NATIONAL RESEARCH COUNCIL OF CANADA CONSEIL NATIONAL DE RECHERCHES DU CANADA

LABORATORY TECHNICAL REPORT

RAPPORT TECHNIQUE DE LABORATOIRE

ETABLISSEMENT AERONAUTIQUE NATIONAL

NATIONAL AERONAUTICAL ESTABL!SHMENT

ETABLISSEMENT AERONAUTIQUE NATIONAL.

CANADA

REPORT RAPPORT

SECIION
UNSTEADY AERCDYNAMICS

$\begin{aligned} & \text { Pages } \\ & \text { pacies } \end{aligned}$	50	REPORT RAPPDRT	$\begin{aligned} & \text { REPORT LTTR-UA-14 } \\ & \text { RAPPORT } \end{aligned}$
$\begin{aligned} & F_{\text {Fili }} \text { DIAG. } \end{aligned}$	27		Date July 1970 Date
		SECHON	lab. Order nat 1058
		UNSTEADY AERCDYNAMICS	FILE DOSJER M49-1

for Partially supported by the National Aeronautics Pour and Space Administration, USA, under contract NASN-1947.

REFERENCE
REFERENCE

LTR-UA-14

STATIC AND DYNAMIC PITCHING MOMENT MEASUREMENTS ON A FAMILY OF ELLIPTIC

CONES AT MACH NUMBER 11 IN HELIUM

SUBMITEO or K. Orlik-RÜckemann
Ratsentepar Krorlik-Ruckemann
GETIONHEAD
K. Orlik-Rückemann

Author J. G. LaBerge

```
APPROVED F. R. Thurstori
APPROUVE............
    ORECTON
```


ABSTRACT

Static and dynamic pitching moment measurements were maile on a family of constant-volune eiliptic cones about two fixed axes of oscillation in the NAE heiium hypersonic wind tunnel at a Mach number of 11 and at Reynolds numbers based on model length of up to 14×10^{6}.

Viscous effects on the stability derivatives were investigated by varying the Reynolds number for certain models by a factor ar large as 10. The models investigated comprised a 7.75° circular cone, elliptic cones of axis ratios 3 and 6 , and an elliptic cone with conical protuberances.

TABLE OF OONTENTS

Page

1.0 INTRODUCTION 1
2.0 MODEIS
2.l Geometry 2
2.2 Model Construction 2
2.3 Model Mounting 3
3.0 WIND TINNE!. 3
4.0 EXPERIMFNTAL EQUIPMENT AND PROCEDURE 4
5.0 DATA REDUCTION
5.1 Static and Dynamic Derivatives 7
5.2 4xis iransfer Equations 8
5.3 Sorrection for Spring Surging 9
0.0 RESULTS 9
0.1 Effect of Reynolds Number 10
0.2 Eifect of Cross-sectional Axis Katio 10
7.O DISCUSSION
7. Reliability of Results 10
7.2 Effect of Reynolds Number 12
7.3 Effect of Cross-Sectional Axis Ratio 15
8.0 REFFRENCES 16
TABLE 1
FIGS. 1-27

1.0 INTROUUCTION

No information is at present available on the dynamic stability of high lift-drag ratio comfigurations at hypersonic speeds. Such configurations, of course, are of immediate interest for apflication to some versions of the shuttle spacecraft and, at a later date, to the hypersonic aircraft. Information is needed to determine whether the dynamic stability of such vehicies can be provided by purely aerodynamic means or whether artificldl stanility devices have to be employed; in the latter case, knwwledge of the inherent stability characteristics may be requircd for ar optimum design of an artificial stainily systom.

To establish the significance of the problem, a flight mechanics analysis must be uidertaken, bused on a realistic set of aerodynamic sharacteristics of : typical configuration. For very simple geometrical shapes such as rirculic cones, such characteristics cin usually be provided analytically without any difficulties. However, for more complex geometry, such as may cesult from a simultaneous consideratior of requirements of high litt. Low daag, satisfactory trim and static stability, and practical volume aistrihution, the analytical prediction of the aerodynamic characteristics, and particularly of those frelated to the unsteady flight con itions, may beome very complicated or else not too accurate. trwever, tne aerudynamic characteristics may also be obtainer experinentally, for example, by static and dynamic tests in a hypersonic wind tunnel. Once a suitable experimental technique has been developed and checked rut on simple models, the same procedire may be used for netaining data on a wide variety of ccnfiguration genmetry.

This report presents the results of dynamic experiments performed o.1 a series of elliptic concs n a hyprsonic heliu.
wind tunnel. The experimerts consisted of oscillation in-pitch about two axes and were performed a. lach number il in a wide range of Reynoids numbers. Recent:y-constructed experimental equipment was empioyed, which is patlalarly suitable for testing hypersonic lifting configurations. ine models were selected in such a way that they were ot a simple enough geomftry to later permit analytical caicuiations and at the same in hat iftdrag ratios represertative of typical hypersonic configurations of practical interest. Three of the models chosen had previously been tested elsewhere and their steady aerodynamic characteristics at supersonic speeds were known.

