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Summary of Technical Sections

Work proceeded in three main areas during this quarter.

Wayne Book completed the first phase of work on vibrational modes

of manipulators, the beginning of which was reported on in the

first quarterly report. The main results are

1) any arbitrary manipulator may be analyzed for its small

motion compliances. From this one may obtain natural

•frequencies, natural mode amplitudes, and characteristics

of free vibration.

2) a simulation of the Martin-Marietta shuttle boom proposed

configuration, with a 65000 Ib. pay load attached, indicates

three natural frequencies: 1/87 cps, 1/129 cps and

1/357 cps, the first of which dominates in one simulation

run made so far.

3) the example simulation is for the case of flexible limbs and

locked joints. The case of rigid limbs and flexible joints

can also be simulated, as well as combinations.

https://ntrs.nasa.gov/search.jsp?R=19720022774 2020-03-11T19:33:40+00:00Z
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Jan lemenschot continued his work on determining trajectories for
'i

arms so that some integral criterion such as integral of kinetic energy

or control torqae magnitude is minimized over a motion of the arm. His

technique consists of making a series expansion of the torque histories and

performing a numerical search for the optimal coefficients in the series.

The main result so far is that the optimal coefficients for a wide range

of useful motions may be conveniently, although approximately, summarized

by a paraboloid which yields the coefficients as functions of the Joint

angles describing the motion. Thus there is no need to perform the

numerical search on line.

Jay Mackro set up equipment and has been performing experiments to

evaluate various TV displays in conjunction with manipulator control

modes. In particular, the "moving window" has been implemented, although

no data on it has been taken. The main result so far is that, for the

test task reported, a TV camera mounted directly to the manipulator arm

and arranged to look approximately along the arm to the hand allowed

the operator to perform the task almost as quickly as he did when viewing

the task directly. Worse performance was obtained when viewing through

a TV camera fixed to one broad view.

Submitted by

Daniel E.
Associate Professor



Financial Data

Balance on 6/30/72 (approximately) $22,775.00

Expenditures per month anticipated for
coming quarter, approximately 1,750.00

Expected balance on October 5, 1972 17, 525.00



Deflection and Vibration of Jointed Beams

Introduction

Manipulator arms are subject to deflection under loads and to vibrations

about an equilibrium position when the loading on the arm is suddenly

changed. The deflections deteriorate end point accuracy as computed

from joint positions and the vibrations can seriously deteriorate the

response of the arm, and the ability of an operator to perform desired

maneuvers. The following is a method for analyzing the deflection of

an arm under given loading conditions. The arm compliance matrix is

arrived at giving three displacements and three rotations as a linear

function of the applied forces and moments. The method can be used

to evaluate the bending of the arm segments and flexible joints as

well. If the compliance matrix is nonsingular it can be inverted to

yield a spring constant matrix and hence forces end moments as a

function of displacements and rotations. The motion of a lumped mass

spring system can be described by a linear differential equation using

these spring constants. The validity of this approximation for an arm

vibrating about an equilibrium position depends largely on how well the

mass involved can be lumped into a reasonable number of masses. It is

less seriously limited by a small amplitude assumption, the assumption

of negligible damping (only second order effects on the natural frequency),

and the assumptions that the joint angles are not changing. When the

mass of the payload is large compared to the mass of the arm the approxi-

mation is very good.

The Mechanics of Arm Deflection

Consider an arm in static equilibrium with the forces and moments

on its two ends as is shown in Figure 1. Initially we will assume

1) the weight of the arm is negligible

2) the arm joints are rigid

3) the arms segments are simple beams



Page 2

When loads are applied to the ends of the arm the individual ana

segments deform according to the forces and moments placed on them

by the neighboring segments. When these forces are expressed in

terms of a coordinate system which has one axis coincident with

the neutral axis of the beam as shown in Fig. 2, the deflections

over the length of the segment are simply obtained. Each of the

deflections and angles along the three mutually perpendicular

directions is a linear function of at most two of the loads.

