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SUMMARY

Gamma-ray production cross section by the inelastic scat-

tering of neutrons form light nuclei are considered. The

applicability of optical model potential is discussed.

Based on experimental data, a cascade approach is developed

to calculate the inelastic gamma production cross sections.

a(n,n'y) cross sections are evaluated in the case of O16

using computer code "LINGAP" in conjunction with ABACUS-2,

and are compared with reported values.



INTRODUCTION

Inelastic collisions of neutrons with, nuclei are of

considerable interest, since these lead to emission of

particles and gamma rays. At intermediate energies (above

few MeV) reactions lead to (n,p) , (n,n') , (n,ct) and

(n, 2n) channels each of which would generally be followed

by gamma emission from the product nuclei. It is of consid-

erable interest to determine the cross section for each of

these reactions as a function of the neutron energy.

The reaction mechanisms are described by adopting appro-

priate nuclear models. One of the most successful techni-

ques adopted in the study of the neutron-nucleus inelastic

collisions involves the compound nucleus concept. The

theoretical formalism for this is worked out by Hauser and

Fesbach . The compound nucleus, formed by the absorption of

the projectile nucleon, does not "remember" the manner in-

which it was formed so that its decay will depend only upon the

properties of the exit channels. The parameters that control

the exit channels are E the energy/ J the spin and the parity
*

of the states of the nuclei. The compound nucleus formation is

usually schematically represented as shown in fig. 1.

In the compound nucleus concept it is assumed that the

incoming particle suffers multiple collisions with the nuc-

leons of the target, thus losing its energy successively un-

til finally equilibrium is reached. It is probable that suff-
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icient energy can be imparted just to one nucleon so

that it escapes the nucleus.

On the other hand it is possible for the reaction

to take place via the direct interaction process. At

higher projectile energies, when the time the nucleon

requires to traverse the nucleus is several orders of

magnitude less than the typical compound nucleus life-

-14
time of the order 10 sec, the reaction proceeds thro-

ugh direct interaction.

It is of interest in this study to develop a com-

puter code to determine the neutron induced gamma ray

production cross sections in light nuclei. The inelas-

tic collision cross section as developed by Hauser and

Fesbach is found to be extremely successful in the case

medium and heavy weight nuclei. This has been observed

by several groups2"4 \ , ,

THEORETICAL CONSIDERATIONS

Neutron as a projectile to bombard on nuclei of all
«

masses has serve d as a means to understand the struc-

ture and properties of nuclei to a considerable extent.

Neutrons react with many nuclei from very low neutron bom-

barding energies of the order of ev to very high energies

of the order of several MeV leading to various types of

reactions.

The energy balance is given by:

M + M + E = M + E
A n n A + l 0
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where E is the incident neutron energy and EQ the ener-

gy evolved in the reaction. MA, MA+I, and Mn are the tar-

get nucleus, product nucleus and neutron mass respec-

tively. The product nucleus which is generally referred

to as the compound nucleus may decay by emitting photons, .

particles or even by fission.

At low incident energies, because of the centrifugal

barrier for high angular momenta, a = O, i. e., S wave

neutron capture is several times more probable than P wave

( Si = 1) or higher order neutrons.

Thermal Neutron Capture ,

For E ^ few ev, where S wave capture dominates, the
n

compound nucleus spin is J = I ±z where I is the target nuc-

leus spin,. -.-In this case parity is conserved. If E is

such that the compound nucleus energy is close to one of

its natural levels, resonance capture is said to occur and

de-excitation takes place through gamma ray emission, the

details of which are determined by the spin, parity and

energy values of the levels involved. On the other hand,

if the energy of the compound nucleus lies between two

resonances, capture can take place to both the levels. The

gamma rays emitted is this case will be mixtures of various

multiple orders.

The compound nucleus, formed in an excited state, can

decay either by emitting one or several gamma rays or
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through the emmission of one or several particles. Each

mode of decay can be characterized by a meanlife T .

where the values of i denote the various modes of decay

Obviously the mean-life of the excited state is

I = Z I •
T i T- (2)

T is related through the uncertainity principle with level

width r and is given by

Thus the parti a 1 widths for each of the possible modes of

decay can be written as

r. = hi 7 (4)

For the case in which the possible excited states are

very close, the continuum model can predict the transition
(5)

spectra with appreciable accuracy. Troubetskoy has used
(6)

such an approach for selected nuclei. Yost has deve-

loped a general formalism to 'include the transitions from

and to discrete levels where parity and spin dependence

are also taken into account. For the resonance reaction

the Briet-Wigner approach provides satisfactory results.