2.0 MODELS

2.1 Geometry

The models investigated constituted a constant-volume family, viz; ail were of the same length and base area, see Fig. 1. Three of the models were geometrically similar to those of Ref. 1 and consisted of circular cone and two eliptic cones of increasing eccentricity. The fourth body was basically of an rli.ptic cross-section but carried conical protuberances at the top and bottom, the profile being given by a fourth order even cosine Fourier series. A body of this cross-section had been employed at the NAE for supersonic and hypersonic flow field investigations on conical bodies (Ref. 2).

The scale of the models was chosen such that the largest major diameter was still within the diameicr of the inviscid core of the nozzle test section. Model designation followed that o: Ref. 1 with the further designation of 137 given to the Fourier vody.

2.2 Model Construction

Fxcept for the circular cone, a computer-programmed milling machine was used to produce the extcral and internal
profiles. Details of a typical mode? are given in fig. 2. The internal surface was machined first and this was done in the following nanner: The model was si: along the major axis up to the solid forebody and the two halves were milled out, the final finish being that produced by the milling cutter. The two portions were then silver-soldered, the external profile cut and the final finish obtained by hand-polishing. The base of the solid forebody was then milled flat and adaptor mounting holes were tapped into the base. locai internal pads were left at the rear of the shells of moriels B1, B3 and B4 for attachment of brackets connecting the models to the driving mechanism.

A photograph of the completed models is s own in Fig. 3.

2.3 Model Mounting

Details of model mounting is given in Ref. 3 which descrihes the new dynamje stability apparatus that was used for this investigation. One of the stinge and the adaptors for the two axes of oscillation are shown in Fig. 4 ; the adaptors above the sting relate $=0$ model $B 1$, those bejow to $l \because:$ other models. The dimensional relationship beiween model, st ro and sting support are given in Fig. 5. The general mounting arranjemert in lie tunnel nozzle is shown in Fig. 6, while detailed views of the model installation in the test section are given lin Figs. 7, 8 and 9 .
3.0 WIND SUNNEI

The tests wert performed in the helium hypersonic wind tunnel facility described in Ref. 4, at a rominal Mach number of ll. The nozzle used had a test-section diareter of 11 inches and an inviscif core diameter of at least 6 inches. A photograph of the wind tunnel is shown in Fig. J.O.

The stagnation pressure was varied through a maximum
range of about 150 to 1600 psia giving a Reynolds number variation of about 1.5 to 14×10^{6} based on body jength. The resulting Mach number distribution in the plare of mode? oscillation at three longitudinal stations in the nozzle is given in Fig. 11. The variation of the mean Mach number at the test-section centre line with stagnation pressure is shown in Fig. 12.

The helium was pure to within 99.996 percent (by volume) or better.

4.0 EXPER IMENTAL EQUIPMENT AND PROCEDURE

A new wind tunnel apparatus for dynamic stability experiments, described in detail in Ref. 3, was used fur the measurements. In this apparatus the model is stingmounted from the rear and attached to the sting by means of miniature frictionless flexural pivots. The main stiffness of the oscillatory system is provided by a pair of gimbal springs mounted on the outside of $\mathrm{e}:$:her sidewall of the tumnel and attached (via another flexural pivot: to the base of the model by pre-stressed piano wires. A specially designed electronagnetic diver imparts the oscillatory motion to one of the springs, while a linear variable displacement transducer records the motion of the other spring. The main advantage of the new apparatus is that it requires only very little space inside the model and hence permits testing of very slender models. A schematic of the apparatus mounted in the NAE helium vind tunnel is shown in Fig. 0.

The frequency and logarithmic decrement were obtained from Dampometer readings using the method of free oscillation with automatically recycled feedback excitation described in Ref. 5. The plane of oscillation was parallel to the minor axis of the model. Two positions of the axis of uscillation were used, one at 50 percent of the model lencth from the apex and the other at 65.3 percent. These positions were obtained using two stings and two adaptors of different lengths which
kept the model in the same position relative to the test sectior and also relative to the sting support. The actual centre of gravity of all the models was located between the two axes of oscillatuon.

All tests were performed at a model mean incidence of zero degrees. Maximum amplitude of oscillation was $+1.5^{\circ}$ with measurements being made during amplitude decay from $\pm 1^{\circ}$ to $\pm 0.5^{\circ}$. Test frequencies varied from 33 to $41 \mathrm{~Hz}(k=0.013$ to 0.016) depending on model, axis position and stagnation pressure.

Model base pressure, test-section pitot pressure and tunnel stagnation pressure were measured with pressure transducers located outside the tunnel. Stagnation trmperature (approximately room temperature) was measured with a copperconstantan thermocouple in the centre of the settling chamber. The output of these instruments were registered on strip chart potentiometer recorders.

Run duration varied from about 5 to 10 seconds depending on the rate of model damping (i.e. depending on the particular model and stagnation pressure), one damping cycle taking place per run. Ten wind-off tare readings were taken immediately before and after each run when the tunnel was a low pressure.

