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Second Quarterly Report -
Design and Control of Remote Manipulators
NASA Contract NAS8-28055 .

‘Reporting period 4/5/72 to 7/4/72

This is the second quarterly report on NASA contract NAS8--28055

_’for Design and Control of Remote Manipulators. The report is divided

into five sectionms:

| : o , o
I. Summary of technical sections - C A s E F E L E
II. Vibratiqn modes of manipdl?tors v C o P Y
ITI. . Optimal path generation ; ‘ — ,
1v. Studies in control modes add viewing modes '

V. Financial information (included in copies to contractor only)

Summary of Technical Secttons
Work procééded in three main areas during this quarter.

Wayne Book completed the first phase of work on vibrational modes -
of manipulators, the beginning of which was reported on in the

first quarterly report. The main results are

1) any afbitrary manipulator may be analyzed.for its small
motion compliances. From this one may obtain natural
R - frequencies, natural mode amplitudes, and characteristics

of free vibration.

2) a gimulation of the Martin-Marietta shuitle boom proposed
cqnfiguration, with a 65000 1b. payload attached, indicates
three natural frequencies: 1/87 cps, 1/129 cps and
1/357 cps, the first of which dominates in one simulation

run made so far.

3) the example simulation is for the case of. flexible limbs and
locked'joints. The case of rigid limbs and flexible joints

can also be simulated, as well as combinationms.
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'Jan Iemenschot continued his work on determining t;ajectories for
arms so that some integrél criterion such as 1ntegra1 of kinetic energy
or control torqae magnitude is minimized over a motion of the arm. His
,techﬁique consigts of making a serieé expansion of the torque histories and
perforning a numerical search for the optimal coefficients in the series.
The main result so far is that the optimal coeffiéients.fof a wide range
of useful motions may be conQeniently, although approximately, summarized
by a paraboloid which yields the coefficients as functions of the joint
angles describing the motion. Thus there is no need to perform the
numerical search on line. ‘ 4

Jay Mackro set up equipment and has been performing experiments to
evaluate various TV displays in éonjunction with manipulator control
modes. In particular, the "moving window" has been impleﬁented; although
no data on it has been taken. The main result #o faf is thaf, for the
test task veported, a TV camera mounted directly-to'the manipulator érm
and ‘arranged to look approximately along the arm to the hand allowed
the operator to perform the task almost as quickly as he did when viewing
-the task directly. Worse perfofmance was obtained when'viewing through

a TV camera fixed to one broad view.

Submitted by

k-& v iw/tﬂ\—g/f

Daniel E. Whit
Associaqa Professor




Financial Data

Balanéé-oh 6/30/72 (approximately) .

Expenditures per month anticipated for
coming quarter, approximately

Expected'balance on October 5, 1972

$22,775.00

1,750.00

17, 525.00



Deflection and Vibration of Jointed Beams -

Introduction

Manipulatof érms are subject to dgflectibn under loads énd to vibrarions
about an equilibrium position when the loading on the arm is suddenly
changed. The deflections deterioratefend point accuracy as computed
from joint positions and the vibrations can seriously'de;eriorate the
regsponse of the arm, and the ability of an operator to perform desired
maneuvers. The following is a method for analyzing the deflection of
an arm under given loading conditions. The arm compliance matrix is
arrived at giving three displacements and three.;otations as a linear
function of the applied forceé and moments. Thé‘methcd can be used
to evaluate the bending of the arm segments and flexible joints as
well. If the compliance matrix is nonsingular it can be inverted to
yield a spring conétant matrix and henée forces end moments as a
function of displacements and rotations. The motion of a lumped mass
spring system can be described by a linear differential equation using
these spring constants. The validity of this approximation for an arm
vibrating about an equilibrium position depends largely on how well the
mass involved can be lumped fnto a reasonable number of masses. It 1s
less seriously limited by a small amplitude assumption, the assumption
of negligible damping (only second order effects on thé natural frequency),
and the assumptions that the joint angles are not changing. When the
mass of the payload is large compared to the mass of thé:arm thé approxi-

mation is very good.

The Mechanics of Arm Deflection

Consider an arm in static equilibrium with the forces and moments

on its two ends as is shown in Figure 1. Initially we will assume

1) the weight of the arm is negligible
2) the arm joints are rigid

'3) the arms segments are simple beams
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When loads are applied to the ends of the arm the individdal'arm
segments deform according to the forces and moments placed on them
by the neighbdring segments. When these forces are ekpresséd in
terms of a coordinate system which has one axis coincident with
the neutral axis of the beam as shown in Fig. 2, the deflections
over the length of the segment are simply obtained. Each of the
deflections and angles along the three mutually perpendicular
'diréctions is a linear function éf at most two of the loads. -

Notice that one end of the beam is assumed at the zero positibn:
A-zgéo(c Fx‘,
AY. = Kyp By + Ay My

AZ, = Oy Fy - gy Yy
. Eq. 1 :

Ox " o
sz ‘"%YF . +0(9YM My

ez" OLSZF Fy +°‘OZM ,

For a beam whose cross section is symmetric about the Y ahd Z axes
Xop ﬂqZF and will be denoted ™ .. This will be the only case
specifically considered. The development which follows could retain
the extra subscript at some loss in readability. -The simplification in
notation is as follows: . |
X, . =X — s 4

