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- ABSTRACT

‘n-A’general analysis ef-dynamical eysteme consisting of
':cennected rlgld bodles is presented 'The<number ef boaiee
and thelr manner of connectlon is arbltrary so long as no
' closed loops are formed.: In_essence, the analy81s representev
'  a new dynamical finite;element method. which is computer |
orlented and des1gned SO that non-worklng, interval con—e
stralnt forces are automatlcally ellmlnated. The method
:f 1s based.upon Lagranges form of d'Alembert's principle;“
'Shlfter matrlx transformatlons are used w1th the geometrlcal
aspects of the analysls. The method is 1llustrated with a

space manipulator.



. SUMMARY

.The analy51s presented represents a new kind of. f1n1te~
element analySLS appllcable w1th a broad class of chaln—
"llke dynamlcal systems. It is computer orlented and de51gned
_;so that non-worklng constralnt forces are automatlcally
I ellmlnated L ‘ | | ‘ | |
S The method is appllcable w1th ~any dynamical system
"‘Whlch can be modelled by a series of connected rlgld bodles
;pprovlded only that ‘no closed loops are formed by the bodles.
Manlpulator systems'and‘teleoperators are thus'prlmebcan—
~hldidates for analysls by:this.method. The method is also ;
~-directly applicable wlth.human body models.ahd cable prob-
lems. Furthermore; by 1ntroduc1ng sprlng and tor51on forces
~at the jOlntS the analysis becomes a nonllnear finite-
element elastlc analysis. |
Flnally, the analy51s is developed. in a way that
3 allOWS for elther forces or dlsplacements to be spec1f1ed
_4'wlth the ‘unknown resultlng dlsplacementsvor forces then |

determined. .
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‘NGL 36-004-014 to the University of Cincinnati, Institute of

Space Sciences under théAUniversity_Sustainihg Grant program.
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" INTRODUCTION

'-Signifieant ehanges”have occurrea during the nast decade_
vin methods of analysis bf compiex structural systems. - New.',v
-matrixvmethods.and finite—element techniques have been and -
Aate continuing to-replace traditionel‘approximétion metheds.
Furthermore;-new advandes_in matrix and'numerical techniques
. ere COntinuing to fefine and expand the eccuracy and-capability
of these methods.  To a large eXtent; this'rapid sﬁCcess and
vdevelopment ththese‘neW'methods‘ban be directly traced to the.
advent and rapid development»of the digital computation macnines."

The study contained herein represente a new kind of‘finite—;
element‘method applicable in the enalYSis of_chain—like con-
vtinuous dynamical systeﬁs. This method, which is also designed
for digital computation,vusesithe approach of considering a,i
dynamical sYstem as a general,’nonlinear, chain eystem. Thev
kinematics of the links of the chain are then deveioped. Ex-
pressibns for the forces‘and moments exerted on and between.
the links are then_obtained. Lagrange's form ofvd'Alembert's
ptinciple (l) ievthen used to obtain the gbverning diffetentialt
equations, whicn ate developed and solved numerically. |

Althbugh'the_notionlof using euch finite elements with
dynamical systems is not new, the particular approach and
techniéues developed in this study ate, for the most part,
new and original. |

Analysis of chain systems occurred ae_early as 1732 whenv

Dan Bernoulli developed and solved equations of motion for a



'.hanging‘chain (2). However, he modelled the chain as a con-

tinuous string or cable} and since that'time chains have almost

' »aiways been approx1mated as fleXible, but 1nextenSible cables -

or strings. The works of Coughey (3), Huang and Dareing (4),
~and Woodward (5) are modern examples of thlS approach More—i
| over, these analyses con51der the chain, cable, or string as
being linear, that lS, contlnuous without branches or "tree-
like? features.. It is 1nterest1ng to note that in 1967 Elnan
and Evert.f65:reversed”the procedure by modelling a cable by -
a chain composed of a system of pin connected rods. .Their |
:analySLS{ like the analySis of the work herein was a.finite- .
‘element apprOXimation of a_continuous dynamical system. In-
.deed the methods of‘(6anre similar to those herein,‘althoughr
-.(6) was restricted to linear systems. The study herein con-—
siders chains nonlinear, that is, composed of finite connected;
rigid links which may contain branches‘or "treeflike" features.
. Most finite element methods arefused in the analysis of
-static structural systems following the'approach of'Turner,
et;al. k7) and that-exposited by Zienkiewicz.(é) and O0din (9).
In the work herein, however, the primary concern is with dy-
namical systems of rigid bodies such as chains, booms, . skeletai
systems, or human body models. Hence, this finite element
: approach is tailored to analyze such systems. |
~There have been some other recent attemps to obtain generai'

analyses of dynamical systems of rigid bodies, particularly



inAthe_area of,human'bioﬁechanics. In 1969, Roberts and:
Robbins (10) examined matﬁematical human body modéls'in
crash simulation. In 1970, Kane and Schef (11) studiedv
human'self—reorienﬁation in free.falif Also, in 1970,
Péssereilo and Huston (12) produced an analysis of human
éttitude control_in_free fall. This latter'work was gen- .
éralized (13) ih 1971 to consider human body hodels in
érbitrary force fields. None of these andlyses howéver,
provide a general dynamical theory. 1Indeed, most are
directed towérd specific épplications and most employ the
traditional methods of classical mechanics.

| In 1970, Yoﬁng_(i4)vproVided a more exteﬁsive analysis
of a hﬁman body model éubjected to impulsive forces.rzYoung's 
analysis uses Légfange's equations, but the algebraic com-
putation becomes extremely involved. Ih 1971, Chace and
Bayazitoglu.(IS) presented a general théory of dynamical;
systems also employing Lagrange's equations. Théy avoidiA
.some of the algebraic tedium by»cohsidering.the kinetic
energy function in severai parts. In 1969; Hooker (16) -
and.léter in 1972, Fleischer (17) introduced and used the
éoncept‘of "barycenters" to alleviate the algebraic prob-
lems of Lagrange's equations. However, this method while
being quite_ingenious; also involves considerable algebraic
computation. | | |

The analysis éf general chain systemé presenﬁed herein -

avoids most of the difficulties of the above analyses. That



is, by using Bagrange's form Qf d'Alembert's.principlé as 
.déveloped énd é#ploited‘by Kéne (18,1); ﬁhe governing dynam-
ical eqﬁations_are obtaiﬁed without neediﬂg to resort to
extensive.élgebraic computations; Basically, Lagrangéfs
}form of d'Alembeft's principle employs.véétor quaﬁtities
Qhoée.derivétivgs may be dbﬁained by Vector_multiélication
and henée-on a.digital:cOmputer. Aléo, thé’principle pro—’
vides fér the automatic elimination of non—working cohsﬁraint
forces which are generally of no iﬁteréét.v These two_édQ |
vantages make possible fhe systématié develbément.of a |
gene:ai theory of chain systems éubﬁect to arbitrary éfe¥
scribed extefnal or internal forées br motions. |

The study is divided into five chapters-with the,firéﬁ
chapﬁer providing the'prelimihary Considerationsvand back*-
'ground needed in the analysis. The general chain dynamics
theory is then developed in Chapters II and III. Effeéts
- of impulsive forces are considered in Chapter IV} Application:

to manipulators and teleoperatorsvis then given in Chapter V.



