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COUPLING BETWEEN STRUCTURE AND LIQUID PROPELLANTS
IN A PARALLEL-STAGE SPACE SHUTTLE DESIGN*

D. D. Kana, W. L. Ko, P. H. Francis and A. Nagy
Southwest Research Institute

San Antonio, Texas

Abstract

A study was conducted to determine the influ-
ence of liquid propellants on the dynamic loads for
space shuttle vehicles. A parallel-stage configu-
ration model was designed and tested to determine
the influence of liquid propellants on coupled
natural modes. A forty degree-of-freedom ana-
lytical model was also developed for predicting
these modes. Currently available analytical mod-
els were used to represent the liquid contributions,
even though coupled longitudinal and lateral motions
are present in such a complex structure. Agree-
ment between the results was found in the lower
few modes.

Nomenclature

a distance between subsystems 2 and 11

a coefficient matrix of constraint coordinates
appearing in equations of motion

b distance between subsystem 11 and the
centerline of the Orbiter

c distance between subsystems 12 and 13

c constraint matrix

Dk distance between the neutral axis of a rein
forcing beam section and a cylinder shell

(k = 1, 2, 3, 4)

d distance between subsystems 15 and 16

d coefficient matrix of mass coordinates ap-
pearing in equations of constraint

E s modulus of elasticity of cylinder shells
(s = 1,2,3,5,6,7)

E(m) modulus of elasticity of a reinforcing beam
section (m = 1, 2, 3, 4)

e distance between subsystem 5 and the rod
K( 5 )

Fi ; (4/T) Il(i)/iIo(i
)

f cylinder shell 

G
s

shear modulus of cylinder shell s

g gravitational constant

H total number of dynamic and constraint
equations of the mechanical system

h i height of liquid in cylinder-i

"hi height of horizontal sloshing mass in
cylinder i

h i

'

height of rigid mass in cylinder i

~9s moment of inertia of a cylinder cross section

I o modified Bessel function of order zero

1 modified Bessel function of order one

Jn moment of inertia of mass element Mn
(n = 1, 2,..., 8)

J(m) moment of inertia of a reinforcing beam
cross section

Ji moment of inertia of rigid mass mi

jigid moment of inertia of frozen liquid in
cylinder i

K
i

equivalent longitudinal spring constant of
cylinder i accounting for liquid effect

Kj longitudinal spring constant of cylinder j,
(j = 2,6); 2TRj6jEj/.j

K
i

longitudinal spring constant of cylinder i
with liquid effect; 2TrRi6iEi/ (i - V2hi)

K(m),
R(3)
K(4) longitudinal spring constants of the rein-

forcing beam sections

K(6),
K( 7 ) vertical and horizontal spring constants of

the coupling spring system

k i vertical sloshing spring constant

ki vertical sloshing spring constant due to
Poisson's effect of the cylinder

* The results presented in this paper were obtained during the course of research sponsored by
NASA Langley Research Center under Contract No. NASl-9890.
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k
i

; TTr2 ibiEiFi/2

ki lateral sloshing spring constant

L number of dynamic equations

L number of constraint equations

Y s length of cylinder section

Mn structure mass element

M( ),
M( ) end moments of a beam section

M,

M( ) net end moments of a shell-beam section
[I

m i vertical sloshing mass in cylinder i

mi

mT

horizontal sloshing mass in cylinder i

rigid mass in cylinder i

total mass of the liquid in cylinder i;
rrRi hiPi

P( )( ) mass matrix of the total system of
dynamic and constraint equations

mass matrix of the dynamic equations only

stiffness matrix of the total system of
dynamic and constraint equations

q stiffness matrix of the dynamic equations
only

R s RB (Booster radius) for s = 1, 2, 3;
R

O
(Orbiter radius) for s = 5, 6, 7

S r torsional spring constant (r = 1, 2, ... , 7)

t time

V ( ) lateral shearing force on an end cross
section of a beam section

v( )
[ ]

W( )

net lateral shearing force on an end cross
section of a shell-beam section

vibration mode

X coordinates associated with mass elements
(see Table III)

x coordinates associated with constraint con-
ditions (see Table III)

x( )

Y()

lateral displacement of a subsystem

amplitude of a vibration mode

axis of rotation of a subsystem

vertical displacement of a subsystem

ca( ) rotation of a cross section of a shell beam
where a horizontal sloshing spring or a
rigid mass is attached

Y phase angle

6s cylinder shell thickness

C( ) vertical displacement of a vertical slosh-
ing mass

T1( ) horizontal displacement of a lateral slosh-
ing mass

pi liquid height parameter for cylinder i;
(rRi/ 2h i )

v
s

Poisson's ratio of cylinder shell

5( ) horizontal displacement of a shell beam
cross section where the lateral sloshing
spring or a rigid mass is attached

Pi mass density of liquid in cylinder i

cP( ) rotation of a structure subsystem

O eigenvalue of a vibration mode

w frequency

Introduction

Currently specified design requirements of a
space shuttle vehicle are anticipated to present
many new problems heretofore not encountered in
aerospace systems. The dynamic interaction be-
tween elastic structure and liquid propellants has
always been an important design criteria for launch
vehicles and aircraft; however, it is surmised that
potential problems posed by this interaction will
become even more critical in presently envisioned
space shuttle systems[l]. Therefore, the purpose
of this study is to examine the applicability of
existing analytical techniques for studying the
coupled liquid-structural dynamics of a typical
space shuttle configuration-a parallel-stage
design.