XF ZF

°(xn°°(m"o<zm

o
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Beam theory additionally requires that O - -=°(9F. Determining the
end displacement is a matter of summing the displacements of the in-
dividual segments and in accounting for fhe,displacement due to end
point rotations at a distance from the end of the segment where

the rotation is calculated. For numerous apvbitrary joint angles
this becomes a complex bookkeeping task. The matrix procedure which
is developed hgte'autdmﬁticélly performs this task. -

_Transformationwof'Cootdinatea Using 4 x 4 Matrices

We are interested in a tranaformation betweenm two coordinate
systems whose origins are displaced from one another and whose axes are
not parallel,as in Fig. 3. The positi&n of point P is described in
terms of coordinate system 2 by the vector 252. ' Given the vector (X 0)1
from,o1 to Oz'gnd the angles between the axes (or ‘lines parallel to .
them), we desite to find the vector from 01 to P. This vector is
‘easily found by the following matrix multiplication:

- - r ’ ' . ‘r —!r

1 0 0 - 0

X ,: (30)1 !_cos (xz,xl) | Cos (YZ? Xl) Cos (ZZ’ Xl) xz

1 .
Eq. 3 Yl {Yo)1 cos (Xz,xl) COS'(YZ, Yl) 'Cqs:(zz, Yl) Y2
kzl- | L‘Zoﬁl cos (X,, z;) Cos (1,, z,) :-Cos'(ZZ, Zli I ZZJ
or T2)ofi b om0 ]

L (F1! Rl % J

The cosine terms are the cosines of the angles between intersecting lines
parallel to the indicated axes. The sign conveﬁéibh is érbitrary for
these angles since the cosine is an even function.

We are interested in coordinate transformations of two special types.

One of these 18 bhe transformation due to joint angles and displacements.
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The other transformation is due to the deflection of arm segments
under loading. The former has been described for both rotating and
sliding joints by J. Denavit and R. S. Hartenberg (1)* in terms

of four independent parameters. The transformation for simple beam

flexure, compreSsion, and torsion will be developed in this paper.

" Transformation of Coordinates Due to Elastic Deformation

The information we seek is the displacement and fptation of an
arm, or more generally a jointed beam, due to the application of loads.
The end of the beam can be-desCribed>in a fixed reference coordinate
system>if one knows the transformation between the coordinate systems
wnich are fixed to the individual segments. As seen in Fig. 4 the
point p at the end of the beam can be described by two transformations,
represented by two 4 x 4 matrices. The transformation Ai'relates _
system 1', the end point before deflection, to system 1-1 The trans-

formation E, relates system i to system 1',

i
1 1L
Eq 4 Xgrgea ™ A B | Xy 4f" A B0
where: X . = the position of the origin of system i in terms
21, i-1
. of system i-1
Ay =  transformation with no defléction —
Eg - transformation due to deflection
0 a 3 x 1 vector whose elements ere zero
X 1gi = location of point pin i coordinates = origin of 1

in this case

" * A reader consulting this paper should be aware of ‘the fact that X
in that paper is defined with opposite sign convention of this paper
and later papers by Denavit and Hartenberg.

(1)J. Denavit and R. S. Hartenberg; "A Kinematic NOtetion for Lower-

Pair Mechanisms Based on Matrices" Journal of Applied Mechani
June 1955 pp 215-221, of Applied Mechanics
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vAny_ number of these transformations may be combined by multiplying

the transformation matrices. In terms of the reference system O, the

end of a beam with n joints 1is located at X no 28 is given by:

1 = AEA...AE...AnEn 1

Eq 5 —=- 112> i7i
' X 0

- N,0 . -

We would like the variation of this position vector due to applied

forces and moments. First the elements of the E matrices must be

found. From Eq 3 .

- . . ™
1 0 0 A 0
E, = [ (%) . cos (X;,X;,)  cos (Y,,X;\) cos (Z,X,,)

Eq 6 (Yo)i, cos (xi,yi.)' cos (Yi,Yi.) cos:(Zi,Yi,)

_ L(Zo)i, cos (xi’zi') cos (Yi’zi') cos‘(Zi,Zi,)

o

For small deflections and small angles the elements of this matrix

simplify as follows:

T 1 0 0 0

E, =| AX T cos (90 + 6 ) " cos (90- 8,)

Eq 7 AY cos (90- &) ' 1 . cos (90 +§)
LAZ cos (90 +9Y) " 'cos (90 - 93{) 1

where 9X’ v 9Y and 92 are the angles of rotation ébout the X, Y and Z

axes respectively. For small angles the angles beha_w’ré very nearly as

vectors, thus the order of occurance is irrelevant . TFurthermore the

small angle assumption allows further simp.lification' to



Eq9

1 0 0 0

By » | | |

| AX . 1 -9, &
Eq 8 | | z Y
AY S 9, 1 -6y

Az -8, _ 1
S ¥ ®x i

But these elements were expressed in terms of forces and moments
' |

in Eq. 1. Thus»Ei'may be expressed as

1 i 0 \ 0 “ 0
o cFxi1 | 1 : oFiTyi1” SM_iMZii{ g Fpy gy Mo |
las .
©,. F |
xritvas * ou'zas Corayast 6»:41"211\l 1 |-yt
L°‘xr1 211 ~ xm“vii: 6Fi zu""%m”*zu( LT | 1 |
N
where
F = Forces at the end of beam 1, in terms of coordinate

