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FOREWORD

This is the Final Report on IIT Research Institute Project
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Microwave Devices in X-Band and Above," conducted for the National

Aeronautical and Space Administration-Langley Research Center,

Hampton, Virginia, under Contract NAS1-10716. The active program

period was 12 April, 1971 to 26 July, 1972. Program participants

included: R. Knox, project engineer, P. Toulios, G. Onoda, A. Ali,

and K. Brandt. In addition to this report, various components de-

veloped during the course of the project were delivered to NASA-
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theoretical and experimental results achieved during the project.

Respectfully submitted,

IIT RESEARCH INSTITUTE
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Research Engineer
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ABSTRACT

Program results are described in which the use of high

permittivity rectangular dielectric image waveguide has been in-

vestigated for use in microwave and millimeter wavelength cir-

cuits. Launchers from rectangular metal waveguide to image

waveguide are described. Theoretical and experimental evalua-

tions of the radiation from curved image waveguides are given.

Measurements of attenuation due to conductor and dielectric

losses, adhesives, and gaps between the dielectric waveguide and

the image plane are included. Various passive components are

described and evaluations given. Investigations of various

techniques for fabrication of image waveguide circuits using

ceramic waveguides are also presented. Program results support

the evaluation of the image line approach as an advantageous

method for realizing low loss integrated electronic circuits for

X-band and above.
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1. INTRODUCTION

Microwave integrated circuit techniques have developed rap-

idly in recent years in the frequency range from L- through X-band.

The benefits which have resulted from MIC technology, namely

savings in size, weight and cost, are also desired at frequencies

above X-band. The principal form of transmission line for present

MIC development has been the microstrip transmission line. However,

in these higher frequency ranges the increased attenuation in micro-

strip makes it an undesirable choice for integration of microwave

and millimeter-wave circuits.

The objective of the present program has been to investigate

the use of high permittivity rectangular dielectric image waveguide

for use in MIC's and to direct this investigation towards the appli-

cation of image line integrated circuits in a 60-GHz switched

Dicke-type radioruetric receiver front-end module. This application

would ultimately require the development of a ferrite switch, a

preselector filter, a four-terminal hybrid, a downconverter, and

a solid-state local oscillator. The approach taken in this program

was to first enhance understanding of the basic transmission line

properties. This activity included development of launchers from

metal waveguide, measurement of attenuation, and determination of

radiation from curved waveguides. The effects on attenuation

of adhesive and gaps between the dielectric and the image plane

were also investigated.



The development of various passive devices was also pursued.

Included were a three-terminal junction, a four-terminal hybrid,

a band-stop filter, and an attenuator.

Since the objective in developing the image line devices is

a planar-type integrated circuit technology, considerable program

activity was devoted to investigation and utilization of various

ceramic waveguide fabrication methods. A final topic for investi-

gation was incorporation of active devices in the image waveguide.

Section 2. relates the status of the image line technology

as the program was initiated and also describes the benefits to

be derived from this MIC approach. In Section 3. the various

transmission line properties are examined. The two following

sections—Sections 4. and 5.—relate program activity and results

on passive components and active devices. Section 6. covers the

subject of fabrication methods. The report concludes with conclu-

sions and two Appendices describing theoretical models for the

minimum radius-of-curvature analysis described in Section 3.

Many of the basic transmission line investigations were car-

ried out in X-band. These were continued also experimentally in

V-band. The activity on the band-stop filter and mixer diodes

was also in V-band. These results confirm the original and funda-

mental premise that the image line indeed offers the opportunity

for realization of very low-loss integrated circuits in the mili-

meter wavelength range.



2. BENEFITS AND STATUS OF THE MI-LIC TECHNOLOGY

2.1 Introduction

The status of the Microwave Image Line Integrated Circuit

(MILIC) technology at the time the present program was initiated

will be reviewed briefly in the subsections below. The remain-

ing sections of this report will describe the program activity

and results. The benefits of the image line approach to micro-

wave integrated circuits will be presented in Section 2.3 below.

2.2 The Dielectric Image Line -- Historical Development

The image line was investigated as a form of waveguide in

the 1940's and 1950's. The early investigations were limited

to the semicircular dielectric image line in which low permit-

tivity (e -= 2.5) materials were used. ' ' ' '5 Because only

low permittivity materials were used, the early investigators

found that the image line showed rather poor guidability; i.e.,

unless a rather large radius of curvature was used, the line had

a tendency to radiate significant amounts of the energy it was

guiding.

Early work also included investigations of passive devices.

Launchers from waveguide, horns, wires and slots,5 and coaxial

cables were designed. The image line as an antenna8 was evalu-

ated. Various forms of dielectric resonators9'10'11 as well as

12 13
directional couplers ' were also considered. Very little of

practical value was derived from the early work, primarily because

of the low-permittivity materials used and the resulting tendency

towards radiation at curves and discontinuities.



An indication that the use of higher permittivity dielectric

materials would significantly improve the waveguide "guidability"

can be found in the dispersion curves.given by Schlesinger and

King1 in 1958. In this same publication the authors described

experimental measurements of guide wavelength on various rectang-

ular cross-section dielectric waveguides.

In 1969 Knox and Toulios published an experimentally

verified model for the rectangular dielectric image guide and

proposed that this waveguide serve as the transmission line

for low-loss microwave and millimeter-wave integrated circuits.

A subsequent publication provided an analysis of the dielectric

and conductor losses in the rectangular image line. The theoret-

ical attenuation factors were verified by experiment. A third

publication considered the application of parallel image

lines to the design of a directional coupler. A directional

coupler was fabricated for operation in X-band and was found

to have coupling characteristics in good agreement with theoretical

prediction.

The use of high permittivity image lines (e '••« 6 or greater)

with a rectangular cross-section is essential to the Microwave

Image Line Integrated Circuit* concept as formulated at IITRI

* In the MILIC acronym the words Microwave or Millimeter-wave
are interchangeable depending on the frequency range of
greatest interest in a given context.



and further developed under the present program. A unique family

of distributed signal processing devices has been conceived; some

of these devices have been investigated under this program. The

rectangular cross-section of the dielectric image line is preferable

for the planar-type hybrid integrated circuit fabrication processes

which are described herein. The primary advantage of the dielectric

image line is low attenuation and high-circuit component Q. A
-I Q

comparison has been made between alumina image line and microstrip

transmission line. The results of this comparison will be

summarized in the following subsection.

2.3 Benefits of the MILIC Approach to MIC's

The dielectric image line offers the prospect of a low-loss

planar-type transmission line for fabrication of microwave and

millimeter-wave hybrid integrated circuits. Since the principal

benefit of this transmission line is low attenuation, a compari-

son will be made with microstrip, the transmission line which is

generally used for MIC design and fabrication. In this compari-

son it will be assumed that alumina is used for the dielectric

material in both transmission line configurations.

The alumina rectangular image guide is shown in Figure la.

The corresponding microstrip line on alumina substrate is shown

in Figure Ib. The latter has served as the primary form of trans-

mission line for microwave integrated circuits in recent years.

At higher frequencies (approximately X-band) the conductor losses

in the center strip become excessive and make this form of line

a less desirable choice for circuit integration work.
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The relative dielectric constant of alumina is usually be-

tween 9 and 10. The modal dispersion solutions of the rectangular

image guide for a dielectric constant of 9 are shown in Figure 2

(from Reference 15). The parameter B, the normalized height of

the guide, is given by

B - 4b F - 1B ~ F~ £r l

o

which for e . = 9 is

B = Ill3b

O

Dispersion curves are shown for the fundamental mode E,y

and the first higher order mode E-Y for aspect ratios of 1 and 2.

For the specified guide configuration the curves give guide wave-

length as a function frequency. It can be seen that the image

guide has a useful single-mode frequency range limited by higher

order modes for larger values of B and poor guidability for smaller

values of B.

Losses in both the alumina image guide and alumina micro-

strip guide are compared in Table 1. The results for an alumina

image guide on an aluminum image plane are based on theoretical

calculations presented earlier and are for a typical operating

point (B = 1.6) on the dispersion curves of Figure 2. The theo-

retical losses for an alumina microstrip line using gold conduc-
TQ 90

tors are derived from published results. ' Table 2 gives

theoretical losses in silver plated rectangular metal waveguide.

The attenuation factor in alumina image guide is about 14 times
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lower than that in alumina microstrip guide but about three

times higher than in conventional waveguide at 7.5 GHz.

The ratio of microstrip to image guide losses increases

slightly as frequency is increased. The lower attenuation in

image guide is primarily due to the absence of the conduction

losses in the center strip of the microstrip. Because of geo-

metrical considerations the current density in the ground plane

is less for the image guide, thus contributing less conductor

loss than is the case for the microstrip guide.

The physical dimensions for the alumina image guide and

microstrip guide are compared in Table 3. It can be seen that,

if an image guide with an electrical aspect ratio of one is com-

pared with a 50-ohm microstrip line, the image guide is about

12 times wider and about six times thicker. The larger guide

dimensions for the image line not only contribute to lower ground

plane losses but imply as well that dimensional tolerances will

be considerably relaxed. This becomes an important consideration

as frequency is increased in the millimeter wavelength range. In

the X-band range the alumina image guide could be used for cir-

cuit integration where the low-loss/high-Q performance is impor-

tant and the larger guide dimensions can be tolerated. Note,

however, that conventional X-band waveguide is about three times

the width of the image guide required for 10-GHz operation.

Therefore, the alumina image waveguide offers considerable space

savings with respect to conventional waveguide.

11



Table 3

TYPICAL DIMENSIONS AS A FUNCTION OF FREQUENCY
FOR ALUMINA IMAGE LINE AND MICROSTRIP LINE

Frequency
f(GHz)

7.5

15

30

60

90

Image
Height
b(In.)

0.22

0.11

0.055

0.0275

0.0183

Line
Width
2a(In.)

0.44

0.22

0.11

0.055

0.0366

•vMicrostrip
Thickness
t(In.)

0.036

0.018

0.009

0.0045

0.003

Strip Width
w(In.)

0.036

0.018

0.009

0.0045

0.003

Microstrip substrate thickness selected so as to be maxi-
mized (to minimize losses) and yet small enough so that
the lowest order TM surface mode cannot be supported
(Ref. 20). °
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These theoretical attenuation results indicate that, in the

upper microwave frequency range and in the millimeter wavelength

range, the alumina image line can be used for circuit integra-

tion with better than an order of magnitude improvement in per-

formance relative to alumina microstrip. The fact that the size

of the alumina image guide is several times larger than the

alumina microstrip line is viewed as an advantage in the milli-

meter wavelength range.
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3. TRANSMISSION LINE PROPERTIES

.3.1 Introduction

Various transmission line properties of the dielectric image

waveguide have been investigated both prior to the initiation of

this program ' and during its course as well. The subsections

below describe program activity relating to image waveguide trans-

verse field distributions, attenuation in image waveguide, and

excess radiation attenuation due to curvature. The first topic

considered is the design of launchers from metal rectangular wave-

guide .

3.2 Launchers from Metal Rectangular
Waveguide to Image Waveguide

A microwave or millimeter wave integrated module will

usually receive one or more signals from outside the module.

The incoming signal may be carried on a rectangular or circular

metal waveguide, coaxial cable, or in some cases, a dielectric

waveguide. Launchers from all of these forms of transmission

line into the dielectric image line are therefore of interest.

The most immediate concern for the present program was laun-

chers from metal rectangular waveguide because all test instru-

mentation used to characterize various image line devices oper-

ated with rectangular waveguide. Experimental investigations of

these launchers in various configurations were conducted. A

primary motivation was simplicity of- construction consistent

14



with good efficiency. The designs investigated were those in

which the major fabricative variations were carried out on the

metal part of the launcher with only minimal shaping of the di-

electric required. All launcher designs were developed for a

relative dielectric constant of 9-10.

Typically, the ratio of metal waveguide transverse dimen-

sions to those of image waveguide will be about /eT. Standard

metal waveguide dimensions for X-band are 0.9 in. by 0.4 in.

The image waveguide dimensions employed during this program for

all X-band waveguides were 0.250 in. by 0.125 in.* Impedance

matching requires that the two waveguides be made physically and

electrically compatible gradually over a length of transmission

line, ranging from two to six wavelengths.

Two sources of excess attenuation** were found to be impor-

tant in these launchers. If complete transformation of the fields

from the TE,Q mode in the metal waveguide to the E,Y mode in

the image guide does not occur, then excess attenuation due to

radiation will result. The second form of excess attenuation

is the conduction loss in the metal walls of the launcher. Since

conduction losses cannot be completely eliminated, primary emphasis

of the launcher design activity was to minimize radiation losses.

* The dimensions chosen here were deliberately made somewhat
smaller than otherwise advisable because it was of interest
to operate the waveguide over the range of frequencies where
guidability is poor, i.e., B < 1.2 for e = 9 and a/b = 1.

** Excess attenuation implies attenuation exceeding that which is
typical for the transmission line outside of the launcher.

15



Four types of launchers which successively increase in de-

gree of complexity, but which do not necessarily improve in per-

formance as the complexity increases will now be described. The

general structure of these launchers is shown in Figure 3. This

particular drawing most closely resembles the launcher designated

type B below. The specific construction and dimensional desig-

nations will be given in subsequent figures for each of the four

types.

The first launcher design, herein designated type A, is

shown in Figure 4. No changes in the walls of the metal wave-

guide were made. The dielectric image waveguide was tapered to

a point over a length i. The end of the taper region was located

with respect to the output end of the metal waveguide at the dis-

tance d. Five variations of this configuration were measured with

£ ranging from 1 to 2 in. and d ranging from +0.25 in. to -0.25 in.

The best result was obtained with £ = 1,5 in. and d = 0.25 in.

The test line was a "U" waveguide for X-band operation as shown

in Figure 5.* The radii of the curves were 2.0 in. The measured

*This same waveguide was also used for field distribution
measurements, the fields being probed through the holes in
the image plane. The image waveguide was attached with
Eastman 910 adhesive.