Notice that one end of the beam is assumed at the zero position:

Eq . 1

Z- ̂ S F FY
L* it

For a beam whose cross section is symmetric about the Y and Z axes

°̂ YF "̂ zp and w111 be denoted C^ . This will be the only case

specifically considered. The development which follows could retain

the extra subscript at some loss in readability. The simplification in

notation is as follows:

XF " YF " ZF
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Beam theory additionally requires that CX,̂  *aeF. Determining the

end displacement is a matter of summing the displacements of the in-

dividual segments and in accounting for the displacement due to end

point rotations at a distance from the end of the segment where

the rotation is calculated. For numerous arbitrary joint angles

this becomes a complex bookkeeping task. The matrix procedure which

is developed here automatically performs this task.

Transformation of Coordinates Using 4 x 4 Matrices

We are interested in a transformation between two coordinate

systems whose origins are displaced from one another and whose axes are
!

not parallel, as in Fig. 3. The position of point P is described in

terms of coordinate system 2 by the vector X?' Given the vector (Xn^

from 0. to 0 ' and the angles between the axes (or lines parallel to

them), we desire to find the vector from 0. to P. This vector is

easily found by the following matrix multiplication:

Eq. 3

or

1

Xl

1 0 0

cos (X2,X1) Cos (Y2,

(Ŷ  cos (X2,Y1) Cos (Y2,

cos (X2,

L*2

Cos (Ẑ

Cos(Z,, Y.)

Cos (Y2, Zx) Cos (Z2> Z][)

The cosine terms are the cosines of the angles between intersecting lines

parallel to the indicated axes. The sign convention is arbitrary for

these angles since the cosine is an even function.

We are interested in coordinate transformations of two special types.

One of these is tohe transformation due to joint angles and displacements.
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The other transformation is due to the deflection of arm segments

under loading. The former has been described for both rotating and

sliding joints by J. Denavit and R. S. Hartenberg (1)* in terms

of four independent parameters. The transformation for simple beam

flexure, compression, and torsion will be developed in this paper.

Transformation of Coordinates Due to Elastic Deformation

The information we seek is the displacement and rotation of an

arm, or more generally a Jointed beam, due to the application of loads.

The end of the beam can be described in a fixed reference coordinate

system if one knows the transformation between the coordinate systems
i

which are fixed to the individual segments. As seen in Fig. 4 the

point p at the end of the beam can be described by two transformations,

represented by two 4x4 matrices. The transformation A. relates

system i1, the end point before deflection, to system i-1. The trans-

formation E. relates system i to system i1.

Eq 4 - i' i-i
Ai Ei i, ij

AiEi
1
0

where: X . 1- l, i-

i

5i

- igii

the position of the origin of system i in terms
of system i-1

transformation with no deflection

transformation due to deflection

a 3 x 1 vector whose elements are zero

location of point p in i coordinates • origin of i
in this case

* A reader consulting this paper should be aware of .the fact that CC1
in that paper is defined with opposite sign convention of this paper
and later papers by Denavit and Hartenberg.

(1)J. Denavit and R. S. Hartenberg; "A Kinematic Notation for Lower-
Pair Mechanisms Based on Matrices" Journal of Applied Mechanics
June 1955 pp 215-221. "
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Any number of these transformations may be combined by multiplying

the transformation matrices. In terms of the reference system 0^ the

end of a beam with n joints is located at X as is given by:

Eq 5
' A1E1 A2 '•• AiEi "• AnEn 1

0

We would like the variation of this position vector due to applied

forces and moments. First the elements of the E matrices must be

found. From Eq 3

Eq 6

0

cos (Xi,Xi,)

cos (Xi,Yi,)

cos (X±,Z1,)

0

cos

cos

cos (Yi,Zi,)

cos (Z1,Xi,)

cos (Z1,Yi,)

cos (Zi,Zi,)

For small deflections and small angles the elements of this matrix

simplify as follows:

Eq 7

•>

1

AX

A Y

ta.

0

1

cos (90- 9-z)

cos (90 +£Y)

cos (90

1

cos (90

0 0

cos (90- £)

cos (90 +9 )
X

where £ , &Y and & are the angles of rotation about the X, Y and Z

axes respectively. For small angles the angles behave very nearly as

vectors, thus the order of occurance is irrelevant. Furthermore the

small angle assumption allows further simplification to



Page 6
*-' T1

Eq 8
AX

AY

But these .elements were expressed in terms of forces and moments
i

in Eq. 1. Thus E. may be expressed as

(TXii

0

1

*XMiMZii

" ^XMi^ii I 9 FiFZii~°kMiMYii / Ti^ii

Ti

where

» F-/-n * Forces at the end of beam i, in terms of coordinate

system i

MXit' ̂ ii' MZil™ Moments at tne end of beam i* in terms of coordinate

system i

Now one must determine the forces and moments on segment i which

result from the loads on the end of the beam. This is done in the

following section:

