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ABSTRACT

The stochastic control of two weakly coupled linear
systems with different controllers is considered. Each
controller only makes measurements about his own system;
no information about the other system is assumed to be
available. Based on the noisy measurements, the controllers
are to generate independently suitable control policies
which minimize a quadratic cost functional.

To account for the effects of weak coupling directly,
an approximate model, which involves replacing the
influence of one system on the other by a white noise
process is proposed. Simple suboptimal control problem
for calculating the covariances of these noises is solved
using the matrix minimum principle. The overall system
performance based on this scheme is analysed as a
function of the degree of intersystem coupling. The
results are compared to those obtained using complete
centralization and the Separation Theorem. Tradeoffs
between the various approaches are discussed.
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. . CHAPTER 1 - INTRODUCTION

The development of modern control theory has been

characterized by its numerous ramifications into various areas

of interest. On the theoretical side, researchers have drawn

on such diverse mathematical techniques as abstract algebra,

calculus of variations, partial differential equations,

functional analysis, etc. Control theory has been cast into

such a sophisticated mathematical framework that it not only

interests the engineers, but has attracted the attention of

scientists and mathematicians as well. On the practical side,
1 ' - '

control theory has found applications in the guidance and

navigation of space vehicles, industrial chemical process

control, air traffic control, etc. In these various areas

where the study of control theory is relevant, there is one

particular area which.is of great theoretical as well as

practical interest, namely, the study of large scale systems.

What is the best way of decision making for a firm and its

branches? How should an automated ground transportation

system be set up? Howfishould the government coordinate the

various sectors of the economy? These problems had not been

investigated to any appreciable degree in the past owing to

their great complexity. With the advent of modern computer

technology, the powerful computational facilities made

available render the systematic study of large scale systems

possible. Various approaches to this problem have been

suggested [1], [2], although few concrete results have been

obtained.
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A large system can be viewed as a single huge object and

its overall behavior analyzed as a unit. Very often, however,

it is divided into subsystems, each with its own controller.

In this situation, the amount of interaction between the sub-

systems plays a crucial role in determining the system

performance. If the subsystems are strongly coupled, the

division into subsystems will not help us much in the analysis.

We still have to take everything fully into account. However,

if the coupling between the subsystems is weak, intuitively

at least, it seems that some simplification may be possible.

It is to the latter situation that this -thesis will address itself

There are many examples of weakly coupled systems with

different controllers. Consider the various branches of a

firm. Normally, each of these'branches will operate almost in

an autonomous manner. The manager of each branch will make his

own decision without too much knowledge or concern about how

the others are operating. Thus, even though they belong to

the same large system, their interaction is, in general, very

weak. Other typical examples can be found in process control

applications, transportation systems, and economic systems.

We can therefore pose the following general problem for

weakly coupled systems with different controllers: given a

set of dynamical systems, each of which interacts only slightly

with the rest, what is the best set of controls that the

controllers should choose in order to minimize some cost

criterion?



Both in the deterministic and stochastic case, if all the

controllers are organized under a central agency (the so-called

completely centralized situation) who collects all measurements

and determines all controls, we will have a mathematically

optimal design. However, as has been pointed out by Athans

et al. for the deterministic case [3], this will require a

large and expensive communication system-, which for technical

and/or economic reasons may not be desirable. Furthermore, it

may be very inefficient for the central agency to, make all the

decisions and then transmit them to the various controllers.

These considerations prompted Athans et al. [3l to suggest a

suboptimal control scheme which resulted in some form of

decentralized control.

In the stochastic case, the centralized optimal control

for the linear-quadratic-Gaussian problem is given by the

Separation Theorem^]. When a central agency is absent and

the information patterns of the controllers are different,

Chong [5] has shown that, in general, the Separation Theorem

does not hold. At the present time, there is no general theory

that one can appeal to when the policy of complete centralization

is not desired. In this situation, a variety of approaches

have been used to tackle our general problem. For example,

using the theory of nonzero sum differential games [6], [?]>

or that of team theory [8]. However, many of these approaches

suffer from the fact that although a certain degree of

decentralization is obtained, the effects of weak coupling are
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not brought into focus and utilized in the system design.

Intuitively, a very reasonable approach to the problem is to

try to account for the weak coupling directly.

In this thesis, the stochastic control of two weakly

coupled stochastic linear systems with quadratic cost is

considered. Each system has its own controller with different

available information. A model for calculating the controls

in which the weak coupling is approximated by "fake" white

noise processes, is proposed. This model is essentially due to

Chong [5]. The Intensities of the white noise processes are

viewed as pseudo-control variables (the reasons for adopting

this terminology will be given in Chapter 2) whose determination

generates the real physical controls. A matrix optimal

control problem is then solved and the complete suboptimal

control scheme specified.

The structure of the remainder of the thesis is

as follows: In Chapter 2, the precise problem under consideration

is stated. We define the class of admissible physical controls

and, after a discussion of the problem, propose a model for

calculating the physical controls. A justification for the

model is given. We then define pseudo-controls to be the

covariances of the "fake" white noises introduced in the

proposed model and the considerable simplification obtained is

discussed. For fixed but arbitrary pseudo-controls, the optimal

physical controls are obtained. The problem now becomes one

in the determination of the pseudo-controls.
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In Chapter 3 a reformulation of the problem using the model

proposed in Chapter 2 is stated. A deterministic matrix

optimal control problem with the pseudo-control variables defined

in Chapter 2 viewed as controls is stated. The interpretation

of this problem in relation to the original problem is given.

The unconventional constraints on the pseudo-controls are

discussed. Auxiliary variables are then defined to remove

these constraints.

The solution of the matrix optimal control problem is

given in Chapter M. The optimal pseudo-controls are shown to

be a function of the degree of intersystem coupling. The

complete scheme for generating the physical controls for the

original problem is discussed. Computational aspects of the

solution are considered. The asymptotic case in which the

coupling goes to zero is analyzed. The optimal.pseudo-

control's arei then shown to be zero, which is .what we

s;hould expeot'for• original'ly uncoupled systems.

In Chapter 5»the performance of the system with controls

calculated using the proposed scheme is investigated. The

results obtained are compared to the mathematically optimal

policy of complete centralization and an intuitive

interpretation is given. The advantagesin using the proposed

scheme over that of complete centralization are stated.

The trade-offs involved between the choice of policies are

discussed.
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Chapter 6 summarizes the results given in the preceding

chapter. Topics for future research are also suggested.

The main contribution of this thesis lies in the

consideration of an approximate model which considerably

simplifies the analysis of the stochastic control of weakly

coupled systems. The results show that this simple suboptimal

scheme will be very important when trade-offs between

various control policies are studied. The philosophy of

using white noise Intensities as pseudo-control variables, and

the general method of solution to the problem also indicate

an approach to many stochastic problems in which white noise

processes are used as approximations. This should find

applications to various filtering and control problems.
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CHAPTER 2 -' THE STOCHASTIC CONTROL PROBLEM

In this chapter we first give a precise statement of the

stochastic optimal control problem for two weakly coupled

linear systems with different controllers. We then discuss the

implications of weak coupling and show how an approximate

model can be used to considerably simplify the system structure,

We also give some intuitive arguments which justify the use of

the approximate model. We define the covariance matrices of

the "fake" white noises introduced in the proposed model to be

the pseudo-control variables and show how the actual physical

controls can be generated using the pseudo-controls. How the

pseudo-controls are to be determined will be the subject of

the following chapters.

2.1 Statement of the Stochastic Optimal Control Problem

Consider the following weakly coupled linear systems

(see Fig. 1): ;

x2(t) =

x2(tQ) = x2Q (2.1.2)
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n,

where x-,(t) e R ^s the state of system 1,
n2x_2(t) e R is the state of system 2,

•:-. p
u-^t) e R is the control for system 1,

P2u0(t) e R is the control for system 2,
~~""

- is an nixni

A_12(t) is an n1xn2 matrix

A_22(t) is an npXn2 matrix

Ap,(t) is an n-xn, matrix

B-j^-^Ct) is an n-^xp-^ matrix

B_22(t) is an n2xp2 matrix

and e , which is assumed to be much smaller in magnitude than

any other quantity associated with the systems, is a scalar

coupling parameter.

We assume that ^.-i(t) and .̂p(t) are zero mean, mutually

independent Gaussian white noise processes driving the

systems, with

cov U^t); (̂T)} = A1(t)6(t-T)

cov U2(t); A.2(T)} = A2(t)5(t-T)

The initial states X,Q and x_pQ are assumed to be mutually

independent Gaussian random vectors with statistics:

cov{x20;x2()} =
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x,g and XPQ are also assumed to be independent of A_-,(t) and

X.2(t) , for all t.

As has been noted in Chapter 1, it is often (technically

or economically) not feasible to allow each controller to

measure the states of both systems.

We consider, therefore, the case in which each controller

only makes measurements about his own system output and has

no access to the measurements carried out by the other system.

In general, the measurements are corrupted by noise and so,

we assume that the observation equations can be written as

and

= C11(t)x1(t )•»•£.,_( t) (2.1.3)

z2(t) =-C22(t)x2(t)+£2(t)

, X ^where z.-,(t) e R is the output of system 1,
r2z 2̂(t) e R is the output of system 2,

C-,,(t) is a r,xn, matrix,

£22(t) is a i"j;xn2 matrix.