Accordingly the cross section for (n,a) reaction is given

by
r

a(n,a) = a a

c r (5)

where "a1 could mean a particle or photon emission. r is
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the particle/photon width. In the case where only one

level of the compound is involved ac is given by

2 r r

o = irfc f a—= (6)
c

(E-E )2+r2/4r '

Here Er is the neutron kinetic energy for which the ex-

citation energy is equal to the difference between the

ground state (of the target nucleus) and \'he energy of

that level in the compound nucleus into which absorp-

tion takes place. The statistical weighting factor f is

given by

f- (2J+1) (2J+1)i- - <- ,_.
(21+1)(2S+1) 2(21+1) l '

I being the spin of the target nucleus, a, the orbital

angular momentum of the neutron and J the spin of the

compound nucleus level involved.

For, a=o neutrons which is valid assumption for

slow neutrons, and for the case where particle emission en-

ergetically not possible, one can then write the cross

section for gamma production as

2 r r
a(n,Y)= v\ f - 2__

(E-E )2 + r2 /4

(8)



-9-

Howevcr, as neutron energy increases collisions

become inelastic leading to particle and gamma ray

emission. In this case compound nucleus formalism is

found to be the appropriate concept to explain the re-

actions .

The generalized compound nucleus concept is depen-

dent on the appropriate nuclear potential, of the tar-

get nucleus, which makes the absorption of the nucleon

possible. However such an absorption which leads to the

compound nucleus formation would not account for the

resonance effects which are often seen and are intimate-

ly connected with the quantum states of the compound

system. Thus in the compound nucleus concept one can at

best get informations averaged over the resonances. This

brings in the limitation that the validity of the concept

is dependent on the density of the available states. The

situation is rather favorable in the medium to heavy we-

ight nuclei where the nuclear levels are more closely spaced
«

than in lighter nuclei. Also as the projectile energy in-

creases the higher energy states of the entrance channel

become available and this also leads to better accuracy

in the averaging over resonances. At still higher ener-

gies where the nuclear levels are so close that they can

be treated as a continuum, the cross section for the for-

mation of the compound nucleus is the same as the aver-
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age reaction cross section.

The various cross sections that enter into nuclear re-

actions are given below.

*t= °e*
+ °r

(9)

Here, ot is the total cross section, ae^ is the elastic

scattering cross section, which is the case where the quantum

states of the target nucleus are not disturbed by the reaction.

The elastic cross section is made up of a which is that typet se •* c

of scattering that takes place without the formation of the

compound nucleus and a which is that part of elastic scatter-
N-» C

ing that takes place after the formation of the compound nucle-

us. Thus, if one considers another cross section o which de-
w

notes the cross section for the formation of compound nucleus,

the latter can be split as

Obviously, from equations (9) and (10) one can conclude that

*t= °el+ ar

= ase+ °ce+ °r

= ase+ ac'

(11)

Any potential adopted to solve SchrOdinger 's equation for

this problem of nucleon-nucleus interactions should predict

reasonable values of the elastic and reaction cross sections.
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A simple forr.\ of potential given by Fesbach et al(7' is

written as

V= V0+
(12)

The incoming neutron sees a potential of the form

given in equation 12. The real part V0 of the poten-

tial accounts for the shape elastic scattering and the

imaginary part V1 is responsible for the formation of

the compound nucleus. It is reasonable to ex-.

pect the cross section for compound nucleus formation-

to -increase with increase in the energy of the in-

coming neutrons. Therefore one can expect a proport-

ionate dependence of V on the neutron energy. Also

V will be dependent upon the mass number A and radius

r of the nucleus .

However any such potential cannot satisfactorily

explain the resonances in the cross sections in the low

energy region. Resonances are the strong fluctuations

in the nuclear cross sections that are found in the low

energy range. On the other hand at higher energies,

particularly in the medium and heavy weight nuclei level

widths are smaller and cross sections become smooth fun-

ctions of energy.

(8)
Following Weisskopf one can obtain the cross sec-

tions in the following fashion.
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Let the vector distance between the center of the nuc-

leus and the incident particle be, denoted by ra

and let the incident particle be described by a plane

wave of the form ik •e a ra • If k is parallel toa c

ikzthe Z axis one can then rewrite the plane wave by e

Let the velocity of the particle =_ v

k. (13)

Here the reduced mass is given by M =
Ma j- MX

where Ma is the projectile mass and MX

the target mass

Channel wave number Ka = ( I

(14)
where e is the entrance channel energy.