The program objective has been accomplished
by developing a suitable experimental model thatis
capable of experiencing at least the most funda-
mental structural dynamics of a prototype system,
measuring its natural frequencies of vibration for
a range of various parameters, and comparing the
results with those predicted from a corresponding
analytically derived model. In selecting the mode]
details from the outset, considerable effort was
exercised to utilize components which were already
available from previous research programs, in
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order to minimize fabrication costs. Further,
existing concepts of spring-mass fluid models,
which have been derived to simulate liquid reac-
tions for decoupled lateral and longitudinal mo-
tions, are employed in a straightforward manner
in a system which experiences strong coupling
along these axes. The results of this study of a
rather fundamental model will point toward the
path to follow for more complex representations
of a shuttle system. We begin with a description
of the physical model, then outline the analysis,
and finally present results and conclusions from
the study.

Description of Physical Model

A model consisting of a parallel-stage
Booster and Orbiter, each consisting of two pro-
pellant tanks and appropriate intermediate skirts
and rigid masses, was considered feasible to
carry out the program objectives. The major por-
tion of the Booster was already on hand from a
previous study[2] of longitudinal dynamics in axi-
symmetrical launch vehicles. As a result, as
will be seen, it also included some components,
such as stiffeners and baffles, which were not
strictly essential to the present study, Neverthe-
less, the presence of these extra components did

not alter the conclusions of the study.

A photograph of the completely assembled and
suspended system is shown in Fig. la, as it was

1-;- zz star

Fig. la. SwRI Space Shuttle Vehicle
Dynamic Model

used' during most of the experiments. In order to
provide a quick overall indication for model size
and typical rigid masses, a schematic is shown in
Fig. lb. Further details will be given now, as
well as in later sections of thereport.

39.75"

: 2.01#7

Fig. lb. Schematic of Space Shuttle
Vehicle Model

The Booster comprises the major part of the
model, and it consists of the following main com-
ponents:

(1) Upper tank

(2) Lower tank

(3) Skirt

(4) Bulkheads

Both tanks in the Booster model were fabricated
from 0.005-in. thick, type 302 Stainless Steel
sheets, which were rolled and butt-welded along
longitudinal seams. A flat steel disk was spot-
welded to one of the tanks which serves as a top
mass for the upper tank. The lower end of this
upper tank and both ends of the lower tank were
spot-welded to identical steel flanges, which can
be bolted to the bulkheads and the skirt as re-
quired. Two rows of spot welds, each spot weld

3 2- 3- 47
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having a test strength of 25 pounds, were used at
each end of the tanks. The spots were spaced
1/8-in. apart with 1/8-in. spacing between the
rows. To provide for ullage pressure integrity,
the ends of both tanks were sealed with epoxy
cement.

The third main component in the Booster is
the skirt. It was fabricated by rolling 0.025-in.
thick, 6061-T6 aluminum sheet to the desired dia-
meter and butt-welding it along a longitudinal
seam. Two aluminum flanges were welded to the
end of this cylinder with the same hole pattern as
on the flanges of the tanks to provide for bolted
assembly of these parts. Two small ports on the
side of the skirt served as a pressure port for
introducing ullage pressure to the lower tank and
for filling the tank with liquid.

Flat, rigid bulkheads were machined from
mild steel and 6061-T6 aluminum plates for the
lower and upper tanks, respectively, with a
shoulder on them so they could partially fit inside
the tanks. The shoulders and their hole patterns
match the flanges on the tanks. The lower ends of
the tanks were sealed by these flat, rigid bulk-
heads bybolting them to the corresponding flanges.
The tanks in turn were joined by bolting them to-
gether using the skirt as a coupling.

The lower tank had stiffener rings, stringers,
and baffles installed on it. Eleven 6061-T6 alum-
inum rings, 0.032-in. thick were cemented on the
outside of the tank 1.25 in. apart, symmetrically
about midspan. Twelve 6061- T6 aluminum
stringers, 1/8 x 1/8 x 14 in. in dimensions, were
fastened to the inside of the tank by use of epoxy.
The stringers were equally spaced around the cir-
curnference of the tank and symmetrical about
midspan. Tapped holes along the length of these
stringers provided the means for installing eleven
yellow brass ring baffles into the tank. Data per-
taining to the Booster model are given in Table I.

The Orbiter model, similar to the Booster,
consists of two tanks with flat, rigid bulkheads
and a skirt. The tanks and the skirt were fabri-
cated from 0.012-in. -thick and 0.020-in. -thick
1100-H14 aluminum sheets, respectively, which
were rolled and butt-welded along a longitudinal
seam in the same manner as the Booster. Identi-
cal flanges with 16-hole bolt patterns were welded
to each end of both tanks and skirt by a continuous
weld.

Flat, rigid bulkheads were machined from
6061-T6 aluminum plates with hole patterns
matching the pattern on the flanges. These bulk-
heads, however, did not have shoulders on them
as was the case for the Booster. Plates identical
to the bulkheads were used for capping both of the
tanks on the Orbiter with provisions for introduc-
tion of ullage pressure and modeling liquid.

The skirt, as in the case of the Booster, was

used to join the two tanks. Data pertaining to the
Orbiter model are given in Table IL

Table I. Material Properties and Geometry
of Structural Components of Booster Model

Structural
Element

Upper Tank

Lower Tank

Skirt

Effective
Length(t)

(in.5

14. 5

Inside
Dia.
(in.)