The stochastic processes £-,(t) and £p(t) are assumed to be zero

mean, mutually independent Gaussian white noise processes with

cov{91(t); ijd:)} = 0_1(t)6(t-T)

cov{9,,(t); Q0(T)> = G0(t)6(t-x)t- c. —c.
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n
yt(t)

; i

Fig. 1 The Structure of Two Weakly Coupled Linear Systems
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9,(t) and 9_2(t)
 are also assumed to be independent of

I , 2 > -10* — 2 0
Our control objective is to regulate the states of the

two systems without expending too much control energy. Since

each of our systems is operating almost in an autonomous

fashion, we take .as. th'ê o&e/rarl*!;̂ ^

sum of the performance measures of the two individual systems

Hence, we take as our system performance measure the cost

functional

where

TF̂ x̂ T)* /i(x|(t)Q1(t)x;L(tX:

(2.1.5)
+u{(t)R1(t)u1(t))dt}

.rn
Ffv'fTM'pY ( T ̂  -4- f f v ' f i - ' ^ n ^f^v fi-^iJiAQ l\i./pQAQ^i^" / \ A ^ \ V / V ^ Q ^ U / A O \ ^ >

—^ — C.~~ C. ~~~d. ~~G> ~~~C~

u 2 ( t ) R 2 ( t ) u 2 ( t ) ) d t } (2.1.6)

pi i 2» S

Z2
 = ^2 - 2» ^2 = ^2 - -' -2 = -2 > -
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are weighting matrices of appropriate dimensions. Note that

in general, J, depends on both u, (t) and u2(t) as the choice

of u_p(t) affects system 1 through the weak coupling, and

vice-versa.

Since each controller only makes measurements about his

own system, we require u_,(t) to be a function only of the

measurements made on system,!, together with the a priori

information about the two systems, which is shared by both
i . ' -

controllers. Similarly, we require u?(t) to be a function

only of the measurements made on system 2, together with the

a priori information.

To be more precise, we define the information sets

Y,(t) = (Z^CT); tQ <_ T <_ t) U (a priori information)

Y2(t) = {z_2(t); tQ <_ T <_ t> U (a priori information}

Then u.(t) is an admissible control if, and only if, it is

of the form

u^t) =-ii(Y1(tJ, t) 1=1,2 (2.1.7)

Our control objective consists of finding the best u,(t)

and Up(t) such that the cost functional J(u, ,u_p) is minimized.
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In other words, the stochastic optimal control problem being

considered is solved if we can find controls u*(t) and

u_2*(t) satisfying the properties that they are admissible and

that for any other set of admissible controls u,(t) and u2(t),.

Ĵ *,̂ *) - J(u-i>H2> (2.1.8)

u, *(t) and u~*(t) are called the optimal controls for our
~JL —d.

problem.

The way in which the control strategies depend on the

information structure of the system is crucial for our problem.

The celebrated Separation Theorem gives the solution to the

linear-quadratic-Gaussian problem for the case where all controls

are generated by a central agency who makes all measurements,

and has perfect memory [4]. Since, for reasons mentioned

earlier, the centralized scheme is not allowed, the Separation

Theorem cannot be applied directly to our problem [53-

Considerations in stochastic differential game theory suggest

that the true optimal controls may be very complicated. We

shall, therefore, propose an approximate model for our original

system, which will simplify the analysis considerably.

2.2 An Approximate Model for Calculations of the Controls

We observe first of all that the influence of one system

on the other is quite small, as the intersystem coupling is weak
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(by virtue of the fact that e is small). Secondly, since each

controller does not have access to the measurements about

the other system, he can view the state of the other system

essentially as a completely random quantity. Thus, the

perturbational affects of the weak coupling on each system are

similar to that of a noise. For controller 1, therefore, the

term eA,2(t)x~(t) looks like an additional driving noise

process. Since x~(t) is the state of a stochastic linear

system driven by white Gaussian noise, it is a Gaussian but

generally colored process. However, controller 1 has almost

no knowledge about x_2(t) and so the perturbational effects

of x_2(t) °h system 1 are more or less entirely unpredictable.

For.this reason, we may try to approximate the influence of

x_2(t) upon system 1 by a white noise process. Furthermore, since

our aim is toi maintain the states near zero, we can model

eA12(t)i2(t), which is much smaller than Xp(t), as having

zero mean. Similarly, controller 2 also models the term

eA01(t)x,(t) as a zero mean, Gaussian white noise process.—c. J- ~~-L

We shall replace the coupling terms by 'the white noise

processes (̂t) and €.2(t) so that the system equations (2.1.1)

and (2.1.2) becomes (see Fig. 2)

x,(t) = A,,(t)x,(t)+B,,(t)u,(t)+X,(t)+£,(t) (2.2.1)
—J. —XJ. —J. —J.J. —_L —± —±

x2(t) = A22(t)x2(t)+B22(t)u2(t)-K\2(t)+i2(t) (2.2.2)
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• ^* • ^r • ^*v> ^

Fig. 2 Assumed Model for Control



-22-

where we model £-,(t) and C.2(t) as zero mean, independent Gaussian

"fake" white noises with

= E1(t)6 (t-t)

covU2(t); ,i2(T)} = £2(t)6 (t-i)

i

Considering the nature of the quantities which £n(t) and £p(t)

model, they are assumed to be also independent of the other

noise processes. To specify these fake white noises completely,

we must determine the covariance or intensity matrices £_-i(t)

and 50(t). Intuitively, there should be some sort of "optimal"
£-

choices, for §_ '(t) and E_2(t) so that we can. get the best

results possible with the kind of approximations that we are

making. However, being covariance matrices, they are

constrained to belong to the class of symmetric and positive

semidefinite matrices. ̂'•''̂'̂  '"~<'C •':'" r'"~:_ "&.-.: ••:'!'.••••-. .- •-•:;-.- • ••••- :

•-x'̂ fejWlth the .above model, the structure of the entire system

is greatly simplified. System 1 is completely decoupled from

system 2. They are driven by the mutually independent equivalent

white noises

and

w_2(t) = I2(t). + £2(t)
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respectively. Our original control problem is also modified

to one which completely decomposes into two stochastic optimal

control problems, one for system 1 and the other for system 2.

If we fix j^Ct) and £2i(-t) so that the statistics of w^t) and

w_p(t) are completely specified, both of these problems are

linear-quadratic-Gaussian problems with centralized information

structure. The Separation Theorem can thus be applied to these

two problems individually. We see that H.-,(t) and H_2(t)
 now

play the role of control variables in the sense that their

specification generates the solutions to our modified problem.

We shall therefore call H (t) and H (t) the pseudo-controls
—-_1_ ""* c. " •-----"• -" -

for our modified problem. In contrast, u,(t) and u2(t) will

be called the physical controls. To be more specific, for

fixed but arbitrary £,(t) and £ (t), we can use the Separation

Theorem to obtain the following set of optimal physical controls

for our modified problem

u-^t) = -R1~
1(t)Bj1(t)K1(t)£11(t) . (2.2.3)

U2(t) = -R^ (t)B£2(t)K2(t)x22(t) (2.2.4)

where K-^t) and K2(t) are the solutions of the following

matrix Riccati differential equations

K1(t)=-K1(t)A11(t)-A.[1(t) K

(2.2.5)
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K2(t)=-K2(t)A22(t)-A'22(t)K2(t)+K2(t)B22(t)R~
1(t)B^2(t)K2(t)

-Q2(t)K2(T)=F2 (2.2.6)

xs /v

and x ,(t) and x_22(t) are estimates of the states x_ (t) and

jcp(t) generated by the "uncoupled" Kalman-Bucy filters

X (t )= X (2.2.7)

& s\ s\

x22(t)»A22(t)x22(t)+B22(t)u2(t)+G2(t)[z2(t)-G22(t)x22(t)3

y (t- )=* (228}A«rt\U,-»y A«--* V , c - » c - « ( - > /

with G^t) = Z_1(t)C.[1(t)01
1(t) (2.2.9)

G2(t) = 5_2(t)C_22(t)e~ (t) (2.2.10)

The matrices 2.-,(t) and E~(t) satisfy another set of matrix

Riccati differential equations
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(2.2.11')

We note that the optimal physical controls given by (2.2.3)

and (2.2.4) for our modified problem are admissible controls

for our original problem. The adoption of the .approximate

model not only decouples the two systems, but it also

helps, to generate suboptimal physical controls for our original

problem. The work now remains to be done is to choose the

pseudo-controls, i.e., the intensity matrices £-,(t) and 5_2(t),

through an optimization procedure.

2.3 Discussion '

It is important to get a precise interpretation of the

results of the previous section. We have proposed a model

which is very reasonable in view of the nature of the problem.

it also brings us a great deal of simplification to the original

problem we considered. We have not yet proved mathematically,

however, that the model is acceptable in the sense that the

physical controls generated by using the model, as given in

equations (2.2.3) and (2.2.4), are nearly optimal. Nor have

we made any comparison between the true optimal cost and the

cost resulting from the adoption of the model. These matters

will be given due attention in Chapter 5, where we shall prove

that the model is indeed acceptable.
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/\ /\

We remark that x,.,(t) and x00(t) are not the optimal— _L JL — tL iL — —

estimates associated with our original problem, nor can we

interpret £-,(t) and Ẑ )̂ as ^ne error covariances of the

estimates. E, (t) and £~(t) are simply part of the weighting
— J. c.

*> • ^

matrices which generate the state estimates x,,(t) anci £.22̂ '̂

which in turn give us the physical controls. Since /̂.(t) and

£2(t) depend on £-,(t) and H,,̂ ) respectively, it is clear

from the above discussion that the physical controls u.,(t)

and u«(t) depend on S, (t.) and H_(t). Hence, the cost associated
~~.t- — J. — c.

with the problem also depends on the choice of £-,(t) and £2(t).

