

SYSTEMS ASSOCIATES, INC.
 444 West Ocean Boulevard
 Long Beach, California 90802

$12 / 1 / 72$

ATTENTION REPRO:

.BEFORE PRINTING, CONTACT INPUT FOR PAGINATION

PROCESSOR $\quad V H$

R72-001

Contract No. NAS9-11743

ADVANCED COMMUNICATION SYSTEM

 TIME DOMAIN MODELING TECHNIQUES ASYSTD SOFTWARE DESCRIPTIONVOLUME I
PROGRAM USER'S GUIDE

August 1972

Prepared for:
 Space Electronics System Division National Aeronautics Space Administration Manned Spacecraft Center Houston, Texas 77058

444 West Ocean Boulevard
Long Beach, California 90802
Telephone 213/435-8282

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES

PREFACE

This document describes the computer program ASYSTD, which is primarily designed to simulate the transient behavior of communications systems.

The ASYSTD program is based in part on earlier work performed for NASA MSC under Contract No. NAS9-10831, the development of the SYSTID program. The program is written in FORTRAN V for the UNIVAC 1108 computer operating under EXEC II.

The document is presented in two volumes - Volume I, Program User's Guide, and Volume II, Program Support Documentation. Program listings and detailed flow charts are under separate cover.

The analyses performed during the ASYSTD development contract are published in a series of progress reports addressing the individual tasks, which include:

- Parametric Analysis
- Optimization and Statistical Analysis
- Propagation Model Development
- Frequency to Time Domain Filter Transformations
- Orthogonal Transforms
- Bit Error Rate Measurements (EVT)
- SNR Measurements
- Distortion Measurements

SECTION 1.0

PROGRAM DESCRIPTION

ASYSTD is a system of computer routines which provides the analyst with a powerful tool for the transient simulation and analysis of complex systems - in particular, telecommunications systems, although other continuous and discrete systems can be simulated.

The unique characteristic of telecommunications systems is the large ratio between the $R F$ carrier and baseband frequencies. Simulation of such systems would normally require prohibitive run times. However, with the techniques utilized in ASYSTD, this problem is alleviated. In particular, the RF system elements can be translated to baseband with complete retention of their RF characteristics.

The program accepts as input a topological "black box" description of a system, automatically generates the appropriate algorithms, and then proceeds to execute the simulation program. Thus the user is not necessarily required to write the algorithms in a computer language nor possess a great facility in computer programming. The system description, including both topology and element information, is supplied to the program in a free-form, user controlled engineering language which is easily learned.

ASYSTD offers the user enormous flexibility in the representation of system elements, i.e., "black boxes". An element may be defined as:

1) An ASYSTD library model.
2) A user written, temporary ASYSTD model.
3) A FORTRAN arithmetic expression involving any intrinsic ASYSTD parameter, constants, variables, FORTRAN library functions, ASYSTD library functions, model output nodes (TAP's), and user supplied FORTRAN functions.

The ASYSTD model library consists of a set of computer routines, either written in FORTRAN or ASYSTD, which have been stored on a library file and cataloged in the ASYSTD directory. The user, at any time, can modify or replace the library and directory as he may choose - thus every user can easily create his own library. One unique characteristic of ASYSTD is the capability of nesting models to a level of $100-$ that is, any model (or system) can reference up to 100 models, excluding itself. The nesting feature provides the user with the tools necessary to build a model library to suit his needs based upon a canonic set of models. An example might be a receiver that is used in several systems - the receiver would be a model consisting of a connection of othér models.

The basic, or canonic, ASYSTD library consists mainly of a group of routines which aid in the simulation of continuous functions, that is $G(s)$.
 $G(s)$. The transfer function may be defined in several ways - in terms of its poles and zeros or as one of the classical functions such as BESSEL, ELLIPTIC, etc. The sample data routines accomplish all the necessary transformations in addition to the numerical processing such as integration and differentiation. In addition, all of the FORTRAN arithmetic features are an intrinsic part of the ASYSTD library - although they do not appear in the directory.

The bi-linear transform rather than the standardz-transform is used in the representation of continuous functions because it eliminates aliasing errors, making possible the realization of commonly encountered functions whose response does not approach zero at high frequencies. Note that aliasing of the signals, however, is possible.

Another aspect of the ASYSTD model library is that it contains FORTRAN subroutines - that is, when a model (or system) is processed by

ASYSTD, the result is a FORTRAN subroutine (or main program) which is available to the user for any purpose, whether for ASYSTD or not. Thus, ASYSTD can be viewed as a FORTRAN program generator which converts a topological, non-procedural input into a procedural language-FORTRAN. Although not unique to ASYSTD, this aspect allows one to evaluate mathe matical problems via ASYSTD with no concern for the Input/Output coding necessary in FORTRAN programs. That is, ASYSTD may be used as a shorthand FORTRAN system.

ASYSTD's flexibility is in part attained by designing the program to execute as a multipass processor in a batch mode of operation. The first phase reads the user input description of all models and/or a system and proceeds to formulate the corresponding FORTRAN algorithms. In this phase, the program checks for input errors such as erroneous model references, dangling nodes, etc., in which case appropriate error messages are issued. If the first phase terminates without fatal errors, the FORTRAN routines are automatically compiled and collected with the ASYSTD library to from the second phase, that of executing the simulation.

Output from the program includes plots as well as tabulated data. Conventional output is any system node or "TAP" which may be individually selected, or any variable whether intrinsic or user defined. Plots can be produced on the printer as well as a digital plotter. Printed data can be formatted, under user control, for either $8-1 / 2$ by 11 inch pages or the full 11 by 14 inch page. Digital plotters are handled by the subroutine TMPLT, which is installation dependent.

The additional flexibility of linking to a user defined post processing routine is intrinsic to ASYSTD when utilizing the POST system identifier. This feature allows the user to access the time histories of any node, tap, or variable much the same way as the plot routines. As a matter of fact, the plot routines are indeed intrinsically named post-processors. Utility routines are available to perform any necessary input/output for the user.

The user, because of the two phase aspect, has available to him several techniques for controlling his computer runs and ensuring that the most effective use is made of the machine time. The primary means is
that of saving the results of the first phase, that is, the collected simulation package for subsequent reruns with alternate input data. Rerun would then simply entail a load-go operation. The alternate input data can be provided at execution time by use of the "DATA" identifier in the first phase.

SECTION 2.0
DATA PREPARATION

Given a description of a system or model in an engineering oriented language, ASYSTD will automatically generate the FORTRAN code required to simulate the system or model. The user, however, must reduce the system or model to an equivalent block diagram form consisting of model references, math expressions, etc., which can be interpreted by ASYSTD. The transcription of the equivalent block diagram into the input language is straightforward and easily mastered.

The initial step in using ASYSTD is to prepare the equivalent block diagram utilizing the ASYSTD library directory and FORTRAN expressions available. The model library directory currently available is given in Figure 2-1. The usage of these internal models is explained in Appendix B. The user is not in any way restricted or limited to this library-any particular function in the library can be replaced with one's own model. Thus the user's model repertoire consists of:

1) The invoked ASYSTD library directory.
2) FORTRAN math functions, including user variables, constants, etc.
3) Any ASYSTD model defined in the same run stream.

Figure 2-1. Model Library

000051
00053
00053
000054
000055 000056 000057 000058 00058 00059 000060 000061 000002 000063 000064 006065 000065 003066 000067 000068 000069 000070
000071
000071
000072
000073
000074
000075
000076
000077
000078 000079
000080 000081 000082 000083 000084 000985 000085
000085 000085
000087 000067
000088 000089 000080 009090 000091
000092 000092
000093 000094 000085
000096 000097 000098 000099 000100 000101 000102 0.01 000103 000104 000105 000106

AMD EM AMDESQ AMUESQ	$\begin{array}{ll}1 & 0 \\ 1 & 2 \\ 1 & 2\end{array}$	0 0 0
CALIN8	11	0
CADD	10	0
CADD	12	0
CMULT	12	0
CMULT	22	0
COSINE	01	0
DELAY	11	0
DEEMOD	12	0
DELMOD	12	0
DIFFER	10	0
DIFFER	10	0
D IF FER	10	0
F MM OD	12	0
F MM OD	12	0
FMDEMM	12	0
FMD EMM	12	0
FMDEMM	12	0
F MDEMM	12	0
FMDEMM	12	0
GNOISE	03	0
GNOIS 2	02	0
HARD	10	0
HARD	10	0
INTER T	20	0
I NTGRT	10	0
INTGIC	11	0
ONTGIC	11	0
MFL IER	11	0
MFLTER	11	0
MONO	11	0
MONO	11	0
MLTPCM	12	0
MLTPCM	12	0
NRZL	13	0
NRZL	13	0
PMM OD D	12	0
PMM OD D	12	0
PMMODD	12	0
PMDEMM	12	0
PMDEMM	12	0
PHSHFT	12	0
PHSHET	12	0
PTABLE	010	0
PTABLE	010	0
PULSE	05	0
RGGEN	11	0
RBGEN	11	0
R AM MO D	13	0
RAMMOD	13	0
RAMDEM	11	0
RAM DEM	11	0
RFENVE	11	0
RFENVE	21	0

Figure 2-1. Model Library (Cont)

There are three basic types of ASYSTD elements (black boxes) which make up a model or system:

- Mono-node elements

> for example, a source

- Bi-node elements

for example, a filter
- Multi-node elements

for example, a mixer
The mono-node and bi-node elements are certainly the most common and most readily implemented. The multi-node element, however, may pose some problems to the inexerpeinced user. All elements or models have, by definition, one INPUT node and one OUTPUT node. Any other connection, be it an input or an output, is considered a "TAP". A "TAP" may be thought of in the conventional way - that is, as a point in the system or model which can be externally accessed either for observation or for insertion of a signal. There is no explicit distinction between the different types of elements since all ASYSTD topological descriptions have one input
and one output. In the case of the mono-node device, the input node serves only to satisfy the input syntax. The bi-node and multi-node distinction is even less obvious since the only requirement is that all input TAP connections to a multi-node device must be specified.

Several rules and assumptions make up the formulation of the algorithms for simulating a system or model, and impact on the user in the following ways:

1) Every user defined model must have an input node named "INPUT", and an output node named "OUTPUT".
2) At least one path must be defined which relates OUTPUT to INPUT.
3) All paths must terminate at OUTPUT or at a TAP.
4) The value of the signal at a node is the instantaneous sum of the OUTPUT of all devices connected to the node.
5) The value of a TAP is the instantaneous OUTPUT of the element to which it is attached (not the output node of the element).
6) A TAP may be referenced external to the model in which it is defined.
7) Model nodes are not externally available.
8) TAP's maintain the status of a unique variable name and thus may be used in FORTRAN expressions, subroutine calls, output requests, etc.
9) Node names must be legal FORTRAN variables, i.e., no more than six alphanumeric characters, the first of which must be a letter.
10) TAP names are defined as TAPXXX, where $X X X$ is a unique number less than 1000. Sequential numbering is recommended.
11) All variable names and expressions must be FOR TRAN compatible, including integer and floating point conventions. Names beginning with the letters I through N or the letter Z are typed as integers.
12) Intrinsic ASYSTD variables are defined in Table 2-1, and are available to the user.
13) The user is cautioned against using variables which begin with the letters V or Z, as a conflict with system variables is possible.
14) Maximum number of continuation cards is four.
15) A node may not connect directly to itself.
16) A model name may be up to 36 characters long.
17) The distinctions between a model and a system are the declaration and I/O identifiers. A system is executable; a model is callable.
18) A TAP is externally referenced from the element field by stating the model name and the tap number. The tap number is positive for an input, negative for an output. The RNF of the statement is the LNF of the model reference.

In addition to the above, certain procedures and requirements exist as to setting up the appropriate parameter values necessary to ensure an efficient, yet cost effective simulation. These include the following:

1) Sampling rate should be at least 15 to 20 times that of the highest frequency of interest - which is normally the widest bandwidth, although relaxation of this approximation is certainly desirable when possible. Accuracies of less than 1 percent are easily achieved for transfer function representations with lower sampling rates. One obvious problem, particularly for low order functions, is aliasing of the input signals. Thus care must

Table 2-1. Intrinsic ASYSTD Parameters

Variable	Usage
TIME (or T)	The time as kept by the Simulation Clock (unrelated to actual computer run time)
TSTART	
The simulation start time (i. e., a	
time bias for output labeling)	

be taken, and in some cases, the SWAG technique is the only recourse.
2) All simulations require the specification of sampling time (DT) and stop time (TSTOP): Unless parameters are defined in a DATA or DEFAUL statement, ASYSTD will abort the simulation phase.
3) Turn on transients can be eliminated from the output by use of the intrinsic parameter SETTLE. A rule of thumb is that turn on transients should die out at approximately $5 / \mathrm{BW}$, where BW is the approximate system bandwidth.

Once the user has applied the above rules in specifying the block diagram equivalent of his system, he may assign node names and tap names where appropriate, and proceed to encode the system accordingly. The input language is fully explained in the next section; its most important aspects are introduced here. The basic problem is to represent the twodimensional block-diagram using a series of statements. This is accomplished using the following standard format for all ASYSTD input:

where \odot denotes any non-alphanumeric character delimiter (other than $(7-8)$ and ($0-8-2$) punches) which serve as field separators. The Tap Field is not required.

A general element definition is exemplified by:

```
NODE1 < BLACK BOX > RIGHT 'TAP69
```

This statement says that model BLACK BOX processes the signal at NODEl and its output is at node RIGHT. The tap TAP69 also contains the signal output by model BLACK BOX which may not be the signal at node RIGH'T.

The standard card format is used for inputting the various ASYSTD identifiers and is given in Table 2-2. These identifiers are required to define whether the descriptions are for a system or model. All but DEFINE, SET, and END are illegal for a model description. The ASYSTD identifiers occupy the LNF with the appropriate data in the EF. Recall that the dis tinction between a model and a system is the input/output and declaration information.

An example of a model definition:

```
MODEL = EXAMPLE WITH TAPS, A, B
    INPUT = SIN ($)/TAPl = NODEl
    NODEl = DUMY MODEL (TAP2) = NODE2 'TAP1
    NODE2 = $*$*A/B = OUTPUT
```

END

Although this example is physically meaningless, it serves to illustrate one use of taps and is explained thusly: The signal at NODEl equals the sine of the input signal (denoted by $\$$) divided by the signal output from model DUMY MODEL. (This follows from the definition of TAPl.) The signal at NODE2 is then equal to the output of DUMY MODEL, when NODE 1 and TAP2 are its inputs. Note that TAP2 is an input to EXAMPLE WITH TAPS, since it was not defined in the model description. The output of EXAMPLE WITH TAPS, OUTPUT, is the signal at NODE2 squared, times A, divided by B. Here A and B are variables which must be specified by whatever model references the EXAMPLE WITH TAPS model. Also note that TAPl is externally available for any other model reference.

Table 2-2. ASYSTD Identifiers

Identifier	Use
SYSTEM	Indicates that the deck following defines an ASYSTD system
MODEL - Name - arg l, arg 2	Indicates that the deck which follows defines an ASYSTD model
END	Used to indicate the end of a model or system deck
DATA - Variable list	Indicates that the following values are to be read in at execution time by namelist (used only in a system) name ASYSTD
DEFAUL(T) - Variable list	Indicates the default values for DATA parameters not input through namelist
PRINT - Node or tap names	Indicates a list follows specifying output to the printer
PL'OT - Node or tap names	Indicates a list follows specifying output to be plotted on the CalComp plotter
PPLOT - Node or tap names	Indicates a list follows specifying output to be plotted on the printer
POST - Routine name, node or tap names	Indicates that the following postprocessing routine is to be called
PAGE	When present causes 8-1/2" x ll" compatible output
DEFINE - Variable expression	Generates a FORTRAN define statement, which produces code to evaluate the expression
SET - Variable - expression	Generates a FORTRAN assignment statement, which gives the variable the value of the expression
VARY - Variable parameters	Indicates the value of the variable is to be varied over a specified range

The external connection of taps between models is best illustrated in the following example:

```
MODEL - EXTERNAL TAP CONNECT, FC
INPUT < SINE (TWOPI*FC*TIME) > NODE1
NODEI < EXAMPLE WITH TAPS (1., 2.) > NODE2
NODE2 < $*$ > NODE3
NODE3< EXAMPLE WITH TAPS +2 > NODE1
NODE3<2.*$ > OUTPUT
NODE4 < EXAMPLE WITH TAPS - 1 > NODE 1
NODE4< $ >DUMY 'TAP09
```

In this example the signal at NODE3 is connected to input tap number two of the model named EXAMPLE WITH TAPS (as denoted in the EF and RNF of the statement). In addition, tap one of the model was externally connected to NODE4 and given the external name of TAP09, which in turn makes it available to yet another level of models.

The instructions necessary to define a system are identical to those for a model, except for the addition of the declarations and Input/Output statements. These are fully described in the next section. The entire input for similar problems is described in Section 6.0.

Several advanced techniques are available to the user in modeling any system. The principal technique is modeling directly in FORTRAN (or other compatible language) and interfacing with ASYSTD generated models. The most likely necessity for such a requirement is in RF element modeling, in which case the signals become complex. ASYSTD maintains any complex quantities but does not directly perform complex arithmetic operations. All complex RF models are, or use, models written in FORTRAN. Such an undertaking is not recommended to the novice user.

As noted above, the user may modify or replace the ASYSTD
library and directory at will. This task is accomplished within the computer system executive, utilizing the file manipulation and updating features. The library directory given earlier in Figure 2-1 contains the necessary information for modifying the directory. Since each model is a subroutine, any computer system file may be designated as a library to be searched, or the EXEC temporary program file can be loaded with the desired subroutines at allocation time.

In any event, the directory serves to:

1) Cross reference model names and subroutine entry points.
2) Flag the model as a subroutine or function.
3) Defines the number of arguments to the routine.
4) Defines the number and type of each tap.
5) Defines the use (presently ignored) of the model.

Whenever a model is processed by ASYSTD, an entry point name is assigned to it, and any subsequent models in the same run. The assignment is made by alphabetically incrementing the least significant character of the directory entry at Line 23, i.e., if Line 23 is MODEL MODEL, then the first temporary model would have entry MODELA, the second MODELB, etc. If Line 23 was MODELX, then the first model would be MODELY, the second MODELZ, the third MODEMA, etc. In addition, the appropriate entries are temporarily made in the directory for defining the model for the particular run only. An example is given in Figure 2-2 where the directory entry is the first line of output. If it were desirable to add the model to the permanent library, one of two paths is available:

1) Rename the entry point by recompiling and updating the FOR TRAN Subroutine and entering the appropriate data into the directory.
2) Adding the ASYSTD generated directory card into the directory and changing Line 23 to reflect the "highest" model name in the library.

Certainly, the latter is much easier, but may lead to future confusion.
NRZ
ASYSYD PROCESSOR LEVEL II
VERSION DATED 01 NOV 71 FOR THE MSC U1108 SYSTEM
SYSTID MODELS REFERENCED ENPRY POINT
50

 50SQ
 THIS MODEL ASSIGNED THE ENTRY pOINT NAME MODELA

THIS MODEL ASSIGNED THE ENTRY pOINT NAME MODELA

000001
000002
000003
000004
SYSTID MODELS REFEKENCED ENPRY POINT
SQ

```
MODEL=NRZ,BR
```

MODEL=NRZ,BR
INPUT < SQ(BR/2,)>N1
INPUT < SQ(BR/2,)>N1
N1<\$4.5+.5> OUTPUT
N1<\$4.5+.5> OUTPUT
END

```
END
```

Figure 2-2. ASYSTD Phase 1 Output for Model NRZ

SECTION 3.0
INPUT LANGUAGE

The ASYSTD input language consists of descriptive statements constructed largely from user defined names and specifications. Several key variables are used, as defined earlier in Table 2-2, in addition to names which reference defined library models. The statements for the most part define some input and output node, along with an element specification or expression relating the two. The statements can be punched in a completely free-field data card (Columns 1 through 80). Since all statements are scanned from both the left and right, field delimiters can be any non-alphanumeric character other than (7-8) and (0-2-8) punches. A statement may have up to four continuation cards, which are defined by a non-alphanumeric in Column 1. With the exception of the title on a SYSTEM card, all blanks are ignored by the processor.