The output of the motion transducer (see Ref. 3) was also fed to an oscillograph (Visicorder) to ascertain that, for all practical purposes, the damping was constant in the amplitude range being investigated. The pitot pressure was a 1 so registered on another channel of the oscillograpin to ensure that the tunnel flow uniformity was satisfactory during the period of damping measurement. Another oscillograph (Sanborn) was used for recording (to a much smaller scale) the motion trace during the initial setting up when the model or axis of oscillation was changed.

In order to assess the effect of the sting cross-sectional area on the resuits, the dimension of the sting in the plane of oscillation was increased by bonding two strips of lucite along the flat sides of the sting. This increased the cross-sectional area from 0.42 to 0.70 in. 2 , i.e., by $2 / 3$. The eftect of this increase was found to be within the scatter of the results for hoth the base pressure ratio and the derivatives.

The sting was observed 10 oscillate slightly during the experiments. This motion was then measured using strain gauges bonded to the sting. The sting oscillation was found to be practically the same during the calibration and wind-on coaditions, had the same phase and frequency as the model oscillation and produced an effective shift rearward of the axis of oscillation. This shift was so small that no correction of axis position itself was deemed necessary; however, it affected the staticaily-calibrated value of the angular mechanical stiffness of the system ly about 5 percent, which was taken into account in the data reduction.

In the present experimental apparatus the pitching oscillation of the model was excited by imparting a transiational oscillation to the system along an axis normal to the longitudinal aris of the tunnel. This oscillation in turn induced vibrations of the nozzle structure which were evident when the apparatus was firs . installed. The effect of these vibrations was to increase the tare damping of the system and to degrade the repeatability of the damping. This interference was reduced considerably by rotating the nozzle about its longitudinal axis to an optimum angular position, by adding lateral supports to the tunnei structure and by modifying the nozzle mass distribution by the addition of lead weights. A further refinement was achieved by introducing hard rubber gaskets between the gimbal springs and the nozzle wall and between the downstream flange of the nozzle and the upstream flange of the diffuser. With these improvements the vibration effects were reduced to an acceptable level.

The definitions and derivations given in this section are similar to those in Ref. 0 , but are reproduced here for convenience.

5.1 Static and Dynamic Derivatives

The expressions for static and dynamic pitchirg moment derivatuves are, respectively, as foljows
where

$$
\begin{align*}
& C_{m}=\frac{\partial C_{m}}{\lambda \theta}=\frac{2 M_{\theta}}{\rho V^{2} s \ell}=-\frac{8 \pi^{2} I\left(v^{2}-v_{0}^{2}\right)}{\rho V^{2} s \ell} \tag{I}\\
& C_{i n \dot{\theta}}=\frac{\partial C_{m}}{\partial\left(\frac{l^{\dot{g}}}{2 V}\right)}=\frac{4 V \dot{\theta}}{\rho v s \ell^{2}}=-\frac{81}{\rho v \ell^{2}}\left[\delta \nu-\frac{\delta_{0}^{\nu} 0}{2}\left(1+\frac{\nu_{o}}{\nu}\right)\right] \tag{2}
\end{align*}
$$

$$
\begin{aligned}
C_{i n} & =\frac{M}{\frac{1}{2} \rho V^{2} s \ell} \\
M & =\text { pitching moment } \\
\frac{1}{2} \rho v^{2} & =\text { freestream dynamic pressure } \\
S & =\text { base area of model } \\
\ell & =\text { model length } \\
I & =\text { moment of inertia of oscillating system } \\
\theta, \dot{\theta} & =\text { angle of oscillation in pitch about a fixed its first derivative with respect to } \\
\delta & =\text { logarithmic decrement } \\
\nu & =\text { cscillation frequency, Hz } \\
V & =\text { vacuum condition }
\end{aligned}
$$

The terms in the square bracket of Eq . (2) indicate that the damping is assumed to be viscous and hystoretic in equal proportions (see discussion in Ref. 7).

Eqs. (1) and (2) were programmed fcr computation using an IBM OS 360/50 CPS facility.

With pitching moment results available for two axes of oscillation the corresponding lift derivatives can be calculated, as shown in paragrapin 5.2. The static and dynamic lift derivatives are defined as follows

$$
\begin{align*}
& C_{L_{\theta}}=\frac{\partial C_{L}}{\partial \theta}=\frac{2 L_{\theta}}{\rho v^{2} s} \tag{3}\\
& C_{L_{\dot{\theta}}}=\frac{\partial C_{L}}{\partial\left(\frac{\dot{L} \dot{\theta}}{2 V}\right)}=\frac{4 L \dot{G}}{\rho v S \ell} \tag{4}
\end{align*}
$$

where

$$
c_{L}=\frac{L}{\frac{1}{2} \rho L^{2} S}
$$

$$
L=\text { lift force }
$$

The reduced frequency of the motion is defined as

$$
\begin{equation*}
\mathrm{k}=\frac{\omega \ell}{2 \mathrm{~V}}=\frac{\pi \cdot l}{\mathrm{~V}} \tag{5}
\end{equation*}
$$

where $\omega=$ circular frequency, rad./sec.

