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RELATIVE MOTION OF ORBITING SATELLITES

By J. B. Eades, Jr.*

SUMMARY

The relative motion of orbiting bodies is concerned with describing the
motion of one body, with respect to another, which is moving on an adjacent
trajectory. The geometry for these problems differs distinctively from that
representing an inertially referenced motion. Problems associated with inter-
cept and rendezvous, and with the paths traced out by ejected particles are =~

examples of situations of particular interest in the study of relative motions,

In this investigation the relative motion problem is analyzed, as a lin-
earized case, first, and as a numerically determined solution, second, to pro-.
vide a time history of the geometries representating the motion state. The
displacement history and the hodographs for families of solutions are provided,
analytically and graphically, to serve as an aid to understanding this problem

area,

Linearized solution to relative motion problems of orbiting particles are
presented for the impulsive and fixed thrust cases. Second order solutions are
described to . enhance the accuracy of prediction. A method has been developed
to obtain accurate, numerical solutions to the intercept and rendezvous problem;

and, special situations are examined,

A particular problem related to relative motions, where the motion
traces develop a cusp, is examined in detail. This phenomenon is found to
be dependent on a particular relationship between orbital eccentricity and the
inclination between orbital planes. These conditions are determined; and, ex-

ample situations are presented and discussed.

*Senior Analyst, Analytical Mechanics Associates, Inc.



RELATIVE MOTION OF ORBITING SATELLITES

INTRODUCTION

The information developed and discussed in this report is applicable to
the study of relative motions between orbiting bodies in a space environment.
The material contained herein is directed toward providing a better understand-
ing of this problem area, and to the illustration of such motions by means of

examples and discussions.,

One of the basic guidelines followed throughout this investigation was
to produce a document describing the geometry of relative motion situations.
Also, to provide the analytical means for predicting the time history of the
motion state. In meeting these requirements the investigation was designed so
that this relative motion problem area was examined, first, as an analytical
exercise and, second, as a numerical one. The reasoning behind this approach
was to provide an easy-to-understand formulation of the phenomenon initially;
and, second, to provide for a means of simulating relative motions on a more

exact and accurate scale.

For the first approach the problems were studied in as simple a mathe-
matical approach as possible; but with the essence of the physical situation being
retained. To this end a linearization of the governing differential equations was
made and the resulting expressions were manipulated to yield analytical results.
In illustrating the use of these consequent expressions, example problems were
selected, solved and discussed, For the.second approach the examples were not
restricted, mathematically, but were investigated as numerical exercises where-
in more accurate simulations were provided. The results obtained here were

analyzed, subsequently discussed, and illustrated as plots of the motion state

and other quantities of interest.

The report, presented here, is composed of several sections--devoted

to descriptions, discussions and examples - and of appendices, wherein the



mathematics used in the investigation is developed. In general, the foremost
segments of the report describe the results acquired from this investigation.
Here the example cases are studied and their consequences are noted. Much

of this work is illustrated on graphs, figures, tables and by formulae produced
to give a more complete description of the sample cases under investigation.

In the appendices the more general mathematical developments are set down and
summarized. It is from these segments of the report that the specializations,

used in the front sections, are deduced.

As a quick summary and guide to the material presented herein the
following comments are made: The first section discusses the more general
aspects of the relative motion problem as it is described, analytically, from a
linearized set of governing expressions. Here the problem considered is that
of two orbiting particles, moving on adjacent paths about a common primary,
under the influence of the gravitational attraction.offered by the central mass.
This problem is formulated with respect to a moving frame of reference, and is
expressed in (both) cartesian and ''shell" coordinates (see Fig. 1.1 for a sketch
depicting this). The mathematical developments for this section are to be found

in Appendices A, B and C, at the rear of this document.

In the second section, this relative motion concept is examined by means
of specific example cases. In particular, the two primary problem areas which_ '
were studied are related to the motion of masses ejected from an orbiting space-
craft; and, the relative motion of an intercept and rendezvous maneuver. In the
next section a second order correction theory is presented and discussed. The
purpose of this part of the study is to provide for an analytical means of bettering
the predictations offered from the linear theory. An appendix is included, in the

report, delineating the mathematical development for this (second order) method.

Next, an analytical approach for the relative motion of a thrusting-type

particle is presented and discussed. Here, again, the mathematics is exercised



SHELL
COORDINATES

CARTESIAN
COORDINATES

Fig. 1.1. Sketch Depicting Two Particles (I, T) in Motion About a Primary u.
For convenience, in these relative motion examples, they will be
referred to as the Target and the Interceptor. Shown here are the
Cartesian and Shell Coordinates Used in Describing the Relative

Motions.




by means of examples and representative cases. For clarity and understanding;
these sample situations are illustrated, graphically, and by special formulations.
Throughout this and the previous sections of this document, the mathematical
formulae are (generally) expressed in a non-dimensional form. The reasoning
behind this is to present a more universal representation; one not encumbered
dimensionally, or seemingly restricted to a near-space environment. Of

~course, the reader should be ever cognizant of the restrictions and cqn_ditions im-

posed by those constraints introduced in the mathematical developments.

The last two sections in the report's main body are devoted to the des-
-cription of "exact' solutions for relative motion situations. In the one case an
exact intercept problem is discussed, while in the last section a deterministic
relative motion problem is defined and illustrated, This last case illustrates a
rather unusual phenomenon which can occur for the relative motion of nearby
bodies. Specifically, it shows that traces of the motion may develop cusps
if there is a properly related set of parameters defining the orbits. The parti-
culars of this situation are fully described there and will not be mentioned,

further, here.

The supporting mathematics for the last section of this report is con-
tained in an appendix. In addition, the last appendix briefly describes‘fa";cémputer
program which has been developed, and checked, to reproduce results for the
various problem types described herein. In general this program will handle
any and all of the cases described in the main body of the report, with the except-
ion of the deterministic problem. This last example is handled separately, by
a special computer routine, which is not described in the last appendix., The
program mentioned there is sufficiently versatile to handle a rather large variety
of relative situations - far more than what is indicated by the illustrations con-
tained in the report's front sections. The imaginative and inventive investigator

can find many other uses to which the program can be directed.



One comment regarding the references and bibliography of the report
should be made. No attempt has been made here to include a full survey of the
literature pertinent to this topic. Many references will not appear since they
are included in the appropriate sections of those cited here. Finally, the in-
vestigators wish to apologize to those authors who may have been missed, and

assure them that any such oversights were unintentional.



ANALYTIC SOLUTIONS FOR RELATIVE MOTION

Im.1 A geometric interpretation for relative motions. - The linearized solutions

describing the motion of one particle relative to another, when both move on adja-
cent orbits, have been obtained in Apbendix A and Appendix B. For these develop-
ments the target, or reference body, was assumed to move along a circular orbit;
however, the second particle, herein called the interceptor, was not constrained
in this manner. Actually, the interceptor describes a closed figure in inertial
space (generally, an ellipse); but, in order not to violate the ideas employed in
the linearization, the state variables, relative to the target particle, have been
assumed to be small, - What is implied, then, is that the dimensionless variables
introduced in the Appendixes -- £, 1, £; &', ', {', aswellas A, o; X', ¢' -~

are all considerably smaller than unity, in magnitude.

The two appendices mentioned above describe the interceptor's relative
motioﬁ from a set of linearized difféxjefltiai_éalaﬁbns—; written in cartesian coo‘r:
dinates (Appendix A), and in shell coordinates (Appendix B). From an examination
of the several expressions (see eqs. (A.33, A.34, and B.22)) one can see the
marked similarity which these equations display. At least in form, then, these

two resultants represent a same figure of geometry insofar as the described,

planar, relative motion is concerned.

For conciseness and, to a degree, for completeness the following dis-
cussions will be made primarily in terms of cartesian coordinates. Also, for
convenience, the descriptions will be discussed in terms of the dimensionless
variables (eqs. A.33) and (A. 34)); however, when necessary the dimensional
variables can be brought out simply by invoking the transformations noted in

eq. (A.32), Appendix A.

Since the £ (or z) state components are uncoupled from the &, 7
(or x, y) quantities, it is convenient to discuss a relative motion as either

an 'in-plane" or an "out-of-plane' problem. The in-plane motion will require



only the &, m coordinates to locate the interceptor as it moves in the plane of
the target vehicle. Alternately, the out-of-plane case can be discussed in terms
of the (£, £) and/or (m, £) coordinates, additionally, depending on the physi-

cal situation to be described.

It should be mentioned that these relative position coordinates have the

followihg meaning:

The coordinate £ (or x) is measured in the
radial direction; it is positive away from the
tafget vehicle; the +y (or +7m) component

is measured "forward" of the target, in the
plane of motion; lastly, the { (or z) compon-
eht completes a right hand orthogonal frame of
reference, it is directed normal to the target's
orbital plane and is positive valued in agree-

ment with the right hand rule for vectors.
A word description of the shell coordinates will be given subsequently.

II.2.1 The in-plane motion: For this case the relative motion is described from

the £, M expressions found in eqs. (A.33) and (A. 34).

It is seen that these expressions contain both constants and cyclic terms;
and, in addition, the 7-expression has a secular component. If this secular
term is disregarded, for the moment, then it is evident that the resulting ex-
pressions define a motion which, geometrically, is an ellipse. This figure is,
then, indicative of how the interceptor moves relative to the target. It should

be noted also that the ellipse has a fixed eccentricity; it is not centered at the

target, generally; and, when the secular term is included, the ellipse moves,

or "meanders'’, continually in the 7-direction.



Translated into motions referred to fixed space axes, it should be appar-
ent that the interceptor moves along a central field ellipse as the target flies along

its prescribed circular path in the same space.

Also, from a study of these relative motion state equations, it is noted
that the interceptor’s period of motion is the same as that for the target. This
condition is compatible with the ideas imposed in the linearization procedure;
consequently, it is supposed, a priori, that the relative state components are
"small' quantities. The idea, here, of small displacements necessarily con-
strain the applicability of the linearized solutions, especially in regard to the

contribution made by the secular term to the motion.

II.2.2 The relative motion ellipse: As mentioned above, the relative motion

ellipse is not centered at the target vehicle. The geometric center is-off-set

“from the coordinate origin according to the size of the constant terms in these

expressions; thus, the geometric origin of this trajectory figure is positioned J
!
f

at (€c, ‘nc), where

£.=2(m + 26),

and n,=m -2§).

The secular term in the 7-expression serves to describe the "meander-
ing", or "drifting', of this relative motion figure. Since this parameter has the
form of a dimensionless speed, it will be referred to as the '"7-drift" quantity;

it is defined as;
=_ LI
n(drift) 3 (770 2“’.o )-
It should be recognized that this term is directly related to the parameter gc

defined above. It is also evident that the drift (for a positive initial displacement)

would carry the relative motion ellipse aft of the target; thus, there is an ever

(IL. 1a)

(II. 1b)

(I1. 2)



increasing separation between the geometric center of the relative motion figure
and the target vehicle (the coordinate origin). In this regard the motion of the
interceptor could be described, generally, as a meandering ellipse which carries

the interceptor further and further away from the target.

To illustrate that the relative motion figure is an ellipse, examine eqs.
(A.33a) with the secular term neglected. Denoting the amplitude from these ex-

pressions as Kz; i.e, letting

= t 2 1 2}:
K, = [@€)2+pE +2m)® (IL.3)

then the (two) displacement expressiohs can be recast as:

che s

E-¢,
K = cos «DT + K3) (11.4a) -
9 .
n-mn, '
and m—) =sin (o * K3); ' (I1. 4b)
2 .

which, when squared and added together yield

£-¢ -
(5=2) -+ () -

Needless to say this describes the ellipse in cartesian form; it has a minor-
to-major axis ratio of 1:2; and, it has a fixed eccentricity (independent of the

initial values), which is

€= —“2@ (I1. 6)
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.| As a consequence of this the interceptor’s motion becomes fixed in the targef— \

To illustrate some of the geometry for this figure, the sketch, shown be-

low, depicts the various properties just discussed,
- ¢
)

. a = rajor length (=2K,)

N

J I
,/// . \ b = minor length (-K,)
/ .
/ . \ ...‘;
.'/ a _\‘L_. EC, 7, are the geometric
\\ B m' p T gc“. ’ center's coordinates
\\\ nDRIFT // ’ (see eqgs. II.1)
\\\\ - g T, Idesignate the Target
n Il 4 (coordinate origin) and
' ‘ T. 1 Interceptor particles,
e ‘ " respectively.

Fig. II.1 A sketch depicting the instantaneous relative motion ellipse for the
interceptor (I) moving about the target (T). The interceptor's
motion is determined by its initial values; however, the basic geo-
metry shown here is a "drifting ellipse'* centered away from T,  ~
with the motion of I having a cyclic part, with period equal to that
of T. Only the in-plane case is depicted here.

II1.2.3 A special case (no drift):: Assume, for a moment, that the relative mo-
tion ellipse has no drift in the 7-direction. To satisfy this condition it is

required that, : 1u

i
{

centered relative motion frame of reference.

In addition to the "drift" vanishing, this same condition has an influence
on the location of the geometric center for the relative motion figure. That is,
according to eq. (II. 1a), gc =0 and, therefore, the relative motion figure will

be centered at (0, 'nc). ~ Furthermore, aside from relocating the geometric

*A more precise geometric description of the full figure, would be to refer to it as
a 'prolate cycloid".

(I1.7)



center, it is evident that this requirement affects the amplitude of the motion.

That is, now,

Ky =€)+ )"

however, the diminished figure has not had its minor-to-major axes ratio altered;

and, it has the same eccentricity as before.

II.2.4 A very special case: For this very special case, suppose that in addition
to the restrictions above another condition is imposed on the variables. In this

regard, suppose that
- '
n,=28 .

For this case it is seen that the relative motion figure is centered, now, at the
target (i.e., £C = T}c = 0)! This added constraint does not alter the shape of

the relative motion ellipse, nor does it affect the eccentricity of the figure.

Another quantity which is influenced by setting the drift to zero is the
phase angle (K3) , noted in eqs. (II.4). When the drift vanishes, K_ reduces to

3
K3 =tan—1 [;zi ] .

(Note the similarity, in form, between this value of K3 and that for K o~ see

eqs. (A.34a)).

For the case presently under investigation, a manipulation of the express-
ions for £, m shows that the in-plane coordinate equations reduce to a set of

simpier equations; that is, from eqs. (A.33b),
= + &' si

and n= 170 cos <pT + n(’) sin (pT .
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Of course, in these expressions the initial state variables must satisfy the stated

i i T = = 1
constraints, i.e., n 250, and m, 2£o.

Incidentally, as an alternate definition, the coordinate expressions may

also be written as (see eqgs. (A.33a)),

£ = J(&;)z + (€ O)2 © cos (o *K,), (IL.12a)’
and n=- 2 ﬂi;)z + (éo)2 ' sin (op *K,), (I1. 12b)

with K3 defined as noted above.

These last equations describe the relative motion as an ellipse, which
is, now, centered at T (the target). The figure has a major-to-minor axis
ratio of 2:1, and an eccentricity, € = ﬁ/z . (Note that this geometric figure
has no meandering associated with the interceptor's relative motion; the inter-

ceptor has a bounded region, about the target, in which it is presumed to move).