Xii’ F':‘y:Lrl’ FZii
system 1
MXii’ MYii’ Zii Moments at the end of beam i, in terms of coordinate
"system 1
Now one must determine the forces and moments on segment i which

_result from the loads on the end of the beam. This is done in the

following Section:

Eggilibrium,Forces on the Arm Segments

A'ffee?bbdy diagram of the beam segments between coordinate system

i and system n 1s shown in Figure 5. Equilibrium requires:
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a) SF = = R F
Eq 10 _ - 0i = no
,2: Mi = Roi E no
where: Iy = the vector from

terms of system 1

Tyg XRoy Foo "My

system 1 to the end of the arm in

F,, = the force vector acting on the beam to-the left of

system i in Figure 5, expressed in system 1

M,, = the moment vector acting on the beam to the left of

system i in Figure 5, expressed in system i

R, = 3 x 3 rotation matrix from system O to system i

= applied force at the end of segment n, expressed in

base coordinate frame

H

Vectorially eq llODmayvbe expresLed as

Eq 11 {-==---

= applieﬂ moment Fxpressed in the base frame.

l
: 0 E no
|
( Roi [} ¥
_ - NO

where r,, x R may be represented by the matrix multiplication

r xR r‘
‘11§ o1 =| “zi1

L?rYii

“Tzi1 Tyii-
o) “Txii
rxii VO

]

o1 -

In the above manner we can obtain the forces on the arm segments

resulting from the loads on the end of the arm. It remains to evaluate

the deflection of the arm by using these values in conjunction with the

transformation matrices.
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Arm Deflection with Load

Having described the position of the end of the arm(aftef ioading
has been placed on the end of the arm)by the coordinate transformation,
one could subtract from this vector the vector describing the position of the arm

before loading as in equation 13. Theoretically this would be correct.

Eq 13 = [ca,E 2...E A_ E)-AlAZ...A)][___]
In practice the difference of these two vectors will be much smaller than
the vectors themselvés, leading to inaccuracies when the calculation is
~carried out with two few significant digits. A more practical way is to
evaluate the partial derivative of the position of the end with respect

to end point loaqs', : for example FXNO and MXNO (read N as
o ' : n o heve
P S [Al 1:l R An.En][_%_] . on )

| Eq 146 9 Xyo T 9 P‘l E) &) By oo A En].(-%-}
0 ¥xno OMao U ) -

One will now recall the assumption that the joints remain rigid.

Because of this:

aAi =JA = 0 1i=1,2, ..., N
oFmo Mo '

If one found that this assumption was mot valid it wouldibe relatively
simple to evaluate these partial derivatives and include joint flexibility.
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| By the chain rule

Eq 16 . —
O0Fxno 9 Fyno

AL E a9F 8y Fy s A E) {_(1_)_ _(
XNO '
Continuing this differentiation one eventually arrives at: (for example)

Bq 17 9o =2 A1 FpococAg D By Ay ek EnjE%—-]
| =1

% Fyno _beno

and similarly for the other force components, as well as for the

‘moments: (for example)

n
Fq 1T 9%, = S AL Ep oAy OF, A, ---A E {_é{l
- oMo 1=1 9o N

Then deflections are obtained as AALNO =6§N0 AAFXNO (17¢) for example.
0 Fyno

In order to proceed we must evaluate

OE,. OF,. .aEi,'aEi" DEi, and éEi
) ) ) )
9 Fxno) Fyno OFzio Mxo O MYNO) oMo

"To do this we take the derivative of the individualielements of

Eq. 9 as follows:



OFyys + %t Mgy Yprs Fyas +%pms OMpyy
9fmo - 9Fmo |  OFxmo . 2Fmo

Ayrs OFz1s -Yyoes Myss | Xors Foyg -%ows Mg | % O

Similarly for FYNO’ FZNO’ MXNO’ MYNO’ and MZNO' Note that the
derivative of the rotation submatrix is antisymmetric
Theee 1is but one thing left to evaluate, that is

D_F_‘ii "DE“_, Db_gii, and at;{ii . Refering t?o Eq 11
O oMo 9y o Mo

it is seen that these partial derivatives are réédily_ evaluated

1f one assumes that Ro:l. and I % ROi are essentially independent
of the loading)which they are to first order. Then -
(1]
Eq 19 o F11] =| Ros 1‘ 0 0
. Y r x R R 0
aFXNO 1_\_11 { -ii (0} ' oi 0
' 0
Lo A

' Z)Fxno- : f)Fxno'[ ' oFmo _anno . 9 Fyno
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In general

Eq 20
M
P11
LT
Lo
Ro1 {
-
Zig * Rog % Ro1

These va1ues aan be substitutéd into Equation 18 to yield the
derivative of the elastic deflection transformation matrix with
'respect‘to the end of arm loads. It has already been pointed

out how the displacements are computed using these' transformations.
The next section will show how to arrive at the rotation of the

~end of the arm due to the loads.