Equilibrium Forces on the Arm Segments

A free body diagram of the beam segments between coordinate system

i and system n is shown in Figure 5. Equilibrium requires:
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Eq 10
a)

b)

0 « R_. F - F..Oi - no -ii

-ii

where: r.. « the vector from system i to the end of the arm in
terms of system i

F.. =» the force vector acting on the beam to the left of
system i in Figure 5, expressed in system i

M.. =» the moment vector acting on the beam to the left of
system i in Figure 5, expressed in system i

R_. » 3x3 rotation matrix from system 0 to system i

F •» applied force at the end of segment n, expressed in
base coordinate frame

M-no applied moment expressed in the base frame

i

Vectorially eq tlo)may be expressed as

Eq 11

where r.. x RQ. may be represented by the matrix multiplication

V ^

Jll
.*".

i 1
R0i i °

-iiX R0i ( R0i
•- ^

Ino

M
- no

0

rZii

~rYii

-rZii

0

1 rXii

rYii

~rXii

0

R0i

In the above manner we can obtain the forces on the arm segments

resulting from the loads on the end of the arm. It remains to evaluate

the deflection of the arm by using these values in conjunction with the

transformation matrices.
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Arm Deflection with Load

Having described the position of the end of the arm(j9fter loading

has been placed on the end of the arm) by the coordinate transformation,

one could subtract from this vector the vector describing the position of the arm

before loading as in equation 13. Theoretically this would be correct.

Eq 13 AX -

In practice the difference of these two vectors will be much smaller than

the vectors themselves, leading to inaccuracies when the calculation is

carried out with two few significant digits. A more practical way is to

evaluate the partial derivative of the position of the end with respect

to end point loads, for example ?WQ and MXNQ (Vead Kl O.S,

Eq lAb NQ __ El A2 E2

One will now recall the assumption that the joints remain rigid.

Because of this:

If one found that this assumption was not valid it would be relatively

simple to evaluate these partial derivatives and include joint flexibility.
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By the chain rule

Eq 16
XNO ° XNO

-=-/ +

Al El (A2 E2 ••-' An
XNO

1
T

Continuing this differentiation one eventually arrives at: (for example)

Eq 17a
A, E, .. .1

'XNO XNO

n En]

and similarly for the other force components, as well as for the

moments: (for example)

i - 1

1
"0"

Then deflections are obtained as i F-_Tn (17c) for example .XNO

XNO

In order to proceed we must evaluate

XNO ̂ FYNO dFZNO ̂ "XNO

, and

To do this we take the derivative of the individual elements of

Eq. 9 as follows:
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Eq 18

Similarly for FYNQ, FZNQ, MXNQ, Ĥ ,. and MZNQ. Note that the

derivative of the rotation submatrix is antisymmetric

There is but one thing left to evaluate, that is

o

and ' Referin8 to

it is seen that these partial derivatives are readily evaluated

if one assumes that R ' and r.. x RQ. are essentially independent

of the loading which they are to first order.

Eq 19

Then___ _
— ' """

F
"-ii

-ii
**•

s

\
R 1 0K0i '

iii™ROi"j R0i"

1
6
0
0
0
0
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In general

Eq 20

_
<>FXNO

_ _

'Si! X R0i I R0i

These values aan be substituted into Equation 18 to yield the

derivative of the elastic deflection transformation matrix with

respect to the end of arm loads. It has already been pointed

out how the displacements are computed using these transformations.

The next section will show how to arrive at the rotation of the

end of the arm due to the loads.

End Point Rotations Under Loads

If one carries out the summation enclosed in the braces in

Eq. 17 for all six components of forces and moments, the result

will be a 4 x 4 matrix to be multiplied by a vector. If the

loads are applied at the end of the arm, the vector is 11 0 0 Oj .