As discussed in Section 2.0, the standard card format is utilized for all ASYSTD input, including the identifiers given in Table 2-2. These identifiers primarily concern themselves with initializing and controlling the execution of a system simulation. The identifier occupies the LNF and any data occupies the EF of the standard card format defined as follows:

	ELEMENT		
LEFT	OR	RIGHT	
NODE	EXPRESSION	FIELD	TAP
FIELD	FIELD	FIELD	
(LNF)	(EF)		(TF)

The various identifiers are discussed below:

DATA: $\operatorname{var}_{1}, \operatorname{var}_{2}, \ldots, \operatorname{var}_{\mathrm{n}}$

This identifier names a list of variables which can be read in at simulation time under namelist SYSTID. Whenever this statement appears, a namelist data card must appear at execution time. The number of variables is limited only by the number one can squeeze on 5 cards. The variables must conform to FORTRAN requirements, and may be any intrinsic ASYSTD variable, e. g.,

$$
\text { DATA }=\text { TSTOP, DT, NPRINT, MEDIA, SAM, A }
$$

The Phase II input data for this example would be, for example:

$$
\text { \$SYSTID DT }=1.5 \mathrm{E}-6, \mathrm{TSTOP}=10 \ldots \$
$$

which is standard FORTRAN namelist input.

```
DEFAUL: var }\mp@subsup{|}{1}{= const, var }\mp@subsup{\mp@code{vaconst, ..., var }}{n}{=}\mathrm{ const
```

This identifier serves to load default values for any variable in the simulation, including any intrinsic ASYSTD variable. The constant values must conform to the FORTRAN rules of integer and Floating point variables or errors may occur. The number of entries is limited by the number one can squeeze on 5 cards, e.g.,

DEFAUL: $D^{\prime} \mathrm{T}=1.5 \mathrm{E}-6, \operatorname{TSTOP}=2.0, \mathrm{~A}=10 .$,
: $\operatorname{IOU}=3$

```
DEFINE: variable = FORTRAN expression
```

This identifier generates a FORTRAN 'DEFINE' statement. 'Variable' must be a legal FORTRAN name. Whenever this name appears in the generated FORTRAN program, the FORTRAN expression is calculated using current values of any variables which may appear in the expression, and this result is used for the value of 'variable'.

END: comment

Signifies the end of a model or system description.

MODEL: model external name, $\arg _{1}, \arg _{2}, \ldots, \arg _{n}$

This identifier instructs ASYSTD to expect a model definition only (i.e., topological information) and to generate a subroutine.

The external name must be no more than 36 characters, with no more than 99 arguments, e.g.,

MODEL: FM MODULATOR, BETA, FC
or

MODEL: UHF RECEIVER

PAGE: comment

This identifier, merely by being present, causes all printed output to be $8-1 / 2$ by 11 inch compatible.

```
PLOT: name
```

This identifier is similar to PPLOT, the exception being that here the CalComp (or SC4060) plotter is utilized, e.g.,

PLOT: TAP69, X, NODE4, OUTPUT

POST: subroutine name, name ${ }_{1}$, name ${ }_{2}, \ldots$, name ${ }_{n}$

This identifier causes a post-processing routine named "subroutine name" to be called following the simulation. This routine is called for each occurrence of name ${ }_{i}$, which may be nodes, taps, or variables. The call sequence generated is similar to that of the plot request, the only difference being the entry point. Utility routines are available for interfacing a user post-processor with the data time histories which are stored on drum.

PPLOT: name ${ }_{1}$, name ${ }_{2}, \ldots$ name ${ }_{n}$

This identifier defines the data to be plotted vs. TIME following the simulation. The quantities may be nodes, taps, and variables, e.g.,

PPLOT: NODE1, TAP69, B

PRINT: name ${ }_{1}$, name $_{2}$, name $_{3}, \ldots$, name n

This identifier defines the data to be printed during the simulation. The quantities which may be printed
consist of nodes, taps, and variables. Note that TIME is automatically printed - it need not be requested, e. g.,

PRINT: NODE1, TAP69, AVAR

SET: variable = FORTRAN expression

This identifier generates a FORTRAN assignment statement which sets 'variable' equal to the value of ' FOR TRAN expression'.

SYSTEM: title

This identifier instructs ASYSTD to expect other identifiers dealing with input/output, etc., and to generate a main program. The title serves to label all output (36 characters), e.g.,

SYSTEM: TRY ME SOMETIME

VARY: variable $=\min , \max$, delta

This statement generates a FORTRAN DO-LOOP which has within its range any VARY or SET statements which follow it in the ASYSTD deck as well as the program simulation. If the 'variable' name is type integer (first letter is I through N or Z), the parameters are expected to be of integer type, otherwise the variable name and parameters can be real or integer. The parameters (min, max, delta) must be constants, DEFINE variable names, or variable names which have appeared in a DATA or DEFAULT statement.

Any card which has an empty LNF (a non-alphanumeric in Column 2 or later as the first non-blank character) is treated as a comment. A comment may appear anywhere except the middle of a continued statement. Comments may be continued.

Topological input data fully utilizes the standard card format, that is:

Input node \odot expression or element \odot output node \odot Tap assignment
where \bigodot is any valid delimiter as defined above. For example,

$$
\begin{aligned}
\text { NODE1 } & =\text { RF PHASE MODULATOR }(\text { BETA, FC })=\text { NODE2 } \\
& =\text { TAP8 }
\end{aligned}
$$

represents a normal statement utilizing the four fields of a standard input form.

Thus, with one format, ASYSTD input data is extremely straightforward and easily mastered.

Table 3-1 shows which statements are allowed and what order they must be placed in Systems and Models respectively.

Table 3-1. ASYSTD Identifier Hierarchy

The first card of a System is the SYSTEM card. This is followed by DATA, DEFAUL, ..., PRINT statements as appropriate in any order. Any DEFINE statements come next followed by any VARY or SET statements which are required. Topological information cards describing the System come next in any order, followed by the END card.

A MODEL card defines a Model. Any DEFINES followed by any SET statements appear next. The topological information is again followed by an END card.

SECTION 4.0
PROBLEM SUBMISSION

4.1
 PROGRAM RUN PREPARATIONS

When executing the first phase of ASYSTD, the procedure PROCS/SYSTID and the element LIBARY are required along with the absolute element for the first phase (SYSTID). The LIBARY element is the model library dictionary.

The second phase requires only the library file containing all the ASYSTD library relocatable elements and the elements output to the PCF by the first phase (MAINßb/SYSTID).

4.1.1 Deck Setup

The technique used by ASYSTD is to output the processed models to the PCF as elements named MODELA/SYSTID, MODELB/SYSTID, etc., in the same order as processed. When a system is processed, its element name is MAINमD/SYSTID. Therefore, the user at MSC must provide the FOR TRAN control card for each of the elements. The models generated in the following example are "temporary" models for this run only. That is, any system description can reference model EXAMPLE l during this run only. Models are permanent when the relocatable is available and an entry is made in the LIBARY element used by the first pass. Figure 4-1 is the run deck setup for the MSC UNIVAC 1108 system.

```
a) XOT CUR
---m LOAN THE PCF WITH SYSTIO ABSOLUTE, PROCS/SYSTID, AND LIQAGY
* XOT SYSTID
MODEL: EXAMPLE ONE
```

-
-
-

END
MODEL: EXAMPLE TWO
-

END
MODEI. EXAMPLE THREE

ENO
SYSTEM. IISE EXAMPLES ONE,TWO,THREE

END
©I FOR•* MOOELA/SYSTIO
AI FOR: * MODELG/SYSTID
aI FOR•* MODELC/SYSTID
aI FOR.* MAIN /SYSTIO
a XOT MATN /SYSTID
\$SYSTID [NAMELIST I O IF SPECIFIF Execute the second pass

Figure 4-1. Run Deck Setup for MSC 1108 Exec II System

4.1.2 Required I/O Devices

The ASYSTD program contains two phases. The first phase requires the Logical Unit assignments as follows:

Logical Unit	Device
5	Card Reader
6	Line Printer
1	Scratch Drum

Phase two requires the following I/O devices:

Logical Unit	Device
5	Card Reader
6	Line Printer
13	Drum
14	Drum

4.2 OUTPUT DESCRIPTION

4.2.1 Data Output

ASYSTD output consists of the first phase processing and the simulation or second phase output. The first phase provides output similar to the FORTRAN V compiler. Figure 4-2 is an example of the first phase output for a particular model. Annotations on the output fully explain their significance.


```
THIS DERK PROCESSEC OM O7 AUG 72 AT 14:25:4!
SYSTID MODELS REFERENCED
ENTRY fOIUT
    COMPLEXMULTIPLIER
    FILTER
    Cmu!T
    FILTER
```

this monel assigned the entry point name modela
TAP ORDFR:
1 TAPO01
2 TAPOO2

000001
000002
000003
000004
000005
000006
000007

MODEL=FIRST IF AMP, GAIN, SLOPE, IFUNC INPUT < COPPLEX FULTTPLIEF(*,TAF2) > U1 N1 < FILTER(2, TFUNC,3,0.,6.F6.6n.E6,1.,0.,0.) > 12

 TNPUT < 10.**(GRIN+TADI*SLOPE)/20.) > Di - TA??
END

Figure 4-2. ASYSTD First Phase Output

4.2.2 Optional Output

The second phase output is completely optional under user control. The two forms of output are printed and graphical presentations, whose size is selectable as $8-1 / 2$ by 11 inches or 11 by 14 inches (see Section 3.1). The current version provides printer plot (PTPLT), with the entry point TMPLT reserved for CalComp or SC 4020 graphical routines. Examples of the output are contained in Section 6.0.

SECTION 5.0

FOR TRAN INTERFACING

There are two instances in which the user may wish to write his own FORTRAN subroutines to interface with the main ASYSTD simulation. These are Models which, for some reason, are not easily or efficiently written in the ASYSTD language and post-processing routines.
5.1 FORTRAN LIBRARY MODEL PROCEDURES

An important feature of ASYSTD is its ability to reference any FORTRAN subprogram (model). However, in order for a user's FORTRAN subprogram to be re-entrant and interface correctly with any other model, it must conform to certain procedures. The characteristics of such a subprogram and then usage should be:

- Input arguments are never altered.
- Every reference to the subprogram is unique (independent).
- All local storage is considered scratch; permanent storage is only available in a common storage pool named "V".
- If a subroutine-primary input is at V(VIN) and V(VIN + l), primary output goes to $\mathrm{V}(\mathrm{VOUT})$ and $\mathrm{V}(\mathrm{VOUT}+1)$.
- Numeric values of VIN and VOUT should be restored prior to exit.

To properly interface with any routine processed by ASYSTD, the following procedures should be followed, if applicable:

- A FORTRAN procedure named HEDFOR is available to provide compatible definition of intrinsic ASYSTD storage and variables. Use of the procedure is the FORTRAN V statement:

INCLUDE HEDFOR, LIST

When writing FORTRAN models, a current listing of this procedure is sometimes useful.

- Defining local variable Z as the last cell in the "V" pool used by the calling subroutine, and common variable ZZ the last cell to be used by this routine, set:

$$
Z=Z Z
$$

and

$$
Z Z=Z Z+n
$$

where n is the number of locations required for permanent storage in the "V" pool.

A reservation of storage space for a particular reference to this model is made, reserving cells ($V(Z+1)$ through $\mathrm{V}(\mathrm{Z}+\mathrm{n})$ for storage.

- Local variable Z is used to address the V array in the model. Common variable $Z Z$ should not be utilized in any statement other than above, unless no other models are referenced.
- When referencing other models, VIN and VOU'T should be assigned to one of the reserved cells in the "V" pool.

If a user written model is to be referenced, the user must update the ASYSTD library (element LIBRARY). This task is performed under the system executive, external to ASYSTD. See Pages 2-2 and 2-13 for instructions on making a library entry.

5.2 FORTRAN POST-PROCESSING ROUTINES

Linkage to any user post-processing routine is available through use of the ASYSTD identifier "POST". When a reference to post is made in any system description, a subroutine call is made to the user's program for every specified variable in the form:

CALL NAME (LABEL, NPAGE)
where

LABEL is the hollerith name of the variable.

NPAGE conveys the output sizing, i.e., NPAGE = 4 is 8.5×11 compatible output, NPAGE $=7$ is standard computer size output.

For example:
The ASYSTD statements

POST \varnothing SPECTM \varnothing NODE1, OUTPUT
would generate the following two lines in the main simulation program:

CALL SPECTM ('NODE1', 7)

CALL SPECTM ('OUTPUT', 7)

The first line of the user written routine SPECTM would generally be as follows:

SUBROUTINE SPECTM (LABEL, NPAGE)

Two input parameters are required, even if the user is not concerned with output sizing.

Whenever a POST statement appears in an ASYSTD program, MAIN/SYSTID contains the following common block (all variables which begin with Z are integers):

COMMON/DRMHED/ZDATE(2), ZTOD(2), TSTART, TSTOP, VEQDT, SETTLE, ZEDIT, ZNPU, ZRESRV, ZUSED, ZNAMES, ZNAME (<ZNAMES >)
where

ZDATE	$=$ BCD of DATE, left adjusted, blank filled
ZTOD	$=$BCD of TIME OF DAY, left adjusted, blank filled
TSTOP	
TSTART	
VEQDT	
SETTLE	$\left\{\begin{array}{l}\text { Self explanatory, VEQDT } \\ \text { appears in /COGENT/) }\end{array}\right.$
ZEDIT (which	
	$=$Edit interval (if all values won't fit on drum)
ZNPU	$=$Number of variables saved on each logical unit
ZRESRV	$=$Number of words of storage reserved for each variable to be saved

ZUSED $=$	Number of values for each variable stored on drum (in some routines named NVAL)
ZNAMES $=$	Number of different variables stored on drum
ZNAME(I), I $=$	$1,<$ ZNAMES $>=$ names of variables stored on drum

Inclusion of this common block in a post-processing routine allows the user access to several important variables, particularly NVAL (ZUSED), the number of values available for any particular variable stored on drum.

All retrieval of information stored on drum should be accomplished with the two subroutines DRMGET and DRMEDT.

DRMGET: Calling sequence:

CALL DRMGET (NAME, ARRAY, LENGTH, MSKIP)
where

NAME contains name of variable referenced (BCD).

ARRAY is array into which values are to be read (dimensioned at least by LENGTH).

LENGTH is number of values to be read.

MSKIP is number of words to skip before reading.

Continuing the example, the following lines of code retrieve all values stored on drum for a particular variable, 1000 values at a time.

CALL DRMEDT (NAME, NREQ, ARRAY)
where

NAME contains name of variable referenced (BCD).

NREQ equals number of values to be read off drum.

ARRAY is array into which values are placed (dimensioned at least by NREQ)

Let NVAL be the twelfth word of common block/DRMHED/.
NVAL equals the number of values stored on drum for each variable. If $N R E Q \geq N V A L$, then $N V A L$ words (all that are
on the drum') will be read into $A R R A Y$. If $N R E Q<N V A L$, the data on drum is edited and NREQ equally spaced values are read into $A R R A Y$.

Example 2:

SUBROUTINE SPECTM (LABEL, NPAGE)

 DIMENSION ARRAY (1000)

CALL DRMEDT (LABEL, 1000, ARRAY)
ARRAY now contains 1000 equally spaced values of the variable named in LABEL.

Values of TIME are not stored on drum but are computed by DRMGET and DRMEDT when needed, saving drum I/O time.

In Example 1, assume the array TIME is dimensioned by 1000. Then the statement:

CALL DRMGET ('TIME', TIME, 1000, MSKIP)
placed inside the $D O$ LOOP will compute the 1000 values of time corresponding to the values in ARRAY.

Similarly, in Example 2, the statement:

CALL DRMEDT ('TIME', 1000, TIME)
would produce 1000 values of time in the array TIME such that ARRAY(I) was the value of the variable named in LABEL at time TIME(I).
'SECTION 6.0

EXAMPLES

Four example sets are presented in this section, namely:

1) ASYSTD simulation of an Apollo PCM/PM/PM communications link whose characteristics are given in Figure 6-1.
2) ASYSTD squaring loop model also defined in Figure 6-1.
3) ASYSTD model of sonar propagation through sea water. This example serves to illustrate evaluation of a mathematical function with ASYSTD.
4) ASYSTD model of FILTER response. This example serves to illustrate the DEFINE, VARY, and SET commands.

The first example consists of a temporary definition of model NRZ and use of several library models, along with some math expressions. Figure 6-2 illustrates the ASYSTD output for the run. The sequence numbers to the left of the input statements correspond to the data card number. Thus, model NRZ was defined with the first four cards of the input data deck. Following the two pages of Phase I output are the FORTRAN compilations of the resultant subroutine and main program. These two routines, along with the ASYSTD library make up the Phase II simulation program. The results of the simulation are evident following the FORTRAN routines.

A few remarks concerning this simulation are in order. Notice that following the square wave phase modulator is an RF phase modulator. At this point, we are representing the RF portion of the link at baseband.

Figure 6-1. Apollo PCM/PM/PM Link Block Diagram

```
NRZ MODELA 1 1 0 000000000000 2
ASYSTD PROCESSOR LEVEL II
VERSION DATED O1 NOV 71 FOR THE MSC U1108 SYSTEM
THIS DECK PROCESSED ON 01 MAY 72 AT 16:10:25
SYSTID MODELS REFERENCED ENTRY POINT
SO
SO
THIS MODEL ASSIGNED thE ENTRY pOINT NAME MODELA
\begin{tabular}{lc}
000001 & \(M C D E L=N R Z, B R\) \\
000002 & \(I N P U T<S Q(B R / 2)>.N 1\) \\
000003 & \(N 1<\$ * .5+.5>O U T P U T\)
\end{tabular}
000003
END
APOLLO PCM/PM/PM LINK
ASYSTD PROCESSOR LEVEL II
VERSION DATED 01 NOV 71 FOR THE MSC U1108 SYSTEM
THIS DECK PROCESSED ON 01 MAY 72 AT 16:10:26
SYSTID MODELS REFERENCED
NRZ MODELA
SQPMOD SQPMOD
RFPHASEMODULATOR RPMMOD
RFLIMITER RFLIMT
BUT TE RWOR TH BUTWTH
RFPHASEDEMODULATOR RFPDEM
LOOPFILTER LEDLAG
FMMONULATOR FMMOD
TAP ORDER: 1 TAPO01 2 TAPOD2
000005 SYSTEM. APOLLO PCM/PM/PMLINK
000006 PAGE, SMALL
000007
DEFAUL. TSTART=0.,TSTOP =.03,DT=1.5E-6,NPRINT=200
DATA = DT,TSTOP,SET TLE
PRINT.N1,N10,N13,OUTPUT
PPLOT,N1,N10,N13,OUTPUT
Figure 6-2. ASYSTD Example, Output
```

```
000011 INPUT < NRZ(128.) >N1
000012
    N1 < SQPMOD(PI,32.768E3) > N2
    N2 < RF PHASE MODULATOR (1,0)>N3
    N3< FF LIMITER>N4
    N4 < EUTTERWORTH (5,3,10.E6,64.E3,10.E6,1.)>N5
    N5 < RF PHASE DEMOUULATOR (1.0) > N6
    N6 < EUTTERWORTH (5,3,32,768E3,384.,0.,1.) > N7 'TAP1
    N7 < $*$ > NB
    N8< S*TAP2>NO
    N9 < LOOP FILTER (200.,1.8775994,0.,.19751719,0,) > N10
    N10 < FM MODULATOR (2.aPI,32,768E3) > N11
    N11<$N$-0.5>N12 'TAP2
    N11<<&#TP1>N13
    N13< BUTTERWORTH (2,1,0,.128.,0.,1.)> OUTPUT
END
(ADD ADDF IL
@I FOR,* MODELA/SYSTID.MODELA/SYSTID
FORTRAN V: ISD VERSION 2,2
A THIS COMPILATION WAS DONE ON 01 MAY 72 AT 16:10:27
    SUBROUTINE MODELA ENTRY POINT 000065
    storage uSED (BloCk, NamE, leNGTH)
\begin{tabular}{lll}
0001 & \#CODE & 000077 \\
0000 & \#DATA & 000025 \\
0002 & \#BLANK & 000000 \\
0003 & COGENT & 000010 \\
0004 & VSPACE & 000003 \\
0005 & FLR & 000014
\end{tabular}
EXTERNAL REFERENCES (BLOCK, NAME)
```

```
0006 SQ
```