End Point Rotations Under Loads

~ If one carries out the summation enclosed in the bfaces in
Eq. 17 for all six components of forces and moments, the result
will be a 4 x 4 matrix to be multiplied by a vector. If the
loads are applied at the end of the arm, the vector'is[i 00 d]T.
If however, the arm extends past the point of appliéation of the
loads, the vector will be (} X'NN Y'NN Z'Ng]T. We can interpret
the elements of the 4 x 4 matrix in the following mannmer:



Eq 21 ¢ = o 0 . 0. 0 : 1
3%“ ° sk 92 o2 ot B
XNO Xno Xxo X0 -9 Xy N AX 0
[} . L . ]
0 X' 9Fxvo, O Ym0 O ZwdFxwo| | -
SY azY azY oY,
NO NO NO ; NO - A YN
] ] 3 . 1 .
OX 0P Y o O NfFxvo| |
i
2 2 L2
B Zyo|_9 %m0 | 9 2y : {() %o Az i
__———'—-—2— . N ) H T
o 0K wdFpe 0¥ wFxmo' 22 xfFxvo
—_— ’ P NI G .
. Which we will. denote as
Eq 22 %Xy = -
; . ]
OFmo  [*¥vo SRw| A%
Here SXNO’ SYNO’ 5 NO _are the displacements of the origin of coordinate

system N. RNN is the lower right 3 x 3 submatrix of Eq 21. The first
subscript refers to the point, and the second subscript refers to the

' ' L (I
orientation of vthe vector {l AXx NN Aay - Az N

Equation 22 can also be written in the follow_ipgform, using a

transformation of coordinates.

Oy = Ofg ‘%Q 1

1
OFrvo |0 | SRwo | L O« Ron §[4% NO

On multiplying together the two 4 x 4 matrices one obtainms:

-

[ o {\ 1
Eq 24 o = ? —
4 9Fxmo SXNo'f & Ry Ron LA}—(NO
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" which we denote as:

9% - | 0 |0 1
OFmo  [$*vo | SR )[4 X0

Eq 25

Now look at the physical situation as portrayed in Fig. 6, a view of the

arm's end parallél to the 2 axis. The way in which the deflection of

0 :
the end point changes if that end point is extended beyond the load
depends only on the rotation and the extension. Thus we can interpret

the SRNO matrix as follows:

. - o -86 130 89 nyo
Eq26 OPwo " ORy Roy=[§8 gy 0 =88 4o
-8 w0 8@xo o ]
where  §8 ;o = OOy
OFXNO
86 o = P -
bF : etc.
XNO
In:this case Jg%; was used. Similarly of coufse_one can obtain the
. . XNO ’ .

partial derivatives with respect to the other doads.

Compliance Matrix and Spring Constant Matrix

Now we are able to piece together the above derivation to reach our
original goal: a matrik of compliance of the arm under force. Equations
16, 17 and 26 are evaluated (as well as the similar equations for the
oither forces and moments) and one cén construct tﬁe following matrix

equation.



ax| [x
OFy OFy
Bq 27a) _
Ay | |9x o
an - DF,
Az =»Qz_ o z
oo, | Ox %
N 0Fy OF
oy | Wy P
|10Fy, oFy
b DF 7 &92
tz_J N FX ’ D_EYv
o o
or .

NO " NO

W 2

it

~ .
C)Mz, g
oy ¥
oM,
.“\ ;
Jz § F,
oM, |

Ty My
oM, '
¥ M,
p)

D ' S

~ The subscripts on the matrices are understood to apply to each element.

' Due to the nature of the problem the matrix CNo will be symmetric. The
tnverse of the matrix Cxo will be the spring comstant matrix Ky, and

NO
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1+
2
| >
1<
"

Ky {4X

Eq 28 AQ

X
(Y

NO

CNo will nonsingular for all physical cases. For some arm con-
figurations and parameters the inverse may require excessive accuracy,
and hence be uncalculable. In this case one must eliminate one or

more of the directions from consideration to get an invertible matrix.

Linear Beam Vibrations

Up until this point we have been considering the displacements of
and loads on a static beam. If one considers a figid mass with ineftié
placed at the loading point, the forces and moments on that mass are
the negative of the forces and moments oh the beam. These forces and
moments can be determined from the spring constant matrix and the
deviation of the mass from the equilibrium position. Since structural
damping is small, the natural frequency of the spring-mass system as
well as the amplitude ratios of the various modes of vibration can be
determined. Nonlinearities such as corriolis accelerétions and centripital
.acchierations can be neglected for angular velocities which are appropriapely
sﬁall. Thés seems to be the case in practical arm problems with small

vibratipns. The equations of motion are then written as

M 0 0 0 0 o 7
0 M 0 0 0 0 n
Eg29 |0 o0 M 0 0 o —5
- | de
0 0 0 Iy Ly I
0 0 0 Iy Lyy Iy
0 0 0 Iy Lyz o Izz__|

where: M = the lumped mass at the end of the arm



Page 16

IXX’ IYY’ IZZ = the mass momenté of inertia of the lumped

inertia at the end of the arm about axes parallel to the

reference axes but through the center of mass .
IXY’ IXZ’ IYZ = the cross mqments of inertia about axed

parallel to the reference axes but through the center of mass. -

for convenience Eq 29 will be rewritten as

o & [ax]= -x.fax
a2 | ap| 148

.NO- :

This can be written in state variable form as .

afax] [ o | [ax] [az

Bq 31 dt sl |-rlk o a® 14, AB
4% A X 4 x

;Aé‘ -.QAéJ 4@

The dot above A X and AO indicate a derivative with respect to time..

