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- • • / - • ' - , • ' • • • • ABSTRACT

'• A" general analysis of dynamical systems consisting of

connected rigid bodies is presented. The number of bodies

and their manner of connection is arbitrary so long as no

closed loops are formed. : In essence, the analysis represents

a new dynamical finite-element method, which is computer

oriented and designed so that non-working, interval con-

straint forces are automatically eliminated. The method

is based upon Lagranges form of d'Alembert's principle.

Shifter matrix transformations are used with the geometrical

aspects of the analysis. The method is illustrated with a

space manipulator.



:; . • -• .:- -.-' - ' : -:; SUMMARY . •. - . ' . . - / ' .

The analysis presented represents a new kind of finite-

element .analysis applicable with a broad class of chain-

like dynamical systems. It is computer oriented and designed

so that non-working constraint forces are automatically

eliminated. .

The method is applicable with any dynamical system-

which can be modelled by a series of connected rigid bodies

provided only that no closed loops are formed by the bodies.

Manipulator systems and teleoperators are thus prime can-

didates for analysis by this method. The method is also

directly applicable with human body models and cable prob-

lems. Furthermore, by introducing spring and torsion forces

at the joints the analysis becomes a nonlinear finite-

element elastic analysis.

Finally, the analysis is developed in a way that

allows for either forces or displacements to be specified

with the unknown resulting displacements or forces then

determined. . .
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INTRODUCTION .

Significant changes have occurred during the past decade

in methods of analysis of complex structural systems. New

matrix methods and finite-element techniques have been and

are continuing to replace traditional approximation methods.

Furthermore, new advances in matrix and numerical techniques

are continuing to refine and expand the accuracy and capability

of these methods. To a large extent, this rapid success and

development of these new methods can be directly traced to the

advent and rapid development of the digital computation machines,

The study contained herein represents a new kind of finite-

element method applicable in the analysis of chain-like con-

tinuous dynamical systems. This method, which is also designed

for digital computation, uses the approach of considering a

dynamical system as a general, nonlinear, chain system. The

kinematics of the links of the chain are then developed. Ex-

pressions for the forces and moments exerted on and between

the links are then obtained. Lagrange's form of d'Alembert's

principle (1) is then used to obtain the governing differential

equations, which are developed and solved numerically.

Although the notion of using such finite elements with

dynamical systems is not new, the particular approach and

techniques developed in this study are, for the most part,

new and original.

Analysis of chain systems occurred as early as 1732 when

Dan Bernoulli developed and solved equations of motion for a



hanging chain (2). However, he modelled the chain as a con-

tinuous string or cable, and since that time chains have almost

always been approximated as flexible, but inextensible cables

or strings. The works of Coughey (3), Huang and Dareing (4),

and Woodward (5) are modern examples of this approach. More-

over, these analyses consider the chain, cable, or string as

being linear, that is, continuous without branches or "tree-

like" features. It is interesting to note that in 1967, Elnan

and Evert (6) reversed the procedure by modelling a cable by

a chain composed of a system of pin connected rods. Their

analysis, like the analysis of the work herein was a finite-

element approximation of a .continuous dynamical system. In-

deed the methods of (6) are similar to those herein, although

(6) was restricted to linear systems. The study herein con-

siders chains nonlinear, that is, composed of finite connected,

rigid links which may contain branches or "tree-like" features.

. Most finite element methods are used in the analysis of

static structural systems following the approach of Turner,

et..al. (7) and that: exposited by Zienkiewicz (8) and Odin (9).

In the work herein, however, the primary concern is with dy-

namical systems of rigid bodies such as chains, booms, .skeletal

systems, or human body models. Hence, this finite element

approach is tailored to analyze such systems.

There have been some other recent attemps to obtain general

analyses of dynamical systems of rigid bodies, particularly



in.the area of human biomechanics. In 1969, Roberts and

Robbins (10) examined mathematical human body models in

crash simulation. In 1970, Kane and Scher (11) studied

human self-reorientation in free fall. Also, in 1970,

Passerello and Huston (12) produced an analysis of human

attitude control in free fall. This latter work w.as gen-

eralized (13) in 1971 to consider human body models in

arbitrary force fields. None of these analyses however,

provide a general dynamical theory. Indeed, most are

directed toward specific applications and most employ the

traditional, methods of classical mechanics.

In 1970, Young (14) provided a more extensive analysis

of a human body model subjected to impulsive forces. Young's

analysis uses Lagrange's equations, but the algebraic com-

putation becomes extremely involved. In 1971, Chace and

Bayazitoglu (15) presented a general theory of dynamical

systems also employing Lagrange's equations. They avoid

some of the algebraic tedium by considering the kinetic

energy function in several parts. In 1969, Hooker (16)

and later in 1972, Fleischer (17) introduced and used the

concept of "barycenters" to alleviate the algebraic prob-

lems of Lagrange's equations. However, this method while

being quite ingenious, also involves considerable algebraic

computation.

The analysis of general chain systems presented herein

avoids most of the difficulties of the above analyses. That



is, by using Lagrange's form of d'Alembert's principle as

developed and exploited by Kane (18,1), the governing dynam-

ical equations are obtained without needing to resort to

extensive algebraic computations. Basically/ Lagrange's

form of d'Alembert's principle employs vector quantities

whose derivatives may be obtained by vector multiplication

and hence on a digital computer. Also, the principle pro-

vides for the automatic elimination of non-working constraint

forces which are generally of no interest. These two ad-

vantages make possible the systematic development of a ,

general theory of chain systems subject to arbitrary pre-

scribed external or internal forces or motions.