If we view equations (2.2.11) and (2.2.12) as state equations

with the pseudo-controls jjUCt) and 5,,(t) as controls, we

should be able to formulate an optimal control problem in

H-,(t) and £2(t)' Exactly how this is accomplished will be

the concern of the next chapter.
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CHAPTER 3 - THE ASSOCIATED DETERMINISTIC CONTROL PROBLEM

We have seen in Chapter 2 that by adopting a very reasonable

approximate model, the physical controls will be generated

as long as we specify the covariance matrices of the "fake"

white noisesintroduced. We also showed that the cost

associated with the modified problem depends on these

intensity matrices, and it is, therefore, appropriate to

view them as pseudo-control variables. In this chapter, we

take the physical controls to be generated according to the

model proposed in Chapter 2 and reformulate our stochastic

optimal cp.ntrol problem into a deterministic matrix optimal

control problem with the pseudo-controls as the control

variables. The interpretation of the deterministic problem

in relation to our original stochastic problem is given.

This, together with certain "technical" aspects of the

optimizationffxSotelkem, prompt us to introduce additional

terms into the original cost functional. (Further discussion

on this problem will be given.) The complete deterministic

optimal control problem is then stated.
i

3.1 ^Formulation of the Associated Deterministic Optimal
Control Problem

Taking our physical controls to be generated by equations

(2.2.3) and (2.2.4), we first of all substitute equations (2.2.3)

and (2.2.4) into (2.1.1) and (2.1.2).
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= A11(t)x1(t)-B11(t)R~
1(t)B-[1(t)K1(t)£11(t)

eA12(t)x2(t)+A1(t) (3.1.1)

x2(t) = A22(t)x2(t)-B_22(t)R~
1(t)B^2(t)K2(t)x22(t)

+ eA (t)x (t) + A (t) (3.1.2)

Subtract equation (2.2.7) from (3.1.1) and (2.2.8) from

(3.1.2) to get

eA12(t)x2(t)+X_1(t)-E1(t)C^1(t)0~
1(t)91(t) (3.1-3)

and

= [A22(t)-I2(t)C2
t
2(t)02

1(t)C22(t)][x2(t)-x22(t)]

Since x_,, (t). and x22(t) are the estimates of x_,(t)

and x_p(t) respectively, the above two equations can be

interpreted as the equations for the estimation errors.

If we now define

x2(t) (x.j_(t)-yi(t)) (x2(t)-x̂ 2(t))] (3.1-5)
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then straightforward computation shows

m(t) = A(t)m(t)+B(t)e(t) (3.1.6)

where (dependence on t has been omitted for notational

simplicity)

A(t)

eA-12

0

EA-21 - -22~-2-22-2 -22

(3.1.7)

B(t)

1 0.

2 I

•L 0_

0 I (3-1.8)

9(t) x2(t)

o2(t) (3.1-9)
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Equation (3.1.6) is still a vector stochastic differential

equation. To obtain deterministic equations, we define

the symmetric second moment matrix M(t) to be

M ( t ) =

>11 "1 2

M21 M22

I'" I''

"1 3 MI/I"

M M i
-23 -24

M M ,ii33 LL3i|

Then M(t) satisfies

= E{m(t)m'(t)}

(3.1.10)

M(t) = A(t)M(t)+M(t)A'(t)+B(t)0(t)B'(t);

^tifeoilo
-20-10

-Oil

0

-10-20

-022+-20-20

o

-022

^011

'0

-Oil

0_

0_

-022

a
-022 (3.1.1D

where

0(t) =

"A!

0

0

p_

. 0

A2

p_

p_

0_

0

®1
o

2

a
0_

-2 (3.1-12)
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Equation (3.1.11) Is now a deterministic matrix

differential equation. Our plan is to use this as one of

the state equations in a deterministic matrix optimal control

problem. To this end, we substitute equations (2.2.3) and

(2.2.4) into equations (2.1.5) and (2.1.6). We can then

express the cost functional in terms of the components of

M(t) as

J=tr[F1M11(T)+F2M22( T)]
T

T '_M +M
-13-31-33'

(3.1.13)

This can be written in a more compact form by defining

0

0

2

F2

0

2

2

2
.2

2

2

2 (3.1.11*)
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0

p—22—? —22—2 -K2-22-2 -22-2

-̂A1-1 -11-1

(3.1.15)

Then

J = tr[FM(T)] + /x tr[Q(t)M(t)] dt

fco

(3.1.16)

Since £.-,(t) depends on £, (t) and E.?̂ ) depends on

5n(t), while M(t) in turn depends on Z-,(t) and Z0(t) through—<j — —i — d
yv

A(t), v/e see that in general, the cost J will depend on H,(t)

and 5_p(t). It seems possible then to take M(t), Z_-,(t), and

£2(t) as the states and the pseudo-controls H,(t), (̂t)

as the control variables which affect £n(t) and ̂ (̂ ^ by

equations (2.2.11) and (2.2.12).

We note, however, that we now have a different problem

from the one we started with. Ori-ginally we were concerned

with calculating optimal physical controls using the above
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quadratic performance index. The physical controls we had

obtained would be optimal if equations (2.2.1) and (2.2.2)

represented the true system dynamics. Since they are an

approximation, this should be reflected in the cost functional

for the deterministic problem. In other words, we should

add to the original cost functional terms which measure the

effects of our approximation and subsequent employment of

the Separation Theorem. Additional motivation to do so

is provided by the fact that the pseudo-controls H-,(t)

and ri~(t) appear only linearly in the state equations for

Z.,(t) and Z0(t). If we use the original, cost functional
—- J_ Tt

which does not contain any terms explicitly in the pseudo-

controls, the Hamiltonian associated with such an optimal

control problem will be linear in ~,(t) and 5,,(t). We will
—~_L "*"(-

then be faced with a complex singular matrix optimal control

problem.

The simplest way to achieve the above objective is to

add to the cost functional the term

( tr[5,(t)5' (t)+59(t)5« (t)]dtt0 l-l -<L - <L

Essentially this is equivalent to penalizing the magnitude

of the noise intensities for becoming too large. The

rationale behind this is that our physical controls used
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come from a model in which "fake" white plant noises are

used to approximate the coupling between .the systems. This

procedure is .justifiable only when the coupling is weak.

Clearly, if the model is to work at all, the noise intensities

must not be large compared to the quantities they approximate.

Also, by keeping the noise intensities as low as possible,

the state estimates obtained would be a more faithful

representation of the true states. Furthermore, the

quadratic nature of the additional term is intuitively very

appealing. Since this is not something which arises

automatically out of the original problem, we should expect

that other choices for the additional term are also justifiable.

A discussion pertaining to this observation will be given

in Chapter 5.

Since H,(t) and E0(t) are covariance matrices of white—J. —c.

noise processes, they must be symmetric and at least positive

semidefinite. Hence the optimal pseudo-control are constrained

to lie in this class of matrices.

Putting together the above development we arrive at the

following deterministic matrix optimal control problem, whose

solution gives the physical controls for the original stochastic

optimal control problem:
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Problem: Given the system described by the matrix differential
equations:

M(t) = A(t)M(t)>M(t)A'(t)+B(t)e(t)B'(t) (3.1.17)

(3.1.18)

(3-1.19)

with initial conditions

1̂1+-10-10 -10-20 -Oil -

M(tQ)- +-20-10 -022-20-20 - -022

-022 0 I022

(3.1.20)

(3.1.21)

~ -022 (3.1.22)
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and the cost functional

J(S,:,SP)=tr[FM(T)] + /
T tr[Q(t)M(t)+E,(t)~'(t)

X ~~~c. - ', — — —J. —Xto

+ E2(t)S_2(t)]dt (3.1.23)

Find symmetric and at least positive semidefinite matrices
•A.

E *(t) and E *(t) such that the cost functional J is
— J_ -— - — C. - J~ " ------- - - - . . .- .-.-— -. T ..-- - -TJ. --T-TJ-.,-.

I

minimized.

3.2 Discussion

A careful interpretation must be given to the equations

derived in the above section. Although the submatrix M^(t)

satisfies an equation of the form satisfied by E,(t), they

are, in general, altogether different objects. Moo(t) is
**.

the error covariance associated with the estimate x.i-,(t)

while £n(t) is simply part of the gain matrix used in the
**

Kalman filter for generating XIT^)' This difference

is more vividly illustrated by looking at the cost functional
^ y\

J(E,,H~). Only the components of M(t) appear in J(E^-, j£p^'

there are no terms involving E,(t) or ̂ ^^ explicitly.

As will be shown in Chapter 5, M.,.,(t) and I^U) will both

represent the estimation error covariance only when e=0, i.e.,

when the two systems are uncoupled to start with. In this

particular case, we should expect 5-*(t) and 5~*(t) to be
—J_ —c.
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both equal to zero. For if we do not have any coupling, there

is clearly no need to add fictitious noise to the system to

approximate nothing. This asymptotic case will be treated

in Chapter 4. In general, we should also expect H,*(t) and

£2*(t) to be a function of the degree of intersystem coupling

because this is precisely what Hn(t) and 50(t) are—J. —c.

approximating.

Requiring the control variables to lie in the class

of symmetric and positive semidefinite matrices is an

unconventional constraint. If we try to solve the

constrained problem directly, we shall find it difficult

to ensure that the resulting controls will meet the constraints

However, we can circumvent this difficulty by defining the

auxiliary variables N,(t) and Np(t) where

N'1(t)N1(t) (3.2.1)

L2(t) = N'2(t)N2(t) . (3.2.2)

By writing H_-,(.t) and EO^) ^n tne above form, the constraints

are automatically satisfied. Therefore, instead of seeking

the optimal £n*(t) and 5~*(t) directly, we shall optimize

the choice of N,(t) and N_2(t). The optimal pseudo-controls

then follow immediately. We note that N,(t) and N0(t) are
—J. —c.