16
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results for this type A launcher are shown in Figure 6. The

excess attenuation below 10 GHz was due to radiation from the

two curves on the "U" waveguide. Above 10 GHz typical attenua-

tion was 2.7 to 3.0 dB with the minimum total attenuation being

2.6 dB, of which 1.6 dB was determined to be losses in the image

waveguide (see Section 3.3). Therefore, the attenuation per

launcher was 0.5 dB. The maximum input VSWR for this "U" wave-

guide was 1.6:1 with typical values 1.3:1 or less, as shown in

Figure 5.

The next launcher configuration investigated involved intro-

ducing tapers in the top wall of the metal waveguide for the

purpose of improving the mode coupling between the two types of

waveguide. This configuration, designated type B, is shown in

Figure 7 (see also Figure 3). The dielectric image line was

given a uniform 1.0-in. taper in both planes to a point. A

metal insert with double tapers was provided with the shape

described by the dimensions &,d, and s, shown in Figure 7.

Several variations of this launcher were tried with i and

d ranging from 1.0 to 2.0 in. in various combinations and vari-

ous values of s. Results for three of these variations are shown

in Figures 8-10. The low VSWR but high attenuation,for s =

0.128 in., shown in Figure 8, indicates excess radiation loss

which increased considerably between 10 and 12 GHz.* The

* Excess loss below 10 GHz is once again attributable to radia-
tion from the curves of the "U" waveguide.
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minimum attenuation was 3.3 dB, indicating an attenuation of

0.85 dB per launcher assuming once again line losses of 1.6 dB.*

The mode coupling was improved and more uniform in frequency

when the gap between the metal taper and the image line was re-

duced to zero, as shown in Figure 9. Attenuation was consistently

about 2.9 dB with minimum loss being 2.6 dB. The launcher reflec-

tions were increased, however, by the tighter mode coupling. This

mismatch was improved when the taper of the metal insert were

shortened to match that of the dielectric taper, as shown in Fig-

ure 10. The minimum total attenuation was 2.6 dB with the

increase in attenuation between 10 and 12 GHz smaller than in the

previous case. The minimum attenuation per launcher was 0,5 dB.

The conclusions drawn from the results presented thus far

are as follows:

(1) The use of top-wall, dotible metal tapers
provides more uniform launcher coupling
with frequency but does not reduce the
minimum attenuation.

(2) The metal taper should contact the top
of the dielectric image waveguide to get
maximum coupling.

(3) The metal and dielectric tapers should be
the same length and be located at the
same position in the launcher to get the
best impedance match.

An additional series of launcher measurements was conducted

on a different "U" waveguide in which the "U" was completely cir-

cular,** rather than having two 90-degree curves connected by a

* The adhesive, as before, was Eastman 910.

** The total line length was reduced by 2.0 in.
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straight section. This waveguide is shown in Figure 11 and

will be henceforth designated the "C" waveguide.

The type B launcher configuration was measured once again

using the "C" waveguide; the results are shown in Figure 12.

The minimum total attenuation was 1.75 dB in the 10-to-ll-GHz

range and increased to 2.25 dB above 11 GHz. Assuming line atten-

uation of 0.72 dB (see Section 3.3.3), the minimum attenuation per

launcher was 0.51 dB.* A variation of the type B launcher was

to introduce a flat section in the double metal taper as shown in

Figure 13. The tapers were the same as those in the type B

launcher. The attenuation of the "C" waveguide with this launcher,

designated type C, is shown in Figure 14. The results were

virtually identical to those of the type B launcher with the

minimum attenuation again 1.75 dB.

In the fourth type of launcher metal tapers were also intro-

duced in the horizontal plane. The type D launcher is shown in

Figure 15. The intended purpose of the tapers in the hori-

zontal plane was to force the horizontal field distribution in

The "C" waveguide was attached with a low-loss temperature
sensitive adhesive, Crystalbond 509 by Aremco, Briarcliff
Manor, New York.
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the metal waveguide to match that of the image waveguide and

reduce the effective aperture from which the metal waveguide

might radiate. The modification did not have the intended

effect, as shown in Figure 16. The minimum total attenuation

increased to about 2.25 dB, an increase of 0.5 dB over the

type B launcher. It is likely that the 0.25 dB per launcher

increase was due to increased conductor losses which was not

compensated by a reduction of mode conversion loss. In fact,

for all of the launcher designs the general conclusion to be

drawn is that mode conversion was not the major problem, but

rather reduction of conductor losses in the metal structure.

As stated at the outset of this subsection, the design of

these launchers was predicated largely on achieving mode con-

version through manipulation of the dimensions and shape of the

metal part of the launcher structure. An alternate approach

is to expand the cross-sectional dimensions of the dielectric

waveguide. This allows higher order modes to exist locally in

the launcher and should provide high efficiency in mode trans-

formation. This approach is also likely to reduce conductor

losses because of lower current densities. This approach may

be worthy of future investigation in order to reduce the launcher

attenuation below the 0.5 dB achieved in present launcher designs,
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3.3 Attenuation in Image Waveguide

3.3.1 Introduction

The "U" waveguide structures, described in the previous sub-

section, are useful in measuring image line attenuation, espe-

cially the excess attenuation due to radiation from the curves.

A second method of determining waveguide attenuation is to mea-

sure the Q of a resonant section of image waveguide. This sub-

section will consider image waveguide attenuation in X-band

(8 to 12 GHz) and V-band (50 to 75 GHz) as derived from "U"

waveguides and the Q of ring resonators.

3.3.2 Loss Mechanisms

Attenuation in the dielectric image waveguide was found to

originate in several different loss mechanisms. These sources

of attenuation are:

(1) Absorption losses in the dielectric material

(2) Ohmic losses in the image conducting plane

(3) Losses in the adhesive

(4) Losses due to surface roughness of the
conductor

(5) Radiation losses from curves due to the
gap between the dielectric and conductor.*

The first two are well-known loss mechanisms and have been

described theoretically. Various results relative to (3) and

* The mechanism in this case is that the gap shifts the disper-
sion curve to a higher B which increases the guide wavelength
(and velocity) for a given frequency and leads to higher radia-
tion from curved waveguides.
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(4) will be considered in the subsections below. The possible

influence of gaps on the results is most pertinent to excess

radiation attenuation from curves and will be considered in

Section 3.6.

The next two subsections will consider experimental results

of measurements in X-band and V-band, respectively.

3;3.3 Attenuation Calculation and
Measurements in X-Bahd

The useful range of measurement for attenuation in straight

image waveguides will be 10 GHz and above. Below 10 GHz excess

attenuation, due to radiation from the curves, was obtained.

A modest increase in attenuation with frequency is expected,

but with only a 20% range of measurement (10 to 12 GHz) any

attempt to determine these small variations experimentally would

be frustrated by lack of measurement precision. Therefore, the

present consideration will be limited to relating various loss

mechanisms to measurements at 10.5 GHz where attenuation was

generally found to be minimum and well above the region of excess

radiation from curves.

All of the X-band image waveguides were constructed identi-

cally. They were designed to have an aspect ratio of 1:1 with

a = b = 0.125 in. (The physical aspect ratio was therefore 2:1,

giving a guide width of 0.250 in.) The dielectric material was
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a ceramic-filled plastic.* The dispersion curves of Figure 2

were used to determine that, at 10.5 GHz (corresponding to

B = 1.26), the ratio AQ/X is 1.78. The guide wavelength is

therefore 0.632 in. The theoretical dielectric and conductor

attenuation factors were obtained using the results presented

in Ref. 16. At 10.5 GHz the dielectric loss was calculated to

be ctj = 0.085 dB/in. The image plane for all X-band waveguides

was brass and the theoretical conductor loss was calculated to

be a =0.025 dB/in.** Then the total theoretical attenuationc

at 10.5 GHz is

at = ac + ad

= 0.110 dB/in.

The length and total theoretical attenuation for the two wave-

guides described previously are given below.

Length Theoretical Attenuation
(inches) dB

"U"

"C"

Waveguide

Waveguide

8

6

.28

.28

0

0

.915

.695

* Custom high-K 707L manufactured by Custom Materials, Inc.,
Chelmsford, MA. er = 9.2, tan 8 <_ 0.001 at 10 GHz.

** The curves for conductor attenuation in Figure 11 of Ref. 16
are not accurate for a value of B = 1.26. Therefore a value
has been assumed as follows:

A a 5 ac x 10
2 =3.5

The effect of possible inaccuracy in this assumption is small
because, for this waveguide and frequency, the dielectric
losses dominate the conductor losses.
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The two remaining attenuation mechanisms to be considered

for frequencies above 10 GHz are dielectric absorption in the

adhesive and ohmic attenuation due to surface roughness. Surface

roughness at X-band can contribute to excess conductor attenua-

tion if the surface roughness exceeds approximately 10 yin.*

The surface roughness of the brass plates on which the image

lines were fabricated was measured to be 10 to 12 p. Therefore,

an approximate increase in conductor attenuation of 10% was

added to the theoretical value, making it 0.0275 dB/in.

The "U" waveguide was attached with the type 910 adhesive,

and the "C" waveguide was attached with the type 509 adhesive.

To compare the attenuation introduced by these adhesives, a sec-

ond set of data was measured on the "C" waveguide with type D

launchers (see Figure 15) but with the type 910 adhesive

rather than the type 509. The results are shown in Figure 17.

The minimum was 2.75 dB compared with 2.25 dB when the type 509

adhesive was used. Thus, in all "U" waveguides an excess attenu-

ation due to adhesive loss of 0.08 dB/in. was included. The

adhesive loss in the "C" waveguides at X-band was considered

to be very small and was neglected in determining total attenu-

ation .

* For a detailed consideration of the effects of. surface rough-
ness in microwave integrated circuits the reader should
review Refs. 21-23. A theoretical increase in conductor
loss of 12% is predicted in microstrip line at 10 GHz by
Sobol (Ref. 21) for a surface roughness of lOyin. This
corresponds to a ratio of A/6 of 0.4, where A is rms surface
roughness and 6 is the skin depth. Since 6 varies as the
reciprocal of /F, then in V-band (60 GHz) the 10% excess
attenuation would occur for A approximately 4 yin.
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The total attenuation in the "U" and "C" waveguides including

the excess attenuation due to surface roughness and lossy adhesive

was then predicted. Reviewing the X-band experimental results

as presented in the previous section, it was then possible to

determine the minimum launcher attenuation. The results of

these calculations and measurements are presented below.

Minimum Measured Theoretical
Waveguide Attenuation Line Attenuation

Launcher
Type

A

B-C

D

3.3.

(dB)
Waveguide

U C

2.6 1

2.6 1.75 1

2.25 1

4 Attenuation Calculations
Measurements in V-band

(dB)
Waveguide
U C

.6 0.72

.6 0.72

.6 0.72

and

Per Launcher
Attenuation

(dB)
Waveguide
U C

0.5

0.5 0.51

0.76

Experimental measurements in V-band of waveguide attenuation

were performed on two different waveguide structures. The first

of these was the "U" waveguide similar to that used extensively

in X-band. Attenuation measurements were also obtained by mea-

suring the Q of a ring resonator. These results are reported in

Section 4.5. The fabrication of these experimental circuits will

first be described and the measurements then presented.

A decision was made early in the program to use only high-

purity alumina waveguides for the V-band experiments because the
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properties of the ceramic-filled plastic are unknown at V-band

and measuring them would be in itself a major program task.

Secondly, the experience to be gained in designing and fabrica-

ting ceramic alumina waveguides was viewed as an important element

of the program.

Two approaches to fabrication of the V-band "U" waveguides

were developed in parallel. One of these was the use of green

alumina tape machined to appropriate dimensions (to allow for

shrinkage during firing) and subsequently sintered into final

form. Details of this fabrication procedure are given in Sec-

tion 6.4.3.

In anticipation that sintering of green ceramic tape might

not yield useful test waveguides, the second approach to fabri-

cating waveguides was the use of abrasive machining, described

in Section 6.3.3.2. Two precision templates were manufactured

to be used in making the "U" waveguides. One of these is shown

in Figure 64. The success of the sintering method made it unne-

cessary to use this method. However, the abrasive machining

method was used to make a waveguide for one of the band-stop

filters, described in Section 4.5 below.

Four each of two different "U" waveguide designs were machined

for sintering. Four of the eight had cross-bars to provide sta-

bility during firing. The machined green tapes are shown in Fig-

ure 18. The four pieces without cross-bars bowed so as to

be unusable. A view of the parts after firing is shown in Fig-

ure 67. Two of the parts are also shown in Figure 19. The pointed
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ends of four guides having cross-bars warped upward slightly.

These four pieces were refired at a slightly lower temperature

with ceramic disks used as weights to flatten the tips. Unfortu-

nately, fusing occurred between the waveguide tips and the disks

on two of the four pieces. The tips broke off when an attempt

was made to remove the waveguides from the disks.

These waveguides represented two different designs. These

designs are described by the dimensions in the following.

"U" Waveguide

.No. 1 No. 2
Width 2a
(in.) 0.050 0.038

Height b
(in.) 0.025 0.025

Mean Radius
of Curvature
(in.) 0.275 0.210

Length of
Tapers (in.) 0.300 0.300

Length of
Straight
Section (in.) 0.400 0.530

The broken tips occurred on both specimens of line No. 1.

However, it was decided to fabricate new tips and concentrate

on measurement of this waveguide because it had an aspect ratio

of 2:1 for which theoretical modeling and numerical results were

readily available. The No. 1 waveguide and tips were polished

on the lower side to a surface finish of 2 to 4 pin. The waveguide
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and tips were installed in the aluminum base-plate assembly as shown

in Figure 20. Viewed from the input/output side, the assembly

appears as in Figure 21. The base-plate surface was also polished

to a surface of 2 to 4 yin.