These rather simple but illustrative cases, mentioned in the preceding
paragraphs, have been ,mcluded here to aid one in visualizing what geometry the
\analytlc coordmate equatlons describe for the interceptor's motlon, in general {
It should be equally evident that many other relative motion situations could be |
described; but, that these would be given in rather specific terms according to
the specialization imposed on the various coordinate equations. As a matter of |
fact subsequent sections of this document will deal with various other situations

which are of interest to space flight operations.

1.3 The relative motion hodograph. - Before leaving this discussion, some

comments should be made regarding the hodograph for this relative 'motion pro-
blem? One should recall that a hodograph is constructed by mapping a motion

onto appropriate 'velocity' planes. In essence, then, the situation discussed

13



above, in terms of displacements, could equally well be described in terms of

the corresponding speed components (§', 1').

From an inspection of eqs. (A.34), Appendix A, it is apparent that the
geometric figure described on the (£!, m') plane is also an ellipse; one with
its geometric center displaced from the térget, as an origin for the graph. As
was the case for the previous discussion, this figure has a fixed eccentricity and

a major-to-minor axis ratio of 2:1,

As a matter of interest the geometric center of this ellipse is located at

(E(':, né) wherein,

1=
&=,
' = _ t +
and n., 3, 2€0).
Interestingly, the condition of no "drift" -- described for the displacement ellipse -~

would cause the center of the hodograph ellipse to be shifted to the origin (see egs.
(II.1)). This is a'siiuati—on; of natural consequence! Evidently, then, the offset
of the hodograph is directly associated with the "drift'" phenomenon found for the

disp_lacement relations.

Of necessity the complete hodograph -- like the overall displacement re-
presentation-- is a three dimensional geometry which becomes rather compli-
cated, in form, if all coordinate components are considered simultaneously.
Rather than go into a lengthf ‘description of this at this time, such will be de-

ferred until later when the more specific_,detai;lsj can be examined.

II.4 Comments. - One word of caution should be injected at this point. The
expressions described and discussed above were obtained from the 'linearized"
differential equations of motion. Intuitively one knows that these equations are

limited in predictability, from both a mathematical and physical point of view.

14
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Unfortunately it is quite difficult to state, a priori, the extent of these limitations;
and to relate the exact nature of how far actual cases may depart from the linearized

predictions. = On the other hand, these 'linearized solutions'' have, at least,
afforded one an insight into the relative motion problem; also, they do provide one
with the knowledge of what to expect in the large. The caution which is given here
is that the reader should not view these equations as an end unto themselves, but
should always regard them as "estimates and trends' of the actions which are to
be found from more rigorous studies. Contrary to this, it should not be taken as
fact that the descriptions given here will not be, at certain times and situations,
rather close to the actual results. As a matter of fact there will be some in-

stances where ''good indications!' are obtained from the linear theory; some of these

will be demonstrated in subsequent sections of this report.

II.5 Study cases from the relative motion equations. - Many problems in

celestial mechanics, which deal with two or more bodies in motion, could bene-
fit from a study of their relative motions. Actually, the two-body problem is; to

a large degree, one such situation. Certainly a study of the intercept and rendez-

vous problem, for one vehicle with another, is a most meaningful case for study in
relative motion. In fact there are a fair number of simulations which could fit

into this category of flight mechanics problems. In order to illustrate the use and
utility of the relative motion results described herein, several problem types will

be considered and investigated later.

To a large extent the several case studies to be undertaken in the follow-

ing sections will fall into one or both of the following two broad categories:

1. The intercept and rendezvous of two vehicles which are in orbit

about a primary.

2. The motion of an object ejected from an orbiting spacecraft.

15



Within these rather loose classifications one will find problem variations,
and related situations presented; these are expected to enhance the knowledge

previously gathered from other case studies.

1.6 The relative motion problem in shell coordinates. - In Appendix B, a so-

lution to the linearized relative motion problem is presented in shell coordinates.
Since these coordinates describe the motion only in the plane of the target particle,
the results are directly analogous to the in-plane solution described in cartesian

form. For purposes of clarity, the shell coordinates may be described as follows:

The displacements (p, s) define a relative position
as; a difference’in radii (p), and an arc length (s) at a

fixed radius, r The coordinate, p, is positive if

T
r, > I while s is positive-valued when the inter-
ceptor is ahead of the target.
In order to continue the analogy between developments, these state vari-
ables are again described in both dimensional and dimensionless form. The
normalizing quantities introduced here are the same as those used previously;

that is, the displacements are normalized by r,, while the speeds are ratioed

T
to the circular speed (rT <[)T). Likewise, the independent variable is (again)

shifted from ''t'" to "<pT" by means of the relationship, (pT = ngt.

The{tréﬁsib_fﬁiatioﬁs] relating the dimensional to the non-dimensional vari-
ables are found in eqs. (B.10). However, it should be noted that these transforms

are identical in format for both the cartesian and shell coordinate schemes.

II.7. The relative motion ellipse: In order to describe the relative motion in

terms of a geometric figure, one should consider the expressions given in egs.
(B.22), of Appendix B. There the dimensionless state variables are described
in an equation form which is identical to those obtained in Appendix A, for the

in-plane case. In this regard it is evident that the geometry described earlier,

16



for the cartesian representations, would suffice for the present case. For this
reason it would be redundant to repeat these descriptions, except to note that the
coordinates have a somewhat different meaning, physically, in the two represen-

tations,

It is probable that some minor differences might be found in results ac-
quired from the use of these two representations, in a given problem; however,
these differences should be quite small. Also, it should be remembered that the
analyses are acquired from linearized equations, and that the applicability of
these, in either and both cases, is limited to the region "near' to the target

itself,

In view of the fact that the figure of geometry, describing the relative
motion problem in' cartesian coordinates, for both the trajectory and the hodograph,
was an ellipse then it is apparent that the same figures would be found here. Since
the two representations lead to identical equation forms,then it is evident that no
new information is to be gained from an examination of thése expressions, when
compared to the others. Of course, had the equations evolved into new and/or

different forms, then one might expect to acquire added knowledge of this problem.

As a matter of interest it will be demonstrated, subsequently, that the
differential equations, expressed in shell coordinates, can be manipulated into

a form allowing for an immediate first integral of the motion. This situation

‘ will be studied in a following section.

1

IL. 8 Comments. - It has been ascertained that the basic format of the relative
motion problem, acquired from the linearized differential equations of motion, is
identical for both the shell and cartesian coordinates. Consequently, the major
portions of the following work will be described and discussed in terms of cartesian
representations. This is done, primarily, for consistency and conciseness of
notation. Also, this will alleviate the reader from having to retain a large number

of notational quantities in his memory.
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I1.9 A modified solution in shell coordinates. - Solutions to the relative motion

problem, as derived in Appendix A and Appendix B, were obtained from a set of
linearized governing differential equations (see, for example, eqgs. (B.15)).
These solutions evolved from a consideration of only first order terms, in the

coordinates and their derivatives, within these governing differential expressions.

A close examination of the general differential equations (such as egs.
(B.13)) will confirm the fact that some improvement to the linearized solution
could be had simply by manipulating these expressions, analytically, prior to

their expansion and integration.

As a consequence the procedure which will be followed below is one aimed
at the development of a solution type which might lead to improved accuracy com-

pared to the purely 'linearized" solutions previously discussed.

I1.10 Solution to the differential equations. - In order to achieve the ends de-

sired here,one may begin with the dimensionless governing equations developed

in Appendix B; these expressions are

o= 2A (140"
@)
2 -2
and A= () (0T - (1) C.

For convenience and manipulation purposes, the procedure which follows will be
described in dimensionless shell coordinates; hence the solution will be applicable
to the planar relative motion problem. The third positional degree of freedom is
suppressed in this analysis. '
It should be evident that the first of the above expressions is separable;

consequently it leads directly to a first integral; namely,
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in (1+0') (1+)\)2 = 4n ¢, (II. 15a)

with £n ¢ serving as a constant of integration. Alternately, this result may

be expressed as
¢ = (1+0") (1) | (IL 15b)

this indicates a rather significant relationship between the variables (A, o).
For purposes of comparison,this expression is analogous to eq. (B.16), obtained

from the linearized expansions developed in Appendix B.

The second expression in eq. (II.14) also has a first integral, one which
is readily obtained after multiplying through the expression with the derivative
A'; and, after substitution for o' from eq. (II.15b). Thus, after carrying out

these obefations, one finds that the équiValen‘é differential equation is

_12_~ [(A‘)zj' = - [%2— (1+>\)'2J' + [(1+A)_1]' , (II. 16)

wherein the (~)' signifies differentiation, as before.

Necessarily, the form of this last result suggests the following first

integral:

L, & 1y

2 2a)2 1 e (L. 17)

Here ¢2 is a (second) constant of integration which will be identified subse-

quently.

Unfortunately, eqs. (II. 16) and (II.17) do not lend themselves to a second
integration due to the nonlinearity which is present. In order to continue with
the analytic solution, from these first integrals, it will be necessary to reduce
t‘r{g complexity of the integrands. However, before continuing with these evalua-

“tions it would be informative to consider another analyfic f(_)rmulation, one which
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is in line with the more usual procedures followed in astrodynamics.

II.11 . The dimensionless momentum and energy equations. - Recalling that two-
body, central field problems are characterized as having constant specific angular
momentum and total energy; then, for the formulations assumed here, one should

naturally look for similar relations in this case.

In this connection the scalar moments of momenta for the two particle

vehicles, relative to the attracting ceﬂter, may be defined as follows:

For the two vehicles;

B, =rj2 q';j; where j = I, T.

Making use of the coordinate relations, eqs. (B.7), the momentum expression

for the interceptor is;

2 p)2 ( s ) .
h =r 1+— 1+ T o,..
1 T( rT rT(pT T

After manipulating this expression, and incorporating the transformations from

egs. (B.10) and (B.12), it can be shown that

=H =)’ Q+o?),

:‘I:r
—

T

where H represents the ratio of these specific angular momenta.

Apparently, then, the first integral--obtained in eq. (II.15)--is precisely
equivalent to this momentum ratio. Actually, this should be expected in view of
the manner by which the specific moment of momentum expressions are usually

obtained. Therefore, the constant in equation (II. 15) has been defined.
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Next, consider the specific energy expressions for the two particles
(I and T). Since the interceptor is not constrained in the same manner as

particle T, then its specific energy equation is written as,

\' 2 +(r é)z
E = b 1 1 r e (1. 19a)
1”2 r 2 r, "

With the target (T) assigned to fly a circular path about the attracting primary,
its specific energy is conveniently given as:
.« 2
Vo @)

N _ Y N S
En=- 5 > > ) (IL. 19b)

Now, if the dimensionless coordinates, and the transformations developed
in Appendix B, (egs. (B.7, B.8, B.10 and B.12)) are introduced into eq. (II.19a)
above, it can be shown that,

. 2

EI = [()\’)é + (1+>\)2 (1+cr')2] - ;y_ (1+A)"1. (I1. 19¢)
. T

Next, recalling that u/rT = VT2 (here) then it follows that eq. ‘(ﬁ, 150) -één be ‘

recast as,

— = [(}J)z + (1+A)2 (1+o')2] -2 (1+>\)_1. (IL. 20a)

If a substitution for the quantity (1+0') is made, froni eq. (II.18c), then

eq. (II. 20a) is rewritten as

E 2
_EI _ (A')2+ ] - (lfl) _
T (1+X) -

(IL. 20b)
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Now, comparing eqs. (II.20b) and (II.17) it is seen that the integration constant,

¢ . in the latter expression, can be identified with the energy ratio, EI/ -E

\ Once again, here is a result which should not be considered as unexbeéted

T

since the procedure followed in obtaining the first integr;l, eq. (II. 1'7), parallels
the manipulations usually employed in determining an energy equation for central

field motions.

1I.12 Determining the position coordinates (A, o). - Moving on toward a solution

to the relative motion problem, the necessary second integrals for the motion
must be obtained. Continuing then, with a substitution of eq. (II.18c¢c), into the

second of egs. (II.14), one finds that,

o H=an)

)

This equation is to be integrated if one is to obtain an expression for the ,’

"coordinate A as a function of the (present) independent vari:;Lble, (pT. Unff;i-tu—
nately this equation cannot be integrated directly, in closed form; hence, for
analytical purposes an expansion of the denominator is proposed (this assumes
that A << 1.0). After expanding and regrouping terms one finds that, through

third order in A,
A" = (H-1) - BHZ-2) A + 3@H-1) A - 25H2-2) A° + oL,

(This equation is equivalent to the expansion given as the second of eqs. (B.14),
Appendix B). As in the previous case, an analytic expression is acquired after
the linearized eq. (II.22) has been truncated, at terms of 0(A); and, that reduced

(linear) differential equation has been integrated. That is, after the truncation,

A"+ GHZ-2) A = H® - 1,
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one finds a solution in the following form:

.
B . | :
A= C3 cos (AgoT) + ¢4 sin (Aqp), (I 24)

>

wherein (2‘3 and ¢ L 2re constants of integration. In this resultant the other

constants (A and B) are defined by;
A =3H -2, (IL. 25a)
and B°=H"-1, (I1. 25b)

from eq. (II.22). These last numbers are obviously related to the dimensionless
momentum factor (H), noted in eq. (II.18c). Normally it is expected that H

will be close to unity; thus A2 is also close to unity while B2 is small.

A differentiation of eq. (II.24) leads, next, to the dimensionless "'speed"

quantity (A'); that is

A= A [—(2‘3 sin (Ap,) + &, cos (A(pT)]. (IL. 26)

This relation will aid in the evaluation of the integration constants, which must

be consistent with the initial conditions for the problem.

Continuing with the solution: In order to describe the coordinate, ¢,
one could return to eq. (II.14a), incorporate eq. (II.24) and integrate for this
dimensionless variable. As a consequence of these operations it is easily shown -
that

C_2 ¢ -
o=¢_ + [E <1—2 E—)— -l—]A(p - 2H [ —l-sin(A(p )—ﬁ-cos (A )] (I1. 27)
5 LA A2 AdT T A )7 A o L

wherein ¢5 is the constant of integration obtained in this step. An appropriate

substitution for A' has been included, here, from eq. (II.26).
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It is informative to note that this last state variable is a more compli-
cated expression than its counterpart (A). That is, a comparison of eqs. (II.24)
and (II.27) will indicate that ¢ involves constants and cyclic components (as
does the coordinate X); however, in addition to these one sees that o involves

a secular term which was not apparent in the evaluation for .

Also, it should be mentioned that the results obtained here have an argu-
ment, for the cyclic elements, which is Aqar rather lthan _(pT alone (this is
compared with corresponding expressions in Appendix B). Consequently, the
argument here is proportional to the momentum factor (H) through the constant
"A', In fairness to the Ihathematical procedures followed in this development,
the difference in arguments (Ao, - and qu) is rather small, generally, since
A is approximately unity for close proximity orbits. In addition, it should be
recalled that O is not measured from a pericenter but is the angular dis-
placement of the target from its initial position; that is, the position prescribed

at t=0, for "T".

I1.13 Evaluation of Constants. - The several constants of integration noted in

eqs. (IL.24) through (II. 27) will be described in terms of the initial conditions for
the problem. Therefore, assuming general initial values; such as, att =0

(i.e., (,DT = 0):

A=ko; )\'=)L;;0=00; (I. 28)

then the constants ¢i (i=3, 4, 5) may be determined in the usual manner.