0006 SQ
0007 NERR3\$
0007 NERR3\$
Figure 6-2. ASYSTD Example, Output (Cont)

```

STORAGE ASSIGNMENT FOR VARIABLES (BLOCK, TYPE, RELATIVE LOCATION, NAME)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0001 & & 000044 & 150 L & 0 C01 & & 000003 & 20 L & 0003 & \(R\) & 000002 & DT & 0003 & R & 000005 & PI & 0003 & & 000003 & T \\
\hline 0003 & R & 000003 & TI ME & 0003 & R & 000007 & TWOPI & 0004 & R & 000001 & V & 0003 & 1 & 000006 & VCIN & 0005 & R & 000002 & VF \\
\hline 0003 & I & 000000 & VIN & 0000 & 1 & 000001 & \(V\) NSAVE & 0003 & 1 & 000001 & VOUT & 0000 & 1 & 000000 & v Sa ve & 0004 & R & 000000 & VSU8 0 \\
\hline 0000 & 1 & 000002 & \(Z\) & 0005 & 1 & 000001 & Z NUMF & 0003 & , & 000004 & Z2 & 0005 & & 000000 & Z 1S TF & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & 00101 & \(1 *\) & & SUBROUTINE MODELA(BR) \\
\hline & 00101 & 2\% & CMODEL & NRZ \\
\hline & 00103 & 30 & & INCLUDE MODELI, LIST \\
\hline & 00104 & 3* & & IMPLICI INTEGER (Z) \\
\hline & 00105 & \(3 *\) & & INTEGER VIN,VOUT, VCIN,VSAVE, VNSAVE \\
\hline & 00106 & 35 & & COMMON/COGENT/VIN, VOUT, DT, TIME,ZZ, PI, VCIN, TWOPI \\
\hline & 00107 & 30 & & COMMDN /VSPACE/ VSUBO;V(2) \\
\hline & 00110 & 34 & & COMMON/FLR/ Z1STF, ZNUMF, VF (5,2) \\
\hline & 00111 & 30 & & EQUIVALENCE (TIME,T) \\
\hline & 00112 & 3* & & END \\
\hline & 00113 & 40 & & INCLUDE MODEL 2.lIST \\
\hline & 00114 & 40 & & \(Z=Z 2\) \\
\hline 0 & 00115 & 4* & & GO TO 150 \\
\hline 1 & 00116 & 40 & 20 & VNSAVE=VIN \\
\hline G & 00117 & 40 & & \(V S A V E=V O U T\) \\
\hline & 00120 & 4\% & & END \\
\hline & 00121 & 5* & & \(V(Z+1)=V(V I N)\) \\
\hline & 00121 & 60 & C & SO \\
\hline & 00122 & 7* & & \(V 1 N=Z+1\) \\
\hline & 00123 & 80 & & VOUT \(2+3\) \\
\hline & 00124 & 9* & & CALL SO(BR/2.) \\
\hline & 00125 & 100 & & \(V(Z+5)=V(Z+3) * .5+.5\) \\
\hline & 00126 & \(11 *\) & & \(V I N=V N S A V E\) \\
\hline & 00127 & \(12 \%\) & & VOUT= VSAVE \\
\hline & 00130 & 130 & & \(V(V S A V E)=V(Z+5)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 00131 & \(14 *\) & & RETURN & \\
\hline 00132 & \(15 *\) & 150 & \(\angle Z=2 Z+\) & 6 \\
\hline 00133 & 160 & & GO TO 20 & \\
\hline 00134 & 170 & & END & \\
\hline
\end{tabular}

Figure 6-2. ASYSTD Example, Output (Cont)

FORTRAN V: ISD VERSION 2.2
TH IS COMPILATION WAS UONE ON 01 MAY 72 AT 16:10:28

MAIN PROGRAM
storage used (block, Name, leng TH)
\begin{tabular}{lll}
0001 & OCODE & 000550 \\
0000 & DDATA & 002131 \\
0002 & VLANK & 000000 \\
0003 & COGENT & 000010 \\
0004 & \(V S P A C E\) & 023421 \\
0005 & FLR & 030326 \\
0006 & NANE & 000006 \\
0007 & INT & 000001 \\
0010 & DIF & 000001 \\
0011 & DRMHED & 000021
\end{tabular}

EXTERNAL REFERENCES (BLOCK, NAME)
\begin{tabular}{ll}
0012 & DATIN \\
0013 & PAGER \\
0014 & MODELA \\
0015 & SQPMOD \\
0016 & RPMMOD \\
0017 & RFLIMT \\
0020 & BUTWTH \\
0021 & RFPDEM \\
0022 & LEDLAG \\
0023 & FMMOD \\
0024 & DRUMIT \\
0025 & PTPLT \\
0026 & NRNL \\
0027 & NWNL \(\$\) \\
0030 & NWDU\$ \\
0031 & NIO2\$ \\
0032 & NSTOP\$ \\
0033 & NIO1\$
\end{tabular}

STORAGE ASSIGNMENT FOR VARIABLES (BLOCK; TYPE, RELATIVE LOCATION, NAME)



Figure 6-2. ASYSTD Example, Output (Cont)


Figure 6-2. ASYSTD Example, Output (Cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 00300 & 50. & \multirow{3}{*}{c} & & CALL RFPDEM(1.0) \\
\hline & 00300 & 51* & & & BUTTERWORTH \\
\hline & 00301 & 52\% & & & \(\checkmark\) IN \(=2+16\) \\
\hline & 00302 & 53. & & & VOUT \(=2+18\) \\
\hline & 00303 & 54* & & & CALL BUTWTH(5,3,32.768E3,384.,0.,1.) \\
\hline & 00304 & 55* & & & \(V(Z 10 T 1)=V(z+18)\) \\
\hline & 00305 & 56* & & & \(v(z+20)=v(z+18) \times v(z+18)\) \\
\hline & 00306 & 570 & & & \(V(z+22)=V(z+20) * V(z 10.12)\) \\
\hline & 00306 & 580 & c & & LOOPF ILTER \\
\hline & 00307 & \(59 *\) & & & VIN \(=2+22\) \\
\hline & 00310 & 60* & & & VOUT=2+24 \\
\hline & 00311 & 61* & & & CALL LEDLAG(200.11.8775994,0...19751719,0.) \\
\hline & 00311 & 62* & C & & FMMODULATOR \\
\hline & 00312 & 63. & & & VIN \(=2+24\) \\
\hline & 00313 & 640 & & & VOUT \(=2+26\) \\
\hline & 00314 & 65* & & & CALL FMMOD (2.apl,32.768E3) \\
\hline & 00315 & 65\% & & & \(V(z+28)=V(Z+26) * V(Z 10 T 1)\) \\
\hline & 00316 & 670 & & & \(V(z+30)=V(2+26) 0 V(z+26)-0.5\) \\
\hline & 00317 & 68 & & & \(v(210 T 2)=v(2+30)\) \\
\hline & 00317 & \(69 \%\) & c & & 8UT TERNORTH \\
\hline & 00320 & 70\% & & & VIN \(=2+2 \theta\) \\
\hline & 00321 & 710 & & & VOUT \(=2+32\) \\
\hline & 00322 & 720 & & & CALL BUTWTH(2,1,0,128., 0.,1.) \\
\hline & 00323 & 73* & & & IF(TIME.LT.VSETTL) GO T0 10 \\
\hline \(\cdots\) & 00325 & \(74 *\) & & & INCLUDE MAIN3,LIST \\
\hline \(\bigcirc\) & 00326 & \(74 *\) & & & ZEDCNT= \(2 E D C N T+1\) \\
\hline & 00327 & \(74 *\) & & & IF (ZEDCNT.NE.ZEDIT) GO TO 40 \\
\hline & 00331 & \(74 *\) & & & ZEDCNT=0 \\
\hline & 00332 & 740 & & & IF (ZDRUM.NE.ZDRMS2) GO TO 30 \\
\hline & 00334 & 74* & & & CALL DRUMIT (VDRUM, Z DRMS Z, ZDRMSZ) \\
\hline & 00335 & 74* & & & \(2 \mathrm{DR} U \mathrm{M}=0\) \\
\hline & 00336 & 740 & & 30 & Z DR UM \(=2\) DRUM +1 \\
\hline & 00337 & 74* & & & E 0 \\
\hline & 00340 & 750 & & & \(V\) DRUM (ZDKUM, 1 ) \(=V(Z+6)\) \\
\hline & 00341 & 76* & & & \(\operatorname{VDRUM}(Z \operatorname{DRUM}, 2)=\operatorname{V}(2+24)\) \\
\hline & 00342 & 770 & & & \(\operatorname{VDRUM}(Z\) DRUM, 3\()=V(z+28)\) \\
\hline & 00343 & 780 & & & \(\operatorname{VDRUM}(Z D H U M, 4)=V(Z+32)\) \\
\hline & 00344 & 79 & & 40 & CONTINUE \\
\hline & 00345 & 800 & & & \(\angle C O U N T=\angle C O U N T+1\) \\
\hline & 00346 & 81* & & & IF (ZCOUNT.NE.NPRINT) GO TO 10 \\
\hline & 00350 & 82" & & & 2COUNT \(=0\) \\
\hline & 00351 & 83 & & & ZPR INT \(=2\) PRINT +1 \\
\hline & 00352 & 840 & & &  \\
\hline & 00353 & 85* & & & VPRINT( \(2 P R 1 N T, 2)=V(z+6)\) \\
\hline & 00354 & 86 & & & VPRINT(ZPRINT,3) \(=\mathrm{V}(2+24)\) \\
\hline & 00355 & 870 & & & VPRINT( LFRINT,4) = V( \(2+28)\) \\
\hline & 00356 & 890 & & & VPRINT(LPRINT,5) \(=\mathrm{V}(\mathrm{Z}+32)\) \\
\hline & 00357 & 89\% & & & IF(ZPRINT.NE.5) Go to 10 \\
\hline & 00361 & \(90 \%\) & & & WRITE (6,50) VPRINT \\
\hline & 00367 & 910 & & 50 & FORMAT( \(5(6 \mathrm{X}, \mathrm{Ab,4(4X,E12.6),/))}\) \\
\hline
\end{tabular}

Figure 6-2. ASYSTD Example, Output (Cont)
```

lll
00373 920
00374 92*
00375 92"
00376 920
00376 - 020
00376 92"
00376 92%
00376 920
00400 %%%
00403
00412 92*
00413 92a
00414 92:
00415 930
00416 940
00417 % %0
00420 96%
00421 97*
00422 97*
00422 980
00423 99*
00424 100%
00425 101*
00426 1020
0042.7 1030
6 0 FORMAT(//)
ZPRINT=1
GO TO 10
@--

* END OF SIMULATION AND OUTPUT LOOP

```

```

100 IF(ZPRINT.LT.2) GO TO 130
DO 110 L2=1,ZPSIZE
110 WRITE(6,120)(VPRINT (Z1, Z2), Z1=1,ZPRINT)
120 FORMAT(6X,A6,8(4X,E12,6))
130 CONTINUE
END
END
CALLL DRUMIT.(VDRUM,ZDRMSZ, ZDRUM)
CALL PTPLT('N1',4)
CALL PTPLT('N10',4)
CALL PTPLT('N13';4)
CALL PTPLT('OUTPUUT',4)
GO TO 200
150 LZ= 35
GO TO 20
20O CONTINUE
STOP
END
\$SYSTID
DT = . 150000000E-05,
TSTOP = . = 30000000EE-01
SETTLE=.00000000E+00,
SEND
APOLLO PCM/PM/PMLINK

TIME	. 000000	$.300000-03$. 59999903	. $899998-03$
N1	$.500000+00$	$.100000+01$	$.100000+01$	$.100000+01$
N10	.000000	. $656525-08$. . 746476007	-.152746-03
N1 3	.000000	. 22743 4-04	.175139-03	. 245243 -03
OUTPUT	.000000	.156697-07	.168748-05	. 243908 -04
TIME	.120000-02	. $150000-02$.180000002	. $209999-02$
N1	$.100000+01$	$.100000+01$. $100000+01$	$.100000+01$
N10	. $351258-02$	-. $559070-04$	-. $526487-01$	$.262237+00$
N13	.169327-01	. $374304-02$. 961061 -02	$.146836+00$
OUTPUT	.152122-03	. $597630-03$.174886-02	. $417225-02$

```

Figure 6-2. ASYSTD Example, Output (Cont)


Figure 6-2. ASYSTD Example, Output (Cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & TIME & . \(959973-02\) & . 989971 -02 & .101997-01 & . \(104997-01\) \\
\hline & N 1 & . 000000 & . 000000 & . 000000 & . 000000 \\
\hline & N1 0 & -. 12193 4+01 & . \(411117+00\) & . \(434535+00\) & -.990002-01 \\
\hline & N13 & \(-.190814+00\) & . \(317573+00\) & . \(217844+00\) & -. 547896001 \\
\hline & OUTPUT & . \(266355+00\) & \(.258530+00\) & . \(248216+00\) & . \(234191+00\) \\
\hline & TIME & . 10799 6-01 & . 11099601 & . 11399601 & . 11699601 \\
\hline & N1 & . 000000 & . 000000 & . 000000 & .000000 \\
\hline & N10 & . \(420782-01\) & . \(190610+00\) & -. \(956791+00\) & . \(220183+01\) \\
\hline & N1 3 & -. \(229144-01\) & -. \(142686+00\) & . \(126381+00\) & -. \(471236+00\) \\
\hline & OUTPUT & . \(215278+00\) & \(.190604+00\) & \(.159713+00\) & \(.122710+00\) \\
\hline & TI ME & . 11999601 & . 12299501 & . 12599501 & . 12899501 \\
\hline & N1 & . 000000 & . 000000 & . 000000 & . 000000 \\
\hline & Ni 0 & . \(980072+00\) & -. \(490457+01\) & . \(648092+01\) & . \(955244+00\) \\
\hline & N1 3 & \(-.376862+00\) & . \(2431.43+00\) & -. \(764494+00\) & -. \(396353+00\) \\
\hline & OUTPUT & . \(803356-01\) & . \(339293-01\) & -. \(147052-01\) & -. 635299 -01 \\
\hline \multicolumn{6}{|l|}{\[
\begin{aligned}
& 0 \\
& 1 \\
& 1
\end{aligned}
\]} \\
\hline \multirow[t]{15}{*}{N} & time & . 131995001 & . 13499501 & . 13799401 & . 14099 4-01 \\
\hline & NI & . 000000 & . 000000 & . 000000 & . 000000 \\
\hline & N10 & -. \(743435+01\) & . 78819 4+01 & . \(445719+00\) & -. \(684126+01\) \\
\hline & N1 3 & \(.256648+00\) & -. \(812628+00\) & -. \(286450+00\) & . \(202163+00\) \\
\hline & OUTPUT & -. \(110463+00\). & -. \(153620+00\) & \(-.191486+00\) & -. \(223013+00\) \\
\hline & TIME & . \(143994-01\) & . 14699 4-01 & . 14999301 & . 15299301 \\
\hline & N1 & . 000000 & . 000000 & . 000000 & . 000000 \\
\hline & N1 0 & . \(662391+01\) & . \(151791+00\) & -. \(558136+01\) & . \(554226+01\) \\
\hline & N13 & -. \(726501+00\) & -. \(167211+00\) & . \(139113+00\) & -. \(655248+00\) \\
\hline & OU TP UT & \(-.247648+00\) & -. \(265355+00\) & \(-.276509+00\) & -. \(281881+00\) \\
\hline & time & . 155993 -01 & . 158993 -01 & . 161993 -01 & . 16499201 \\
\hline & N1 & . 00000 & . \(100000+01\) & . \(100000+01\) & . \(100000+01\) \\
\hline & N1 0 & . \(608839-01\) & -. \(534075+01\) & . \(568418+01\) & . \(496007-01\) \\
\hline & N1 3 & -. \(885654-01\) & . 911298 -01 & -. \(660766+00\) & -. 34972 2-01 \\
\hline & OUTPUT & -. \(282513+00\) & \(-.279539+00\) & -. \(274107+00\) & -. \(267287+00\) \\
\hline
\end{tabular}

Figure 6-2. ASYSTD Example, Output (Cont)


Figure 6-2. ASYSTD Example, Output (Cont)

Figure 6-2. ASYSTD Example, Output (Cont)
```

- OUTPUT APOLLO PCM/PM/PM LINK

```


Figure 6-2. ASYSTD Example, Output (Cont)

This process is actually implemented by assuming that the input signals are analytic. This condition is met if the baseband signal spectrum is essentially zero at the carrier frequency. If this assumption is not true, a ripple in the simulation output at frequencies of approximately twice the carrier is introduced - the case if the input is a step function, for instance. In any event, the ripple is normally negligible due to the large ratio between baseband and carrier.

The second example is to illustrate the definition of a model, namely a squaring loop. Squaring loops have been utilized for deriving subcarrier phase references for detection of phase modulated signals. The topology is shown in Figure 6-1 since the elements making up the proposed model were used in the Apollo link simulation. The model utilizes a single tap for use by the multiplier. Figure 6-3 presents the Phase I ASYSTD output and resulting FORTRAN subroutine.

The third example is a model representing a sonar system propagation function. The mathematical form of the model is given by:
\[
a=\frac{A f_{m} f^{2}}{f_{m}^{2}+f^{2}}+B f^{2} d B / \text { meter }
\]
where
\(f_{m}=\) Relaxation frequency ( kHz ) given in table below
\(\mathrm{f}=\) Operating frequency ( kHz )

A, B are curve fit coefficients for salt water given by the following
\begin{tabular}{|c|c|c|c|}
\hline Temperature & \(\mathrm{f}_{\mathrm{m}}\) & A & B \\
\hline \(5^{\circ} \mathrm{C}\) & 60 kHz & \(6 \times 10^{-4}\) & \(3.2 \times 10^{-7}\) \\
\(15^{\circ} \mathrm{C}\) & 100 kHz & \(6 \times 10^{-4}\) & \(2.4 \times 10^{-7}\) \\
\hline
\end{tabular}
```

SOUARINGLOOP MODELA I O MSOCSSOR LEVEL II 0000000000000 2
ASYSTD PROCESSOR LEVEL II
SYSTEM
VERSION DATED O1 NOV 71 FOR THE MSC U1108 SYSTEM
THIS DECK PROCESSED ON 01 MAY 72 AT 14:52:49
SYSTID MODELS REFERENCED
LOOPF IL TER
FMMODULAT OR
ENTRY POINT
LEDLAG
FMMOD
this model assigned the entry point name modela
TAP ORDER: 1 TAPOO2

```

000001
000002
000003
000004
\(0 \quad 000005\)
\(\stackrel{1}{\sim} \quad 000006\)
000007
- ADD ADDFIL

II FOR, \# MODELA/SYSTID, MODELA/SYST ID
01 MAY 72 * 14:52:49.756
FORTRAN V: ISD VERSION 2.2
```

THIS COMPILATION WAS DONE ON O1 MAY 72 AT 14:52:49
SUBROUTINE MODELA ENTRY POINT 000116
S TORAGE USED (BLOCK, NAME, LENGTH)

0001	OCODE	000127
0000	ODATA	000034
0002	OBLANK	000000
0003	COGENT	000010
0004	VSPACE	000003
0005	FLR	000014

EXTERNAL REFEHENCES (BLOCK, NAME)

0006	LEDLAG
0007	FMMOD
0010	NERR3S

```

Figure 6-3. ASYSTD Example 2
```

StORAGE asS IGNMENT fOR VARIABLES (block, typE, rElatiyE locatION, Name)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0001 & & 000074 & 150 L & 0001 & & 000003 & 20 L & 0003 & R & 000002 & DT & 0003 & R & 000005 & & 0003 & & & \\
\hline 0003 & R & 000003 & TIME & 0003 & \(R\) & 000007 & TWOPI & 0004 & R & 000001 & \(V\) & 0003 & I & & & 0005 & P & 000003 & V \\
\hline 0003 & 1 & 000000 & VIN & 0000 & 1 & 000001 & VNSAVE & 0003 & I & 000001 & VOUT & 0000 & i & & & 0005 & R & 000002 & VF \\
\hline 0000 & 1 & 000002 & \(Z\) & 0000 & 1 & 000003 & Z10T1 & 0005 & 1 & 000001 & ZNUMF & 0000 & I & 0000004 & ZZ & 0004
0005 & R & 000000
000000 & \[
\begin{aligned}
& \text { VSUB O } \\
& \text { Z1STF }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & 00101 & 10 & & SUBROUTINE MODELA \\
\hline & 00101 & 2* & CMODEL & S SOUARINGL OOP \\
\hline & 00103 & 3* & & INCLUDE MODELI, List \\
\hline & 00104 & 3. & & IMPLICIT INTEGER (Z) \\
\hline & 00105 & 30 & & INTEGER VIN, VOUT, VCIN, VSAVE, VNSAVE \\
\hline & 00106 & 30 & & COMMON CLOGENT/VIN, VOUT, DT, TIME,ZZ, PI, VCIN, TWOPI \\
\hline & 00107 & 3* & & COMMON /VSPACE/ VSUBO;V(2) \\
\hline & 00110 & 3* & & COMMON /FLR, Z1STF, ZNUMF, VF (5,2) \\
\hline & 00111 & 3* & & EQUIVALENCE (TIME,T) \\
\hline & 00112 & 30 & & END \\
\hline & 00113 & 4* & & 1NCLUDE MODEL2.LIST \\
\hline & 00114 & 40 & & \(z=22\) \\
\hline & (10)115 & 40 & & G0 10150 \\
\hline \(\sigma\) & 00116 & 40 & 20 & \(\checkmark\) NSAVE=V! N \\
\hline 1 & 00117 & 40 & & \(V\) SA VE = VUUT \\
\hline N & 00120 & 4. & & END \\
\hline \(\longmapsto\) & 00121 & 5* & & \(Z 10 T 1=Z+1\) \\
\hline & 00122 & 60 & & \(V(Z+2)=V(V I N)\) \\
\hline & 00123 & 70 & & \(v(z+4)=v(z+2) * v(z+2)\) \\
\hline & 00124 & 80 & & \(v(z+6)=v(z+4) \circ v(z 10 T 1)\) \\
\hline & 00124 & 9* & c & LOUPFILIER \\
\hline & 00125 & \(10 \%\) & & \(\checkmark\) IN \(=2+6\) \\
\hline & 00126 & 11* & & VOUT \(=2+8\) \\
\hline & 00127 & 12\% & & CALL LEDLAG(200.11.8775994,0...19751719,0.) \\
\hline & 00127 & 13 & \(c\) & F MM OD ULAT OR \\
\hline & 00130 & 140 & & \(\checkmark I N=Z+8\) \\
\hline & 00131 & 15* & & VOUT \(=2+10\) \\
\hline & 00132 & \(16 \%\) & & CALL FMMCD (2.*P1.32.768E3) \\
\hline & 00133 & 17\% & & \(v(z+12)=v(Z+10) * v(z+10)-0.5\) \\
\hline & 00134 & 18* & & \(v\left(Z 10 T_{1}\right)=v(Z+12)\) \\
\hline & 00135 & 19* & & \(V I N=V N S A V E\) \\
\hline & 00136 & 20. & & VOUT = VSAVE \\
\hline & 00137 & 210 & & \(V(V S A V E)=V(Z+10)\) \\
\hline & 00140 & 220 & & RETURN \\
\hline & 00141 & 23. & 150 & \(Z 2=2 Z+13\) \\
\hline & 00142 & 240 & & GO TO 20 \\
\hline & 00143 & 25 & & END \\
\hline
\end{tabular} 0005 R 000000 V1 STF

Figure 6-3. ASYSTD Example 2 (Cont)

Figure 6-4 is the ASYSTD output for both the model and test run which evaluates the function over a given frequency range. Note that the intrinsic variable TIME is used to represent frequency.