'I.V.PRELIMINARY CONSIDERATIONS"

-Consider a set of N rigid‘bodies joihed to each other
in a chain or link system euch as 'is shown in Figure 1. The
bodies may.be jOlned together in an aroltrary fashion pro—
tidedronii that (1) any two adjacent connectlné bodres have
bohe common.p01nt and (2) that no closed loops are formed by
the system nor by anY'of'its'chain"or link”segments. The.
phy31cal dlmen51ons and the masses of the bodles are arbltrary
.Thus the system may be. used to model a variety of actual
'physioal’systems ihciuding‘the human body.

Consider next that this chaln system of rlgld bodies is
subjected to a general force fleld such that each body has
an arbitrary system of iorces exerted upon it., Also, let
'there be;iin general, moments exerted by adjacent, connecting.
bodies on each other. |

The primary objective of thie analyeis is to obtain govern-
sing dyﬁamioal equations of motion for a general chain system»
such as-this, and subjected to a general.arbitrary force field.
Furthermore, it 1s an objectlve of thlS analYSlS to develop
these governlng equations so that-‘ (1) if the force fleld
. is spec1fled, the conflguratlon and motion of the eystem is
determined; (2) if the configuration and motion of the system
is specified, the force field is determined; and (3) ifra ‘.
-_combination of a_portion of the force field and a portionjof
- the configuration and motion is specified, the remaining (un;

known) portions are determined, by the equations. Finally,



it is an objective of this analysis to apply these equatioﬁs
with a specific physical system: the action Qf a manipulatof :
or teleoperatof.

- To begin this analysis_it is helpful to fifst conéider
some prelimihary'ideas regarding the.development of equations
of motion and some ideas pertaining to the geometrical and’

kinematical relations between two adjoining rigid bodies.

Development of Equatibns of Motion

Conside: writing equaﬁions of mdtion.for an N-body system
such as is shown.in Figﬁie 1. Conceptually, the simplest
approach is to use Newton's laws and write equations of motion.
for each individual body of the sYstem.. Hdwever, this éppréach
haé the. disadvantage of introduéing excessive, unneéessary |
cqmpuﬁation and analysis. For exémple, this_approaéh would
lead -to 6N equations involving as unknowns non-working con-
straint forces between the bodieé of the system. These non-
working constraint forces are usually of no iﬁterest and thus
': they would heed to be systematically éliminafed from the 6N
fiéquatiohs. -In general there are 3(N-1) of these forces.

(Three between each adjoining-body.)‘ Hence;.this proéedure
would ultimateiy lead to 6N -~ 3(N-l)v= 3N + 3 eqﬁations of
motion to be»solved;. | A

| It is possible to avoid £he computation aséociated with
the.eliminatibn of thése non?Working constraint forces. Two

methods are available: The best'known and most widely used



is the method of Lagrange's equations. In this method the N-
" body system ie ereated.ae a uniﬁ, the non—ﬁorkihg constraint
forces are-eutematicaliy eliminated, and the 3N.+V3 equations
df motien are obtained directly.' These equations may be wri#ten

giﬁ the form

a oK - K  _ 3 ' ' .
at .- (5= F. (r = l,....,3N + 3) | (1.1)
: axr r _

wﬁere K is the kinetic.energy of.the system, x_ (r.= 1,...,
.3N + 3) are the generelized coordinates of the system (one .
for each degree‘of freedem)? and Fr (r =1,...,3N +‘3) are-
the generalized.aetive forces acting on the system. If the
externally applied forces acting on the system of bodies are
replaced by an equivalent set of forces consisting of N forces
and N couples acting:bn the N respective bodies of the system;

then the generalized forces Fr'may be written

-Gj . By o -
Fo= ) V" L F, o+ &y (r=1,...,3N + 3) (1.2)
3=1 0Xy 3 0%y J : _
where f} and E% (j =1,...,15) represents the equivalent forces

and couple torques écting on the respective bodies Bj and where
F. has its line of action passing}through point Gj of B. VGj
'aﬁd EBerepresent the velocity and angular velocity of Gj and
Bj:ih aniinertial reference frame. (In some cases, it may be
of interest to consider internal (working) moments between ade

joining bodies. 1In these cases these moments may be included

in H,.) The quantities SVGJ/Bkr'and 959 /9%_ (r = 1,...,15)



are called “partial rates of change of position" and "orientation"
respectively. ; |

While providing a number of advantages such as ﬁhose listed
above, Lagranée's equations also lead to serious disadvantages--
particulafly wiﬁh complex sYstems such as in Figure 1. The
principle'disadvantége is that the ¢ompu£ati§n of the derivatives
in Egs. (l.1) is extyémely tedious and is actually unwieldy |

with'systems containing many-bodies'(l4{l8).;




The other method referred to above, retains the advantagés
of Lagrange's eéuations‘but it avoids the differentiation prob-
lems. This method wasldéveloped by Kane (1) in 1961, and it
- is based updn the. notion of generalized inertia forces. Spe-
cifically, it involves replacing the left side of Egs. (1.1)

- by the expression

N =GJ _' —Bj . o
“F* e - ) (F L p . Beny (1.3)
r 3=1 J X J 3% ; -

where F." and Tj* are the inertia force and torque respectively

and are giVen by
F.* = -n. = S o . (1.4)

and

T.¥ = T, . o) - gBJ (I, - w>3) o (1.5)

where Gj:is now the mass center bf Bj’ mj is the mass of Bj’
?j‘is the inertia dyadic of Bj relative to Gj,,and aBj'is the

angular acceleration of Bj in the inertial reference frame,

Fr* (r =1,...,3N +3). is called a "generalized inertial force."