The roots of the equation
Eq 32 'sI - A),--= 0

are the natural frequencies of the system. The amplitude ratios can

found as for any undamped linear. system.
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Extensions - More Than One Lumped Mass

The case of the unloaded orllightly loaded arm is one in which

the dynamics of the arm vibration are not dominated by one lumped mass.
The criteria for modeling with lumped masses will not be discussed
here, but rather the use of the technique developed will be extended
to include aﬁy.number of lumped masses. Figure 7 shows schematically
a model that one may be interested in.

- Initially one obtains spring constants between each mass point and
its adjacent mass points., The nonequilibrium forces 6n each mass depend
. only on the difference in the véccor'ﬁositions of it and its neighbbrs.'

Thus for the example in Figure 7; with some‘chgngeAin'notation:

" )

Be 33 3 X 2 Ky g X)) ot Ky, Gt %)
where 51 =VAL§ = positioﬁ and angula:‘orientation for mass 1,
—— measured from equilibrium in base ocoordinates
-
K 41 spring constant matrix between mass 1 and mass i-1
> :
“Kf+1"i spring constant matrix between mass i and mass i+l
. ’
J; = the inertia matrix for mass 1

This equation can beAWritten for all n masses. The end masses are

special cases

L4

Eq 34 Ji X 0= Ko X ot Ky Ey- X))

e 35 Xy ot Ky gy By - XD
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If we assemble these into ome

Eq 36°
T
i B y 371k
c 1 Y210’ 21
lxi e e e e e o] [
“2|af -1 -1,
L J," Kyy -J, (K
X
1x
_ 1y .
N Ky, N-1

;1 ’
Iy Ky, w-1

-

-J; (

Lo

1

matrix ekpression, its form is:
|

Kie1,11%4,1-1)

Simplifieations - Some Moments of Inertia Insignificant -

of 1nertia.

One or more of the moments of inertia of a lumped mass-inertia

may be inSignificgnt with iespect to the mass and the other moments

In this case it is desirable to reducé the number of

state variables by two by ignoring the assoclated angle and angular

velocity.
associated with the trivial moments of inertia.

and the forces in the beam undergo a diécontinuity in our lumped mass

The moments will be continuous in the beam for the axes

The other moments

i

model due to the inertial loadiﬁg. Let K designate the spring constant

matrix of the entire arm, considering all points of loading. Its fomm

i+1,i"°°
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is similar to the large matrix in Eq 36, but the J"'.l ‘terms are re-
‘moved. Then !

Eq37 G ex?

S ‘tf'g
& lx '
where F = unknoWn,lpossiﬁly.nonzero loading
?g" = displacements or angles associated with the F elements
~ M o= loéding terms which will be identically zero
Q = angles associated with the N elements i

Q1

]’ Cu Cu?

x
Ca sz& [

R

Eq40 % =L, °F

!
e @ - T, = |

9 = &t

Eq 43 11 12
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‘Eq 44

L.
n
2
52
+
ol

. S |
Eq 45 T = (@-%p, 0 ¥y X

The abave operations assume the inverse can be performed.

The reduced equations of motion are then:

AP 2 ) -1
Bq 46 M 4 X = (a-%, 07 %, X

at® |

where ™ is the reduced inertia matrix obtained by eliminating the

appropriate rows and columns from the unreduced inertia matrix.

Example Problem

In order to verify and illﬁstrate the feasibility of the theory
presented above, a computer program was deve10ped‘to evaluate the
coefficient matrix for an example arm. The coefficienﬁ.ma;rix was
then:input to an existing matrix manipulation program along with an
inertia matrix to develop the équations of motion. for a simple case.

As a realistic example the arm parameters and configuration were
taken from a proposal by the Martin Marrietta Compgﬁy'fdr a boom
for the space shuttle. These are shown in Table 1. Figure 8 shows
the arm in the configuration of the example.and.fhé‘distribution of
the 65,000 1b. load. These joint angles were chosen because they
realistically duplicate a position in a retrieve maneuver for which
the arm might be used. It also enables a separation of modes reducing
the number of state variables to six.‘ This is due to the planar
motion of the mass. Figure 9 indicates the osc@liétions’resul;ing

from an initial displacement of ten inches. in the Y direction at the

endpoint.,
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The computer program required 0.08 hours of IBM 1130 computer time
to evaluate the compliance matrix for six joint angle positions. This
includes some compilation and program listing time, and the program '

could be considerably streamlined.