In the fourth example, a filter is simulated, and its response to an input signal measured for various bandwidths. The system variables DT and TSTOP are adjusted appropriately for each bandwidth (BW) considered.

The output generated by the first and last passes of this simulation are included following the FORTRAN program as shown in Figure 6-5.
```

 SONARABSORPTION MON MODELA 1 5 5 0 0000000000000 2
 A SyStD processor level il
VERSION DATED 01 NOV 71 FOR THE MSC U1108 SYSTEM
THIS DECK PROCESSED ON O1 MAY 72 AT 14:57:50
this model assigned the entry point name modela
TAP ORDER: 1 TAPO01 2.TAP002
000001 MODEL = SONAR ABSORPTION,A,B,FM,FR,R
000002
000003
000004
000005

```
```

 INPUT < $/10.**(R*TAP2/10.) > OUTPUT
    ```
    INPUT < $/10.**(R*TAP2/10.) > OUTPUT
    INPUT < A*TAP1*FM/(TAP1+FM*FM)+B*TAP1 > N2 ' TAP2
    INPUT < A*TAP1*FM/(TAP1+FM*FM)+B*TAP1 > N2 ' TAP2
    INPUT < FR:FR > N3 ' TAP1
    INPUT < FR:FR > N3 ' TAP1
END
SImulate absorption vs. freq at 1 me ASYSTD PROCESSOR LEVEL II
VERSION DATED 01 NOV 71 FOR IHE MSC U1108 SYSTEM
THIS DECK PROCESSED ON O1 MAY 72 AT 14:57:50
```

SYSTID MODELS REFERENCED
SONARABSORP TION

ENTRY POINT

MODELA

Figure 6-4. ASYSTD Example 3 Output

000006
000007
000008
000009
000010
000011
000012
000013
000014
000015

SYSTEM. SIMUL ATE ABSORPTION VS. FREQ AT 1 METER DEFAUL. TSIART=2., TSTOP=1000., DT=2. , NPRINT=25
PAGE . SMALL FOR PURS
DATA. ABB.FM
PRINT. RATIO, OUTPUT
PPLOT. OUTPUT
INPUT < 1.0\rangle DRIVE
DRIVE < SONAR ABS ORPTION(A,B,FM,TIME,1.0) > RATIO RATIO < 10.*ALOG1O(\$) > OUTPUT
END
(A) $A D D A D D F I L$

Figure 6-4. ASYSTD Example 3 Output (Cont)

```
SIMULATE ABSORPTION VS, FREO AT 1 ME
```

| TIME | $.200000+01$ | $.520000+02$ | $.102000+03$ | $.152000+03$ |
| :--- | ---: | ---: | ---: | ---: |
| RATIO | $.999991+00$ | $.996252+00$ | $.993099+00$ | $.991165+00$ |
| OUTPUT | $-.412234-04$ | $-.163069-01$ | $-.300748-01$ | $-.385401-01$ |

| TIME | $.202000+03$ | $.252000+03$ | $.302000+03$ | $.352000+03$ |
| :--- | ---: | ---: | ---: | ---: |
| RATIO | $.989432+00$ | $.98 / 554+00$ | $.985413+00$ | $.982962+00$ |
| OUTPUT | $-.461386-01$ | $-.543899-01$ | $-.638183-01$ | $-.746328-01$ |

| | TIME | $.402000+03$ | $.452000+03$ | $.502000+03$ | $.552000+03$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | RATIO | $.980183+00$ | . $977068+00$ | $.973613+00$ | $.969821+00$ |
| N | OUTPUT | -. $869288-01$ | $-.100754+00$ | -. $116134+00$ | $-.133085+00$ |
| | TIME | $.602000+03$ | $.652000+03$ | $.702000+03$ | $.752000+03$ |
| | RATI 0 | . $965692+00$ | $.961229+00$ | $.956437+00$ | $.951320+00$ |
| | OU TP UT | -. $151615+00$ | $-.171731+00$ | $-.193436400$ | -. $216734+00$ |
| | TIME | $.802000+03$ | . $852000+03$ | . $902000+05$ | $.952000+03$ |
| | RATIO | $.945883+00$ | $.940132+00$ | $.934072+00$ | . $927711+00$ |
| | OUTPUT | -. $241625+00$ | $-.268112+00$ | -. $296195+00$ | $-.325875+00$ |

Figure 6-4. ASYSTD Example 3 Output (Cont)

SImUlate absorption vs. freg at 1 me

* OUTHUT

Figure 6-4. ASYSTD Example 3 Output (Cont)
test the vary doefine feature
ASYSTD PROCESSOR LEVEL II
VERSION DATED 01 NOV 71 FOR 1 HE MSC UII 08 SYSTEM
THIS DECK PROCESSED ON 21 DEC 71 AT 15:51:34

SYSTID MODELS REFERENCED

ENTRY POINT

BUTTERKORTH
BUTWTH

000001 * WARNING * AN OUTPUT LIST CONTAINS AN ITEM WHICH IS NOT A NODE, A TAP, OR TIME, 000001 SYSTEM, TEST THE VARY/UEFINE FEATURE
000002 PRINT, OUTPUT,TESTER
000053 PAGE. SMALL
_... $000004 \ldots$ PPLOT, OUTPUT
000005 DEFINE, TESTER=1.+(BW-10.)/20
000006 SET: NPRINT=10
000007 . VARY, BW:10.1110.i20.
000008 - SET: DT=.0518N
000009 SET: TSTOP 5 S/BW

END
© ADD $A D D F I L$

OI FOR, \because MAIN /SYSTJU,MAIN./SYSTID 21 DEC 71 15:151135.497
IVIVAC 1108 FORTRAN V LEVEL
-
THIS COMPILATION WAS DONE ON 21 DEC 71 AT $15: 51: 35$

MAIN PROGRAM
STORAGE USED (BLOCK, NAME, LENGTH)

| 0001 | VCODE | 000353 |
| :--- | :--- | :--- |
| 0000 | DATA | 002072 |
| 0002 | COLANK | 000000 |
| 0003 | COGENT | 000010 |
| 0004 | $V S P A C E$ | 023421 |
| 0005 | FLR | 030326 |
| 0006 | NAME | 000006 |
| 0007 | INT | 000001 |
| 0010 | DIF | 000001 |
| 0011 | DRMHED | 000016 |

Figure 6-5. Vary/Define Feature Example

EXTERNAL REFERENCES (BLOCK, NAME)

| 0012 | DATIN |
| :--- | :--- |
| 0013 | PAGER |
| 0014 | BUTWTH |
| 0015 | DRU1IT |
| 0016 | PTPLT |
| 0017 | NWDU\$ |
| 0020 | NIO2S |
| 0021 | NSTOPS |
| 0022 | NIO1\$ |

STORAGE ASSIGNMENT FOR VARIABLES (BLOCK; TYPE, RELATIVE LOCATION, NAME) -

| 00101 | 1* | | I NClude maini,list |
| :---: | :---: | :---: | :---: |
| 00103 | 10 | | ! MPLICIT INTEGER (Z) |
| 00104 | 1* | | INTEGER VIN,VOUT, VCIN |
| 00105 | 1* | | PARAMETER VSIZE=10000,VFSIZE= 2500 |
| 00106 | 10 | | COMMON COOGENT/VIN, VOUT, DT, TI ME, ZZ, PI, VCIN, TWOP! |
| 00107 | 10 | | COMMON/VSPACE/VSUBDiV VSIZE) |
| 00110 | 1. | | COMMON/FLR/Z IS TF, ZNUMF,VF(5,VFSI ZE) |
| 00111 | 1* | | COMMON /NAME/TITLE(6) |
| 00112 | 10 | | COMMON/INT/VDT 2 /DIF/VTDT |
| 00113 | 10 | | equivalence (t, TIME) |
| 00114 | 10 | | DATA P!/S.1415927/1 TWOPI/6.2831853/ |
| 00117 | 10 | | DATA TSTART,SETTLE $10.0 .1 / \mathrm{NPRINT/1/}$ |
| 00123 | 1. | | END |
| 00124 | 24 | | data titlegitest the vary doff ine feature |
| 00126 | 30 | | PARAMETER ZPSIZE= 3 |
| 00127 | 40 | | DIMENSION VPRINT(5, $2 P S I 2 E)$ |
| 00130 | 58 | | DATA VPRINT(1, 1)/1T1ME 1/ |

Figure 6-5. Vary/Define Feature Example (Cont)

Figure 6-5. Vary/Define Feature Example (Cont)

Figure 6-5. Vary/Define Feature Example (Cont)

TEST THE VARY/DEFINE FEATURE

| $\begin{aligned} & \text { TIME } \\ & \text { OUTPUT } \\ & \text { TESTER } \end{aligned}$ | $\begin{aligned} & .000000 \\ & .597958-04 \\ & .100000+01 \end{aligned}$ | | $\begin{aligned} & .500000=01 \\ & .434828+00 \\ & .100000+01 \end{aligned}$ | | $\begin{aligned} & 100000+00 \\ & .112984+01 \\ & .100000+01 \end{aligned}$ | \cdots | $\begin{aligned} & .150000+00 \\ & .954790+00 \\ & .100000+01 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | . | | \ldots | | | |
| $\begin{aligned} & \text { TI ME } \\ & \text { OUTPUT } \\ & \text { TESTER } \end{aligned}$ | $\begin{aligned} & .200000+00 \\ & .101650+01 \\ & .100000+01 \end{aligned}$ | - - | $\begin{aligned} & .250000+00 \\ & .994127+00 \\ & .100000+01 \end{aligned}$ | | $\begin{aligned} & .300000+00 \\ & .100202+01 \\ & .100000+01 \end{aligned}$ | | $\begin{aligned} & .350000+00 \\ & .999333+00 \\ & .100000+01 \end{aligned}$ |
| | | -- | | .. | | | |
| $\begin{aligned} & \text { TI ME } \\ & \text { OUTPUT } \\ & \text { TE STER } \end{aligned}$ | $\begin{aligned} & .400000+00 \\ & .100021+01 \\ & .100000+01 \end{aligned}$ | | $\begin{aligned} & .450000+00 \\ & .999940+00 \\ & .100000+01 \end{aligned}$ | | $\begin{aligned} & 500000+00 \\ & .100002+01 \\ & .100000+01 \end{aligned}$ | \cdots | |

Figure 6-5. Vary/Define Feature Example (Cont)

Figure 6-5. Vary/Define Feature Example (Cont)
test the vary/define feature

Figure 6-5. Vary/Define Feature Example (Cont)

Figure 6-5. Vary/Define Feature Example (Cont)

APPENDIX A

BIBLIOGRAPHY AND REFERENCES

(1) Golden, R. M. and Kaiser, J. F., "Design of Wideband Sampled Data Filters'", B.S.T.J., pp. 1533-1545, vol. 43, part 2, July 1964.
(2) Kaiser, J. F., "Design Methods for Sampled-Data Filters", Proc. First Allerton Conference on Circuit and System Theory, Nov., 1963, Monticello, Illinois, pp. 221-236.
(3) Golden, R. M., "Digital Computer Simulation of a Sampled-Data Voice-Excited Vocoder", J. Acoust. Soc. Am., 35, Sept., 1963, pp. 1358-1366.
(4) Wilts, C. H., Principles of Feedback Control, Addison-Wesley, 1960, pp. 197-207.
(5) Hamming, R.W., Numerical Methods for Scientists and Engineers, McGraw-Hill, New York, 1962, pp. 277-280.
(6) Kelly, J. L., Jr., Lochbaum, C. and Vyssotsky, V. A. "a Block Diagram Compiler', B.S.T.J., 40, May, 1961, pp. 669-676.
(7) Storer, J. E., Passive Network Synthesis, McGraw-Hill, New York, 1957, pp. 293-296.
(8) Kuo, F. F. and Kaiser, J. F., System Analysis By Digital Computer, J. Wiley \& Sons, Inc., New York, 1966.
(9) D. C. Baxter, Digital Simulation Using Approximate Methods, National Research Council, Ottawa, Canada, Report MK-15, Division of Mechanical Engineering, July 1965.
(10) J. E. Gibson, Nonlinear Automatic Control, McGraw Hill, New York, 1963, pp. 147-159.
(11) K. Steiglitz, The General Theory of Digital Filters with Applications to Spectral Analysis, AFOSR Report No. 64-1664, New York University, New York, May 1963.
(12) K. Steglitz, "The Equivalence of a Digital and Analog Signal Processing", Information and Control, Vol. 8, No. 5, October 1965, pp. 455-467.
(13) J. F. Kaiser, "Some Practical Considerations in the Realization of Linear Digital Filters", Proceedings Third Allerton Conference on Circuit and System Theory, Monticello, Illinois, October 1965, pp. 621-633.
(14) G. E. Heyliger, The Scanning Function Approach to the Design of Numerical Filters, Report R-63-2, Martin Co. , Denver, Colorado, April 1963.
(15) R. J. Graham, Determination and Analysis of Numerical Smoothing Weights, NASA Technical Report No. TR-R-179, December 1963.
(16) E. B. Anders et al., Digital Filters, NASA Contractor Report CR-136, December 1964.
(17) D. G. Watts, Optimal Windows for Power Spectra Estimation, Mathematics Research Center, University of Wisconsin, MRC-TSR-506, Sept ember 1964.
(18) E. Parzen, Notes on Fourier Analysis and Spectral Windows, Applied Mathematics and Statistical Laboratories, Technical Report No. 48, May 15, 1963, Stanford University, California.
(19) G. A. Campbell and R. M. Foster, Fourier Integrals for Practical Applications, D. Van Nostrand, 1948, p. 113 pair 872.1.
(20) J. F. Kaiser, "A family of window functions having nearly ideal properties", November 1964, unpublished memorandum.
(21) D. Slepian and H. O. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty - I and II", B.S.T.J. Vol. 40, No. 1, January 1961, pp. 43-84.
(22) P. E. Fleischer, "Digital realization of complex transfer functions", Simulation, Vol. 6, No. 3, March 1966, pp. 171-180.
(23) M. A. Martin, Digital Filters for Data Processing, General Electric Co., Missile and Space Division, Tech. Info Series Report No. 62-SD484, 1962.
(24) S. A. Schelkunoff, "A mathematical theory of linear arrays", B.S.T.J. Vol. 22, January 1943, pp. 80-107. Mark Tsu-Han Ma, A New Mathematical Approach for Linear Array Analysis and Synthesis, Ph. D. thesis, Syracuse University, 1961, University Microfilms No. 62-3050.
(25) G. M. Jenkins, "A survey of spectral analysis", Applied Statistics, Vol. XIV, No. 1, 1965, pp. 2-32.
(26) H. H. Robertson, "Approximate design of digital filters," Technometrics, Vol. 7, No. 3, August 1965, pp. 387-403.
(27) W. K. Linvill, "Sampled-data control systems studied through comparison of sampling with amplitude modulation, "Trans. AIEE, Vol. 70, Part II, 1951, pp. 1779-1788.
(28) A. Susskind, Notes on Analog-Digital Conversion Techniques, John Wiley, New York, 1957. See especially Chapter II, Sampling and Quantization by D. Ross.
(29) D. T. Ross, Improved Computational Techniques for Fourier Transformation, Servomechanisms Laboratory Report No. 7138-R-5, Massachusetts Institute of Technology, Cambridge, Massachusetts, June 25, 1954.
(30) C. Jordan, Calculus of Finite Differences, Chelsea, 1960, (Reprint of 1939 Edition).
(31) H. M. James, N. B. Nichols, R. S. Phillips, Theory of Servomechanisms, McGraw-Hill, New York, 1947, pp. 231-261.
(32) J. R. Ragazzini and G. F. Franklin, Sampled-Data Control Systems, McGraw Hill, 1958.
(33) E. I. Jury, Sampled-Data Control Systems, John Wiley and Sons, Inc. 1958.
(34) J. T. Tou, Digital and Sampled-Data Control Systems, McGrawHill, 1959.
(35) E. Mishkin and L. Braun, Jr., Adaptive Control Systems, McGraw Hill, New York, 1961, pp. 119-183.
(36) E. I. Jury, Theory and Application of the z-Transform Method, John Wiley, New York, 1964.
(37) H. Freeman, Discrete-Time Systems, John Wiley, 1965.
(38) P. M. DeRusso, R. J. Roy, C. M. Close, State Variables for Engineers, John Wiley, 1965, pp. 158-186.
(39) R. B. Blackman, Linear Data-Smoothing and Prediction in $\frac{\text { Theory and Practice, Addison-Wesley, Reading, Massachusetts, }}{1965 \text {. }}$
(40) C. Lanczos; Applied Analysis, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1956.
(41) R. B. Blackman, J. W. Tukey, The Measurement of Power Spectra from the Point of View of Communication Engineering, Dover, 1959.
(42) M. A. Martin, "Frequency Domain Applications to date Processing, " IRE Transactions on Space Electronics and Telemetry, Vol SET-5, No. 1, March 1959, pp. 33-41.
(43) J. F. A. Ormsby, "Design of Numerical Filters with Applications to Missile Data Processing, "Jour. ACM, Vol. 8, No. 3, July 1961, pp. 440-466.
(44) A. J. Monroe, Digital Processes for Sampled Data Systems, John Wiley and Sons, Inc., New York, 1962.
(45) R. M. Golden, "Digital Computer Simulation of Communication Systems Using the Block Diagram Compiler; BLODIB, "Third Annual Allerton Conference on Circuit and System Theory, Monticello, Illinois, October 1965, pp. 690-707.
(46) A. Tustin, "A Method of Analyzing the Behavior of Linear Systems In Terms of Time Series, "Jour. IEE, Vol. 94, Part II A, May 1947, pp. 130-142.
(47) J. M. Salzer, "Frequency Analysis of Digital Computers Operating In Real Time, "Proc, IRE, Vol. 42, February 1954, pp. 457-466.
(48) R. Boxer, S. Thaler, "A Simplified Method of Solving Linear and Non-Linear Systems,"Proc. IRE, Vol. 44, January 1956, pp. 89-101.
(49) R. Boxer, "A Note on Numerical Transform Calculus,"Proc. IRE, Vol. 45, No. 10, October 1957, pp. 1401-1406.
(50) D. C. Baxter, The Digital Simulation of Transfer Functions, National Research Laboratories, Ottawa, Canada, DME Report No. MK-13, April 1964.
(51) C. J. Drane, Directivity and Beamwidth Approximations for Large Scanning Dolph-Chebyshev Arrays, AFCRL Physical Science Research Papers No. 117, AFCRL-65-472, June 1965.
(52) H. L. Garabedian (Ed.), Approximation of Functions, Elsevier Publishing Co., 1965, see especially Walsh pp. 1-16 and Cheney pp. 101-110.
(53) E. W. Cheney and H. L. Loeb, "Generalized rational approximation, "J. SIAM, Numerical Analysis, B, Vol. 1, 1964, pp. 11-25.
(54) Josef Stoer, "A direct method for Chebyshev approximation by rational functions, "JACM, January 1964, Vol. 11, No. 1, pp. 59-69.
(55) R. M. Golden and J. F. Kaiser, "A computer program for the design of continuous and sampled-data filters", to be published.
(56) C. M. Rader and B. Gold, Digital Filter Design Techniques, Lincoln Laboratory Report, M.I. T., Preprint JAZ612, September 1965.
(57) H. Holtz and C.T. Leondes, "The synthesis of recursive filters, "Jour. ACM, Vol. 13, No. 2, April 1966, pp. 262-280.
(58) L. Weinberg, Network Analysis and Synthesis, McGraw Hill, 1962.
(59) D. A. Calahan, Modern Network Synthesis, Hayden, New York, 1964.
(60) J. E. Storer, Passive Network Synthesis, McGraw Hill, New York, 1957, pp. 287-302.
(61) P. Broome, "A frequency transformation for numerical filters," Proc. IEEE, Vol. 52, No. 2, February 1966, pp. 326-7.
(62) P. E. Mantey, Convergent Automatic-Synthesis Procedures for Sampled-Data Networks with Feedback, Stanford Electronics Laboratories, Technical Report No. 6773-1, SU-SEL-112, Stanford University, October 1964.
(63) J. R. B. Whittlesey, "A rapid method for digital filtering, Comm. ''ACM, Vol. 7, No. 9, September 1964, pp. 552-556.
(64) T. Y. Young, Representation and Analysis of Signals, Part X. Signal Theory and Electrocardiography, Department of Electrical Engineering, Johns Hopkins University, May 1962.
(65) P. W. Broome, "Discrete orthonormal sequences, "Jour. ACM, Vol. 12, No. 2, April 1965, pp. 151-168. Archambeau et al., "Data processing techniques for the detection and interpretation of teleseismic signals, "Proc. IEEE, Vol 53, No. 12, December 1965, pp. 1860-1994, see especially p. 1878.
(66) H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, 1945, pp. 47-49.
(67) M. Mansour, "Instability criteria of linear discrete systems, "Automatica, Vol. 2, No. 3, January 1965. pp. 167-178.
(68) C. E. Maley, "The effect of parameters on the roots of an equation system, "Computer Journal, Vol. 4, 1961-2. pp. 62-63.
(69) J. G. Truxal, Automatic Feedback Control System Synthesis, McGraw Hill Book Co., Inc., New York, 1955, pp. 223-250.
(70) F. F. Kuo, Network Analysis and Synthesis, John Wiley, New York, First Edition, 1962, pp. 136-137, (Second Edition, pp. 148-155).
(71) C. Pottle, "On the partial-fraction expansion of a rational function with multiple poles by a digital computer, "IEEE Trans. Circuit Theory, Vol. CT-11, March 1964, pp. 161-162.
(72) W. R. Bennett, "Spectra of quantized signals", B.S.T.J. Vol. 27, July 1948, pp. 446-472.
(73) B. Widrow, "A study of rough amplitude quantization by means of Nyquist sampling theory, "Trans, IRE on Circuit Theory, Vol. CT-3, No. 4, December 1956, pp. 266-276.
(74) B. Widrow, "Statistical analysis of amplitude quantized sampled-data systems, "Trans. AIEE Applications and Industry, No. 52, January 1961, pp. 555-568.
(75) F. B. Hills, A Study of Incremental Computation by Difference Equations, Servomechanisms Laboratory Report No. 7849-R-1, Massachusetts Institute of Technology, Cambridge, Massachusetts, May 1958.
(76) J. B. Knowles and R. Edwards,"Effect of a finite-word-leng th computer in a sampled-data feedback system, "Proc. IEE Vol. 112, No. 6, June 1965, pp. 1197-1207.
(77) J. B. Knowles and R. Edwards,"Simplified analysis of computational errors in a feedback system incorporating a digital computer, "S.I.T. Symposium on Direct Digital Control, April 22, 1965, London.
(78) J. B. Knowles and R. Edwards, "Complex cascade programming and associated computational errors, "Electronics Letters, Vol. 1, No. 6, August 1965, pp. 160-161.
(79) J. B. Knowles and R. Edwards, "Finite word-length effects in multirate direct digital control systems, "Proc. IEE, Vol. 112, No. 12, December 1965, pp. 2376-2384.
(80) B. Gold and C. Rader,"Effects of quantization noise in digital filters, "Proceedings Spring Joint Computer Conference, 1966. Vol. 28, pp. 213-219.
(81) J. H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice Hall, Englewood Cliffs, New Jersey, 1963.
(82) J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series, "Mathematics of Computation, Vol. 19, No. 90, April 1965, pp. 297-301.
(83) R. A. Gaskill, "A versatile problem-oriented language for engineers, "IEEE Transactions on Electronic Computers, Vol. EC-13, No. 4 (August, 1964), pp. 415-421.
(84) R. D. Brennan and R. N. Linebarger, "A survey of digital simulation: digital analog simulator programs,"Simulation Vol. 3, No. 6 (December, 1964), pp. 22-36.
(85) J. J. Clancy and M. S. Dineberg, "Digital simulation languages: a critique and a guide,"AFIPS Conference Proceedings, Vol. 27, Part I (1965), Spartan Books, Washingron, D.C., pp. 23-36.
(86) J. C. Strauss and W. L. Gilbert, SCADS: a programming system for the simulation of combined analog digital systems, Carnegie Institute of Technology, March, 1964.
(87) W. M. Syn and D. G. Wyman, DSL/90 Digital Simulation Language User's Guide, IBM Corporation, San Jose, California, July, 1965.
(88) R. W. Burt and A. P. Sage, "Optimum design and error analysis of digital integrators for discrete system simulation, "AFIPS Conference Proceedings, Vol. 27, PartI (1965), Spartan Books, Washington, C.D., pp. 903-914.
(89) M. E. Fowler, "A new numerical method for simulation," Simulation, Vol. 4, No. 5 (May, 1965), pp. 324-330.
(90) C. C. Cutler, "Transmission Systems Employing Quantization, "U.S. Patent No. 2, 927, 962, March 8, 1960 (filed April 26, 1954).
(91) T. G. Stockham, Jr., "High speed convolution and correlation, "Proceedings Spring Joint Computer Conference, 1966, Vol. 28, pp. 229-233.
(92) H. D. Helms, "Fast Fourier transforms methods of computing difference equations arising from z-transforms and autoregressions," (to appear).
(93) J. L. Kelly, Jr., C. Lochbaum, and V. A. Vyssotsky, "A block diagram compiler', B.S.T.J., Vol. 40, No. 3 (May,1961) pp. 669-676.
(94) M. R. Schroeder et al., New methods for speech analysissynthesis and bandwidth compression, Congress Report of the Fourth International Congress on Acoustics, Copenhagen, 1962.
(95) L. S. Frishkopf and L. D. Harmon, "Machine recognition of cursive script, "Symposium on Information Theory, London (1960), C. Cherry, Editor, Butterworth and Co. Ltd, London (1961), pp. 300-316.
(96) B. J. Karafin, "The new block diagram compiler for simulation of sampled-data systems," AFIPS Conference Proceedings, Vol. 27, Part I (1965), Spartan Books, Washington, D. C.pp. 53-62.
(97) A study of Math Model Input/Output Parameters for the Computer Aided Analysis Program HASD 6420-821429, Lockheed Electronics Company.
(98) G. Franklin, "Linear Filtering of Sampled Data", IRE Conv. Rec., Vol. 3, Pt IV, pp 119-128, 1955.
(99) R. P. Brennan and R. N. Linebarger, "An Evaluation of Digital Analog Simulator Languages', I. F.I. P. 1965 Proceedings, Vol. 2.
(100) J. R. Hurley and J. J. Skiles, "DYSAC", 1963 SJCC, Vol. 23, Spartan Books, Washington, D. C.
(101) V. C. Rideout and L. Tavernini, "MAD BLOC", Simulation, Vol. 4, No. l, January 1965.
(102) M. L. Stein, J. Rose and D. B. Parker, "A Compiler with An Analog Oriented Input Language (ASTRAC)", Proc. 1959 WJCC.
(103) F. J. Sansom and H. E. Peterson, 'MIMIC - Digital Simulator Program' ${ }^{\prime \prime}$, SESCA Internal Memo 65-12, WPAFB, May 1965.
(104) R. T. Harnett and F. T. Sansom, "MIDAS Programming Guide", Report No. 5EG-TDR-64-1, WPAFB, Ohio, January 1964.
(105) M. Palevsky and J. V. Howell, "DES:-1", Fall JCC, Vol. 24, Spartan Books, Inc., Washington, D.C., 1963.
(106) R. D. Brennan and H. Sano, "PACROLUS", Fall JCC, Vol. 26, Spartan Books, Inc., Washington, D.C., 1964.
(107) R. N. Linebarger, "DSL/90", Paper at Joint Meeting Midwestern and Central States Simulation Councils, May 1965.
(108) R. A. Gaskill, J. W. Harris, and A. L. McKnight, "DAS-A Digital Analog Simulator", Proc. 1963
Spring JCC, AFIPS Conference Proc., Vol. 23, p. 83.
(109) G. E. Blechman, "An Enlarged Version of MIDAS', S\&I Div. NAR, June 1964; Simulation, Vol. 3, No. 4, October 1964.
(ll0) M. E. Fowler, "A New Numerical Method for Simulation', Simulation, pp. 324-330, May 1965.
(111) M. E. Fowler, "An Example Showing Use of Root Locus Techniques to Study Nonlinear Systems", TR, August 12, 1964, IBM R\&D Ctr., Palo Alto, California.
(112) SAI Proposal No. 69-045, dated October 1969, "Time Domain Simulation of Apollo Telecommunications Lines'.
(113) W. E. Thompson, "Network with Maximally Flat Delay," Wireless Engineer, Vol. 29, pg 255, October 1952.
(114) "On the Design of Filters by Synthesis," R. Saul and E. Ulbrich, IRE Transactions on Circuit Theory, December 1958.
(115) "The Design of Filters Using the Catalog of Normalized Low-Pass Filters,"R. Saal, Telefunken, 1963.
(116) "Passive Network Synthesis," James E. Storer, McGrav-Hill, 1957.