.; -38-

not necessarily square matrices. Nor would the factorization

of 5,(t) and 5n(t) into the above forms In general be unique.—J. —c.

If 5-,(t) and E0(t) are positive definite, however, N,(t) and
— J_ . -—£_ —~_L

N^p(t) can be taken to be nonsingular and unique.

In the next chapter, we shall see how such an

unconventional control problem can be solved using standard

optimal control techniques.
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CHAPTER 4: SOLUTION OF THE DETERMINISTIC PROBLEM
AND THE COMPLETE STOCHASTIC CONTROL STRATEGY

In Chapter 3, we posed a deterministic optimal control

problem using the pseudo-control variables. The unconventional

constraints were removed by defining auxiliary variables.

We shall now proceed to solve this deterministic problem.

Our main tool is the matrix minimum principle [9]> and so

the results derived here will be the necessary conditions

satisfied by the optimal pseudo-controls. After obtaining

the optimal pseudo-controls, we display the complete

procedure for 'generating the physical controls to our original

stochastic problem. Some computational aspects are then

considered and the asympto'tic case in which the intersystem

coupling goes to zero is treated. The results are shown

to be in keeping with the intuitive discussion given in

section 3-2.

4.1 Solution of the Deterministic Optimal Control Problem

In order to simplify the notation, we shall define

£2.(t)
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Let P(t), S,(t), and S0(t) be the costate matrices— —± ~~d.

associated with M(t), E (t), and £0(t) respectively.
— —~J. —*c

Also define

P(t)'

p p p p
-11 -12 -13 . -14

p p p p
-21 -22 -23 £24

p p p p
-31 -32 -33 -34

Lli Lij2 £43 -44 (4.1.3)

For any real symmetric nxn matrix W, we use a(W) to

denote its spectrum, i.e., the set of eigenvalues {X.}

1=1,2....n of W. Diag 0(W) will denote the nxn matrix

with the only nonzero entries the numbers X' , Xp,....X

along the diagonal:

diag a(W) =

0 0 .

0 A'2 0 .

. . 0

0

Xn
(4.1.4)

Diag |a(W)| is similarly defined with |x̂ | replacing \^

in' equation (4.1.4). The eigenvalues A., need not be distinct

However, for any real symmetric nxn matrix W, we can always

find an orthogonal matrix which diagonalizes W into the form

diag o(W).
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Using the matrix minimum principle with the above

notation, we arrive at the following theorem:

Theorem: . .

The optimal pseudo-controls are given by (* denotes

evaluation along the optimal trajectory)

i1*(t) = Tj- T-^t) diag|o(S1*(t))|T_1'(t)- TJS-^-.Ct) (4.1.5)

5x«(t) = i Tp(t) diag|o(S *(t))|T «(t)- is *(t) (4.1.6)
~~*£. . H "~£_ •""•£. —t *i"~~£L

where (̂t) and T_2(t) are the orthogonal matrices which

diagonalize S *(t) and S *(t) respectively for every
"""J. t '

t e[to,T]. .

M»(t), P»(t), I »(t), S «(t), E5»(t), and S0*(t) satisfy— — —J. —J. —c. —c.

the following set of differential equations:

M*(t)=A*(t)M*(t)+M*(t)A*'(t)-»-B*(t)0(t)B»('(t)

;^M*(tn) = M(tn) (4.1.7)
"~~ \j ~~~ \j

f«(t) = -A«t(t)P«(t)-P«<Ct)A*Ct)-Q(t)

P«(T) = P (4.1.8)



t . .1.9)

s i*(t)=-A (
1 1( t)s1*(t)-s1*(t)A1 1( t)-(-s1*(t)E1*(t)r1( t)

i \ ( t ) i « ( t ) s * ( t )
— J. — i — J.

r ( t ) M * « ( t ) p » ( t )
— JL — «i ̂  — «: j

SJ(T) = 0

+ A 2 ( t ) + 5 * ( t )



s*(t) = -A2(t)s»(t)-s«(t)A22(t)+s*(t)z»(t)r2(t).

+r2(t)E*(t)s*(t)

- PlSi,(t)£.|(t)r2(t)-r.2(t)z_*(t)P3j4(t)-»-pjj1(t)Mi[j_(t)r2(t)

S*(T) = 0 (1.1.12)

The optimal cost is

J* = tr[FM*.(T)]+ /T tr[Q (t )M»(t )+H* (t) S* ' (t)— . — —i —i

+H*(t)E*'(t)]dt Cl.1.13)



Proof: See Appendix A.

To obtain the optimal pseudo-controls, we have to

solve three two-point boundary value problems represented

by equations (4.1.7) and (4.1.12). This can be done, for

example, using the gradient method. We emphasize that all

the calculations required to solve these equations are

off-line and so the optimal £^(t) and Hj(t) are

precomputable. Although it may be objected that solving

three nonlinear, coupled two-point boundary value problems

is no easy matter, we remark that in Chapter 5, we will

show that in many cases of interest, j£?(t) and -S^) can

be taken to be zero. In these situations, there is even

no need to go through computationally any of the steps of

this deterministic problem. This does not imply, however,

that solving the deterministic problem .is a futile and

meaningless exercise. It gives us the limitations as well

as the advantages of using this approach. These matters

will all be dealt with in the next chapter.

We note also the definiteness property of E_?(t) and

~|(t) is governed by the dfcfiniteness of S»(t) and S«(t)

respectively. When S*(t) > %;> 5?(t) = 0. This represents
—X — -7- —JL —

the minimum that E?(t) can take on. If S*(t) < 0,
—J. _L —

Ef(t) = - |s«(t) and is therefore positive definite. This

is the maximum of 'S_?(-t). If S*(t) is negative semidefinite
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or indefinite, then H?(t) is only positive semidef inite.

Completely analogous remarks hold for 5t(t). Hence by

analyzing the behavior of S*(t) and S*(t), we will obtain

all the properties of H*(t) and E|(t). We shall follow

this line of approach in the sequel.

4.2' The Complete Stochastic Control Strategy

Collecting all the results we have developed so far,

we are now in a position to state the complete stochastic

control strategy for two weakly coupled linear systems

using quadratic criteria:

Step.1 - Solve the two matrix Riccati differential

equations (2.2.5) and (2.2.6) to yield K-^t) and K2(t).

These are off-line calculations and can be preeomputed.

The control gain matrices R, (t)B,,'(t)K,(t) and
—J. —J. -L —J.

R ~ (t)B22'(t)Kp(t)•are then completely specified.

Step 2 - Formulate and solve the deterministic optimal

control problem as given by equations (4.1.7) to (4.1.12).

We emphasize that these are again off-line calculations

and can again be preeomputed. We will determine £?(t) and

Z_**(t) in the. process, and hence the filter gain matrices

E.{(.t)C11'(t)a1~
1(t) and Z.|(t)C_22'(t)&2~

1(t) are completely

specified.

St^ep 3 — Use the filter gains determined from Step 2 in

the Kalman filter equations of (2.2.7) and (2.2.8) to



generate the state estimates x,,(t) and x_pp(t).

Step 4 - Implement the controls u,(t) and iu(t) by putting

t.ogether the control gain matrices and the state estimates

(see Fig. 3).

We remark that since all the complex calculations can

be carried out off-line, and that the controls are simply

linear transformations of the state estimates, there will be

no difficulties with on-line implementation.

4.3 Qualitative Properties of the Optimal Pseudo-Controls

Throughout our proposed model, we have assumed that

S_-j(t) and 5_p(t) approximate small coupling elements. The

philosophy of introducing additional terms in the cost

functional when we were formulating the deterministic

problem is indeed to make E, (t) and S0(t) small themselves.
~-.L —c.

But if H^Ct) and S,2(t) are small, it should be possible to

view them as perturbations and to use perturbational

analysis, with e as the small parameter to investigate

the qualitative effects E_.,(t) and 5_2(t) have on the system.

To be precise, we expand the variables in a power

series in e and equate terms of the same power in e. In

other words, we write (all the analysis in the sequel will

be done along the optimal trajectory; * has been omitted

for simplicity)



A

ESTIMATOR

DETERMINISTIC
CONTROLLER

SYSTEM 1

DETERMINISTIC
CONTROLLER

y2(t)

INTERACTION
REPRESENTED
BYH(t)ANDH2(t)

SYSTEM 2
Z 2 ( t )

ESTIMATOR

Fig, 3 Structure of the Proposed Control Scheme
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1=1,2

S,(t) = S,(t) + eS,(t) + e S , ( t ) + 0(e,t); 1=1,2— i i —I — i —-I —

liCt) = H{0)(t)+eH[1)(t)+e25[2)(t)+0(e2,t); 1=1,2

2
where llm °(e i^ = £. uniformly In t

e+0 e

The various terms In the power series are obtained by

differentiating the original quantities with respect to

£ an appropriate number of times and then setting e equal

to zero in the final result. For example

M, U) = - — - k=0,l... (1.3.1)
J 3e e=0

Consider first the zeroth order terms. This is

obtained by simply setting e=0. This corresponds precisely

to the case in which the two systems are in fact uncoupled.