10.0

Wall
Thickness

(in. )

0. 005

14.5 10.0 0.005

Material
Density
(#/in3)

0.Z9

E
X 106

psi

29

0.29 29

7.5 10.3 0.025 0.098 10

Material E
Density X 106
(#/in3) psi

Flat Rigid Bulkhead
· Lower Tank

Flat Rigid Bulkhead
Upper Tank

Dimensions
(in. i

9. 875 Dia. ,1/2 Height.
0.29 30 12 Dia. shoulder, 1/2 Height

9.875 Dia., 1/2 Height,
0.098 10 12 Dia. shoulder. 1/2 Height

Nulibei''a teiiaiI E
Used on Density X 106 Dimensions Spacing

Tank (#/in 3 ) psi (in. ) Location (in. )

Stiffener
Ring

10.0 I.D. Symmetrical
11 0.098 10 10.5 O.D. about

0.032 thick midspan
1.24

Stringer 12 0.098 10 0. 125XO. 125 Symmetrical Equally
X 14.0 about spaced on

midspan inner circum-
ference

0.25 I.D. Symmetrical
Baffle 11 0.306 16 9.68 O.D. about

0.0125 thick midspan
1.25

Table II. Material Properties and Geometry
of Structural Components of Orbiter Model

Structural
Element

Upper Tank

Effective
Length(l)

(in.

8.5

Inside
Dia.
(in. )

6.0

Wall
Thickness

(in.)

0.012

Material
Density
(#/in3 )

0. 098

E
X 106

psi

10

Lower Tank 8.5 6.0 0.012 0.098 10

Skirt 6.0 6.0 0.020 0.098 10

Bulkheads

Caps

Diameter
(in.)

6.7

6.7

Thickness
(in.)

0.25

0. 25

Material
Density
(#/in3

)

0. 098

E
X 106

psi

o10

0.098 10

Coupling between the Booster and Orbiter was
achieved by the strongback assembly. As can be
seen in Fig. 1, the strongback spans the full length
of the Booster and is attached to it at four locations,
namely, at each flange and the top. This part of
the strongback was fabricated from a 1½ x 12 x x -
in., 6063-T5 aluminum square tube with appro-
priate altering to be attachable to the Booster.

A short backstrap was attached to the Orbiter
spanning between the two flanges of the skirt. To
this backstrap, a 1/4-in. square steel rod was
fastened which fits into two guides on the strong-
back allowing adjustment of the relative position
between the Booster and Orbiter.
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Analytical Model

Mechanical Model

In the modal analysis of free vibration of the
model Shuttle Vehicle, the system is represented
by the equivalent mechanical model shown in Fig.
2a. The motion of the system will be limited to
translations in x and z directions and pitching
about an axis perpendicular to xz plane. The
cylindrical shells between any two neighboring
mass elements will be represented by thin-walled
beam-like tubes, or shell-beams, as shown in
Fig. 2b. Additional details are given in Figs. 2c
and 2d. Masses of the cylindrical shell sections,
Booster and Orbiter strongback beam sections,
and between any two neighboring mass elements
are divided equally into two parts, each of which
is lumped into each of the two mass elements.
Thus, the inertia effect of the shells and the
strongback beams will be otherwise neglected.
The Booster and the Orbiter strongback reinforc-
ing beams are pin-jointed, respectively, to the
Booster and the Orbiter mass elements with one
torsional spring attached to each joint. The two
beams are then connected together through a
coupling compound spring system which permits
relative displacements in x and z directions, and
one relative rotation about an axis perpendicular
to the xz plane. The lower end of the Orbiter is
connected to the Booster strongback beam through
a rod K( 5 ) both of whose ends are pin-jointed.

The vertical and lateral sloshing motions of
the liquid in a cylinder are represented indepen-
dently by two sl$ohing models. The vertical
sloshing model[3J consists of one vertical sloshing
mass- mi(i = 1, 3, 5, 7) connected to the neighboring
mass elements through two springs** k i and k i .

It will be assumed that the bending of the shell-
beam does not interfere with the motion of m i .
The lateral sloshing modelt [4, 5, 6] consists of one
rigid mass mi rigidly attached to the shell-beam,
and one lateral sloshing mass mi connected to the
shell-beam through two springs of spring constant
ki/2. For the vertical sloshing, quantities asso-
ciated with the horizontal sloshing (i. e., mi, mi,
and ki) will be set to zero, and vice - ersa.

The vertical sloshing mass m i and the slosh-
ing spring constants k i and ki are defined as
follows(3

m i =4FimT(; (i = 1, 3, 5, 7) (1)

k i = k i- ViKiF i + Vi KiF i
; (no summation) (2)

ki= ViKiFi (3)

The lateral sloshing mass for the first mode

or fundamental slosh mass mi, and its height hi,
the rigid mass m' and its height h* and the
slo hing~ pring constant are defined in the follow-
ing[4, 5, 6]

= m(i ) ( Ri ) tanh 1. 84 hi
T 2.hi Ri/

= _(i) -__Ri h i

hi = hi - tanh 0.92 Ri0. 92 Ri

= height of mi

mT h i
hi = hi - 2m + ( h

i

(4)

(5)

(6)

(7)

. mihrn 
I

= the height of mir (8)

The polar moment of inertia of m i is defined as

h2 (i) 2 

Ji (igid m
)

4 2 X

r 2. 14Ri h 1
1.995 h 14R tanh 0. 92 hi

- ml(hi - h.) - mi(hi -i(h i i )

where

(i) 2
mT Ri

Jrigid 4

[ 2 ]

11I + 'I

(9)

(10)

Figures 2a and 2b show that mi is situated above
nmi; however, as the depth of the liquid h

i
de-

creases, mi will shift to a position below mi .