The study is divided into five chapters with the first

chapter providing the preliminary considerations and back-

ground needed in the analysis. The general chain dynamics

theory is then developed in Chapters II and III. Effects

of impulsive forces are considered in Chapter IV. Application

to manipulators and teleoperators is then given in Chapter V.



. . I. PRELIMINARY CONSIDERATIONS^ .

Consider a set of N rigid bodies joined to each other

in a chain or link system such as is shown in Figure 1. The

bodies may be joined together in an arbitrary fashion pro-

vided only that (1) any two adjacent, connecting bodies have

one common point and (2) that no closed loops are formed by

the system nor by any of its chain'or link segments. The

physical dimensions and the masses of the bodies are arbitrary.

Thus the system may be.used to model a variety of actual

physical systems including the human body.

Consider next that this chain system of rigid bodies is

subjected to a general force field such that each body has

an arbitrary system of forces exerted upon it. Also, let

there be, in general, moments exerted by adjacent, connecting

bodies on each other.

The primary objective of this analysis is to obtain govern-

ing dynamical equations of motion for a general chain system

such as this, and subjected to a general arbitrary force field.

Furthermore, it is an objective of this analysis to develop

these governing equations so that: (1) if the force field

is specified, the configuration and motion of the system is

determined; (2) if the configuration and motion of the system

is specified, the force field is determined; and (3) if a

combination of a portion of the force field and a portion of

the configuration and motion is specified, the remaining (un-

known) portions are determined, by the equations. Finally,
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it is an objective of this analysis to apply these equations

with, a specific physical system: the action of a manipulator

or teleoperator. • . •

To begin this analysis it is helpful to first consider

some preliminary ideas regarding the development of equations

of motion and some ideas pertaining to the geometrical and

kinematical relations between two adjoining rigid bodies.

Development of Equations of Motion

Consider writing equations of motion for an N-body system

such as is shown in Figure 1. Conceptually, the simplest

approach is to use Newton's laws and write equations of motion

for each individual body of the system. However, this approach

has the. disadvantage of introducing excessive, unnecessary

computation and analysis. For example, this approach would

lead to 6N equations involving as unknowns non-working con-

straint forces between the bodies of the system. These non-

working constraint forces are usually of no interest and thus

they would need to be systematically eliminated from the 6N

equations. In general there are 3(N-1) of these forces.

'(Three between each adjoining body.) Hence, this procedure

would ultimately lead to 6N - 3(N-l) = 3N + 3 equations of

motion to be solved.

It is possible to avoid the computation associated with

the elimination of these non-working constraint forces. Two

methods are .available: The best known and most widely used

6



is the method of Lagrange's equations. In this method the N-

body system is treated as a unit, the non-working constraint

forces are automatically eliminated, and the 3N + 3 equations

of motion are obtained directly. These equations may be written

in the form

= F (r = 1,...,3N + 3) (1.1)_ . _ _ _

3xr

where K is the kinetic energy of the system, x (r = 1,...,

3N + 3) are the generalized coordinates of the system (one

for each degree of freedom)1 and F (r = 1,...,3N + 3) are

the generalized active forces acting on the system. If the

externally applied forces acting on the system of bodies are

replaced by an equivalent set of forces consisting of N forces

and N couples acting on the N respective bodies of the system,

then the generalized forces F may be written

_

= I (~ ~ - v F-! + ~|T - ' M.) (r = 1,...,3N + 3) (1.2)r
 =3_ 9xr J 3xr J

where F. and M. (j = 1,...,15) represents the' equivalent forces

and couple torques acting on the respective bodies B . and where

F. has its line of action passing through point G. of B. V ̂

_ p ̂and to J. represent the velocity and angular velocity of G. and

B . in an inertial reference frame. (In some cases, it may be

of interest to consider internal (working) moments between ad-

joining bodies. In these cases these moments may be included

in M..) The quantities SV/a^ and /^xr (r = 1,...,15)



are called "partial rates of change of position" and "orientation1

respectively.

While providing a number of advantages such as those listed

above, Lagrange's equations also lead to serious disadvantages--

particular ly with complex systems such as in Figure 1. The

principle disadvantage is that the computation of the derivatives

in Eqs. (1.1) is extremely tedious and is actually unwieldy

with systems containing many bodies (14,18).

Figure 1.



The other method referred to above, retains the advantages

of Lagrange's equations but it avoids the differentiation prob-

lems. This method was developed by Kane (1) in 1961, and it

is based upon the. notion of generalized inertia forces. Spe-

cifically, it involves replacing the left side of Eqs . (1.1)

by the expression

*

_ f • _ -Jc

where F . and T . are the inertia force and torque respectively

and are given by .

P..* = -in. iGj . (1.4)

and

Tj = -. - H - w x (j • u) (1.5)

where G. .is now the mass center of B . , m. is the mass of B.,
- TP -1

I . is the inertia dyadic of B. relative to G . , and a is the
•J -J . '• • -J

angular acceleration of B. in the inertial reference frame,

F * (r = 1 , . . . , 3N +3) is called a "generalized inertial force."

Hence

. ™ * _ d , 8K . .
(1*6)

and the equations of motion are

. Fr* + Fr = 0 (r = 1,...,3N +3) (1.7)

This method provides the same advantages as the method of

Lagrange's equations (principally, the elimination of the



non-working constraint forces) together with the advantage of

avoiding the differentiation required with Lagrange's equations.

However, the replacement function F (see eq. 1.6) also in-

troduces derivatives. But, in this case, the derivatives are

fundamental vector quantities and these derivatives may be

calculated by vector multiplication. Given the necessary

algorithms, a computer may be used to perform these calcu-

lations. Therefore, in view of these advantages, this method

of Kane's is used in the sequel to develop the equations of

motion for the N-body system of Figure.1. Some of the neces-

sary algorithms for computer application are developed in the

following section. .