For $Y=5 / 3, T_{O}=540^{\circ} \mathrm{R}, \mathrm{M}_{\infty} \geq 7$ and with ℓ expressed in inches, Eq. (5) reduces to

$$
\begin{equation*}
k \approx 4.5 \times 10^{-5} \vee \ell \tag{6}
\end{equation*}
$$

5.2 Axis Transfer Equations

When the first-order pitching moment derivatives $\left(C_{m_{\theta}}\right.$
and $C_{m_{\dot{\theta}}}$) are known about two axes, it is possible to deterinine the corresponding first-order lift derivalives ($C_{L_{f}}$ and $C_{L_{i}}$) and to calculate the first-order moment derivatives about any other axis, provided the frequency effocts are negligible.

Consider three axes " 1 ", " 2 " and " 3 " starting fron the rear of the body, at distances x_{1}, x_{2} and x_{3}, respectively, from the afex, the distance between successive axes being expressed

- first order with respect to frequency.
as x_{32} and x_{21}, and x_{13} being defined as $x_{13}=-\left(x_{32}+x_{21}\right)$. We have, from Ref. 6:

$$
\begin{align*}
& c_{m_{\theta_{2}}}=c_{m_{\theta_{1}}}-\frac{x_{21}}{\ell} c_{L_{\theta}} \tag{7}\\
& c_{m_{\dot{\theta}_{2}}}=c_{m_{\dot{\theta}_{1}}}-\frac{x_{21}}{\ell} \approx_{L_{\dot{\theta}_{1}}}+\frac{2 x_{21}}{\ell} c_{m_{\theta_{1}}}-2\left(-\frac{x_{21}}{\ell}\right) c_{L_{\theta}} \tag{8}\\
& c_{L_{\theta_{2}}}=c_{L_{\theta_{1}}}=c_{L_{\theta}} \tag{9}\\
& c_{L_{\dot{\theta}_{2}}}=c_{L_{\dot{\theta}_{1}}}+\frac{2 x_{21}}{\ell} c_{L_{\theta}} \tag{10}\\
& \frac{x_{32}}{\ell} c_{m_{\dot{\theta}}}+\frac{x_{13}}{\ell} c_{m_{\dot{\theta}_{2}}}+\frac{x_{21}}{\ell} c_{m_{\theta_{3}}}=2 \frac{x_{32^{x}}{ }^{x_{1}} \ell^{3}}{} c_{L_{\theta}} \tag{11}
\end{align*}
$$

By letting axis ' 3 ' be at the apex, the derivatives about this position can be obtained.

5.3 Correction for Spring Surging

The effect of spring surging, discussed in Ref. 3, was found to increase the value of $C_{m_{\dot{\theta}}}$ and $C_{m_{\theta}}$ by about 0.4 percent.
6.0 RESULTS

All the results are listed in Table 1 . Typical amplitude decay curves for tare calibrations and runs at various stagnation pressures obtained from the oscillograph records are shown in Fig. 13; these indicate that the damping was indeed quite constant within the amplitude range investigated.
6.1 Effect of Reynolds Number

The derivatives $\left(\mathcal{C}_{m_{\theta}}\right)$ and $\left(\sim_{m_{\theta}}\right)$ for all four models and for two axis positions on each model, are plotted in Figs. 14 to 17 as functions of the free-stream Reynolds number.

The base pressure for all models is given in Fig. 18 , again as a function of the free-stream keynolds number.

For an easier assessment of the effect of Reynolds number, the data of Figs. 14 to 18 are combined for each model in Figs. 19 to 22, inclusive.
6.2 Effect of Cross-sectional Axis Ratio

The derivatives $\left(-C_{m}\right)$ and $\left(-C_{m b}\right)$ for highest value of the Reynolds number are plotted for all the models and for both axis pusitions on each model in Fig. 23 as functions of cross- sectional axis-ratio.

The pitching moment derivatives about the apex and for the same Reynalds number as above are plotted against the crossseciional axis ratio jn Fig. 24. A similar plot for tie lift derivatives $C_{L_{g}}$ and $C_{L_{g}}$ is shown in Fig. 25. In calculating the apex derivatives it was assumed that the axis transfer equations of paragraph 5.2 applied since, for the present low values of the reduced frequency, the effect of second order derivatives, which was discussed in Ref. 0 , can be considered neglioible.
7.0 DISCUSSION