Mathematical Formulation

The free dynamic behavior of the mechanical
model can be described completely in mathemat-
ical terms by writing the equations of motion and
equations of constraint for the system. In order to
do this, the mechanical model is divided into sub-
systems for which equations of dynamic and static
equilibrium for the free oscillation can easily be
set up. The coordinate system at each subsystem
is shown in Fig. 2a.

In the model, the structure mass elements
Mn(n= 1, 2,..., 8) will have three degrees of free-
dom in motion (two translations and one rotation),
the rigid mass mi (i = 1, 3, 5, 7) two degrees of
freedom (one horizontal translation and one

*This rod was removed from the experimental apparatus and, consequently, its effect was nullified in

the numerical program by setting to zero its cross-sectional area.
"*All springs in the model are massless and linear.
t This model was originally developed for a rigid container. T2 - R 4 7

5



Fig. 2a. Equivalent Mechanical Model
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Fig. 2b. Detail of

4i) Z2Eigi

V = N i(_h) +l-il)+( ii) i+l+i+l)]

V = N6Ei iZ [3(Xi+l-gi+l) +(I i-hi (2ji+l Ai+liBi3)

(i) 6E J1

Z NiZ(i-h*)3 [
2

(zi+lh -i)+(X- kh)(ai+e 0+L]

3 ) = -ZE, [3L(i+ -i+) +(h -i (ziAi+ 3i+lBiZ)]
NiP i 3(li-hi)

2Eigi~

= Ni(hiZ [3(ij+ i) + (hi -h) (2i +Ai+iBiBi]

6Ei-i

V() =Ni (h 3 [Z( i-xi) ) +h (i+hi)] (

6Eisi

-2Ei9i

Ih =SheZl [3(ti-xi)B+hf (heiAil+liBiam

i-th Shell Beam

21. -$4)

-(17)

(4) (4 ) (I 6 -d) 3 [Z(x7-xL6) + (16 -d) ('1!6+1(4)J(4) 2=6 J(4)3

16-J (166d) (I 6) 2 [3(x7-x,6 ) + (16 -d) (216+

516) = E44 ) 4)

4)j(4) M()=~ d2 [3(xl6-x6) +d (216++15))
:4)!4) d2

5) 4) [z(x6-x6 )+d (+, 6 )
\~~

(
[2(156

6
) d+d ( 5+16)

s15) = -z4) j44).
d25)= [3(x6-x6 ) +d (15+ 16)

]

Fig. 2c. Detail of Orbiter Reinforcing Beam

7 Y2' 347
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K h14) d14) (=-Z [3(x4-xl3)+(13-c)(214+*'13)]

E(3) J(3) v3) = 6 f(1c)
3

[I2(x 4 -xi3 ) +(

/

3 - c) (
1 3

+ l4)]

(- 3 ' 3 [3(x4-xl3)+(13-c)(2z l 3 +01 4 )]

013 1
3
(1 3) 3 )

IJ13) 13) =Zjt3) 2J3) [,(X 3 3) +C (201 3 +2)]
,(13) C= cE

( 3)P, 6E43) i 3 3)

_3 [ (x 3-x 3 )+c ( 21l2+l 3)]

)•E~iz~~~~2 

- c~-~2'} {[3(x 13-x" i) + (z 2.a)(2l +¢Ih )]~~lZ)

(Iz.a)

j @(,) = ~(t?_a)d z [3(x3-x I2)+a (24Z a) + l}( )]

1 (1 ) 0 ) l

a~l~lbll) 2 E) 3(2)
= [3(x2i-Xi) +a (2l o+9 )]J

3 [J(xl-x,)+al (+I0+0l)

V(9)= l2 3 [(x2X ) + I (+9+ 10)]

(
9

)
) = [3(x2.- x1 ) +11(0+1)]

Fig. 2d. Detail of Booster Reinforcing Beam
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rotation), the lateral sloshing mass mn
i

one de-
gree of freedom (horizontal translation), and the
vertical sloshing mass m

i
one degree of freedom

(vertical translation). Thus, the entire system
will have forty degrees of freedom and therefore
forty equations of motion. However, only equa-
tions associated with subsystem 1 will be shown
for the purpose of illustration.

Equations of motion. At subsystem 1 there
are two equations of motion for translation and one
for rotation. They are

oeam section 9-10

J(1) = moment of inertia of the cross section
of the reinforcing beam section 9-10

J1 = moment of inertia of the cylinder
cross section

and

12E 1 P91
Nil = i+. (hi) 2rrRB61G1

Mlil - V - V(9) = 0

Mlil - K( 1 )[(z 2 - Zl) + (RB+Dl)(CP 2 -Pl)]

- K 1 (Z-Z
1
) - kl( 1 -zl) = 0

J11 - K(1 )(RB + D1 ) X

(11)

(12)

3E l 1

A11 = 1 + (h7)2TRB61G1

Bl=l6- E9
(hl)2TRB61Gl

[(z 2 - zl)+(RB+Dl) (C2-Cp 1)] Equations (17) provide correction factors
which arise from the analysis based on linear