Future Work

Preliminary ﬁork has developed the controllability mairix for tﬁe
general case with joint Angle position control. This has been used to
show that the example problem above is controllable using.twb of the
joints. Optimal'éontrol theory can now be used to determine suitable
feedback gains if one has access to the state variables._'The state
variables can be partially measured and partialiyfreqonstructed using
the measured variables. Measurements might be performed via accelero-
neters, opticaliy, or in some other fashion. In all this fuéure work
the method developed here will make the determination of the equations
of motioh for arm ﬁibration practical, even for compliéaﬁed arm con-

figurations.
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Real time trajectory generation

-Introduttion

Subject of the investigations is a plauar' three joint arm
with joint angles 91, 92 and 93 as shown in figure 1.

Z
)

— e e o e e e e am - e am

>
L
/
/

Figure 1.

To move the arm from an initial position 91 ,.?»e'li.’ 921, 931] to a
final position 6. = [eif’ sz, 93f] in T secondg it is necessary
that a trajectory in O - space 1s generated in T seconds. It 1is re-
quired that the trajectory is such that a given pgrfdmance criterion
is satsifded; i; e., a given cost function J musi:'be minimum over 'the
path betweeh the prescribed end points. The optiﬁal trajectories are
obtained as follows: |

f - Assume that the time function for each joint ahgle Gk (k = 1,2,3)
can be written as a series of elementary functions _ A

B = () +A £ () +B £, (D) + ... (1)
k=1, 2, 3.
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where Ak’ Bk, .... are time-invariant parameters.

Generally, for a specific arm the cost function J #8 a function of
ek’ ek, ek and T.' - ’e )

Substituting the assuméd functions for Gk, Ok and 9k' in the

expression for J, J can be written as a function of the parameters

Ao By e, the ini_tial.and final angles aki and ekf,_ and T.

1f eki, ka and T are prescribed J is only a fungtion of A, By,...

The values of Ak,'Bk, «e.s for which J is minitum can be obtained

by numerical search.

. State of the work at the beginning of the quarter

At this time computer programs to find the_opfiﬁal values of the 7
for different cost functions J and different kinds

parameters Ak’ Bk’ cees

of trajectories has been developed and some examples had been worked out.

‘The cost functions are:

1.  The integral between t = 0 and t = T of .the kinetic energy of the

arm: T
= [ k& a
_ o _
2, . The integral between t = o0 and t = T of the sum of the

absolute values of the joint torques:;

d
fk_l w4

(2)

3)

The asgumed functions for each joint anglé x (k =1, 2, 3) are:

a, A series of polynomials

| | | .
O =0y + (B -8 T

4 64 T
+ A ;2 t (I-t) + B ;§-t GG - v (T-t)

()
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~ where ek.i - ek_ at tf-.o

ka -9k~ at t =T

The elementary functions are shown in figure 2.

]‘- » . Bty
..... : ' 4
. .
]
{ .
) | o
: -t B'ko i ' t
o T 0 RNz
-Bk b - -~ - - -
Figure 2.
b. . A series of the ‘fo'llow:l.ng three eleme_ntafy functions, which
are periodic:
. - - 01 1 ' ' ' (5
£, () eki +Okf Teki . (t o sin w t) | (5a)
( T '
o A, 2 (t - 1 sin2wt), 0<tg — {5b)
Af, (£) = 2 T 2w - |
: L S Sy | Ter <
LA.k 2 T (t 7w sin 2 wt) ,2$t\T
( 4 1 : T
— - e
Bk T (t ! !sin 4duwt), Ols ts$—
- . S S - <3
kaz (t) < Bk 2 T (t T 8%944 wt), A gt < % (5¢)
o, b 1 3T
Bk_ -4+-—T—'(t- T si§4wt) ,——a—.’$t$T

Y

where W = 2 77 /T

Figure 3 shows these functions
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' Figure 3.
With the progra’ms ‘the optimé.l values of Ak and Bk could be obtained
‘for the following combinations of cost function and trajectory:
T
1. J = j KE dt with traj'ect:ory (4), a series of polynomials
o - : 7
II. J = j KE dt with trajectory (5), a series of periodi
functigns. |
. ' T 3
. CITT. J = / 7 |uk| dt with trajectory (5).
' o k=1 '
T

Combination of J =‘Jf :E: luk' dt with trajectory (4) is not possible.
The joint torques are ¥z%ctions of Ok, ek and ék' For trajectory (4)
ek is infinite at t = 0 and t = T. ) ' ‘

Work performed during this quarter

For the evaluation of the cost function J the iﬁtegral is -_computed
with Simpson's rule. A problem was the choice of the number of intervals
in between t = 0 and t = T, which will be détermined by:

- nature of the integrand .

- required accuracy in the parameters Ak and Bk.
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- cost of computer time (for each evaluation of J the integrand

must be computed n + 1 times)

Satisfactory results were obtained by ‘ch_oositig n = 20,

For a specific arm ('11 =1,=03mandm =m, = 1 kg) the three
programs have.been run for over 20 combinations of initial and final
positions of the arm. . , '

In all cases T =2, 6, = - 0.78 and 8, =+0.78; 6, and
92f vary between -1.57 and +0.78; and ¢] 44 and e 1 vary between 0.0
and 2.36 (angles in radians).