Incorporating the constants into the solution equations mentioned above,

it is easily shown that these expressions take on the following forms:
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2 Al
A= ( A -1 )[1—cos <A(pT)] + )\o cos <A<pT) + TO sin <A<pT) ;

3A2
A%
1~ ! _ - 2= i .
A )\O cos (A(QT> A [)\O ( 5 )] sin (Ang> ;
3A :
s 1_\t
AZ2432 3 A2y AN
and °=°o+[ 2 N e 2 A
3A ' 3A 3A
while, from eq. (IIL.5c)
2
or= [A%2, A _—
342 awy

These equations describe the state of motion for the interceptor, relative
to the target, at any time (t); or, as noted previously, at any displacement angle,
o e = @Tt. These expressions show that the state variables are coupled; hence,
the displacements, etc. are not obtained independently. Also, recalling that A,
Boc H, then the dynamical constants for the system are actually proportional to
powers of H, the specific momentum ratio for the complete system. Hence, in
theory, H (thus Az, Bz) can be described from initial values; and, the time
(or positioﬁ) history of the state quantities can be mapped, subsequently. From
these several, general expressions the motion of the interceptor relative to the

target is described in a rather\straiéhtforward ;'nianner.

II.14 Line of sight formulations., - As an adjunct to the descriptions of the state

trajectories, a formulation for the line-of-sight angles has been prepared. This

development is found in Appendix C.

In the Appendix the line-of-sight angles are described for in-plane motions

using the two-coordinate representation; cartesian and shell coordinates. For
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these formulations the angular position of the target particle, relative to the in-
terceptor (I), is denoted as ¢ LOS; and the angle locating the interceptor from

the target, is designated as & los.

In the description of these angles, the relative position coordinates are
given in dimensional and dimensionless form so that computation could be made

without conversion of quantities.

For a graphical description of these angles, and their relationship to the
coordinates, one should consult the sketches found in the appendix. The extension
to a three-dimensional case is rather straightforward, but somewhat involved in
manipulation. That formulation is not included here; it could be obtained but not

without some labor being involved.

0.15 Comments. - This completes a description of the basic analytical develop-
ments for the relative motion problem. To this point, the linearized and modified
solutions, in two-coordinate representations, have been obtained. A geometric
description of the state variable traces has been ascertained, and a line-of-sight
formulation developed. In the following sections of this report, example case studies
will be made; these will illustrate the results thus far obtained and will provide some
added knowledge of the general problem area. Also, in subsequent developments,
formulations will be carried out to describe methods which will lead to greater
accuracy and prediction capabilities for certain elements of the relative motion

problem,

In the next chapter (III),a study of some representative examples will be

undertaken, as the first step toward applying the results described in this section.
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RELATIVE MOTION PROBLEMS

III.1 Applications using the relative motion equations. - In the next few sections

use will be made of the analytical results described in the foregoing paragraphs. In

particular, to illusfrate the nature of the trajec;cories traced out on the rebresenta-

tive (state) planes for the motion, specific problem types will be examined.

As a first study,the relative motion equations will be utilized as a means of
defining the paths traced out by particles launched from the target (T). In view of

the constraints placed on those results, by having developed the expressions from

a set of linearized differential_equations; it must be pfesumed that these ej'egted

particles remain in the vicinity of the parent particle. Otherwise, it is known that

the predictability of the state expressions is degraded, and the mathematical re—

sults are meaningful only to the extent that they indicate trends in the motion.

:As a second example to be studied, the problem of intercept-and-rendezvous,

by means of velocity implilses, wil_l be examined. Again, the linearized state
equations will be used to formulate the methodology, with the understanding that

in the following sections an improved solution will be determined.

III.2 The motion of ejected objects. - A category of problem studies, relevant

to the relative motion problem, considers the path of objects which are ejected
from (say) the target vehicle. In some respects this might be viewed as a re-
vérse intercéﬁt situation since the motions to be described originate at the coordi-
nate origin and their time history will, in general, carry them away from the

target spacecraft.

Because of their movement in space these particles may havel'motions
which are cyclic in the vicinity of the spacecraft; or, they may be carried, con-
tinually, away from the launch point by a combination of cyclic and secular dis-
placement terms. From a practical point of view these cases could represent
what happens when relatively small objects are ejected from space vehicles, in

orbit; or, these expressions may serve to describe the motion which an astronaut
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might experience after he pushes away from his parent vehicle. Without the
presence of physical constraints, it should be evident that some objects could
become 'lost" in space simply due to the manner in which they are "pushed’

away, or ejected from the parent particle.

II1.3 Equations of motion. - The mathematical expressions used to examine

these case studies are the same equations which one would employ in the investi-
gation of any relative motion problem. Due to the assumed smallness of ampli- '
tudes it will not be necessary to utilize a highly accurate mathematical model,
initially. As a matte:r of fact it has been determined that with small initial

values, etec., the linearized solutions are quite adequate. Therefore, the state

of motion can be described by either eqs. (A.29), (A.30)--or eqs. (A.33), (A.34)--
from Appendix A; or by egqs. (B.22) from Appendix B.

To be consistent in the following representations, dimensionless variables
will be used; the appropriate: relative motion equations are set down below. One
should recall that in the cartesian system of coordinates all.three dimensional
variables are described, while the shell coordinates are representative of planar

displacements only, Thus, as an example of the state equations:

(@) for .cartesian coordinates (see Appendix A):

g=206 +n))+ ([ )2+ ge +am)? ) cos (o K, .

n=n_-26! -30¢ +n) op -2 ([€)7+ e +2n)T ) sin (o +K,),

t=(fe T+ @) cos (o +Ky),

g=- (JeFree +an)? ') sin @ +K,),
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m=n -2 [en: +se )+ (€)% + @8, ren)? ) cos (o Ky ] .

and |
er=-(Je 22 ) sin (o + K
wherein
i [0 ek s [ ]
Ky =tan [W S T A

In a similar fashion, a set of representative equations are:

®) for shell coordinates (see Appendix B):

A= )\0 + >"o sin Op + (31\0 + 200’) (1-cos o)

_ 1 - 1 - ! - ai
0=0, + 0'0 O 2 [Ao (1-cos <,oT) + (3)\0 + 20'0) ((pT sin <pT):] ,

1 — \! 1 :
A Ao cos <pT+(3AO+200) sin g, ,

1 — ! 1 : 1 _
and (o) oo 2 [)&0 sin @, + (3)\0 + 200) (1-cos @T)] .

The cartesian coordinates (£, 1, £; &', n', ') correspond to the (x,y, z)

relative motion frame of reference shown in Appendix A. The shell coordinates

(A, o;A', o) relate to the displacements (p, s) introduced in Appendix B.

For studies involving in-plane situations the coordinates which would be

applicable are the (£, 1) and/or the (A, 0) variables. To view motions

occurring out-of-plane of the target, the coordinates of interest would be either
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&, £), or (n, {), depending on the case to be examined.

I1II.4 Representative examples.

Example I: As a first example, consider the relative motion of an object
which is impulsively propelled (radially) away from the target. The initial values

applicable to this situation will be (in cartesian variables):

3 77=77"0;€(;?‘0;

o (o] o
the ¢ coordinate is not needed here.

The reduced equations describing this state of motion are, from egs.

(II1. 1):
g=¢) sing,
= - 25;) (1—cos-<pi,) ,
£ = £l cos oy,
n'=-2§0 sing;;
since -¢

-1 o
- t (_ > = +
K3 an 5 n/2,

<
depending on whether 58 > 0.

An inspection of these equations indicates that the geometric figure re-
presenting the motion, on the (£, 1) plane, is an ellipse. The figure has its
center displaced along the 7 axis (by an a;mountl“, —2&; ); and, has a major-to-
minor axis ratio of 2:1 (hence the eccentricity = 4/3/2 ). To illustrate the

statements above, mathematically, eqs. (IIl. 3) may be manipulated to yield the

following expression for the graph of the motion:
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(—§—>2 + (.ng:’ )2 =1. (1. 4)

& 26!

The expression clearly defines the ellipse described in'the preceding para-

graph,

Fig. III.1 shows a plot of the displacements for; (1) a positive g; (Case 1)*,
and (2) for a negative value of £ (’) (Case II)*., At points along the path there are
tics to indicate the relative position of the ejected particle for appropriate values

of Op (as noted).

Interestingly, when the particle is projected radially outward (with 5(‘) >0)
it follows a path which takes it aft of the spacecraft (T), but returns it to the
target once each orbital period (goT = 2m). (Foridentification, directions are

indicated on the figure corresponding to g; N 0).

A projection downward (g;) < 0~) reverses the figure of motion, giving
the object a path which carries it down and forward of the target vehicle over
the first half of the orbit; and, upward and back to the target during the last half
of the motion. .Heuristically one can visualize these 'looping figures' as ellipses
in inertial space; figures which would suggest a return to the point of origin at

the end of each orbital circuit.

The geometry describing the relationship which exists between the speed
components (the hodograph) can be seen on Fig. III.1, However, the specific
case shown corresponds to é;(') > 0X*This figure is also an ellipse (note the equa-
tions), but one which is centered at the coordinate origin (g'c = né = 0). Like the
motion of the ejected particle, this figure also has a 2:1 ratio for the axes, and an

eccentricity = +/3/2

* Here, and in all subsequent cases illustrated, the non-dimensional initial speeds
are set at unity. This is done to retain perspective between case studies, and for
ease in manipulation. Certainly a unit, non-dimensional impulse is not physically
compatible with the constraints on the problem; but it is mathematically convenient.

**When §' <0 the hodograph is unaltered; but, the originating point is shifted, on the
curve, from (+£!, 0) to (-&', 0).
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Again, from eqs. {IIL.3) one can ascertain that the equation of the hodo-

graph is:

describing the ellipse indicated above.

This example is the simplest non-trivial case considered for in-plane
motion; yet it is typical of the rather unsuspected nature of events which can

occur in relative motion studies.

Example II: The second example considers an in-plane motion also, but

differs from the previous case in that this time the particle is projected forward

of the target vehicle, in the }Li:_lirecti?)n'of motion, Initial values for this study are:

= =£1 =0- 1 0:
g =m =& =0; n 70
(the € ~components are not required).

The state equations for the motion are deduced from the governing ex-

pressions, egs. (III.1), and are easily reduced to:
= ! -
¢ =2n! (L-cos @),
=-37n' _4 sin' )
12 1 Qi
§'=2n! sinq,

and ' n' = -—37](') 1 -% cos qu),

0

since K ='can—1 (——-
3 -2172)

): {g } , depending on the sign of 'n'o,
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A study of these expressions shows thaf the (£, 1) motion describes
an ellipse (basically); but one with a "meandering' origin (that is, one with a
general motion in the Mm-direction). Also, one notes that the character of the
displacements is cyclic, of period = 27 ;thus the motion is repetitive. A plot
of the trajectory (for 17;) > 0) is depicted on Fig. III.2; the graph shows that
(here) £ = 0 (always) while 7 is initially positive, but generally appears as

an incrementing negative dlsplacement As before, to obtain some idea of the

‘ orientation and scale for the track, tics* have been used to mdlcate varlatlons

~ of the motion, over one perlod, for the maneuver.

Mathematically, eqs. (III.6) can be used to obtain an equation for this
;figu're of the motion. It is easy to show this is:
- 1 + 1]

(é: 2n; )2 . (n 317 P, )

o i =1 (I11. 7)

In the equation, the term n, = - 37) @ would indicate that the n—dlsplacement
of the origin is secular, in nature; thls is, indeed, indicative of the "meandering"
mentioned above. Probably as a more correct definition of the displacement

curve, it would be proper to call it a prolate cycloid.

The hodograph of this motion is shown on the figure, but for the case of
'r); > 0. As might be expected this figure is also an ellipse; however, it has an
~ origin which is shifted away from the geometric center, and is stationary on the
plane, Note that this shift is 3 units of the speed scale, in the +7'-direction, ‘
corresponding to the secular influence found in the solution equations. As before,
the axes of the ellipse are in a 2:1 ratio, hence the eccentricity = +/3/2; and, the

motion direction, about the figure (for n' > 0), is as indicated on this graph. ‘

- Usmg the speed relations, eqgs. (III. 6), one can show that the equation

for the hodograph is:

* With each tic is an indication of the appropriate displacement, (pT.
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n' + 317'
'\2 2
<_€_' ) N <_____° ) -1 (I1L. 8)
21
o
The ‘unus_ual‘_vnature of this motion is due to the fact that the input (ng >0)
produces an overall loss in displacement. As time progresses the ejected particle
becomes increasingly further separated from the spacecraft; hence a 'return

to the target'' becomes more difficult as time goes by.

A close inspection of this motion will show that near t=0 the launched
particle moves, first, ahead of the target then it rises (with £, 7 >0); and,
finally, it moves aft into'the region where & >0, n<0! (Note that the sign of

71 changes at- (’DT = § sin (pT).

Example III: Logically the next case study should consider a particle
being launched with an impulse having both 52) and 77(’) components. One
would expect that the resulting motion should show influences from both of the
previous cases, with weighting being "given to the components according to the

magnitude and sign of the inputs (éé, 772)).

For identification, the equations describing this state of motion are:
£= E(’) sin O + 217;) (1-cos goT),
n=n! oy -2 [£] (-cos o) + 20! (@ - sing) ],
£ = ﬁ;) cos @, + 277;) sin Op
ad n'=n' -2 [g;) sin @, +2n! (1-cos @T):J : | (II1. 9)

wherein the prescribed initial values are: £O =n, = 0; §:) £0, n' #0 (as be-
0

fore, the £ variables are not needed.).
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In order to specifically describe the path followed by the particle, for
these conditions, the initial values (E(’) = Tl;)) > 0 are selected* and a trajectory
computed and plotted. The geometry corresponding to this case is presented
below on Fig. III. 3. As‘ one might expect the motion appears to be quite like
that for the previous case where E;) =0, ‘r); > 0. However, a noticeable differ-
ence occurs here; that is, initially, the particle moves away from the parent
vehicle in a definite outward fashion, climbing into the region where &, 1> 0,
crossing through 7= 0 and then falling aft of the target vehicle. Near the ter-
minus of each cycle of the motion one finds that E < 0 (a situation not encountered
in the earlier case), and that the loop in the trajectory figure is not symmetric
about a line (7= constant) passing through the point corresponding to <pT =27,
This pecularity can be traced to the initial value, g:) # 0.If one would rewrite
the displacement equations it would become apparent that the trajectory trace

could be described as a figure closely akin to a prolate cycloid.

The hodograph for this motion is found to be an ellipse, similar in appear-
ance to those obtained earlier; and, having the same basic characteristics noted
there (shape, relative size and eccentricity). Once again the coordinate origin
is shifted away from the geometric center of the figure; but, the points corres-
ponding to various values of (AT are displaced in comparison to the earlier case;

see Example II, where (EE, =0, n(’) > 0).

Mathematically, the state equations can be made to yield the following

equation for the hodograph:

+ ) =1. (I11. 10)

«A/. 34 ;‘477‘(') ) 2 /g;2+4nf

( £ )2 n'+3n',

On the hodograph, and the displacement figure, corresponding velocity
vectors are noted to illustrate the correlation between the two figures. Remem-

bering that the velocity vector has the direction of the displacement tangent, then

* Again, for convenience and clarity the initial impulse values used in the example
are set at unity.
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the hodograph has an obvious utility in describing the state of the relative motion.
A simultaneous study of both figures will indicate magnitudes and locations of
maxima and minima of state conditions. These figures are uséful in describing
the conditions needed to effect proper changes in state, at some desired position;

and can be helpful in defining operational aspects of flight maneuvers.