If however, the arm extends past the point of application of the

loads, the vector will be fl X1^ Y' Z' JT. We can interpret

the elements of the 4x4 matrix in the following manner:
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21 0 0

, &

NO

Which we will denote as

o

XNO

NO

"XNOi 2Y'T

| * ZNQ_
XNO, ^Y m

0

^ Y
NO

NN

-3»0

Here »X^O» ^^wn» ^̂ wn are c^e displacements of the origin of coordinate

system N. ^Rj™ is the lower right 3x3 submatrix of Eq 21. The first

subscript refers to the point, and the second subscript refers to the

orientation of the vector [l AX1^ ^'^ ^Z*NNJ"

Equation 22 can also be written in the following form, using a

transformation of coordinates.

Eq 23
XNO

0

On multiplying together the two 4x4 matrices one obtains:

Eq 24
XNO
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which we denote as:

Eq 25
XNO

X'NO

Now look at the physical situation as portrayed in Fig. 6, a view of the

arm's end parallel to the Z axis. The way in which the deflection of

the end point changes if that end point is extended beyond the load

depends only on the rotation and the extension. Thus we can interpret

the SX, matrix as follows:

Eq 26 RON = 0^

pa-

0

ZNO

YNO

YNO

XNO

where ZNO

XNO
etc.

In this case

partial derivatives with respect to the other loads.

TT^ was used. Similarly of course one can obtain the
0 XNO

Compliance Matrix and Spring Constant Matrix

Now we are able to piece together the above derivation to reach our

original goal: a matrix of compliance of the arm under force. Equations

16, 17 and 26 are evaluated (as well as the similar equations for the

other forces and moments) and one can construct the following matrix

equation.
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Eq 27a)

AX

AY

AZ

Dx Dx

e)F

NO

c>X

2i UY !

*Y

NO

or

Eq

Ax=

dfr

."• C NO

NO

_ f«

F

M
. • NO

The subscripts on the matrices are understood to apply to each element.

Due to the nature of the problem the matrix C_. will be symmetric. The

inverse of the matrix C will be the spring constant matrix K Q̂ and
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Eq 28

F

M

,-1
'NO

NO

will nonsingular for all physical cases. For some arm con-

figurations and parameters the inverse may require excessive accuracy,

and hence be uncalculable. In this case one must eliminate one or

more of the directions from consideration to get an invertible matrix.

Linear Beam Vibrations

Up until this point we have been considering the displacements of

and loads on a static beam. If one considers a rigid mass with inertia

placed at the loading point, the forces and moments on that mass are

the negative of the forces and moments on the beam. These forces and

moments can be determined from the spring constant matrix and the

deviation of the mass from the equilibrium position. Since structural

damping is small, the natural frequency of the spring-mass system as

well as the amplitude ratios of the various modes of vibration can be

determined. Nonlinearities such as corriolts accelerations and centripital

accelerations can be neglected for angular velocities which are appropriately

small. This seems to be the case in practical arm problems with small

vibrations. The equations of motion are then written as

Eq 29

M

0

0

0

0

0

0

M

0

0

0

0

0

0

M

0

0

0

0

0

0

'xx
XXY

Jxz

0

0

0

ZXY

IYY

Ẑ

0

0

0

zxz
ZYZ

IZZ-

.2

dt

AX

where: M - the lumped mass at the end of the arm
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!„_, I™, I__ « the mass moments of inertia of the lumped

inertia at the end of the arm about axes parallel to the

reference axes but through the center of mass

I , I™, » the cross moments of inertia about axed

parallel to the reference axes but through the center of mass,

for convenience Eq 29 will be rewritten as

NO
dt

NO

This can be written in state variable form as

Eq 31
d

dt
0

-J-VK

i

o

A x

A x

X
I

The dot above ̂ X and A.B indicate a derivative with respect to time.

The roots of the equation

Eq 32 - A

are the natural frequencies of the system. The amplitude ratios can

found as for any undamped linear system.
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Extensions - More Than One Lumped Mass
' i

The case of the unloaded or lightly loaded arm is one in which

the dynamics of the arm vibration are not dominated by one lumped mass.

The criteria for modeling with lumped masses will not be discussed

here, but rather the use of the technique developed will be extended

to include any number of lumped masses. Figure 7 shows schematically

a model that one may be interested in.

Initially one obtains spring constants between each mass point and

its adjacent mass points. The nonequilibrium forces on each mass depend

only on the difference in the vecftor positions of it and its neighbors.