+ S1 (p l -C
9
) - M ( 1 ) = 0 (13) membrane theory of the shell. These factors are

unity for an ordinary beam (see Ref. 8). Similar
where equations of motion may be written for the rest of

subsystems.
D 1 = distance between the neutral axis of

the Booster strongback beam section Equations of constraint. As shown in Fig. 2a,
9-10 and the Booster shell at each massless subsystem of 9, 10, 12, 14, 15,

and 17 there will be one constraint condition in tht
K 1 = longitudinal spring constant of cP direction; at subsystem 11 there are two con-

cylinder 1 straint conditions (x and cP directions); at sub-
systems 13 and 16 there are three constraint con-

K( 1) = longitudinal spring constant of beam ditions (x, z, cp directions) for each subsystem;
section 9-10 at subsystem i (i= 1, 3, 5, 7) there are two con- -

straint conditions (ca, S directions). Thus there
J1 = polar moment of inertia of mass M1 will be twenty-two constraint conditions asso-

about yl axis ciated with the model. For the purpose of illus-
tration only the constraint conditions at the mass-

S 1 = torsional spring constant at joint 9 less subsystem 9 will be shown below.

M() = 2E 1 9 1 [3(%l - X1 )
M1 = (h)2N

+h* (2Ai
1 1 P + B1 1 la 1 )] (14)

= net moment at lower end of shell-beam 1

V(9)= 6(x)J( o)v, 3 [Z(xZ-xl) + Y I Pq+pl 0)1

=end shearing force of the Booster reit
forcing beam section at end 9 [7]

V()= 'II [2(l-Xl) + h((Pl+Cl)
]

V1 (h*)3N11

= net shearing force at lower end of shel
beam 1

0 x p9 - S(CPl-P9) - M ( 9
) = 0

where

M(9)= -ZE()J( 1) [3(x2-xl)

+ £1(2P9+P10)] /L T (18)

= end moment of the Booster reinforcing
beam section at end 9(15)

Similar constraint equations may be written
for the rest of massless nodes.

Eigenvalue problem. Since only free oscilla-
tions are being considered, the aforementioned

(16) system of H equations of motion and constraint is
homogeneous. Taken together, the total system
of dynamic and constraint equations can be writter

11- in compact notation (employing the summation
convention) as

E( 1) = Young's modulus of the reinforcing PrsWs+QrsWs = 0 r,s=1.2,... H

T2- 347

(17)

9

(19)
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It is assumed that the vibration modes are har-
monic, i. e.,

Ws = Ys cos (wt + Y) (20)

[p -(qi j - aincnlal) - n kj] (Xj) = 0,

k = 1,2.....L

where each frequency w is real. On substituting
Eq. (20) into Eq. (19), one finds

(Qrs - W2 Prs) (Ys) = 0

Nontrivial solutions for the eigenvector X exist if,
and only if, the determinant of the coefficient
matrix vanishes:

(21)

There is a well-known principle[
7 ] in vibration

theory which states that a system of H equations
consisting of L dynamic and L' constraint equa-
tions (L + L' = H) can always be reduced to a pro-
blem involving L equations. This can be accom-
plished by incorporating the constraint equations
into the equations of motion. In the present pro-
blem, this can be done by segregating the set of
generalized coordinates W into two nonintersect-
ing sets:

p-1(qij - ai
n c n a T) n2 Pki(qij - aincalj ') kj I =0 (28)

Thus, the problem reduces to finding the eigen-

values of the L X L matrix pl(q - ac- aT). The
eigenvalues found by this process are the natural
frequencies of the Booster/Orbiter system, ex-
pressed in radians/second. Included in this set of
frequencies are the zero frequencies identified
with translation and rotation of the system as a
rigid body.

Table III. Definition of Coordinates

where

X = set of coordinates associated with mass
elements

x = set of coordinates associated with con-
straint conditions

For the present problem, X and x are defined in
Table III. Equations (21) can now be replaced by
two sets of equations, the first of which gives the
L equations of motion expressed in terms of the
constraint coordinates x:

(qij ' n2pi j
) (Xj) -ainxn

i,j= 1,2,....L n=1,2,...,L ' (22)

The second set of conditions relates the x coordi-
nates to the X coordinates:

c lmxm = dljXj
1, m= 1, 2, ... , L (23)

Coordinates Associated
with Mass Elements

Xl =Zl

XZ = zZ

X4 = z4

X5= z 5

X6 = z6

X7 = z 7

X8= 08

X 9 = 0 1

XIo = %2

XII = %%3

X 1 2 = 04

X 1 3 = 05

X1 4 = 06

X15= %7

This system of equations can be written such that =

the squjre matrix c is symmetric and that
d = -a . Solving for x: Xl8 =x

X19 = x3

xn = Cn dljX
j

(24) x 0 x4

X2 1 = x
5

X22 = X6

X 2 3 = x 7

X 2 4 = x8

X 2 5= 53

X 2 6 = ;4

X27 = 45

X 2 8= a7

Xz9= 65

X 3 0 := 7

X 3 1 '13

X3 = '14

X 3 3 = 51

X 3 4 = ;Z

X3 5 = al

X36 = 3

X 3 7 = 91

X38 = 93

X 3 9 = 'll

X 4 0 = 2

Coordinates Associated
with Constraint Conditions

x 1 = 213 XlZ = Xll

x2 = Z16 X13 = X13

x3 = 09 xL14 = x16

X4 = 010 x15 = a6

x5 =O 11 xL6 = Q8

X6 = 12 X17 = 16

x7 = %13

x8 = 014

x9 = °15

Xlo = 16

x18 = 18

X19 = 02

x20 = 04

x21 = Z

Xll = %17 x22 1 94

and substituting into Eq. (22):
In the present problem, the matrix q and the

(qij - n~p..) (X.) -a d Xnl d X matrix ac-laT both are symmetric, and'theij -Pij) (Xj)=-aincnl dj i
j

matrix p is diagonal (and, hence, p- is diagonal).
= ai c-la T. X (25) However, the product matrix p- 1 (q- ac-laT)isnot