It can be shown that 5*(t) and H*(t) are then identically

zero (see Appendix B). The interpretation is, of course,

that E^Ct) and H.2(t) were introduced originally to

approximate the coupling terms and hence decouple the systems
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If the systems were uncoupled to start with, such a trick

would obviously be unnece.ssary-. Furthermore-,-s-inee—we

had added terms in £-,(t) and H_(t) to the cost functional,

the cost will increase for no purpose at all if £-,(t) .and

£2(t) were nonzero. This result is certainly what we would

expect and require of the optimal pseudo-controls.

We can actually say quite a bit more about the optimal

H*(t) and .E»(t>. Intuitively, since i-^t) and £2(t)

approximate the terms eA,0(t)x~(t) and eA0,(t)xn(t)—J_ c. —c. ~~~c. JL .~"~J-

respectively, £-,(t) and H~(t) should both be of second order

in e. A direct calculation shows that this is indeed the

case and that, in general, second and higher order terms

are nonzero (see Appendix C). This has an important

interpretation:

If we adopt the approximate model, and if either the

second order effects are small enough so that they can be

neglected, or the second order corrections are not important

in the design, then we can simply set the coupling to zero

and work with the decoupled systems.

The above remark is, of course, obvious if we look

at the original stochastic system equations. Nevertheless,

it is worthwhile to check that our optimal solutions have

the "correct" properties.
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Discussion

—mo-re—things—no w~rema~in~~to be done. First, all the

preceding analysis assumes that the proposed .model is

acceptable to start with. We still have not proved

mathematically that this is so. Secondly, we have not yet

undertaken an analysis of the system performance, a critical

issue which concerns the designer. Both of these are, of

course, part of the same question: how does the performance

of the system using the jproposed control strategy compare

to the truly;. optimal one? What are the trade-offs between

choosing; these various schemes? These Hill be the subject

matter of the next chapter.
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CHAPTER 5: PERFORMANCE OF THE SYSTEM

In Chapter 4, we have obtained the complete scheme for

generating the physical controls by way of the solution of

the associated deterministic problem. Since these results

are derived using an approximate model, the physical controls

are clearly suboptimal. Although the scheme is appealing

in view of its simplicity, it would not be acceptable if it

is "too" suboptimal. In order to justify the proposed

design, we must show that the system performance is close

to the truly optimal one.

For a general linear system, the mathematically

optimal design is to adopt complete centralization and

apply the Separation Theorem. In our case, we can treat

the two weakly coupled systems as a big unit and assume

that the controllers are now administered by a central

agency. We can then compare the cost obtained by using

the complete centralization scheme to that obtained by

using the proposed design.

We will show that these two costs are the same up to

linear terms in e. Since e is small, we may therefore

conclude that our proposed scheme is approximately optimal.

We will also show that using 5?(t) = 5£(t) = 0^ Gives us
o

the same performance up to e terms as that obtained by

using the optimal E?(t) and j[£(t). We then turn to a
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discussion of the advantages of the proposed design and

the trade-off's between the various choices, of- control

strategy. The practical implications of our proposed

strategy are also explored.

5.1 Analysis of the System Performance

To investigate the performance of the system using

our control scheme, we look at the cost incurred. For _any

fixed H-,(t) and ri~(t), it can be shown that the cost is

given by (see Appendix D)

J- = tr[K1(t0)(£011+x10xi0)+K2(to)(Z022-fx20x^0)]

to
+ 2 e

(5.1.1)

Following the technique used in Chapter l\ , we can
^

expand J in a power series in e.

J = J(°)-.+EJ^> + e
2J^ + 0(e

2) (5.1.2)
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The calculations in Appendices B and C show that in

addition to (all the analysis below will be done along the

optimal trajectory; * has been omitted)

5J0)(t) = E<0)(t) . E^U) = S^U) - 0 (5.1.3:

VJB also have

-33 (t) = i^t) =0

(5.1.5)

Thus, the optimal cost up to linear terms in e is given by

(5.1.6)-

As a preliminary remark, we observe that since the

zeroth order terms do not depend on E,(t) and E0(t),
-"J- "~" C.

J(0) + eJ(1) is independent of ̂ (t) and;5_2(t). Further
s*

discussion on the dependence of J on S_, (t) and E_p(t) v;ill



be given later in the chapter.

Let us now compare the optimal cost up to linear terms

in e in our scheme to that given by complete centralization

To this end, we treat our coupled systems as a big unit

and define

.x'Jt) =

A(t) =

B(t) =

C(t) =

u(t) =

z(t) =

X(t) =

Q(t) =

lx(t) eA12(t)

eA21(t) A22(t)

"ci;L(t)

u2(t)

ki(t)

o2(t)

£22(t)
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The composite system can be represented by the

_fp_llpwin.g_set_ ofL.eq.uations: — —

x( t ) = A ( t ) x ( t ) + B ( t ) u ( t ) +. X ( t )

-20

z ( t ) = c ( t ) x ( t ) + e ( t )

(5.1.7)

(5.1.8)

The white noise processes A_(t) and £(t) are zero mean

with covariances

A(t)
A1(t)

A2(t)

0

e2(t)

x(t ) is assumed to be a Gaussian random vector and has
— O

statistics

E{x(to)> =

cov{x(to);x(to)} = ̂  =

-10

_-20

- E =
=0

-Oil

.-021

-012

-022
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Define Q(t) =

R(t) -

Q2
(t)

R^Ct) 0

0 R2(t)_

F

The cost functional can then be expressed as

J = E{x'(T)Fx(T) (x'(t)Q(t)x(t)+uf(t)R(t)u(t))dt}

Define K(t) =
Kn(t) K12(t)

K21(t) K22(t)

z22(t)

K(t) and £(t) satisfy the usual Riccati differential equations

for the control and filtering problems respectively.

It can be shown that by using the Separation Theorem,

the optimal cost is given by [10], [11]
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J = tr[K(t )(Z +x.x«)] + /T tr[K(t)A(t)]dt•— o —o v, w ,
U

,-1/1tr[K(t)B(t)R"1(t)B'(t)K(t)I(t)]dt

0 (5-1.9)

We can again expand this optimal cost incurred by

using complete centralization in a power series in e.

Up to linear terms in e, the result is given by [5]

(o) (i)_. (o)J -

R-iB, K(o)z(o)

•(o)n «-!,, K(o)y(o)1d"") O D o *} A,-} D««A.^rt " - « • J vJ. L*

(5.1.10)

It can be shown that the cost (see Appendix D)

- J(0)+eJ(1>

What this says is that even if we allow the mathematically

optimal design of complete centralization, the improvement

2over our scheme is of the order of e . Of course, since



-58-

we are constraining our physical controls to be a function

only of the individual system measurements respectively, the

controls generated by complete centralization are not

admissible. However, no matter what the optimal physical

controls .for our problem are, they can certainly not give

a lower cost than the one obtained by using complete ,

centralization. In other words, our system will perform

optimally at least up to linear terms in e. Since the

coupling is weak (e small), terms in quadratic and higher

orders of e.do not contribute much to the overall system

behavior. We may therefore conclude that our approach gives

an- approximately optimal design. This vindicates our

claim that our complete control strategy is acceptable as

far as the mathematical cost criterion is concerned.

A moment's reflection tells us that the results

we have obtained are very reasonable. We have seen in

Chapter 4 that H-,(t) and £p(t) are botn of tne order of
2

e . Hence, we should expect that their effects on the

2system performance will also be of the order of e , and

so the optimal cost up to linear terms in e will be

independent of £-,(t) and £?(t).

. Another way to interpret the result of equation

(5.1.11) is to go back to our original stochastic problem.

Recall that in the formulation of the stochastic problem
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in Chapter 2, we have used quadratic terms in x,(t) and

Xp(t) in the cost functional. In the proposed model, we

have replaced the coupling terms eA,p(t)Xp(t) and

eA-,(t)x,(t) by the zero mean, Gaussian white noise

processes £,-,(t) and £~(t). What we have implicitly

done is that we have modeled the effects of coupling

terms on the systems to be zero on the average. Now since

the coupling terms eA, p(t)x_2(t) and eAp, (t)x_, (t) influence

x,(t) and *_p(t) in a linear fashion, their effects on

2
quadratic cost functions will be of the order of e . Thus

the overall cost will not be affected up to linear terms

in e on the average if we replace the coupling terms by

things with zero mean. Suppose we now adopt the complete

centralization scheme and apply the Separation Theorem

directly to our model represented by equations (2.2.1)

and (2.2.2). As we have argued, the resulting cost will

be the same up to linear terms in e as the one obtained

if we have not adopted the model, and used the complete

centralization policy, to begin with. Notice, however,
i

that applying centralized control policy to our model

results in exactly the same physical controls as those

given in our proposed strategy because the two systems are

now decoupled. These arguments indicate, therefore, that

equation (5-1.11) should hold. Our intuition indeed agrees

well with the analytical results.
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5.2 The Dependence of J on jB,(t) and £

We "(0) "(1)remarked earlier in this chapter that J + eJ

does not depend on £, (t) and £?(t). It can be shown
. 2

that if -(t) and ^) are of> the order

H<0)(t) = E^t) = 4°>

and the higher order terms of the cost will depend on

(t) = Et) = (t) = E C t O - O , then only

j:-,(t) and jû ) (see Appendix E) . In other words, any
2 ~)

5, (t) and JUCfc) which go to zero as e would up to e

terms be the same as the optimal cost obtained when

E:?(t) and ~*(t) are used. Thus, for most purposes we
— JL — c.