The launcher designs were similar to those designated type B

in Section 3.2 above. The top wall of the metal waveguide was

tapered linearly over 0.3 in. to a low point and then tapered

linearly upward over 0.3 in. The tapered tip of the alumina wave-

guide was colocated with the downward taper of the top wall of the

launcher. Detail of the launcher construction is shown in Fig-

ure 22. In this view, one of the launchers has been removed

and inverted to show the metal tapers.

The cross-sectional surfaces where the tips and waveguide

were joined were cut and polished flat so that, when the tips were

placed against the "U" waveguide, no gap of any consequence to

the measurements was present. When the alumina waveguides were

attached to the polished alumina surface, weights were used in

order to assure intimate contact between the alumina and aluminum.

Measurements were made under two conditions of adhesive applica-

tion to "U" waveguide No. 1. In the first case, the type 509

heat sensitive adhesive was applied uniformly over the entire

undersurface of the alumina waveguide and tips. In the second

case, the adhesive was applied very sparingly to about 25% of the

undersurface of the alumina waveguide. Measurements of attenua-

tion of the "U" waveguide for these two cases are shown in Fig-

ures 23 and 24, respectively.
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Both attenuation curves showed a minimum at about 65 GHz.

The increase in attenuation above 65 GHz was attributed to an in-

crease in excess radiation from the launcher due to a gap between

the ceramic and the metal taper. Details on this gap radiation are

given subsequently in this subsection.

The increase in radiation below 65 GHz may have been due to

radiation from the curves in the waveguide. In the X-band measure-

ments curvature radiation was observed for values of B less than

1.25. The R/2a* value was 8.5. The R/2a ratio in the V-band line

No. 1 was 5.5. Since the radius of curvature was reduced and

the aspect ratio a/b was the same, the curvature radiation would

occur at higher values of B.

Calculations of dielectric and conductor losses** were per-

formed at 65 GHz (B = 1.56). The dielectric attenuation,

assuming er = 9.6 and tan 6 = 0.0002,*** was calculated to be

0.107 dB/in. or 0.009 db/X . The conductor attenuation was cal-

culated to be 0.298 dB/in. or 0.025 db/A . The total theoretical

attenuation was therefore 0.405 dB/in. or 0.034 dB/X .

* R/2a is the ratio of the mean radius of curvature to the wave-
guide width.

** Derived from Ref. 16; see also Section 3.3.3 above.

*** Data from American Lava Corp., Chattanooga, Tenn., supplier
of the type 772 alumina green tape, indicates tan 6 = 0.0001
and er = 9.8 at 25 GHz. The values assumed in the calculations
allow for changes as the frequency is increased to 60 GHz.
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In extrapolating the previously determined launcher attenua-

tion from X-band to V-band, (see Section 3.3.3) an assumption was

made about the division of the total attenuation between conductor

loss, dielectric loss, and radiation loss. The portion of the

total 0.5 dB attenuation attributable to conductor loss in the

type B launcher was assumed to be 0.35 dB.* Since the conductor

losses increase according to /f between the two frequencies of

calculation (10.5 and 65 GHz), the conductor losses were expected

to increase to about 0.875 dB per launcher. Because of tolerances

in fabrication, the spacing s between the metal taper and the

alumina was 0.010 in. rather than zero as intended. On the

basis of earlier measurements on the type B launcher,** and

the existence of a gap s approximately equal to b/« , it was assumed

that the excess radiation attenuation at 65 GHz was 0.2 dB per

launcher.

The length of the ceramic waveguide within the launcher was

0.6 in. The assumed dielectric attenuation within the launcher

was therefore 0.06 dB per launcher. Adding together the per-

launcher attenuation factors, 0.875 dB conductor attenuation,

0.2 dB radiation attenuation, and 0.06 dB dielectric attenuation,

the total expected attenuation for two launchers was 2.27 dB.

* Since the dielectric attenuation factor for the image wave-
guide was calculated to be 0.085 dB/in, the dielectric attenu-
ation within each launcher would be about 0.15 dB..

** Figure 8 shows that, when a gap of 0.128 in. (p=b) was
introduced, the excess radiation loss was 0.35 dB per
launcher. . .
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The line attenuation due to dielectric and conductor losses was

calculated to be 0.512 dB for a line length of 1.265 in. Total

expected attenuation, not considering losses in the adhesive,

was therefore 2.78 dB. The measured attenuation was about 3.2 dB

at 65 GHz, as shown in Figure 23. The attenuation due to

adhesive was therefore about 0.4 dB when about 25% coverage was

used. When 100% adhesive coverage was used, the expected increase

in attenuation was therefore an additional 1.2 dB. Comparing

Figures 23 and 24 the measured increase due to added adhesive

was about 1.3 dB at 65 GHz. Thus, the total attenuation due

to adhesive, when 100% coverage was employed, was about 1.6 dB

or 1.26 dB/in. Therefore, the adhesive, which apparently contributed

negligible attenuation in X-band, became a serious contributor

to attenuation in V-band.

Measurement of attenuation with "U" waveguide No. 2 is shown

in Figure 25. All measurement conditions were indentical to

those for waveguide No. 1. The minimum attenuation was 3.0 dB,

about 0.2 dB lower than with waveguide No. 1. A slightly lower

attenuation would be expected because the cross-sectional area

was smaller and dielectric attenuation would be reduced. However,

other variables could also account for changes in the minimum

attenuation as well. Since adhesive attenuation was high, varia-

tions in the amount applied could influence results. Also, the

positioning of the waveguide within the launcher region could

influence launcher attenuation.
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The above results clearly indicate that many factors contrib-

ute to excess waveguide attenuation and can seriously degrade

the performance of components requiring low attenuation. Other

factors that can affect attenuation were also investigated

and will be discussed in the following subsection.

3.3.5 Effects of Surface Preparation and
Metal Films on Attenuation"

The additional measurements of attenuation presented in this

subsection relate to excess loss mechanisms in the V-band alumina

image waveguides. The alumina "u" waveguide designated No. 2

was measured on a second base plate. This base plate, shown

in Figure 26 was made of brass and plated with gold.* The

launchers were of the same type as in the aluminum base plate

described earlier. The primary difference in the two base

plates was that, in the gold plated brass version, no attempt

was made to achieve a very flat or highly polished surface.

Measurement of attenuation in "U" waveguide No. 2 on the gold

plated brass base plate (100% coverage of the type 509 adhesive)

is shown in Figure 27. The increase in attenuation compared

with Figure 22 was 1 dB or more which was attributed to lack

of flatness and/or surface roughness, A further increase in

attenuation was noted when the alumina waveguide was attached

with the type 509 heat-sensitive adhesive but without benefit

of weights during the cooling of the adhesive. The increase

* Thickness was greater than 0.0001 in. The skin depth in gold at
60 GHz is 0.000016 in. Therefore, the plating thickness exceed-
ed the skin depth by more than six times.
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Fig. 26 GOLD PLATED BRASS BASEPLATE AND LAUNCHERS FOR
V-BAND MEASUREMENTS

56



x
o

o
c
0>
3
cr

O)
in

o
in

gp -

UJ
i-

_i
o.
LU
in

m

in
in
cc
GQ
x»

O
_l
O

o
CVJ

O

LU

O

z
o
K

Z)
Z
UJ

cvi

6»

uo;|jasu|

57



in attenuation was typically 2 dB, shown in Figure 28. The

attenuation increase in this case was attributed to a larger

gap between the alumina and the base plate which would contain

a larger volume of adhesive.

It is evident from these results and those of the previous

subsection that adhesive losses are of primary concern in the

•fabrication of image waveguide integrated circuits. A method was

investigated for eliminating the adhesive losses. The deposi-

tion of a conducting metal film on the undersurface of the

alumina waveguide would require the conduction currents immediately

below the alumina to flow in the film rather than in the base plate,

If the adhesive were placed between the base plate and the film,

it is expected that the capacitive coupling between the two metal

surfaces would prevent dielectric losses in the adhesive.

Two attempts to verify this theory were made. The use of

films in conjunction with the band-stop filter was successful

with Q values of 1000* achieved in one measurement and 660 in a

second measurement. Details of these results are given in Sec-

tion 4.5.

* If this Q of .1000 is assumed to be the unloaded Q, then the
corresponding attenuation factor would be a = 0.027 db/X .
This compares favorably with the value of 0.025 dB/X g

calculated for the image waveguide at 65 GHz ^
(see Section 3.3.4).
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An aluminum film of 0.000078 in.* was plated on the polished

undersurface of the alumina "U" waveguide No. 2. The alumina wave-

guide was attached to the gold/brass base plate with the type 509

adhesive. The attenuation of the "U" waveguide with the film is

shown in Figure 29. The attenuation curve indicated excess „;,

radiation or absorption for all frequencies below 70 GHz. The

attenuation above 70 GHz was excessive, but was attributable to

one of the mechanisms described earlier (adhesive loss, excess

conductor loss) because this waveguide was not weighted during

attachment (see Figure 28). The result strongly suggested

that the dispersion curve, shown earlier in Figure 2 for e = d

and a/b = 1, was not applicable and that the wave velocity in-

creased below 75 GHz to the point where radiation from the curves

in the waveguide was possible. If a gap existed below the film,

as was evidsnced by the excess attenuation above 70 GHz, then the

waveguide indeed conformed to a rather different model than the

image waveguide. The waveguide model with the gap would be as

shown in Figure 30 where the film-to-image plane spacing is

designated g. The influence of the gap g would be to increase

the velocity for any given value of frequency (B). This point

is taken up further in Section 3.6.

The results of this subsection clearly indicate the need for a

method of attachment of the ceramic waveguide to the image plane

which does not introduce additional attenuation or cause a change

* The skin depth in aluminum at 60 GHz is 0.000016 in. There-
fore, the film thickness exceeded the skin depth by five times.
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Metal Films

2a

ir
2g

7
Image Plane

Fig. 30 MODEL OF THE IMAGE WAVEGUIDE PLATED WITH
METAL FILM AND HAVING A GAP g BETWEEN THE
FILM AND THE IMAGE PLANE
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in the waveguide dispersion properties. While the results of

investigations using films were favorabler further understanding

of this approach is required before any conclusions are drawn.

The use of solder or braze appears to be an approach with consid-

erable merit in that it would eliminate any possible gap. The

constituents must be selected carefully so as not to introduce

an increase in conduction losses. Attachment of the ceramic

waveguide to the image plane is considered further in Section 6.3.4,

3.4 Field Distribution in the Image Waveguide

3.4.1 Introduction

The field distributions in the image waveguide have been pre-

dicted theoretically. When the image waveguide is straight,

the field distribution must be symmetrical about the center line

of the dielectric. However, when the waveguide is curved, the

field distribution changes across the waveguide. Also when an

image waveguide couples to another, field distributions must change

due to the effects of mutual coupling. In the following subsec-

tions measurements of the field distributions in a curved guide

and in a three-terminal Y junction will be described.

3.4.2 Field Distribution a Curved Waveguide

The X-band "U" waveguide, shown in Figure 5, was used

for measurement of field distribution. The linear array of small

holes in the image plane allowed the insertion of a short electric

field probe into the fields of the image waveguide and adjacent

areas. Probing of the fields along the straight section of the
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image waveguide indicated, as expected, symmetry of the fields

at all frequencies in X-band. The field distribution radially

along the 2~in. radius of the curved section of waveguide is

shown in Figure 31 (a) through (f) for various frequencies

between 8 and 12 GHz. In these figures zero distance is at the

center of the dielectric. Negative distances represent radial

measurements toward the center of the waveguide curvature. Posi-

tive distances represent measurements radially outward from the

center of curvature. The ordinate is power level in dB

relative to the maximum.

In Figure 31(a) the field distribution at 8.0 GHz was

found to be highly asymmetrical with distribution shifted radi-

ally outwards due to radiation from the curve.* The radiation

from the curves was clearly evident in the results shown earlier

in Figure 6 for frequencies below 10 GHz (see also Section 3.5).

The asymmetry in the central field lobe continued but diminished

as the frequency was increased from 8 to 10 GHz. This is shown

in Figures 31(b) through (e). Note that even within the

dielectric material the peak of the field distribution was shifted

outward from the center line.

In Figure 31(f) the field distribution at 11 GHz was very

nearly symmetrical in the central lobe. Unfortunately, the

probe pickup, apparently due to excess radiation from the launchers,

* The sidelobe fields, which were typically 15 to 20 dB down from
the peak value, are difficult to interpret because of stray
fields from the launcher.
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caused an increase in the sidelobe levels. As the frequency was

further increased, the pickup dominated the measurement, and the

fields within the waveguide were not discernible. It should be

noted that these measurements were performed prior to the time

in the program that launcher efficiencies were improved and the

excess attenuation due to adhesive loss became apparent.

The distribution measurements correlate well with the attenu-

ation measurements given in Section 3.3.3 in that they show a

shift in the field distribution radially outward as radiation

attenuation increased. The broadening and shifting of the central

field lobe with decreasing frequency is an indication of degradation

in the guidability of the image waveguide.

3.4.3 Field Distributions in the Y Junction

Field distributions were also measured on the three-terminal

junction designated Y-l and shown in Figure 42. Small holes

in the image plane, located 0.1 in. apart, were drilled in

two linear patterns as shown in Figure 32. The relative field

distribution at various frequencies between 8.5 and 12.0 GHz in

junction Y-l are shown in Figure 33(a) through (e). The line

of measurement marked £ passes through the center of the junction,

a null is expected at a distance 0 in., and peaks are expected

at approximately +0.4 in. Examination of the £ distribution

at lower frequencies (8.5 through 10.0 GHz) shows that three

distinct peaks are found and that the null at 0 in. is not

very deep. The first peak, which occurs at -0.2 in., coincides
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Fig. 32 JUNCTION Y-| SHOWING HOLES FOR INSERTING

FIELD PROBES
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with the outer radius* of branch 1. This indicates poor guida-

bility because the fields are shifted away from the center of

the waveguide. The poor guidability of the divided field modes

in branches 1 and 2 accounts for the poor null at the 0 distance

and for the double peak occurring at +0.2 in. and +0.4 in. As

frequency was increased, the double peak became a single peak at

a distance +0.35 in., which is the approximate center of branch 3.