JaJ inc~ 1 a n 3 (25) symmetric. Mathematically, the eigenvalues of a
real, nonsymmetric matrix may be complex, all

Thus: or in part. On physical grounds, however, one
knows that the mathematical model being solved

[(qij - aincnl aj n2pij] (Xj) = 0 (26) represents a linear conservative system, and
therefore a correct solution must result in real

By premultiplying by p- 1 this equation takes the eigenvalues. Complex eigenvalues introduce
form of a standard eigenvalue problem growth and decay characteristics in the modal

10

(27)

W = XUx



response which are inadmissible for the free vi-
brations of the problem under consideration. In
the numerical solution for the present problem
an eigenvalue routine was used which computes
the complex eigenvalues of a nonsymmetric
matrix. All nontrivial eigenvalues, however,
were found to be real.

The nonzero elements of the matrices q, a,
and c are tabulated in Ref. 9 for three different
cases: hi > hi*, hi < hi and the empty case.

Numerical Aspects

The physical quantities which are involved in
the equations of motion and constraint for the ana-
lytical model consist of parameters which can be
computed directly (masses, moments of inertia,
etc. ) and of terms which do not lend themselves to
direct computation (effective* spring constants).
These latter terms can be estimated from force-
displacement calculations based on idealized
models, but these estimates by no means serve as
valid input data for computational purposes. Ef-
fective spring constants, in some cases, also can
be determined experimentally by impedance tech-
niques. The general approach used in this pro-
gram for determining the input parameters for the
analytical models was first to calculate by some
means (quite approximately in some cases) all of
the input data required of the model. Following
this, certain of the parameters, least amenable
to accurate calculation, were adjusted within cer-
tain narrow bounds in an attempt to match the fre-
quencies computed theoretically with the experi-
mental values for the empty tank case. This pro-
cedure is not the same as "curve fitting" where
one takes much greater liberty with the number of
parameters varied and disregards theoretical es-
timates on their magnitudes. The approach
adopted here limits the amount of empiricism to a
practical minimum in fixing the input data.

In the case of the Booster K 1 and K
2

, the
effective axial spring constants of the thin-walled
shells were found experimentally by an axial vibra-
tion test, as described in the next section. The
axial spring constants characterizing the strong-
back were adjusted from their calculated values to
match the empty, decoupled booster data. For the
Orbiter, the axial spring constant of cylinder 5
was calculated, and a correction factor (a cor-
rected shell thickness 65) introduced to force
agreement with the experimental result for cylin-
der 5 alone in both axial and bending motion.
This procedure was repeated using cylinders 5
and.6 together, to determine K 6 . For cylinder 7,
67 was taken equal to 65. The parameters finally

arrived at are listed. Once so determined, they
were held constant throughout all computational
work.

K1 = 3.48 x 10 5

K 2 = 7.36 X 10 5

K ( 1) = 1.8333 X 105

K( 2 ) = 5.3571 x 10 5

K(3) = 3.4921 X 105

K(4) = 1.2083 X 106

K(3) = 3.8596 X 105

K(4) = 1.2083 X 106

65 = &7 = 9.84 x 10-3

1. 885 X 105

S
5

= S7 = 2. 60 X 104

lb/in.

lb/in.

lb/in.

lb/in.

lb/in.

lb/in.

lb/in.

lb/in.

in.

lb/in.

in.-lb/rad

In the case of the coupled Booster/Orbiter
system three additional spring constants were
available for adjustment, within limits, to match
the theoretical and experimental coupled empty
tank condition. These three constants represented
the torsional coupling spring S6, the vertical
coupling spring K(6), and the horizontal coupling
spring K ( 7 ) . All three of these spring constants
were first calculated on the basis of idealized
models, to serve as nominal values in the adjust-
ment process. The values finally chosen were:

S6 = 3. 9027 x 104

K(6) = 2.677'x 105

K ( 7 ) = 9.9672 x 103

in.-lb/rad

lb/in.

lb/in.

The calculations for the empty-tank condition
omit the slosh models from the system of equa-
tions, and do not represent simply a degenerate
case of vanishingly small liquid levels. The gen-
eral system of equations, which does include the
sloshing models, must predict frequencies com-
patible with the empty-tank results for small, but
nonzero liquid levels. This criterion serves as a
checkpoint on the accuracy of the numerical pro-
gram. Also, a transition point occurs at a liquid
level of 1. 043 times the tank diameter, below

which h*, the location of the rigid mass, reverses
its relative position with hi, the location of the
sloshing mass. On either side of this transition
certain equations must be rewritten in a different
form, with the result that the program differs ac-
cording to whether one is considering a "near full"
or a "near empty" tank. Continuity in the com-
puted frequencies, of course, must be maintained
across this transition point, and this criterion
serves as an additional check on the programming
accuracy.

*Note that effective spring constants include effects
and longitudinal stiffeners.

difficult to predict, such as bolted joint compliances

11
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The matrix eigenvalue problem was solved on
a CDC-6400 computer using a standard eigenvalue
routine (modified Jacobi method) for finding the
eigenvalues of a real, nonsymmetric matrix.