‘Hence _ ' . S
B g 'gir- : : (1.5;

and the equationé of motion are
F*+F_=0 (r=_1,..._;3N+3) - (1.’7)

This method provides the same advantages as the method of

Lagrange's'equations (principally, the elimination of the



non-working constraint forces) together with the advantage of

avoiding the differentiation required with Lagrange's equations. -

However, the replacement function Fr* (see eq.'l.G) also in-
troduces derivatives. But, in this case, the derivatives are
-fundamental'veétor quantities and these derivatives may be
calculated by vector multiplication. Given the necesSary
élgorithms, a computer may be used to~p¢rform these calcu-
lations. Therefore,.in view of these advantages, this mefhod
of Kane's is used in the sequel to dgvelop the equationé of
motion for the N-body syStem of Figure.l. 'Some‘of thevneces—
sary algorithms for computer application'areideveloped in the "
following section. |

Geometrical and Kinematical Relations between Adjoining
Bodies B

Consider two typical adjoiningrbodies of the system such

as shown in Figure 2, where B, and B, are the names of the

bodies, and Hki and Hzi (i = 1,2,3) represent sets of mutually

perpendicular unit vectors in Bk and B respectively.i It

2
is the objecti?e of this section to develop convenient relations
describing the relative orientation and the relative rate of

change of orientation, that is, the angular velocity, of two

adjoining bodies such as shown in Figure 2.

10
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Figure 2.

Since the unit vector sets are fixed in the respective

bodies, the relative orientation of the bodies is determined

by the relative orientation of the unit vector sets. Hence,
consider the matrix defined as:
SKLij =n.: - nﬂj (1,7 = 1,2,3) B “(1.8)

This 3 x 3  square matrix defines the relative orientation

‘of the unit vector sets since it provides the scalar components

of Hki along ng. This matrix also provides the familiar

transformation relation between the components of a vector

referred to each set. That is, suppose a vector V is expressed

as :
5o y® = o0 = -
V.— Vi. ) nki = Vj nlj (1.9)

where following the summation convention, there is a sum from

11



1 tb 3 over the repeated subscripts. Then, Vik) and ng) are

related by the expressions

e
1

= kL., v'%)
ij 3
(1.10)
vgz)‘= SKL. . v@k)
i ji "3

where agéin theie is a‘sum over thé-fepeated subscripts. The
expressions of Egs. (1.10) aré obtained immediately.by takiné
the dot products of,Eqﬁ (lf9) with Hki:and sz respectively._
The matrix SKLij ;s thus ééen'tq be the familiar transformation
matrix encountered'in elementary tensqr analysis. It is
frequently called the "shifter" matrix (12) because of its
shifting proéefties as displayed in Egs. (1.10).

- The shifter matrix also has ﬁhe éroperty of being an

"orthogonal" matrix. That is,

SKLij SKij =.6ik

(L.11)
SKLji SKij % Gik'
.where>6ik is Krdnecker's{delta function defined as 1 for
i =k and 0 for i # k. In matrix notation; these relations .

may be ex?ressed as
(SKL) (SKL) T = (SKL) (SLK) = I (1.12)
where the superscript T denotes the transpose and I is the

identity matrix (elements Sij).’ Equations (1.11) and (1.12)

12



follow immediately from the definition of SKL; 5 of Eq. (1.8).
Finally, one other property'Which also follows immédiately
from Eq. (1.8) is the "chain rule”. That is, K, L, and M

refer to three sets of unit Vectors, then
SKM = (SKL) (SLM) o - (1.13)

The chain rule 6f Eq. (1.13) together Wifh the shifting
property of Eg. (1.10) ptovides for the_ttansformations.of
the_componénts"of a vectorAreferred tobunit vectors of any
bbdy into cémponents (of the éame veétor) referred to unit
.vectors of any éther body. For.example, there are advantaées
in expreséing:a vector in'terms,of uhi£ ?ectofs fixed in an
inertialvfefe:ence-frame because sucﬁ unit vegtors_maintain
qonstant otientation. Hence, 1if SOKij repfesents the shifﬁer
matrix between the unit véctors of body Bk and}the‘unit Veétors
of.the inertial reference ffame, then the components Vio)_of

a vector referred to the inertial reference frame may be ex-

pressed in terms of the components ng) referrred to the unit
© vectors of'Bk'as (See eq. (1.10)) 
vi®) = sox,, vk . (1.14)
i ij 7 j : :

The shifter métrix SOKij‘may be thained by repeated appli—
cation of the qhain rule Eq.'(l.lB). However, to use the

chain rule it is necessary to know thé éhifter_matriées be-
tween the respective adjoining bodies. In this regard, Hﬁston '
and Passerello (12,13) have developed a systematic scheme

for obtaining.these individual shifters. This scheme is

13.



briefly outlined in the following paragraphs.’
Consider again the two adjoining bodies of Figure 2. In-

and X (i = 1,2,3) in bodies

ki

troduce coordinate axes X 01

'Bk and BQ respectively and let these axes be respectively
parallel to the unit vector sets. Next, imagine the bodies

By and B, to be oriented relative to .each other such that

these axes are'respectively parallel as shown in Figure 3.
This orientation, when the respective axes are parallel, is
called the "reference configuration" between two bodies.

' Next, imagine three successive dextral rotations of B - relative

.
through angles o

to B, about the axes X ., X and X

k 217 72, 237 kg!

BER’ Yki respectively. (The subscripts on the anges refer
to the bodies B, and'Bz.) Then, these three rotations bring

Bg-into "general configuration” with respect to B

in Figure 2.

as - shown

k

Figure 3.



This procéss ié schémétically described by the config-
guration chart of Figure 4. Configufation charts (12) provide
.a tabular representation of the rélationship between sets of
unit vectors. Each dot in the charﬁ represents a unit vecfor
-indexed in the far left column and identified in’thé bottom
row. The respective reference frames are listed in the top
row. The two intermediate reference frames and their unit-
vectors are not named. These ére the reference frames of the
'inte:mediate positions of Xk in the successive rotation>proj
cess described above.. The horizontal lines in therchart. |
connect dots aséociated with common axes and the angle written B
beneath is the respective rotation angle about these’axeé.

The inclined lines aré used tb develop the relations between
the unit vectors in adjacent columns: If two dots are con-
nécted by an inclined line, the corresponding unit vectors
are related by a positive sine term. If two dots in adjacent
columns do not lie on any line, the'corresponding unit veétofs
are related by a negati&é sine term. Unit vectors corresppnding
"to dots in a common row in adjacent coiumns afe'related with

a positive'éosine term; ﬁnless they are equal (as when fhe
dots are connected by a horizontal line). The;argument of
Athese trigonometric functions is the angle between.the respec—
tive columns.