A deep null developed at a distance +0.1 in. which is close to

the center of the junction. The first peak remained at -0.2 in.

for all frequencies which indicates somewhat of a guidability

deficiency even at 12 GHz. This observation could account for .

excess losses that were measured in this junction (see Figure 43).

The field distribution along the offset line showed a single

dominant peak at a distance +0.2 in. at lower frequencies. As

frequency was increased, a second peak developed at -0.15 in. which

is the center of branch 1. This change represents the improvement

of guidability in branch 1 between 8.5 and 11 GHz. At 12 GHz

the two peaks became one broad peak indicating that the modes

in branches 1 and 3 were closely coupled together.

The transmission characteristics for junction Y-l, given in

Figure 43, showed that despite some excess radiation and loss,

the behavior of the junction was about as expected—between 10

and 12 GHz. This same observation can be made about the two sets

* Outer radius refers to the edge of the waveguide closest to the
center of the junction.
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of field distribution measurements described above. The conclu-

sion drawn from these results is that no circuit component which

involves curved waveguides can perform as desired at frequencies

where radiation from the curved waveguides is significant.

3.5 Radius of Curvature Effects

3.5.1 Introduction^

During the course of the program, both theoretical and experi-

mental investigations were conducted in an attempt to determine

quantitatively the amount of energy radiated from curved dielec-

tric image guides. Two curved waveguide configurations were

used in the experimental work: (1) the "U" shaped guide and

(2) the "C" shaped guide. As shown below, the correlation between

theory and experiment was good with differences resulting primarily

from gaps under the image waveguide which were not taken into

account in the theoretical model.

3.5.2 Theoretical Analysis

Two different methods of analysis were employed to determine

energy loss by radiation from curved dielectric guides. The first

method viewed the guide configuration as a boundary-value problem.

Employing Maxwell's equations and applying appropriate boundary

conditions at the interfaces of the image guide, a set of two

characteristic equations were obtained as shown in Appendix A.

Solving for the eigenvalues of this system of equations yields

two important pieces of information, i.e., the guide wavelength

in a curved waveguide section and also the attenuation constant
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(dB/radian) due to radiation. However, as explained in Appen-

dix A, numerical difficulties were encountered in the process

of searching for complex eigenvalues which represent the order

of the various Bessel functions involved. The computer-program

yielded numerical results which were accurate for the guide

wavelength of a curved waveguide but entirely erroneous results

for the radiation constant (see Appendix A for details) .

To circumvent this difficulty, another method was used to

obtain only the radiation from curved guides. This analysis is

presented in Appendix B where numerical results are included.

3.5.3 Experimental Results

The experimental measurements were conducted at X-band using

"U" and "C" shaped image line configurations with a/b = 1 and

er = 9 . The results are presented in Figure 34 where the

attenuation constant (in dB/radian) is plotted versus frequency.

The radiation effects are-clearly seen at the lower end of the

X-band. In addition to the experimental results, Figure 34

includes the theoretical results obtained on the basis of the

approximate analysis presented in Appendix B.

The fact that the general shape and slope of the theoretical

and two experimental curves are approximately the same is con-

sidered verification of the validity of"the approximate theoreti-

cal model. The lateral displacement (in B) of the three curves

is attributed to gaps between the dielectric waveguide and the

image plane (see Section 3.6 below). The theoretical calculation,

since it does not consider the existence of a gap, predicts lower
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attenuation due to radiation. The existence of the gap in the

"U" and "C" waveguides increases the wave velocity and causes

greater radiation from curves.

3.6 Gap Effects

In the process of realizing dielectric image waveguides

during the course of this program, the presence of a small but

finite gap, either air or dielectric filled, between the dielec-

tric waveguide and the conducting image plane was unavoidable.

Figure 35 shows two different techniques that were employed to

fasten the image guide to its ground plane. In Figure 35(a) a

thin film of adhesive was used to minimize the gap size. Theo-

retical calculations have been performed and, as expected, have

shown that even very small gaps can increase propagation velocity

or guide wavelength substantially because the guided energy experi-

ences , in effect, a smaller overall dielectric constant if the gap

material has a dielectric constant lower than that of the image

waveguide. The result of this gap effect is that the waveguide is

less capable of guiding energy around bends, or that its guida-

bility is poorer than that of the corresponding no-gap guide„

Experimental measurements confirm this conclusion as shown in

Figure 34.

The thin film conducting coating, shown in Figure 35(b),

was introduced for the purpose of reducing any excessive dielectric

losses in the gap glue. Measurements, however, showed a substan-

tial increase in insertion loss due to radiation from a curved

image guide (see Figure 29). A qualitative analysis of this

particular configuration substantiates the measured excessive

loss, since the guide configuration of Figure 30 can be viewed
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as two parallel transmission lines, one corresponding to the rod

and the other consisting of the thin conducting film and ground

plane. The later, being a two-conductor line, can support a

TEM type mode and can guide a substantial amount of energy if

excited efficiently. Considering the launcher configurations

used in the experimental work, it is possible that some energy

was coupled into the TEM mode of the two-conductor transmission

line. Thus the glue losses could conceivably still be present

despite the presence of the film and could increase the insertion

loss of the guide, the amount of increase depending on the loss

tangent of the glue. Furthermore, additional loss due to radia-

tion would also be possible from the two-conductor equivalent

transmission line when the image guide is curved.
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4. PASSIVE COMPONENTS

4.1 Introduction

A family of passive distributed components will be required

in order that various integrated modules may be designed and

fabricated to provide necessary system signal processing functions

This family should include three-terminal junctions, couplers,

attenuators, four-terminal hybrids, and various filter functions.

The nature of these various components for image line integrated

circuits will generally be somewhat different than the corre-

sponding component when fabricated in metal waveguide, microstrip,

or coaxial line. The two factors which contribute to these dif-

ferences are:

(1) the fact that the image line is not
enclosed by metal, and

(2) the need to observe minimum radius
of curvature requirements.

The subsections below will describe the specific nature of these

components and illustrate the differences brought about by these

two image line properties.

4.2 Attenuators

Two approaches were used to the introduction of absorbing

devices in the vicinity of the image waveguide for the purpose

of achieving signal attenuation. Both devices employed were

made from machinable microwave absorbing material,* such as

typically used in waveguide attenuators or terminations.

* Eccosorb MF124, Manufactured by Emerson and Cuming, Canton, MA.
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The configuration of the first attenuator is shown in

Figure 36. This device was intended to serve as a variable

coupler where the absorbing block would be moved laterally on

the ground plane with variable spacing S between the absorbing

block and the image waveguide. Attenuation and VSWR measurements

were made at the three spacings S = °°, S = 0.125 in., and S =

0.062 in., as shown in Figure 37. These results show that

the coupling into the absorber is very frequency dependent

as is the resulting signal attenuation. This is not an unexpected

result in view of the frequency dependence of parallel-coupled

image waveguides (described in reference 17). When the spacing

between coupled image lines is uniform, the coupling factor

was shown (Figure 17 of Ref. 17) to vary with frequency in

such a way that, as frequency is decreased, the coupling increases

to a maximum value and then oscillates between maxima and minima.

In Figure 37 the coupling is very small at 12 GHz but

increases rapidly as the frequency is decreased. The attenuation

increased to about 8 dB for a spacing S = 0.125 in. and to about

22 dB for a spacing of S = 0.062 in. at 10 GHz. The input VSWR

was improved by the presence of the attenuator because the

reflections from the output launcher were somewhat absorbed

and did not fully contribute to the measured VSWR.

Uniform attenuation with frequency requires uniform coupling

between the image waveguide and the absorbing block. One possi-

ble approach to achieving uniform transverse coupling is to use

nonuniform spacing between the coupled image waveguides.
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Theoretical modeling for such couplers has not as yet been carried

out. There isr however, reason to assume this will be an effec-

tive method by analogy with various microwave directional cou-

plers in which coupling is allowed to vary along a distributed

coupling region.

Results with a second absorber indicate that uniform cou-

pling can be obtained by placing the absorber in contact with

the top surface of the image waveguide. A diamond-shaped absor-

ber was placed on the image waveguide as shown in Figure 38.

The attenuation properties of this absorber are shown in

Figure 39. The attenuation, due to the absorber, was rea-

sonably constant at 10 dB from 9 to 12 GHz. The attenuator also

helped remove nonuniformities in the transmission due to the

launchers.*

Considerably more investigation would be required to relate

physical dimensions to attenuation properties. However, these

results encourage the conclusion that frequency independent

absorbers for attenuators and terminations can be realized con-

veniently with the image waveguide.

4 . 3 Y Junction

A device of fundamental importance in several passive trans-

mission line components is the three-terminal junction. Power

dividers and various types of hybrids are examples of such com-

ponents. The three-terminal junction usually takes the form of

* The launchers used for these measurements were not well matched
and efficient throughout the frequency range as is clearly shown
by the excessive ripple on the attenuation curves in Figures
37 and 39. 89
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a "T" or "Y" in rectangular metal waveguides, the latter used

when electrical and/or physical symmetry is required at all three

terminals.

The discussion of radius of curvature limitations in

Section 3.5 has shown that the image waveguide cannot tolerate

an abrupt change in the direction of propagation without intro-

ducing undesirable radiation losses. Therefore, a three-terminal

junction which requires abrupt changes in direction cannot be

used. The "T" junction and even the abrupt "Y" junction are

not suitable configurations for the dielectric image waveguide.

A curvalinear "Y" junction in which minimum radius of curva-

ture limitations are observed has been investigated. The config-

uration of this junction is shown in Figure 40. The principal

component application for which this "Y" junction has been consi-

dered is the ring hybrid. A four-terminal ring hybrid in which

the curvalinear "Y" is employed is shown in Figure 41. This

component will be considered in more detail in Section 4.4.

Each terminal of the "Y" junction is characterized by its

waveguide width w and a transition region from single-width to

double-width waveguide. The junction region consists of three

curved arms of single-width waveguide. The radius of the wave-

guides in the junction region must exceed the minimum allowable

for the dielectric constant, dimensions, and frequency range

applicable to the circuit.
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Two "Y" junctions were fabricated and evaluated in X-band

(8 to 12 GHz). The waveguide in each case was a commercial cera-

mic-filled plastic.* Cross-sectional dimensions were 0.125 in.

by 0.250 in. The adhesive used was a quick-setting contact

cement.** The launchers were the type A1 (see Section 3.2) .

The evaluation of the "Y" junctions was carried out prior to

the time in the program when a greater appreciation developed

for the importance of the gap, the adhesive, the conductor, and

the launchers in contributing to excess transmission line loss

(see Sections 3.2 and 3.3). Therefore, the total losses observed

in the various "Y" junctions include contributions from these

factors as well as those associated with the properties of the

junction.

Junction Y-l is shown in Figure 42. The mean radius of

the curved guides was 1.66 in., and the transition region was

rather short, approximately 0.6 in. The power transmission loss

from the input terminal (No. 1) to the two output terminals

(Nos. 2 and 3) is shown in Figure 43. The output power trans-

mission curves are labelled ?„ and P_. The minimum loss was

about 6 dB with typical loss ranging from 6 to 11 dB. There was

considerable variation in output with frequency, and differences

in output from terminals 2 and 3 were as high as 4 dB. The in-

* Custom Materials Inc. material No. 707L, e •- 9.2, tan 6 < 0 001
at 10 GHz. r

** Eastman 910.
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crease in loss at frequencies below 9.5 GHz was due to radiation

from the curved waveguides. The input VSWR was less than 1.9:1

over the band with typical values 1.4:1 or less.

Initially it was concluded that the excess loss (above 10 GHz)

resulted from junction mismatch and radiation. Later insight

into the excess loss contributed by the launchers and by gap

effects led to the conclusion that about 1.5 to 2 dB of this

excess loss was attributable to factors not involving the junction

design.

The junction was, however, radiating excessively at frequen-

cies above 10 GHz for reasons not attributable merely to the

curvature of the guides. Two locations for impedance mismatch

are apparent. One is where the input waveguide divides, and

the second where the waveguides recouple at the two output

terminals. A number of attempts was made to reduce junction

radiation by placing dielectric and metal overlays at the point

of division. These attempts were relatively fruitless, leading

to the conclusion that significant radiation was not resulting

from mismatch at that point.

Considerable improvement in transmission characteristics

was obtained by suppressing radiation at the point of recoupling.

Diamond-shaped overlays, placed as shown in the insert of

Figure 43, caused a change in the power transmission, as indi-

cated by curves P2' and ?3' in this figure. The improvement

above 10 GHz was typically 2 dB or more. The overlay, which

was 0.125 in. thick and made of the same dielectric material

98



as the waveguide, increased the impedance of the waveguide locally

and provided a better match at the region of recoupling.

It was shown in an earlier section that, with the type A

launchers, an insertion loss of 1.5 to 1.75 dB can be expected.

The use of the type 910 adhesive apparently added about 0.25 dB

additional loss. Thus, if only the junction properties are

considered, the curves of Figure 43 can be adjusted to show

approximately 2 dB less insertion loss. Therefore, with the

use of improved matching, as shown by curves P2' and P_',

the Y junction was typically within 1 dB of desired performance

over much of the frequency range above 10 GHz.

In order to provide a match, the impedance of the junction

region waveguides should be higher than that of the input-

output lines. The impedance match of the Y junction will also

depend on the terminal impedances. If the Y was intended for

use in a ring hybrid, then impedance matching requires that

the impedance of the ring waveguides be less than the input-

waveguides by a factor 1//2.* Suppose the input (terminal 1)

impedance is ZQ. The terminating impedances for the Y junction

at terminals 2 and 3 would be ZQ//2. Impedance matching at

the coupling point would require that the transition region

impedances be 2(ZQ//2") or Z /2~.