As usual one expands the plane wave into spherical

harmonics and write

ikz IT
Jcr (2A+1)

£+1
exp -i(kr-

-exp Til (15)
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Eguation (15) describes the undisturbed plane wave

The nuclear reaction changes this so that the outgoing

wave is written as

kr £=

p

+1{exp | -i(kr- \-

exp ["+ i(kr+irS, I } Y£,o__

(16)

Here n0 is the coefficient of the outgoing wave and is* \
the complex reflection factor.

Then the scattered wave is given by

(r)~e ikz

kr 1=0

exp +ikr+ ir£
2

(17)

One usually defines the scattering across section as

a_ number of events per unit time per nucleus
number of incident particles per unit area
per unit time

Then one obtains N__/N which represents or by
o w S C

determining the flux 4»sc through a sphere of radius

with the target at .its center.
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This is written as

rf ,*= - /(~~ *S

The orthogonality of spherical harmonics leads to

NSC k' £=0 ' ' ' (19)

Here v is the speed of the particles and the value

of the flux N ia a plane wave is given by the speed •

Therefore o Si is 'obtained by dividing equation 19 by
sc

N or its equivalent V and for a particular valve of a

this quantity becomes

(18)

(20)

In a similar manner the reaction cross section is found to

be

2 2
0r = irJl(2JH-l) f 1-| ni| )
' (21)
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It is necessary to average these cross sections and

the phase shift term n over the energy. This is done by

defining
1 E+&E-

V ar'B_£- V
E')dE'-

2
(22)

Similarly, one can average the cross sections also. This

is a brief survey of the gross-structure problem which is

solved by choosing an appropriate complex potential that

will give satisfactory values for the phase shift n̂ ."

NUCLEAR POTENTIAL FORMS

It is necessary to choose an appropriate potential to

describe the reactions which include elastic scattering and

compound nucleus formation, where the latter amounts to an

absorption. The problem remains to write a two body po-

tential which when used to solve the Schrodinger equation

will lead to satisfactory values of the phase shift n^ for

each partial wave. In order to explain the phenomena of

scattering and absorption, one adopts a potential of the

complex form

V(r)=Uf (r)+iWg(r) .
(23)

In order to accomodate the complexity introduced due

to the spin of the incident particle, one introduces spin-

orbit terms through Us and Ws which are the real and imag-

inary parts of the spin-dependent potential. Thus one

writes
V(r) =Uf (r) +iWg (r) + (U~+iWs) h (r)t -"a

(24)
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where h(r) is the radial variation of the spin-dependent

part, a the Pauli-spin operator and a the angular momentum.

Finally, if the incident .particle is charged, the Coulomb

part of the potential is introduced through another term

Vc(r) so t')at the complete optical potential is written as

V(r)=V (r)-f-Uf (r)+iWg(r) + (U +iW )h(r)t-0
(25)

Various forms of potentials are listed by Hodgson

There have been efforts made to derive the optical potential

from elementary nucleon-nucleon interaction. Perry and

Buck have carried out some successful calculations using

such non-local potentials.

There are several difficulties in adopting an appro- .

priate set of pa ameters for optical potential for any given

nucleus. When applying the model to any particular nucleus

by attempting to fit the angular distribution of the elastic

scattering data or by other means, one often finds that

there may be several sets of values of the parameters which

would give good fits of the cross section data. An addit-

ional criterion one may use is to fit measured reaction

cross section with predicted values of such cross sections.

And this may narrow down the ambiguities.

The difficulty is more accute in the case of light

nuclei because of the difficulty in averaging over resonances,

However, in the case of 0 which is considered as a sample

problem in this work, it is possible to fit the data for



neutron energies above 12 MeV^10'. Total cross sections
(11)

measured, in the case of oxygen for En<16 MeV by Barschall

and elastic angular distributions measured by Chase etal at

energies of 6.02, 6.53, 8.0, and 11.6 MeV^12^ by Bauer, An-

derson and Christensen(13) at 14 MeV provide reasonable

amounts of information to attempt a fit to the cross sections.