may assume that the two systems are uncoupled. Only when

we want to improve the performance of the system beyond

the fourth terms in e that we have to solve the two-point

boundary value problem to find H*(t) and £p(t). This

does not mean, of course, that the formulation and

solution of the deterministic problem is a waste of time,

because the calculations in Appendix E are based on the

optimal solution. Only by investigating the properties

of the optimal solution can we make such a statement

concerning the choice of 5-,(t) and E~(t).
— _]_ — c,

This result has important implications in studying

the tradeoffs between the choice of control schemes and

will be further discussed in the next section. It also

leads up to the remark given in Chapter 3 concerning the



-61-

choice of the additional term to be introduced in the cost

functional. If instead of adding the term

/T tr[£1(t)̂ (t)+£2(t)£̂ (t)]dt to the cost functional, we

adti a term of the form ^ tr{[s1(t)-D1(t) ][S1(t)-D1(t)] '
to

+ [50(t)-D0(t)][5»-D0(t)]'}dt where D,(t.) and D0(t) are
c. —c. —C. —£ —J. ' —e!.

symmetric matrices formed from linear combinations of the

components of M(t), which are zero up to first order in e
2

and go to zero as e . An entirely analogous calculation

to those given in Appendix A shows that the optimal

pseudo-controls are then of the form

(S»(t)-2D«(t))|T^(t) - J-S

\ D

(5.2.1)

H*(t) = \ ̂ (tjdlaglo (S*(t)-2D«(t)) TjJ(t) - ̂ S

D«(t) (5-2.2)

where T.,(t) and Tj,.(t) are orthogonal matrices which

diagonalize S»(t)-2D»(t) and S*(t)-2D*(t) respectively.
2

Since these pseudo-controls are of the order of e , we

see that they also have all the "correct" properties noted

in our development, and they yield a cost which is the

same as the one we have obtained in the main development
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3up to e terms. The philosophy behind this choice of the

additional term is that we want to track matrices ,_whjLch

may have been omitted in our approximate model, by the

pseudo-controls. For example, we may take D, (t) to be

e A, 2(t)M22(t)A^2(t) because we have replaced eA_12( t )x_2(t)

by (̂t). Clearly, such a choice is Justifiable. It

is neither superior nor inferior to the one we used in the

main development. Whether one adds a term to the cost

functional to minimize the noise intensities or to track

some system states will be a decision left to the

discretion of the designer.

5.3 Optimal vs. Suboptimal

. In this section, we turn to the question of the

application of our proposed control strategy. What are

the significant advantages obtained by using the proposed

design as opposed to rising complete centralization? The

first thought that comes to one's mind is, of course, the

tremendous reduction in the communication between the two

systems. Indeed, this has been our original motivation in

seeking other control schemes than complete centralization.

Enough has been said in the previous pages on the technical

and economic reasons for desiring this reduction, and this

point will not be further belaboured here.

The second point that we wish to stress here is that

in the completely centralized scheme, the state estimates
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are generated on line by a (n,+n2) dimensional Kalman

filter, while in our proposed scheme, the state estimates

are generated on line by two Kalman filters, one of

dimension n, and the other n2. When n, and n~ are large,

it is much easier to integrate two vector differential

equations with dimension n, and n2 respectively, than to

integrate a single vector differential equation, but with

dimension (n-,+n2). It is thus computationally advantageous

to use the proposed design in generating the state

estimates and hence the physical controls.

Of course, one can think of many more advantages of

working with the uncoupled systems, though the above gives

only two important ones. These considerations lead to the

question of tradeoffs between various choices of control

strategies. There is no universal answer to such a question.

The choice depends crucially on the problem at hand and

the objectives of the designer. If computation time and

communication facilities are not a problem, as in systems

of very low dimension, then absolute optimality may be

the primary goal and we may want to adopt complete

centralization. However, if the dimension of the systems

is large, and there are constraints on the available

facilities, one may want to adopt the control scheme

proposed here. The tradeoff lies precisely in whether we
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want to get optimal performance beyond linear terms In e,

regardless of the Increased expenditure and technical

difficulties involved, or we want a simple and efficient

system, and are willing to accept approximate optimal

performance as satisfactory. Such a decision is ultimately

a test of the designer's experience and engineering

judgement which no mathematical analysis can replace.
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CHAPTER 6 - CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

In the preceding chapters, we have considered the

stochastic control of two weakly coupled linear systems

using quadratic performance indices. Each system is

equipped with its own controller who has access only to

the noisy measurements made on the output of his system.

The physical control input to each system is constrained

to be a function only of the measurements carried out on

that system, in order to reduce the required amount of

communication between the systems. Instead of trying to

solve for the optimal physical controls directly, we

model the weak coupling as additional "fake" white plant

noises. This completely decouples the two systems and the

Separation Theorem is applied to each system individually

to obtain simple, though somewhat suboptimal physical

controls. .

The need to completely specify the "fake" white

plant noise processes prompts us to seek a systematic

method for finding the covariances of these white noises.

A deterministic matrix optimal control problem is

formulated using the white noise covariances as control

variables. Necessary conditions'satisfied by the optimal

covariances are derived using the matrix minimum principle.

These involve the solution of three two-point boundary

value problems. However, if the coupling between the

systems is small enough, the white noise covariances can
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be chosen to be simply zero. In this situation, we need

only to analyze the uncoupled systems.

We then compare the proposed control scheme to the

mathematically optimal one of complete centralization.

We show that the proposed strategy is approximately

optimal. The .practical advantages of using the design over

that of complete centralization are given and the tradeoffs

between the various choices of control scheme discussed.

In the course of the research reported here, a number

of related problems have appeared. They represent

interesting areas for future research.

1. We have shown in this thesis that if the coupling

between the systems is weak enough, i.e., if quadratic

and higher order terms in e can be neglected, our proposed

scheme is both mathematically optimal as well as
i

computationally efficient. If e is not small enough so

that second order effects are still important, we must

investigate how these are compared to the truly optimal

design, before we can study the tradeoffs between the various

control schemes. This important question will be

complicated to examine because of the messy equations

involved.

2. In [5], Chong has suggested another scheme of

controlling weakly coupled linear stochastic systems by

using partial centralization and cooperation between two

controllers with different information sets. This scheme
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is also a suboptimal one. It would be Interesting to relate

his method to our design and compare the .system performance

in both cases. A study of the tradeoffs between these two

schemes are just as important from a practical viewpoint

as the study of tradeoffs given in this thesis.

3. The approach of using white noises to approximate

colored noise processes has also been used in filtering

problems [10]. However, in most of these cases, the
*

covariances of the white noises are obtained by trial-and-

error. It seems that in some cases, it may be possible

to formulate an optimization problem in the choice of the

covariances in a manner suggested in this thesis. What is

a suitable choice for the cost functional and how much loss

in accuracy is incurred in the approximation represent

interesting theoretical as well as practical questions for

future research.

4. The power and practical significance of

perturbation analysis does not seem to be very much appreciated

in optimal control literature, though it has been widely

used in stability theory. An important theoretical

research topic would be to study the control of weakly

nonlinear systems using the perturbational approach. In

the deterministic case, application of the approach to .the

Hamilton-Jacob! equation seems to be fruitful. In the general

stochastic setting, it becomes a much more complex but

vastly challenging question.
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APPENDIX A - PROOF OF THEOREM IN SECTION 4.1

Using the definitions and notations in section 4.1, the

scalar Hamiltonian function H for the deterministic problem

posed in section 3.1 is given by

H = tr[Q M +(A M + M A' + B 0 Bf)P'+(A,,£,

(A.I)

Let (̂t) = N^(t)N1(t), E2('t) = N^(t)N2(t)

Using the matrix minimum principle, the necessary conditions

for optlmality are, after a lot of manipulations

(1) M«(t) = 9P

(2)

(3)

= A*(t)M*(t)+M*(t):A*'(t)

+B*(t)0(t)B*'(t)'v

M*(tQ) = M(tQ)

= -A»'P»(t)-P»(t)A»(t)-QU);

P*(T) = P

= A,,(t)Z»(t)
L —X J. —±

(A.2)

(A.3)
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= - A' ( t ) S « ( f ) - S « ( t ) A 1 1 ( t )
( —11 —X —X —XX

+§*(t)sj( t )r1( t)

r 1 ( t ) z « ( t ) s » ( t ) - p « , ( t ) £ » ( t ) r 1 ( t )
~X —1 —J. — .5.3 —J. —J.

- r 1 ( t )£»( t )p* 3 ( t )

S*(T) = 0 ( A . 5 )

where 0~1(t)C11(t)

(5) ZJ( t ) -

-5.* ( t )^22 ( t )-21( t )-22 ( t )-2 ( t )

- ^-022 ( A . 6 )



(6) S«(t) * 9H
-7 2—

- 'A22(t)Sjj(t)-S«(t)A22(t)

+s«(t)z§(t)rD(t)+r_(.t)E§(t)s.*(t)— d. — c. — d.~ — c — d. — c.

S*(T) =0

(A.7)

where L2('t) = C22(t)§2
 1(t)C22(t)

(7) 0 3H = N*(t)[S|(t)+S*'(t)]+4N*(t)N*'(t)N*(t)

(A.8)

On multiplying throughout by N?'(t), we get

0 = 5*(t)[SJ(t)+SJ'(t)+U£j(t)] (A.9)

3H
0 IN *-\

(A.10)

On multiplying throughout by NS'(t), we get

0 = H«(t)[S«(t)+S«'(t)+45«(t)] (A.11)
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Taking the transpose of (A.9), we get

45*'(t)5*'(t)+S*(t)H*'(t)+S*'(t)Ef'(t)=0 (A.12)
—JL ~-L —-L —J. —X —J. —

Since both £?(t) and S?(t) are symmetric, we get, on

comparing with equation (A.9),

E*(t)S*(t) = S*(t)5*(t) (A.13)

Thus, we can rewrite equation (A.9) as

>+£j(t)S*(t)4-S*(t)E*(t) = 0 (A.

