ion reduction is known to stop. One

could immediately Jump to the conclusion that this indicates that hydrogen

is responsible for the cracking process at more cathodic potentials. How-

ever, this hardly appears tenable when the neutral and basic chloride

solutions are also considered. In the basic solutions in particular, the

equilibrium potential for the hydrogen ion-hydrogen gas couple is about

-1100 mV (versus SCE) at pH 14.5. However, anodic protection at this pH

was found to occur at about the same potential as for acidic and neutral

solutions (see Fig. 10). One might expect some difference in concentra-

tion between bulk solution and the solution within the crack, but it could

hardly be large enough to allow the same crack tip pH for bulk solution

pH's from 0 to 14.5. We conclude therefore, that it is unnecessary to

consider the hydrogen reaction in explaining anodic protection.

The reaction

Ti+3 + HO £ (Ti02+) + 2H+ + e"
*• X

occurs at potentials more positive than about 0 mV (versus SCE) at a pH of

0, which is the potential for the onset of anodic protection. Other evidence

that the formation of the four-valent species might have been responsible

for the retardation is as follows:

(1) A yellow-green solution was observed to stream from the

crack into the bulk solution at these potentials. This

- is probably a solution of the oxychloride of four valent

titanium.

(2) On the velocity-viscosity plot, Fig.5(a), solutions in
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in which four valent Ti is stable lie below those in
+3which Ti is stable, and this includes the anodic

protection results.

+3 2+
Evidence against the relative stability of Ti - TiO as being responsi-

ble for the occurrence of anodic protection, is listed below.

(1) Anodic protection is virtually independent of pH, but

the titanous-titanyl reaction is strongly dependent on
2+pH. That is, (TiO ) is not stable in neutral solution,

with respect to precipitation of Ti02> and apparently

there is no three-valent Ti species formed at any

potential at pH 14.

(2) There is no evidence of anodic protection in methanol

solutions of LiCl C 1 ) where both +3 and +4 species

should be stable. However, there is the complication

of pitting in these solutions at low anodic potentials.

Thus, we are left with no really satisfactory explanation of anodic pro-

tection apart from a few rather vaguely formulated ideas. It was noted

above that in specimens that do not exhibit anodic crack retardation,the
_2

velocity of cracking at -200 mV is greater than 2 x 10 cm/sec. The

results reported here for 9 M LiCl solutions at 112°C fulfill this require-

ment. Also, as mentioned previously, the present Ti-8-1-1 when heat

treated to precipitate <*„ particles in the a phase, shows cracking in
-2

9 M LiCl at room temperature above 2 x 10 cm/sec, and no anodic protection.

This suggests that a relative kinetic effect is being observed, i.e., com-

petition between two (or more) processes such as oxidation versus stress

corrosion cracking. In situations where oxidation of the surface is fast

enough, it may stifle the cracking process. If cracking is fast enough, it

may create its own conditions which are not significantly changed by any

oxidation. This rather vague formulation has some addition support from

the observation that at these anodic potentials, the retarded crack tends

to "tunnel." Further, an analogous phenomenon is also observed in corrosion

fatigue in a similar alloy, where the effect of potential is to cause the -r—

versus AK curves to cross one another (37) . This suggests that attainment

of the bulk surface properties destroys the conditions for stress corrosion

cracking. .
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Summary

Experimentally it was established for the conditions investigated, i.e.,

Ti-8Al-lMo-lV (820°C WQ) tested in solvents containing chloride, bromide

or iodide ions, that

(i) The Region II plateau velocity varies inversely with the

viscosity

(ii) The activation energy for the Region II plateau velocity shows the

same temperature dependence and numerical values as that for velocity

(iii) The plateau velocity in the several solvents may be cor-

related with the solution conductivity

(iv) Mixing the solvents gives nonadditive results both on

viscosity and conductivity basis

Theoretical consideration of these results have shown that no simple

explanation of the limiting propagation velocity can be proposed based on

• Hydrogen diffusion in the metal

• Limitation of the velocity by fluid flow cavitation

during crack extension

• Limitation by a chemical reaction under ohmic control

• Limitation by a process involving a mass transfer con-

trolled chemical reaction.