APPENDIX B

ASYSTD LIBRARY DESCRIPTIONS

The ASYSTD library consists of a collection of models developed by both Systems Associates, Inc. and NASA MSC, Space Electronics Division. The following material describes the use of the models. The descriptions are grouped under various identifiers, an index of which follows. Several blank Library forms have been included for future use.

Signal Generators

- Gaussian Noise
- Pulse Generator
- Square Wave Generator
- Table Generators
- Periodic Table Generator
- Transcendental Function Generators

Modulators

- Amplitude Modulators
- Frequency Modulators (Sine Wave)
- Frequency Modulator (Square Wave)
- Phase Modulators (Sine Wave)
- Phase Modulator (Square Wave)
- Delta Modulator

Demodulator

- Amplitude Demodulators
- Phase Demodulators
- Frequency Demodulators
- Frequency Demodulator with Feedback
Filters
- General Filter Model
- Butterworth
- Chebychev
- Bessel
- Butterworth-Thompson
- Elliptic
- Quadratic
- Lead Lag Function
- Lead Function
- Matched Filter
Limiters
- Soft Limiters
- Hard Limiters
- RF Soft Limiter
- RF Hard Limiter
Transforms
- Fourier Transform (FFT) (and Inverse)
- Haar Transform (and Inverse)
- Hadamard Transform (and Inverse)
- Ordered Hadamard Transform (and Inverse)
Coders
- Analog-to-Digital
- Digital-to-Analog
- Sample Hold Digital-to-Analog
- Multi-Level PCM
Math
- Complex Adder
- Complex Multiply
- Differentiator
- Integral with Initial Conditions
- IntegralB-2

Miscellaneous

- Interleaver
- De-Interleaver
- Time Delay
- Phase Shifter
- Signal Split
- Time Latch
- Zero Crossing Detector

| MODEL | GAUSSIAN NOISE GENERATOR | GROUP ID Sig. Gen. | $\left\lvert\, \begin{gathered} \text { PAGE } \\ 1 \end{gathered}\right.$ | DATE
 April, 1972 |
| :---: | :---: | :---: | :---: | :---: |

LIBRARY MODEL NAMES

GNOISE

DESCRIPTION

This function provides noise modeling capability, providing the SNR and ENB of the generator are defined.

USAGE

N1 < GNØÍSE (SNR, ENB, ISTART) > N2
where: SNR is the signal-to-noise ratio desired in ENB (equivalent noise bandwidth) assuming a 1 watt signal level.

ISTART is a positive integer (>0) for initializing the random number generator.

DETAILED DESCRIPTION

WHITE GAUSSION:

where

$$
\begin{aligned}
& f_{s}=\frac{1}{D T}=\frac{1}{\text { sampling rate }} \\
& \sigma_{i}^{2}=\frac{\eta_{i} f_{s}}{2}=\frac{\eta_{i}}{2 D T} \\
& \text { or } \\
& \eta_{i}=2 \sigma_{i}^{2} D T \quad \text { (Watts } / H z \text {) } \\
& N_{o}=\eta_{i} * E N B=2 \sigma^{2} D T * E N B \quad \text { (watts) }
\end{aligned}
$$

where $E N B=$ equivalent noise bandwidth under consideration. For a given SNR in bandwidth, BW:

$$
\frac{S}{N_{o}}=10^{S N R / 10}
$$

where

$$
\begin{aligned}
& S=\text { signal power in } \mathrm{BW} \text { (watts) } \\
& \text { or } \\
& \text { or } N_{o}=S * 10^{-\mathrm{SNR} / 10}=2 \sigma_{i}^{2} \mathrm{DT} * \mathrm{ENB} \\
& \sigma_{i}=\sqrt{\mathrm{S} / \sqrt{10^{\mathrm{SNR} / 10} * 2 \mathrm{DT} * \mathrm{ENB}}}
\end{aligned}
$$

APPLICATION

This model is a function and may be used in expressions.

ASYSTD LIBRARY

| GROUP ID | PAGE | DATE |
| :---: | :---: | :---: |
| Sig. Gen. | 1 | April, 1972 |

LIBRARY MODEL NAMES
GNOIS2

DESCRIPTION

This model provides noise modeling capability, providing the spectral density desired.

USAGE

N1 <GNØIS2 (ETA, ISTART)> N2
where: ETA is the desired spectral density (watts/Hz)
ISTART is a positive integer (>0) for initializing the random number generator

DETAILED DESCRIPTION

See "Gaussian, Noise Generator"
ETA $=\frac{1}{10^{\mathrm{SNR} / 10^{*}} \text { *NB }}$

APPLICATION

This model is a function and may be used in expressions.

ASYSTD LIBRARY

LIBRARY MODEL NAMES

PULSE

DESCRIPTION

This model produces a periodic output of pulses of the shape described below.

USAGE
N1 < PULSE(RATE, TD, TR, TL, TF) > N2
where: RATE = frequency of output
TD = delay time
$\mathrm{TR}=$ rise time
TL = level time
$T F=$ fall time

OUTPUT

The maximum value is plus one and the minimum value is zero.

APPLICATION

This model is a function and may be used in expressions.

| MODEL | SQUARE WAVE GENERATOR | GROUP ID Sig. Gen. | $\begin{gathered} \text { PAGE } \\ 1 \end{gathered}$ | $\begin{array}{ll} \text { DATE } \\ \text { April, } 1972 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |

SQ
SQUARE WAVE

USAGE

N1 <SQ(RATE) \rangle N2
where: $R A T E=f r e q u e n c y$ of the square wave output at node N 2 .

OUTPUT

A square wave of period $1 / R A T E$ whose maximum value is plus one and whose minimum value is minus one.

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :---: | :---: | :---: |
| TABLE | Sig. Gen. | 1 | April, 1972 |

LIBRARY MODEL NAMES

TABLE

DESCRIPTION

This function provides a piece-wise linear function for modeling both driving functions and non-linearities.

USAGE

$\mathrm{N} 1<\mathrm{TABLE}(\mathrm{XIN}, \mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2, \mathrm{Y} 2, \mathrm{X} 3, \mathrm{Y} 3, \mathrm{X} 4, \mathrm{Y} 4, \mathrm{X} 5, \mathrm{Y} 5>\mathrm{N} 2$
where: XIN = independent variable

Five point pairs describing the function (Note: Out-of-range values assume the end point values)

OUTPUT (Example)

| MODEL |
| :---: | :---: | :---: | :---: |
| TABLE |\quad| GROUP ID |
| :---: |
| PAGE |
| GATE |
| April, 1972 |

APPLICATION

This model is a function and may be used in expressions. ASYSTD LIBRARY

| MODEL | | GROUP ID | PAGE DATE | |
| :---: | :---: | :---: | :---: | :---: |
| | PERIODIC TABLE FUNCTION | Sig. Gen. | 1 | April, 1972 |

LIBRARY MODEL NAMES

PERIODIC TABLE FUNCTION
PTABLE

DESCRIPTION

This model provides the periodic function capability. The output is periodic with period T5.

USAGE

$\therefore \mathrm{N} 1<\mathrm{PTABLE}(\mathrm{T} 1, \mathrm{Y} 1, \mathrm{~T} 2, \mathrm{Y} 2, \mathrm{~T} 3, \mathrm{Y} 3, \mathrm{~T} 4, \mathrm{Y} 4, \mathrm{~T} 5, \mathrm{Y} 5)>\mathrm{N} 2$
where: $\left.\begin{array}{c}\mathrm{T} 1, \mathrm{Yl} \\ \mathrm{T} 5, \mathrm{Y} 5\end{array}\right\} \quad$ Five point-pairs describing the function
and $\quad \mathrm{T} 5=$ Period of the function

OUTPUT (Example

In this example $\mathrm{Tl}=0$; if $\mathrm{T} l \neq 0$, the output is set to Y 1 for $0 \leq T I M E \leq T 1$

APPLICATION

This model is a function and may be used in expressions.

ASYSTD LIBRARY

| $\begin{array}{rr}\text { MODEL } & \\ & \text { TABL2 }\end{array}$ | GROUP ID Sig. Gen. | PAGE 1 | DATE
 April, 1972 |
| :---: | :---: | :---: | :---: |

LIBRARY MODEL NAMES

TABL2

DESCRIPTION

This function provides a piece-wise linear function for modeling both driving functions and non-linearities, and provides zero output levels for out of range conditions.

USAGE

$\mathrm{N} 1<\mathrm{TABL} 2(\mathrm{XIN}, \mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2, \mathrm{Y} 2, \mathrm{X} 3, \mathrm{Y} 3, \mathrm{X} 4, \mathrm{Y} 4, \mathrm{X} 5, \mathrm{Y} 5)\rangle \mathrm{N} 2$
where: XIN = independent variable
$\left.\begin{array}{l}\mathrm{X} 1, \mathrm{Y} 1 \\ \vdots\end{array}\right\}$ five point pairs describing the function

OUTPUT

This model is the same as model "TABLE" except out-of-range values (XIN $<X 1$ or $X I N \geq X 5$) yield an output of zero.

APPLICATION

This model is a function and may be used in expressions.

DESCRIPTION

These elements are FORTRAN transcendental functions or utilize FOR TRAN functions.

USAGE (Example)
$\mathrm{Nl}\langle\operatorname{SIN}(\$)\rangle \mathrm{N} 2$
N2 is set to the trigonometric sine of N1
$\left.\begin{array}{l}\operatorname{SIN}(x) \\ \operatorname{COS}(x) \\ \operatorname{TAN}(x)\end{array}\right\} x$ in radians $\left.\begin{array}{l}\operatorname{SINE}(y) \\ \operatorname{COSINE}(y) \\ \operatorname{TANGNT}(y)\end{array}\right\} \quad y$ in cycles

APPLICATION

These elements are functions and may be used in expressions.

ASYSTD LIBRARY

| MODEL ${ }^{\text {AMPLITUDE MODU LATOR }}$ | GROUP ID Modulator | PAGE | DATE April, 1972 |
| :---: | :---: | :---: | :---: |

AM MODULATOR

AMMOD

DESCRIPTION

The Linear Amplitude Modulator provides classical modulation capability to the ASYSTD user. This element is the baseband model.

USAGE

N1 <AMMOD(BETA,FC)> N2
where: BETA $=$ Modulation Index (ratio)
FC = Carrier frequency

OUTPUT

Let INPUT(t) be the real input to the model (value at node Nl) and $V o(t)$ be the real output of the model, then

$$
\mathrm{Vo}(\mathrm{t})=(1.0+\mathrm{BETA} \cdot \operatorname{INPUT}(\mathrm{t})) \cdot \cos (2 \pi \mathrm{FC} \cdot \text { Time })
$$

RESTRICTIONS

BETA*INPUT $(t) \leq 1.0$ for no over-modulation.

APPLICATION

An example of using the model in a system is as follows:

$\operatorname{INPUT}<\operatorname{SINE}(\mathrm{T})>\mathrm{Nl}$
$\mathrm{NI} \mathrm{S}^{\prime}<\operatorname{AMMOD}(1.0,100 \mathrm{E} 3)>\mathrm{N} 2$

ASYSTD LIBRARY

| MODEL | GROUP ID | PAGE DATE | |
| :---: | :---: | :---: | :---: |
| RF AMPLITUDE MODUILATOR | Modulator | 1 | April, 1972 |

LIBRARY MODEL NAMES

RF AMPLITUDE MODULATOR
RAMMOD

DESCRIPTION

The Linear Amplitude Modulator provides classical modulation capability to the ASYSTD user. The output of this model is a complex baseband signal which represents the modulated carrier in the baseband.

USAGE
N1 <RAMMOD (BETA, PHI, MODE) > N2
where: BETA = Modulation Index (ratio)
PHI = Instantaneous Phase Jitter
MODE $=1.0$ for Double Sideband (DSB)
MODE $=0.0$ for Double Sideband-Suppressed Carrier

OUTPUT

Let $i(t)$ be the real input to the model (node Nl),
then: $\quad V o(t)=[M O D E+B E T A * i(t)] e^{\mathfrak{j}\left(\omega_{c} t+P H I\right)}$
translating $V o(t)$ to baseband:

$$
v_{o}^{\prime}(t)=V o(t) e^{-j \omega_{c} t}
$$

or $\quad V_{o}^{\prime}(t)=|M O D E+B E T A * i(t)| e^{j P H I}=\operatorname{Vr}(t)+j V i(t)$
wherc: $V_{o}^{\prime}(t)$ is the complex baseband output signal at N2
with $\quad \operatorname{Vr}(\mathrm{t})=\left|\mathrm{MODE}+\mathrm{BETA} *_{i}(\mathrm{t})\right| \operatorname{COS}(\mathrm{PHI})^{\text {. }}$
$V j(t)=|M O D E+B \dot{E} T A * i(t)| \operatorname{SIN}(P H I)$.

| MODEL | | GROUP ID
 RF AMPLITUDE MODU LATOR | PAGE |
| ---: | ---: | :---: | :---: |
| Modulator | 2 | April, 1972 | |

RESTRICTIONS

$\left|B E T A *_{i}(t)\right| \leq 1.0 \quad$ for no over-modulation

APPLICATION 1
This model is used in place of the amplitude modulator when carrier translation is required.

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :---: | :---: | :---: | :---: |
| LINEAR FREQUENCY MODU LATOR | Modulator | 1 | April, 1972 |

LIBRARY MODEL NAMES
FM MODULATOR
FMMOD

DESCRIPTION

The Linear Frequency Modulator Model provides a classical model for this type of angle modulation. The carrier output magnitude is defined as unity.