Thus for the example in Figure 7, with some change in notation:

Eq 33 J± >

where X. position and angular orientation for mass i,
measured from equilibrium in base coordinates

K, , , - spring constant matrix between mass i and mass i-1i» i— i

. » spring constant matrix between mass i and mass i+1

J. « the inertia matrix for mass i

Tills equation can be written for all n masses. The end masses are

special cases

Eq 34 K21 (X-2

35
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If we assemble these into one matrix expression, its form is:

Eq 36

_i
Jl K21

••

52-
"J

1

-1
JN V N-l

' 1

1 J2 K31

,-lr

"JN V N-l

Simplifieations - Some Moments of Inertia Insignificant

One or more of the moments of inertia of a lumped mass-inertia

may be insignificant with respect to the mass and the other moments

of inertia. In this case it is desirable to reduce the number of

state variables by two by ignoring the associated angle and angular

velocity. The moments will be continuous in the beam for the axes

associated with the trivial moments of inertia. The other moments

and the forces in the beam undergo a discontinuity in our lumped mass

model due to the inertial loading. Let *K designate the spring constant

matrix of the entire arm, considering all points of loading. Its foam
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is similar to the large matrix in Eq 36, but the J terms are re-

moved. Then

Eq 37 £-*-'

where 'F unknown, possibly nonzero loading

displacements or angles associated with the T elements

loading terms which will be identically zero

angles associated with the JH. elements

-'tft C12.
22

Eq 40 S * C 11

Eq 41 21

Eq 42 •X

Eq 43

21
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Eq44 -F - *u* + *12

Eq 45 -F » (I -*12 C.21)
-1

The abave operations assume the inverse can be performed.

The reduced equations of motion are then:

Eq 46 ; -M __

dt2

where tl is the reduced inertia matrix obtained by eliminating the

appropriate rows and columns from the unreduced inertia matrix.

Example Problem

In order to verify and illustrate the feasibility of the theory

presented above, a computer program was developed to evaluate the

coefficient matrix fior an example arm. The coefficient matrix was

then input to an existing matrix manipulation program along with an

inertia matrix to develop the equations of motion for a simple case.

As a realistic example the arm parameters and configuration were

taken from a proposal by the Martin Marrietta Company for a boom

for the space shuttle. These are shown in Table 1. Figure 8 shows

the arm in the configuration of the example.and the distribution of

the 65,000 Ib. load. These joint angles were chosen because they

realistically duplicate a position in a retrieve maneuver for which

the arm might be used. It also enables a separation of modes reducing

the number of state variables to six. This is due to the planar

motion of the mass. Figure 9 indicates the oscillations resulting

from an initial displacement of ten inches . in the Y direction at the

endpoint.
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The computer program required 0.08 hours of IBM 1130 computer time

to evaluate the compliance matrix for six joint angle positions. This

includes some compilation and program listing time, and the program

could be considerably streamlined.

Future Work

Preliminary work has developed the controllability matrix for the

general case with joint angle position control. This has been used to

show that the example problem above is controllable using two of the

joints. Optimal control theory can now be used to determine suitable

feedback gains if one has access to the state variables. The state

variables can be partially measured and partially reconstructed using

the measured variables. Measurements might be performed via accelero-

raeters, optically, or in some other fashion. In all this future work

the method developed here will make the determination of the equations

of motion for. arm vibration practical, even for complicated arm con-

figurations.
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Real time trajectory generation

Introduction

Subject of the investigations is a planar three joint arm

with Joint angles 6K. 9 „ and 03 as shown in figure 1.

m,.

Figure 1.

©~., ®M]to a2i' 3i
final position Q. - [®|f» ®of 3̂fl in T aeconds ̂ t is necessary

To move the arm from an initial position 9

e
that a trajectory in Q- space is generated in T seconds. It is re-

quired that the trajectory is such that a given performance criterion

is satslfied; 1. e., a given cost function J must be minimum over the

path between the prescribed end points. The optimal trajectories are

obtained as follows:

| Assume that the time function for each joint angle Q. (k = 1,2,3)

can be written as a series of elementary functions

e (t) f (t) (t) (1)

1, 2, 3
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where A, , B, ..... are time-Invariant parameters.

Generally, for a specific arm the cost function J 4s a function of

6k, ©k, 8kandT.

Substituting the assumed functions for 0,, 0. and & in the

expression for J, J can be written as a function of the parameters

A., B, , .... , the initial and final angles 0., and ©k£, and T.