Geometrical and Kinematical Relations between Adjoining
Bodies

Consider two typical adjoining bodies of the system such

as shown in Figure 2, where B, and B are the names of the

bodies, and n, . and n . (i = 1,2,3) represent sets of mutually

perpendicular unit vectors in B, and B respectively. It

is the objective of this section to develop convenient relations

describing the relative orientation and the relative rate of

change of orientation, that is, the angular velocity, of two

adjoining bodies such as shown in Figure 2.

10



Figure 2.

Since the unit vector sets are fixed in the respective

bodies, the relative orientation of the bodies is determined

by the relative orientation of the unit vector sets. Hence,

consider the matrix defined as:

SKL. . = n. : • n. .13 ki £] i,j = 1,2,3) (1.8)

This 3x3 square matrix defines the relative orientation

of the unit vector sets since it provides the scalar components

of n, . along n .. This matrix also provides the familiar

transformation relation between the components of a vector

referred to each set. That is, suppose a vector V is expressed

as
f \r \ ( 0 ̂

•C7\J^-f „ f7\*'] „ /I n\- v-j n
ki - V. n . (1.9)

J- • JS.-L J X/ J

where following the summation convention, there is a sum from

11



(a)1 to 3 over the .repeated subscripts. Then, V. and V. are

related by the expressions

= SKLi;.

V.(£) = SKL. .

(1.10)

where again there is a sum over the repeated subscripts. The

expressions of Egs. (1.10) are obtained immediately by taking

the dot products of Eq. (1.9) with n~, . and n- . respectively.

The matrix SKL.. is thus seen to be the familiar transformation

matrix encountered in elementary tensor analysis. It is

frequently called the "shifter" matrix (12) because of its

shifting properties as displayed in Eqs. (1.10).

The shifter matrix also has the property of being an

"orthogonal" matrix. That is,

SKL. . SKL, . =' 6 .,13 ku xk

(1.11)

SKL. . SKL ., = 6 ..
. 31 Dk ik

where 6., is Kronecker's delta function defined as 1 for

i = k and 0 for i ̂  k. In matrix notation, these relations .

may be expressed as

(SKL)(SKL)T= (SKL)(SLK) = T . (1.12)

where the superscript T denotes the transpose and I is the

identity matrix (elements 6..). Equations (1.11) and (1.12)

12



follow immediately from the definition of SKL.. of Eq. (1.8).

Finally, one other property which also follows immediately

from Eq. (1.8) is the "chain rule". That is, K, L, and M

refer, to three sets of unit vectors, then

SKM = (SKL)(SLM) (1.13)

The chain rule of Eq. (1.13) together with the shifting

property of Eq. (1.10) provides for the transformations of

the components of a vector referred to unit vectors of any

body into components (of the same vector) referred to unit

vectors of any other body. For example, there are advantages

in expressing a vector in terms of unit vectors fixed in an

inertial reference frame because such unit vectors maintain

constant orientation. Hence, if SDK.. represents the shifter

matrix between the unit vectors of body B, and the unit vectors

of the inertial reference frame, then the components V. of

a vector referred to the inertial reference frame may be ex-

(k)pressed in terms of the components V. referrred to the unit

vectors of B, as (See eq. (1.10))

V^0) = SOK±. v!
k) (1.14)

The shifter matrix SOK.. may be obtained by repeated appli-

cation of the chain rule Eq. (1.13). However, to use the

chain rule it is necessary to know the shifter matrices be-

tween the respective adjoining bodies. In this regard, Huston

and Passerello (12,13) have developed a systematic scheme

for obtaining these individual shifters. This scheme is

13



briefly outlined in the following paragraphs.

Consider again the two adjoining bodies of Figure 2. In-

troduce coordinate axes X, . and X . (i = 1,2,3) in bodies

B and B. respectively and let these axes be respectively
jC X/ •

parallel to the unit vector sets. Next, imagine the bodies

B, and B to be oriented relative to each other such that
K . A / • > . • . . .

these axes are respectively parallel as shown in Figure 3.

This orientation, when the respective axes are parallel, is

called the "reference configuration" between two bodies.

Next, imagine three successive dextral rotations of B0 relative3o

to B, about the axes X., , X,- and X..,, through angles a, .,

3,:0/ ^f,0 respectively. (The subscripts on the anges refer
J^ X/ JS. A/ •

to the bodies B, and B0.) Then, these three rotations bring
J^ A/

B0 into "general configuration" with respect to B, as shown
J6 . . . K.

in Figure 2.

Figure 3

14



This process is schematically described by the config-

guration chart of Figure 4. Configuration charts (12) provide

a tabular representation of the relationship between sets of

unit vectors. Each dot in the chart represents a unit vector

indexed in the far left column and identified in the bottom

row. The respective reference frames are listed in the top

row. The two intermediate reference frames and their unit

vectors are not named. These are the reference frames of the

intermediate positions of X, in the successive rotation pro-

cess described above. The horizontal lines in the chart

connect dots associated with common axes and the angle written

beneath is the respective rotation angle about these axes.

The inclined lines are used to develop the relations between

the unit vectors in adjacent columns: If two dots are con-

nected by an inclined line, the corresponding unit vectors

are related by a positive sine term. If two dots in adjacent

columns do not lie on any line, the corresponding unit vectors

are related by a negative sine term. Unit vectors corresponding

to dots in a common row in adjacent columns are related with

a positive cosine term; unless they are equal (as when the

dots are connected by a horizontal line). The argument of

these trigonometric functions is the angle between the respec-

tive columns.

As an illustration of this, suppose the unit vectors repre-

sented by the second column of dots in Figure 4 are named N, .