Johnson and Wallin have concluded that above 12 MeV, the total

cross section is a smoothly fluctuating function of energy

around 1.5 barns. Therefore, one can conclude the optical

model should work well for neutron energies above 12 MeV in

the case of O-16. Johnson and Wallin and several other groups

have atte. -ted to fit the reaction cross sections with optical

model calculations for the case of O15 and N14. Different

model parameters for O16 which have been used by several

groups are given in table 1. Unless one uses a non-local
14

potential as developed Perry and Buck, it will become

necessary to use different sets of optical model parameters '

for different neutron energies due to the energy dependence
15

of the optical potential. Preston has concluded that for

the case of local optical potential , among the constants

R, a, b, Vc, We, VSo which enter the expression for the

potential function, apart from the coulomb term, the dif-

ference between protons and neutrons is only in b. For

neutrons b ^ 1.2fm. On these basis it seems reasonable to
16

adopt the optical model parameters for O16 from Duke
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His values are also given in table 1 .

The other functions which are given in equation 24 are

given below. The function f(r) is usually adopted to be the

Wood - Saxon form:

f(r) = ,r-R
1 + exp

I a .

(26)

and g(r) is the surface centered imaginary potential used by

Fesbach and Bjorklund,

g(r) = exp -- r-R
b

V J

2

(27)

The spin orbit term is given by

h(r)
df(r)

(28)

When m is pion mass. Nuclear radius R is given by
ir

r A1/ 3 where A is the mass number. In these calculations a
o
constant value of b = 1 is adopted. Also a fixed value

of 1.2 is used for r . The important variations are in
o

V, VS and W.
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OPTICAL POTENTIAL PARAMETERS FOR

16
O

En
MeV

14

14.5

15.2

15.6

16

16.4

17

17.4

18

18.4

19.2

ro
fm

1.2

1.2

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.30

V
MeV

48.46

52.2

47.8

49.2

52.3

45.7

47.5

47.6

44.7

46.4

46.1

W
MeV

7.06

3.2

1.8

2.9

14.2

22.6

28.0

5.7

3.6

4.8

13.1

a
fm

.71

.53

.57

.62

.46

.61

.60

.52

.55

.57

.56

b
fm

1.0

.7

1.8

1.1

.2

.2

.2

.6

1.0

.9

.4

V
MeV

5

4.2

4.6

6.6

12.1

11.7

12.3

4.0

2.3

2.4

3.1

Ref

18
Lutz

Duke

Table 1

*The value of b is adapted for neutrons
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These considerations show that an extensive search of

available experimental and theoretical data will provide

satisfactory parameters for the optical model potential in

the case of a light: nucleus such as O16 which is of interest

in this work.

INELASTIC CROSS SECTIONS

In the light of the above discussions it is reasonable

to assume that the Hauser-Fesbach formalism can be applied to

evaluate the inelastic cross sections in the case of selected

light nuclei for neutron energies above a minimum value.

Hauser-Fesbach formalism calculates the reaction cross section

from an initial state i to a final state i' of the nucleus,

in terms of the transmission coefficients T (E),
A*

1 - n | 2 (29)

Also,

T£(E) . (30)

Here a '*:) is the cross section for the formation of
c

compound nucleus for neutrons of angular momentum £. In a

similar manner the cross section for the production of

neutrons of energy E1, of angular momentum £', channel spin

j and moving in a direction 9 is given by Hauser and

Fesbach as



-21-

Afj U'/j'j e) = iu2(2ii+i) T (E)
X*

U/J fc'/j1 0)
(31)

By using the sum rule and integrating over 6, one obtains

the inelastic cross section to be.

=IU2T
£

(2J+1)/
Pqr

1 yy
TH'(E')

(32)

In equations 29 to 32, i is the target spin (in anits

of h), i'spin of the residual nucleus, £&£' are the in-

itial final angular momentum of the neutron, and E and E1

are the corresponding initial and final energies. J denotes

the spin of a level in the compound nucleus, r refers to

possible channel spins, p to possible neutron angular

momenta and E to possible final neutron energies.
(17) *

AI3.-.CUS-2 as developed by Auerbach uses scattering by an

optical potential. The phase shifts n „ . are related to the
*D

transmission coefficients through equation 29. These tran-

mission coefficients are used to evaluate the partial in-

elastic scattering cross section for each excited level.

The gamma transition probabilities can be then calculated

from the cascade approach which is given in the next section,

CASCADE FORMALISM

Let i and j be two arbitrary levels above the

ground state of nucleus as shown in fig. (2).