As an illustration of this, suppose_the_uﬁit vectors repre-
sented by the second column of dots in Figure 4 are named ﬁki
A1 = 1,2,3). ‘Then folloWing the instructions outlined above, the
foliowing relations between Hji and ﬁji are obtéined:

15



3
I
=

Ny = GOy oNpy = SOy Ny 3

ny = sakszz + caksz3 .(l.lS)
Npa = COpoPrp * SO My3 -
Mgz T OTS%eMkp T C%eM k3
) “k
l po a

Figure 4.

wliere S0y and ca, , are abb;evxatlons~for sin- a, o a#@ cos o, o

- respectively. It is easy to verify these relations with a
simple sketch of the two unit vector sets as shbwn in Figure 5.
Note also that whep Oy o = Bkz = Yig the respect;ve unit vectors

-are equal and the bodies are in reference configuration.

Al
=l

oy
]

w
by N
™ i .
e e Y

‘16



The configuration chart may now be conveniently used to

determine the shifter matrix SKL:. Let oXL be the matrix de-

fined as:

1 1
akKL: =1{ 0 cakz
0 sakz

Then it is easily seen by Egs. (1.15) that

aKLij = nki . Nkj

Hence, oKL is a shifter matrix between Hki and N

the-chain rule of Eg. (1.13)
. SKL = (aKL) (BKL) {YKL)

where BKL and YKL are the matrices

"
CByy 0
BKL =| 0 1
~SBry 0
{ e o
Vg TSYrg
YKL =} sykz CYkz
0. 0
n

where the sine and cosine are again abbreviated.

0
—sakg (1.16)
COLkZ
(1.17)
Then by
(1.18)
-1
S8y
0 | (1.19)
CYkQE'
ol
0
0| (1.20)
1

matrices dKL, BKL, and YKL may be determined. from the

The shifter

17



configuration chart by inspectioh by noting the following:
Eacﬁlmatrix has the integer l.and cosines on the diagoaal. The
integer occurs in thé same row as the horizontal line of  the
configuration chart. The remaining elemeats in the row and

_ column of the integer‘are-zero. The other elements axe +4and
- éine's.‘ The + occurs in the lower’réw if the slope of the
inciined line is positive.

The configuration chart of Figure 4 is valid for any two
typical adjoining bodies of the N-body system of Figure i. This
means that all_the configuration,charts‘of adjoining bodies
have the same'fdxm'ana-hance, all the shifter matrices hetweéﬁ
adjoining bodies have the Same'form.5 Therefore, by using Eqs.}
(1.16), (1.18)( (1.19) and (1.20), a computer sﬁbprogram may be
written to compute all the shifter matrices between adjoining -
_boaies._ The chain rule of Eq. (1.13) may the be used to com—:v
pute any shifter matrix, such as SOK.A_

The shifter matrices.determiné the relative orientation of
the bodies of the system in terms of the various rotation- |
orientation angles o, B, and y. As mentioned above, it .is also.
of interest to obtain expreséions for the relative rate of
change of orientation between the bodies, that is, the relative
angular velocities. To this end, consider again>the two typical

adjoining bodies By and B, (Figure 2),‘ Recall that‘Bz is brought

into géneral configuration relative to By by three successive

41’ X22' and X, through the

respectively. Hence, the addition formula

dextral rotations about the.-axes X
angles oy os Byor Vg

'_for angular velocity (see for example, Kane (1), and Eq. (1.24)

18



below leads to the following expression for the angular velocity
of 62 ;elatlve to Bk;

k—4% .

TwT = o ny 4 (1.21)

n

+ 0.3

Brg Mo F Vg
where the dots denote time differentiation. The vector ﬁkz is

parallel to X,., after the first rotation (through dkz);

22
Although Eq. (1.21) follows immediately'from the addition
formﬁla and the hanner bfvbringing Bz into general configuration
relative to Bk’ the equation mayvalso.be determiﬁed by'inf’
spectioh_from the configuration chart (Figure 4) by making the
following observations: The relative.angular velocity of the
unit vectors associated with édjacent columns of dots (Figure 4)
is simple angular velocity (1) difected along theicommon unit
vector (horizontal line) with magnitude proportional to the
derivative of the corresponding rotation angle (written ﬁnder
the horizontal line). Hence, Egq. (1.21) may be obtained by théA“

"sum of products of the orientation angle derivatives and the

associated unit vectors corresponding to the horizontal lines

- of the configuration charts. Furthermore, if kEl is expressed
in terms of n, . as
: ki
k—-2. .k 2 — '
WIETRT ny L (1.22)
k 2 -

“the components wy (i ='1,2,3) are'given by

k2 _ - ' _
w, = o S. +_Bkl oKL

i e i1 oKL BKL

12 F Yig 0Ky 53 (1.23)

The angular velociety of B2 in an inertial reference frame

R may now be determined by repeated use of'the addition fofmula
' ' 19



for angular velocity, that is,

and the components ﬁay all be referred to unit veétors Hﬁi
(i =1,2,3) fixed in R by multiplication of Ehe appropriate
shifter matrices.

From the above discussion, and from the earlier remarks,
it is seen to be convenient computationally, to express all -
vecﬁors in termé of Héi’ the unit.Qectorsvof R, the ipertialf‘
reference ffame.'Also; this may be done.conveﬂiently through .
shifter matrices such as SOK (see Eg. (1.14)). Howévei, it is
sometimes necessary to differentiate the vector components which
are;referred to H@i. This means-thaf shifters such as SOK
‘will need to be differentiated. As also mentioned aboVé, hbw-
ever, these shifter der?iatives may be obtained by a multipliQ
catiog aléorithm. To obtain this algorithm, considér‘SOK to

be given by

SOKi] =n; - nkJ ({.25)
Then since 55i is fixed in R (and are therefore constant),
a _ Rdej.
It (SOKij) = noi . 3t (1.26)
But since n, . are fixed in B
ki - k
R —
dn
k o—k — '

Hence d(SOKij)/dt becomes

20



(SOK, .) =n ., - wXn

QJ‘QJ
rt-
o
L .
0]
l—l
w
()

= "Cimn “n "om = k3
- or
4 (SOK..) = WOK. SOK . . | (1.28)
dt ij im mj - : _ ' '
where WOKim is a matrix defined as
| _ o k .
WOKim = -eimn W . _ (1.29)
o k ‘ ok

ere- t mponents of referred to n and e,
. where w, are he comp w _f Pon

is the permutation symbol (19) defined as

S 1 i,m;n distinct and cyclic
Ce. = '}—l “i,m,n distinct and anticyclic- (1.30)
imn . ~

1
\ 0  i,m,n not distinct

WOK, is simply the matrix whose dual vector (19) is OFF.