(i .= 1,2,3). Then following the instructions outlined above, the

following relations between n.. and N.. are obtained:

15



nkl = Nkl
nk2 = cak£Nk2

nk3

Nk2 = cak£nk2 + Sak£nk3

Nk3 k3

(1.15)

Figure 4.

c, . I

wJriere sa,? and are abbreviations for sin a, . and cos a,.

respectively. It is easy to verify these relations with a

simple sketch of the two unit vector sets as shown in Figure 5.

Note also that when OL „ = g
k£ = YkJl the respective unit vectors

are equal and the bodies are in reference configuration.

*,2 i

*- »M

16 Figure 5.



The configuration chart may now be conveniently used to

determine the shifter matrix SKL: Let aKL be the matrix de-

fined as:

aKL = ca. -sa.

sak£ ca'kS,

(1.16)

Then it is easily seen by Eqs. (1.15) that

ij = nki * Nkj (1.17)

Hence, aKL is a shifter matrix between n, . and N, .. Then by

the-chain rule of Eq. (1.13)

. SKL = (aKL)(£KL)(yKL)

where $KL and yKL are the matrices

(1.18)

I

3KL = 0 1

"~ S ^V0 0

0

— *

(1.19)

yKL = CY

0

k£

0

0

0

1

(1.20).

where the sine and cosine are again abbreviated. The shifter

matrices aKL, 3KL, and yKL may be determined from the
17



configuration chart by inspection by noting the following:

Each matrix has the integer 1 and cosines on the diagonal. The

integer occurs in the same row as the horizontal line of the

configuration chart. The remaining elements in the row and

column of the integer are zero. The other elements are + and

- sine's. The + occurs in the lower row if the slope of the

inclined line is positive.

The configuration chart of Figure 4 is valid for any two

typical adjoining bodies of the N-body system of Figure 1. This

means that all the configuration charts of adjoining bodies

have the same form and hence, all the shifter matrices between

adjoining bodies have the same form. Therefore, by using Eqs.

(1.16), (1.18), (1.19) and (1.20), a computer subprogram may be

written to compute all the shifter matrices between adjoining

bodies. The chain rule of Eq. (1.13) may the be used to com-

pute any shifter matrix, such as SOK.

The shifter matrices determine the relative orientation of

tine bodies of the system in terms of the various rotation-

orientation angles a, $, and y- As mentioned above, it is also

of interest to obtain expressions for the relative rate of

change of orientation between the bodies, that is, the relative

angular velocities. To this end, consider again the two typical

adjoining bodies Bfc and B^ (Figure 2). Recall that B. is brought

Into general configuration relative to B, by three successive

dextral rotations about the - axes X», , X 2/
 an<^ xo through the

angles a, . , $,,,, Ykp respectively. Hence, the addition formula

for angular velocity (see for example, Kane (1), and Eq. (1.24)

18



below leads to the following expression for the angular velocity

of £„ relative to B, : -

Jifc A/ __^ . |Q •. T .[ • ~""" / T O T \

where the dots denote time differentiation. The vector N, ? is

parallel to Xp2 after the first rotation (through ct,-).

Although Eq. (1.21) follows immediately from the addition

formula and the manner of bringing B. into general configuration
A/ *

relative to B, , the equation may also be determined by in-

spection from the configuration chart (Figure 4) by making the

following observations: The relative angular velocity of the

unit vectors associated with adjacent columns of dots (Figure 4)

is simple angular velocity (1) directed along the common unit

vector (horizontal line) with magnitude proportional to the .

derivative of the corresponding rotation angle (written under

the horizontal line). Hence, Eq. (1.21) may be obtained by the

sum of products of the orientation angle derivatives and the

associated unit vectors corresponding to the horizontal lines

k—£of the configuration charts. Furthermore, if to is expressed

in terms of n,. as

Kl A/ • K. A/ . f -I s\ t-\ \u> = to nki (1.22)

k £ • ™the components w. (i = 1,2,3) are given by

J\. X/ • r- i . /n

The angular velociety of B0 in an inertial reference frame
X/

R may now be determined by repeated use of the addition formula

19



for angular velocity, that is,

o-£ k-£ . o-k (1.24)
03 = -. W + 0)

and the components may all be referred to unit vectors n .

(i = 1,2,3) fixed in R by multiplication of the appropriate

shifter matrices.

From the above discussion, and from the earlier remarks,

it is seen to be convenient computationally, to. express all

vectors in terms of n . , the unit vectors of R, the inert ial

reference frame. Also, this may be done conveniently through

shifter matrices such as SOK (see Eq. (1.14)). However, it is

sometimes necessary to differentiate the vector components which

are. referred to n . . This means that shifters such as SOK01

will need to be differentiated. As also mentioned above, how-

ever, these shifter derviatives may be obtained by a multipli-

cation algorithm. To obtain this algorithm, consider SOK to

be given by

SOKij = "oi ' "kj <1'25>

Then since n . is fixed in R (and are therefore constant) ,

R,- -
d - dnkv
it (SOKij} = noi •• -dir1 ( 1-2 6>

But since n, . are fixed in B,

X n, . (1.27)dt " A "kj

Hence d(SOK..)/dt becomes

20



-Ix- (SOK. .) = n . - °wkX n. .dt 13 01 k;j

nkj

e. °cj n • n, .imn n om kj

or

It (SOKij) =WOKim SOKmj

where WOK. is a matrix defined asira

WOKim= -e

o k O— — Tc '*'•'*
where w are the components of 03 referred to n and e.n c on imn

is the permutation symbol (19) defined as

( 1 i,m,n

= \ -1 i ,m,n

distinct and cyclic

e. = ) ~1 i,m,n distinct and anticyclic (1.30)

^ 0 i,m,n not distinct

o—kWOK. is simply the matrix whose dual vector (19) is w .im c

Eq. (1.28) then provides the desired multiplication, algorithm.