It is required to evaluate a(Y)^ when the nucleus is

subjected to an inelastic collision by neutron reaction.
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The excitation of level i depends on on(E) the partial in-

elastic collision cross section for neutron energy

n(E) > i(E) where i(E) is the energy of the level i.

FIG. 2 NUCLEAR CASCADE.

The quantity can be calculated by Hauser-Fesbach formalism

with the aid of ABACUS-2. In addition to this type of ex-

citation the level i can be fed by allowed gamma transitions

from states I > i and the cross section for this be denoted

^ -ft, •
Total inelastic excitation cross section for level i is

given by,

(E) = a (E) +n
>JL

(33)

Then

r* (E) = o (E)
J i (34)
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whers the left hand side quantity in equation (34)

denotes the cross section for the production of gamma

ray by a transition from level i to level j, r3; is

the partial level width for this process and r is the

total radiative width of the level i. One can evaluate

P-V from measured values of the relative intensities
D

of the transitions originating from the level i. Thus

one writes

r?-

Intensity of y^

Intensities of
j=o

In order to evaluate a (y) , for any given neutron
i i

energy n(E) , one chooses all levels I in the target

nucleus for which I(E) < n(E) , where I (E ) denotes the
~~ , k

various energy levels in the nucleus. Obviously the

levels of interest are those for which k goes from 1

to k max. Therefore one lists all the inelastic partial

cross sections for each of these levels from an ABACUS-2

computation for the selected nucleus. The index k is set

at k max where k max will denote the highest level

chosen for which I (E ) <_ n(E) and k=l will corres-
^ max .

pond to the ground state. Obviously CT
nCE) will
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denote the partial inelastic cross section for exciting

the highest state. Then the cross section for exciting a

level i by gamma transition form k max is given by

k max
k max /,-,\k m&x i_ __

k max -1 k max (36)

= a (E)k max P k max
n i

Then one considers the next lower level ief the one

corresponding to (k -1) . This level will be ex-
ItiClX

cited by the inelastic neutron collision as the one above

and the corresponding partial cross section is given by

on(E)
kmax~1. This level can also be excited by a gamma

transition from the level at k mrac. The cross section

for exciting the level at (k max - 1) is given by

(k max-1)
rT

(E) (k max-1) + ff (E)k max pk max
n n k max-l

Then the cross section for gamma transitions from this

level to level i is written as

(k max-1) pk max-1
T

(37)
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Carrying out similar calculations for levels below

down to (i+1), one can write the total cross section

for exciting level i as

(E) =

k max-1 max (Y)

Therefore the cross section for gamma-ray transition

from level i to level j as a result of a neutron

inelastic collision is given by

a Yi(E) = /T-\i , kroax k, ,(E) + ̂  a.^ (Y)

(39)

(40)

k=i+l

r^ / r is the relative transition probability for a

transition from level i to level j

Computer code LINGAP as given in appendix calculates

the gamma production cross section using equation (40)•

The inelastic cross sections a n(E)1 in the

equation (40) are calculated for various neutron energies

by using ABACUS-2. The transition probability for each

gamma transition is separately found out from measured

intensity values of all the gamma rays proceeding from a

given level.

GAMMA RAYS BY NEUTRON INELASTIC COLLISION O16.

In the case of oxygen, the optical model parameters
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used are given in Table 1. However, fixed values of

b= Ifm and rQ= 1.2fm were used. The relative gamma-ray

transition probabilities for each level were calculated

from the reported experimental values of relative intensities

(19)from ref . These are given in Fig. 4.

Calculations have been made for neutron energies from

15 MeV to 19 MeV at intervals of 0.5 MeV. In the light of

the discussions in the earlier part of this report, it is

concluded that optical model can be applied for this region

in the case of O16.

Gamma production cross sections are calculated for

transitions from energy levels I(E) <_ 11.07 MeV. The calcu-

lated values are given in tables 2 through 11. The cross sec-

tions are plotted as a function of neutron energy, En in figs,

5 through 9.

It seems reasonable to disregard the transitions from;.

levels for which I(E) > 11.62 MeV. In Figure 3, which is

taken from Morgan et al , one observes that above 11.62

MeV the (nn'a) channel is the dominant mode of decay. This is

also verified by Fig. 3.

Results of the calculations compare favorably with the

(21)experimental values reported by Stehn et al , for 6.13

MeV g amma-r ay.