It is possible that a combination of these processes may be capable of

providing an explanation. Some indication of chemical effects which have

to be considered have been presented.

It is proposed that

• The absence of cathodic protection in acidic aquaous solu-

tions is due to ohmic control of the hydrogen discharge

reaction which "isolates" the crack tip from external

potential control.

0 Anodic protection may be due to a relative kinetic effect.
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4.2 PITTING OF TITANIUM ONE-DIMENSIONAL PIT EXPERIMENTS

In prior studies on pitting of titanium (l ) it was observed that pits

grown on foil were initially approximately hemispherical as observed for

other metals (2,3,4 ). After the pits penetrated the foil, corrosion con-

tinued at the periphery of the holes with no apparent change in mechanism.

The new corroding areas were nearly cylindrical and at right angles to the

foil faces. A further simplification from a cylindrical to a planar sur-

face would allow a one-dimensional analysis of the mass-transport phenomena.

Planar corrosion was obtained on the ends of small diameter rods or rectan-

gular prisms of titanium which were cast in epoxy resin like the lead in a

pencil. This technique of insulated cylinder has been reported previously

(5 ) with larger diameter specimens of copper in studies of electropolishing.

4.2.1 Experimental

General - Commercially-pure, A-75, titanium from Titanium Metals Corp. was

used for the experiments. Cross sections of three different size specimens

were 0.163 cm diameter, 0.1 x 0.1 cm and 0.16 x 0.32 cm and the lengths

were 3 to 6 cm. The specimens were cast in epoxy resin with an outside

diameter of 0.6 cm. The working end of each titanium "pencil" was ground

flat with silicon carbide paper on a belt sander before each experiment.

All experiments were conducted with the titanium in the anode-facing-up position.

Most of the experiments were done in an inverted cut-off polyethylene

bottle with the titanium "pencil" mounted in a rubber stopper similar to

the arrangement in (5 ). Electrolyte filled the cell to a level about 1 cm

above the end of the "pencil". Events in the "pit" formed at the working

end of "pencil" were observed through a B&L binocular zoom microscope at

7 to 35 X. The cell was potentiostated using a Wenking Model 66TS1 and

platinum counter electrode and saturated calomel electrode (SCE) reference.

All potentials cited in this paper are in respect to the SCE. Most of the

potential drop in the cell was within the "pit", so the location of the

counter and reference electrodes was not important electrically and they

could be located at the side of the cell out of the way of the microscope.
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All experiments were conducted at room temperature (21°C) unless otherwise

specified. All chemicals used were Bakers reagent grade without further

purification. Solutions were made with commercially supplied distilled

water.

Cell current and electrode potential were displayed on a Hewlet-Packard

strip-chart recorder and X-Y plotter.

Potential vs. Pit Depth - As is appeared important to determine the

magnitude of the potential drop in the pit electrolyte, a cell illustrated

in Fig. 1 was designed for this measurement. The cell was made of

Plexiglas pieces cemented together. The titanium pencil was fitted in

the bottom of the cell with threaded Teflon sleeve. An annular platinum

disk counter electrode was axial to the titanium pencil. The titanium

pencil was potentiostated in respect to a calomel reference electrode

mounted in the cell.

A scale drawing of the Luggin capillary in the artificial pit showing the

important dimensions is given in Fig. 2 . The cross sectional area of

the tip was 2.4% of the area of the pit. Measurements of potential vs.

position were made over a range of pit depths from 0.07 to 0.12 cm. At

a distance above the pit the capillary flared out to a shaft diameter of

0.1 cm that fitted into a Plexiglas bushing mounted on split titanium leaf

springs. A sliding fit sealed with stopcock grease was used in order to

avoid breaking the capillary tip when it hit the electrode at the bottom

of the pit.

The Plexiglas bushing mounted on split leaf springs of titanium maintained

axial alignment of the Luggin capillary. The bushing and capillary were

forced down against the spring by a micrometer head mounted on top of the

cell. A Teflon tube filled with electrolyte connected the Luggin capillary-

bushing assembly to a calomel electrode in a reservoir outside of the cell.