7.1 Reliability of Results

As partly mentioned in the preceding paragraphs, several possible sources of experimental error were carefully examined. This included the possible effects of sting interference, sting oscillation, tunnel vibration and spring surging. Some of these
effects were found to be within experimental scatter; for others corrective measures were introduced. In addiiion, the offect of lateral loads on flexure pivots such as could rosult from the aerodynamic drab on the modely on the calitration values of the apparatus stiffness and damping was measured and sound negligible. The effect of the flow on the model support wire: was kept io a minimum by the use of wedge-shaped cantilever wire shieids (not shown on Fig. 6) mounted on the walls. Possibie errors in pressure readings were controlled by recording several pressures and verifying their ratios. The purity of helium was monitored and ound always within acceptable limits. The amplitude range for which the free oscillation results were representative was carefully controlled and always maintained at a constant value. In addition to the automatic data processing, the time-histories of at least two oscillation decays for every model and axis-position combination were also analyzed manually, confirming that in all cases the damping was fairly constant in both the calibiation and tunnel-run conditions. Finally, as mentioned before, presautions were taken to render the effect of axis position independent of the molel lncation in the tunnel and of the model-sting configuration by retaining the model always in the same position with regard to both the test section and the sting support. Thus the results obtained and their variation with Reynolds number and with the axis position for the different models appear trustworthy.
However, as always with this type of experiment, a certain level of scatter must be accepted due to the inevitable presence of flow fluctuations and structural vibrations. Some scatter could also be attributed to the presence of a transitional (and hence not strictly repeatable from run to run) boundary layer on the models in certain experimental conditions.

7.2 Effect of Reynolds Number

Hxperiments on mode? Hi were carr ed na: within the full available range of Reynolds number, which, at a nominal Mach number of 11 , was between 2.5 and 14 million for a 9 inch model. The resulting variation with Reynolds number ot the derivatives $C_{m_{d}}$ and $C_{m_{i}}$ and the base pressure ratio p_{b} / p_{m} (see Fig. 19) may be compared with similar data*, reported in Refs. 8 and 9 , for a 10° semi-angle cone at supersonic and hypersonic Mach numbers in air. It was shown there that the occurrence of boundary layer transition at the base of a cone could be determined by studying the variation of the cone base pressure ratio with Reynolds number. As long as the boundary layer over the intire model remeined laminar, the base pressure ratio was found to decrease with increasing Reynolds number. Transition at the model base was generally found to occur at a value of Reynolds mumber slightly less that that at which the base pressure ratio first began to level off. At lower Mach numbers inis onset of transition was also associated with the occurrence of a maximum value in the variation of the derivative $\left(-C_{m \dot{g}}\right)$ with $R e_{\infty}, \ell$, and a minimun value in the corresponding variation in the derivative ($-C_{m_{\gamma}}$). At higher Mach numbers the development of these maximum and minimum values was shifted towards higher Reynolds number.

The variation of the present results for model Bl with ireynolds number, as shown in Fig. 19 , shows the same characteristic trends as discussed above; on that basis and taking into account that the Mach number of the present experiments was as high as 11 , it may be expected that the onset or boundary layer transition at the base of model $B 1$ probably occurred at the value of Rem, ℓ some-

* It may be noted that our notation C_{m} and C_{m} is equivalent to the notation $C_{m_{a}}$ and $\left(C_{m_{q}}+C_{m_{\dot{a}}}\right)$, respectively, of ${ }^{\dot{\theta}}$ these references, if the latter are based on the model length.
where between 3 and 4 milition*. Henco only the data points obtained at the lowest two valuss ot ke,\downarrow may be considered representative of a laminar bouns:iy layer over the entire ione; the remaining points represent a moundary layer which is partly laminar, partly transitional an possibly partly turbulent. At the highest value of Re,f the results obtained should be approaching those which might be expected for inviscid inw conditions.

On elliptic cones the main contribution to the fitching moment comes from the central regions of the upper and lower surfaces, rather than from the areas on the sides. For cones of constant length and volume, the flatter the cone, the smaller is the flow detlection in these regions and the higher is the corresponding local Mach number, as shown in Fig. 26. Assuining that the boundary layer transition on elliptic cones occurs at approximately the same local Mach numbers as on circular cones, the average local transition Reynolds numbers in the centra: regions of modeis $B 3,134$ arid $B 7$ may be slightly higher (say io to 20 percent) than on model 13 :. Since also the average ratio of the local to the free-stream Reynolds number is siightly lower for these models (see Fig. 27), it follows that the average freestream transition Reynolds number for models 133,134 and 137 may be higher by some 20 to 60 percent than the corresponding figures for model B1. Hence the transition at the base of those models probabiy occurs at free-stream Reynolds numbers not exceeding 5 to 6 million. Thus practically all the results obtained for models $B 3,134$ and $B 7$ represent transitional or even turbulent flow conditions in the vicinity of the model base. However, except for the results for model B 3 at the forward axis position, no significant variations in the ($-\mathrm{C}_{\mathrm{m}}$) -curve, such as were observed for model 131 , can be distinguished.

* This also agrees very well with the summary plot of Ref. ll, which for the present conditions of a local Mach number of 7.43 and a unit local Reynolds number of 0.57 million predicts a (Re ${ }_{\infty}$) transition of 3.4 million. (The ratio of the local to the free-stream Reynolds number is taken here as 1.47 - see Fig. 27).