Summary

To summarize then, the underlying principle of the analysis

is to formulate the equations so they may be adapted to program-

ming on a digital computer. This is done by using Kane's dynam-

ical equations, Eqs. (1.7) and by expressing vector quantities

in terms of unit vectors in an inertial reference frame. The

corresponding component transformation such as Eq. (1.14), is

21



obtained through the shifter matrices which are in turn obtained

from configuration charts (Figure 4) . The vector quantities, are

then easy to differentiate since the unit vectors in the inertial

reference frame are constant. Furthermore, the necessary shifter

derivatives may be obtained through multiplication (Eq. (1.28))

and may thus be performed by the computer.

These perliminary notions provide a basis for the analysis

of the following chapters.

22



II. KINEMATICS OF GENERAL CHAIN SYSTEMS

Consider introducing the following notation as shown in

Figure 6. Number the bodies in the system such that the num-

bers increase along chains originating from B, . Let O, be an

arbitrary point of B,. Let O. be a point common to B. and the

adjacent lower numbered body. Denote the center of mass B.

by G-, the vector which locates O. relative to 0, by IT. where
J J K J

B, is the adjacent lower numbered body to B.. Note here that
jV J

r. is fixed in B. and £". is fixed in the adjacent lower num-

bered body to B.. Finally, let q. be the vector from O, to

Figure 6.
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Now consider naming the generalized coordinates needed to

specify the position of the system as follows. Let x. , Xp> x.-,

be the components of a vector referred to basis n . locating O,

relative to a point fixed in R . Let x^ , x,-, xfi be the angles

which specify the orientation of B, in R . For bodies B.

(i = 27N) let X., . , ,
 x3-+2'

 X3 • +3 ̂ e t^ie angles specifying the

orientation of B. in the adjacent lower numbered body.

It is now possible to derive the kinematical quantities

needed in the equations of motion. These are to1 the angular

velocity in B. in R , w1- the partial rate of change of
J_ O X

orientation of B.-, a the angular acceleration of B . in R ,

-Gi -̂ iV the velocity of G. in R , V. the partial rate of change
1 . ° xr

of position of G. and a -1 the acceleration of G. in R .^ i i o

Consider of1 first: From Eq. (1.24)

— i — 1 . 1-m . , k— j , j— i / o i \CD =w + to + ... + wj + Jw (2.1)

i = 2,3, . . . ,N

where from Eq. (1.23)

-f

Hence, in general

^ i = 1,...,N (2.3)

Where co . ., = 0 for i = 1,15; j = 1,3; k = 1,3 (x-, , x« , .,

position coordinates of 0-,). Comparing equations (2.1) and

.(2.3) , the non-zero to. ., take one of three forms
1JK

2.4



/-SOK

to . . SOKkm
(2.4)

aKIm£BKI£3

depending on whether j is the first, second or third dextral

angle in defining the orientation of B^ with respect to its

adjacent lower numbered body. .. .

The angular acceleration of B.^ in RQ is obtained by dif-

ferentiating oT1. Hence

a1 = («ijk KJ + iijk i.) nok

Note here that non-zero o>. ., takes one of three forms (see
1.JK

Eg. (2.4))

(2.5)

kl

= /SOKkmaKIm2 + SOKkmaKIm2 (2.6)

is

where SOK is computed by using Eq. (1.28) and aKI and BKI. are

computed by differentiating Eqs. (1.16) and (1.19) as follows:

aKI = X3i+l (2.7)
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0KI =

-s(x3i+2)

0

_-c(x3i+2)

0

0

0

G(x3i+2}

0 .

-S (x3i+2}

(2.8)

The partial rate of change of orientation of B in R can be

obtained from Eg. (2.2) as follows:

X
. r irk ok (2.9)

To find expressions for V , a and V consider writing

the expressions for the position vector P. of G. relative to a

fixed point in R and then, differentiating this expression in

R with respect to time. From Figure 6, P. can be written as

X25k2 + X36k3

where ^ and r} are defined by the expression

(2.11)

and

ri =
 r£.nj_£ (no sum over i) (2.12)

where in Eq. (2.11) k is the number of the body in which £

is fixed (k<r) and where the sum (£) in Eq. (2.10) is over
u

the bodies that form a chain from B, to B. and where k .in

Eq. .(2.10) is the number of the body in which £•" is fixed.
.̂.̂  _̂  >~

Note that since ^ and r. are fixed, bodies B, and B., £0 and
3T 1 KL 3. X/

rj- are constants.

Hence by differentiating Eq. (2.10) V01 is
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This equation can be written in the form

where by Eq. (1.29)

8WOK.

3x. imn kjn

Equation (2.16) may be written as

Now from Eq. (2.14)

(2.13)

= V. ., x.n , (2.14)ijk 3 ok

where V. ,, = 6., for (i = 1,N; j = 1,3; k = 1,3)
1JK JK.

and
8SOK 3SOIvo i

v..k = z ,. S& + a.
 r£. i]K u 9x • * 3X • • •

for (i =1,15; j = 4,3N+3; k = 1,3)

By recalling Eqs . (1.28) and (2.3)

.WOK, 3WOI,

= -e,._u,,. (k = K) (2.17)

where WSKj]a - - e c , SOK (2.19)

_ Gi

V x = -~r- = Viik nok (2'20)X. 1JK OK

The acceleration of G in R is found by differentiating Eq.