Eg. (1.28) then provides the desired multiplication. algorithm.

Summafy

To summarize then, the underiying principle of the aﬁalysis
is to formulate thé equations so they may be adapted to program-
ming on a digital computer. This is done by using Kane's dynam-
ical equatiéns, Egs. (1;7) and by expressing vector quantitiés
in terms of unit vectors in anuinertial reference frame. The
correspondiﬁg component transformation such as Eg. (1.14), is

.21



obtained through the shifter métficeé which are iﬁ turn obtained
from cohfiguratibn.charts (Figure 4). The_&ector quantities are
then éésy-to differentiéte since the unit vectors in the inertial
reference frame are constant. Fﬁrthérmore,_the necessary shifter
derivatives may be obtained fhrough multiplicatioﬁv(Eq. (1.28))
and'may thus be performed by the computer.

These perlimiﬁary notions provide a basis for'the analysis

of the following chapters.
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II. KINEMATICS OF GENERAL CHAIN SYSTEMS

Consider introducing the following notation as shown in
Figure 6. Number the bodies in the system‘such that the‘num—
be:s increase along chains'originaﬁing from Bl‘. Let Oy be an
~arbitrary pdinﬁ of Bl._-Let Oj be a point common to Bj and the
adﬁacent lower ﬁumbered body, benote the center of mass Bj
by Gj' the &ector which locates Oj‘relative to_Ok by E5 where
Bk is the adjacent lower numbered body to Bj; Note here that
;j ié fixed in Bj and E&Iis fixed in the adjacent lower num-
bered body tq Bj', Finally, let.iﬁ-be the vector from Ol to

i ) . . o - y

Figure 6.
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Now consider naming the{generalized‘coordinatesxheeded to
specify the position of the syétem aé follows."Let Xy Xyr Xg
be the cbmponehts.of a vector referred to basis H6i ldcating Ol.
relative to a point fixed in RO.Y Let xé, Xs, X be thefangles

which specify the orientation of By in R,. For bodies Bi

(i = 2,N) let X be the angles specifying thé_v

3i+1’ *3i+2’ ¥3i+3
orientation of Bi in the adjacent lower numbered body.

‘It is now possible to derive the kinematical quantities
needed in the equations of motion. These are %o the angular

velocity in B; in R, B;i' the partial rate of change of
A . r .
" orientation of Bi” at the angular acceleration of'Bi in R,

o
Gi : G, : :
V-' the velocity of G, in Rs V. the partial rate of change
X .
_ Gj r : :
of position of G, and a°' the acceleration of Gi~in Rd.‘

Consider w~ first: From EqQ. (1.24)

R S i ST e P o (2.1)

i=2,3,...,N

where from Eq. (1.23)

k¥j-_ . ' . _ . _

Twe = SOKli(x3j+l dil f x3j+2 aRJ. , + X3543 aKJilBKJ23)nOQ(2.2)
Hence, in genéral'

W= w, . %0 T | (2.3)

ijk j Ok , * e e l ' L3 .

wher; wijk.= 0 for i =‘l,15; 3 =1,3; k=1,3 (xl, X5, X5 are
position coordinates of Ol). Comparing equations (2.1) and

. {2.3), the non-zero Wik take one of three.forms'
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SOK.  oKI. : (2.4)

wljk = (
SOK oKI BKIQ3

km mi

depending on whether j is the firét, second or third dextral
angle in defining the orientation of Bi_with respect to its
adjacent lower numbered body.

The angular acceleration of B, in‘RO is obtained by dif-
ferentiating w-. Hence

N | |
o~ = (wijk xj + Qijk xj) Ny (2.5)

NoteAhere that non-zero éijk takes‘one of three forms (see

Eq. (2.4))

SOKkl
@ijk = ;SOKkmaKImZ +.SOKkmaKIm2 (2.6).

"&SOKkmOLKImQ’BKI52‘3 + SOKkmaKImBSK;RB + SOKkmaKImZBKI£3

where SOK is computed by using Eg. (1.28) and oKI and BKI. are

computed by differehtiating Egs. (1.16) aﬁd (1.19) "as follows:

) 0 0
qKI =10 —s(x3+12 _ —c(x3i+l) X541 (2.7)
o clx3544) "S(¥3i+1ij'
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s (X3542) 0. - elxgyg)
BKI = _O ' o . . 94 x3i+2 ({.8)
| ~c(X3340) 0. ~s(¥3;,))

The partial rate of change of orientation of B in Rb can be

‘obtained from Eq. (2.2) as follows:

. —].
—1 ow
) = =

kT 55 T Yirk"ok (2.9)
. . o

To find expressions for VGl, EGl and VGl consider writing
the expressions for the position vector ?i of Gy relative to a
fixed point in Ro and then K differentiating this expression in

Rb with respect to time. From Figure 6,-§i can be written as.

(2.10)

P. = u . i= -
Py = Dxglpq + X040+ X383 +fé‘S°Kkzgz +S0L Tl tok
'where E% énd_ri are defined by the expreséion
= _ .Y — o . v v
and
Y. = ry n,, (no sum over i) - - S (2.12)

i »Z il

where in Eg. (2.11) k is the number of the body in which Er

is fixed (k<r) and where the sum (}) in Eq. (2.10) is over
u
the bodies that form a chain from Bl to Bi and where k in

Eg. (2.10) is the number of the body in which Er is fixed.

r

and Bi’ 52

and -

Note that since Er and Ei are fixed, bodies B,

ri‘are constants. _
' . e e =Gi .
Hence by differentiating Eq. (2.10) V is
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__Gi . - " - . . u. . i —
v = ‘Xlokl’+ x26k2 + X36k3'+'ESOKk252 + SOIker)nok

This equation can be written in the form

le__

= Vijk %37k
where Vijk = ij for (1 = 1,N; § =1,3; k =,l'3)
and ,
-y ESOKkg Lu N BSOIkl rl
ijk a 3% . hg 3% . '3
J J

for (i =1,15; j = 4,38 3; k = 1,3)

By recalling Eqs.:(l.28) and (2.3)

WOK : . 3WOI,
K

_ d km u , R A
Visk = & 7% SOK _,&, + ~—T SOT_,xry (324)
J
where by Eg. (1.29)
BWOKim '
T ok, = "®imn“kjn (k = X)
i | )
Equation (2.16) may be written as
' _ - u i
Vigk = ZWSKyppby + WSIg, Iy
where.WSKjkz = -eimnwkjn SOKmQ.
Now from Eq. (2.14)
_ G1 2)'\—7-(51-. -
Vg, = oo 7 Vijk Pox
' j ij J

(2.13)

(2.14)

(2.15) '

(2.16)

(2.l7i

(2.18)

(2.19)

(2.20)

The acceleration of G» in R, is found by differentiating Eq.