* The input terminal is loaded on the ring by two output
terminals with impedance ZQ. The arms of the ring having
impedance ZQ//? act as impedance matching sections.
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Locally, the input (terminal 1) would see a lower impedance

equal to 1/2(Z /2). This mismatch could be accommodated by

gradually lowering the impedance as the dividing junction is

encountered.

Field distribution in junction Y-l was measured at several

frequencies. These measurements will be found in Section 3.4.3.

In a second version of this junction, more gradual transi-

tion regions were introduced. This junction, designated Y-2,

also had a mean radius of curvature of 1.66 in., but the tran-

sition regions were given a gradual taper from a line width W

to a width 2W. The dimension W was 0.250 in. as in junction

Y-l, but the transition region length was 1.5 in. This junction

is shown in Figure 44. The type 910 adhesive was once again

used to attach the dielectric waveguide to the ground plane

and the launchers were again type A.

The power transmission P~ and P_ at terminals 2 and 3,

respectively, is shown in Figure 45. Clearly, this junction

had greater attenuation than junction Y-l. The VSWR was 1.85

or less and typically 1.45 or less over the band. Radiation

from the junction was apparent, as in junction Y-l. The first

attempt to suppress this radiation was with dielectric overlays

in the coupling region as was done with junction Y-l. The trans-

mission was improved, as shown in Figure 46, by the overlays

which were diamond-shaped, 0.125 in. thick and 1.0 in. long.

A second approach to reducing the radiation was to cut long

slots down the center of the impedance tapers in the transition
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region to cause the waveguides to recouple more gradually. The

results are shown in Figure 47, and it is clear that this

method did not produce the desired reduction in excess radiation

loss.

In summary, the most favorable results with both junctions

were obtained when the impedance in the junction region was in-

creased using dielectric overlays. Excess losses were present

due to the launcers and the adhesive used. Obtaining satis-

factory performance from this device will require modeling of

the impedance properties of the junction and transition regions

in order to avoid excess radiation losses which occur where the

waveguides recouple.

4.4 Ring Hybrid

A limited investigation of a ring hybrid was conducted in

which the three-terminal junction Y-l, described in Section 4.3

above, was used. The mean radius of curvature R = 1.66 in.,

which was used in junction Y-l, was also used in the design of the

ring hybrid. The waveguides were of uniform cross section* every-

where, with the same a and b dimensions as were used in the Y-l

junction. The design of the four-terminal ring hybrid is shown

in Figure 48.

* The cross-sectional dimensions were a = b = 0.125 in. The
impedance of the ring, for proper impedance matching, should
have been lower by a factor l//2~. Therefore, the terminals
of this ring hybrid were not matched.
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Terminal 2 Terminal 3

Terminal 4

Fig. 48 DESIGN OF THE RING HYBRID
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The following general aspects are applicable to any ring

hybrid. The circumference for proper phase isolation must always

be an odd multiple of 3/2 X , where X is the actual guide wave-
y y

length at the design frequency.

Thus

n 3 A
C = - g-S- n = 1,3,5 —

The circumference is also related to the mean radius of curvature,

thus

C = TT 2 Rm

Equating the above expressions gives

, 41T R

g 3lT~

This relationship gives the guide wavelength, for a given ring

radius, at which will occur the nth multiple of the fundamental

phase relationship. The guide wavelength is related to the fre-

quency by the dispersion curves given in Figure 2. The theoreti

cal frequencies at which isolation should occur in the ring are

tabulated below.

Frequency of Isolation (GHz)
n

7

9

11

13

Theoretical

8.9

9.7

10.6

11.4

Experimental

9.0

9.86

10.6

11.7
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The ring hybrid is shown in Figure 49. The power trans-

mission characteristics, which give the output powers P1/
P2'P4

at terminals 1, 2 and 4, respectively, are given in Figure 50.

The frequencies of isolation predicted theoretically were confirmed

by the experimental measurements.* The input signal at terminal 3

should have divided equally between terminals 2 and 4. The

excess attenuation in the output was typically 8 to 15 dB. This

result is consistent with earlier measurements of the single Y

junction, shown in Figure 43, in which excess attenuation of 4

to 8 dB was measured. This ring hybrid was subject to all of the

excess attenuation mechanisms described in Section 3.3.

While the performance of the hybrid was rather poor due to

excess attenuation and mismatch in the Y junctions, some encour-

agement is taken in the fact that isolation ratios as high as

20 dB were achieved at two frequencies.

4.5 Band Stop Filter in V-Band

A ring-resonator type band-stop filter was fabricated for

V-band operation. The same ring resonator was measured in two

different waveguide circuits and with different methods of

attachment to the base plate. The ring was made with a diameter

* The apparent isolation at 11.7 GHz may not be that expected
due to the phase cancellation in the ring. This drop in the
output at terminal 1 could have been caused by junction mis-
match. Reflections could also have prevented the isolation
expected at 11.4 GHz from occurring.
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of 0.5 in., which is rather large in V-band. Since a typical

guide wavelength is about 0.1 in., the circumference of the ring

would be as many as 15 wavelengths. The ring was made rather

large in order to avoid any possibility of significant radiation

from the ring due to curvature. The large diameter results in

rather closely spaced stop bands, giving a response which is

frequently termed a comb-filter.

The first version of the band-stop filter is shown in Fig-

ure 51. Both the main waveguide and ring were fabricated of

alumina using the abrasive machining method described in Section 6.

Templates were made for use with the pantograph which guided the

machining tool. The edges of these waveguides were quite irregu-

lar and the cross section was trapezoidal rather than rectangu-

lar.* Measurements of the insertion loss of the waveguide without

the ring gave typical values of 5 to 7 dB. When attempts were

made to measure the filter characteristics with the ring positioned

approximately as shown, the loaded Q of the ring was rather low

because the ring coupled to the main waveguide over an extended

length and the high attenuation per unit length of the guide

essentially appeared as additional attenuation in the ring.

The ring was subsequently placed adjacent to the straight

section of waveguide, and the measured filter characteristics

are shown in Figure 52. In these measurements the ring was

* The width at the top was typically 0.040 in. and at the bottom
0.060 in.
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plated on the underside with an aluminum film* and not attached

with any adhesive. Three curves for different spacings between

the ring and the line are shown in the figure. The three spacings

(at the lower edge) were (1) contact, (2). 0.005 in., and

(3) 0.010 in. The response labelled (1) in Figure 52 gave

loaded-Q values ranging from 57 to 143. The Q values for in-

creased spacing (curve 2) were 98 to 185. This increase in

measured Q results from reduced coupling to the input waveguide.

Coupling for curve 3, however, was too light to make a Q deter-

mination .

The same ring resonator was measured as a band-stop filter

on the polished aluminum base plate shown in Figure 53. Three

measurements were made of the filter characteristics. In each

case the ring was contacting the main waveguide (this was the

"U" waveguide designated No. 1 in Section 3.3.4) shown in Fig-

ure 53. Figure 54 shows the first filter response in which the

ring was plated with an aluminum film* and no adhesive was used.

The loaded Q measured in this case ranged from 99 to 135, about

the same as the gold plated base plate for tight coupling. The

filter response, when the aluminum film was removed, is shown

in Figure 55. In the measurements shown in Figures 54 and 55

the ring was merely resting on the aluminum base plate.** The

loaded Q increased to the range 184 to 304 without the aluminum

film. Clearly, the film was not accomplishing its intended

* Approximately 0.00016 in. thick.

** The main waveguide was attached with type 509 adhesive with
25% coverage.
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purpose of reducing conductor losses. A third measurement of

the filter characteristics was made with the ring attached with

about 25% coverage of the type 509 adhesive shown in Figure 56.

The measured Q decreased to the range 132 to 195. This is due to

the losses added by the adhesive.

The highest Q achieved with this resonator was 304. The

theoretical unloaded Q, based on calculations given in Section

3.3.4, should be 825. There is a discrepancy between theory and

experiment of approximately 2:1. This can be explained in terms

of excess radiation loss caused by the nonuniform side surfaces

of the ring waveguide. Because the ring was fabricated by the

abrasive machining technique, the edges were not straight and

smooth as they should be. This could lead to degredation in

guidability, particularly in a curved waveguide.
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5. ACTIVE DEVICES

5.1 Introduction

Hybrid microwave- or millimeter-wave integrated circuits

require the use of active semiconductor devices for circuit

functions such as amplification, oscillation, multiplication,

limiting, switching, frequency conversion, phase shifting, and

modulation. Methods for mounting such devices which consider the

specific nature of the circuit function, the geometry of the de-

vice package, and the image line configuration are required.

The next subsection will consider mounting techniques in general.

The following subsection will describe an experiment for mount-

ing a mixer/detector diode in image waveguide.

5.2 Mounting of Active Semiconductor Devices

Incorporation of a semiconductor device into a microwave

hybrid integrated circuit requires both physical compatibility

and electric match over a desired bandwidth. In the range of

frequencies from 8 to 40 GHz, the most suitable choice is a pill-

type package. In this range the cross-sectional dimensions of

the image line are large enough to be suitable for mounting a

commercial pill package which typically ranges in diameter from

0.050 to 0.125 in. At frequencies higher than 40 GHz parasitic

reactances of a pill package will usually prevent its use. In

this range of frequencies a chip device becomes the appropriate

choice. Some chip devices have only metalized contacts; others

have "beam" leads for making electrical contact.

120



Figure 57 shows a typical pill package. This style has the

stud base and is used with oscillator diodes requiring a very

effective heat sink. Other devices have only a base plate for

contact with the image plane. Either package style is compatible

with the image line as shown in part b of Figure 57. The met-

alization has the purpose of suppressing higher-order modes and

preventing radiation. The dimensions of the image waveguide may

be tapered or varied in some fashion to help achieve good elec-

trical impedance match to the particular semiconductor device.

If the. semiconductor is a mixer, detector, switch or other device

requiring a dc, video or IF contact, this may be made through a

flying or printed wire, suitably choked to prevent microwave

leakage. If the IF frequency is also a microwave frequency, the

use of a microstrip output line may be appropriate, as shown

in Figure 58. A low-pass filter prevents the incoming microwave-

or millimeter-wave frequency from following the microstrip

output line.

Impedance matching of the incoming microwave signal to the

active semiconductor device will usually be required in order

to achieve optimum device performance. A tuning device is shown

in Figure 59 in which three metal or dielectric screws are used

to introduce reactive loading on the dielectric image waveguide.

The mounting of a chip semiconductor device in an image

waveguide for millimeter wavelength operation is shown in Fig-

ure 60. Wire bonding is used to make electrical contact between

the chip and the millimeter-wave signal induced on the metaliza-

tion. The chip is connected to a post ground terminal directly
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Dielectric Image Waveguide

Cylinrical Cavity (Typical)

Image
Plane \j

Tuning Screw-Metal or Dielectric (Typical)

Fig. 59 THREE SCREW TUNER
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through its own metalized contact or with a wire bond as shown.

If the device has beam leads, these replace the wire bonds.

Again the video/IF terminal can be a flying lead, printed-wire,

or microstrip line as the frequency may necessitate.

The above package mounting techniques have not been demon-

strated experimentally and therefore remain conceptual. During

the present program an approach to mounting a mixer/detector

diode was investigated which represented a compromise because no

chip (or pill) devices were available for 60 GHz at the time the

experiment was conceived. The results of this investigation are

described in the following subsection.

5.3 A 60-GHz Mixer/Detector Mount

This experiment involved converting a conventional waveguide

cartridge-type mixer mount to one in which the signal was carried

on an image line up to the semiconductor chip within the cartridge

package. The plan was to measure the impedance and conversion

loss properties of the diode with and without the image line to

demonstrate that a signal could couple efficiently into a diode

using an image line. Unfortunately, several factors combined to

prevent the desired quantitative measurements from being made.

The image line mount was indeed operated as both a mixer and

detector, but the absolute and comparative data desired could

not be obtained. The mount, along with the factors which prevented

its effective operation, will next be described.
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A modified standard mount is shown in Figure 61. The incoming

V-band signal was guided through standard V-band waveguide attached

to the flange at the left. A type B launcher coupled the waveguide

mode to the image guide mode. The alumina waveguide is partially

visible to the right of the launcher. The signal was then carried

on the image waveguide within the metal waveguide of the standard

mount.* The cartridge outline is shown in the insert of Figure 61

and in greater detail in Figure 62. Alumina inserts were fabri-

cated** so that the image line would be continuous up to the point

where the diode chip is mounted (see Section A-A in Figure 62).

Thus, the cartridge diode was intended to simulate as closely

as possible the mounting of a chip diode shown in Figure 60.

The instrumentation for mixer impedance measurements is

shown in Figure 63. The primary limitation of the instrumenta-

tion was that the local oscillator signal available through the

directional coupler was only 0.2 mw. Compounding this problem

was the fact that the attenuation through the image line was

about 16 dB.*** Thus, the local oscillator signal actually

* This was a Baytron type 1ES-15 mount. The diodes were 1ES-15/M
mixer diodes in a cartridge package. A shorted diode was also
obtained to facilitate making impedance measurements.

** These are the small parts visible in Figure 67.

*** This attenuation was determined by comparative measurement of
the diode as a detector with and without the image line. The
excess attenuation was due to warpage in the base plate which
caused a gap between the alumina and the base plate. Time
limitations on the program did not allow for refabrication of
this base plate.
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reaching the diode was about 0.005 row, far too low for mixing. The

rather high attenuation in the image line also prevented imped-

ance measurements.

Despite the very low level of the local oscillator, the image

line mount was used to generate an IF frequency of 1 GHz at a sig-

nal frequency of 61.7 GHz. The sensitivity was rather poor,

making it impossible to determine the efficiency with which the

image line signal was coupled into the mixer diode.
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6. THE FABRICATION OF CERAMIC WAVEGUIDE COMPONENTS

6.1 Introduction .

The purpose of this section is to examine in detail the

possible methods of fabricating ceramic waveguide components.