*-"<»

On completing the square, we have

[S*(t)+ \ Sj(t)]2 = [̂  Sj(t)]2 (A.15)

On taking the square root, we have

.. - - S*(t)

Since we cannot make any a priori statements about the

definitions of S?(t),.in general (A.16) has many admissible
•̂ "X

solutions. We will now demonstrate that one -of these

minimizes the Hamiltonian and is therefore the optimal

control we seek.
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Let T,(t) be the orthogonal matrix which diagonalizes

the symmetric matrix S*(t) [12]. Then T-^t) also

2
diagonalizes S* (t). So,

[diag a(S*(t))]2 = T1'(t)S*
2(t)T_1(t) (A.17)

On taking the square root and using the properties of

functions of a matrix, we get

{[diag o(S*(t))]2}2 = T1''(t)[S}
2(t)--:]2T1(t) (A.18)

(A.16) can now be written as

1

5*(t) = ̂ -T1(t){[diag a(S*(t))]
2}2T1'(t)- Jsj(t) (A.19)

(A.19) still has many admissible solutions, but we now

claim that the solution

S»(t) = ̂ (t) diag|o(S*(t))|T1'(t)- Js»(t). (A.20)

minimizes the Hamiltonian. To see this, we first note that

we need only to consider the behavior of the terms

tr[E«(t)S»'(t)+E«(t)E»'(t)] = tr[E*(t)S*(t)+E*2(t)]



-75-

Since T, (t) simultaneously diagonalizes £*(t) and S

these two terms are,by (A.19), just

tr[S*(t)S*(t)+E*2(t)]

1

= tr {̂ [(diag2a(S*(t);)2-diag o(S«(t))] diag o(S*(t)))}

1

+ tr {̂ -[.(diag2 a(S*(t)))2-diag a(S*(t))]2} (A.21)

There are three cases to consider. If S*(t) is

positive semidefinite, then the only positive semidefinite

solution for H?(t) is, from (A.19),

~*(t) = 0 (A.22)
—J_ —

If S|(t) is negative semidefinite, then taking the negative

square roots in (A.19),

l.}Ct) = - TfT^tt) diag o(S*(t))T1'(t)- Ŝj(t) (A.23)

will minimize the terms given in (A. 21). If S*(t) is

indefinite, taking the square roots in (A. 19) such that the

resulting diagonal matrix is positive semidefinite, i.e.,

H*(t) = Jr1(t)dlag|a(S{(t)) IT-^
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will again minimize the terms in (A. 21). But equations (A. 22)

to (A. 24) together say that the solution of £?(t) given in

(A. 20) is the admissible solution which minimizes the

Hamiltonlan H for any S*(t). Hence it is the desired

optimal control.

An entirely analogous development shows that

H*(t) = T(t) diag|o(S«(t))|T(t)- TSCt.) (A. 25)

where Tp(t) is the orthogonal matrix which diagonalizes

Sl(t') , is the desired optimal control.

Equations (A. 2) to (A.?) and (A. 20), (A. 25) are

just the results which comprise the theorem.
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APPENDIX B - ANALYSIS OF THE UNCOUPLED CASE

We have seen in section 4.1 that ^?(t) lies in the

"range" of 0 to - i S?(t) depending on whether S*(t)
_ ^ ~~_L . ~~-L

is positive semidefinite , indefinite, or negative semidef inite.

Since the solution of E*(t) = 0 completely decouples the

equations, it is the easiest to analyze. However, since we

do not know the definitions of S*(t) before we have completely

solved the two-point boundary value problems, we do not know

that by analyzing only the case of H*(t) = (), which corresponds

to S?(t) >_ Q_, will give us all the properties of the

optimal solution. If we also analyze the case of H?(t) =
— -J.

- -^ S*(t), which corresponds to S*(t) <_ Q_, we would have

obtained the solution properties both for the maximum and

the minimum 5?(t). Intuitively, we feel that we would

then be in a position to state all the qualitative properties

of the optimal solutions. It will turn out that by analyzing

the maximum solution 5?(t) = - ̂ S*(t), we can already make
— J. c. — X

a lot of statements about the system behavior. Thus, we

will always examine the case of £^(t) = - |s*(t) first. If

it proves necessary to analyze the other cases, we will then

proceed to do so.

We now turn to the business at hand, i.e., to examine

the situation in which the systems were uncoupled to start

with.
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If e = 0, then

A(t) =

-11"-1

.

iS^Si

a-
0

0

1*1 Q- 1̂

A rj p R ' \f
p'>T t>pp r 'p "oo^p— c c — c. c. — c. — c t- c.

2 A x

0

— 1

2

i-^cie^c

0

0

-1 ,

11 -

-22~-2?-22~2 -2 2_

We have the following equations

(B.I)

AI^) .-

3̂3(V - (B.2)

(B.'i)
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= -A;[1(t)s1(t)-s1(t)A11(t)+s1(t)z1(t)r1(t)

+p_32(t.)M32(t)r1(t)+p_33(t)M33(t)r1(t)

+ r1(t)M3'3(t)p_33(t)

=0 (B.5)

All quantities are evaluated along the optimal trajectory.

* has been omitted for simplicity.

On writing out the equations for the components of

the costate P(t), we have

-P31(t)[A11(t)-B11(t)R^
1(t)B|1(t)K1(t)]

+K1(t)B11(t)R~
1(t)B11(t)K1(t)

P_31(T) = 0^ (B.6)



-80-

and P

-CQ1(t)+K1(t)B11(t)R~
1(t)B11

l(t)K1(t)]

P_1:L(T) = F-L (B.7)

Recalling that

+K1(t)B_11(t)R~
1(t)B^(t)K1(t)-Q1(t)

=

we see that P-i-jCt)' = ̂ i^) is a solution to equation

(B.7). Since the equation Is linear, it is the unique

solution.

Substituting Pi:L(t) » ̂ (t) into (B.6), we get

P31(t)=-[A11'(t)-c11
f(t)e1

1(t)c11(t)z.1(t)]P31(t)

P_31(T) = 0 (B.8)

We see that P_oT(t)=0.' Similarly we can prove that

P32(t)=P3U(t)=P13(t)=P23(t)=P_43(t) = 0. Equation (B.5) is

reduced to
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S1(t)=-A31'(t)S1(t)-S1(t)A11(t)+S1(t) 1̂(t)£1(t)

+r1(t)z1(t)s1(t)

(t)

+r1(t)M33'(t)p33(t)

= . (B-9)

Furthermore, M^.>(t) is symmetric. Using equations (B.2)

to (B.H), and (B.9), we obtain

+ tM33(t)-E_1(t)-]A11
I(t)

-Z1(t)C11'(t)0~
1(t)C11(t)[M33(t)-Z1(t)]

-[M33(t)-E1(t)]C]L1'(t)0~
1(t)C11(t)Z1(t)

Let M33(t)- E_1(t)=ME(t)

Then

+ME(t)[Ai;L'(t)

= 0 (B.ll)
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S1(t)=-[A11'(t)-C11
l(t)0^1(t)C11(t)E1(t)]S1(t)

+P33(t)Mz(t)C11'(t)0~
1(t)C11(t)-

-J.
= 0 (B.12)

Mr(t) = 0 and S-,(t) = 0 is a solution. Again, since the
if ~~~ ~"JL "*""

equations are linear, it is the unique solution, Thus

we see that

H,(t) = 0 (B.13)

Similarly, we can prove

H2(t) =0 (B.15)

Since S,(t) and S_2(t) are themselves equal to zero,

equations (B.13) and (B.15) represent the only solution for

H,(t) and r_(t). In this case, we have no ambiguities.
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APPENDIX C - FIRST AND SECOND ORDER PROPERTIES OF
THE OPTIMAL SOLUTION

The equations of interest are:

+M33(t)[A11
l(t)-C11'(t)0~

1(t)C1;L(t)Z1(t)]

(C'2)

s1(t)«-A11
t(t)s1(t)-s1(t)A11(t)4-ts1(t)z1(t)r1(t)

+P32(t)M32'(t)£1(t)+P33(t)M33
l(t)r1(t)

+P34(t)M3l}
l(t)£1(t)+r_1(t)M13'(t)P13(t)

+r_1(t)M23'(t)P23(t)+r1(t)M33'(t)P33(t)

S,(T) = 0 (C.3)
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We use the perturbation approach and expand the equations

in powers of e. The relations for the zeroth order terms

are the sanve as those obtained in Appendix B. Hence

(C.U)

(C.5)

The first order terms satisfy the following equations

M3̂
1)(t)=[A11(t)z[

0)(t)C11'(t)G-
1(t)C11(t)]M3̂

1)(t)

-331)(tO) = 2- (C'6)

(c-7)

+r1(t)z1
(0)(t)s1

(0)(t)-P3̂
0)(t)z1

(1)(t)r1(t)

-r1(t)z_1
(1)(t)P3^

0)(t)-«-P3^
0)(t)M33

;L)(t)i1(t)
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S1
(1)(T) = 0 (C.8)

where we have used the results of Appendix B and Eq . (C.

and (C.5). Since

(C.9)

we have M 3 j ( t ) =0 (C.10)

Similarly, we can show that

M0)(t)=0 '(C.ll)

Now P13
1)(t)=-[A11'(t)-K1(t)B11(t)R];

1(t)B1]L'(t)]P13
1)(t)

=2 (C.12)

and

= 0
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Hence E.ii~'(t) - 0.