The signal from this calomel electrode was fed into Keithly model 610B

electrometer.

A Helipot connected as a voltage divider across a mercury cell provided

an electrical analog signal of the Luggin capillary position. The helipot
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was attached to the cell through a leaf spring which allowed axial

movement but prevented rotation and the shaft was connected to the

micrometer. The signals from the Helipot and from the electrometer

connected to the SCE from the Luggin capillary were displayed on the

X-Y plotter. The Helipot signal, which was linear with Luggin capillary

position, was calibrated with the micrometer. During the experiments

periodic checks of Luggin capillary position and pit depth (seen through

the epoxy resin) were made with a cathotometer.

Open-Circuit Potential Transients - The pattern of decay of potential of

a working electrode with time after open circuiting is diagnostic in

determining the type of potential drop, e.g., electrolyte ohmic drops should

disappear immediately while activation overvoltage should decay with log

time (6).

A titanium pencil was potentiostated in a polyethylene cell. The circuit

was opened by a Stevens Arnold, Inc . millisecond relay on the counter-

electrode side. The signal from a separate calomel electrode in the cell

was fed into a Tektronix model 510 oscilloscope for short-time transients

and through the electrometer to the stripchart to record longer period

transients.

For each applied potential to the specimen a series of open-circuit tran-

sients was photographed on the oscilloscope screen at sweep speeds a decade

apart from 10 ysec/cm to 100 msec/cm. The stripchart was used to obtain

data out to 10 sec. or more. This procedure gave some overlap for»-each scale

when the data were replotted on a semilog graph.

Identification of Gas from Pita- A small amount of gas was observed to

emanate continually from the pits. An experiment was devised to determine

if the gas was hydrogen or oxygen. It was collected in a section of 1 ml

burette with a flared end filled with water and inverted over an artificial

pit. After a few tenths of a ml of gas were collected, either hydrogen or

oxygen were introduced. The gas mixture was sparked with platinum electrodes

at the top of the burette and change in volume was determined.

Photographs- Photographs of the corroded surfaces were taken with an Ultrascan

model SM-2 scanning electron microscope (SEM) .
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4.2.2 Results

Current - Potential Curves - A typical series of current-potential curves

is shown in Fig. 3 for pitting of the 0.1 x 0.1 cm titanium pencil in

1 K KBr. These curves, obtained with a sweep rate of about -20 V/min,

were taken at various times during propagation of a pit at a potential of

6.0V. Amount of charge passed up to the time of the measurement is the

parameter.

Three regions are observed: a hump between the pitting potential and 1.4

V, a plateau between about 2.0 V and 3.5 to 4.5 V and a second plateau

about 4.0 to 5.0V— at least out to 17 V. These will be referred to as the

hump, the lower plateau and the upper plateau, respectively. At slower sweep

speeds the maximum of the hump occurs at a potential approaching 0.98 V

and the steady-state pitting potential is 0.9 V. With elapsed time or charge

passed the current 'density in all three regions decreases and the half-

wave potential between the lower and upper plateaus increases. The minimum

between the hump and the lower plateau tends to remain constant at 1.4 V.

A positive sweep rate gives similar shaped curves except that a second

hump in current density occurs on the lower plateau at 1.8 V.

Current-potential curves for more nearly steady-state conditions for a

0.16 x 0.32 cm titanium pencil in 4.4 M HBr are shown in Fig. 4 . These

curves were constructed from constant-potential experiments with inter-

polations for three charge densities. The current density decreased in

these runs over a range of 0 to -1.7 power of the charge density depending

on potential and charge density. The large negative slope was related to

the change from the upper to the lower plateau.

Above room temperature (50° and 77°C) strong oscillations occurred between

0.9 and 1.5 V in 4.4 M HBr solution. The frequency was about 10 cycles per

minute.

The character of the corroding surface was different in the three regions.

At the hump and up to a potential somewhere between 1.5 and 2.0 volts the

pit was covered with what looked like a layer of compact gray mud. The

metal surface after cleaning ultrasonically or By cathodic hydrogen evolution
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was very porous as can be seen in the SEM photograph at 1000 X in Fig. 5

(enlarged for reproduction).