As a means of ascertaining the accuracy of the predictions afforded by
these linearized solutions, a numerical integration for this case was carried out;
and, the numbers obtained have been compared to the analytic answers. Using

as initial inputs, g(') = n'o = 10_4, a fourth order Runge-Kutta integrator pro-
vided results which indicated that the agreement between cases is more than

close,

Example IV: This next case;is the first of two situations which will -
consider an out-of-plane motion, due to an initial speed component, ('). This

first study has the following initial values:

' = ¢' =1, (but positive).
€O CO (but positive)

The "reduced' state equations, shown below, indicate that the motion is
a modification of that described in Example I, earlier., The complete motion is

defined from:
£=¢ singp,
n=-2 [5(') (1-cos qu)],
g= Eisingyn,

' =§ cos @,
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T — _oft o
n ZﬁosmgoT,

and £r=C! cosgy . (IIL. 11)

In this case the relative motion trajectory has a full three-dimensional
geometry. The in-plane figure is the ellipse from Example I, while the motion
in the £, ¢ plane (a plane viewed from behind the target) is a line, passing
through the origin, haviﬁg a positive slope (seé Fig. IIl.4a). Necessarily with

5(’), C :) > 0 the displacements are at first, positive--then negative, and symmetric

in aspect.
An equation, describing this motion trace,easily obtained from eqs. (III.11);
is,’

§ = I g . (IIL. 12)

The motion, as viewed on the 7, £ plane (shown as if seen from above the
target spacecraft) is an ellipse, also. (See Fig. III.4b). The ellipse, for the ini-
tial values chosen, has an axis ratio of 2:1; and has the origin of coordinates
located at a terminus of the major axis. As noted in the displacement expressions,
the coordinates are cyclic in their variations, and have a period matching that of

the target vehicle.

For this figure, the equation obtained from eqs. (III.11) is:
, + ! ’
(17 2€°)+ (5)2—1 | (ITL.13a)
[ 1 - L. » L9
2¢ o co

This is a 2:1 ellipse only when the impulse has components of equal

magnitude. One should recall that these figures are obtained using unit-valued

impulses.
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The hodograph (planes) for this case are: (1) the same as shown on Fig.
ITII.1; and, (2) the pair of geometries plotted on Fig, III.4, It is somewhat inci-
dental that the hodograph figures are quite similar to the displacements on all
three planes. A distinct difference, however, is that the geometric centers of
these ellipses do not coincide with the origins for the displacements. A compari-

son of the two sets of graphs will best illustrate these differences.

For purposes of continui’ty, the hodograph equations are listed below,
These describe the two figures on Fig. (III.4), where the plots were made using

unit, unscaled impulse quantities (5(‘), £ E,):

gl
'='CTOOC',
and (2—22'2:-)2 + (%:) )2=1.

Example V: The last case to be studied here has the following initial

values:

T =Py >

(my =L > 0.

The expressions which describe the state variable are deduced to be:

=9n' (1-

£=2n (1-cos @),
=-37n' (., - 4 sin
= t i

£=¢ sing.,

1 = | P
§'=2n] sing,,
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4
n' = _31’(') a- 5 cos QDT),

and ' C'=CE) €oS ¢

The similarity here, to the:situation shown for Example II is noted; for
conciseness, that phase of the motion will not be discussed again at this time. In-
stead, the motion traced on the (£, ) and (7, ) planes will be noted and
commented upon; also, the associated hodographs--corresponding to these planes--

will be mentioned.

The (£, £) displacements describe an ellipse*, characterized as before;

this is readily seen from Fig. (IIL. 5a).

In much the same manner as noted earlier, the inclusion of an n(’) input
produces rather unpredictable results (due to the presence of secular terms); the
trace of the motion-on the (7, {) plane is to be found on (Fig. III.5b). Here one
notes that when ‘n(') > 0 the particle commences to move ahead of the target
vehicle; however, it ultimately falls behind the target and continues to move
away from it. The obvious side-to-side motion, due to £ (') , is also apparent

from*this graph.
The mathematical expressions describing the trace figures are:

(@) the ellipse,
SRAEEL)
0 £\
( 2n' >+ ({ ) -1
and (b) the S-shaped curve,

5':712)_.= % ('é:> = @p-

*Note that here the initial impulse levels have been set at unity, simultaneously.
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If one considers the three trace planes together, it is evident that the

complete geometry of this relative motion is described by a curve traced onto
the surface of an elliptic cylinder whose axis parallels the 7-direction. This
would be a somewhat difficult result to gather, a priori; thus,the value of these

planar motion representations.

The hodographs corresponding to the planes of motion are shown, with
the trajectbries, on the ﬁgures. Here the characteristic elliptic figure is found,
in the one case; however, the 7', ' figure is determined to be a straight line
crossing the n' axis aft of the origin. In view of past discussions these geo-
metries should be self explanatory and, consequently, do not require further

comment here.

To complete the analytical descriptions for the representative planes,

the hodograph equations are included below:

(a) The (§', n") trace is the ellipse,

(5 )7+ (o)t -

. 2"'77; 41);

while (b) that one traced onto the (§', £') plane is,

() () -

(an ellipse with its center at the coordinate origin);

and (c) the line representing the (n', ') trajectory:

t
o
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Example VI: To illustrate another use of the relative motion equations,

in conjunction with the ejected particles problem, consider the followirig example.

Suppose Example I is modified in the following manner:

Let the problem begin as before, but assume that
a second impulse is applied at some preselected
position on the trajectory. In particular, let this
impulse occur when the ejected particle has moved
to the on = 3m/2 position. At this location, sup-
pose the impulse is applied so that the relative
velocity is nulled completely; and, from there the

particle moves along its new trajectory unimpeded.

From Example I, it is seen that the particle is at the position (§ = 1,

- m=-2) when <pT = 3m/2. From _'ghe;-hodograph it is evident that the applied

impulse (to null the relative velocity here) is [—(ﬁ', n _ =-(¢'= —1)] .
Op = 3m/2

Now, the initial state of the particle, as it moves onto its new trajectory

is:

| J— r = t =
go 0, 170 0, Co 0.'

The appropriate equations, defining the new trajectories will be:
£=4¢ (1-§cos )
o] 4 (pT ’

n=n_-6& (o -singn);
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1 = i
350 sin @,
1—_ - .
n'= 6£O (1-cos <pT) ;

and the initial value of Gp (5 qu ) = 0, for compatibility!in the variables.
o}

If this solution is graphed (for one period of motion), the result is as shown on

Fig. III.6,

It should be evident that the new displacement trajectory is a cycloid;
: and, that the hodograph is the ellipse:
. - : - ' . .
1 n - GE
<§g_ )+ (————6g )2 -1,
go o
It is apparent that the new figure no longer reaches the radial distance

for the target, and that the interceptor's track, in inertial space, lies within

the circular orbit of the target. (i.e., £ <0, for all <pT).

1.5 Comn;exl_t;. - The f-i\_re cases investigated in the-a):)v—e—ﬁare{graﬁhs serve .
<- to—illustrate the natu;'e of the relatifre motiong #:)f—x-aiu&d'by i’mpulées abpliéd to
an object being ejected from a parent vehicle wﬁgch is moving along a prescribed
circular orbit in space. Needless to:say, "variations of these figures could be
produced simply by imposing :o"cﬁer'initial- values; or, by constructing more com-

plex space flight maneuvers,

Figure III. 7 is included here to illustrate, schematically, some possible
uses and interpretations one might give to the motion. studies in the foregoing
examples. On this sketch several illustrations are made to indicate means of

achieving nearby orbits, from a parent vehicle (T).

On the upper portion of this figure a particle may be sent from T to A
by (say) an application of the impulse represented in Example I. I the impulse

would be reversed, then position A' might be achieved. A particle could be sent
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to position B and/or B' by use of the impulse described.in Example II. Ob-

viously, other schemes and applications could just as easily be visualized.

On the lower part of this figure the illustrations depict a means of reach-
ing positions ahead (A) and behind (A') the target;ortransfer to achieve a lower
orbital position (B) with a particle. These cases are indicative of the applica-
tions noted in Examples I and II, respectively. The trace, noted as IV, is an
application of the impulse described in Example III, Here, a "-’messenger particle'

) * _ls launched from T to 1nterrogate a particle at C~ on an adjacent orblt \ "
This figure is intended to demonstrate that the geometries described in the
various examples of this section are indeed indicative of operational modes one

might consider useful in future space flight operations.

Before leaving this section it should be mentioned that several of the

example cases noted here have been checked for accuracy of prediction by com-
~ paring the analytic answers with pumerical evaluations. It was found that so long

as the initial speeds were constrained to levels of the ‘order of 10_3 to 10—4 (in
dimensionless units), the displacements shown here compared very well with
the numerical results, for a cycle of the orbital motions. These verifications
serve, quite remarkably, to enhance the value of such analytic developments
since those which have been obtained here were acquired from a linearization

applied to the governing differential equations.

One interesting observation made from studying the figures describing
the ejected particle motions, is that the solutions predict both closed and open
geometries. If is apparent that closed displacement trajectories result so long
as the initial impulse is applied orthogonal to the target's flight path direction.
When this condition is not met, such as the application of an impulse ’n theﬁ
, _ the trace f1gures are "open" of course thls conclusmn is easily verLfled from S

a cons1deratlon of the state equations (for mstance see eqs. (A.33), Append1x A)
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There one sees that the secular term involves the parameters (go, n(’)), hence
the nulling of these components would result in only constant and cyclic quantities
as descriptors of the motion. It should be apparent that, in general, bbth para-
meters, or an appropriate combination of the’fn, must be nulled if the displace-

ment geometries are to be closed figures.

I1I.6 Intercept and rendezvous. - The problem referred to here as '"intercept

and rendezvous' begins with two particles in orbit about an attracting primary

mass point. Generally, the interceptor will be flying on an orbit which places
it in close proximity to the target vehicle; which, inturn, is in motion along a

slightlykdiff_e_ren"c ;path in space.

At some selected instant in time an impulsive "action' will be‘, inri.t;i‘étedi
which alters the path of the interceptor so that, subsequently, the particle over-
takes and comes into .-rcorFaCE with the target. This flight operation, of bringing
the two vehicles to the same point, in space, at the time, (t*), is referred to as

the intercept maneuver.

Rendezvous, on the other hand, occurs at the termination of the intercept
phase; it is associated with an impulsive "'action' undertaken to assure 'soft-
contact' between the two particles, Hence, at rendezvous the two vehicles meet
in space with their relative displacements and speeds reduced to zero SLmultaneously
Thus, the final state of the relative motion is described by a null vector for the

- system.

In order to provide a problem which will be amenable to analytic manipu-
lations the various "actions' which are to be undertaken in the performance of an
intercept and rendezvous operation will be velocity impulses. Thus, the relative
speed components undergo instantaneous changes; hence the vehicles are placed
onto new——and slightly altered--flight paths, while the path segments are continuous

ballistic arcs; continuous, except for those instants when;thefimpulses are applied.
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III.7 Coordinate representations, - In this report various sets of relative

motion equations have been described. Two of these are derived from 'linearized"
differential equations of motion; while in other instances the solutions are less
dependent on the linearization. Even though the basic concepts of intercept and
rendezvous will be consistent, there are some minor differences which will
warrant documenting these various schemes. Therefore, in the following deve-

lopments all of these methods will be discussed.

III. 8.1 The intercept and rendezvous maneuver.

(a) Cartesian coordinates: The analytic expressions which relate to this
problem, per se, have been developed in Appendix A; there they are presented in
dimensional (x, y, z; X, ¥, z) and dimensionless (£, n, £; &', ', &) form.
For convenience, the procedures to be outlined here will refer specifically to the

dimensionless coordinates; however, the corresponding dimensional expressions

will be referenced throughout by noting appropriate equations in square brackets.

To facilitate the development which follows, the pertinent expressions

from Appendix A are noted below.

(a) The coordinates describing relative positions (from eq. (A. 33))*,
are:
= 1 - 1 3
E=¢€ + @& +2n)) (1-cos @) + £ sing,
= - 1 - 1 - 1 .
n=1,-3@E +nl) o, - 26 (1-cos @p) +2(3E_+2n) sinq,
= ' i
and 'q Co cos @, + Co sin @, . (1I1. 17)

These expressions locate I with respect to T when the two vehicles are circu-
lating about a common primary; and, where mutual attractions between the

. vehicles are neglected.

*Historically, these equations are found in the literature developed from the so-
called Euler-Hill differential equations. Also, these same results in dimensional
form were found in Art, 26-5, in ""Space Technology', edited by H. Seifert,

~ (Wiley, 1959).
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(The corresponding dimensional expressions are given as [egs. (A.29b)]).

®) The relative speed relations, corresponding to the displacements,

are (from egs. (A.34)):
£ =¢! cos g + (@36 +2n!) sing,
n'=mn! -20@E +2n!)-cos @) + £ sing ],
and C'= C; cos @, - Co sin O > | (11, 18)

(and, the corresponding dimensional relations are found in [egs. (A.30b)]).

The above equations describe the speed of 1 with respect to T as the
two bodies move about the primary. For these expressions one should recognize

that the argument of the:trigonometric, and related angular rate, terms could be

replaced according to goT = ngt (here); this is consistent with the constancy of

the rate term, ¢'JT .

These equations describe, fully, the relative state of the motion for one

orbiting body with respect to the other; but, they are for the case of a second
body moving on a prescribed circular path. Beginning at the initial time,
t= to, a complete time history of a motion can be ascertained from these re-

lations--insofar as linear theory is capable of predicting such,

I1I. 8. 2 Conditions for intercept. - Suppose that at some time t* an intercept

between the two particles is desired. Assuming that at the initial position

(xo, yo, zo) the interceptor has been given, proper initial speeds (:EO*, 3'/0*, éo*);
then at t = t* it is apparent that eqs. (A.33b) would produce a set of zeros for
their terminal values. That is; with proper initial values, at the prescribed time,

t =t*, eqs. (A.33b) become:
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=0 = 1% _ * 1% of *
E 0 £O+(3£0+2770 ) (1-cos §0T )+€0 s]_n(pT ,

i

n=o0=mn,- 3(2'50 + 77(')*) or* - 25;* (1-cos . *) + 2(350 + 27;(')*) sin g%,
and CEO=CO cos (pT*+C2)* sin<pT* . (II1. 19)

) (A similar condition could be written in terms of the dimensional expressions,

" from [egs. (A.29b)]). In reference to the angle of transfer, goT, the intercept

" would occur at (pT Eq:oT* since, (pT* Echt*,

Lo .