If ^k-f. ®kf and T are prescribed J is only a function of A, , B, ,...

The values of A. , B, , .... for which J is minimum can be obtained

by numerical search.

State of the work at the beginning of the quarter

At this time computer programs to find the optimal values of the

parameters A. , B, ..... for different cost functions J and different kinds

of trajectories has been developed and some examples had been worked out.

The cost functions are:

1. The integral between t => o and t « T of .the kinetic energy of the

arm:
T . - • - • •

J - J" KE dt (2)
o

2. The integral between t - o and t » T of the sum of the

absolute values of the joint torques;

J " ki M dt
0

The assumed functions for each joint angle , (k » 1, 2, 3) are:

a. A series of polynomials

8k " eki + < 9 k f -eki> f

+ Afc ̂  t (T_t) + Bfc ̂  t (| - t) (T-t) (4)
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where at t - o

9 kf
at * - T

The elementary functions are shown in figure 2

0'kf

t 0

Figure 2.

b. A series of the following three elementary functions, which

are periodic:

f o (t) - 0 k± +6kf -6ki (t - ±p sin CL> t) <5a)

2 , 1 sin 2<o t), 0 4 t
T (t ~ 2tj

*5b)

(t) - Bk

Bk

-" (t " sin

2 - - (t ' 77T

~" (t *

4 u, t) . 3T
4

where ^ - 2 TT /T

Figure 3 shows these functions

(5c)
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0
kf

9i'ki

A

t o

Vi
t o

•t o

V2

t Q s\
%
*-t

Figure 3.

With the programs the optimal values of A, and 3fc couio be obtained

for the following combinations of cost function and trajectory:

T

I. J » I KE dt with trajectory (4), a series of polynomials

0 T

II. J « / KE dt with trajectory (5), a series of periodic
Q

functions .

T 3

III. J - / 21 juv| dt with trajectory (5).

o k - 1

Combination of J f
/ s~ |ui,|
o k=l '

The joint torques are functions of 6, , 9, and Q , . For trajectory (4)

with trajectory (4) is not possible.

, .

is infinite at t - o and t - T.

Work performed during this quarter

For the evaluation of the cost function J the integral is computed

with Simpson's rule. A problem was the choice of the number of intervals
i

in between t •»• o and t » T, which will be determined by:

- nature of the integrand

- required accuracy in the parameters A and B
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— cost of computer time (for each evaluation of J the integrand

must be computed n + 1 times)

Satisfactory results were obtained by choosing n - 20.

For a specific arm (1. - 1, - 0.3 m and n^ • m2 « 1 kg) the three

programs have been run for over 20 combinations of initial and final

positions of the arm.

In all cases T - 2, 9^ - - 0.78 and 6 lf = + 0.78; B 2± and

62f
 vary between -1.57 and +0.78; and Q 3i and & 3f vary between 0.0

and 2.36 (angles in radians).

The following results for the optimal values of A, and B, were
K . ' K

obtained.

I. J - f KE dt for trajectory (4)

For combinations of Q ± and 6f BI> BZ and B3 are 0.

When both Q 2± » 6 2f and 0 3i "
 e
 3f

 Ai • " ° too<

For these cases A_ and A- have been plotted as functions

of Q 2± •'« &2f -&2 and ©31 « ®3f - ®3 (figure 4)

In most other cases ( Q ,. ^ ©9- and/or Q_. ̂ . ® ,,)
fcX ^X -' Ji Jt

A. has a nonzero value.

A2

o

.1

0̂

-.1;

-.2

l "•;

N
.

/̂ ^

)
¥'*̂ jfi
/!
/ -

.3 » ^ .
i -1.57 -»78 0 .7

>» K 9, = 0
o—o 9̂ =0.78
A ^ 6̂ =1.57

h

: "

•2;

/

'-/•̂"/'-"̂/̂-."t/-../ -j/ ^^

\

-1.57 -.78 0 .78

-a

Figure U.
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II. J • ' ' f KE dt for trajectory (5)

For and &'«j 7f . m $-- the optimal values of

A, B2 and B. are 0, while Bj^ has values between 0.11 and

0.18.

The values of A2 and A» are shown in figure 5 .