It is necessary to establish that the ceramic components for

image line technology can be fabricated in a practical manner.

The fabrication process must yield components with good electri-

cal quality, reproducibility, and dimensional accuracy.

The state-of-the-art methods of ceramic processing were

surveyed and analyzed in terms of the requirements for wave-

guide components. Ceramic manufacturing personnel were contacted

for information and advice. As a result of this analysis, cer-

tain processing methods were judged to be closely suited for

present needs. Some experimental work on fabrication was ini-

tiated to study the feasibility of producing waveguide compo-

nents . The results of the survey, analysis, and experimental

work are presented in this section.

6.2 Ceramic Processing Methods

6.2.1 Solids Processing of Ceramics

Most electroceramics are fabricated by solid processing

techniques. Solids processing involves the use of solid partic-

ulates, which are consolidated into a shape by some type of

forming method and densified at high temperature.

There are a number of methods for consolidating particulates

into specific shapes, or "green bodies." The selection of method
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depends on many factors, such as body shape and size, economic

considerations as to number of bodies required, the cost of

processing, and the quality of green body as it affects the

fired product. Each method must be considered individually

to determine its applicability for a specific product. The

more common forming operations are:

(1) Dry Pressing

(2) Isostatic Pressing

(3) Extrusion

(4) Slip Casting

(5) Plastic Molding

(6) Tape Casting

These operations will be briefly described in the next subsections,

6.2.2 Forming Methods

6.2.2.1 Dry Pressing

The pressing of powder in a steel or carbide die is one of

the most important processes because of the economy afforded in

rapidly producing simple shapes with a high degree of uniformity.

In this process, the ceramic powder must be granulated to produce

a free flowing material which is necessary for high speed auto-

matic pressing. For this reason the granular mass contains an

organic binder and lubricant. The die cavity formed by the die

wall and upper and lower punch surfaces determines the shape of

the pressed part. After ejection from the die, the compact is

fired to high density.
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6.2.2.2 Tsostatic Pressing

Isostatic pressing differs from dry pressing in that pres-

sure is applied as nearly as possible over all outside surfaces

of the part, rather than from the ends only. Rubber molds or

containers are used to transmit a uniform isostatic pressure

from pressurized, liquid surroundings.

6.2.2.3 Extrusion

The ceramic powder is mixed with water and organic plasti-

cizers to produce a plastic mass. The mass is extruded through

a die to form a long body having the cross-section of the die.

Extrusion pressures of a few thousand psi are typical.

6 . 2 . 2 . 4 Slip Casting

Ceramic powder is suspended in water to a high concentration

by use of deflocculants. The slurry or slip is poured into a

plaster mold of two or more pieces. The mold is porous and ab-

sorbs water from the slip, building up a solid coating on the

inner surfaces. When the coating reaches a desired thickness,

the mold is inverted and excess slip is allowed to drain out.

The cast shell is allowed to further dry in the mold until it

gains strength and shrinks away from the mold. Then the mold

is opened, and the part removed.

6.2.2.5 Plastic Molding

This process, often referred to as injection molding, uti-

lizes a mixture of ceramic powder and a hot thermoplastic liquid.

This mixture can be processed by the usual injection molding
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method for forming thermoplastic articles. The hot mixture is

injected under pressure into a mold. The mold is cooled to

solidify the thermoplastic resin, and the article is removed.

Since the green bodies contain 15 to 25% organic resin, a slow

bakeout schedule is needed to remove the organics before the

ceramic can be sintered.

6.2.2.6 Tape Casting

Thin sheets of green ceramic are formed by doctor blading

a powder-liquid-binder slurry onto flat plastic sheet and al-

lowing the liquid to evaporate. These green sheets, or tapes,

are generally around 40 mil or less, and are easily handled

because of flexibility imparted by the organic binder and plas-

ticizer.

6.3 Waveguide Processing Approaches

6.3.1 Applicability of Forming Methods for
Waveguide Components

Slip casting is generally used for large shapes. The prob-

lem with slip casting is that the particulates are not compacted

with high pressure and therefore do not generally form dense

fired bodies. Furthermore, these bodies undergo large shrink-

age during firing, making it difficult to obtain precision parts,

Slip casting is usually used only for large, intricate bodies

that would normally require massive presses and/or a great deal

of secondary machining. Thus, for flat, waveguide components

slip casting is not considered applicable.
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Isostatic pressing is used for pressing ceramic shapes that

cannot be carried out by dry pressing. The alumina insulator in

spark plugs is a well known example. It is also used for pres-

sing large shapes, since they would otherwise require massive

presses. This process is not useful for making flat, substrate-

like sheets or components, since there is little control afforded

in obtaining parallel top and bottom surfaces.

Extrusion would be useful if the extruded green bar can be

sliced to form the thin, flat component. However, several prob-

lems are evident. First, sufficiently accurate slicing is diffi-

cult, particularly for thin parts. Secondly, there is less

compaction of the ceramic powder than in dry pressing, so poor

densification and large shrinkage during firing often result.

These problems are not insurmountable, but the development

required to optimize the process would be rather extensive and

is justified only if a very large number of components are to

be processed. For waveguide components, these justifications

are not present.

Injection molding produces the poorest quality parts of

those processes discussed. The reason for its usefulness is

for lower quality, high production item parts having intricate

shape. The problem with green bodies is the low green density

and high organic content that has certain destructive influences

during burnout.

Tape casting and dry pressing are the two most promising

methods for forming waveguide components. They are basically
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planar processes in that parts with parallel top and bottom

surfaces are formed. Complex planar components with various

branches and loops can be fabricated by combining either process

with special green body machining. The general approaches for

manufacturing waveguide components by these processes will be

described in detail in the next sections.

6.3.2 Waveguides by Tape Processing

6.3.2.1 Preparation of Green Tapes

Green ceramic tapes are made by the doctor blade tape cast

process. The first step of the process is preparing a slurry

containing the ceramic powder, the organic binder, plastici-

zers, an organic solvent, and a deflocculant. Generally, the

ceramic powder is extremely fine grain, with diameters between

0.1 to 10 urn. The mixture of ingredients is ball milled for

effective mixing and breakdown of agglomerates. After milling,

the mixture becomes a dispersion having the consistency of

paint. The paint, or slip, is de-aired by vacuum and filtered

to remove agglomerates and undissolved binder.

The casting machine has the general features described

below. A plastic strip, usually polyethylene or cellulose

acetate, is pulled from a storage roll between a metal plate

support and a doctor blade unit. This unit has a chamber that

holds the slip and a doctor blade at the exit side of the chamber.

This blade can be adjusted to produce different thickness deposits

As the plastic tape is pulled, a thin layer of slip is formed.

This layer dries slowly while it is being carried downstream .
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through the machine. Generally the tape travels about 25 feet

before it is fully cured. The drying process is controlled

by heating and by adjusting the vapor pressure of the solvent.

The composite layer of plastic and cast alumina is wrapped

on a large drum for easy handling and storage. When used,

the plastic backing tape is peeled away from the ceramic tape.

The green tape is quite flexible because of the organic

binders and plasticizers. It feels like leather and can be

cut into various shapes as desired. Once cut, the parts are

loaded on a carrier plate (setter) and passed through a kiln

(furnace) where the organics are burned out and the ceramic

powder is sintered to form a dense ceramic material.

The green tapes range in thickness from about 0.005 in. up

to about 0.040 in. Green thicknesses between 0.028 and 0.033 in.

are most common, since they shrink to around 0.025 in. in the

fired condition, which is commonly desired for electronic substrates

For example, microstrip hybrid integrated circuits are frequently

fabricated on 0.025 in. alumina substrates.

6.3.2.2 Machining of Green Tapes

For large scale production items, green tapes are cut into

desired configurations with a punch press. The parts are punched

oversize to allow for shrinkage during firing. The punches

employed are similar to those used for sheet metal work. For

cutting small quantities, hand punches resembling cookie cutters

are often utilized. If rather intricate work is required, par-

ticularly if it involves thin strips and loops, careful cutting
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by sharp hand tools is required. Since the green tape is some-

what abrasive, carbide cutting dies are employed for large

scale production runs.

6.3.2.3 Sintering of Machined Parts

The sintering heat treatment schedule depends largely on

the type of ceramic being processed. Most ceramics require

sintering temperatures from 1000°C up to 1800°C. Alumina, for

example, must be fired somewhere between 1450 to 1700°C,

depending upon the reactivity of the raw material.

Machined green parts are placed on a ceramic setter, which

usually is in the form of a top-open-end box. The floor of the

box must be very smooth, since the fired tape tends to replicate

the surface on which it is sitting. When loaded with parts, the

setter is covered, either with a lid of the same material or

by another box setter on top. The complete enclosure of the

parts by setter material is essential for obtaining uniform tem-

perature during firing. Nonuniformity in temperature usually

causes warpage of the parts.

In large scale commercial practice, the setters containing

the parts are stacked on kiln cars that can be pushed through

a tunnel kiln. The temperature of kiln is highest at the center

and decreases gradually to room temperature at the entrance and

exit ends. By slowly moving the kiln car through the tunnel,

the parts are heated and cooled gradually. Slow heating is also

needed so that the organics can be burned out without disrupting

the body. Slow cooling helps prevent thermal shocking not only

of the parts but also the setter and car furniture.
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A periodic kiln, or batch furnace, is useful when single

batches of small numbers are involved. The setters are loaded

into a cool furnace, and then the temperature is gradually in-

creased to the peak value, held at this value for the desired

time, and gradually cooled back to room temperature.

The sintered part is considerably smaller than the green

part because of the densification that takes place. Shrinkage

values for the tape must be measured in all three directions

(thickness, length, and width directions) to judge what green

dimensions for parts are needed to produce specific fired

dimensions. Linear shrinkage values can range from 10 to 20%,

depending on the specific material.

6.3.2.4 Thickness Limitations

Doctor blading of green tapes thicker than about 0.040 in.

is not yet state-of-the-art, although research activities by

various companies are apparently about to overcome some of

the difficulties. The major problem is the changes that take

place in the cast tape as the solvent evaporates during drying,

The thicker the tape, the greater the tendency for the tape to

crack or warp during drying. This problem exists because of

differential shrinkages that take place from nonuniform drying

through the thickness of the tape.

Because of the particular advantages of utilizing tapes,

some ceramic producers have adopted the practice of piling to-

gether layers of tape to form thicker sheets. It is claimed
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that the layers fuse together during sintering with no evidence

of the original layer structure. If successful, this technique

should be particularly valuable for making waveguide components

having thicknesses in the 0.030-to-O.100-in. range. Thicker

samples, as discussed in the next section, can be made by dry

pressing techniques.

6.3.3 Waveguides by Dry Pressing

6.3.3.1 Preparation of Green Bodies

Dry pressing appears as the most promising method for form-

ing thick waveguide components, particularly for thicknesses

greater than 0.100 in. The die is machined to have the shape

desired. Top and bottom plungers compact the granular feed

material in the die, using pressures of 5000 psi or higher.

The first important step of processing, after the selection

of appropriate reactive raw material, is to prepare a pressable

batch material. This involves the mixing of the powder with

an organic binder, plasticizer, and solvent. This mixture is

processed by one of a variety of techniques for making granules

(agglomerates). The granules are essentially dry and consist

of ceramic particles bonded together by the organic binder.

The purpose of the granules is to convert the fluffy raw mate-

rial to a flowable form so that die cavities can be efficiently

filled. The granules, if prepared properly, also aid in the

compaction of the material.

The organic binder not only makes possible the formation

of granules, but it also provides strength to the pressed compacts
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Without this green strength, the compact would be weak and

fragile and could not be removed from the die and handled

without damage. After green parts are formed, they are loaded

on setters and undergo a similar sintering process as described

for machined tape parts.

6.3.3.2 Laboratory Techniques

The use of shaped dies is necessary for large-volume pro-

duction. However, it is justifiable only for this case, since

die machining for complicated configurations is extremely ex-

pensive. For experimental purposes, where a variety of waveguide

configurations are to be studied, the use of machined dies is

impractical strictly from economics.

A satisfactory alternative, and one particularly suited

for experimental purposes, is to press flat sheets or extrude

(doctor blade) green tapes and then machine cut, or punch the

green sheet or tape to the configuration desired. The reason

for this is that it is much easier and far less costly to machine

a soft, chalk-like material than a steel or carbide die.

Machining of sintered ceramic plates into desired configu-

rations may also find limited applications in preparation of

laboratory devices. Total or partial fabrication of a ceramic

waveguide component by diamond or wire sawing, drilling, grind-

ing, or abrasive machining is possible for limited quantities

of parts. These techniques, while minimizing the time required

to modify a device, are also limited in the types of operations

which can be performed.
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During the course of this program an investigation of abra-

sive machining was conducted. An industrial abrasive unit* was

operated using silicon carbide powder for machining sintered

alumina substrates having an 0.025-in. thickness. The hardness

of the ceramic necessitates the use of a very hard powder.

Unfortunately, very hard powders operating at high pressures

(about 90 psi) result in limited lifetime of the nozzle tip

which controls the powder flow. Small diameter orifices

(0.008 in.) gave faster, more precise cutting, but the tip life-

time was rather short. Carbide tips lasted only minutes, sap-

phire tips lasted about one hour. Larger orifices (0.018 in.)

lasted three to four hours but cut at a considerably slower

rate. Despite the use of hard powder and high pressure, the

maximum cutting rate was found to be rather slow. The waveguide

described earlier and pictured in Figure 51 required about 1.5

hours cutting time. The estimated cutting rate for an alumina

substrate 0.025-in. thick is three to four inches per hour.