(2.14), leading to the expression

= (V. ., x. + V. ., x.)n . (2.21). • 13 k D . i j k j o k
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where from Eqs. (2...15) and (2.19), V.., is
1JK

V. ., = 0 for (i ='1,N; j = 1,3; k = 1,3)

(2.22)

and = §

for (i = 1,N; j = 4, 3N+3; k = 1,3)

and where by differentiating in Eq. (2.19) WSK., ? is given by

To summarize: Algorithms have been developed to find the

kinematical quantities (referred to a basis in R ) needed in
o

the development of the equations of motion. They are recorded

below for future reference.

= • w. ' ., x. n , , " (2.24)3 ok ' '

Hi1 = (to. ., x. + a., )n . (2.25)v j ik ok '

Where from Eq. (2.5) a., is given by

- aij=(Lijk:ij • (2'26)

Also, _ _
= Vijk xj nok

where from equation (2.21)

aik = ik i. (2'29)
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and where w./
 w/ Vijk' ̂  are 9iyen b^ Ec*s • <2-4) / (2.6) ,

(2.18) and (2.22).

As an example, the following expansion illustrates the form

of these quantities for B, of Figure 6.

= 0 for all j, k except the following:

tt4,5,k

W4/7,k
 = S01kl

W4,8,k

W4,13,k = S02kl'

W4,14,k = S02k£a24£2

S01ik(i8oi2k2

S62i(i136kl + i!4a24k2

9,3'

V, . , = 0 for all j,k except the following:
4 3 K. •
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V4,2,2

4k
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III. : EQUATIONS. OF .MOTION FOR GENERAL CHAIN SYSTEMS

.The equations of motion will be of the form of Egs. (1.7)

that is •

. F * + F =0 (r = 1,2, .. . ,3N+3) (3.1)

Consider first the generalized active .force F^. F^ is -given

by Eq. (1.2) as .

N
-I (~— • F . + -2— • M .) (r = l,2,...,3N+3) (3.2)

3* 1- 3x 3

where F. and M. (j = 1,2,...,N) represent forces and couple

torques equivalent to the applied active forces acting on the

respective bodies B. . F. has its line of action passing through

point G. of B . . Consider M. to be of the form,

M. = M. + I HKJ (3.3)

ext . .
where M. is the couple torque due to external forces applied

to B. and MKJ is an internal couple torque exerted by B, on

B. as shown in Figure 7. The sum in Eq. (3.3) is over all in-

ternal couple torques acting on B. by adjacent bodies. Hence

in view of Eq. (3.3) it is possible to write Eq. (3.2) as

ext int

•••• -Fr = Fr + Fr (3.41

ext N gwGi _ ' a~BJ ex_t
where F = I (— • F. + —^— - M.) ' (3.5)

— - 1 ^ V J r t V J

int N a—Bj
'and -where F .= £ .(£ d^ . MKJ.) (3.6)

r j=l K 85:r
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Connection Points

Figure 7

From Eq. (2.9) and (2..20), Eq. (3.5) can be written as

ext N
F = y (V. , F.r ...£., irk j + co.

ext
M.. )jk

where F.
ext

and M., are defined- as

C3.7)

F. = F.Ji ,D jk ok (3.8)'

and
ext ext _
Mj = Mjknok

int

(3.9)

To find a convenient form for F consider two adjacent

bodies B. and B, such as shown in Figure 7. Let B. be a lower
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numbered body. Then the generalized coordinates locating

B, relative. .to B. are x_, . ., X-DI,,?' x3k+3"

couple moment which B. exerts on B, is MJK, and the internal
D K

couple moment exerted by B, on B. is MKJ. (Note, as shownK 3
in Figure 7, MJK = -MKJ.) From Eq. (1.24)

-Bk Bi Bi-^k
w
 K = £B3 + , 3u K (3.10)

where from Eq. (1.23)

From Eq. (3.6), the contribution of MKJ and MJK to F is

calculated as follows:

B "D • ' O T3
• Jj- " fj _ X3 •

w 3 * MKJ -4- w J •'• MJK = (w - - w ^ ) . MJK (3.12)
r r xr xr

Now if r 7^ 3k+l, 3k+2, 3k+3, then either

B TJ ' T"! " "D
f -Ĉ l ~J • Jl 1

o i j = w - o r w ^ = c o ^ = 0 (3.13)
r r r r

For both cases the contribution to F or MKJ and MJK is zero.

To find the contribution to F of MKJ and MJK for r = 3k+l,

3k-f-2, 3k+3 note from Eqs. (3.10) and (3.11) that

OJ3- =0 (r = 3j+l, 3j + 2, 3j+3) (3.14)
'Xr '

and

—̂ ĵ  . ~~"

wk- = aJK.pn.. (3.15)
x3k+2 1/ 31
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w • = aJK. 6JK ..n. .
,x3k+3 . ^31

Then using Eqs. (3.12), (3.14) and (3.15) the..contribution

to F for r = 3k+l, 3k+2, and 3k+3 due to MKJ and MJK is

13 T5

(u ̂  -to ? ) • MJK = MJK,
X3k+l X3k+l

_Bv _B-i _
(co • - to J ) . MJK = MJK.aJK., (3.16)

x3k+2 x3k+3 1 •

B T")

— k — n —
(to . - to J. ) • MJK = MJK.aJK. ,gJK^
''X3k+3 X3k+3 1X>

where MJK. is defined by the relation

MJK = MJK.-jEr^ (3.17)

Finally, in view of Eq. (3.13) no internal couple moment

can contribute to F for r = 3k+l, 3k+2, 3k+3 except MJK and

MKJ. Hence,

int

int
F3
int

F3k+2 = MJKiajKi2 (3.18)

In summary then the generalized active force F is con-
ext int ext

sidered to be made up of two parts F and F . F is

the contribution to F due only to external forces applied to
r int

each body and is calculated from Eq. (3.7). F can be written

in a special form where the only term appearing in the internal

couple moment acting between the two bodies where x is a
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generalized coordinate used in representing the relative

orientation of these two bodies.