Gamma production cross sections are illustrated graphi-

cally and in tabular forms for the dominant transitions in

O16. There are not enough experimental values reported to
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(22)compare these results. Joanou and Fench have compiled

o(n,n'), in the case of O16, for ER up to 15 MeV. They have

given a value of 500 mb at 15 MeV. Present calculations show

that a(n,n' y) at this energy is about 200 mb. The cross

sections for 6.14, 6.92, and 7.12 MeV gamma-rays, as reported
i 2 3)

by Engesser and Thompson ' for neutron energy of 14.7 MeV,

are 120, 60, and 8O mb respectively. These values compare

favorably with pres .it calculations.

Code "Lingap" can be used for evaluating o(n,n'y) for

any nucleus for which a(n,n^) can be evaluated using optical

potential mode] or in any other manner. It will also be nec-

essary to obtain the relative gamma transition probabilities

to determine the gamma production cross sections.
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11.62
11.07
10.94

10.36
9.84
9.58

8.88

7.12

6.92

6.14
6.06

01 6(nn»01 6
0 1 6 ( n n - a y ) C 1 2

4.43

C12+a (7.148)

016

Fig. (3)
Inelastic neutron reactions in O16

(Ref. 20.)
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Fig. 4. Gamma-ray transitions in O16

(Ref. 19)
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Ey = 6.06 MeV (6.O6 MeV->0)
Neutron Energy

in MeV

15.0

15.5

16.0

16.5

17.

17.5

18.0

18.5

19.0

Table 2

EY = 6.14 MeV (6.14 MeV-*O)
Neutron Energy

in MeV

15

15.5

16

16.5

17

17.5

18

18.5

19

o(n, n1 y)
in mb

16.21

13.35

9.93

26.89

16.26

14.65

21.24

5.99

17.0

a(n, n', Y)
in mb

52.26

48.55

29.13

41.53

39.38

29.75

28.55

42.11

31.15

Table 3

Cross Sections for the Production of
Neutron Induced Gamma Rays in
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EY = 6. 92 MeV (6 . 92 MeV-Q)
Neutron Energy

in MeV

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

Table 4

EY = 7.12 MeV (7.12 MeV+0)
Neutron Energy

in MeV

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

a(n, n' Y)
• in mb

40.5

38.15

34.89

23.17

19.89

25.37

13.53

25.01

26.0

a(n, n' Y)
in mb

22.27

21.88

29.70

31.20

43.2

32.68

46.36

24.62

37.95

Table 5

Cross Sections for the Production of
Neutron Induced Gamma Rays in
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Ey = 2.74 Mc:V (8.88 MeV -*• 6.14)
Neutron Energy

in MeV

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.

EY = 1.76 MeV
Neutron Energy

in MeV

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

cr(n, n' y)
in mb

16.2

15.2

14.5

10.2

14.6

7.3

16.85

17.0

16.0

Table 6

(8.88 MeV •> 7.12 MeV)
0(n, n' y)
in mb

3.0

3.0

2.7

2.0

2.7

1.5

3.0

3.5

3.0

Table 7

Cross Sections for the Production of

Neutron Induced Gamma Rays in Q1^
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Ey = 9.58 MeV (9.58 MeV + 0)
Neutron Energy

in MeV

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

Table 8

Ey = 3.82 MeV(10.94 MeV
Neutron Energy

in MeV

15

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.

a(n, n' y)
in mb

10.0

9.9

18.9

16.9

9.3

23.5

13.85

16.2

23.0

- i_

•»- 0 ) ' -
Cross Section

in rob

2.7

2.3

13.0

8.99

23.5

22.3

20.7

8.4

19.5

Table 9
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Ey = 4 .93 MeV (11.07 •» 6.14 MeV)
Neutron energy . Cross Section

in MeV in mb

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

Table 10

Ey = 4.15 MeV C11.07 ->• 6.92 MeV}
Neutron Energy

in MeV

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

5.1

4.9

3.9

10.2

6.2

6.3

9.1

2.G

6.0

Cross Section
in mb

5.6

0.2

4.2

11.3

6.8

7.0

10.0

2.4

7.0

Table 11
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COMPUTER CODE LINGAP DESCRIPTION

Computer code LINGAP which is given in the appendix. The

code evaluates the gamma production cross section as

given in equation (40)

E(K) = Energies of the states of the nucleus in MeV

EN (I) = Neutron energies in MeV.