USAGE
$\mathrm{N} 1<\mathrm{FMMOD}(\mathrm{DF}, \mathrm{FC})\rangle \mathrm{N} 2$
where: $\quad D F=$ frequency deviation (Hz) of the carrier per unit input
$F C=$ carrier frequency

OUTPUT

Let the signal at Nl at time T be $\mathrm{i}(\mathrm{t})$.
Let the signal at $N 2$ at time T be $V o(t)$.

NOTE: The arguments of the SINE function is in Hz .

APPLICATION

FMMOD is for use when no carrier translation is required in the simulation.

\begin{tabular}{|c|c|c|c|}
\hline MODEL

RF LINEAR FREQUENCY MODULATOR \& \begin{tabular}{l}
GROUP ID

Modulator

 \& PAGE \&

DATE

April, 1972
\end{tabular}

\hline \multicolumn{4}{|l|}{LIBRARY MODEL NAMES}

\hline RF FM MODULATOR RFMMOD \& , \& \&

\hline
\end{tabular}

DESCRIPTION

The Linear Frequency Modulator model provides a classical model for this type of angle modulation. The carrier output magnitude is defined as unity.

USAGE

N1 $\langle\operatorname{RFMMOD}(\mathrm{DF})\rangle$ N2
where: $D F=$ frequency deviation $(H z)$ of the carrier per unit input.

OUTPUT

Let $i(t)$ be the real input to the model (node N1), then for the ideal FM modulator

$$
V o(t)=e^{j\left(\omega_{c} t+\beta \int_{o}^{t} i(t) d t\right)}
$$

where: $\beta=Z \pi D F$
translating $V o(t)$ to baseband:

$$
\cdot V_{o}^{\prime}(t)=V_{o}(t) e^{-j \omega} c_{c}^{t}
$$

or

$$
V_{o}^{\prime}(t)=e^{j \beta \int_{0}^{t} i(t) d t}=\operatorname{Vr}(t)+j V j(t)
$$

where: $V_{o}^{\prime}(t)$ is the complex baseband output signal at N2
with: $\operatorname{Vr}(t)=\operatorname{COS}\left(\beta \int_{0}^{t} i(t) d t\right)$

$$
V j(t)=\operatorname{SIN} \quad\left(\beta \int_{0}^{t} i(t) d t\right)
$$

APPLICATION

This model is used in place of the FREQUENCY MODULATOR model when carrier translation is required in the simuation.

| MODEL | GROUP ID | PAGE | DATE |
| :--- | :--- | :--- | :--- |
| SQUARE WAVE FREQUENCY MODU LATOR | Modulators | 1 | |

LIBRARY MODEL NAMES

SQUARES WAVE FREQUENCY MODULATOR SQFMOD

DESCRIPTION

The Square Wave Frequency Modulator provides a model for this type of angle modulation with ideal limiting.

USAGE
N1 $\langle\operatorname{SQFMOD}(D F, F C)\rangle$ N2
where: $\quad D F=f r e q u e n c y$ deviation (cycles) of the carrier per unit input
$F C=$ carrier frequency

OUTPUT

Let the signal at Nl at time T be INP(T$)$.
Let the signal at N 2 at time T be $\mathrm{OUT}(\mathrm{T})$.
Then: $\quad F(T)=\operatorname{SINE}\left(F C * T+D F * \int_{\operatorname{TSTART}}^{\mathrm{INP}(t) d t)} \quad\left[\begin{array}{c}\text { linear frequency } \\ \text { modulation }\end{array}\right]\right.$
NOTE: The arguments of the SINE function is in cycles

$$
\begin{array}{llll}
\operatorname{OUT}(\mathrm{T})=+1 & \text { when } & F(T) & \geq 0 \\
\operatorname{OUT}(\mathrm{~T})=-1 & \text { when } & F(\mathrm{~T}) & <0
\end{array}
$$

| MODEL | GROUP ID | PAGE | DATE | | | |
|---|---|---|---|---|---|---|
| LINEAR PHASE MODU LA TOR | | | |\quad Modulator | 1 | April, 1972 |
| :---: | :---: |

LIBRARY MODEL NAMES

PHASE MODULATOR
PMMODD
PMMOD

DESCRIPTION

The Linear Phase Modulator provides a classical model for this type of angle modulation. The carrier output level is defined as unity.

USAGE
N1 < PMMOD(BETA,TC) > N2
where: BETA $=$ Phase (Radians) deviation per unit input
$\mathrm{FC}=$ Carrier frequency (Hz)
NOTE: Modulation Index $=$ BETA * Input max

OUTPUT

Let the signal at Nl at time T be $\mathrm{i}(\mathrm{t})$
Let the signal at $N 2$ at time T be $V o(t)$
then: $\quad V o(t)=\sin (2 \pi * F C * t+B E T A * i(t))$

APPLICATION

This model is for use when no carrier translation is required in the simulation.

| MODEL | | GROUP ID
 Modulator | PAGE
 1 |
| :--- | :--- | :--- | :--- |
| RF LINEATE | | | |
| April, 1972 | | | |
| | | | |
| RF PRARY MODEL NAMES PHASE MODU LATOR | | | |
| RPMMOD | | | |

DESCRIPTION

The Liner Phase Modulator provides a classical model for this type of angle modulation. The output is the complex baseband signal.

USAGE

N1 <RPMMOD(BETA) > N2
where: BETA = Phase (Radians) deviation per unit input

OUTPUT

Let $i(t)$ be the real input to the model, then:

$$
V o(t)=e^{j}\left\{\omega_{c}{ }^{t}+\beta \cdot i(t)\right\}
$$

translating Vo(t) to baseband:

$$
V_{o}^{\prime}(t)=V o(t) e^{-j \omega_{c}}{ }^{t}
$$

or

$$
V_{o}^{\prime}(t)=e^{j \beta \cdot i(t)}=V_{r}(t)+j V_{j}(t)
$$

where: $V_{o}^{\prime}(t)$ is the complex baseband output signal at N2
with

$$
\begin{aligned}
\operatorname{Vr}(t) & =\operatorname{CoS}(\beta \cdot i(t)) \\
\operatorname{Vj}(t) & =\operatorname{SIN}(\beta \cdot i(t))
\end{aligned}
$$

APPLICATION

This model is used in place of the FM MODULATOR model when carrier translation is required in the simulation.

| MODEL ${ }^{\text {SQUARE WAVE PHASE MODU LATOR }}$ | GROUP ID Modulator | PAGE 1 | DATE April, 1972 |
| :---: | :---: | :---: | :---: |

LIBRARY MODEL NAMES
SQUARE WAVE PHASE MODU LATOR SQPMOD

DESCRIPTION

The Square Wave Phase Modulator provides a model for this type of angle modulation with ideal limiting.

USAGE
N1 <SQPMOD(BETA,FC) > N2
where: BETA $=$ Phase (Radians) deviation per unit input
FC = Carrier frequency
NOTE: Modulation Index $=$ BETA*Input ${ }_{\text {max }}$

OUTPUT

Let the signal at Nl at time T be $\operatorname{INP}(\mathrm{T})$. Let the signal at $N 2$ at time T be OUT(T).
$F(T)=\sin (2 \pi * F C * T+B E T A * \operatorname{INP}(T))$
[linear phase]
$\operatorname{OUT}(T)=+1$ when $F(T) \geq 0$
$\operatorname{OUT}(\mathrm{T})=-1$ when $F(T)<0$

ASYSTD LIBRARY

MODEL

| GROUP ID | PAGE | DATE |
| :---: | :---: | :--- |
| Modulator | 1 | April, 1972 |

DELTA MODULATION
Modulator 1 April, 1972
LIBRARY MODEL NAMES

DELTA MODULATOR
DELMOD

DESCRIPTION

Delta modulation is a coded modulation system nearly as efficient as PCM, requires more bandwidth than PCM, but has much simpler circuitry. These advantages make delta modulation quite attractive as a standard model. The output waveform magnitude is defined as ± 1.

USAGE

N1 <DELMOD(PW, PPS) > N2
where: $\mathrm{PW}=$ Pulse width (unit time)

```
PPS = Pulse repetition rate (pulses/unit time)
```


OUTPUT

In a delta modulation system, only the changes in signal amplitude from sample to sample are output. The process consists of utilizing a pulse generator (clock), one shot multi-vibrator, an integrator, and a difference circuit.

$$
\text { let } e_{(t)}=\operatorname{input}_{(t)}-\int \text { Output }_{(t)} d t
$$

where output($t)=\operatorname{Sign}\left(e_{(t)}\right) * \delta(t)$
where $\delta(t)$ is a finite pulse of width PW
The above process is clocked at a repetition rate of PPS

| MODEL \quad DEI,TA MODULATION | GROUP ID
 Modulator | $\begin{gathered} \text { PAGE } \\ 2 \end{gathered}$ | $\begin{array}{ll} \text { DATE } & \\ \text { April, } 1972 \end{array}$ |
| :---: | :---: | :---: | :---: |

EXAMPLE:

The width of the pulses in the Delta Modulator output is PW. There is one positive or negative pulse every l/PPS. The input signal and the signal which can be reconstructed from the Delta Modulator output have the same scale. Each step is $1 / P P S$ wide and PW high.

ASYSTD LIBRARY

RESTRICTIONS

In general, the delta modulator cannot follow the input signal whenever:

$$
\left\lvert\, \frac{d}{d t}\right. \text { input }(t) \mid>P W * P P S
$$

To prevent overload, PW and PPS should be adjusted so that:

$$
\left\lvert\, \frac{d}{d t}\right. \text { input }\left.(t)\right|_{\max } \leq P W * P P S
$$

which is usually satisfied if:

$$
\mathrm{A} \omega \leq \mathrm{PW} * \mathrm{PPS}
$$

where: $A=$ Peak value of input

$$
\omega=\text { Maximum frequency of input }
$$

If PW and PPS cannot be adjusted to meet this condition (note PWS $\leqslant 1 / P P S$), then the input to the delta modulator must be properly scaled.

In the case where:

$$
\left\lvert\, \frac{d}{d t}\right. \text { input }\left.(t)\right|_{\max } \ll P W * P P S
$$

PW may be decreased or the input signal scaled to provide more information in the delta modulator output.

APPLICATION

The delta modulator is normally used in pulse coding an audio signal for subsequent transmission via a modulated carrier. As such, this model will be mainly used in generating a baseband signal.

REFERENCE

For a description of delta modulation and a bibliography, see: H. R. SCHINDLER, "Delta Modulation", IEEE SPECIRUM, Ocrober 1970, pp. 69-78

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :---: | :---: | :---: |
| AMPLITUDE DEMODU LATOR | Demod. | 1 | April, 1972 |

LIBRARY MODEL NAMES

AMPLITUDE DEMODULATOR AMDEM

DESCRIPTION

This linear Amplitude Demodulator provides a rudimentary model for use in the ASYSTD library. The basic model is a full wave rectifier followed by a user selected filter function chosen for the particular application.

USAGE

N1 <AMDEM > N2
NOTE: N2 must be the input to a filter.

OUTPUT

The output signal at N2 is simply the absolute value of the signal at N1

$$
\mathrm{N} 2(\mathrm{~T})=|\mathrm{N} 1(\mathrm{~T})|
$$

APPLICATION
This model is for use in the baseband region. Its output must be fed through an averaging filter to eliminate the carrier.

ASYSTD LIBRARY

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :---: | :---: | :---: | :--- |
| RF AMPILITUDE DEMODU LATOR | Demod. | 1 | April, 1972 |

LIBRARY MODEL NAMES

RF AM DEMODU LATOR
RAMDEM

DESCRIPTION

This model is a rudimentary Amplitude Demodulator for use in modeling in the RF region.

USAGE

N1 < RAMDEM(GAIN) > N2
where: \quad GAIN $=$ Amplification of the model (typically l/BETA, see RF AMPLITUDE MODULATOR)

OUTPUT

Let X be the complex signal at NI
$X=X_{r}+j X_{i}$
$|X|=\left(X_{r}^{2}+X_{i}^{2}\right)^{1 / 2}$
Let Y be the output at N2
$\mathrm{Y}=\mathrm{GAIN} *(|\mathrm{X}|-1$.

APPLICATION

This model should be followed with a user selected filter for accurate simulation.

| MODEL | GROUP ID | PAGE | DATE | |
| :---: | :---: | :---: | :---: | :--- |
| | PHASE DEMODU LATOR | Demod. | 1 | April, 1972 |

LIBRARY MODEL NAMES

PHASE DEMODU LATOR PMDEMM

DESCRIPTION

This Phase Demodulator simply takes the integral of an FM demodulator output.

USAGE

N1 < PMDEMM(DV,FC) > N2
where: $F C=$ Center Frequency.
DV = Output Magnitude per Unit Phase Deviation (Volts/Radians)

OUTPUT

The Phase Demodulator output is given by DV $* \int \operatorname{FMDEMOD}(\mathrm{t}) \mathrm{dt}$ where $\operatorname{FMDEMOD}(\mathrm{t})$ is the output of an FMDEMOD with a sensitivity of lv/radian.

APPLICATION

This model is to be used with external filtering.

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :---: | :---: | :---: |
| RF PHASE DEMODULATOR | Demod. | 1 | Apri1, 1972 |

RF PHASE DEMODU LATOR
RFPDEM

DESCRIPTION

' This model represents an ideal wide band phase demodulator.

USAGE

N1 <RFPDEM(DV) > N2
where: $D V=$ Output Magnitude per Unit Phase Deviation (Volts/Radians)

OU TPUT

Let the complex input at Nl be $\mathrm{X}=\mathrm{X}_{\mathrm{r}}+\mathrm{j} \mathrm{X}_{\mathrm{i}}$
Then the output of this model is $D V * \operatorname{TAN}^{-1}\left(\frac{X_{i}}{X_{r}}\right)$

APPLICATION

This model is to be used with external filtering.

| MODEL | GROUP ID | PAGE | DATE |
| :--- | :---: | :---: | :---: |
| FREQUENCY DEMODU LATOR WITH FEEDBACK | Demod. | 1 | April, 1972 |

LIBRARY MODEL NAMES

FMFB

DESCRIPTION

The Frequency Demodulator with Feedback Model (FMFB) provides an alternate demodulation process capability. The basic model consists of a multiplier, IF filter, FM discriminator (FMDEMOD) and a Voltage Controlled Oscillator (FMMOD). The RF filter and post'detection low pass filter are external to the model.

USAGE

$\mathrm{N} 1<(\mathrm{FMFB}(\mathrm{NIF}, \mathrm{NTYPE}, \mathrm{AR}, \mathrm{EM}, \mathrm{BIF}, \mathrm{FIF}, \mathrm{GAIN}, \mathrm{FC}, \mathrm{DV}, \mathrm{DF})>\mathrm{N} 2$
where: NIF -IF Filter Order (≤ 10)
NTYPE-Type of Filter Function:
$=1$ for Butterworth
$=2$ for Chebyshev
$=3$ for Bessel
$=4$ for Butterworth-Thomson
$=5$ for Elliptic
AR -Amplitude Ripple ($\mathrm{d} B$)
EM -M-Factor for Butterworth-Thomson Stop Band Ratio for Elliptic (if positive) Modular Angle (Degrees) for Elliptic (if negative)

BIF -IF Filter Bandwidth
GAIN -Detector Gain + VCO Amp Gain
FIF -IF Frequency

MODEL

FREQUENCY DEMODULATOR WITH FEEDBACK

| GROUP ID | PAGE | DATE |
| :---: | :---: | :--- |
| Demod. | 2 | April, 1972 |

FC -Carrier Frequency
DV -FM Discriminator Constant (Volts/Hz)
DF -VCO Deviation (e.g., Hz/Volts)
NOTE: N1 is the output of an RF filter and N2 is the input to a low pass filter.

DETAILED DESCRIPTION

Let

$$
e_{1}(t)=A(t) \cos \left(\omega \mathbb{C}^{t}+\phi_{i}(t)\right)
$$

and

$$
e_{2}(t)=-B \sin \left(\omega \cdot V C O^{t}+\theta(t)\right)
$$

where

$$
\begin{aligned}
& \phi_{i}(t)=\beta \int S(t) \\
& \theta(t)=\beta^{\prime} \int e_{4}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
e_{3}^{\prime}(t)=\frac{A(t) B}{2}\{ & \sin \left[\omega_{I F} t+\phi_{i}(t)-\dot{\theta}(t)\right] \\
& \left.-\sin \left[\left(\omega_{I F}+\omega_{C}\right) t+\phi(t)+\theta(t)\right]\right\}
\end{aligned}
$$

| MODEL
 FREQUENCY DEMODU LATOR WITH FEEDBACK | GROUP ID
 Demod. | PAGE
 3 | DATE |
| :--- | :--- | :--- | :--- |
| April, 1972 | | | |

assuming the $I F$ filter passes only the first term

$$
e_{3}^{\prime}(t)=\frac{A(t) B}{2} \sin \left(\omega_{I F} t+\phi_{i}(t)-\theta(t)\right)
$$

the output of the FM discriminator is ideally

$$
\begin{aligned}
& e_{4}(t)=\frac{d}{d t}\left[\phi_{i}(t)-\theta(t)\right] D V=D V\left[\beta S(t)-\beta^{\prime} e_{4}(t)\right] \\
& e_{4}(t)=D V \frac{\beta}{1+\beta^{\prime}} S(t)
\end{aligned}
$$

APPLICATION

The FMFB demodulator utilizes a tracking principle to achieve good SNR performance.

SYSTEMS
ASYSTD LIBRARY
ASSOCIAIES

| MODEL | | GROUP ID
 Filter | PAGE | DATE | | |
|---|---|---|---|---|---|---|
| FILTER | | | | |\quad| April, 1972 |
| :--- |

LIBRARY MODEL NAMES

FILTER

DESCRIPTION

The modeling of filters, or continuous functions relies on several computer routines previously developed by SAI which perform the various functions described in Appendices A and C. For ease in their use, an interface routine is written called FILTER, with several entry points as is explained below.

When utilizing any Filter model in a simulation of an RF link, translation of the filter to the baseband region is necessary for efficient simulation. The translation parameters are reflected in the reference to the Filter model.

DETAILED DESCRJPTION

The detailed description for generating the various filter functions in the s domain is described in Appendix A. Once the function of s is known, the bilinear z transform is derived. In order to reduce round-off errors, the function is represented by second degree sections, or quadratic factors. The bilinear z-transform converts a factor of s to a factor of the same degree in z, that is:

$$
\begin{aligned}
& \frac{O(s)}{I(s)}=\left.\frac{a_{2} s^{2}+a_{1} s+a_{o}}{b_{2} s^{2}+b_{2} s+b_{o}}\right|_{2^{z^{-2}}+F_{1} z^{-1}+F_{o}} ^{D_{2} z^{-2}+D_{1} z^{-1}+D_{o}}=\frac{O(z)}{I(z)} \\
& \text { NOTE: } D_{o} \text { is normalized to entry } \\
& z^{-1} \text { is a unit delay }
\end{aligned}
$$

The difference equation for one of the quadratic factors will then be:

$$
\begin{aligned}
O(t)=F_{2} I(t-2 D T) & +F_{1} I(t-D T)+F_{o} I(t) \\
& -D_{2} O(t-2 D T)-D_{1} O(t-D T)
\end{aligned}
$$

| MODEL \quad FILTER | GROUP ID
 Filter | PAGE 2 | DATE
 April, 1972 |
| :---: | :---: | :---: | :---: |

where: DT is the sampling time.
If the filter is not being translated, the quadratic factors are cascaded. However, when translating the filter (described in Appendix A), both real and imaginary coefficients of s result and the function is represented by parallel quadratic factors. The representation of the function as a sum of terms rather than a product eliminates the necessity of computing the roots of a polynominal in determining $\mathrm{K}_{\mathrm{r}}(\mathrm{s})$ and $\mathrm{K}_{\mathrm{i}}(\mathrm{s})$, (see Appendix A).

When using a translated filter, the run time can be reduced significantly in trade for exact representation of the filter. Reduction of approximately one-fourth is realized by using an equivalent low pass function; or one-half by assuming symmetry of the filter (i.e., $K_{i}(s)=0$). This is accomplished when referencing one of the functions as described below.