L o

By the very nature of eqs. (IIL. 19) one can consider these ekpfessions as

a description of the speed components necessary to achieve intercept, at the time,

t*, from a known initial position (go, 'no, Co). . Thus, solving for the quantities

1% 1% 1%\ ; .
(€0 > M Co ) it can be shown that:

* * o i * - *
£o (3<pT cos g ¥ - 4 sin@¥) + 27]0 (1-cos @)

g 1k = s
° 8 (1-cos @*) - 3@ * sin @ *
2§ (1-cos@,)-1n sing@.*
7)(')* - zgo - o T 0 P ’
- - * gi *
8 (1-cos (,DT) 3@1, sin <pT
and C(')* =- Co cos (pT*. . (I11. 20)

(For reference purposes the corresponding dimensional speeds, necessary to

guarantee intercept, are:

_ ALk ootk _ ; x) + - Aot
X . X, (3(th cos <th 4 sin (th ) 2y0 (L~-cos goTt )

- ’

@ - A t*) - 3~ t* sin ¢ t*
T 8 (1-cos goTt) 3(th smtth .
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. - Ao t) - i *
Yo 2x0 (1-cos Or ) y, sinoy

. = _2X + . . . .
- *k) sk *x 2
qu o 8 (1-cos <,oTt ) 3<th sin (p_Tt
7 *
and 2~ = -7 cos o *
Op o) T

In retrospect, calculating the speed components required to achieve

intercept, using eqs. (IIL. 21) above, requires a preselected value for the time-

to-intercept (t*)--measured from the initial point (x , 0, Z ), where (arbi-

trary) t = OA Needless to say it would be fortultous indeed if the mterceptor ‘ g N

would just happen to have these particular speeds 1mt1a11y Normally one would

expect that some impulsive action would be required to achieve the intercept.

It is_;visuélui_zged;that these velocity changes :might_ be provided by means
of thrusters (in a_—lreal situation—);' but, at 'dny rate, once these speeds are ac-
quired by the intercepting vehiclé, at the prescribed initial point, then intercept
will be expected to occur at the selected time, t*. During the ballistic coasting
phase (from t = 0 to t = t*) the target vehicle would move over a range angle
<pT* along its circular orbit; while the interceptor moves through a range angle,

(pI*, to a point of intercept.

There are two limiting cases which should be mentioned here in regard
to eqs, (1L 20) [or, eqgs. (1II.21)]. First, from a physical point of view, one
would surmise that as t* becomes small,values of the intercept speed (~')*
should increase without limit, generally. An inspection of the defining express-

ions would indicate that this is indeed the case.

Secondly, the denominator in eqs. (III.20) has a smgularlty at <p * =27
(or, when t* = the period of the motion for the target partlcle T). Recognizing
this fact, it is evident that one should not attempt to describe intercepts corres-

ponding to this condition. Actually, it is not likely that the linear results will be
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very accurate for such an extended time lapse. In most cases it is expected
that these (linearized) expressions. should not be used for transfers beyond (say)
half an orbit. Generally speaking, the accuracy of these equations, beyond

this level, is degraded to the extent that only quantitative information is pro-
duced; also, it is likely that near to (pT* = 27 even the quantitative levels would

f not be ' indicative of the real motion.

IiI. 8. 3 Time history of the intercept maneuver. - Once the time to intercept

(t*) has been selected, and the speeds to achieve intercept have been determined,
then a time Jhistory of ;theA state of motion--from t =0 to t =t*--can be ascer-
tained, If a. plot of thér interceptor's track is desired--plotted as relative dis-
placements (£, _n,uC‘)_, or as the relative motion hodograph .(6'; n', £')--then
the information needed for "*sugrh grap?xg,can be obtained from eqs. (III.19), (IIL.20)
[or correspondingly, from egs. (A.29b), (A.30b)]. However, for this maneuver
the values of E(’)*, n(’)*, C(’)* (x o*’ 3}0*, Z.o*] must replace gg, n('), '

[}EO, 3'70, z'0] in the state prediction equations. As a check on the results ob-
tained in this operation, one should recall that at t = t* (<,DT = (pT*) the §, n, €
x, v, z] coordmates should vamsh this would indicate that the intercept has

occured On the other hand, the values of £, 1", ' [x, y, z] do not Vamshz

necessarlly, at intercept. In general these terminal quantities are different from

zero, and represent the requirement to be satisfied by the rendezvous aspect of

the maneuver; an action to occuriat the terminal point itself,

The expressions which define the relative motion are noted to have a
same period as the target particle; hence, the idea of small displacements for

the interceptor is box}he out,

II1, 8.4 The impulse schedule, for intercept and rendezvous. - In the paragraphs

above,a method for determining the velocity components needed to effect an in-
tercept was described. As noted there, these speeds are generally not the same

as those which the ihterceptor would have at its initial position in space. As a
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consequence of this requirement it is apparent that an action must be taken, by
the interceptor, if the maneuver is to occur as desired. That is, a velocity
change (relative and/or inertial) must be provided at the initial point; and,
specifically, this change must occur so that the intercept will occur at the time
prescribed, (in the time At =t* - to).

Presume, for instance, that the interceptor has some known initial

dr
r

dt
\70*, a ballistic intercept should occur. Accordingly the change in (relative)

velocity X_fo = at t = 0); then after determining the required initial velocity

velocity which‘ must be given to the interceptor, at the initial point, is,

6.V =V *-V .
(o] (o] (o]

It has been stated earlier that all such "actions'' will be treated herein

as velocity impulses. In this context, then, the dimensionless impulse magnitude

needed to bring about the intercept is:

5V -
© - JE@ g P -
T o} 0 0 o o o :

0 vo - v
Af the termination of the maneuver, when the two vehicles are in very
close proximity, it is expected that they will have a non-zero relative velocity.
Since, at rendezvous, one desires to have the final contact occur at zero velocity,
then the "action' which must occur there is one to nullify the terminal relative

velocity. Thus, the final impulse which must be applied to the interceptor is
OV, = - V(t*);

necessarily this has a magnitude of

GVf

= L 2 a2 . P2
v = = JegZ e e et
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in dimensionless values, obtained at t = t*, In this last expression the velocity
components are those obtained from egs. (III.18) {or eqs. (A.30b)] when t is
set to t* (or (pT = ¢pT*); and, where the initial speed components were the (~')*
quantities. (That is, the arbitrary relative initial velocity has been replaced by

the corresponding, required intercept value; le.g. ," \_70 = \70*).

) Shell coordinates: The intercept problem, when expressed in
shell coordinates is of the same format as that outlined above (in cartesian
coordinates) with the obvious exception that the coordinates and the motion equa-
tions are altered, accordingly. Due to the sameness which is observed here,

only a brief outline of the procedure to be followed will be presented here.

In order to provide discussion variations, the operational procedure

which will be described next will be in terms of appropriate dimensionless

quantities.

~ The principal results, needed to satisfy this problem situation, are those
noted by:eqs. (B.22) in Appendix B; the set (B.22a) being the displacement re-

lations, while the set (B.22b) is the corresponding 'speed' expressions.

III. 8.5 Conditions necessary for intercept. - With the intercept assumed to

occur at a position goT E(pT* (corresponding to t = t*), then eqs. (B.22a) are
.rewritten with the initial speeds feplaced by the (~ ')o* quantities--and @p -
specifically set to (pT*. Since these are the conditions which produce the inter-

cept; then the relative displacements vanish, at <pT*, and the resulting ex-

. pressions solved to yiéld the speeds required_ for intercept, as before, |
- ~ - _ : l
In this regard, these initial speeds are found to be: L

* *x o i * - 4 *
L )\0 (3(pT cos @ * 4 sin O ) + 20'0 (1-cos Or )
© 8 (1-cos qqr*) - 3goT* sin (pT*
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“(1- *) - i *
2>\0 al cos @, ) o sinog

and 00'* = - 2AO +
- ¥y - * gi *

8 (1-cos P ) 3<pT sin <pT

Only two speed components appear, here, since this maneuver is constrained to

the target’s plane of motion.

In passing, it is interesting to compare these results with those found
for the problem expressed in cartesian quantities (see eqs.. (III.21)). The
marked similarity, which is found to exist, should not be wholly unexpected
since the procedures followed in both cases were the same, in principlé.. The
implications are that since the linearization procedures are similar then a
change in coordinate system’; has little, if any, influence on the format of the

outcome,

I11. 8.6 Time history of the intercept. — In order to plot the variations in speed

and displacement, experienced by the interceptor during its flight along the
collision ballistic arc, one can employ eqs. (B.22) using, as initial values,
the quantities (Ao, 0'0; '\c; *, cr(;*) and setting the transfer angle (thus the time)
to Op = (pT*. A graphing of these traces would serve to illustrate how the final

ballistic phase of the intercept maneuver occurs.

ITI. 8.7 The impulse schedule. - Once more, assuming that the initial and final

relative velocity changes are provided by impulses, then the required values

for these--occurring at t=0 ((pT =0) and att = t* (goT = <pT*)——can be ascertained.
For a vehicle having known (or given) initial speeds, (~')O; and having determined
the values necessary for intercept, ((~')O) ', then the initial (dimensionless) im-

pulse magnitude is

ov

) (= o \_ _ 2 1% _ 2°
ov, (- 2 )= [0 Ao
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In describing the final (or rendezvous) impulse one needs to know the
interceptor's speed when it reaches the target vehicle; i.e., the speed at t = t*
(i.e., Op = (pT*). These are the speeds to be nullified, thereby insuring a final
contact at zero relative velocity. In order to define these terminal speeds one
evaluates eqs. (B.22b), using (pT* in place of P> and replacing the initial
speeds, (~')0, with the intercept values, <(~')o) . Consequently, the final
impulse, to be applied, is:

) Vf

= = xr 2,01 2
oY (‘ fT¢;T> x/" (0p*)= + 0 (@) . . (I11. 27)

Equations (III.26) and (IIl. 27) describe the impulse schedule needed to

provide;(1) the intercept and, (2) the rendezvous for the two point-ﬁla{ss vehicles. .

In order to give proper physical dimensions ?t'o —thgse quantities, the dimensionless
parameters should be multiplied by the (constant ratioing) scalar, (rTg/')T).

i

III.9 Problem variationé.

a) Intercept, including a mid-course correction: The problem which
has been described and discussed in the foregoing sections was pi'edihc;_atbed. on the
concepts of an ideal situation, For a more realistic case, the likélihooé of match- /
ing the necessary initial speeds, and actually bringing about the intercept andi -
rendezvous with a single pair of impulses, is unlikely. In fact it is more reason-
able to assume that a re-evaluation of the entire situation (and possibly another
impulsive action) would have to be made at some point along the intercept track

in order to successfully complete the intercept and rendezvous maneuver, even

within the accuracy of the linearized solution's predictions.

As a means of illustrating these ideas, a word example--whichlis, itself,
somewhat academic--will be used to illustrate a procedure which is suggested
for this study. This proposed operation could include one, or more, "mid-

course'' velocity corrections.
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Assume for the moment that a required impulse has been determined
and applied; however, presume that the thruster has produced a slightly in-
correct acceleration, and that intercept (per se) will r_b_t quite occur. Once
it has been ascertained that an inaccuracy is apparent, in connection with the
maneuver, then a new impulse must be determined, and applied, so that the
intercept does occur. In essence, then, the second impulse would be, effect-
ively, a "mid-course correction''; one which does.guarantee'an ultimate

success for the intended maneuver,

Needless to say, there is a distinct possibility that more than one mid-
course correction may have to be applied; however, it should'be recognized that

such a case would be simply an extension of the basic ideas just outlined.

After any mid-course correction has been determined, there will be a
whole new set of state conditions which-come into play. These are (effectively)
the "new initial values' required for the intercept problem. In principle, then,
the mid-course values become new initial values, and the resulting problem will
haye to be solved in the same manner as the ideal case; that dealt with in the

foregoing sections.

(®) The power-limited intercept: In the discussions offered above, no
consideration has been given to possible constraints which might be placed on

‘the case studies.

From a practical point of view the size of an impulse, needed to accomp-
lish intercept, could easily be beyond the capabilities of a spacecraft's propulsion
system. Should this be the case, then it would become necessary to bring about
an intercept by, possibly, one or the other of the following schemes; or by some

other scheme, ‘entirely. )

Consider the following operation: On finding that the required impulse
is larger than that which the interceptor can provide, it could be that a waiting

period would have to be initiated. A subsequent impulse would be delayed until
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the intercept requirement is within the capabilities of the spacecraft. This

situation suggests a continual re-evaluation of the intercept requirements, and
the application of an impulse (say) just as soon as the vehicle is able to provide
that needed. Obviously, it is presupposed that the required impulse will, ulti-

mately, fall within the capability of the interceptor.

Rather than undertake the maneuver, as indicated immediately above,
a second possibility. exists. Here the procedure would be to go ahead with the
flight operation, by (say) applying an impulse, then making (mid-course) correct-
ion(s) later in order to complete the intended maneuver. This would be an under-

taking to be employed in lieu of the waiting scheme suggested above.

A necessary adjunct to solving any of these problem types would be a
high-speed computer. The computational device is essential in view of the im-

practic_:ality of making the necessary calculations manually.

III.10 Systems evaluations. - Having developed these methods for predicting

and describing the intercept and rendezvous problem, the schemes should be
tested in order to ascertain their accuracy and to determine their limitations.
The essentials to be looked for, in any case, would be how well the methods
predict the(rec‘luired impulses and how close the computed intercept can be
described by any particular scheme, It is known, a priori, that errors will

be incurred, when these ideas are compared with numerically integrated situa-
tions; what is not known is how large the subsequent errors might be, Likely
there will be differences in the error magnitudes depending on what initial posi-

tions are chosen, and on which of the computational schemes one employs.

In order to gain a better insight into the predictability and accuracy of
these various methods, various examples should be studied in order to gather

this information.
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III.11 The small arc intercept approximation. - In the terminal phase of the

intercept maneuver the separation distance between vehicles is sufficiently
small, nominally, that linearized solutions suffice for prediction purposes.
In a like manner, if the intercept is to occur in a short time period (i.e., within
'] a small arc of displacement) then the 1'}nearized resuits mﬁst surely hold. The !
' question which logically arises next is whether or not an even less complicated |
formulation S might suffice., Or, in other words, could one obtain useful approxi-
| mations from, say, the linearized solutions themselires. |

1

" To ;:his end, then, a develogment is descfibed —}.‘:V)evlow which leads to an
approximation of the "linearized' interceptor ﬁﬁpuise requirement., That is,

eqs. (IIL.21) are reduced for a small arc transfer approximation. For this re-
duction the equations are manipulated to obtain simpler expressions; the method
of approach is to expand the various terms in eqs. (IIL. 21) and retain only first
order terms representing the transfer angle. These results are listed as follows:

Approximation for the impulsive intercept requirement,

(a) in -dimen.sional’(fértésiah variables: [
{ ) - ‘['
X !
k= 2 y o
o t* o T’
y
yX=-D5r -X 0
o t* T’
%, ért
zo*=- P + z 3 ; (111. 28)
which can be expressed by the equivalent vector expression;
7 - -
_ r o w *r. _
VE=- = - wxr ¥ (—3—0) Wt*, (TIL. 29)
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(b) in dimensionless cartesian variables;

3
~-_ 9
g'*-— t* +7)o,
- n
0
T = o —= _
M t* £o’
%
prx = - Co + co<pT
o t* 3

As for the previous developments, the (~)"(‘) quantities represent the im-
pulse values required for intercept; (~)0 terms are the initial values; and t* is

" the time set for.the maneuver. In the vector expression the angular velocity ((:))

is w = gEJT e s with éz being the unit vector orthogonal to the target's plane of

motion.

In order to assess the validity and accuracy of this approximation, several
cases were studied and the approximate results compared with the corresponding

numerical evaluations, These comparisons are noted in the following tabulations.

In the table the eccentricity (e€) refers to the interceptor's track; (xo, yo)
represent the initial relative displacement (as does fro); and goT refers to the
arc of displacement. The (Ax 0*, Afro*) refer to the difference, in value, be-

tween the numerical and approximate results; and, the % error refers to the

same differences.