On the lower plateau an orange-to-white precipitate was formed and

extruded from the pit. The outer surface was chunky and white and the

chunks slowly dissolved in the HBr solution. Deeper in the pit the

material was orange and appeared to Be somewhat gelatinous. Most of the

material was easily removed with a jet of water after the experiments

except for a thin film that adhered to the surface. After washing this

film with acetone and drying it usually cracked and peeled off. The

underlying metal surface appeared bright and crystallographically etched

under the 35 X binocular microscope. A SEM photograph at 1000 X in Fig,

6 shows the faceting and what look like terraces.

On the upper plateau a viscous orange solution covered the bottom of

the pit and a shiny surface could be seen through it. With time the

solution became translucent and the metal surface could no longer be seen.

In washing out the pit material as above a salt film adhering to the metal

was also observed. The underlying metal was polished as can be seen in

the SEM photograph at 100° X in Fig. 7. In spite of being polished, it

can be seen that there remained some differential metal removal between

different grain faces. Some round bumps also covered the surface.

Good leveling of the titanium surface, as opposed to the above micro

texture, occurred in bromide solution at all potentials as the pits deepened.

Initially, when a potential above 2.5 V is applied to a sanded pencil end

the corrosion starts uniformly at the periphery of the titanium. The

gelatinous corrosion product spreads inwardly until the whole surface is

active. Corrosion is initially greater at the periphery of the titanium

as would be expected from consideration of ohmic current density distribution.

As the pit deepens the surface becomes very level and at right angles to

the epoxy resin walls. The surfaces were not usually so level in chloride

and iodide solutions.

Stirring the precipitate in the pits with a glass micro stirring rod always

caused the current to increase in all three regions. Sometimes the small

gas bubbles (0.001-0.01 cm diameter) agglomerated into a larger bubble
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Fig. 5 - SEM Photograph of Titanium Surface pitted at a Potential of
1.5 V.
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Fig. 6 - SEM Photograph of Titanium Surface pitted at a Potential of
3,0 V.
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Fig. 7 - SEM Photograph of Titanium Surface pitted at a Potential 6.0 V.



that filled the pit and forced out the precipitate. Current decreased

during the growth of these bubbles and increased on their release. In

switching from the upper plateau to 1.5 V such a conglomerate bubble

always formed. As it pushed up the precipitate a layered structure could

be observed. Typically there was a compact layer about 10 cm thick with_2
a columnar layer about 10 cm thick above.

Generation of Gas - Volumetric measurements with the gas burette during

pitting of titanium pencils in chloride solutions are given in Table 1.

Chloride solutions were used because the higher current density therein

gave an adequate gas generation rate, whereas the gas generation rate was

very low in bromide solutions. Only three possible gases, hydrogen, oxygen

or chlorine, could be generated in the pit under these conditions and the

experiments were designed to determine which one it was.

Column 1 of Table 1 gives data for the gas collected from pitting in

1 M HC1. The gas was sparked after collection, giving a decrease in volume

indicating a combination of part of the gases. Hydrogen was then added

from a platinum wire cathode in the same solution. No change in volume

occurred on sparking, indicating that there was no residual oxygen (or

chlorine) in the gas after the first sparking. The gas burette was then

transferred without spilling to a cell with 1 N H-SO, electrolyte and

oxygen was collected from a platinum wire anode. After sparking, the volume

decreased. After adding further oxygen and sparking again, the volume

further decreased as noted in column la. These results show that the gas

from the pit was predominantly hydrogen but some oxygen (or chlorine) was

also present.

Column 2 gives data for gas collected from an alkaline chloride solution

in order to eliminate the possibility of chlorine being present. The

solution was boiled in a flask to remove dissolved air and then cooled and

poured into the cell with a minimum of agitation to minimize further air

dissolution. A decrease in volume of the collected gas occurred on spark-

ing showing that again a mixture of combustible gases was present. The

burette was then transferred without spilling to a preboiled and cooled 0.3

M Na OH solution in which oxygen was collected from a platinum wire anode.

-67-



The gas was sparked during collection of oxygen and the volume decreased

linearly with time then increased linearly at the same rate. An amperometric
3

equivalence point was thereby obtained at a residual volume of 0.095 cm .