USAGE

N1 < FILTER(NP,IF,IG, FX, BW, FC, AMP, AR, EM) > N2
All variables must be included whether they are applicable or not.
where: $N P=$ filter order
$I G=$ filter geometry
$=1$ for Low Pass
$=2$ for High Pass
$=3$ for Band Pass
$=4$ for Band Stop
$A R=$ amplitude ripple (dB)
EM = M-factor for Butterworth-Thomson or stop-band ratio (>0) or modulator angle (<0) for Elliptic functions
$\mathrm{FX}=$ arithmetic center frequency
$\mathrm{BW}=$ bandwidth
FC = translation frequency (i.e., translate such that FC becomes zero)
$A M P=$ voltage gain at $F X$

Alternate references to filters are as follows:
BUTTERWORTH (NP, IG, FX, BW, FC, AMP)
CHEBYSHEV (NP, IG, FX, BW, FC, AMP, AR)
BESSEL (NP, IG, FX, BW, FC, AMP)
BUTTER WORTH THOMSON (NP, IG, FX, BW, FC, AMP, EM)

ELLIPTIC (NP, IG, FX, BW, FC, AMP, AR, EM)
Special Cases:
a) A model is available to characterize a filter from frequency response data (see GENERAL FILTER).
b) QFACTOR (AMP, A1, A2, A3, A4, A5, A6)
used to describe:
$A M P * \frac{A 1 s^{2}+A 2 s+A 3}{A 4 s^{2}+A 5 s+A 6}$
c) LEADLAG (AMP, F1; F2, F3, F4)
used to describe:

$$
A M P * \frac{\left(\frac{s}{2 F 1}+1\right)\left(\frac{s}{2 F 2}+1\right)}{\left(\frac{s}{2 F 3}+1\right)\left(\frac{s}{2 F 4}+1\right)}
$$

ASYSTD LIBRARY

| MODEL | GROUP ID
 FIITTER | PAGE | DATE |
| :---: | :---: | :---: | :---: |
| Filter | 4 | April, 1972 | |

if:
F2 $=0$ then one zero is eliminated
Fl $=0$ then both zeros are eliminated
F4 = 0 then one pole is eliminated
F3 $=0$ then both poles are eliminated
d) LEAD FUNCTION (AMP, F1, F2, F3)
used to describe:
$\operatorname{AMP} * \frac{\left(\frac{\mathrm{~s}}{2 \mathrm{~F} 1}+1\right)\left(\frac{\mathrm{s}}{2 \mathrm{~F} 2}+1\right)}{\left(\mathrm{s} \frac{\mathrm{s}}{\mathrm{F} 3}+1\right)}$
and is otherwise the same as the LEADLAG function.

APPLICATIONS AND RESTRICTIONS

When utilizing the above function, any time $F C>0$, an $R F$ filter is referenced (i.e., complex inputs and outputs) rather than a baseband filter (i.e., real inputs and outputs). The following table describes the conditions set up by FC and FX.

| FC | FX | IG | Result |
| :---: | :---: | :---: | :--- |
| 0 | - | - | Baseband filter simulation |
| >0 | >0 | 3 | RF translated filter |
| >0 | <0 | 3 | Symmetric translated filter $(Q=\infty)$ |
| >0 | 0 | -1 | Equivalent low pass function |

| MODEL | | GROUP ID
 Filter | PAGE
 1 | ApATE
 April, 1972 |
| :--- | :---: | :---: | :---: | :---: |

BUTTERWORTH
BUTWTH
BUFUNCTION

DESCRIPTION

For a description of Butterworth filters, see Appendix C, Section C. 2. 2.

USAGE
N1 <BUTTERWORTH(NP;IG, FX, BW, FC, AMP) > N2

$$
\begin{aligned}
\mathrm{NP} & =\text { filter order } \\
\mathrm{IG} & =\text { filter geometry } \\
& =1 \text { for Low Pass } \\
& =2 \text { for High Pass } \\
& =3 \text { for Band Pass } \\
& =4 \text { for Band Stop } \\
\text { FX } & =\text { arithmetic center frequency } \\
\mathrm{BW} & =\text { bandwidth } \\
\text { FC } & =\text { translation frequency (i. e., translate such } \\
\text { AMP } & =\text { voltage gain at FX }
\end{aligned}
$$

APPLICATION

For applications and restrictions in using this model, see the discussion on the model FILTER. ASYSTD LIBRARY

| MODEL | GROUP ID | PAGE DATE | | |
|---|---|---|---|---|
| CHEBYSHEV FILTER | | |\quad| April, 1972 |
| :---: |
| LIBRARY MODEL NAMES |
| CHEB YSHEV
 CHEBY
 TCHEBYCHEFF |

DESCRIPTION

For a description of Chebyshev filters, see Appendix C, Section C.2.3.

USAGE

N1 <CHEBYSHEV(NP, IG, FX, BW, FC, AMP, AR) > N2
where: NP = filter order
IG = filter geometry
$=1$ for Low Pass
$=2$ for High Pass
$=3$ for Band Pass
$=4$ for Band Stop
$A R=$ amplitude ripple (dB)
$\mathrm{FX}=$ arithmetic center frequency
$\mathrm{BW}=$ bandwidth
FC = translation frequency (i.e., translate such that FC becomes zero)
$\mathrm{AMP}=$ voltage gain at FX

APPLICATION

For applications and restrictions in using this model, see the discussion on the model FILTER.

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :---: | :--- | :--- | :--- |
| Filter | 1 | April, 1972 | |

LIBRARY MODEL NAMES

BESSEL
BE FUNCTION

DESCRIPTION

For a description of Bessel filters, see Appendix C, Section C.2.4.

USAGE
N1 <BESSEL(NP,IG,FX,BW,FC,AMP)> N2

$$
\begin{aligned}
\mathrm{NP} & =\text { filter order } \\
\mathrm{IG} & =\text { filter geometry } \\
& =1 \text { for Low Pass } \\
& =2 \text { for High Pass } \\
& =3 \text { for Band Pass } \\
& =4 \text { for Band Stop } \\
\mathrm{FX} & =\text { arithmetic center frequency } \\
\mathrm{BW} & =\text { bandwidth } \\
\mathrm{FC} & =\text { translation frequency (i. e., translate such } \\
& \text { that } \mathrm{FC} \text { becomes zero) } \\
\text { AMP } & =\text { voltage gain at } \mathrm{FX}
\end{aligned}
$$

APPLICATION

For applications and restrictions in using this model, see the discussion on the model FILTER.
\(\left.\begin{array}{|cc|c|c|l|}\hline MODEL \& GROUP ID \& PAGE \& DATE

BUTTERWORTH THOMSON FILTER\end{array} \quad $$
\begin{array}{c}\text { Filter }\end{array}
$$\right] 1\)| April, 1972 |
| :--- | :--- |

LIBRARY MODEL NAMES

BUTTERWORTH THOMSON

BT FUNCTION
BUTOM

DESCRIPTION

For a description of Butterworth Thomson filters, see Appendix C, Section C.2.5.

USAGE

N1<BUTTERWORTH THOMSON(NP, IG, FX, BW, FC, AMP, EM) $>$ N2

$$
\begin{aligned}
\mathrm{NP} & =\text { filter order } \\
\mathrm{IG} & =\text { filter geometry } \\
& =1 \text { for Low Pass } \\
& =2 \text { for High Pass } \\
& =3 \text { for Band Pass } \\
& =4 \text { for Band Stop } \\
\mathrm{FX} & =\text { arithmetic center frequency } \\
\mathrm{BW} & =\text { bandwidth } \\
\mathrm{FC} & =\text { translation frequency (i.e., translate such } \\
\text { AMP } & =\text { voltage gain at } F X \\
E M & =M \text {-factor }
\end{aligned}
$$

APPLICATION

For applications and restrictions in using this model, see the discussion on the model FILTER.

ASYSTD LIBRARY

| MODEL | | GROUP ID
 Filter | PAGE | DATE | | |
|---|---|---|---|---|---|---|
| ELLIPTIC FUNCTION FILTER | | | | |\quad April, 1972 | FIBRARY MODEL NAMES |
| :--- |

ElLiptic
ELIPTC
EL FUNCTION

DESCRIPTION

For a description of Elliptic Function Filters, see Appendix C, Section C.2.6.

USAGE

$$
\begin{aligned}
& \text { Nl }<\text { ELLIPTIC(NP, IG, FX, BW, FC, AMP, AR, EM) }> \\
& \text { where: N2 } \\
& \text { NP }=\text { filter order } \\
& \text { IG }=\text { filter geometry } \\
&=1 \text { for Low Pass } \\
&=2 \text { for High Pass } \\
&=3 \text { for Band Pass } \\
&=4 \text { for Band Stop } \\
& \text { FX }=\text { arithmetic center frequency } \\
& \text { BW }=\text { bandwidth } \\
& \text { FC }=\text { translation frequency (i.e., translate such } \\
& \text { that FC becomes zero) } \\
& \text { AMP }=\text { voltage gain at FX } \\
& \text { AR }=\text { amplitude ripple (dB) } \\
& \text { EM }=\text { stop-band ratio if positive modular angle if } \\
& \text { negative }
\end{aligned}
$$

APPLICATION

For applications and restrictions in using this model; see the discussion on the model FILTER.

| MODEL | GROUP ID | PAGE | DATE | |
| :---: | :---: | :---: | :---: | :---: |
| | GENERAL FILTER | Filter | 1 | April, 1972 |

LIBRARY MODEL NAMES

GENERAL FILTER
GENRAL

DESCRIPTION

The General Filter model determines an arbitrary element transfer function by the complex curve fitting method. The procedure is entirely analogous to familiar curve fitting techniques except that the quantities involved are complex numbers. It requires an assumption on the part of the user as to the number of poles and zeros which characterize the transfer function of the element in question. From an appropriate number of representative amplitude and phase response samples over the frequency range of interest, the values of these complex poles and zeros which characterize the element transfer function may then be determined.

DETAILED DESCRIPTION

(See also Appendix C)
A generalized element transfer function $H(s)$ is customarily written in the form:

$$
\begin{aligned}
H(s) & =\frac{A \prod_{i=1}^{N Z}\left(s-Z_{i}\right)}{N P} \\
\text { where: } \quad s & =j \omega, \text { complex frequency } \\
P_{i} & =\text { complex pole }\left(s+j \omega_{i}\right) \\
Z_{i} & =\text { complex zero }\left(s+j \omega_{i}\right) \\
N P & =\text { number of poles (also filter order) } \\
N Z & =\text { number of zeros } \\
A & =\text { multiplicative real constant }
\end{aligned}
$$

The poles and zeros are always either complex conjugate pairs or single real values.

ASYSTD LIBRARY

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :---: | :---: | :---: | :---: |
| GENERAL FILTER | Filter | 2 | April, 1972 |

For each response sample at frequency ω_{k} the poles and zeros are related to the empirically determined amplitude and phase through

$$
\frac{A \prod_{i=1}^{N Z}\left(j \omega_{k}-Z_{i}\right)}{\prod_{i=1}^{N P}\left(j \omega_{k}-P_{i}\right)}=\alpha_{k}+j \beta_{k}
$$

where

$$
\begin{aligned}
& \text { Magnitude response }=\sqrt{\alpha^{2}+\beta^{2}} \\
& \text { Phase response }=\tan ^{-1} \beta / \alpha
\end{aligned}
$$

Hence, for each response sample point, the right side of Equation (2) is determined and the left side is a complex expression in the P_{i} 's and Z_{i} 's. If the form of $\mathrm{H}(\mathrm{s})$ is assumed by specifying the number of poles and zeros, the $P_{i}{ }^{\prime} s, Z_{i} ' s$, and A are determined by the set of $N P+N Z+1$ such complex equations which result from the substitution of corresponding phase and amplitude response samples at a like number of frequencies. The actual solution of this system of complex linear equations is effected by standard library subroutines.
N. <GENRAL(NP, NZ, IDB, FC,IG, BW, AMP)> N2
where: NP = assumed number of poles
$N Z=$ assumed number of zeros
IDB $=1$ if response amplitude data is to be in $d B$
$=0$ if response amplitude data is normalized to 1.0
$F C=$ translation frequency (i.e., translate such that FC becomes zero)

| MODEL \quad GENERAL FILTER | GROUP ID
 Filter | PAGE
 3 | DATE
 April, 1972 |
| :---: | :---: | :---: | :---: |

$$
\begin{aligned}
\text { IG } & =\text { filter geometry } \\
= & 1 \text { for Low Pass } \\
& =2 \text { for High Pass } \\
= & 3 \text { for Band Pass } \\
= & 4 \text { for Band Stop } \\
\text { BW } & =\text { bandwidth } \\
\text { AMP }= & \text { voltage gain (ratio) midmay between the upper } \\
& \text { and lower cutoff frequencies }
\end{aligned}
$$

INPUT

The number of frequency response data points should equal $\mathrm{NP}+\mathrm{NZ}+1$.

Input frequency response data is read in through the subroutine POLZER, one card per response data point, in the order: Frequency (Hz), Amplitude (dB or relative magnitude), Phase (degrees). The input data format is (1PE15.4, OP2F15.4). An input data set for a general 3rdorder filter with two zeros ($\mathrm{NP}+\mathrm{NZ}+\mathrm{l}=6$) is as follows:

| FREQUENCY | AMPLITUDE | PHASE |
| :--- | ---: | ---: |
| | | |
| $1.4320-05$ | -.0000 | -10.3210 |
| $4.7750-05$ | -.0030 | -34.9240 |
| $1.0980-04$ | -3.6820 | -87.3390 |
| $1.6710-04$ | -15.7100 | 151.9130 |
| $2.8970-04$ | -19.6160 | 146.0050 |
| $3.3740-04$ | | |

| GROUP ID | PAGE | DATE |
| :---: | :---: | :--- |
| Filter | 1 | April, 1972 |

LIBRARY MODEL NAMES
QFACT
QFACTOR
QUADRADIC FACTOR

DESCRIPTION

This model is used to describe the transfer function:

$$
H(s)=A M P * \frac{A 1 s^{2}+A 2 s+A 3}{A 4 s^{2}+A 5 s+A 6}
$$

(see Appendix C, Section C. 1)

USAGE
$\mathrm{N} 1<\mathrm{QFACTOR}(\mathrm{AMP}, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6)\rangle \mathrm{N} 2$
where: $A M P=$ amplification constant
Al-A6 = constants specifying the transfer function

| MODEL | GROUP ID | PAGE DATE | |
| ---: | :---: | :---: | :---: |
| LEAD LAG | Filter | 1 | April, 1972 |

LIBRARY MODEL NAMES

LEAD LAG
LOOP FILTER

DESCRIPTION

This model is used to describe the transfer function:

$$
H(s)=A M P * \frac{\left(\frac{s}{2 F 1}+1\right)\left(\frac{s}{2 F 2}+1\right)}{\left(\frac{s}{2 F 3}+1\right)\left(\frac{s}{2 F 4}+1\right)}
$$

(see Appendix C, Section C. 1)

USAGE
N1 <LEADLAG(AMP, F1, F2, F3, F4)> N2
where: AMP = amplification constant
Fl-F4 = constants specir̂ying the transfer function, and if:

F2 $=0$ then one zero is eliminated
Fl = 0 then both zeros are eliminated
$F 4=0$ then one pole is eliminated
F3 $=0$ then both poles are eliminated ASSOCIATES

ASYSTD LIBRARY

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :---: | :---: | :---: | :---: |
| LEAD FUNCTION | Filter | 1 | April, 1972 |

LIBRARY MODEL NAMES

LEAD FUNCTION

DESCRIPTION

This model is used to describe the transfer function

$$
\mathrm{H}(\mathrm{~s})=\mathrm{AMP} * \frac{\left(\frac{\mathrm{~s}}{\mathrm{~F} 1}+1\right)\left(\frac{\mathrm{s}}{2 \mathrm{~F} 2}+1\right)}{\left(\mathrm{s} \frac{\mathrm{~s}}{\mathrm{~F} 3}+1\right)}
$$

(see Appendix C, Section C. 1)

USAGE
N1 <LEAD FUNCTION(AMP, F1, F2, F3) > N2
where: AMP = amplification constant
-F1-F3 = constants specifying the transfer function, and if:
$F 2=0$ then one zero is eliminated
Fl = 0 then both zeros are eliminated
$F 3=0$ the pole is eliminated

| $\begin{array}{ll}\text { MODEL } \\ & \\ \text { MATCHED FILTER }\end{array}$ | GROUP ID Filter | PAGE
 1 | $\begin{aligned} & \text { DATE } \\ & \text { April, } 1972 \end{aligned}$ |
| :---: | :---: | :---: | :---: |

LIBRARY MODEL NAMES

MATCHED FILTER
MFLTER

DESCRIPTION

The Matched Filter model is a simple integrate and dump routine clocked to the Bit Time.

USAGE
N1 <MFLTER(BT)> N2
where: $B T=$ bit time

OUTPUT

The output at N2 is the trapezoidal approximation of the integral of the signal at NI. Every BT, this integral is reset to zero.

BLOCK DIAGRAM

RESTRICTIONS
The integrate-Dump process is asynchronous and starts at time equal to zero, requiring the user's discretion in its use。

ASYSTD LIBRARY
\(\left.\begin{array}{|cc|l|l|l|}\hline MODEL \& GROUP ID \& PAGE \& DATE

SOFT LIMITER\end{array} \quad $$
\begin{array}{l}\text { Limiter }\end{array}
$$\right]\)| April, 1972 |
| :--- |

LIBRARY MODEL NAMES

SOFT LIMITER
SOFTY

USAGE
$\mathrm{Nl}\langle\operatorname{SOFTY}(\mathrm{A}, \mathrm{SLOPE})\rangle \mathrm{N} 2$
where: A = maximum amplitude of output
SLOPE $=$ slope of transition limit

OUTPUT

APPLICATION

This element is for use in baseband modeling.

| MODEL | | GROUP ID | PAGE | DATE | | |
|---|---|---|---|---|---|---|
| - | HARD LIMITER | | | |\quad| Limiter |
| :--- |

HARD LIMITER
HARD

USAGE
N1 <HARD> N2

OUTPUT
The absolute value of the output at N2 is 1 . The sign of the output is the same as the input at N1.

APPLICATION

This element is for use in baseband modeling.

| MODEL | | GROUP ID | PAGE |
| :---: | :--- | :--- | :--- |
| RF SOFTE | | | |
| RIMITER | Limiter | 1 | April, 1972 |

LIBRARY MODEL NAMES

RF SOFT LIMITER RFSOFT

USAGE

N1 <RFSOFT(A,SLOPE) $>$ N2
where: $\mathrm{A} \quad=$ maximum amplitude of output SLOPE $=$ slope of transition limit

OUTPUT

Let $X=X r+j X_{i}$ be the complex signal at $N 1$ and Let $\mathrm{Y}=\mathrm{Y}_{\mathrm{r}}+\mathrm{j} \mathrm{X}_{\mathrm{i}}$ be the complex signal at N 2

$$
\begin{aligned}
|X| & =\left(X_{r}^{2}+X_{i}^{2}\right)^{1 / 2}=\text { magnitude of } X \\
\varnothing(X) & =\tan ^{-1}\left(X_{i} / X_{r}\right)=\text { phase of } X
\end{aligned}
$$

Then the output at N2 is such that:

1) $\varnothing(\mathrm{Y})=\varnothing(\mathrm{X})$
2) $|Y|=F(|X|)$ as described by the graph below:

APPLICATION
This element is for modeling in the RF region.

ASYSTD LIBRARY

USAGE

N1 <RF LIMITER> N2

OUTPUT

Assume the input at Nl is described by:

$$
X=X r+j X_{i}=\left[X_{r}^{2}+X_{i}^{2}\right]^{1 / 2} e^{j \tan ^{-1}\left(X_{i} / X_{r}\right)}
$$

then the output at N2 is:

$$
Y=Y_{r}+j Y_{i}=C e^{j \tan ^{-1}\left(Y_{i} / Y_{r}\right)}
$$

where:

$$
\begin{aligned}
& \left.Y_{r}=\frac{C X_{r}}{\left[X_{r^{2}}^{2}+X_{i}^{2}\right.}\right]^{1 / 2} \\
& Y_{i}=\left|\frac{C X_{i}}{X_{r}^{2}+X_{i}^{2}}\right|^{1 / 2}
\end{aligned}
$$

In this model $C=1$.
In other words, the phase of the signal is maintained but the magnitude is set to 1 .

APPLICATION

The element is for use in modeling in the RF region.

| MODEL | | GROUP ID | PAGE | DATE |
| :--- | :--- | :--- | :--- | :--- |
| | FOURIER TRANSFORM | Transform | 1 | April, 1972 |

LIBRARY MODEL NAMES

FOURT
FOURIER

IFOURT
INVERSE FOURIER

DESCRIPTION

This model samples an input signal and calculates the Discrete Fourier Transform of these samples. Its output is the coefficients of this transform. IFOURT performs the inverse transform, reconstructing the input signal to FOURT.

USAGE

or
N1 <FOURT(N,TW) \rangle N2
N1 <IFOURT(N,TW)> N2
where: $N=$ number of samples per transform
$T W=$ time window per transform
NOTE: Although N can be any positive integer, the transform is much faster if all the prime factors of N are 2,3 or 5 .

NOTE: The actual time window used is the multiple of $N * D T$ nearest TW.

OUTPUT

Each TW, this model takes N samples of the input at Nl , and calculates the Discrete Fourier Transform (or the inverse of the transform). The output of the model during this TW is the N transformed values produced during the previous TW.

NOTE: The input and the output of this model are complex.

ASYSTD LIBRARY

| MODEL | GOURIER TRANSFORM | GROUP ID
 Fransforms | PAGE | DATE |
| :---: | :---: | :---: | :---: | :---: |
| FOPril, 1972 | | | | |

REFERENCE
For a discussion of this transform, see COMSAT Laboratories, "Orthogonizl Transform Feasibility Study, Final Report",
Contract NAS9-11240, November 1971, Section 3. 2.

APPLICATION

The models INTLEV and DELEAV have been provided to deal with the complex inputs and outputs of this model. During the first TW, FOURT outputs a sync pulse of all ones to lock in DELEAV and IFOURT, compensating for any delays in the system.