It is interesting to note that this approximation provides excellent results
for ares up to 50, for paths with eccentricities in excess of 1/10, for the in-

plane maneuver; however, it is expected that this would not produce sizeable

changes in the three-dimensional results.
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By all appearances it seems that this approximation could be utilized for

accurate predictions in the terminal intercept operation.
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LINEAR THEORY, SECOND ORDER CORRECTION

IV.1 Introduction. - In general, the basic mathematical tools used to solve
relative motion problems are results from linearized theory. These analytical
expressions have been used to predict the state of a relative motion; to describe
the motion in geometric form; and, to provide a basis for guidance and control

formulations, among other uses,

In previous sections of this report these equations have been manipulated
for special purposes, such as describing intercept and rendezvous estimations,
'\ for both long and short time durations, as well as othei' studiés. Throughout,
.in these various utilizations, the restrictions due to the.linearization have been
2 constraining factor. Constraining in the sense that limited (though not in

. |
Levery case, predictable) accuracy has been the consequence of this simplification. |
- X - ) - R i

In this section, a formulation is described which, in part, reduces the
effects of this constraint. Here, a second order-.correction to the linear theory
is provided; this is a correction which enhances the accuracy of the analytical

results and extends its range of applicability.

IV.2 Second order formulation. - An evaluation of these second order correc-

tions has been carried out in Appendix E. There the method of approach was
described, and the resulting analytical expressiohs were set down. It would be
redundant to do more than note the procedure and list the basic results in this
section. Consequently, the statements in the following paragraphs will summar-
ize the material in that appendix, and, will note some general aspects of test

examples which have been studied.

The differential equations describing the relative motion were given in
Appendix A, symbolically, as eq. (A.5). The reduction of that general formula
came about through an expansion of the gravity term; and in that appendix only ' }
first order quantities, in the dependent variables, were retained. Carrying I

this same procedure to second order, the differential equations (in dimensionless

G- T L . - - T2
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variables), are those given as eqs. (E.6), Appendix E.

In order to obtain a system of equations which could be solved readily,
the dependent variables'\were presumed to be expressible as a series of ofdefeif
" quantities, Each succeeding factor in the sum to be of higher order than the pre;
ceding one. Also, the multiplicity of factors was assumed to constitute terms of
corresponding order of magnitude. In this: regard, aproduct of two first-order

terms was presumed to form a factor of second order, and so on.

When governing equations were separated, according to order of magni-
tude, it was apparent that the linearized solutioﬁs (from first order quantities)
became the driving.functions for the sét of second order equations. Consequently,
one achieves a scheme suggesting a simple method (in concept) for acquiring
higher order solutions, Equations (E.9) display the system of expressions which

were solved to form the second order corrections,

Since tﬁe linearized results (§eé eq. (E.10)) included general initial values,'
the second order terms were set to zero, initially, Subsequently, a se‘cond order
solution was formed as the sum of a first order solution plus the second order
correction; this is indicated in Section E.7, Appendix E. In general, the second
order corrections are composed of constants, secular terms and harmonic
quantities. The coefficients of the variants (here) are made up of constants
(initial term); while the harmonic functions have single and double frequency
(this is in contrast to the linear solutions where all such terms had the same

periodicity).

It should be recalled that the linearized solution had no coupling between
the in-plane and normal (out-of-plane) components. As a consequence these two
parts of the solution were acquired independently. For the second order correct-
ions a coupling between solution parts was found to exist. However, this occurred
through the driving functions rather than through the kinematic or dynamic parts of
the expressions. This circumstance allowed the in- and out-of-plane solutions to

be handled separately, also. In addition to this, it is seen that if one selects the
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initial conditions appropriately, it is possible to keep some separability in the
second order solution, (A study of the coefficients will point to the proper se-
lection which would produce this result). A consequence of these conditions is
that A(as suspected) the second order solution is not '"complete', hence, the ana-
lytic results thus far acquired ;Willw,’ at best;'ronly improve the accuracy and
predictability for a given problem. Ultimately this solution will diverge in

somewhat the same manner as did the linearized one.

IV.3 Second order correction formulae. - The formulas obtained as the second

order corrections are given as eqs. (E.31, E.32), Appendix E, These dimen-~

sionless quantities are listed below, for reference and convenience:

@) dimensionless cartesian coordinates (displacements); 5!
=K + + + i + + i E
.‘,‘2 K6 (K.7 + K8<pT) P (¢5 KggoT) sin ¢, + (¢6‘ KlO <pT) cos @, Kll sin 2goT /

+ g

o K12 cos 20, , |
=K + K + + i + + .

772 nn 13 ('DT (K14 Kl8 <PT) sin (PT (K15 KlquT) COSs (pT +K16 sin 2(‘0'_[‘

+ K17 cos 2¢T,

=K +(¢_+K i + + i
¢ 1 (¢3 4<pT) sin ¢, ((2’4 K5 @) cos op + K2 sin 2¢,, +K3 cos 20,

2 ; aIv.1)

®) dimensionless cartesian speed components;
'=K_ +2K + - - i
52 7 g Pr (K9 ¢6 KlocpT) s1n<pT+ (Klo +¢5 +K9 (pT) Ccos ¢,

+ 2(K11 cos 2<pT —-K12 sin ZqDT) .
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+ - - i + +
Kig ™ Kyg " Kig@p)sinep + K +K g+ K g @p) cos o,

':K
) 18 15

13

+ 2K 20, - i
(K16 cos (pT K s1n2(pT),

17

and

= _ - : -
Cz K, (2'4 K5<DT)Sln(pT+(K5+(Z'3+K4cpT)cosqu+2(K2cos2¢T

- K3 sin ZgoT) .
The various constants displayed in the expressions above are listed be-

low in a more compact form than that shown in Appendix E. Suitable substitu-

tions should verify the compatibility between sets. (In this listing all (~)o

quantities are initial values; and, A = 3§0 + 2172’, B = Zﬁo + 77('))-

—i ' ...J-. ., - 1 =l 1:
K =5 (€ 8 -C A, K,=5 & A-C &), K,=5 €A+EL),

=3CB, K=—3C'B,
(o] o

K
4 5

_ 1r,2. 2 .2 1,2 27" _ )
K6—3{£oA+vn<')B+2 [50“70'58 +o €+ )I} ;K =3m -261)B,

9 2 '
K =-~-— , = s = 3§!
3 2B ’ K 3AB KlO €OB

- 1 ;l'_ 1 _l l 1]
Kll_-(€OA+2Coco)’ K _2[A § _C ]

= 1 12_ 2 2 12 - £
K13——3[AB+2(§O g +C +L ) Tn, (g 60)]’

_ 2 2 . Y ' 2 2 2
K14_2’:A +B +2€o (€o+770)]+3"70 (770 go)+2§o +C0+2C0
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2

'

= £ 1 _ oyt 1 . ___l 3 _ 2
K5_€oA+3€o(€o 70)+2C0C0, K 2K12+8(Civco)’

16
SU —é 1 5 Cobo) K g =36 B Ky, K, =- 3AB (K,
Bam~ " 0 B ‘;K15) ¢,=C B+E)+E L
¢, =CA-280, »¢5 = -(K,+K +2K ) €, =- K +K ). 1v.3)

(here, as before, the (~)'terms represent derivatives with respect to the position
angle, .
gle, @)
When dimensional quantities are desired, from the second order solutions,
lthe procedure 1s the same as that noted prev1ous1y. That is, 1f the transforms B

(see eqs. (A.31), (A.32), Appendix A) are applied, the desired dlmensmnal quantl—

‘ '_tlevs are obtained.’

It is quite evident that the rather complicated format of these second
order correction terms makes 1t difficult to describe a general geometric flgure
for these expressmns For thls ~reason no attempt w111 be made to do so l
at this time. Necessarlly, these correctlon equations are of httle value alone
they must be added to the linearized result in order to provide meaningful in-
formation, Though it is not immediately apparent, from viewing the equations
above, the values which they yield (in an example) are small, initially, They
do not contribute much to the solution until the problem has moved significantly
from the initial state. Many of the terms are oscillatory in makeup, with single

or double frequency; the secular parts of the solution are largely coupled with

harmonics so that their contributions to the results are not simply described.
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The constants noted here (Kj, ¢i) are all dependent on the initial state;
hence, any solution (here) is markedly influenced by initial conditions* This
fact has been demonstrated, by examples, wherein it was found that not all initial
values provided like degrees of_ accuracies as the solutions progressed. Some
"f:'f.'-\“, combinations of initial values produced 'better-answers' than others; and not all
’ . second order Afar.iswerswere as predictable as' l:lle linear results in some (near-to-
"/ the-origin) regions of the solution. (These statements are based on differences
between the analytic predictions and numerical evaluations.)
b
| \\ Due to the labor involved in computing the terms needed in an evaluation of ’J“}
_‘l:he second order solutlorlvs_ma“oom&zer program has been developed to perform T
the required calculations. : This program can compute the linear and second

. order solutions, s1multaneously and separately, hence, the capability of com-

P _

\N Ay parmg these solutlon types for: a,varletyaof inputs.
¥ - - Ve
IV.4 Comments. - The analysis discussed in the foregoing discussions allows

one to perform many of the more general relative motion calculations with the
assurance of greater accuracy and predictability. As a basic guide, the second
order solutions will normally maintain accuracy to within a few percent for as
much as two orbital periods (<pT = 4m). Beyond this range the state predictions
become degraded even though the trends are maintained for a longer interval in
the primary variable. (This is in contrast to the loss suffered by linear results
in approximately half an orbit). It is difficult to be more explicit concerning
accuracy and applicability, at this time, due to the Variety of initial value con-
ditioned problems which could be studied under the second order solutions for-

mulation.

h - 7T - . ..‘ . e . . . N
e . - .. . - . - N

3 Y, ) Rather than become involved in the labor of extending this method, for

increased accuracy and predictability, it has become evident that the numerical

/\ approach would be a more useful extension. For this reason the analytical

-

l ' " methods have not been pursued beyond the present level of effort inlthis rep-orf:.l

*Necessarily these constants involve quadratics in the initial state variables, N

Lo

75



RELATIVE MOTION FOR A THRUSTING PARTICLE

V.1 Relative motion for a thrusting vehicle. - In this section a study of the

relative motion for a thrusting vehicle, represented by a mass particle, is under-
taken. In the investigation the bodies are assumed to maneuver so that one
partiéle has its motion referred to the reference particle moving on a circular
orbit, The pertinent mathematical developments for this problem are found in

Appendix D.

For mathematical tractability the thrust is assumed to have a fixed magni-
- {
tude, hence the problem can be linearized and, consequently, it has an analytical
solution. The resulting relative motion state equations are examined, here, as

several example types; each of these is described and discussed.

V.2.1 General motion equations. - In Appendix D, where expressions for the

state variables were obtained, the various equations are presented in both dim-
ensional (x, y, z, X, y, z) and dimensionless (§, 7, £, &', 1", ') form. The
purpose of this is to provide the reader with a choice of expressions, for his use,
when investigating various problem types. Of course, the dimensionless express-
ions have a more general utility in that?"ih_é&— are ;gaasier to visualize, and to apply,
for a variety of physical situations. This doté ;ot iiriply that the dimensional equa-
tions are more restricted - compared to the dimensionless ones -:Ifther,' that the
dimensional ones are more cumbersome in notation. It should be borne iﬁ mind
that bothrsets of equations are constrained, in applicability, by the linearization
which has been imposed. As a consequence, this analysis should provide "good"
results in the near neighborhood of the origin, with divergence to be expected as

one moves into regions more removed from that reference point.

With these various constraints placed on the formulation, one is able to
obtain analytic expressions for the state of the motion. Thg results, listed be-
low, are markedly akin to those developed in Appendix A (where the thrust terms
were deleted). Here, the equations are expressed in terms of the independent

N
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variable (q.) Tt) and constants (initial values plus the specific thrust magnitudes).
It should be noted that the present solution has been obtained as an initial value
problem. It hés been subjected to a linearization of the differential equations of
motion, and to the other restrictions noted above. For a more comprehensive
discussion of the constraints and the methodology employed, here, the reader

should consult the various appendices.,

The state equations which are listed below include both forms (dimension-
al and dimensionless) for comparison purposes. The two types will be presented
together; however, in some instances discussions will point to one type, then
another. This approach does not imply any particular significance; actually both
equation forms are identical, they differ only by the lE:onstants introdececf . in the

- non-dimensionalization.

V.2.2 Dimensional forms. - The dimensional equations of state for the relative

motion of a thrusting particle, obtained in Appendix D, are;

(@) for the displacements;
);o . . . .
X%+ g (Gt - [A @t - sin o) + B (1-cos o)
So 3 Ty . o , . .

Y=YVt e T2 T2 (th)]soTt +2 [B (ot -sing.t) -A (1—cos<th):l,

T © :

T
3 Z.O . TZ .
and z =1z CcoS <th + (p_ sin (th t TS (1-cos (th);
T O

(b) for the relative speeds;

= -

‘i’T - [A (1-cos (th) + B sin <th] ,

S x.
—H jo



R e LR LY EEE R NRIR
0 s 2 3 3 qut +2|B (1-cos (th) +A(<pT s1n<th) .

o
et Ot T ¢
. VA . ) T
-z _ . Z o
and —<=— = = COsS @ t+( —z>sm<p t;
op op T g T
P
wherein
T 5, T,
AE(-O—Z L),andBE—<3x +2 = + X)
© e 2 fo) (DT - 2
T <pT (pT
T, .
Here, the (~)0 quantities are initial values, and the Tj <=EL d=x,y, z))
I

are the specific thrust components.

V.2.3 Dimensionless forms. - The corresponding dimensionless expressions,

similar to the above equations, are:

(a) for the displacement coordinates:

g=¢ +& o, -[A (o -simey+B Q-cosay ],
3 o \
n= 770 * (770 ) 7.17(pT) Pr *2 [Bo «DT - s (pT) - Ao (1-cos (pT)],,’;‘

= 1o - .
. and C Co cos ¢, + Co sin @, + TC (1-cos <pT) ;
(b) for the speed components:

£'= 5(') - [AO (1-cos @) + B  sin oy, ] ,

m'=ml - @€ -7 ) e +2 B (-cospy +A (o - sin op ],
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1 Pt - : .
and ¢ Co cos @, + (TC Co) sin @y, ;
‘wherein

A = (ﬁ; - 27’17), B~ (350 + 217(') + T€ ).

In these last expressions the independent variable ((,DT), and the dimen-

sionless dependent variables (£, n, €; &', n', ") are defined by:

— . - X - -z iy = T d /x
¢T=¢Tt, €=r_“,‘77=';y_, Czr_—;g'=(’b dt =d(P (r_->, ete.,
: T T T T T °T
Here, L (Z)T are constants for the circular orbit of m,.. In a2 similar manner

-the dimensionless thrust parameters are defined by,

T,
TSy, =6 n0)
@t

These notations are explained in Appendices A and D.

V.3 Application. - Using the equations above, one can predict the relative
state of motion for the particle, m, as it moves in the vicinity of m,, under
the added influence of a fixed thrust. Of course the predictability, here, is
understood to mean, 'in a linear sense'. As noted earlier, these stated results
may be used to obtain relative motion traces in either (or both) the displacement
or velocity spaces. Also, these quantities may be used, directly, to acquire

range and range-rate data for a thrusting particle.