Next consider the generalized inertia force F ' of Eq.

(3.1). From Eq. (1.3), F * may be written as

N . .̂ Gi «—B.

where from Eqs. (1.4) and (1.5)

= -m-a?1 (3.20)

and
_ = _- _- = ,
T±* = -I± ' a ' x - w 1 x I± • ,a)

 I;L (3.21)

= _Bi
Consider writing the expansion of I • a as follows

= _Bi _ _ _
I. • a = I. n n * (w..,x. + a.,)n , (3.22)a imn om on ij-k 3 ik ok '

where there is no sum on i, and I. are the components of theimn c

inertial dyadic of B. relative to G. referred to the n . unit

vectors. Note that by performing the dot product this equation

takes the form,

where I. is related to the components of I. referred to a

basis n.. fixed in B. as follows:

jLIuTi ITlJo JijC 1 jbr-i

where I.'„, are the components of I. referred to n.... Next, con-
-L J6 JC r> ^~ D 3

sider the expansion of to -^ x (T. • w" 1) . This may be written as
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x (T • w ) = w x Ci • n n , • w. . ,x .n , )v ' • v iiun am on ijk 3 ok'

_. . _
w 1 x (I . n w. ... x . )xran om. ijk 3.

a > . x n x i , r . a ) . . , x .isn s on link ora i^k 3

or finally as

. . _
= enmka)isntoij£Iim£Xsxjn6k (3 '25)

_G . *
Combining (3 .23) , (3.25) and using Eg. (2 .28 ) for a--1, F may

be written as . ;

(3 .28)

Finally using Eq. (3.4) and (3.26) for F and Fr* the equa-

tions of motion may be written in the form

ext int
F .x.. = f + F + F (3.27)r j j r r r

where

and where

A . = (m.V. ..V. , + I., to. . a). , ) (3.28)rj i ijk xrk ikn ijn irk

fr = ^(miaikVirk + Iiknainwirk
(3.29)

Equations (3.27) are 3N+3 second order nonlinear differential

equations. These equations may be solved numerically for the
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generalized coordinates x (r. = 1,2,. . . ,3N+3) as functions of
. ext . int .

time. The quantities A .:, f , >;'F , . F may be computed by

using the algorithms developed in Chapters I and II.

Consider now the possibility of specifying the relative

motion between a number of adjacent bodies (that is, specifying

some of the generalized coordinates) and solving for the un-

known internal moments between these bodies as well as for the

other unknown generalized coordinates as functions of time.

This is accomplished by numerically integrating the reduced set

of equations which do not involve the unknown moments for the

unknown generalized coordinates as functions of time. Then

the components of the unknown moments are found from the re-

maining set of equations. As an example, suppose the relative

motion between B0 and B. of Figure 6 is specified and M24 is
£ ft

to be found along with the other generalized coordinates which

specify the position of the system. The equations to be solved

are then

12 N ext int 15

* T IT J J . - — J- J J J- J- * • 1 ~i ^"1 ~1j=l J J 3=16 3=13 J J

(r = 1,2,... ,12; 16,17,...,3N+3)

and (Eqs. (3.18) )

N ' ext
M241 = T^ A13 .JSJ'+ f!3 + F13

N ext

7?, A14 nx-i + f!4 + F14
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N ext

j + f!5 + F15

In a similar fashion it is possible to find unknown ex-

ternal forces when motion is prescribed.
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.iv. SPECIALIZATION: FOR .IMPULSIVE. FORCES-

When the N-body system is subjected to impulse forces,

forces which become very large over short periods of time, it

is possible to derive equations which provide the change in

the first derivative of the generalized coordinates. Following

Kane (1) , if the generalized impulse "I " is defined as

N _ t, _B. t-.ext _B. t«_
Ir = I (V ' • //F.dt + co J * $ * M dt + co J ' £//MKJdt) (4.1)
r i=l xr r2 1 xr r2 xr K rl

and the generalized momentum p is defined as

N G. G. N B. ' • B.
p (t) = 'I m.V1 • V * + I to x • I. • u J .(4.2),
r i=l x xr i=l L xr

Then it is possible to show that (1)

p (t ) - P_.(t,) ~ I (r = l,...,3N+3) (4.3)
-L £» JL -L. J, . .

Equations (4.3) are the generalized impulse and momentum

equations. Comparing Eq. (4.1). with Eqs. (3.2), (3.6) and

(3.18) it is seen that like F , I can be broken up into two

parts as .

ext ext
(4-4)

. N _G- t_ _ _B. t- ext
where I = I (V J . / ^ F-dt + .to J • / ^ M. dt (4.5).

r i=l r Cl x r rl X

int t«
and where .Io-+1

 = /t MKJ dt (4.6)

int t?.

^j^ = aKJi2/tr ̂
Jidt

int . t2
-L -^ * *^ — Oti\J t « pi\U ~ — r , iXLixJ • dt

•sT-i-"i • i v V - S » T * i•J_JT^^> JL A/ A/ J t- -. i
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The expression for the generalized momentum equation (4.2)

can be written using Eqs. (2.24). and (2.27) as

N .
P-r^t) = ( Z miV-;-;vv-; v-v + ^-i nn1-; tnwi v-v'-51-; (4.7).