A pantograph was fabricated so that waveguide devices could

be cut using a template guide. A photo of this pantograph, which

has a 2:1 motion reduction factor, is shown in Figure 64. The

template in place under the guide is that used to machine the

waveguide in Figure 51. A template was machined, and is shown

also in Figure 64, that would serve as a guide for the panto-

graph to yield the "U" waveguide of Figure 22. This template was

not required as explained in Section 3.3.4. The abrasion

* S.S. White Model D
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technique does not give a verticle side wall. The waveguide

of Figure 51 had a trapezoidal cross-section in which the width

at the top surface was typically 0.040 in., and the width at

the lower surface was typically 0.060 in. The width of the

waveguide varies because the cutting width depends on time

of exposure to the stream of particles.

Clearly, this method of fabrication is somewhat impractical

for general fabrication, but could find usefulness in limited

situations where other techniques for machining sintered ceramics

might be difficult to employ. An example might be the removal

of stabilizing bars from finished parts in which poor accessibility

prevents the use of other machining techniques.

6.3.4 Adherence of Waveguide Component to Metal
Base Plate

The ceramic waveguide component must be joined in intimate

contact with the metal base plate if predictable performance

and lowest losses are to be achieved. The ceramic must also

be extremely smooth (less than 10-yin. finish).

The ceramic can be bonded with the metal by a variety of

adhesives. Organic adhesives provide strong bonds, but they also

create a nonducting interlayer with higher loss and, therefore,

may prove to be unsatisfactory (see Section 3.3.4). More ideally,

a direct contact of metal to the ceramic would be preferred.

This suggests that a metal solder or braze would be the best

approach.

To apply a solder to a ceramic, the ceramic must be treated

by a metallizing process. Metal solders do not adhere to ceramics
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unless the surface is modified. The present state-of-the-art

in metallizing ceramics is to apply a thin coating of silver or

alloys of silver, palladium, gold and platinum. This silver or

alloy is applied in the form of a paint, having an organic sol-

vent and binder. Once applied and dried, the coating is fired on

at temperatures between 1000 to 1800°F, depending on the specific

material.

Soft solders with alloys that melt below 700°F should be

sufficient for present purposes. Many types of common soft sol-

ders are available, but the ones generally used on ceramic com-

ponents approximate the tin-lead eutectic composition (63% tin,

37% lead). The solder often contains some silver (2%) so as to

prevent leaching of the metallized layer of silver.

Forming a dense, well bonded interface between the ceramic

and metal base plate is an art, requiring considerable practice,

but there appears to be no reason why a satisfactory bond cannot

be accomplished. The principal advantage of metallizing and sol-

dering is the fact that the ceramic is intimately in contact

with the metal conductor removing any possibility of a gap be-

tween them. Experimental results, described in Section 3.,

have indicated the need for intimate contact between the ceramic

and the image plane.

6.4 Experimental Feasibility Studies

During the present research period, attention was focused

on the possibilities of forming alumina waveguide components

having thicknesses around 0.025 in. For this purpose, preliminary
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studies were undertaken to establish general feasibility of

utilizing cast ceramic tapes.

A visit was made to the American Lava Corporation, a leading

manufacturer of alumina ceramics and tapes. Discussions with

engineering personnel at their tape producing facility were help-

ful in verifying that the tape approach for making waveguide

components would be the best approach for thin components. It

was also recognized that green tape manufacturing is a highly

skilled and rather secretive art and that it would be impractical

for IITRI to attempt developing a laboratory casting facility.

Therefore, it was decided that the best approach was to buy the

green tape from the manufacturer. With this tape, IITRI could

machine the configurations needed and sinter the parts in a high-

temperature batch kiln in IITRI's ceramics laboratory facility.

6.4.1 Ceramic Tape Specifications

A green ceramic tape was purchased from the American Lava

Corporation. The tape is supplied as a roll, shown in Figure 65.

According to the manufacturer, the tape had the following speci-

fications :

(1) Ceramic Materials

AlSiMag 772 - Alumina

(2) Amount

Two 100-ft rolls, 6 in. wide
Thickness is 0.029 in. + 0.003 in.

(3) Firing Shrinkage

When fired to Pyrometric Cone Equivalent 30
with a 36-hour total kiln cycle, the shrink-
age values were:

147



Fig. 65
A ROLL OF CERAMIC GREEN TAPE AND SAGGERS USED FOR
SINTERING CERAMIC PARTS
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Length
Unfired
dimension
(in.)

Fired
dimension
(in.)

Fired
shrinkage

3

3

16

.508

.020

.2%

Width

2.345

2.017

16.3%

Thickness

0.029

0.025

16.0%

For calculating the shrinkage, the formula below
was used:

_,, . , inr> ,unfired dimension , ,.
% Shnnkage = 100 (fired dimension --

 X)

6.4.2 inspection of Tape Thickness Variations at IITRI

Approximately 11 ft of the tape was unrolled, and the thick-

ness variations along the length and width were measured. Thick-

ness values near the edges of the tape varied from 27.1 to 30.7 mils,

which is within the stated specification. Similar variations were

found across the width of the tape, with the center region generally

being about 0.0005 in. thinner than the edges. With these

variations, it was possibile to locate and cut out small sections

that had the desired thickness and thickness uniformity throughout.

6.4.3 Sintering of Specimens

A periodic, gas-fired kiln was used to sinter the tape speci-

mens. The kiln has a working space of around a 10 -in. length,

8-in. width, and 6 -in. height. The fuel can be a combination

of natural gas-air or natural gas -oxygen. With natural gas-air,

temperatures up to 2850°F can be obtained, while temperatures

above 310 0°F can be reached with natural gas-oxygen.
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Various samples were cut from selected green tape. The

samples were either cut by hand, using a straight edge to guide

a blade, or machined by a sandwiching procedure. The sandwich

method involved a three-layer sheet, the top and bottom being

aluminum and the middle being the green tape. This sandwich

was machined to the configuration desired. The advantage of the

sandwich method is that the tape can be cut into intricate con-

figurations without danger of damage that could result if simply

handcut directly.

The first sintering studies were carried out at a temperature

of 2850°F. In the first firing, one U-shaped sample was machined

using the sandwiching procedure. The sample was placed in a re-

fractory box with a lid, made by two porous alumina bricks sepa-

rated by an alumina cement wall around the edges. The fired sample

shrunk approximately 15.5%. Some warpage resulted and the two arms

of the U were not parallel, but spread out somewhat so that the

width of the U was greater at the tips than at the base.

A second and third firing at 2850°F was made with a shorter

firing schedule and using flat alumina plates on which to set the

tapes. The object was to determine if the samples remained as

flat as the plates during firing. However, the sintered parts

were again warped slightly. The shrinkage value was found to

depend on where the part was located in the alumina box. Appar-

ently, the temperature was not uniform and the hotter area caused

more sintering than the cooler areas. Lowest shrinkage values

were around 11%, the highest around 15.5%.
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Following a suggestion by the American Lava Corporation, a

method to overcome the warpage problem was tried. It was sug-

gested that flat samples could be obtained if a flat alumina

weight was placed on top of the specimen. This could not be done

directly on a green tape because the large shrinkage that occurs

would lead to distortions in shape by frictional restrictions.

Therefore, the green parts must be fired first to affect sinter-

ing, and then a second firing should be used with the weight so

as to flatten the warped specimen. The flattening occurs presuma-

bly because of a diffusional creep process at high temperatures.

The warped samples obtained in the previous firings were refired

with several alumina substrates as weights. The samples were

definitely flattened and exhibited no evidence of warpage.

The above experiments clearly indicated that the samples

were not undergoing as much shrinkage as specified by the tape

manufacturer. However, this was not unexpected, since the peak

sintering temperature was lower than the recommended level of

Pyrometric Cone Equivalent 30, which is roughly comparable to

3002°F. To obtain this temperature, oxygen instead of air had

to be used in combination with the natural gas fuel. It was

necessary to go to the higher temperature because an incompletely

sintered body cannot be easily controlled in shrinkage, while a

fully fired body has a more reliable and reproducible shrinkage

value. Furthermore, the denser alumina body has better strength

and electrical properties.
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Mullite saggers were purchased to hold the specimens during

firing. These are used commercially for firing precision elec-

tronic ceramics requiring flatness and close dimensional toler-

ances. The saggers are pictured in Figure 65.

To evaluate shrinkage and flatness of the tape fired at

3000°F, 3.0 in. by 3.0 in. and 1.7 in. by 1.7 in. green samples

were fired at 3000°F for six hours. Shrinkage values for these

samples are given in Table 4. The samples did not appear warped.

Apparently, the higher temperature of firing increased the ease

of diffusional creep to the extent that the samples flattened

by their own weight. The data show that the achieved shrinkage

value of 16% was consistent with the values furnished by the

manufacturer.

Based on the shrinkage data, green U-shaped and U-shaped

samples were machined so as to give the desired fired dimensions.

Machined U-shaped samples were used along with samples with a bar

across (U-shaped), the purpose of the bar being to help maintain

dimensional control. Figure 66 is a photograph of the sagger

containing U and U-shaped samples before firing. The metal piece

in Figure 65 was used to assure that the green U-shaped parts

(without the bar) were properly shaped when placed in the sagger.

The intention was to remove the bar from the U-shaped parts after

firing. The sagger was closed with another inverted sagger,

and the samples were fired to Cone 30 (1650°C) . The following

firing schedule was observed.
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Fig. 66 MACHINED GREEN CERAMIC PARTS SITUATED IN THE
SAGGAR FOR SINTERING
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1st Stage: room temperature to 2400°F @ 100°F/hr

2nd Stage: 2400°F to 3000° @ 2000°F/hr.

3rd Stage: soak @ 3000°F for 7 hours

4th Stage: natural cooling : 80°F/hr

During stage 2 oxygen-gas was used to reach and maintain

the temperature of 3000°F. The samples were cooled by natural

cooling. Figure 67 is a photograph of the fired samples. The

U-shaped samples bowed considerably, while the H-shaped samples

retained their shape very well. However, the tips of H-shaped

samples were slightly warped. This warping presumably occurred

because of the very small mass of the sample, which contributed

little to flattening them.

The H-shaped samples were refired to 2950°F with a weight

on top so as to flatten the warped tips. The weight used was

an alumina disc. After firing, it was observed that the warped

tips of two of the four samples flattened, but got fused to the

alumina disc. The other two samples had a lighter weight alumina

disc and did not fuse. It is probable that the relative weight

difference was the factor responsible for the fusion of the tips.

This study proved the significance of having a bar across

the B-shaped sample. Samples without the bar bowed and warped

due to nonuniform shrinkage during firing. This was eliminated

by firing H—shaped samples.

A last experiment consisted of sandwiching together several

green tape layers to determine if the layers would fuse together

during sintering. This technique may be particularly useful for
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Fig. 67 CERAMIC PARTS AT THE CONCLUSION OF SINTERING
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obtaining parts with thicknesses greater than what is normally

obtainable in tape form (e.g., 25 to 100 mils). When fired at

3050°F, the layers bonded strongly together. When a cross-sec-

tional cut was examined, the original boundary between layers

was no longer evident over most of the region. Thus, this

strongly suggests that the technique has merit and may be quite

feasible for making thicker parts.

The bars which remained after firing were removed with a

diamond saw. One surface of these parts was polished using a

diamond-powder polishing compound. The polished surface was

plated with a thin film of aluminum. Measurements of the proper-

ties of these waveguides were given in Section 3.

6.4.4 Conclusion

The processing studies have shown that waveguide components

can be made by using green ceramic tape. Several problems were

encountered in these feasibility studies, but none appear insur-

mountable. Warping problems were overcome by second firings with

light weights on the sample. Predictable firing shrinkages

resulted from high-temperature firing, which makes possible the

prediction of green sizes which will form specific fired sizes.

The most serious problem was with an open component (H-shaped).

The bowing of the sample during firing is difficult to eliminate

because even the slightest nonuniform shrinkage during firing

contributes to bowing. The cutting of thin samples causes densi-

fication which contributes to nonuniform firing shrinkage.
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The bowing problem was overcome, however, by adding a stabilizing

bar that served to bridge the arms of the U. By proper design,

using a stabilizing bar should introduce no dificulties because

for production parts they can be made to snap-off after firing.

Although further processing studies are required to refine

the techniques to a point where waveguide components can be made

routinely, this should require only modest effort. Therefore,

it can be concluded that the feasibility of tape processing for

waveguides has been established. A principal area for further

investigation is that of methods for achieving intimate contact

between the finished ceramic part and the image plane.
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7. CONCLUSIONS - FUTURE ACTIVITY

The objective of this program was to investigate the use

of high permittivity rectangular dielectric image waveguide for

microwave and millimeter-wave integrated circuits and to advance

this technology towards its use in a 60-GHz switched Dicke-type

radiometric receiver module. The specific areas of investigation

included in this program encompassed the following: development

of metal waveguide to image waveguide launchers; evaluation of

the effect on waveguide attenuation of adhesives, films, radius-

of-curvature, gaps, and surface finish; design of passive devices

including a three-terminal Y junction, an attenuator, a ring hy-

brid, and a band-stop filter; incorporation of active devices

such as mixers or detectors; and evaluation of ceramic waveguide

fabrication techniques. The program activity in most areas ful-

filled and, in some instances, surpassed original scope and objec-

tives. However, additional effort is required to complete two of

the tasks undertaken on the program: the more exact of two radius

of curvature analyses performed and the mounting of mixer diodes

in the image waveguide.

Therefore, in anticipating future program activity towards

the realization of the radiometric receiver module, the early

tasks would be to complete or expand upon present program activ-

ity. Other tasks represent new undertakings in the development

of the image waveguide integrated circuit technology. The fol-

lowing list of tasks is therefore suggested:
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(1) Proceed with the rigorous solution to the radius
of curvature equations as presented in Appendix A.
Obtain correlation with experimental results.

(2) Proceed with the mounting of a chip-type mixer
diode in the image waveguide and characterize
the diode in V-band.

(3) Perform a detailed evaluation of methods for
attaching ceramic image waveguides to the metal
base plate.