It should be apparent that these expressions have applicability to a variety
of examples. For instance, using the 'rn component, only, in‘the &, 1, and
£', n' expressions, one could simulate the "influences" of atmospheric drag on

a "maneuvering particle', Also, since T ¢ is in the radial direction, it could be
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introduced to simulate the effect of radiation pressure, as a driving force, for
(say) a solar-sailing vehicle. Needless to say other simulation could be devised

by an imaginative reader.

In the following paragraphs some specific applications of the above results
will be noted and commented upon. Generally, these selections have been some-
what arbitrary; however, they have been singled out for the particular purpose to

which they are applied.

V.4.1 The intercept problem for constant thrusting action.\\.— Asja first example

to be considered, here, the problem of intercept, with fixed thrusting, will be
examined. The conditions which govern the inil:ercept are similar to those noted
previously; that is, the thrusting particle ; (mI) is attempting to reach the re-
ference particle (mT) in a specified time .(t = t*). In this regard the problem
here is akin to the impulsive intercept studied earlier; and, in particular, the

requirements for intercept are the same as noted there.

In order to ascertain the '"level of thrust'' needed to achieve the intercept,

one may view the situation as follows:

In a time, t*, the two particles are to have their separation distance re-
duced to zero. This requirement is influenced by the initial state (x, y, z;.
x s 3'7, i)o and the (yet to be determined) thrust level(s), T].. In the next para-

graph a scheme to determine the needed thrust will be explained.

V.4.2 The required thrust. - It should be apparent that for a given state of

motion the thrust can be ascertained by setting the relative displacements to

zero, at the intercept time (t*), and solving for the unknown (Tj) parameters.

This mathematical operation has been carried out in Appendix D, conse-
quently, it will not be repeated here. For convenience, however, the required

"thrust components to provide intercept'' are noted below.
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(a) Dimensional form (see egs. (D. 14))-:

T*
X

@)

_ . . . . 2 § - _ .
A —xo [24 (cth*) sin (th* - 3(<th*) @+ 2 cos goTt*) 28(-cos th*)]

<
p ¥ o «i . __._O.. §. ; - - p ] . *
+ 2y0 [goTt sin (th* ]+ ‘;’T [ 2 (@Tt*) 4(1-cos goTt*) (@Tt )

Yo

. . . . 2 . .
—_ %) gi * o * *) - - *
+ o [14 (@Tt ) sin @Tt S(qut )" (1+cos <th ) -~ 16(1~cos @ Tt )],

j j;o 3;0 .
-....L = [ —_—— . - — . - - * . ai
(. )2 A ( ((th*) yo) (1-cos th*)] - 2 X (<th sin c,oTt)
; T

X
0 .
o g t*) si *

T

and .
ZO 3 .
- a——~ sin <th* + Z, cos (,oTt*
T
-, =- — : (V.1)
((pT) 1-cos (th
with,
. 2
. ‘ - . ((th*) -
A=8|1 cos ¢, ((pT )sm(th ] + 5 5+300s<th .
(b) Dimensionless forms (see egs. (D.15)):
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_ U _ 2 -3 _ _ :
'r*é A go [24(pT sin (p:'i‘ 3((p}) @2 + 2 cos (p,"i,) 28(1-cos <p%)]

3 .
w2my[og - sinoy ]+ 6 [ 0 sw o - 40-cos op [y

+ ('n(;) [14 (p:'i‘ sin (p,"i‘- - 3(<p,"i‘)2 (1+cos (p:;,) - 16 (L-cos <p",i, :I s

7->;7A= [(4£(; _ ”'o ok - M) (1-cos (pgf):’ - 2[go ok - s’iﬁzp;_kr) + E;w:} sin @, ]

and
1 i * 4 *
e Co sin o}, Co cos o}, ‘ v.2)
¢ 1-cos @* ’ )
T
with

2
©T)
A= 8[1—00s (p;‘i,‘ - (p*T sin <p",i,:l t [5 + 3 cos (p% ] .

V.4.3 State predictions. - Having determined the thrust magnitudes needed for

-an intercept, a trace of the motion's state can be obtained, for the intercept track,

from the initial point to the contact position.

In order to predict the displacements during this maneuver, one can apply

Ut ) . : . - L S~
} x‘ the expressions for (say) (§, n, £) - (see egs. (D.10) wherein the Tj values \ 2(\3
. /\/

“ are replaced by the 1'3" parameters determined above. Similarly, the speeds along =
the intercept path are obtained using egs. (D.10b), for the time (or position) range,

0 to t*, (corresponding to a displacement <p:‘I“)).

These predictions should give £ = 1= { =0, at intercept; however, the"
corresponding values for &', n!, {' are not zero, there, generally. Of course,
the applicability of these results to a 'real case' is restricted due to the lineari-

zation used in obtaining the analytical results. Unfortunately, there is no real,
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quick means of determining the errors in these predictions since the scheme used
here has required the displaceinents to vanish, as an a priori condition. If one is
to ascertain the level of error in this analysis, it would be necessary to (say) num-
erically integrate the problem, for intercept, using identical inputs, and determine
the "miss distance' which occurs, Of course, a 'true solution' to the intercept
may be had by iteratively correcting the thrusts (T;‘). It should be mentioned

that one such scheme has been employed in this work to provide the '"true' values

of T;‘ needed to produce an intercept; this will be commented upon subsequently.

V.5.1 Ejected particles, with thrusting. - The next example of a thrusting particle

to be discussed, is concerned with the prediction and description of motion for \

“particles "ejected" from m,. v

Assuming that the powered bodies move away from'the parent particle
under no (added) influence other than thrust,then the corresponding (dimensionless)

state expressions are, from eqs, (D.10):

(@)  Displacements:
E= 2‘r77 (<pT - sin (pT) + T€ (1-cos <pT),
n= 41'17 (1-cos @, - % <PT2) - 2T€ (o - sin o),
and €= T (1-cos op);
()  Speeds:
E'= 2'1','7 (1-cos %) + 'rg sin @ ,
m=-2[21 ¢ e -sm wr;‘) + 7, (L-cos op ],

1 = :
and e TC sin @, .
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From these results it is evident that the TC -thrust component does not
influence motion in the (¢, m)-plane, and vice versa. (This is, of course, a
consequence of the linearization introduced in the analytical development). Also,
one should note that the in-plane (§, 7) motions are subjected to trigonometric
and secular variations - produced by the thrusting action. As an aid to a better
understanding of these trace geometries, several typical cases will be described

(below). Also, the traces are included here to clarify the word descriptions..

Due to the composition of the expressions, above, it is trivial to con-
sider cases wherein ‘rg = ‘rn= 0, TC # 0; consequently, the TC influence on
the motion will be discussed in combination with one (or both) of the other com-

ponents, only.

The typical cases, mentioned above, are discussed in the following

paragraphs.

V.5.2 In-plane motion, for .7, # 0. - For this case the displacements are ob-
<

tained from the coordinate relations:

£= Te (1-cos @),
n= 27'5 (sin @p - 04) 5
while the hodograph for this motion is described by:
§' = T€ sin P 5
n'=- '27'5 (1-cos <pT).

Neglecting, for the moment, the secular part of eqs. (V.4a) it is apparent

that the (£, m) trace is a (one-to-two) ellipse, described by,
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€-T ’
(—Tf) <27‘€>2 = 1 (V.5a)

The flgure has a displaced origin located at ((&, n) ( £ 0)). The effect pro-
duced by the secular term s such that the ellipse has a contlnual "drift' in the

7)~direction*. The drift rate (here) is: =2 | ‘1'6 | . It should be evident

l n Idrift
that the thrusting particle has its motion confined to that region "outside of the

mT—particle's,t‘éixz'cl'e,,? touching the circle once each orbit, if T ¢ > 0.. The particle

moves from outside to inside the target's circle, if T ¢ < 0; also, the drift is

;'l "ahead" of mT (m thls case) |

N e -
2 A “ L - — —

The flgure traced on the hodograph plane is an ellipse, whose axes have
a one-to-two ratio; but, whose center is displaced to ((§', 7' )c = (0, - ZTg))
The parametric expression for this (non-drifting) ellipse is:

(£nye, (Teye .5t

'rg 21’£ -

(Typical traces, on the two representative planes, for an unscaled T £ (=1.0)
are shown on Fig, V.1, The direction of traverse on the hodograph would be

reversed if sgn (‘rg) was changed).

V.5.3 In-plane motion, for 'r_7 # 0. - When T,'7 is the only thrust component
[

allowed, the motion traces are obtained from an appropriately reduced set of

equations; reduced from eqs. (V.3).

Neglecting the secular terms, again, it can be seen that, basically, the
displacement trace geometry is a one-to-two ellipse, centered not at the origin.
Also, this ellipse is drifting in both the £ - and m-directions. Specifically, the

~ drift rate, in £, is a fixed value (~‘r ); but the figure is moving dueto.ancace- .
\ . -

——

eleratlon in the ‘n—dlrectlon This 1eads to a trace which has, for Tﬂ> 0, an PR

j " toutward" drift coupled with an incrementing displacement aft of m,.. The trace
Py
? appears as an oscillation superposed onto an almost parabolic figure.

. by
- S Y

i

! g*The trace on the displacement plane for unscaled T] values (i.e. Ty = 1), pro-
duces a cycloid. This figure can be generated by the moving ellipse if the drift
rate is correct.
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i
11

The hodograph, for this motion, can be visualized as a drifting ellipse,
having a one-to-two ratio of axes, and a displaced origin*. A parametric ex-

pression for the ellipse is given by,

g'"ZT !
()% () =

For this trace, &' > 0 if '1'17 > 0, while n' may begin as a positive
value, but rapidly becomes negative. (Typical traces for an unscaled T17 (=1)

are found on Fig. V.2).

Before leaving this example case it would be worth while to point out
that this case, and the preceding one, constitute a basis for in-plane powered
motion, A combination of thrusts (‘r'€ s T"]) would necessarily lead to a com-
bination of geometries descriptive of the motions. In the next section, the com-

bined thrust case is described.

V.5.4 In-plane motion, for 7, #0 T #0, - The displacement and hodograph
Q

traces, here are produced by combzmng both of the foregomg cases. Geo-

e - t/\

‘ metrlcally the compos1te dlagrams are qulte 51m11ar in shape to those obtamed N

R, - - L= Kt B

in the problem lmmedlately above. ,'

For the situation here the displacement trace has secular terms which
@a'moving, basic geometric figure. If the secular parts are ignored, it
is found that this basic trace is an ellipse (axes in a one-to-two ratio) with the

origin drifting in the £-direction and accelerating along 7.

The parametric equation for the ellipse is,

2 : 2
(g_Tg) (7’]—47'?)
2 2. - 2 2 U
7.0 +4r ) 4T, +4T
(T n (T¢ TI)
= - o S : T ) S
*The '"drifting ellipse'" is more properly described as a prolate cycloid traced ° b

| onto the (g' 'r) )—plane !

oL T - S . P aoy

(V.6)

(V.7a)
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while the 'drifting" of this figure is described by: |§ Idrift =2 |T7) |, and

I Idrift=6|T K

‘ The hodograph for this case is also a drlftlng ellipse, appearmg tobe~ ‘ T

b

much like the one in the preVlous section. One exception is that this flgure is
skewed, compared to the other; with a two-axes offset for the center. The

drift for this figure is again in the n-direction, at a rate I'n'l =3 |‘rn | .

drift
The parametric expression, describing the ellipse*, is:

2
(&' -2 ) (' +27,)
n + =1, (V.7b)
aT 2+1'2 44T 2+‘r 2)
n & n £

Graphs showing the form of these traces are found on Fig. V.3; the

thrusts used to develop these plots were set at unity (an unscaled value), hence

‘L, vﬁ_th"i fig‘ilfgs_ are repr,'veSentaitive of the reéul’cs, only. “’V

V.5.5 In-and-out-of-plane motions, for Tg =T, =1.0. - The next figures des-
&

cribe the effect produced by one in-plane and one out-of-plane thrust component,

Since the in-plane state variables are coupled, the consequences of this action

will produce a full three-dimensional representation for the motion.

It is evident that because of the uncoupled nature of the present linearized
results, the in-plane (£, 7) trace would be identical to that described in Section
V.5.2; consequently, those in-plane traces are not repeated here. Instead, the

descriptions here will be concerned with the'other two out-of-plane representations.

Examining the expressions for displacement and speed it is seen that both

of thése trabes are straight lines, described by; ‘

Lo L S L ' (V. 82)
¢ Tt ¢ Tt

*The "moving ellipse'' is actually a prolate cycloid - thlS descrlbes the trace on -
the (§', n')-plane. i .
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i;h S,

V.5.7 Full motion, for 7

The hodograph corresponding to the above displacement trace is also a
moving figure - one which has motion in an 7'-direction, -If the secular term

is neglected then the trace is a 'line", described by:

I M S : 9b
4T T : (v. )‘
U] £
The effect of the drift here is to move this line, continually, in a fixed direction.

Typical traces, for unscaled 'rj values, are shown on Fig, V.5, A
study of these plots will provide a better understanding of the developed motion

on each of the plane types.

For traces producedjonﬁé"v(ﬁ, €)- and (£', £")-planes it is apparent
that: (a) the displacement trace 1s a moving ellipse (moving in the £ -direction)-
or, for unscaled Tj’ the figure is a cycloid, (b) Correspondingly, the figure
describing the hodograph is an ellipse whose general equation is:

51'2 ‘ 1
() (£) v

This ellipse, for unscaled thrust quantities, has a two-to-one axi‘fs/ ratio, and a

displaced origin of coordinates.

As noted for an earlier case, the plots depicting the (§, n) and (§', 7")
traces are not reproduced here since these would be identical to the correspond-

ing figures depicting the motion provided by TTI =1.

The last case study to be described here will consider motions produced

by a full unscaled thrusting action. This will be the subject of the next section. -
¢ - TVTI =T7,=1. - Under this action the motion is T
¢

actually a combination of the previous cases, and could be described by a conglo-

merate addition of coordinates (throughout). Because of this combination it

would be advisable to study the traces on Figs. V.6, carefully.

R I _— .. —_ = - - - - G e w e m o mm ~ml b
s R . - - -7 )

o ] T |

DRENYT I
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Fig. V.5, (concluded).
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Fig. V.6. (concluded).
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For unscaled thrusts (‘Tj) the displacement trace produces a skewed cyc-
loid on the (£, €)-plane. The skewing is represented by a cyclic variance in

the £-component. A parametric representation of the trace can be obtained as;

T .

E=' ;i— C+ 2TT7 (1-cos cpT). (V.10)
The hodograph for this case is described by an ellipse on the (£', {')-

plane; but, the ellipse has a slant major axis; the inclination of this slant major

axis, with respect to the £'-axis, can be described by:

T.T
tan g = L& max) _ £ ¢ . (V.11)

g or [ar 2472 2, .2
2T 4T T+ +@r - +T
e T 4Ty T T Ty T

For unscaled Tj quantities the hodograph is a two-to-one ellipse whose

center is shifted from the geometric center and (as noted) has its major axis

skewed relative to the coordinate axes.

The displacement trace on the (n, {)-plane is noted to be geometrically

similar to the (corresponding) trace developed for 'r,'7 =g, (1) earlier. The

g

hodograph, corresponding to this displacement trace is 'niuCh like that for the

earlier case (where Tﬂ= T.), but has a skewed aspect, Thus the present hodo-

Z

graph appears as a skewed. version of the earlier trace.