-1.57 -.78 -.78 .78

•° 6s63*1.5793= 2.36
Figure

III. J " / 21 lui,i dt for trajectory (5)
•* k»lo K»J.

As in I the optimal values of A.,, B_, B2 are 0 when both

9 2 « 6-- and G _. - 9 . In figure 6 the values of

and A. are plotted for these cases.

For © 2± *

value ^ 0.

6 2f and/or © -. parameter A has a
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-1.57

«. e.

-1.57 -.78

-- * e3= o
o S

0 83= 2.36

Figure 6.

Considering the values of the cost function in the different cases the

following comments can be made;
3

1. The value of
o

variations in the values of the parameters A. and B. than

KE dt.

/ ^L iuklJo k=l ' '
dt seems to be more sensitive to

2. In case III the minimum values of J are at most 35% lower

than the values of J with all parameters A., and B. equal to

zero. This is an indication that the trajectory with all

A, and B, equal to zero is rather good for this cost function

T

3. The value of J » J" KE dt for trajectory (4) (series of
o

polynomials) is lower than for trajectory (5) (series of

periodic functions)

Furthermore attention has been paid to the problem of fitting curves

through results shown in figure 4, 5 and 6. For example, for figure 6
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(case III) parabolas were fitted through each set of 4 points with the

same 9 . These parabolas went through (- 1.57, 0) and (+0.78, 0)
i : TT

with the top on the line 9 ~ - -0.3 $25 ( - - -jj- ). Assuming

that for a particular 6. the values of the parameters A. and A. vary

linearly with 9_, it was possible to summarize the results for A-

and A. in two simple expressions. In most cases the value of the cost

function computed with these sub-optimal values of A_ and A» was

0 - 20% bigger than the minimum value. However for a couple of points

the difference with the minimum was 40 - 50%.

Although there is a pattern in the results Cor case II and III

(figure 4 and 5) it is not obvious which kind of function would give

the best fit. ;

Future Work

For the time to come work on the following points has been planned:

1. Analysis 6f the sensitivity of the parameters A. and B,

to the values of ©2 and & ,.

2. Improvement of the suboptimal results using curves which
I

give a better fit to the optimal results; this also for

cases in which Q 2i * 9 2f and/or
 0
3i * e3f

3. Writing a thesis about the work performed since September 1971.



The Effect of Visual Feedback on Remote Manipulator Performance

This study concerns remote manipulators which are controlled by

human operators (as opposed to automated devices). It is assumed that

in order for the man-manipulator system to perform a task, some

visual feedback of the work area is neededd We are interested in

determining the effects on operator performance when various types

of visual feedback are employed: specifically, what effect a closed

circuit television system will have on manipulator performance, and

how such a system should be arranged so as to yield the best performance.

The tasks which were to be performed involved placing a 3/4"

diameter four inch long rod into three holes each one inch in diameter,

and two Inches deep. Three electric stopwatches were connected to

switches at the bottoms of the holes, so that the time Intervals re-

quired to move from one hole to the next could be measured.

Two orientations of hole direction were employed - one in which

all the centerlines were parallel (task A, see figure 1-A) and the second

in which all centerlines met at angles of 120° (Task B, see figure 1-B).

Both of these tasks were run with the plane of the blocks parallel to,

and inclined 30" to, the floor (see figure 2).

One form of manipulation has been tested so far - master-slave using

a mechanical AMF manipulator. This device has six degrees of freedom,

with 1:1 position control between master and slave. Three types of

video feedback have been tested - direct viewing, closed circuit T.V.

with the camera fixed along the sight axis of direct viewing, and closed

circuit with the camera fixed to the manipulator (see figure 3)

The procedure for running a test with all combinations of task and

manipulator was as follows: the peg was initially placed in the right

most hole (with respect to the operator) and all clocks were initialized.

The subject was then to move the peg counterclockwise around the "triangle"

of holes, finishing when it was back in the first hole. The times were

recorded for each interval, and the procedure repeated. Ten runs were

made for each combination of task, and video system.

The average of each of the three intervals was taken for each com-

bination over all ten runs, as well as over the last five runs. This
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procedure was followed because it was observed that the reduction in task

completion time due to learning took place largely in the first five runs.

These averages are listed in table 1.

By averaging the three intervals for each situation, a single indication

of system efficiency can be produced. These averages are shown in table 2-A.