The residual gas is assumed to be nitrogen from air that redissolved in the

solutions.

Column 3 shows the results of an experiment in which hydrogen was collected

from a platinum wire cathode in preboiled 0.3 M NaOH solution. Sparking

again caused a slight decrease in volume. Addition of oxygen from a

platinum wire electrode in the same solution with simultaneous sparking

gave a linear decrese in volume followed by a linear increase with an

equivalence point at a residual volume as above. In this case there can

be no doubt that the residual gas was nitrogen from dissolved air. A

calculation of mass transfer rates of gases from bubbles to solutions (7)

confirms that the experimental observations are reasonable. A more sophis-

ticated gas analysis method might have been used but it would have been

subject to the same problems of mass transfer.

It appears that hydrogen is the dominant gas, if not the only gas issuing

from these pits. A rough estimate of the amount from the above experiments

and by making counts of bubbles gave an estimated coulombic equivalent

between 0.01 and 0.07 that of the anodic current in chloride and in bromide

solutions. In general there appeared to be a greater gas evolution rate

at lower potentials and higher temperature.

Potential Traverse in Pit - A typical potential traverse for the Luggin

capillary is shown in Fig. 8. Calibrations for potential and position are

shown. The potential varied smoothly until the tip of the capillary hit the

bottom of the pit as noted by the discontinuity followed by a smaller slope.

The length of this region of smaller slope is assumed to be the displace-

ment of the Luggin capillary into the Plexiglas bushing (Fig. 1) as the

summation of these displacements from each run agreed with measurements

made with the cathotometer. The potential on the outward traverse was slightly

lower for a given tip position presumably due to disturbing the precipitate

with the capillary. The pit current usually also increased during the out-

ward traverse indicating a slight decrease in resistance.
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Eleven usable traverses were obtained for the lower and upper plateau

between 2.0 and 8.5 V applied. Five other runs were rejected because they

were taken below 2.0 V, had an inadequate sensitivity or the curve was

erratic. Slopes were determined for each usable curve and the electro-

lyte conductivity was calculated as a function of position by

(1)

using the current density i at the time of measurement. Values of <

were averaged as a function of position from the pit bottom and plotted

in Fig. 9 with their standard deviations. Values for capillary-opening

positions outside of the pit mouth were rejected from the averages. It is

seen that conductivity decreases considerably within the pit and appears

to become linear with distance from the bottom for small distances. The

straight-line portion extrapolates to zero conductivity at a position equal

to the distance of the capillary opening above the tip (Fig. 2) and has the

equation

K• - 2.61 (2)

Open-Circuit Potential Transients - Potential transient data replotted from

oscilloscope photograhs and strip chart records are shown in Fig. 10. For

applied potentials at 2.0 V through 5.0 V a linear relationship was obtained
—A — "7

between open-circuit potential and logarithm of time from 10 sec. to 10

sec. At 7.0 V applied the linear region extended only about two decades of

time. Below 2.0 V there did not appear to be any linear region.

A minimum occurred at about 10 sec. from open circuit for all applied

potentials. The values of this minimum are shown in Fig. 11 for pits in 4.4

M HBr and 5 M HI. These were determined by visually observing the oscilloscope

screen for repeated open-circuit transients. The minimum could be interpreted

as either the potential of the corroding surface or a mixed potential estab-

lished at open circuit.

4.2.3 Discussion

Potential Distribution - The first task is to account for the potential dis-

tribution in and around a pit. The potential drop outside of the pit
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approximated by hemispherical conduction from an infinite distance to the

pit mouth,

A* - — , (3)
Y00 K

is on the order of tens of millivolts for the current densities, pit radii

and concentration (4.4 M HBr) used in the experiments. Measurements with

the probe cell (Figure 1) were in agreement with this calculation. The

metal surface is at a potential negative to the hydrogen electrode as

demonstrated by hydrogen gas issuing from the pits in agreement with the

minimum open circuit potentials of -0.3 to -0.7 V in HBr (Figure 11).

Therefore, nearly all of the difference between the applied potential and

this negative potential must be accounted for within the boundaries of the

pit.