The following results for the optimal values of Ak and B, were.
obtained. - ' ‘

-
I. J = f KE dt for trajectory (4)

[

For all combinations of O N and 6 p Bi, B2 and B3 are O,

] = e =
When both 621 ezf and 931 3¢ Al . 0 too.

For these cases A, and A3 havéibeen plotted as functions

2
‘== = I = 6 . =
of 921 ezf 92 and 631 3¢ ‘93 (figure 4)

In most other cases ( 0, + 92f and/or 9_31 £ © 3¢)

Al has a nonzero value.
Ry T . _
2% ’ 00 SO —
i T
0
'olj ;
-,21
-.3 ) % 0 . o-
] V e . M N
=1.57 -e78. 0 .78 2 ’ / _ e
‘1.57 -,.78 o 078
6———o0 93: 0.78
&— - —a O =]_,57
g----0 93= 2.36

Figure L.
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T '
II. J = / KE dt for trajectory (5) -
o ,
For 8,, = er and 931 = -93f the optimal values of

are 0, while B1 ‘has values between 0.11 and

A, B2 and B3
0.18.
The values of Az' and A3 are shown in figure 5.
1.0 T T

~ 8, 2
"1057 "078 . 0 078
Y — =% Ba=0
o——0 63=0.78
6—-—a ©O73=1,57
B--—-—--a 83=2.36

Figure 5.

T v
| 3 o
I1I. J = f > 'uk‘ dt for trajectory (5)
| o k=l R

As in I the optimal values of A;, By, B, are 0 when both

921 - 62f and 931 = 0 3¢+ In figu;gb the values of A,

and,A3 are plotted for these cases.
_For 921 + ezf and/or 9-31 * 93f parameter A, hag a
‘value # O. ‘




Considéring the values of the cost function in the different cases the

following comments can be made;

r 3
1. The value of .)f 2 ]ukl dt seems to be more sensitive to
' o k=l o ' '
variations in the values of the parameters Ak and Bk than
KE dt.
2. In case III the minimum values of J are at ﬁqst 35% lower

than the values of J with all parameters Ak and B, equal to
zero. This is an-indicatiom that the trajectory with all

Ak and Bk equal to zero is rather good for this cost function

T
3. The value of J = jf KE dt for trajectory (4) (series of

polynomials) is lowgr than for trajectory (5) (series of

periodic functions)

Furthermore attention has been paid to the problem of fitting curves

through results shown in figure 4, 5 and 6. For éxample, for figure 6
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(case III) parabolas were fitted through each set of 4Apoints with the
same 9 These parabolas went throuéh (- 1.57, 0) and (+ 0.78, 0) |
with the top on the line 9 - -0.3925 (= -_-%;— . Assuming
that for a particular © 2 the values of the'paramet:ers A2'and A3’vary
linearly with © 3 it was possible to summarize the results for Az
and A3 in two simple expressions. In most cases the value of the cost
function computed with these sub-optimal valueg of A2 and,A3 was

0 - 20Z bigger than the minimum value. However for a couple of points
" the difference with the minimum was 40 - 50Z. .

Although there is a pattern in the resuits 6or case II and III

(figure 4 and 5) it is not obvious which kind of function would give

the best fic. 4

Future Work
For the time to come work on the following points has been planned:

1. Analysis 6f the sensitivity of the parameters Ak and Bk

to the values of 9 ‘and 9
2, Improvement of the subopt:l.mal results using curves which
give a better fit to the optimal results; _t:his also for
* 92'f and/_orL 931 + Ve3f

cases in whic_:h 2] 24

3. Writing a thesis about the work pe,tforﬁxed since September 1971.



The Effect of Visual Feedback on Remote Manipulator Pe:formance

This study conceras remote manipulators which'are:controlled bf
human 6perators (as opposed to automated devices). It is assumed that
in order for the man-manipulator system to perform a task, some
visual feedback of the work area is neededd We are interested in
determining the effects on operator performance when-vafious types
 of visual feedback are employed: specifically, what_effect a closed
circuit television system will have on manipulator perforﬁance, and
how such a aystém should be arranged so as to yield the best performance.

The tasks which were to be petforﬁed involved placing a 3/4"
diameter four inch long rod into three holes each one inch in diameter,
and two inches deep. Three electric stopwatches Qéte'connected to
switches at the bottomé of the holes,'so that the time intervals re-
quired to move from one hole to the next could ' be measured.