This in turn implies that
(i \

= 0

Thus Eq. (C .8 ) is reduced to

= o

Simultaneous solutions for Eqs. (C.6), (C.7), and (C.16)

give

t) = Z1
(1)(t) =0 . ' (C.I?)

= 0

We can similarly prove that

S2
(1)(t) = 0 (C.20)
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Hence 5n

(1)(t) = 0 (C.21)

52
(1)(t) = 0 ( C . 2 2 )

Since Sn
 (0) (t )=S, (1) ( t ) = S 0 f 0) (t )=S0

( 1 ) ( t ) = 0 , we have,
JL "~*J. ~"C "~"C """"

as in Appendix B,

"̂'(t) = ̂'"(t) = 52
<0)(t) = S2

(1'(t) -0

as the unique optimal solutions for the zeroth and. first

order terms. The second order terms satisfy the following

relations

-»-M 3 ^ 2 ) ( t ) [A 1 1 ' ( t )=C 1 1 ' ( t )0- 1 ( t )C 1 1 ( t )£ 1
( 0 ) ( t ) ]

(C .23 )

+s1
C2)(t)[Au'(t)-c11'(t)e^

1(t)c11(t)z1
(0)(t)]



-s1
(2)(t)[A11(t)-r1

(0)(t)c11'(t)0^
1(t)c11(t)3

+P33°
)(t)[M3̂

2)(t)-Z1
(2)(t)]C11(t)0~

1(t)C11(t)

= o (c.25)

If we analyze the..forcing-, terms .in the equation --- ---

(6.25), we see that a lot of them are nonzero. For example,

(2)P_3̂  (t) is nonzero, and depends, in a very complicated way,

on the various other components of the matrix P(t).

(2V (2)Therefore, we see that S, '(t) is nonzero, and so £1
V '(t)

(2) (2)is nonzero. Furthermore, M-i; (t) is not equal to E, v (t).
—JJ ~-L

Similarly, S2
(2)(t), £2

(2)(t) are nonzero and

(. 2)is not equal to E^2
V (t) . We conclude that the optimal

pseudo-controls will affect the states in quadratic and

higher orders in e.
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AFPENDIX D - PROOF OF THE APPROXIMATE OPTIMALITY OF
THE PROPOSED DESIGN

Consider.

+xJ(t)K1(t)x1(t)=0 (D.I)

Using equations (2.1.1), ( 2 .2 .1) , and (2.2.3) we obtain

+ X{(t)K1(t)x1(t)-l-xj[(t)K1(t)A_1(t)

= 0 (D.2)

Adding equation (D.2) to (2.1.5) we get
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E{xi(t0)K1(t0)x1(t0)+

/T tr[K,(t)A1(t)]dt (D.3)

Using the definition of the .(tVs, we obtain

Ji =

i. J-- A -L J. -1- J. -L J J

°

+ 2eK1(t)A12(t)M21(t)]dt (D.I)

Similarly J? can be shown to be

J2 = tr[K2(to)(Z_022-»-x20x20)]+ J
Ttr[K2(t)A2(t)]dt

/Ttr[K2(t)B22(t)R2
1(t)B22(t)K2(t)M/|l4(t)

to

2eK2(t')A_21(t)M]L2(t)]dt (D.5)
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Since J=J1+J2+ /
Ttr[£1(t )§-[(t )+£2(t )̂ J(t ) ]dt we obtain

equation (5.1.1).

Now, using (5.1.9) and expanding

£JM(t) = Z
 (0)(t) + eZ ̂ 1)(t)+0(e,t) 1=1,2; ,1=1,2.

where lim —^—- = 0 uniformly in t, it can be shown that
e-"Q e

the optimal cost up to linear terms in e is given by [53

to

•f /Ttr[K11
(0)(t)A1(t)

(D.6)

where'K^05, K22
0)(t), K^ (t) , K2[

1) (t) , E^^t), and

—22 ^^ satisfy the following equations
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( D . 7 )

A 2 2 ( t ) K 2 2 ° ^ t ) - K 2 2
0 ) ( t ) A 2 2 ( t )

( D . 8 )

= o ( D . 9 )

= 0
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r o \ = j-
-22 (to} 0̂22

Prom Appendix B, we see that the zeroth order terms

in £_-,(t) and £2(t) satisfy the equations

i2
(0)(t)=A22(t)£2

(0)(t)+Z2
(0)(t)A22(t)

-Z2
(0)(t)C^2(t)02

1(t)C22(t)I2
(0)(t)+A2(t)

Y (0) / , N _ £ /

-2 Uo; -022 i

On comparing equations (D.7), (D.8), (D.ll) and (D.12)

to (2.2.5), (2.2.6), (D.13) and (D.14), we see that

-22°)(t) =



-9V

Recalling that

/T tr[K1(t)A1(t)+K2(t)A2(t)]dt

and that

( D . 2 0 )

= Z2
(0)(t)

we see, 6n comparing equations (D.6) and (D.19)5 that
*Cr\\ *CT \ ' *Cn>) *cn

J vu;+eJ v±; looks different from J UJ;+eJ v ' only in

so far as the former contains the term

while the latter contains instead the terms

J T t r [ 2 e ( K A M 0 ) + K A M 0 ) ) ] d t
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In the following, we shall show that these two terms are

in fact equal. To this end, we consider the equations

for M12(t) and M21(t).

+M12(t)[A22(t)-B22(t)R~
1.(t)B 2̂(t)K2(t)]

(D'23)

Since M1J
0)(t)=M2^

0)(t)MM32
0)(t)=MI||

0)(t)=0, the zeroth

order terms satisfy

-fM12
0)(t)[A22(t)-B22(t)R~

1(t)B^2(t)K2(t)]
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(D'25)

Let the transition matrices ¥, (t,t ), ¥,,(t,t •) , *-,(t,t )
— J. O — d. O — J. O

and * ( k » t ) be de^ined as follows:

)-[An, (t)-B11(t)Rr
1(t).B'

O — J.J. ~~J-J- — A — J.i

(D.26)

= I (D.27)

i ( t , t ) = !_• (D.28)1 0 , o

i2(t0,to) = !_ . (D.29)

With above definition and using the matrix variation

of constants formula,
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< ( t , t ) • (D.3D

Then /Ttr[2e(K1(t)A12(t)M2j°
)(t)+K2(t)A21(t)M1^

0)(t))]dt

= 2e

(D.32)

Furthermore, applying the matrix variation of

constants formula to equations (D.9) and (D.10), we get

J(22
0)(a)A21(a)]$2(t,o)da (D.33)

+Ki:L
(0)(0)A12(a)]l{(t,a)da

Thus

= etr {/Ti2(t0,a)[A.21(o)K22
0)(a)

to

(D.35)
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Using the definitions given in equations (D.26) to (D.29)

and the fact that .

%(t) = £ii°)(t)

K2(t) = K22
0)(t)

we see that Vn(t,tft) « $'(tn,t) (0.36)— J. u — <- u

¥2(t,t0) = lj[(tQ,t) (D.37)

Rewriting equation (D.35) in terms of K1(t), K_2(t),

I1(t,t0), and I2(t,t0) we get

tO

I{(t,t0)K1(t)A12(t)I2(t,t0)x20xio

(D.38)

Using the fact that

tr(A) = tr(A')

tr(AB) = 'tr(BA)

we can write equation (D.38) in the form

(D.39)
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On comparing equations (D.32 and (D.39) we see that

/Ttr[2e(K1(t)A12(t)M2[
0)(t)+K2(t)A21(t)M1̂

0)(t))]dt

and hence
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APPENDIX E - CALCULATION ON THE DEPENDENCE OF

J ON Sx(t) AND £2(t)

Recall equation (5.1.1) gives the cost

+ /Ttr[K1(t)A1(t)+K2(t)A2(t)]dt
fco

+ /Ttr[K1(t)B11(t)R~
1(t)B.[1(t)K1(t)M33(t)

fco

+K2(t)B22(t)R~
1(t)B2

t
2(t)K2(t)MI,lj(t)

+2e(K1(t)A12(t)M21(t)+K2(t)A21(t)M12(t))]dt.

(E.I)

The term due to the initial conditions and the integral

involving A,(t) and A__(t) are independent of the choice

of Hn(t) and 5~(t). Hence we need only consider the

effect of E,(t) and £p(t) on the last two integrals.

Suppose Hn
(0)(t) = E^^t) = H ( t ) = E ( t ) = 0|

— J. ~~J. — c. — c. —

the choice of S,(t) and H0(t) will affect Z,(t) and Z0(t)
"~-L """ <-. ~~J- — £-

only in quadratic and higher order terms in the power

series expansion in e.

( 2}Consider the equation (C.23) for M-,:. (t) . It depends

only on Et) and so M _ ( t ) is independent of 5n(-t).— X — 3 o — J.

Pursuing this argument further by analyzing higher order
( h ) (2)

terms, we see that M.^ '(t) will depend on £^ (t) and
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hence on E , ( t ) . ' Similarly we can show that Mjijj ( t ) ,

T (t), and M, -(t), but not the lower order ones, are
— - - - - - - - -

dependent on the choice of £-,(t) and 5_2(t). From equation

""( ̂  )(E.I) we see immediately that Jv ' and higher order terms

but notthe lower order ones, will depend on §.-,(t) and

E2(t), provided H^
0)(t) = S^^t) = 32

0)(t) = H^U) = 0.
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