An approximation for the potential drop within the electrolyte of the pit

is made by integrating Equation 1, using the linear conductivity relation-

ship of Equation 2,

) (4)

For a pit depth, & = 0.1 cm and a lower bound distance of molecular dimen-

sions, ^ =10 cm, A4> .. = 5.3i. This is, of course, a gross extrapolation

down to molecular dimensions but it will serve as a first approximation.

Values of Equation 4 are shown in Table 2, together with applied potentials

and current densities from the potential traverse experiments. It is seen

that the largest component of potential by difference A<Ji = <J> - <£ - A<j> - A<j> . ,

is unexplained.

The unaccounted potential could be either due to error in the conductivity

extrapolation or to presence of high field conduction in a thin salt film.

A high activation overpotential could be excluded because hydrogen gas is

produced.

Potential Decay - The potential decay experiments are diagnostic in that a

linear relationship of potential with log time is characteristic of discharge

of the electrical double layer by a reaction following Tafel kinetics (6,8)
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or to discharge of a film capacitance by high-field conduction (9). The

former gives a constant Tafel slope independent of the initial potential,

whereas the latter gives a variable slope which is a function of the film

thickness.

A plot of the decay slopes as a function of applied potential from 2 to

5 V is shown in Figure 12. The data appear to be linear and the least-

squares line has a slope of -0.20 and an intercept of -0.55 V. The potent-

ial-decay data are therefore consistent with high-field conduction through

a salt film; the intercept being the potential for zero salt film thickness

and the slope equal to -2.3 5/6 C9). Values of -2.3 6/g calculated for 6

and 3 for various oxides (9) are in the range of -0.05 to -0.2.

Presence of a salt film is in accord with the observations of Frank (10)

and Vetter and Strehblow (11) for pitting of iron.

Paradox - An apparent paradox exists in that the steady-state polarization

data (Figures 3 and 4) indicate a diffusion limited process whereas the

potential decay experiments indicate high-field conduction controlling.

It will be assumed that both operate simultaneously and that they somehow

have to be reconciled. One possibility is that they are parallel processes,

e.g., a stoichiometric TiOBr_ is formed at the electrode surface, the Br

arriving by high-field conduction and water arriving by diffusion. A second

possibility is that there are series processes, e.g., a salt film that

maintains a thickness to use up by high-field conduction, the potential

applied and that the rate of dissolution of this film is controlled by dif-

fusion of water to the electrolyte-salt interface. The latter, considered

to be more probable, will be examined in more detail.

Model - A qualitative model to describe the events in a pit will be presented

here; the mathematical development will be presented in a subsequent paper.

Figure 13 outlines the essence of the idea. A salt film is assumed to form

on the metal surface. The simplest composition, TiX,, is chosen as shown in

Figure 13, although it could also be TiOX» or some other halide salt of Ti(IV)

The halide ion is transported by high-field conduction through the salt to

metal surface. The X ion occurs at a high concentration in the electrolyte

next to the salt film because it is regenerated within the diffusion layer by
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hydrolysis of TiX,. The salt is transported away from the metal-salt

interface by bulk flow. (The alternative of high-field conduction of

Ti outward does not change the arguments presented here.)

At the salt-electrolyte interface the TiX, dissolves convalently in the

water which has diffused to the interface. Within the diffusion layer,
I i

hydrolysis of TiX, to TiO_ and/or TiO occurs, generating halide and

hydrogen ions which make the solution acidic regardless of the pH of the

bulk solution outside of the pit. If the hydrolysis goes to completion

within the pit, the overall pit reactions are:

Ti + 2 H20 •* Ti02 + 4 H + 4e

or

Ti + H20 ->• TiO
44" + 2H+ + 4e

I | _j_
and only Ti02, TiO and H are transported out. Water is then the only

species transported into the pit from the environment at steady state.

Areas of agreement of the experimental data and the model can now be dis-

cussed, starting with the diffusion layer.

The orange viscous material deep in the pits in bromide solutions is con-

sistent with the color of TiBr, or TiOBr which would be an expected inter-

mediate in the hydrolysis. White precipitate, at the outer part of the pits,

and dense colorless liquid streaming out of the pits, are consistent with
I i

TiO« and TiO ion, respectively, expected from valence IV titanium.