Taking the ratio of fixed camera and moving camera average times to direct

viewing times for each task, a relative comparison can be made between the

methods of visual feedback. These results are shown in table 2-B.

Some observations were made concerning each system, which serve to

explain some of the numerical findings:

In all cases the force feedback inherent to the AMP mechanically

coupled manipulator served to augment the operator's knowledge. Although

in task B, the third hole is not clearly visible with the direct or fixed

camera systems, the force feedback allows the operator to find the hole quite

easily, once the gross alignment has been performed visually.

The repeatability of the motions involved in each of the tasks, as well

as the one to one nature of the manipulator, allowed the operator to adapt

to a new task quite quickly. After the initial few runs, his memory of

where and how far to move the master arm served to facilitate the gross

positioning of the peg. This factor would not be present in an unrehearsed

task.

When performing either *ask with the plane of the blocks Inclined 30°,

the time interval required to go from hole 92 to hole $3 was frequently

lower than the other two intervals generated. This was because these two

holes were at the same vertical level, and as a result, required one fewer

degree of freedom to be oriented. This phenomenon was especially notice-

able for task A, Inclined, with the camera mounted on the manipulator arm.

With this camera position, vertical distance cannot be seen directly;

hence the maneuver which require the least vertical alignment was easiest

to perform. The B-C time was not the lowest for task B, inclined, because

the camera orientation did not allow viewing behind the manipulator arm;

1. e. where block #C was located.

With the camera mounted to the manipulator arm, a rotation of the

camera about its viewing axis was possible. As long as the arm was held

so that the camera to task alignment shown in figure 4 was retained, the

operator did not lose his orientation. The wrist could rotate independent
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of the arm rotation, so that holding the arm to preserve the camera angle

was no penalty. However, once the camera was rotated from the alignment

shown in figure 4, it became difficult to decide what direction of control

motion would produce the desired effect.

These are the tests and results which have bean conducted in this

area to date. Future tests will evaluate the effect of visual feedback

on resolved rate manipulation, as well as the merits of resolved rate

camera manipulation as compared to the "moving window" system. It is

also of interest to see how the resolved rate system will perform with

the frame of reference of the T.V. camera fixed to the hand, since all

motions are carried out in hand coordinates for this sytem.



FEJJURE i-A TASK A

TASK B
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VIEWING

CLOSED CIRCUIT, GAKEBA ALONG SIGHT AXIS..

CLOSED CIBCU1T, CAMERA ON

earner*

curtain

PIOURE 3
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top of
task

camera

TASK

top of
task

MONITOR

Camera orientation which provided the
most useful image

of
task

camera

TASK

O

MONITOB

Camera orientation which provided a
confusing image

PIQIJRE if Clarifying and Confusing Image Orientations



TASK A , FLAT
n N

TASK B;, FLAT.
• » 30°

DIBECT VIEWING

A-B> B-C

2.34
2.66
2.93
3-38

1.95
2.31
2.56
3-09

2.62
2.77
3.04'
3.25

CLOSED CIRCUIT, FIXED CAMEBA

TASK A, FLAT
" " 30°

TASK B, FLAT
* " 30°

TASK A. FLATI
" " 30°
TASK B, FLAT

A-B

6.10
6.17
6.10
5.87

Bi-C

5.04
4.24
4.98
5.69

C-l

4.97
4.44
4.39
5-39

CLOSED CIRCUIT, CAMEBA ON MANIPULATOR

A-ff B-C C-A

2.96
3.46
3.82
6.20

2.70
2.42
3.61
8.40

2.74
3.84
3*36
6.16

TABLE£#1

Average tmek completion times (seconds)

taken over the final five trials to
eliminate the effects of learning)



DIHBCT FIXED
VIEWING CAMEBA

TASK A. FLAT 2.30 5-35 2,80
« « 30° 2.58 6.88 3.24

TASK B, PLAT 2.84 5.15 3.59
• « 30° 3.24 5.65 6.90

TABLE 2-A Average times for each task, with
Individual moves averaged together.

FIXED MOVING
CAMERA CAMEBA

TASK A, PLAT 2.32 1.22
" " 30° 2.66 1.26

TASK B, PLAT l.Bl 1.26
" " 30° 1.74 2.12

TABLE: 2-ft Ratio of average fixed camera times/
direct viewing times and of moving camera times/
direct viewing times.