SIGI(I,K) = Neutron inelastic cross section for

levels E(K) and for energies EN(I).

PROS - Gamma transition probabilities evaluated

from radiation width.

GASIG - Gamma production cross section

for the particular neutron energy.

The first input card contains the values of Nl, MX, and

Ml. This enables one to vary the dimensions of EN and SIGI.

In order to do a multirun for different values of projectile

energy the •' Allowing procedure is to be followed. The first

set of data cards contain E in sequence followed by EN -in

sequence. SIGI values for each level for EN(1) are given

on separate cards. PROB values follow these cards. The

remaining SIGI values are punched in order and these

values follow the PROB values.



APPENDIX

CODE-LINGAP

DIMENSION E(25),EN(25),SIGI(25,25),PROB(25,25),SIG(25,25)
DIMENSION GASIG(25,25)
INTEGER P
INTEGER R
READ(1,333) N1,MX,ML
ME = MX-1

333 FORMAT (12,12,12)
DO 17 R=1,N1

17 CONTINUE
DO 15 J=l,20

15 PROB (R,J)=0.0
5 CONTINUE
99 FORMAT (8F10.7)

READ(1,99) (E(N),N=1,N1)
READ(1,99) (EN(N),N=1,MX) .

90 P = 0
101 P = P+l
92 IMAX = Nl
98 I = 1
100 1=1+1

S=EN(P)
U=E(I)
M=P
WRi'o; (3,300)

300 FOR.-;AT(1H1,6X,2HEN,10X,1HE)
999 WRITE (3.998) S,U
998 PORHAT(lX,P10.7,IX,n0.7)

IF (S-U)103310U,106
103 GO TO 101
10U GO TO 109
106 12 = i+l
107 Ul = E(I2)

WRITE(3,998)S,U1
IF (S-U1)112,112,111).

111 I = 12-1
GO TO 109

112 I «= 12
113 GO TO 109
llll IF (IMAX-I2) 112,112,115
115 12 = 12+1

GO TO 107
109 READ (1,165)(SIGI(N,M),N=1,I)
165 FORMAT(F10.7)

WRITE (3,167)



167 FORMAT (///,UiX,l|HSIGl)
WRITE(3,166)(SIGI(N)M),N=1,I)

166 FORMAT (Ul$:,F10.7)
KG = 1-1
R = I
KK = R-l
IF (P-2) 997,995,995

997 CONTINUE
WRITE(3,301)

301 FOHM/IT(1H1,3X,1HJ,1|X,1HR,U7X,9HPROB(R,J))
DO 76 K = 1,KC
READ(l,l80) (PROB(R,J),J=1,KK)

180 FORMAT (F10.7)
WRITE(3,2000) K,R,(PROB(R,J),J=1,KK)

2000 FORMAT(1X,2I5,10F10.7)
KK = KK-1

76 R = R-l
188 R=I
189 Kl = R - 1
995 CONTINUE

WRITE(3,302)
302 FORMT(lHi,nJt,iHR,2X,lHJ,l2X,8HSlG(R,J))

DO 222 J=l, Kl
SIG(R,J)=SIGI(R,P)*PROB(R,J)

222 WRITS (3,996) R,J,SIG(R,J)
223 R = R-l

IF (R-2) 18^187,187
187 GO TO 189

' 18U CONTINUE
C GAMMA TRANSITION CROSS SECTIONS
238 L = 0
239 L =L+1

R=L+1
SUM=0
IF (I-L) 392,2U2,2UO

2i;0 GAIEL=SIG(R,L)
SUM=SUM+GAIEL

2U2 !F (I-R) 370,370,360
360 R=R+1

GO TO 2UO
370 TGAIEL=SUM

IF (L-l) 239,239,372
372 K2 = L-l

WRITE(3,303)
303 FOmT(lHl,lX,lHL,2X,lHJ,l2X,10HGASIG(L,J))
373 DO 380 J=1,K2

GASIG(L,J) = (TGAIEL + SIGI(L,P))-::-(PROB(L,J))
380 WRITE (3,996) L,J.GASIG(L,J)
996 FOffliAT(lX:,,l2,lX,l2,lX,Fl8.l2)

IF (I-L) 395,395,390



390 GO TO 239
392 CONTINUE
395 IF (P-ME) Uoo,U5o,U5o
UOO GO TO 101
U50 CONTINUE

END