Experimental Procedure

The test program performed on the previous-
ly described physical model can be divided into
distinctive phases and may be listed as the deter-
mination of:

(1) Effective spring constants for sub-
assemblies

(2) Natural bending frequencies of decoupled
Booster and Orbiter models

(3) Natural longitudinal frequencies
of decoupled Booster and Orbiter
modes

(4) Natural frequencies of Shuttle Vehicle
Model.

The first part of the experimental program
was to determine the effective spring constants of
the Booster model components. This was accom-
plished by mounting the intermediate empty con-
figurations illustrated in Fig. 3 on an electro-
dynamic shaker and determining the natural fre-
quencies of the components. Frequencies obtained
by this test were used to calculate the effective
spring constants. Similar procedure was used
with the Orbiter model components, both for axial
and lateral excitation. The resulting spring con-
stants were tabulated in the previous section for
both models.

a) LOWER TANK b ) LOWER TANK and SKIRT

Fig. 3. Intermediate Empty Configuration
of Booster Model

The second phase of the test program was de-
voted to determining the natural bending frequen-
cies of the decoupled models. The Booster model
was vertically suspended by a nylon rope, pulley,

and spring combination which was designed to

simulate a free-free condition. The rope was
attached to the model at its bottom flange on the
lower tank and was guided at the top of the skirt.
A small electrodynamic shaker connected to the
model at the upper flange of the skirt was used to
excite the model in a lateral direction. Four
piezoelectric accelerometers were mounted on the
model, one on each flange and one on top with their
axes in line with the direction of excitation, and
monitored simultaneously. The model was tested
with empty, full, and intermediate liquid condi-
tions and its natural frequencies were recorded.
The information so obtained served a dual purpose;
it provided data for comparison with the frequen-
cies obtained by an analytical model discussed in
the preceding section, and also allowed for the
identification of bending modes when the model was
later tested in its coupled configuration. This test
procedure was also repeated using the Orbiter
model.

To determine the natural frequencies of the
Booster and Orbiter models along their longitudinal
axes, the models were suspended as previously
described and excited along their vertical axes by
a small electrodynamic shaker. Four piezo-
electric accelerometers, mounted on the flanges
and the top of the models with their axes along the

direction of excitation, were monitored together
with pressure transducers installed in the center
of each bulkhead. As in the preceding phase, each
model was tested with empty, full, and inter-
mediate liquid conditions.

The final step in the test program was the
determination of natural frequencies of the com-
plete shuttle vehicle model shown in Fig. 1. The
system was suspended in such a manner so that
the driving force introduced to the model by the
electrodynamic shaker always acted through the
gravitational center of the model. Four piezo-

electric accelerometers, located on the bottom
flanges and the top of the models, were monitored
measuring acceleration along the axes of the
models, while two others were located at the tops
recording acceleration in the lateral direction. In
addition, four pressure transducers, one located
in each bulkhead, were monitored. All tests were
performed with the Orbiter tanks full. The liquid
level in the Booster tanks was varied from empty
to full with intermediate conditions. Thus, a nor-
mal operational sequence was simulated.

Throughout the entire test program, distilled
water was used as a modeling liquid propellant.
Ullage pressure was provided in all tanks to raise
the natural frequencies of nonsymmetric shell
modes above the frequency range used during the
tests.

As a conclusion to the experimental program,
the modeling liquid was replaced in the tanks by a
granular substance with bulk density very closely
equal to the modeling liquid and the model was

12



tested at full and half-full levels in the Booster
tanks, and similar levels in the Orbiter tanks.
This substitution was implemented to facilitate
identification of liquid and structural modes in the
data obtained from tests completed on the coupled
system, as well as to show more vividly the ef-
fects of liquid propellants.

Comparison of Results

The output from the theoretical model was in
the form of natural frequencies representing:

(1) Rigid body motion of the system (zero
frequencies)

(2) Sloshing frequencies of the four liquid-
containing tanks

(3) Elastic frequencies of the system.

Regarding the rigid body modes, the analytical
model predicts three zero frequencies for the

0.4 0.6 0.8 1.0

PROPELLANT DEPTH, h/l s54

Fig. 4. Uncoupled Booster Natural
Frequencies

13

coupled Booster/Orbiter system, and six when the
Booster/Orbiter coupling is set to zero. This pre-
diction is consistent with rigid body motion in a
plane. The four calculated sloshing frequencies
were in the range of 1 to 3 Hz and are quite small
when compared with system frequencies. Thus,
the sloshing modes are essentially decoupled from
the natural frequencies of the Mo'tal system.

Figures 4, 5, and 6 present a comparison of
the theoretically-predictedwith the experimentally-
determined results. Figure 4 shows the first five
frequencies of the Booster alone, and Fig. 5 shows
the first three frequencies of the Orbiter alone.
The analytical and experimental frequency values
are quantitatively compared in Table IV. This
agreement index was based upon the maximum
(absolute value) percentage error between the
theoretical and the experimental values, with the
experimental values taken as the basis. The
agreement is considered good if this error is
within 10%, fair if between 10% and 20%, and poor
if greater than 20%.