For the axis positions used in this investigation the effert of dynamic viscous pressure interaction (see Ref. 10) may be expected to reduce the values or dorivative $\left(-C_{m:}\right)$ as long as most of the cone* is in a flilly laminar or fully turbulent bountary layer. In each of these cases the effect should, of course, become smaller as the thickness of the boundary layer decreases. This is confirmed by the present results where derivative $\left(-C_{m_{g}}\right)$ is seen to increase with Reynolds rumber in two representative cases: (a) for model Bl at the two lowest values of $\mathrm{Re}_{\infty}, \ell$, when the flow is expected to be laminar over the entire cone and (b) for models B4 and B7 at the higher end of the $\mathrm{Re}_{\infty}, \ell^{-r a n g e}$ where the flow is expected to be turbulent over the rear portion of the cone.

It may be expected that the effect of transitional
boundary layer will be more pronounced for forward positions of
he axis of oscillation where the moment arm to the important cegion close to the model base is the largest. This is well ihlustrated by the results for models $B 1$ and $B 3$, where a wellCefined peak in the $\left(-C_{m}\right)$-curve is clearly visible for the furward axis position. A^{θ} similar but smaller peak appars for the rearward axis position for model Bi. However, no such effect can be distinguished for the rearward axis position for model B3. In vew of this, the sharpness of the corresponding peak for the forward axis position for that model is quite surpeising. No explanation can be offered at the present time.

$$
\text { Except for model } B l \text {, where the }\left(\cdots C_{n_{9}}\right) \text {-curve exhibits a }
$$

minimum in the same general range of Reynolds number in which the $i-C_{m .}$)-curve goes through a maximum, (and which agrees with the previous $\dot{\theta} y$-cited references), no significant variation with Reynolds number can be distinguisined in the $\left(-C_{m_{\theta}}\right)$-curve for the remaining models.

* Ir this connection the rear part of the cone is the most important, partly because of the larger area and partly because of the thicker boundary layer.
?. 3 Effect of Cross-Secticnai Axis-Ratio

Because of rather large efteois of keymolds number on some of the regults obtained and because of the different way in which these effects manifested themselves for different models, no general cross-plotting of the resul.ts as functions of the cross-sectional axis-ratio was considered practical. Since however, as previously mentioned, the results obtained at the highest value of Reynolds number could be considered as approaching the inviscid values, such a cross-plotting was undertaken for that particular set of results. It may be seen in Fig. 23 that the derivative $\left(-C_{m_{\dot{\theta}}}\right)$ for both experimental axis positions and the derivative $\left(-C_{m_{\theta}}\right)$ for the forward axis position increase with the cross-sectional axis-ratio, while the derivative ($-C_{m_{\theta}}$) for the rearward axis position shows a slight decrease. The results for model B7 are also included in Fig. 23 and exhibit good agreement with the curve for the elliptic cones in the case of derivative $\left(-C_{m_{\theta}}\right)$; however, the values of derivative $\left(-C_{m_{\dot{\theta}}}\right)$ are somewhat higher than those which would be expected for a strictly elliptic cone with the same cross-sectional axis-ralio.

From the experimental pitching-moment derivatives the static and dynamic lift-force and pitching-moment derivatives about the cone apex were calculated, using axis transfer equations listed in paragraph 5.2. The results are plotied in Fig. 24 and 25 and show in all cases (including model B7) a smooth increase with cross-sectional axis-ratio.
8.0

1. Jorgensen, L. H.
2. Jones, D. J.
3. Orlik-Rückemann, K.J. LaBerge, J. G. Adams, P. A. Conlin, L. T.
4. Orlik-Rückemann, K.J. Laberge, J. G.
5. Orlik-Ruckemann, K.J.
6. Orlik-Rückemann, K.J. LaBerge, J.G.
7. Orlik-Rückemann, K.J.

I: i iptic Cones Alone and with wings at supersonic Speeds.

NACA Report 1376, 1958.

Numerical Solutions of the flow Field for Conical Bodies in a Supersonic Stream. CASI Transactions, No. 1, V.3, p. 62, March 1970.

A Wind Tunnel Apparatus for Dynamic Stability Experiments on StingMounted Slender Bodies. NRC LTR-UA-13, March 1970.

NAE Helium Hypersonic W ind Tunnel. NRC Quarterly Bulletin, DME/NAE 1965(3), pp. 1-.31, I July - 30 September 1965.

Measurement 0^{-}Aerodynamic Damping and Stiffness Derivatives in Free Oscillation witil Automatically Recycled Feedback Excitation. NRC, NAE Aoro Report LR--246, June 1959.

Static and Dynamic Longitudinal Stability Characteristics of a Series of Deita and Sweptback Wings at Supersonic Speeds. NRC, NAE Aero Report LR-396, January 1966.

Wind Turnel Measurements of Dynamic Derivatives. Second Edition.

Lecture Notes, UCIA, August 1963.
8. Schueler, C.J.

Ward, L. K.
Hodapp Jr., A. E.
7. Ward, L. K.