(4) Develop the required V-band passive devices
including the preselector filter and hybrid.

(5) Develop the oscillator circuit using a Gunn or
Avalanche diode.

(6) Develop the ferrite switch.

(7) Investigate packaging considerations, such as
proximity effects of the top and side walls.

Completing these tasks would provide the necessary information

and experience to proceed with the development of the integrated

receiver module.
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APPENDIX A

RADIUS OF CURVATURE EFFECTS IN DIELECTRIC

IMAGE GUIDES OF RECTANGULAR CROSS SECTION

1. INTRODUCTION

To realize, in practice, various circuit functions using a

transmission medium, curved waveguide sections must be made part

of a circuit pattern. In fact, not only are curved waveguide sec-

tions essential in the design of circuit components, i.e.,

filters, couplers, hybrids, etc., but also in designing compact

integrated systems. It is well known, however, that any curved

open waveguide, such as the dielectric image guide, loses energy

into the surrounding medium by radiation. The amount of radia-

tion loss is a strong function of the guide's radius of curvature

R. Thus, the basic design problem becomes that of estimating

the minimum allowable radius of curvature for a specified radia-

tion loss (dB/radian). Moreover, knowledge of radiation due

to curvature effects is essential in calculating the isolation

(crosstalk) between circuit components in close proximity to

each other.

In an attempt to obtain the above design information, this

Appendix is devoted to the problem of curvature effects in curved

dielectric image guides of rectangular cross section.

2. THE BOUNDARY-VALUE PROBLEM

Figure A-l depicts the basic geometry of the curved guide

with a mean radius of curvature R. For convenience, two coordi-

nate systems are employed in the analysis of this boundary-value

162



V S S S S ' S S S S /

Fig. A-l CURVED DIELECTRIC IMAGE GUIDE
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problem. The cross section is a rectangle whose sides are 2a

and b. The relative dielectric constant of the guide is er/ and

the surrounding medium is free space. The following analysis

24
closely parallels that by Marcatili presented elsewhere.

This boundary-value problem is solved approximately by in-

troducing the same simplification used in solving the problem of

transmission in the straight image guide. The simplification

arises from solving Maxwell's equations only for well-guided

modes for which a small percentage of the total transmitted pow-

er flows through the shaded areas (see Figure A-l) and thus a

negligible error is expected if matching is not performed at

the edges of the fields.

As in the case of the straight guide, a family of hybrid

,;.'.r>des propagates through this curved guide having, in general,

six field components. Guidance occurs through total internal

reflection when the plane wavelets that make up a mode impinge

on the interfaces at angles greater than the crititical 0 =
o

sin (l//e~), where 0 is measured from the normal to an inter-
-L (_*

face. For example, for an alumina image guide with e = 9, the

critical angle of incidence is about 19°. Thus, for well-guided

modes, the angle of incidence 0. would have to be 0. > 19°.

Therefore, to a first order approximation, the only large field

components are perpendicular to the curved z-axis (Figure A-l)

especially for smaller dielectric constants. Past experience

with straight dielectric waveguides has shown that the above

164



assumption is valid even for large dielectric constants, pro-

vided the mode under consideration is a well-guided one.

The modes are then of the quasi-TEM kind and are designated

as E y. The main field components of this family of modes are

E and H . Virtually every one of these components varies sinu-

soidally along x and y within the guiding medium 1 and decays

exponentially in the surrounding medium. The subindices m and n

represent the number of maxima of each field component in the

x and y directions, respectively. The field configuration of the

fundamental mode E,Y is shown in Figure A-l . The following sec-

tion describes the influence of a finite radius of curvature on

this field configuration.

3. E MUJJKS IN A CURVED WAVEGUIDE

In general, the field components in each region of Figure A-l

24should be written as summation expressions but, as discussed above,

trie power propagating through the shaded areas is neglected and

field matching is applied only along the sides of region 1.

Therefore, the field expressions need not be so general.

In cylindrical coordinates and assuming variations with time

and 6 to be given by exp ( joyt-jv<J>) , Maxwell's equations yield26
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*v

2 ^Eil H = -r—
P 3

3E 3H

Y P
— V Ep y

HTV y~

(A-l)

where

,2 , 2 . 2h = k -ky

k = propagation constant in the y-direction

k = a) /y~eTe (in medium 1)

= to /u eH / .(in surrounding medium)

e =

oo =

v =

permeability of free space

permittivity of free space

radian frequency.

propagation constant in the <J> direction
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It is now assumed that the H field component is very nearly

equal to zero because of the presence of the infinitely conducting

ground plane, which tends to cause the magnetic field lines to lie

on planes parallel to it. Under this assumption, Equations (A-l)

become

2\,£"Cil

P

hH = v Ep P y
(A-2)

The wave equation in cylindrical coordinates is

32E 1 3E
) Ey = 0 (A-3)

This equation can be solved by the usual technique of assuming

a product solution. The procedure leads to two ordinary dif-

ferential equations, the solutions of which are known. Let
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Then

E = R (ph) Y(yky) (A-4)

d Y + Y = 0 (A-5)
d(yky)

2

d2R 1 dR f v2 ,,,
— D- T

(Ph)
2

and

.A, cos (yk ) (0 <_ y <_ b)

i A, cos (bk ) e ^ y , , .L. 1 Y o (y> b)

•B J ( p h ) + C,Y ( ph ) (p < p < p )
j _L v JL V X — — £
\

R = ( A ^ E ^ ( 2 ) (ph Q ) (p >_ p2) (A-8)

) (P < pj

where

h2 = £ k 2 - k 2 (A-8a)

ko =

X = free-space wavelength
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J = Bessel function of the first kind of order v
v

Y = Bessel function of the second kind of order v

H = Hankel function of the second kind of order v

Now, field matching of the tangential E and H components along

the boundaries of medium 1 yields the following two characteristic

equations :

bk = S£ - tan'1 — Jt- (T1 = 1,2,3, ...) (A-9a)y z ek

- (P2h) (A_9b)
Q1Yv(p1h) -

where

(p2ho)°: h „ (2), , ,r o Hv (p2hQ)

i 2 2k = (e -1) k - k
v ! r o v*o •-
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It is noted that Equation (A-9a) is the same characteristic equa-

tion that is obtained in solving the straight waveguide case and

that its eigenvalues are independent from those associated with

the p-variation of the fields. The tan" function appearing in

(A-9a) is to be taken in the first quadrant, and the arbitrary

integer n is the order of the mode, i.e., the number of half-cycle

variations of each field component within the guiding rod in the

y-direction. Equation (A-9a) is easily programmable for a digital

computer by employing numerical techniques.

Let us consider the numerical solution of the characteristic

Equation (A-9b) whose unknown is the order v of the Bessel func-

tions. Because of radiation in a curved guide, the order v is a

complex eigenvalue and, as such, programming Equation (A-9b)

becomes a formidable task, since there are no standard subroutines

available for Bessel functions of complex order. However, for

guided modes, both the arguments and the order of the Bessel and

Hankel functions involved in Equation (A-9b) are large compared

with unity, and consequently they can be replaced by their first

24
term approximations as

Jv (z) = 1/2
, & f..

j_7T (V -Z )

1/2

1/2

exp

3/2.

for v>z
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Jv (z) =

ir(z2-v2)
1/2

sin
2 2

(Z -V )

3/2

3v

TT

' 4 for z>v

Yv (z) = r
/ 2TT(V -

1/2

1/2 !
exp

, 2 2.
(v -z )

3/2

for v>z
3V

Y = -V j
IT (Z -V

j 1/2
cos I

J L
/ 2 2.(z -v )

3/2

for z>v
3v'

H (2> - J - j Y
V V V

(A-ll)

which are valid if

v

/ a 2.(z -v )
3/2 « 1 (A-12)

Introducing these approximations for the Bessel functions in

Equation (A-9b), one obtains the following approximate character-

istic equation:
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2,2 2\3/2 2 2-v
"I 3/2

J

= imr-tan
ho

2

_"r h2

*• O 9 -1-/ *

Plh
2V \

2 2 v 2 /v -Pih^ / ~>

1/2

tan ( e —:
f 2

1-j exp -

3/2-,

(A-13)

in which m is an arbitrary integer larger than zero which deter-

mines the order of the mode in the p-direction (or x-direction,

~1
see Figure A-l), and the tan functions are to be taken in the

first quadrant.

In order to relate the curved guide analysis to that of the

straight guide, let

v = Rk

and
1/2

(A-14)

(A-15)

where k , k , and k are the transverse and axial propagation

constants at x = 0 (Figure A-l).

To find the eigenvalues of the curved image guide, Equations

(A-9a) and (A-13) were programmed for a digital computer. Unfor-

tunately, in running various cases, numerical difficulties were
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encountered in the search routine that solves for the eigenvalues

of Equation (A-13). It was discovered that this difficulty is due

to the fact that the real part of v. is much larger than its ima-

ginary part for guided modes, i.e.,

v " » v "

where

v = v^ + jv^ (A-16)

The computer program did, however, find the real part of the

eigenvalue, v", correctly. On the basis of v" and Equation (A-14),

the velocity of propagation in a curved guide may be calculated,

This information is important in determining the guide wavelength

in a curved dielectric image guide. As expected it was found

that, in all cases considered, the guide velocity, and thus

the guide wavelength, increased due to the waveguide curvature.

Two typical examples that were run on a digital computer are

given below

Example #1 (E,Y Mode)

Straight Guide

a/b = 1

e r - 9

R/2a = °°

B = 1

X0/Az = 1.075

Curved Guide

a/b = 1

er =

R/2a =8.8

B = 1

v' = 25.15

" = -1.7 x 10

(nep/rad.)

-4
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where

V = V' + JV "

Example #2 (E-̂  Mode)

Straight Guide Curved Guide

a/b - 1 a/b = 1

P = 9 e = 9er r

R/2a = » R/2a = 6

B = 1 B = 1

A /A = 1.28 A /A = 1.15o z o z

V* = 7.7

V" = -1.15 x 10~8

(nep/rad.)

The above calculations clearly indicated the difficulty in solving

for the imaginary part, v", of the eigenvalue v. There is no rea-

son to believe that this numerical difficulty cannot be resolved,

by employing appropriate and efficient eigenvalue search routines.

At the time this work was being conducted, the above approach

was considered too costly to continue. An alternate solution

to calculating v"", and thus radiation losses, was considered

and is presented in Appendix B. This second approach, however,

cannot be used to predict the velocity or guide wavelength

in a curved waveguide.

174



APPENDIX B

RADIATION LOSSES IN

DIELECTRIC IMAGE GUIDES

OF RECTANGULAR CROSS SECTION

175



APPENDIX B

RADIATION LOSSES IN DIELECTRIC IMAGE GUIDES

OF RECTANGULAR CROSS SECTION

1. INTRODUCTION

In general, any curved dielectric waveguide loses energy

into the surrounding medium by radiation. The amount of radia-

tion loss in a strong function of the mean radius of curvature R.

The problem, thus, is to estimate the minimum allowable radius

of curvature for a specified insertion loss due to radiation.

In an attempt to provide an answer to this problem, this

Appendix is devoted to curvature effects in curved image guides.

2. ANALYSIS

Figure B-l shows a representation of a curved dielectric

image guide (top view). The shaded wave-guiding region has a

dielectric constant larger than that of the surrounding region,

resulting in a transverse field distribution for the guided mode

F(x) which decays exponentially but remains finite. To obtain

an approximate expression for radiation loss (dB/radian) as a

function of bending radius R, this may be visualized as a two-

dimensional guide with an isotropic surrounding region capable

of supporting a free-space radiating wave. Note that at some

transverse distance x the maintenance of a pure guided mode with

equiphase fronts on radial planes required energy propagating at

the speed of light, and for x > xr a pure guided mode implies

energy propagating at greater than the velocity of light. This
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F(x)

Waveguide, €r

2a

Fig. B-l A CURVED DIELECTRIC WAVEGUIDE
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is true at some value of xr for any finite bend radius R, since

F (x) extends indefinitely in the x-direction . To a first approxi-

mation, it is assumed here that the transverse field distribution

F(x) is virtually the same in the curved region as in a straight

guide for large R. The fraction of energy in the guided mode at

x > x is assumed to be lost to radiation; this loss is taken to

occur in a longitudinal distance equal to the collimated-beam

length associated with the field F(x) . All these assumptions

imply that any mode propagating along the curved open guide ra-

diates .

25
It is shown elsewhere that the attenuation constant (due

to radiation) for the fundamental mode (E,Y) of the bend region

is given by
•p

where

1 2
2k — COS (akx) exp ~2kxo (x

r~
a)

X O

2
sin(2ak ) cos (ak )

ET = a + 2}^ + — — (B-3)
X XO

a+cos(ak ) /x /

ô
Zc = — X " ' ""•' (B-4)

/ k -k \
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k = propagation constant in the x-direction

k = (e -1) k 2-k 2x o r e o x

1/2
(B-6)

k r = propagation constant in the transverse y-direction

(B-7)

2 2 2
k - e k -k -k 'z r o y x

(B-8)

X = free-space wavelength.

The transverse propagation constants k and k are obtained by

solving the following characteristic equations:

hiV — •DKy I • tan'1
1 k \y

e kr yoy
(B-9)
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TT -1' tan

xo

Equations (B-9) and (B-10) result from applying the appropriate

boundary conditions at the image guide interfaces.

3. NUMERICAL RESULTS

Equations (B-l) through (B-10) were programmed for a digital

computer and typical results are shown in Figure B-2 for an image

guide with e = 9 and an aspect ratio of a/b = 1. The cross

section of the guide is 2axb, and the attenuation constant

a in dB/radian is plotted versus the normalized height of the

image guide defined as

B _ 4b
B ~ A

o

These results clearly indicate the extremely rapid variation of

the radiation loss wit!

dielectric waveguides .

the radiation loss with frequency, which is typical for curved

24
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