N
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LAJ
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I-

r

0.4 0.6

PROPELLANT DEPTH, h/l

1.0

2955

Fig. 5. Uncoupled Orbiter Natural
Frequencies
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Table IV. Agreement Index for Decoupled Models Table V. Natural Frequencies for Space
Shuttle Vehicle Model

BOOSTER

Mode Number

1

Mode Form

Ist bending

Ist longitudinal

2nd bending

2nd longitudinal

3rd longitudinal

Agreement

Good

Fair

Good

Poor

Poor

A. All Tanks Empty
(Orbiter Position c = 7.87 in. )

Experimental (Hz) Theoretical (Hz)

23.0
109
212
343
402
431
471
546
597
708

23. 
105
221
355
417
463
649
659
815
863

Good
Good
Good
Good
Good
Good
Poor
Poo r
Poor
Poor

Mode

Torsional Coupling
Lateral Coupling
Booster Bending
Longitudinal Coupling
Orbiter Bending
Booster-Orbiter Bending

B. Booster and Orbiter h/l = 0. 983 - Granular Propellant
(Orbiter Position c = 7.87 in. )

Mode Number Mode Form

1st bending

Agreement

Good

Experimental (Hz)

14.7
60.0

436
845

Mode

Torsional Coupling
Lateral Coupling

1st longitudinal

2nd bending

Good

Good
C. Booster and Orbiter h/l = 0. 517 - Granular Propellant

(Orbiter Position c = 7.87 in. )

It is seen from this comparison, and from
Figs. 4 and 5, that the agreement between theory
and experiment is generally better in the case of
bending modes than in the longitudinal modes.
There is a particularly significant lack of agree-
ment in the second and third longitudinal Booster
modes. Also, the theoretical frequencies tend tc
be somewhat higher than the experimental values
(except in the case of the second Orbiter bending
mode, where the theoretical and experimental
curves cross each other).

Table V. A compares the theoretical and ex-
perimental frequencies for the coupled empty-tank
condition. In terms of the comparison index men-
tioned above, the agreement is good for the first
six modes, and poor for the next three higher
modes. It is obvious that above the sixth mode,
the relatively simple analytical model is no longer
adequate to. describe the motion of the system.

Figure 6 compares the theoretical and ex-
perimental frequencies for the coupled Booster/
Orbiter system for full Orbiter and various
Booster propellant levels. The two lowest modes,
approximately constant at 15 Hz and 70 Hz, repre-
sent modes in which the Booster and Orbiter act
essentially as rigid bodies, but vibrate relative to
each other through the torsional coupling spring
and the lateral coupling spring, respectively. The
third mode is dominantly Booster bending, while
the fourth mode is the remaining rigid body mode,
with relative Booster/Orbiter motion resisted
through the longitudinal coupling spring. The
fifth and sixth modes exchange motions of domi-
nantly Orbiter bending and Booster longitudinal
motion. Above this, the discrepancies become
quite large.

Experimental (Hz)

14.7
64.0

420
869

D. All Tanks Full
(Orbiter Position c = 4.06 in. )

Experimental (Hz)

15.5
121
171
191
216
300
310
416
458
476

E. All Tanks Full
(Orbiter Position c = 11. 69 in. )

Experimental (Hz)

15.2
124
173
190
221
299
312

Mode

Torsional Coupling
Lateral Coupling

Mode

Torsional Coupling
Lateral Coupling
Booster Bending
Booster Longitudinal

Mode

Torsional Coupling
Lateral Coupling
Booster Bending
Booster Longitudinal

Additional results are shown in Tables V. B
and V. C where frequencies are given for the case

of a solid-like fluid. A mixture of soil and flour
was used to produce a substance having a bulk
specific gravity of 1.0. Only the first two modes
remained relatively unaltered, while most higher
modes disappeared. Apparently, considerably
more damping was displayed by this mixture than
experienced with water. Thus, in this case a
better study of the effects of liquid rather than
solid propellant simulation could have been ob-
tained from the analytical model.
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Fig. 6. Natural Frequencies for Space
Shuttle Vehicle Model

In Tables V. D and V. E, results are given f¢
alternate positions of the Orbiter on the Booster
when all tanks were full.* In these cases the dif
ference was surprisingly small. Other such re-
sults at various liquid levels would be highly
desirable.

Finally, Fig. 7 shows an instability that oc-
curs in the system for both Orbiter and Booster
full and excitation through the system center of
gravity at 453 Hz. The oscilloscope traces show
only the pulsating envelope of the high frequency
responses. The origin or cause of this type of ir
stability remains to be investigated. However,
inspection of the liquid surfaces showed no appar
ent slosh coupling with the low frequency pulsati¢
even though it was near the frequency for those
modes.

Top Booster
Longitudinal
Acceleration

Top Booster
Lateral
Acceleration

Bottom Booster
Longitudinal
Acceleration

Bottom Booster
Pressure

Top Booster
Lateral
Acceleration

Top Orbiter
Longitudinal
Acceleration

Top Orbiter
Lateral
A cc ele ration

Lower Orbiter
Pressure

I 1.4 g

I 2.8g

T 1.8 g

T 0.1psig

0.1 sec.

0.5 g

0.lp'sig

_ Fig. 7. Space Shuttle Vehicle Model Instability

Conclusions

Experimental and theoretical results of cou-
pled liquid-structural dynamics of a parallel-stage

1.0 space shuttle vehicle model have been presented.
2957 The analytical model developed provides only a

fair overall prediction of frequencies for the de-
coupled Booster and Orbiter models and a some-
what better prediction for the coupled Booster/
Orbiter system for the first several modes. One
possibility of improving the results at the higher

or frequencies is to introduce additional modes for
the longitudinal liquid sloshing model. Also, a

-f better estimation of joint compliances in the struc-
tural model would help.

The results of this study indicate that a very
effective, yet rather simple model of a typical
space shuttle system has been developed, whereby
many potential problems arising in a shuttle ve-
hicle system can be studied.
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