ASYSTD LIBRARY

| MODEL | GROUP ID
 HAAR TRANSFORM | PAGE | DATE |
| :---: | :---: | :---: | :---: |
| Transforms | 1 | April, 1972 | |

LIBRARY MODEL NANES

HAAR

IHAAR
INVERSE HAAR

DESCRIPTION

This model samples a signal and outputs the HAAR Transform of these samples. (IHAAR-Inverse HAAR Transform reconstructs the signal given the transformed values.)

USAGE

N1 < HAAR $(N, L O G 2 N, T S)>\quad N 2$
or N1 <IHAAR(N,LOG2N,TS)> N2 for the inverse
where: $N \quad=$ number of samples per transform (N must be a power of 2)
LOG $2 \mathrm{~N}=\log$ base 2 of $\mathrm{N}, \mathrm{N}=2^{L O G 2 N}$
TS $\quad=$ time window per transform
NOTE: The actual time window used is the integer multiple of $N * D T$ nearest $T S$.

OUTPUT

Each TS, this model takes N samples of its input, and takes the transform of these samples (or the inverse transform), producing N transformed values. The output of this model during this time window is the N transformed values calculated during the previous TS.

REFERENCE

For a discussion of HAAR functions and the HAAR Transform, see COMSAT Laboratories, "Orthogonal Transform Feasibility Study, Final Report", Contract NAS9-11240, November 1971, Section 3.4.
$\left.\begin{array}{|c|c|c|c|}\hline \text { MODEL } \\ \text { HAAR TRANSFORM }\end{array} \quad \begin{array}{c}\text { GROUP ID } \\ \text { Transforms }\end{array} \begin{array}{c}\text { PAGE } \\ 2\end{array}\right]$ April, 1972

APPLICATION

The output of the HAAR Transform during the first TS is +1 . IHAAR uses this string of ones as a sync pulse to lock on to the transformed coefficients.

ASYSTD LIBRARY

| MODEL | GROUP ID | PAGE | DATE |
| :--- | :--- | :--- | :--- |
| HADAMARD TRANSFORM | Transform | 1 | April, 1972 |
| LIBRARY MODEL NAMES | | | |

LIBRARY MODEL NAMES

HDMRD
IHDMRD
HADAMARD
INVERSE HADAMARD

DESCRIPTION

This model samples a signal and outputs the HADAMARD Transform of these samples. (IHDMRD-Inverse HADAMARD Transform-reconstructs the signal given the transformed values.)

USAGE

N1 < $\operatorname{HDMRD}(\mathrm{N}, \mathrm{LOG} 2 \mathrm{~N}, \mathrm{TS})\rangle$ N2
or $\mathrm{Nl}\langle\operatorname{IHDMRD}(\mathrm{N}, \mathrm{LOG} 2 \mathrm{~N}, \mathrm{TS})\rangle \mathrm{N} 2$ for the inverse
where: $N=$ number of samples per transform (N must be a powe r of 2)
LOG $2 N=\log$ base 2 of $N, N=2_{2}^{L O G 2 N}$
TS = time window per transform
NOTE: The actual time window used is the integer multiple of $\mathrm{N} * \mathrm{DT}$ nearest TS.

OUTPUT

Each TS, this model takes N samples of its input, and calculates the transform (or the inverse transform) of these samples, producing N transformed values. The output during this time window is the N transformed values determined during the previous TS.

REFERENCE

For a discussion of this transform, see COMSAT Laboratories, "Orthogonal Transform Feasibility Study, Final Report", November 1971, Contract NAS9-11240, Section 3. 3.

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :--- | :--- | :--- |
| HADAMARD TRANSFORM | Transform | 2 | April, 1972 |

APPLICATION

The output of the HDMRD Transform during the first TS is +1 . IHDMRD uses this string of ones as a sync pulse to lock on to the transformed values.

| MODEL | GROUP ID | PAGE | DATE | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | ORDERED HADAMARD TRANSFORM | Transforms | 1 | April, 1972 |

OHMRD
ORDERED HADAMARD

IOHMRD
INVERSE ORDERED HADAMARD

DESCRIPTION

This model samples the input signal and outputs the Ordered Hadamard Transform of these samples. (IOHMRD - Inverse Ordered Hadamard Transform - reconstructs the signal given the transformed values.

USAGE

N1 <OHMRD(N,LOG2N,TS) > N2
or
N1 <IOHMRD(N,LOG2N,TS)> N2 for the inverse
where: N number of samples per transform (N must be a power of 2)
LOG2N $=\log$ base 2 of $N, N=2_{2}^{\text {LOG } 2 N}$
TS = time window per transform
NOTE: The actual time window used is the integer multiple of $\mathrm{N} * \mathrm{DT}$ nearest TS.

OUTPUT

Each TS, this model takes N samples of its input and calculates the transform (or the inverse transform) of these samples, producing N transformed values. The output during this time window is the N transformed values determined during the previous TS.

APPLICATION

The output of the OHMRD Transform during the first TS is +1 . IOHMRD uses this string of ones as a sync pulse to lock on to the transformed values.

LIBRARY MODEL NAMES

A TOD

DESCRIPTION

The A/D Converter model determines a bit sequence based upon the analog input level at sampling time. The output is a binary bit-stream (0 or +1). Flexibility is provided by inputting the number of bits per word, peak input level, minimum input level, and bit time.

USAGE

N1 <ATOD(NBIT,FLOOR, CEILING, BT) $>$ N2
where: NBIT = number of digital bits per analog word
FLOOR = a lower bound of the analog input
CEILING = an upper bound of the analog input
$B T=$ bit time (the actual bit time is the multiple of DT closest to BT)

DETAILED DESCRIPTION

ATOD represents an analog value with a string of NBIT binary bits (0 or +1). This string of bits may be considered a binary number, B, whose value is within the range 0 (all 0 bits) to 2 NBIT -1 (all one bits). FLOOR is presented by the value 0 , and CEILING is represented by the value 2 NBIT . Each word time (NBIT*BT), ATOD constructs this number B such that the expression

FLOOR $+\mathrm{B} *\left((\right.$ CEILING-FLOOR $\left.) / 2^{\text {NBIT }}\right)$
is as close to the analog input as the range and resolution allow;

| MODEL | GROUP ID | PAGE | DATE | |
| :---: | :---: | :---: | :---: | :---: |
| | ANALOG-TO-DIGITAL CONVERTER | Coders | 2 | April, 1972 |

OUTPUT

Each BT, ATOD selects the next most significant bit of the digital word, to track the value of the analog input.

APPLICATION
ATOD may be used with either DTOA or SHDTOA as the decoder.

| MODEL \quad DIGITAL-TO-ANALOG CONVERTER | GROUP ID
 Coders | $\left\lvert\, \begin{gathered}\text { PAGE } \\ 1\end{gathered}\right.$ | DATE $\begin{aligned} & \text { April, } 1972\end{aligned}$ |
| :---: | :---: | :---: | :---: |
| LIBRARY MODEL NAMES | | | |
| DTOA | | | |

DESCRIPTION

The D/A Converter determines an analog value from a binary bit stream (0 or +1) and the model parameters. This model assumes the output is continuous and attempts to produce output with as few abrupt changes as possible.

N1 <DTOA (NBIT,FLOOR, CEILING, BT) > N2
where: NBIT $=$ number of digital bits per analog word FLOOR = a lower bound of the analog output CEILING $=$ an upper bound of the analog output $\mathrm{BT}=$ bit time (the actual bit time is the multiple of DT closest to BT)

NOTE: These parameters are related to the A/D Converter which coded the signal.

OUTPUT

Each bit time, DTOA examines the new bit of the digital word. If, by some combination of remaining bits, the current analog output value can be represented, then the output remains the same. Otherwise, the output is adjusted up or down until it is within range. For a description of the relationship between the input bit stream and the analog value, see Analog to Digital Converter.

APPLICATION

Since this model tries to maintain the analog output at a constant level, only changing it when it has to, this model is best for use where the analog signal is continuous.

| MODEL | GROUP ID | PAGE | DATE |
| :--- | :---: | :---: | :---: |
| SAMPLE-HOLD DIGITAL-TO-ANA LOG CONVERTER | Coders | 1 | April, 1972 |
| LIBRARY MODEL NAMES | | | |

LIBRARY MODEL NAMES

SHDTOA

DESCRIPTION

The Sample-hold DIA Converter determines an analog value from a binary bit stream and the model parameters. This model determines a value during one word time and outputs that value during the entire next word time.

USAGE

N1 <SHDTOA(NBIT,FLOOR, CEILING, BT) > N2
where: NBIT = number of digital bits per analog word
FLOOR = a lower bound of the analog output
CEILING $=$ an upper bound of the analog output
$\mathrm{BT} \quad=$ bit time (the actual bit time is the multiple of DT closest to BT)

NOTE: These parameters are related to the A/D converter which coded the signal.

OUTPUT

Each digital word time (NBIT*BT), SHDTOA forms an analog value from the input and its parameters (for a description of the relationship between the input bit stream and the analog value, see Analog to Digital Converter). During this word time, its output is the analog value calculated during the previous word time.

APPLICATION

This model is for use when discrete values are being decoded, such as output from the orthogonal transform models. ASYSTD LIBRARY

| MODEL | | GROUP ID
 MULTI LEVEL PCM | PAGE | DATE |
| :--- | :--- | :--- | :--- | :--- |
| Coders | 1 | April, 1972 | | |

LIBRARY MODEL NAMES

MULTI LEVEL PCM
MLTPCM

DESCRIPTION

This code modulator produces an m-level signal based upon a serial input bit stream (polar or binary).

USA.GE
$\mathrm{N} 1<\mathrm{MLTPCM}(\mathrm{BT}, \mathrm{M})>\mathrm{N} 2$
where: $B T=$ bit time

- $\quad \mathrm{M}=$ number of levels (symbols)
$\mathrm{N}=\mathrm{LOG}_{2} \mathrm{M}$
The signal at the input mode (e.g., Nl) is assumed to be a polar or binary bit stream.

OUTPUT

A serial-to-parallel conversion is made and a gray code level selection is used in generating an output bit stream at a rate of $N * B T$. Output levels are normalized to a peak value of unity $(+1)$, represented by equal levels separated by $1 /(\mathrm{M}-1)$. The minimum level (0) corresponds to the null symbol.

BLOCK DIAGRAM
Functionally, the model is represented as follows:

DETAILED DESCRIPTION (Example)

The serial bit stream is loaded into an N-bit register. At time intervals of $N * B T$, the register is sampled and the output waveform value (0 to +1) is determined from the reflected (gray) code in the register. The output is held at this level for $N * B T$, at which time the register is sampled for the next word. The following diagram depicts the time sequence for an arbitrary input bit stream. The parameters for this example are:

| Time | Register History | |
| :---: | :---: | :---: |
| | $\begin{gathered} \text { Contents } \\ 1234 \\ \hline \end{gathered}$ | Output |
| 0 | 1... | 0 |
| 1 | 10-- | 0 |
| 2 | $100-$ | 0 |
| 3 | 1001 | 0 |
| 4 | 1--- | 14/15 |
| 5 | 10-- | 14/15 |
| 6 | 101 - | 14/15 |
| 7 | 1011 | 14/15 |
| 8 | 1-.- | 13/15 |
| 9 | 10-- | 13/15 |
| 10 | 101- | 13/15 |
| 11 | 1010 | 13/15 |
| 12 | 1--- | 12/15 |
| 13 | 10-- | 12/15 |
| 14 | $100-$ | 12/15 |
| 15 | 1001 | 14/15 |
| 16 | 0-.- | 14/15 |
| 17 | 00-- | 14/15 |
| 18 | 001 - | 14/15 |
| 19 | 0011 | 14/15 |
| 20 | | 2/15 |

ASYSTD LIBRARY

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :---: | :---: | :---: | :---: |
| MULTI LEVEL PCM | Coders | 3 | April, 1972 |

APPLICATION

The multi-level coder may be used to drive the FM and PM modulators to produce m-ary PM carrier signals. Attention should be made to appropriate scaling of the MLTPCM output to produce the correct modulating signal magnitudes.

\begin{tabular}{|c|c|c|c|}
\hline MODEL

COMPLEX ADDER \& GROUP ID MATH \& \begin{tabular}{l}
PPAGE

1

 \&

DATE

April, 1972
\end{tabular}

\hline
\end{tabular}

LIBRARY MODEL NAMES

COMPLEX ADDER
CADD

DESCRIPTION

The complex input to this model is added to a specified complex number passed through the argument list.

USAGE
N1 < CADD(XREAL, XIMAGE) > N2
where: XREAL = the real part of the addend XIMAGE = the imaginary part of the addend

OUTPUT

The complex output at $N 2$ is the complex sum of (XREAL $+i *$ XIMAGE) and the input at N1.

ASYSTD LIBRARY

| MODEL ${ }^{\text {COMPLEX MULTIPLIER }}$ | GROUP ID MATH | $\begin{gathered} \text { PAGE } \\ 1 \end{gathered}$ | DATE April, 1972 |
| :---: | :---: | :---: | :---: |

LIBRARY MODEL NAMES

COMPLEX MULTIPLIER
CMULT

DESCRIPTION

The complex input to this model is multiplied by a specified complex number passed through the argument list.

USAGE
N1 < CMULT(XREAL, XIMAGE) > N2
where: XREAL = the real part of the multiplier XIMAGE = the imaginary part of the multiplier

OUTPUT

The complex output at N2 is the complex product of (XREAL $+\mathrm{i} *$ XIMAGE) times the input at Nl.

| MODEL
 DIFFERENTIATOR | GROUP ID MATH | $\left\|\begin{array}{c}\text { PAGE } \\ 1\end{array}\right\|$ | DATE April, 1972 |
| :---: | :---: | :---: | :---: |
| LIBRARY MODEL NAMES
 DIFFERENTIATOR
 DIFFER
 DIF | | | |

This model differentiates the input signal utilizing the bilinear z-transform of s 。

USAGE

N1 < DIFFER > NZ

OUTPUT

Let the signal at Nl at time T be $\operatorname{INP}(\mathrm{T})$. Let the signal at N 2 at time T be $\operatorname{OUT}(\mathrm{T})$.

Then:

$$
\begin{aligned}
& \text { OUT }(T)=[2 *(\operatorname{INP}(T)-\operatorname{INP}(T-D T) / D T]-\operatorname{OUT}(T-D T) \\
& \text { where OUT }(\operatorname{TSTART}-D T)=0
\end{aligned}
$$

With this scheme, the output may alternate wildly above and below the actual differential. The fluctuation is proportional to the derivative error at time $=0$, since it is initialized to zero. If the output of the differentiator is fed into a filter, this fluctuation does not matter. This scheme has the advantage that if the output of the differentiator is fed into one of the system integrators, the input samples at Nl can be reconstructed exactly.

| MODEL | | | |
| :--- | :---: | :---: | :---: | :---: |
| INTEGRAL WITH INITIAL CONDITIONS | GROUP ID | PAGE DATE | |
| LIBRARY MODEL NAMES | MATH | 1 | April, 1972 |

INTEGRAL WITH INITIAL CONDITIONS INTGIC

DESCRIPTION

This model provides for integration with initial conditions.

USAGE

N1 < INTGIC(FV) > N2
where: $\quad F V=$ initial value of the integral at TIME=TSTART

OUTPUT
This model integrates the input at Nl using the trapezoidal rule approximation. The output at N2 is this integral plus FV, the first value (initial value) of the integral.

| MODEL \quad INTEGRATOR | GROUP ID MATH | $\left\|\begin{array}{c}\text { PAGE } \\ 1\end{array}\right\|$ | DATE April, 1972 |
| :---: | :---: | :---: | :---: |

INTEGRATOR INTGRT

DESCRIPTION

This model integrates the input signal using the trapezoidal rule, which is the bilinear $z-t r a n s f o r m$ of $1 / s$.

USAGE
N1 < INTGRT> NZ

$\underline{\text { OUTPUT }}$

The output at N2 is the trapezoidal approximation of the input signal at N1.

| MODEL |
| :--- | :--- | :--- | :--- |
| INTERLEAVER |\quad| GROUP ID | PAGE DATE |
| :--- | :--- |
| LIBRARY MODEL NAMES | MISC. |

INTLEV
INTERLEAVE

DESCRIPTION

The Interleaver allows complex values to be carried over a single line. During the first half of one sample time, the output of this model is the real part of the input. During the remainder of the sample time, the output is the imaginary part of the input.

USAGE

N1 < INTLEV(N, TW) > N2
where: N n number of samples per TW
$\mathrm{TW}=$ Time Window
NOTE: This model is usually used in conjunction with a model such as the Fourier Transform, where N and TW would be identical to the parameters of the Fourier Transform.

OU TPUT

Each sample time (TW/N), INTLEV samples the complex input and stores the real and imaginary parts. It them outputs the real part of the input for (TW/N)/2 and the imaginary part for the remainder of the sample time.

APPLICATION

This model was designed to appear after the Fourier Transform, or other models with complex outputs. It converts a complex valued signal to a real signal for use by other models which can only deal with real signals. See also DE-INTERLEAVER.

ASYSTD LIBRARY

| MODEL
 DE-INTERLEAVER | GROUP ID MISC. | PAGE | DATE April, 1972 |
| :---: | :---: | :---: | :---: |
| LIBRARY MODEL NAMES | | | |

DESCRIPTION

The De-interleaver decoder real signals output by the Interleaver back into their complex form. It causes a phase delay of one sample time.

USAGE

N1 <DELEAV(N,TW) $>N 2$
where: N = number of samples per $T W$
$\mathrm{TW}=$ time window
NOTE: These parameters should be the same as those in the Interleaver

OUTPUT

Each sample time (TW/N) this model samples the input for the real value. One half sample time later it gets the imaginary value from the input. The output of the model during this sample time is the complex value found in this way during the previous sample time.

APPLICATION

This model is used in conjunction with the Interleaver. Particularly to reconstruct complex values for input to the Inverse Fourier Transform. It is started by the sync pulse from the Fourier Transform.

| MODEL | GELAY | GROUP ID
 MISC. | PAGE |
| :--- | :--- | :--- | :--- |
| DATE | | | |
| April, 1972 | | | |
| LIBRARY MODEL NAMES | | | |

DELAY

DESCRIPTION

This model introduces a specified time delay into a real signal.

USAGE
N1 < DELAY(LAG) > N2
where LAG = an integer number of D^{\prime}, to delay the signal

OUTPUT
The output at N 2 at time T equals the input at Nl at time T-LAG*DT.

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :---: | :---: | :---: | :--- |
| PHASE SHIFTER | MISC. | 1 | April, 1972 |

LIBRARY MODEL NAMES

PHASE SHIFTER
PHSHFT

DESCRIPTION

This model causes a phase shift (delay) of a specified number of degrees.

USAGE
Ni < PHSHFT(DGREES, FC) > NZ
where DGREES = number of degrees to delay signal
FC = frequency of input signal

| MODEL | SPLIT | GROUP ID MISC. | PAGE | DATE | 1972 |
| :---: | :---: | :---: | :---: | :---: | :---: |

SPLIT

DESCRIPTION

The input signal is split into its real and imaginary parts.

USAGE
N1 <SPLIT > N2

OUTPUT

The real part of N2 is set to COS (N1). The imaginary part of N2 is set to SIN (N1).

| MODEL | GROUP ID | PAGE | DATE |
| :---: | :---: | :---: | :---: | :---: |
| TIME LATCH | | | |

CALINB

DESCRIPTION

This model provides a time dependent latching function which sets the output equal to the input for time $L A G * D T$.

USAGE
N1

$$
\langle\operatorname{CALINB}(\text { LAG })\rangle \quad \text { N2 }
$$

where $\quad L A G=$ an integer number of DT's before the signal can pass through this model.

OUTPUT

$$
\mathrm{N} 2=0 \text { for } \mathrm{T} \quad \mathrm{LAG} * \mathrm{D} T:
$$

$$
\mathrm{N} 2=\mathrm{N} 1 \text { for } \mathrm{T} \quad \mathrm{LAG} * \mathrm{DT}
$$

ASYSTD LIBRARY

| MODEL | | GROUP ID
 ZERO CROSSING DETECTOR | PAGE | DATE |
| :--- | :--- | :--- | :--- | :--- |
| ZISC. | 1 | April, 1972 | | |

LIBRARY MODEL NAMES

ZERO CROSSING DETECTOR
ZRODET

DESCRIPTION

This model detects when the input signal becomes zero or crosses the zero reference.

USAGE.

Nl <ZRODET> NZ

OUTPUT

N2 is generally set to zero. If, during one simulation step (DT) the signal at N1 goes to zero or crosses zero, N 2 is set to 1 for that DT only.

| MODEL | GROUP ID | PAGE | DATE |
| :--- | :--- | :--- | :--- | :--- |
| LIBRARY MODEL NAMES | | | |

| MODEL | GROUP ID PAGE DATE | |
| :--- | :--- | :--- |
| LIBRARY MODEL NAMES | | |

APPENDIX C

DISTRIBUTION LIST

NASA / MSC1 CopyFacility and Laboratory Support BranchHouston, Texas 77058Attention: Mr. Jerry CarlsonMail Code BB32l (77)
NASA/MSC 4 Copies
Technical Library BranchHouston, Texas 77058Attention: Ms. Retha ShirkeyMail Code JM6
NASA/MSC
Management Services Division Houston, Texas 77058
Attention: Mr. John T. Wheeler Mail Code JM7
NASA/MSC
Space Electronics System Division
Houston, Texas 77058
Attention: Mr. C. T. Dawson 4 Copies