(2.14), leading to the expression

i _ L.
a = (Vige X5+ Vigx ¥5)00x

(2.21)
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where from Eqs.-(ZrlS) and (2.19), V.

ijk 1S
V... =0 for (i = 1,N; 3 = 1,3; k
ijk :
and V... = £ WSK., £2 + WSI. r+
nd Visk Tg jke°4 Jkete

il

for (i = 1,N; j
and where by differentiating in Eq. (2.19) WéKj

WSKjpg = “Cimn (0 5nS0Kpy + Oy

OK + (i),.nSOKm

1,3)

4, 3N+3; k = 1,3)

(2.22)

is given by

(2.23) .

To summarize: Algorithms have been developed to find the

kinematical quantities (referred to a basis in RO) needed in

' the development of the equations of motion. They’afe recorded

below for future reference.

“ijk *5 "ok

—i . o
e (Wi 4% ¥5 + o5 )00

where from Eg. (2.5) O qe is given by

“i3 T Yix %y
Also, vGi _y s =
ijk-7j ok
—Gi _ ..
a (Vljk Xj + ai])nok
where from equation (2.21)
3k T Vijx ¥j
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(2.27)

(2.28)
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and where wijkamijk"Vijk’ Vijk

are given by Egs. (2.4), (2.6),
(2.18) and (2.22). |
As an example, the following expansion illustratés the form

of these quantities for'B4 of Figure 6.

w,., = 0 for all j, k except the following:

43k
w4'4'l = 1
Wg,5,k = %0y
84 6k = @01, 801, 4
Yq,7,x T S0k
Wy,8,x = SOl @124,
Wy g g = SOl ,0l2, B12 .
®g,13,k = SO%y
Wg, 14,k = S02y024y,
Og,15,k = 50202498243
agq = %5001, + gs(a5112301¢3 +-&Oliiﬁéll3)
+ 801, (k58 + xgul2, + xq012; ,812,)
+_splik(§8ai2k2 + ig(aizk£31223 + alzkisizg3))

12 + xl5a24k2824

+ So2i(xl36kl + xl4a24 23)

824, + a24, 824

23 k&”

) . . ,
+ S02. 2 + XlS(a24 £3))

ik (¥149241 5 k

V4ﬁk = 0 for all j,k except the following:

V4,1,1'=~l-
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<
1l
|

4,2,2

Va,3,3 =1

Vv = WSI 52 +  WS2 54 ws4 r4

a5k = W8I5,8, jkaby WS451eTy
a, =(WSl., %x.)E2 + (W32.. %.)ed + wsa. x.)rd
4k 3k2%50 & 5k2%5) &y 5ke%5) g
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.III . E EQUATIONS OF MOTION FOR GENERAL CHAIN SYSTEMS -
‘The equations of motion will be of the form of Egs. (1.7)
that is
P *4+F_ =00 (r= 1,2,...,3N+3) (3.1)

Consider first the generalized active force F_. F_ is -given

by Eq. (1.2) as

. N =Gj . .-Bj . o o :
Fo= ] A Fy + dw - | H,) C(r = 1,2,...,3N43) (3.2) -
. j:_l Bkr . -er | ' _ - . .
where Fj and ﬁj (j =1,2,...,N) represent forces and~coﬁple

torques equivalent to the‘applied active forces acting on the
réspective bodies Bj' Fi has its line of action passing through

point Gj of Bj'- Consider Ej to be of the form,
~* 'é§t |
= M

. + ) Mg o 3.3

j = H 12< | (3.3)
ext . _ | . - |

where Mj is the couple torque due to external forces applied

to B, and MKJ is an internal couple torque exerted by B, on

k
Bj as .shown in Figure 7. The sum in Eq. (3.3) is over all in-.
- ternal couple torques acting on Bj by adjacent bodies. Hence
“in view of'Eq;-(3.3) it is possible to write Eq. (3.2) as

ext  int

F. =v-Fr + F, . - __' (3.4)
_ ext N =Gi - A=BjJ ext - : -
where F_ = 7 | BY - F. o+ 89 - M.) ‘ - (3.5)
, j=1 0Ky ] 0%y ) ' '
int N -Bj o
‘and where F_= J (] 2" . HKJ) N - 3.0
j=1 K 3%p-
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£, e

Figure 7.

From Egq. (2.9) and (2.20), Eqg. (3.5) can be written as

ext N : 4 ext o
Fr = j_§1 VirkFik * “5rk Myx) (3.7)
_ ext
where ij and Mjk are defined. as
Fj =_ijnok (3.8)
and .
ext ext _ ' o
Mj'= MjknOk o (3.9)

- int
To find a convenient form for Fr consider two adjacent

bodies Bj and By such as shown in'Figure 7. Let Bj be a lower
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numbered body. Then the generalized coordinates ldcéting

Bk relatlve,tq Bj'are X3k+l; Xap427 X343

couple moment which Bj exerts on By

couple moment exerted by B oh_Bj is MKJ. (Note, as shown
in Figure 7, MJK = -MKJ.) From Eq. (l.24) \
B Ba B,
a‘_k_-—Bj 5 ] k
where from Eq. (1.23)
By B
S =.(x3k+ldll + x3k+2aJKiz + x3k+3aJK BJKz )n

From Eq:. (3.6), the contribution of MKJ and MJK to F_

calculated as follows:
B, B, B B.

w‘i * MKI + @ '

r - Tr ' r r

cohda

Now if r # 3k+1, 3k+2, 3k+3, then either

By _ Pk By _ Pr
w : = ® % or Wy = ® k =
“r R o r -

The internal

is MJK, and the internal

(3.10)

(3.11)

is

(3.12)

(3.13)

For both cases the contribution to F or MKJ and MJK 15 ZexYo.