Two orientations of hole direction were empidyed - one in which
" all the qentetlines were parallel (task A, see figure 1-A) and the second
" in which all centerlines met at angles of 120° (Task B, see figure 1-B).
'Both of these tasks were run with the plane of the blocks parallel to,
and inclined 30° to, the floor (see figure 2). ’

One form of manipulation has been tested so far - master-slave using
a mechanical AMF manipulator. This device has six:degfees of'freédom,
with 1:1 position control betweenlmastér and slave. Three types of
video feedback have beén tested -~ direct vieﬁing;fclﬁsedﬁcircuit T.V.
with the eamera fixed along the sight axis of direct Qiewing, and closed
circuit with the camera fixed to the manipulator (see figure 3)

The procedure for running a test with all combinations of task and
manipulator was as follows: the peg was initially'plééed in the right
most hole (with respect to the operator) and all clocks were initialized.
The subject wag then to move the peg coun;erclockﬁihg around the "triangle"
of holes, finishing when it was back in the first Hélé. The times were
recorded for each interval, and the procedure repeéted. Ten runs were
made for each combination of task, and video systen.

The average of each of the three intervals waé*taken for each com-

bination over all ten runs, as well as over the,ldét five runs. This
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procedure was followed because it was observed that the reduction in task
coﬁpletion time due to learning took place largely in the first five rums.
Theée'averages Are listed in table 1. '

By averaging the three intervals for each situation, a singleiindicacion
of system efficiency can be produced. These averages are shown in table 2-A,
Taking the ratio of fixed camera and ﬁoving camera avgrage times to direct
viewing times for each task, a relative comparison can be made between the
methods of visual feedback. These results are shown in table 2-B.

' Some observations weee made concerning gach system, which serve to
explain some of the numerical findings:

- In all cases the force feedback inherent to the AMF mechanically
coupled manipulator served to augment the operator's knoﬁledge. Although
in task B, the third hole is not clearly visible with the direct or fixed
camera systems, the force feedback allows the operator to find the hole quite
easily, once the gross alignment has been performed visually.

The repeatability of the motions involved in each of the tasks, as well
as the one to one nature of the manipplator, allowed the operator to adapt
to a new task quite quickly. After the initial few runs, his memory of
where and how far to move the master arm served go facilitate the gross
positioning of the peg. This factor would net be“preéent in an unreheareed
task. '

‘When performing either sask with the plane of the blocks inclined 30°,
the time interval required to go from hole #2 to hole #3 was frequently
lover than the other two intervals generated. This’was_because these two
holes were at the same vertical level, and as a result, required one fewer
degree of freedom to be oriented. This phenomenon was especially notice-
able for task A, inclined, with the camera mounted on the manipulator arm.
With this camera position, vertical distance cannot be'éeen directly;
hence the maneuver which require the least vertical'alignment was easiest
to perform. The B-C time was not the lowest for task B, inclined, because
the camera orientation did not allow viewing behind the manipulator arm;

1. e. where block #C was located. ' _‘ _

With the camera mounted to the manipulator.arm; a rotation of the
camera about its viewing axis was possible. As lohgias the arm was held
so that the camera to task alignment shown in figufg 4 was retained, the
operator did not lose his orientation. The wrist could rotate independent
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of the arm rotation, so that holding the arm to preserve the camera angle
was no penalty. 'Howevef, ohce the camera was rotated from the alignment
shown in figure 4, it became difficult to decide what direction of-cdntrol
motion would produce the desired effect.

These are the tests and results which have bean conducted in this
- area to date. Future tests will evaluate the effect of visual feedback
on resolved rate manipulatdon, as well as the merits of resolved rate ‘
camera manipulation as’compared to the "moving window" system. It is
also of interest to see how the resolved rate system will perform with
the frame of reference of the T.V. camera fixed to the hand, since all

motions are carried out in hand coordinates for this sytem.
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FIGURE 4 Clerifying and Confusing Image Orientations



DIRECT VIEWING

4 A-B . B=C G-A&
TASK A, FLAT 2,34 1.95 2,62
T 2,66 2.3 2.77
TASK B, FLAT: 2.93 2.56 : 3,00

» " 30°  3.38 3.09 3.25

CLOSED CIRCUAT, FIXED CAMERA

A-B | . BeC _ C-&
TASK A, FLAT  6.10 5,00 b.97
% ® 350 6,17 .24 - L, Ll
TASK B, FLAT 6.10 L.98 k.39
. » 30'0 5.87 4 ~ | 5.69 Se 39

CLOSED CIRCUIT, CAMERA ON MANIPULATOR

TASK A, FLAE' 2,96 2.70 C2.7%

"% 300 3. 46 2.2 » 3.84

TASK B, FLAT = 3,82 3,61 3.36

" " 300 6.20 7 8.40 ' 6.16
TABLE. . #1

Average task completion times (seconds)

(Averages taken over the final five trials to
eliminate the effects of learning) .



DIRECT " PIXED u
VIEVING: CAMERA Gﬁﬁéﬂﬂ

TASK A, FLA 2,30 5.35 | 2,80
302 2.28 : 6.88 3.24

TASK B, FlAT 2.84 5.15 - 3.59
»w w490 3.24 5.65 6.90

TABLE %-A Average times for each task, with
indlvidual moves averaged together.

FIXED MOVING

CAMERA ~ CAMERA
o
TASK A, FLAT 2.32 S 1.22
LRI | 300 2,66 1.26 1
TASK B, FLAT 1.8% 1.26
" = 300 1.7k 2,12

TABLE:. 2-8% Ratio of average fixed camera times/
direct viewing times and of moving oamera times/
diroct viewing times.