Uselton, B. L.
10. Or ik-Rückemann, K.J.
11. Maddalon, D.V.

Henderson Jr., A.

Techriciues for Measurement of Dynamic Stability Derivatives in Ground Test Facilities.

Agardograph 121, October 1967.

Dynamic Stability Results for Sharp and Blunted lo-Deg Cones ai Hypersonic Speeds.

AEDC-TR-68-277, December 1908.

Dynamic Viscous Pressure Interaction in Hypersonic Flow. NRC, NAE Aero Report LR-535 (to be published).

Boundary-Layer Transition on Sharp Cones at Hypersonic Mach Numbers. AIAA J. V. o, No. 3, pp. 424-431, March 1968.

EXPER $\frac{\text { TMBLI }}{\text { AMTAI }}-\frac{1}{\text { RESULTS }}$

MODEL	${ }_{-\times}$	$\begin{gathered} \mathrm{P}_{0} \\ (\mathrm{PSI} A) \end{gathered}$	M_{∞}	$\begin{aligned} & \text { Re } e, 2 \\ & \times 10^{-4} \end{aligned}$	P_{p} / P_{∞}	P_{0}^{\prime} / p_{3}	\because $H 2$	C_{0}	θ
3 i	0.50	151	10.5	1.57	0.902	0.0174 .1	32.9	0.095	0.345
		152	120.5	2.5*	6.62	0.01703	38.9). 005	O. 349
		152	10.5	1.50	0.481	0.01895	38.7	0.087	0.355
		154	10.5	1.57	0.865	0.01747	38.9	0.103	0.352
		290	10.8	2.88	0.585	0.01855	30.8	0.207	0.375
		294	10.8	2.92	0.558	0.01820	38.4	0.199	0.370
		303	10.8	2.97	0.002	0.01808	39.1	0.209	0.369
		311	1.0 .8	2.97	0.578	0.02804	39.1	0.24%	0.370
		429	11.0	4.14	0.464	0.01765	39.1	0.464	0.351
		445	11.0	4.27	0.409	0.01804	38.9	0.480	0.354
		608	11.1	5.67	0.453	$0.0173)$	39.1	0.468	0.357
		797	111.3	7.29	0.4 .39	0.01691	39.2	0.580	0.330
		804	11.3 '	7.38	0.418	0.01695	39.2	0.572	0.337
		992	11.5	8.97	0.433	0.01643	39.5	0.611	0.356
		1.09 .3	11.5	9.81	0.435	0.01617	99.6	0.434	0.370
		1382	11.7	12.24	0.428	0.01553	39.9	0.321	0.478
		16.4	11.8	14.19	0.413	0.01 .525	40.0	0.366	0.377
31.	0.653	153	10.5	1.57	0.842	0.01830	33.7	0.160	0.049
		296	10.8	2.93	0.508	0.01818	33.8	0.222	0.051
		600	11.1	5.62	0.450	0.01737	33.8	0.373	0.027
		799	11.3	7.3:	0.431	0.01685	33.8	0.434	0.017
		802	11.3	7.38	0.445	0.01698	33.8	0.447	0.021
		999	11.5	9.00	0.45	0.01641	33.9	0.390	0.040
		1210	11.6	10.80	0.433	0.0 .593	34.0	0.258	0.067
		1398	11.7	12.33	0.429	0.01552	34.1	9.240	0.065
		1618	11.8	14.22	0.411	0.01515	33.9	0.25?	0.038
B3	0.50	372	10.9	3.78	0.523	-	38.8	0.421	0.635
		398	10.9	3.82	0.51\%	0.01771	33.8	0.356	0.610
		590	11.11	5.58	0.479	0.01773	39.2	0.340	0.643
		595	11.1	5.60	0.479	0.01768	39.3	0.408	0.647

TABIE 1-CONTINTED

TABLE 1 - CONCLUDED

VODEL	\bar{x}_{0}	P_{0} $(\mathrm{PS}$ IA $)$	M_{∞}	$\begin{aligned} & \mathrm{Re}_{\infty}, l \\ & \times 10^{-6} \end{aligned}$	$\mathrm{p}_{\mathrm{b}} / \mathrm{P}_{\infty}$	$\mathrm{P}_{\mathrm{o}} \mathrm{P}^{\prime} \mathrm{O}$	(HZ)	${ }^{-c_{m}}$.	${ }^{-i_{i n}}$
B4	0.653	816	1 l .3	7.51	0.493	0.91686	33.2	0.508	0.029
		1002	11.5	9.00	0.505	0.01649	33.2	0.513	0.021
		1192	21.6	10.65	0.507	0.01606	33.1	0.527	0.014
		1392	11.7	12.30	0.503	0.01565	33.1	0.521	0.010
		1606	11.8	14.13	0.526	0.01535	33.1	0.578	0.002
B7	0.50	797	11.3	7.29	0.499	0.01688	37.7	0.449	0.5 .42
		992	11.5	8.95	0.474	0.01642	38.0	0.435	0.548
		1199	11.6	10.71	0.442	0.01596	38.2	0.475	0.541
		1405	11.7	12.45	0.425	0.01556	38.4	0.434	0.537
		1630	11.8	14.31	0.413	0.01525	39.5	0.479	0.488
B7	0.653	797	11.3	7.29	0.493	0.01699	33.1	0.354	0.037
		1007	11.5	9.04	0.462	0.01655	33.1	0.366	0.033
		1187	11.6	10.57	0.442	0.01614	33.1	0.3-16	0.026
		1189	11.0	10.57	0.441	0.01617	33.1	0.354	0.023
		1402	11.7	12.42	0.420	0.01568	33.0	0.397	0.013
		1606	11.8	14.13	0.410	0.01533	33.1	0.373	0.016