To find the contribution to F of MKJ and MJK for h

3k+2, 3k+3 note from Egs. (3.10) and (3.11) that

E]k‘ = 0 (r = 3j+1, 33+2, 33j+3)
b r . . -
and

mk. = n
X341 3L

—k

W - = QJK
X3k+2 12731

3k+1,

(3.14)[

(3.15)

33



T _
w o .= adJK, BJK,.n,.
A1X3k+3.. b A 23‘jl

Then using Egs. (3.12), (3.14) and (3.15) the .contribution

- to F_ for r = 3k+1, 3k+2, and 3k+3 due to MKJ and MJK is

B _B. _ |
(@ § - w3 ) - MIK = MIK;
“3k+1 ¥3k+1
_By _B, _ o
(w = - w ) - MJK = MJK.oJK, (3.16)
X3K42 X3k+3 1712
B, B, | -
(w o - w 3 ) + MJK = MJK.oaJK. ,RBJK:
F3ke3 F3kes 1Tl
where'MJKi is defined by the relation
MJK = MJKinji o _ (3.17)

Finally, in view of Eq. (3.13) no internal couple moment
can contribute to Fr for r = 3k+1, 3k+2, 3k+3 exce?t MJK and

MKJ. Hence,

int

Figap = MIKg

int »
Fa,, = MIK QJK,, (3.18)
int

Fageg = MIK 0TK; BIK 3

In summary then the generalized active force F_ is con-
’ ext - int ext™.

sidered to be made up of two parts Fr and Fr.- Fr~is'

the contribution to Fr due only to external forcesvapplied to

. . int : -
each body and is calculated from Eq. (3.7). Fr can be written
in a special form where the only term appearing in the internal

couple moment acting between the two bodies where X, is a
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~generalized coordinate used in representing the relative
orientation of these two bodies.
: . . . - o X
Next consider the generalized inexrtia force Fr of Eqg.

(3.1). From Eq. (1.3), Fr*'may be written as

N _ =Gi B, » '
=L __gv — 4 Tx, 202, (3.19)
' Ci=l Xy -1 0%,
where from Eqs. (1.4) and (1.5)
F.* = -n 3t o (3.20)
i St : .
and
% . = _ Bs By . By
T, = =I. ° o - W x I, . (3.21)
i i i
= B
Consider writing the expansion of I - « as follows
_ B, N S _
I ¢ = Limn™on™on (wijkxj * 0Lik)nok (3'22)

where there is no sum on i, and iiﬁn are the components of the
inertial dyédic of B; relative to G; referred to the Héi unit
vectors. Note that by performing the dot product this equation

takes the form,

B.

== ._.-l_. . _.. ) .
Iy m 07 = Tign (0540%5 * 050 Pk (3.23)

where I, = is related to the components of Ti referred to a

~ basis Hij fixed in B, as follows:

. _ . , - .

Iimn . SOImRSOIninQk : (3.24)

-where I! are the components of T. referred to n... Next, con-
ik _ R , i B _ 1 S

sider the expansion of w I x (L. -0 Y. This may be written as

1
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= -—i __—l . —_— . P —
w x (I w ) =W x (I. nom ot i3k Jnok)
=gt x’(I-. n__w.., X.)
o : imn om ijk™j
:." < 0 XI! n iy
-wlsnxsnon imk™om wijkxj
= enml isn ljk 1mk s¥ 3 02
or finally as_' ;
| _B. _ By . SR ‘
W X ‘Iiv. w 7)) = § ]wisnwijzlimzxsxjnbk : (3.25)

Combining (3.23), (3.25) and using Eq. (2.28) for a“;, Fr may

be written as

(w. . X, + a._)w.

)Virk + Iikn ijn™j in’ Tirk

Fr = f{mi(vijkxj + 'a.

' .. (3.26)
+ Chmk¥isn 13£ 1m£xsxj 1rk}

Finally using Eqg. (3.4)‘and.(3.26)'foerr and‘Fr* the équa~

tions of motion may be written in the form

ext - int

Frj§5_= £+ F_+ F_ o . (3;27)
where' |
Pry = (V5375 e * Tixn®i n®irk’ (3.28)
'and wﬁere |
£, = Blmgag v +inknainQirk

(3.29)
+ X K., ) |
©nmk“isn 1m£ imfsT ] “irk!

Equations (3.27) are 3N+3 second order nonlinear differential

equations. These equations may be solved numerically for the
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generalized coordinates x  (r=1,2,...,3N43) as functions of
: . ext . int .

£, ¥F_ , _Fr may be computed by

time. - The quantities Ar: .

i’ Tr
USing'the algorithms developed in Chapters I and II.

Coﬁsider now the possibility df specifying the relative
motion between a number of adjacent bodiesA(that is; specifying
éome of the generalized coordinates) and solﬁing for the un-
known.inteinal moments.between these bodies as well as fof the
other unknown generalized coordinates as f@nctions’of_time.
This is accomplished by numerically integrating the rgduced.sét
of equations which do not inveclve the unknown‘ﬁoments for the
unknown generalized coordinates as fﬁnctions of time. Then
the componehts of'the unknown moments are found from the re-
~maining set of equations. As'ah example, suppose thefrelati&e
-and B

motion between B of Figure 6 is specified and M24 is

2 4

to be found along with the other generalized coordinates which

specify the position of the system. The equations to be solved

are then
§2 N ext  int %5
) A _¥X. + ) A % =f_ + F_+ F_ = A L%, (3.30)
551 rji®j 4216 rj“j T r r 5213 rj‘] _

(r =1,2,...,12; 16,17,...,3N+3)

ana (Egs. (3.18))

" N ext
M24) = -] Ry g¥y + £13F Fpy
. j=1 '
M24la2412 + M2420L2422 + M243a2432.
N . ext
= j_zl Agy 3%+ fl_4 + Fy, (3.31)
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M24.024. B24 24

102478245 + M2d5024,,82d 5 + M2430245,824,5
N _ ext
= jzl-Alij] + £+ Fyg

In a similar fashion it is possible to find unknown ex-

ternal forces when motion is prescribed.
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IV. SPECIALIZATION FOR IMPULSIVE FORCES

-When the N-body system is subjected to impulse forces,v
- forces which become very large dver short periods of time, it
ié possible to derive equations which provide the change in
the first derivative of the generalized coordinates. Following
Kane (l), if the generalized impulse "Ir" is defined as‘

_ t_ - By t, ext ' _B, ty_ _
I = v [ Fae+w o - f7 Mat +w - ;[thKJdt) (4.1)

1 r @ 2 o Tr 2 : r

o~

i
and the generalized momentum p_ is defined as

N B. o B

N6 G By = By 3
p.(t) = _2 m VT -V o+ _Z T P ’_(4,2)
i=1 : r i=1 r

Then it is possible to show that (1)

P(ty) =P (t)) = I (r=1,...,38+3)  (4.3)

Equations (4.3) are the generalized impulse and momentum
equations. Comparing Eg. (4.1). with Egs. (3.2), (3.6) and