Decrease in conductivity with distance into a pit may be attributed to an
• i

increase in viscosity due to high concentration of TiO™ and TiO . Valence

IV titanium has a known tendency to polymerize (12) . The linear form of the

decrease in conductivity with distance is yet to be understood quantitatively,

however. Decrease in conductivity could not be attributed to concentration

of conducting species in the model because both H and X are generated in

the diffusion layer and therefore should be at high concentration.

According to the model, the only species entering a pit at steady state is
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water. If this is the diffusion limited species the current density would

decrease with depth or thicker viscous layer. That the current density

decreased in a variable way from 0 to -1.7 power of depth indicates a com-

plex nature of the viscous layer. Increase in current density with stir-

ring of the viscous layer is in accord with a diffusion limted species in it.

The relative independence of current density on pH in the bulk between 4.4

M HBr and 1 M KBr can be attributed to the pit generating its own acid

environment by hydrolysis,

The rapidly increasing current density with temperatures above 50° C for

the lower plateau in iodide solution can only be speculated upon at this time,

It is known from TiO, pigment technology that nucleation and growth of TiO?
£» £•

particles from chloride or sulfate solutions occur above a temperature of

50-60°C (13) and that they are arrested below this temperature. Growth of
i i

TiO? particles in a pit could decrease the concentration of TiO and thus

avoid the viscous polymeric gel.

The requirement for a salt film has already been discussed but the points

will be summarized here. The fact that hydrogen gas issues from the pits

is the strongest argument that the metal surface is at a negative potential.

Hydrogen generation can be attributed to diffusion of hydrogen ions through

the salt film. Electric migration tends to carry them out. The observation

of increased hydrogen gas rate when the potential was decreased is consist-

ent with a greater diffusion flux of hydrogen ions through a thinner salt

film.

Faceting and terraces observed on the metal surface at the lower plateau

and the residual differences between grains indicates that the metal is

reacting at close to the reversible potential. The reversible potential

for the reaction

Ti + 4Br~ ->TiBr + 4e

is -0.76 V (SCE) according to thermodynamic data in Latimer (14). The

minimum in the open-circuit potential (Figure 11) and the extrapolated

intercept of the slopes of the potential decay curves (Figure 12) are in
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approximate agreement with a mixed potential from this reaction and hydrogen

ion reduction.

Most of the potential drop in a pit cannot be accounted in any other way

than by high-field conduction in a salt film. The potential decay (Figure

10) and the constant double derivative of open-circuit potential to log

time and applied potential (Figure 12) are in accord with a salt film concept.

Unresolved Questions - Although the model qualitatively is in accord with

the experimental observations, several questions remain. The composition of

the salt film is no known; whether it is TiX^, TIOX™ or other.

The explanation of two plateaus in current density is unknown. The ratio

of current densities of the upper to the lower plateau in 8 experiments

was 1.53 with standard deviation of +0.04. More work would have to be done

to resolve which term in the diffusion equation changes by this amount.

The significance of the pitting potential is still elusive. The same value

of pitting potential was obtained for the titanium pencils as was earlier

determined for pitting on titanium foil (1) . The same technique of de-

creasing potential of a propagating pit until the current decayed to zero

was used. Pitting potential in an artificial pit at the end of a titanium

pencil cannot be attributed to an equilibrium between a salt layer and a

preexisting oxide at the boundary of a pit as there is no preexisting oxide

layer present. However, salt and oxide or hydride films could possibly form

simultaneously .

Explanation of the porous surface Figure 5) bearing no relation to the

metal grains at potentials between the pitting potential and 1.5 to 2.0 V

is also unresolved. To force dissolution to occur deep in holes or pores

requires that the outer pore surface become passivated. Two possible

passivating agents are TiO_ and TitU. A way to passivate the outer part

of a pore but not the inner part would be to have diffusion of passivating

agent through a layer such that it reaches the peaks but not the valleys at

a sufficient rate. This concept is related to action of smoothing agents

in electroplating (15) .
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