$l=9.000 \mathrm{~N}$.

$$
\begin{gathered}
\text { FOR } B T \text { ONLY : } r / x=0.661(0.2-0.06 \cos 2 \phi+0.05 \cos 4 \phi) \\
\\
a x[r]_{\phi=90^{\circ}} ; b=[r]_{\phi=0^{\circ}}
\end{gathered}
$$

FIG. 1 GEOMETRIC PARAMETERS OF MODELS

1
3.450
1
2.023

OLL OIMENSIONS IN INCHES
FIG. 2 CONSTRUCTIONAL DETAILS OF MODELS (BT, TYPICAL)

Fig. 6 SCHEMATIC OF OSCILLATORY APPAKATUS AND MODE: IN THE HYPERSONIC WINI TUNNEI

REPRODUCIBILITY OF THE ORIGINAL

0091
NOE
$0-0$

-- \$ NOZZLE 69.75

$\rightarrow \rightarrow \mid$
\cdots
FG. 2 EFFECT OF P ON MEGN MACH NUMBER

Ni PRODUCIBILITY OF THE ORIGINAL

FIG. 15 DAMPING:IN-PITCH DERIVATIVE $\bar{x}_{0}=0.653, M_{\infty}=11.3$

mi PRODUCIBILITY OF THE ORIGINAL
copy IS rしで

SYMBOL	MODEL	HEEQUVAKY
0	$B 1$	34 Hz
0	$B 3$	34
0	$B 4$	33
0	$B 7$	33

FIG． $17 \frac{\text { STATIC PITCHING MOMENT DERIVATIVE }}{\bar{x}_{0}=0.653, M_{\infty} \neq 11.3}$

2.t PRODUCIBILITY OF THE ORIGINAL COPY is rve

FIG. 19 MEAN BASE PRESSURE, M $M_{\infty}=i .3$

$10 / 1 \%$

OREN SYMBOL	$\frac{\bar{\chi}_{0}}{0.50}$	$\frac{1}{0.0157-0.0162}$
FILLED SYMBOL	0.653	$0.0136-0.0140$

FIG. 20 RESULTS FOR MODEL BY

FIG. 21 RESULTS FOR MODEL $B 4$
rt.PRODUCIBILITY OF THE ORIGINAL COPY IS ic.

FIG. 22 RESULTS FOR MODEL BT

NE.PRODUCIBILITY OF THE ORIGINAL COPY IS rec.

$$
\begin{aligned}
& M_{\infty} \simeq 11.9 ; \nu=33-41 \mathrm{~Hz} \\
& R_{\infty} \simeq 14 \times 10^{6} \\
& P_{0}=1606-1630 F 510
\end{aligned}
$$

$$
-1.0
$$

$$
-0.6
$$

!

FIG. 23 EFFECT OF AXIS RATIO ON CM AND CM O

PROPUCIBILITY OF THE ORIGINAL. CIOPY IS rice

$$
\begin{aligned}
& M=11 . B \quad \mathrm{H}=33-4.1 \mathrm{~Hz} \\
& R_{\infty}=14 \times 10_{\infty} \\
& P_{B}=1606 \cdot 1630 \mathrm{PS} 1 \mathrm{~A}
\end{aligned}
$$

FIG. 24 PITCHING MOMENT DERIVATIVES ABOUT APEX

$$
\begin{aligned}
& M=11.8 ; V=33-41 H z \\
& R e_{\infty, 1} \simeq 14 \times 10^{6} \\
& P_{0}=1606 \cdots 1630 \text { PS IA }
\end{aligned}
$$

2

FIG. 25 LIFT DERIVATIVES ABOUT APEX

FIG. 26 CIRCUMFERENTIAL DISTRIBUTION OF THE REYNOLDS NUMBER FIQTIO AND THE LOCAL MACH NUMBER (CALCULATED BY THE METHODS OF REF. L)
 (BY METHODS OF NERF: E) AT TE NTEESECIIUN OF MODEL SURETACE AND THE MINOR AXIS, AND PLOTTED AT THE Q_{G} OF THE CORRESPONDING INSCRIBED CIRCULAR GONE

FIG. 27 RATIO OF LOCAL TO FREE-STREAM REYNOLDS NUMBER FOR cIRCULAR CONES AT $17=1 /$ AND $\sigma=5 / 3$

43
)