(3.18) it is seen that like Fr’ Ir can be broken up into two

parts as
' . eit . e;t . (4;4).
r r r o o
N _Gi . t2 _ —Bi t2 ext -
where I, = _2 vz - ft F.dt + 0 o y ft M. dt - (4.5) .
i=1 r 1 r 1
int t, : I
and where _I3j+l = ft MKJ, dt (4.6) -
int ‘tz
I3j+2.=-“KJizftlxMKJidt
int . t
13443 =,aKJiRBKJZéft2 MKJ, dt
1
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The expression for the generalized momentum equation (4.2)

can be written using‘Eqs; (2-24) and (2.27) as

P8 = (L mVigVime * Ci3nTikn®ien) ¥y

and then using (3.28)

p, (t) = _Arj;';j

(4.7)

1.8

‘Hence ﬁsing Egs. (4.4)5-and (4;8) in (4,3)_,'equation ,(4.3)‘:

can be written as

. ext int
Arj(ij) =_Ir + Ir

where
AxJ = Xj(tZ) - xj(tl)

(4.9)

(4.10)

Hence using Egs. (4.9) it is possible to algebraically

solve for the change in the first derivatives of the generalized

coordinates.
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V. ILLUSTRATIVE APPLICATION

To obtain a simple illustration of the analysis, consider the

dynamics of the manipulator system shown in Figure 8.. The sYstem

B

|
t
§
!
i
|
1
i

|
i
1
i
?

Figure 8.

consists of é main body By and two manipulator afms, each:containing
two members. The manipulator arms are considered to be connected
‘to the main body by ball and socket joints. The lower bart of each
arm is connected to the upper pért by'a hingé joint. The system.is
located relative to an inertia frame by 14 generalized co-ordinates

as follows: xi(iL=wl,6) locate the position of the center of mass

of Bl'and the orientation of Bl relative to the inertia frame,

xi(i = 7,9) locate B, relative to B,, locates B, relative to BZ’

2 *10 3
Xi(1 =,11,13) locates B4 relative to Bl and finally xl4-locates B5

relative to B The above orientation angles are developed in a dextral

4

sense from the reference configuration of Figure 9.
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N

Figdre 9.

The‘governing dynamical eguations of motion as developed in
fhe foregoing chapters were used to study the dynamics of this syétem.
" The equatioﬁs were programmed to be developed and solved on a digital
computer. This procedure empioyed an IBM 360—65 computer togetherv
with a fourth order Runge-Kutta integration scheme. The physical

data of the manipulator is shown in the table of‘Figure 10.

lBody ’ Mass Mass Center Reference Point Inertia
Location Location
1 10 slugs T,=0 ' T,=0 T,=240n, 0, +240n, 0, , #2400, 30 5 Slug in?
2 .5 slugs ;é=—18523 in Eé=~sﬁi3 in ?2=54521551+545223;2 slug in?
3 . .5 slugs §3=-18533 in §3=—36523_ in §3=54H3lﬁ31+54522322 slug in?
4 .5 slugs ?4=-185'43 in E4=-6rTl3 in 4=54H4lr'\-4l+54r_f42542 slug in?
5 .5 slugs 'r—5=-18’r753 in €5=—3EH43 in ?5=54551551+54552552 slug in®
pisk 1 .25 slugs T,,=0 T, =-367;, in T, =57, 4T ) 5 STy 1 y* i) s 3 S1ug in?
Disk 2 .25 slugs I,,=0 Ebz=—36553.in ED2='SEbZIEDZl+'SHD223D22+;D23Eb23 slug in?

Figure 10.
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Three types of problems were considered: In the first the'mani-.
pplator was used to bring two circular plates inté coincidence with
each other. The plates and manipulator system were considered to
be in a weightless.environment. During the motion the main body
Was.free to rotate and translate. The manipulator arm motion is
shown in Figure 11 and was specified with input functions of the

form
o(t) = 6, + (e'l-eo)[(t/T) - (1/27) sin (2wt/T)] (5.1)

. where T is the time of motion duration and 90 and 61 are the values
of @ for t=0 and t=T. The output displacement and rotation of the
main body was determined and is shown in the graphs of Figures 12 |

and 13.

" Figure 11l.
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"In the second problem the forces and moments required to hold

the main body fixed in space were determined for the manipulator

" motion of the first problem. The resulting forces and moments are

shown in Figures 14, 15.
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zero of the first problem.

of the main'body by an impulse of 100 1b. sec. as

Figure 16.

l

The bodies 6f the manipulator arms were left free

In the third problem the main body and‘manipulator system were
‘initially motionless in space in the configuration is had at time

It was then struck at the mass center

shown in Figure 16.

i

to rotate relative

to their adjoining members. The resulting output increments in fhe

rotation and translation speeds are shown in the table of Figure 17.

46 -

X. X,

. i . 1 Ax.

T at +=0.0 Ax; 1 at t=0.0 1

1 . 0.0 112 in/sec 8 90° 3.51
2 0.0 0.0 3 . 0.0 1.99
3 0.0 -1.99%107° 10 90° -4.39
4 0.0 -5.74x10" % rad/sec 11 90° 3.02
5 0.0 1.99 12 0.0 -1.99
6 0.0 1.11x107 > 13 0.0 3,02
7 0.0 6.25%x10° 14 0.0 3.33.

- Figure 17.



These examples are not meant to be exhaﬁstive studies éf
manipulators or even of the relativély simple system of Figure‘S.
Instead they are intended to be simple illustrations of the kind
of analyses made possible through the theoretical developments of
the foregoing chapters._ Théy show that : (1) given the forces on
the system, the resulting displacements and velocity of the members
of the system are determined; (2) given the displacements and veloc-
ities of the members of the system, the resulting'forces are deter-

" mined; aﬁd finally, (3) given a combination of forces, displacemehts
and velocities, the uﬁknown resulting velocities, displacements,

and forces are determined.
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VI. CONCLUDING REMARKS

The'analysis presented represents a new kind of finite-element
analysis applicable_wiﬁh a broad class of chain-like dynamical
systems. It is computer oriented and designed so that non-working
constraint forces are automaticallj eleminated. Furthermore, the
analysis is developed in a way that allows for either forces.or
displacements to be specified with the unknown resulting displace—
ments or forces then determinea.

The method is applicable with ény dynamical'system which”cani
be modelled by a series of connected rigid bodies ?rovided iny

that no closed loops are formed by the bodies. Manipulator systems

"and téleoperators are thus prime candidates for anlaysis by this

method. The method is also directly applicable with. human body
models and cable problems. Finally, by introducing spring and
torsion.forces at the joints the analysis becomes a nonlinear:.

finite-element elastic analysis.
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