A. • . -i -L

and then using (3.28)

Pr(t) = Arji.. -(4.8)

Fence using Eqs. (4..4), and (4.8) in (4.3). , equation .,(4.3)

can be written as

ext int . . •
Arj.(Ax..) = . Ir + Ir (4.9)

where

Ax. = x.(t9) - x. (t,) (4.10)
J J *• J -1-

Hence using Eqs. (4."9)- it is possible to algebraically

solve for the change in the first derivatives of the generalized

coordinates.
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V. ILLUSTRATIVE APPLICATION

To obtain a simple illustration of the analysis, consider the

dynamics of the manipulator system shown in Figure 8. The system

Figure 8.

consists of a main body B, and two manipulator arms, each containing

two members. The manipulator arms are considered to be connected

to the main body by ball and socket joints. The lower part of each

arm is connected to the upper part by a hinge joint. The system is

located relative to an inertia frame by 14 generalized co-ordinates

as follows: x- (i.'.=: -1,6) locate the position of the center of mass

of B, and the orientation of B, relative to the inertia frame,

x.(i = 7,9) locate B2 relative to B,, X-Q locates B3 relative to B_/

x. (i =.11,13) locates B4 relative to B.^ and finally x14 locates E^

relative to B.. The above orientation angles are developed in a dextral

sense from the reference configuration of Figure 9.
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B2'B4

Figure 9.

The governing dynamical equations of motion as developed in

the foregoing chapters were used to study the dynamics of this system.

The equations were programmed to be developed and solved on a digital

computer. .This procedure employed an IBM 360-65 computer together

with a fourth order Runge-Kutta integration scheme. The physical

data of the manipulator is shown in the table of Figure 10.

Body

1

2

3

4

5

Disk 1

Disk 2

Mass

10 slugs

. 5 slugs

.5 slugs

.5 slugs

. 5 slugs

.25 slugs

.25 slugs

Mass Center
Location

v°
F2=-18n"23 in

r3=-18n~33 in

r4=-18n~43 in

r~5=-18ii53 in

?D1=°

?D2=°

Reference Point
Location

v°
?2

=-6n^3 in

r3=-36n"23 in

r4=-6n13 in

f5=-36n43 in

TDl=-36"33 in

rD2=-36n53 in

Inertia

T1=240n11n, 1+240n12n12H-2<!On, 3n13 slug in

I2=54n21n"21*54n22n22 slug in

T3=54n"31n"31-i-54n"22n22 slug in

«= 2
I .=54n .,n , n-*-54n ._n ._ slug in4 41 41 42 42 '

I5=54n51n5,-»-54n52n-2 slug in

rDr-5"Dll"Dll+-5ED12HD12-H"D13":D13 SlUg in2

ID2=-5"D2l"D21^-5"D22SD22+KD23"D23 slU3 ^

Figure 10
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Three types of problems were considered: In the first the mani-

pulator was used to bring two circular plates into coincidence with

each other. The plates and manipulator system were considered to

be in a weightless environment. During the motion the main body

was free to rotate and translate. The manipulator arm motion is

shown in Figure 11 and was specified with input functions of the

form

(t) = 6o + (61-6o) [(t/T) - (1/2TT) sin (2TTt/T)J (5.1)

where T is the time of motion duration and 6 and 9, are the valueso 1

of 6 for t=0 and t=T. The output displacement and rotation of the

main body was determined and is shown in the graphs of Figures 12

and 13.

Figure 11,
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3.0

3.0

Figure 12,

-1.0 .

Figure 13.
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In the second problem the forces and moments required to hold

the main body fixed in space were determined for the manipulator

motion of the first problem. The resulting forces and moments are

shown in Figures 14, 15.

1000

Figure 14,

Figure 15. 45



In the third problem the main body and manipulator system were -

initially motionless in space in the configuration is had at time

zero of the first problem. It was then struck at the mass center

of the main body by an impulse of 100 Ib. sec. as shown in Figure 16,

Figure 16.

The bodies of the manipulator arms were left free to rotate relative

to their adjoining members. The resulting output increments in the

rotation and translation speeds are shown in the table of Figure 17.

i

1

2

3

4

5

6

7

Xi
at t=0.0

. 0.0

0.0

0.0

0.0

0.0

0.0

0.0

ixi

112 in/sec

0.0

-1.99xlQ~5

-5.74xlO~6 rad/sec

1.99

l.llxlO"5

6.25x!0"6

i

8

. 9

10

11

12

13

14

' Xi
at t=0.0

90°

0.0

90°

. 90°

0.0

0.0

0.0

Ax±

3.51

1.99

-4.39

3.02

-1.99

3.02

3.33

Figure 17.
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These examples are not meant to be exhaustive studies of

manipulators or even of the relatively simple system of Figure 8.

Instead they are intended to be simple illustrations of the kind

of analyses made possible through the theoretical developments of

the foregoing chapters. They show that : (1) given the forces on

the system, the resulting displacements and velocity of the members

of the system are determined; (2) given the displacements and veloc-

ities of the members of the system, the resulting forces are deter-

mined; and finally, (3) given a combination of forces, displacements

and velocities, the unknown resulting velocities, displacements,

and forces are determined.
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VI. CONCLUDING REMARKS

The analysis presented represents a new kind of finite-element

analysis applicable with a broad class of chain-like dynamical

systems. it is computer oriented and designed so that non-working

constraint forces are automatically eleminated. Furthermore, the

analysis is developed in a way that allows for either forces or

displacements to be specified with the unknown resulting displace-

ments or forces then determined.

The method is applicable with any dynamical system which can

be modelled by a series of connected rigid bodies provided only

that no closed loops are formed by the bodies. Manipulator systems

and teleoperators are thus prime candidates for anlaysis by this

method. The method is also directly applicable with human body

models and cable problems. Finally, by introducing spring and

torsion., forces at the joints the analysis becomes a nonlinear,

finite-element elastic analysis.
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