V.6 Comments. - The developments described in this section are obviously

an extension of the work presented in Section III. The difference between the

two sections is added thrusting capability included herein. Since the aim here,
as elsewhere, was to provide analytical expressions for the relative motion,

this was facilitated by including a constant thrust component to each linearized,

component differential equation.
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The examples cited in the section were markedly similar to those in

Section III; actually the case studies were identical in concept.

It was found that for the "ejected particles' problem the relative motion
traces were significantly changed because of the thrusting. Also, it was found -
though not specifically illustrated here - that thrust makes a difference in the
_'\{ ‘intercept problem. H'owever, the effect on intercept does not appear as signifi-
‘ cantly as for the "ejected particles' cases studied.

! It should be mentioned that the examples in this section (and others) may
be reproduced by the computer program developed for the investigation. The
ejected particles examples and the intercept problem can be detailed by this pro-

: gfam. Also, the capability of ;égx;qducirn_g:the results, by means of plots, showing
variations for the state variables, is incorporated into the program; and, can be

'implemented as a called-for output.

The material presented in the next section is a logical extension and follow-
on to this one, There, the intercept of one vehicle with another will be described;
but, without the constraint of linearization. In this regard the work outlined
there represents an "exact' solution to that situation. Also, the methodology
is extended so that the relative motion between two particles, both on eccentric

paths, is described. The illustrative example, detailed there, is of this type.
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AN EXACT SOLUTION FOR INTERCEPT

VI.1 Introduction. - The problem of intercept, described in Sections III and

V herein, was expressed in an analytical form obtained from the linearized so-
lutions developed in Appendices A and D, respectively. In view of the limitations
imposed by the simplification of the governing differential equations, those re-
sults, generally, suffered a loss in accuracy and predictability. In order to
overcome these deficiencies, the problem must be solved in a manner which

would eliminate these error sources from the formulation,

A method is described in this section of the repor'g which does solve the
problem so that the resulting solution is exact. That is, the solution does not
"lose accuracy' as the calculations proceed away from the region of the origin;
- however, the method itself is not analytic, rather it is a numerical evaluation

for the problem,

VI.2.1 The intercept formulation. - The end conditions for this problem are pre-

cisely those noted before, in Sections III and V. The requirement for intercept is
met by properly adjusting the initial speeds, and/or thrust, so that the relative
displacement vanishes at the preselected orbital position or time. To this extent
the problem here, and that described earlier, are identical. The difference in
the methods arises primarily in properly defining the phyéical condition(s) which
guarantee the intercept at the time desired. Of course, in order to obtain an
"exact solution' a numerical integration of the relative motion equations is
needed, after a properly defined impulse schedu‘le (for ballistic arcs), or thrust-

ing level (for powered arcs), has been ascertained.

The crux of the problem, now, is to determine this set of impulses, or
thrust components, which will achieve the intercept. A procedure, adopted
here, to determine these inputs is one which utilizes the linear results as first
estimates, Subsequently these estimates are refined, by an iterative technique,

until a suitable solution to the problem is obtained. That is, the iterator corrects
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the input until the terminal condition for intercept is achieved. (Needless to say,

N the application of this method is by means of a computer program incorporating

O the iterator* and a numerical integrator to solve the problem.) T

A description of the methodology employed in this approach is given in

the next few paragraphs.

VI. 2. 2 Solution for the intercept problem. - In principle the problem which is

solved here is the sé‘me as that described earlier, except that now the lineariza-
tion is not undertaken. As before, the governing equations describe a relative
motion but with:terminal conditions of intercept imposed on them. For compati-
bility, this proble‘m‘and the previous ones are identical in formulation; i.e., two
bodies are considered, without mutual interaction; and, with one body (the target)
assumed to have a circular orbit about the attracting primary. The intercept is
to occur at a preselected time; the maneuvering particle flies along either a
ballistic, or powered, arc dépending on the operational mode selected. In con-
cept, the powered mode assumes a "'small’ thrust level so that mass depletion

of the interceptor is of no consequence.

After the iterator has determined a set of impulse, or thrust,values an
integrated solution for the problem is obtained as a time history of the state var-
iables. For convenience these data will be listed, or used to plot graphs depict-
ing the interceptor's relative motion**, The usual graphical outputs appear as
displacement plots, and hodographs, for the interceptor. Again, for consistency
and convenience, the manipulated equations, internal to the computer program,

are in dimensionless form.

The program accepts dimensional inputs and produces dimensional out-

put quantities with internal manipulations carried out otherwise,

*Horsewood, J. L., et al: HILTOP, Heliocentric Interplanetary Low Thrust
Trajectory Optimization Program; AMA Report No. 71-38, Contract NAS5-11364,
November 1971; pgs. 42-48; Analytical Mechanics Associates, Inc., Seabrook, Md.

**A brief description of the program is included herein as Appendix H.
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For descriptive purp‘osé/s; ;the system of integrated equations "is ‘listed
below. These are set dowﬁ in-gi’iljr1ens ionless form using the notations in
Appendices A and D; they describe the interceptor's motion with respect to
the target. For impulsive intercept the thrust terms are (necessarily) deleted;

and, in all cases, the inputs include an initial state and the time to intercept.

A general statement of this formulation is given by eq. (A.5), Appendix
A. In order to obtain proper expressions, eqgs. (A.1) are modified to include
the specific thrust, and eq. (A.14), the kinematic description of acceleration,
is used to complete the mathematical statement. In scalar form, specialized
for 'mT on a circular orbit and mI the maneuvering particle, it can be shown

that these equations become:

gr=am v - LB g

A3 ¢’
" _n_
77""26""77‘ +T ’
N n
and C"=——C—+T ;
NS

T,
wherein A3 =[(1+¢ )2 + 722 + C2]3/2, and T, = -——J—z— . As before, (~)'
fper
signifies differentiation with respect to the angle, (,oT = (th).

These equations will describe an intercept when the inputs include a

proper set of thrust and/or impulse components (as determined using the iterator),

Without these special inputs (i.e., for arbitrary input data), the program computes

a relative motion trajectory for the interceptor incident to these inputs.

Consequently, with the iterator-integrator program module the intercept

problem can be solved, as an exact solution, not subject to the constraints
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imposed by a linearization of the governing differential equations. One restriction
which still exists here is that of assuming the target's trajectory is a circle. Of
course this was done, initially, so that the numerical solution would be consistent
with the analytical one. For many case studies it would be desirable to remove
this constraint, but to do so without disrupting, too severely, the logic used for
the intercept maneuver. A method of approach for this situation will be described

below.

VI. 2.3 Intercept on eccentric trajectories. - As an extension to the method out-

lined above, the circular orbit constraint can be removed so that both particles
travel eccentric paths, The concept and implication of this idea is simple; this
maneuver can be viewed as nothing more than two simultaneous solutions of the
previous problem. When these two cases are treated as a relative motion pro-
blem, themselves, then the resulting output defines an intercept maneuver in-

volving eccentric trajectories throughout,

If the problem considers an impulsive intercept, then the iterator treats
both bodies as maneuvering particles. Of course it is not required that this be
the case, actually; the investigator may use one set of output data as an "input"
for the target vehicle thereby causing any maneuvering to be imposed onto the
remaining vehicle., However, under any operational concept, the initial inputs
are similar to those described earlier for the simpler intercept. Here a
"fictitious' target is presumed, for each particle of interest, with the intercept

designed to occur at this reference (imaginary) particle.

The sketch below illustrates, schematically, the geometry of this situa-

tion and leads to the formulation described there.
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Particles ("1'" and "2') are those of

interest here; T is the (fictitious) re-

/.\ _ lative ‘motion origin - this is analogous
,/; r r, to the "target' particle described else-
| g 1 ./ rlz_ \ where. For this scheme the intercept
1 , ™~ Q \ ' occurs (between '1'" and '"2") at the
: - \ (T) - orbit of T; thus there are two intercept
Y= ) problems to be solved simultaneously;

r one, between T and '"1", the other be-
T
tween T and "2",

From the sketch, it is seen that,

or r =r -

hence r =r -r ; (V1. 2)

these describe the relative motion state for 'mI with respect to ‘mT, as desired *
In concept, the intercept problem between these particles is solved; and, for both
trajectories having arbitrary eccentricity, These expressions may be formed
from the output of the iterator-integrator module described earlier. To this ex-
tent the problem is solved compatible with the governing expressions given as
egs. (VL 1).

+

Eveh_though the discussions above relate to the i‘nripulsive intercept; a
similar method can be deécribed for the thrusting interceptor. Because of the
rather obvious similarity which exists for the two situations, the thrusting inter-

cept problem will not be discussed .in any detail here.

*Here m, and mT are the particles ("1' and "2 above.
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VI.3.1 An example. - As a means of aiding the discussions above, and to clarify
the problem described there, a sample situation will be examined. Also, from

information provided in the output, other data of consequence can be developed

and commented upon.

In this example the intercept is to occur by impulse. The two particles

(I and T) are located by the following initial values:

zé_gge_t Interceptor
on—979km x0=—1749km
y, ¥ -850 km _ y, =~ 84km
;2020=3}0 | }205023}0

(Note that this intercept problem is planar).

The fictitious target (or origin of reference) has an assumed orbit of
6860 km; hence it travels at approximately 7.632 km/sec. It is Adesired to have
the intercept occur at t = 3872.6 sec (an arbitrary selected time). The corres-

. 0
ponding displacement angle for the imaginary target is ('DT = 246.8 (determined

from t).

The first estimate of the initial speeds, for an intercept, comes from the

linear solution (see eqs, III.20, or III.21). The subsequently iterated ("exact")

values are determined from the computer module (these are dependent on the

initial state and time to intercept); both sets are listed below for comparison.
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Target Interceptor

From Linear Theory: )20*» =-47.3 m/s ;}o* =+7.62 m/s
§o* 22002, 0 m/s 3}0* =+ 3616.0 m/s

Exact (Iterator) Values:. }20* =+ 81.5 m/s );O* =+177.3 m/s
3;0* =+1982.0 m/s y *=+3851.0m/s

Error, at intercept, due
to Linear Theory inputs: s, =165.1 km Sp = 4250,0 km

Eccentricity of Intercept

1
'

Trajectory: ‘ 0.10 0.20
Terminal State (Exact x, =0, y =0 X, =0, y, =0
. f f f f
Solution): .
xfe‘;—679.0'm/s xf3—1393'm/s
3;f3‘-193‘m/s _{zfa-391.6m/s

(Note: the quantities listed above are referred to the fictitious target as an

origin for the relative coordinates).

Traces of the relative motion state, for the two particles (I and T), re-
ferred to the fictitious (origin) particles, are shown on Fig. VI.1. The coordinates
for these graphs are in dimensionless L'varia‘b.le_zs‘; the initial point(s) for these traces

are denoted as, IP.

From the figures it is evident that the target (T) moves inside the inter-
ceptor's (I) track on both the displacement and hodograph planes. On each figure
trace there are 'tics' which depict equal time (angle) increments during the

maneuver. (For reference, the tics denote At = 276.6 sec (or, A(pT = 17.630)).
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Also, each graph has a dashed line inscribed, between traces, to correlate a
position on the various plots. It should be recognized that on Figs. VI.1 the
fictitious target assumes the origin position (0, 0); hence these traces are des-

criptive of the two relative motions (for the m, and m_, of the problem).

T
Figures VI.2 are indicative of the.relative motion for the interceptor
('mI) with respect to the (true) target ('mT). In this regard the origin (0, 0) is
occupied-by my, and the trace outlines the relative motion for m_. As before
the initial position (for 'mI) is noted as IP, while the dashed line on each plot
corresponds to the one inscribed on Figs. VI.1; also, the graph's coordinates

are dimensionless variables,

The state variables for m_ with respect to m,_, are, from the figures,

I T

as follows:

Att =0 (Initial state): £ =-0.112, £"=+0.0125; n_=0.003, 7%=+ 0.245.

= . o ! o . S L
Att 1:f (Intercept): gf 0, gf .0939,?7f Q, g 0.026.

On Fig. VI.2a the dashed line would serve to define the '"look-angle' of the

target (at O) from the interceptor! "The corresponding line is seen on Fig. VI.1a.

VI. 3.2 Range and range-rate. - Valuable information regarding the maneuver can

]

bg_ obtained from these relative motion traces. Among the more important items |

are range and range-rate data, depicting hbw this operation progresses.' Recog- -
nizing that range is the length of the relative position vector, Ifr | , then it follows
that range-rate is symbolically given by l;r | These data are obviously represented

on Figs, VI.2.

’ 'Fbr instahce, the range of mI , at any time during intercept, is the leng‘tﬁ g

of that line connecting the origin (0, 0) to a specified point on the curve, Also, a
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time history of the "range' is inferred from this relative displacement trace
(see Fig. VI.2a). Thus, by means of concentric circles, centered at the origin,
one is able to ascertain this variation, It should be apparent that the range in-
creases (with time) until the particle is in the vicinity of that point where the
dashed line cuts the trace, There the range is a maximum; and, from that

point on to the intercept the range decreases monotonically.

Rangeerate is acquired from Fig, VI. 2b; here one sees that this quantity
increases, reaches a maximum (just after leaving IP) and falls to its least value
(near the "O'" symbol). Next, the range-rate increases to a local maximum,
falls to a local minimum, and rises slightly to the terminal point. Here, also,

a clear descrlptlon of this variation can be had by constructing (appropriate)

/concentrlc circles centered at the orlgm (0,0). Needless to say, “the varlatloni ,

~of range-rate is a more comphcated phenomenon than the time history of the

range, for this example.

V1.4 . Comments. - In this portion of this report a method has been described
which allows one to obtain an "exact' solution to the intercept problem; and, ex-
tends the methodology to provide for intercept involving general, '-closed;eccentric

paths.

The example described here depicts an intercept fpfoduced; by an impulse. -
The same general ideas, as noted here, apply to the thrﬁsting pari:icle intercept
operations. For conciseness, and to avoid redundancy, no such similar (thrust-

ing) example has been included here.
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A DETERMINISTIC RELATIVE MOTION SOLUTION

VII.1 Introduction. - In the following paragraphs a relative motion for two

particles on adjacent orbits, about the same primary, will be studied subject

to the condition that both motions have the same period. Here, the geometric

properties of the relative displacement and velocity traces, on a proper set

of representative planes, will be investigated. In this regard a complete state

of the motion can be obtained; and, consequently the range and range-rate varia-
| tions, over one o more orbits, are defined. |

From an exa‘mir;tion of the results obtained here, it has been found
that cusps appear on Some of the motion traces provided that a proper relation-
ship is impressed on the eccentricity a.nd inclination.- For this part of the in-
vestigation one particle is assumed to move on a circular path while the second
one travels along an ellipse. The conditions necessary for cusps to appear are
derived, and typical traces, with and without this geometric anomaly, are dis-

' played and examined.

Since these descriptions will be based on results developed in Appendix
F, wherein a linearization of the defining feguations was not employed, then this
| formulation is mathematically determir;isrtic_.r As a consequence the traces pre- ,.
- sented here are true representations of thé i‘elétive motion; 'true’ in the sense

that the earlier approximations have been circumvented.

VII.2 Example of a particular relative motion. - The example which is pro-

posed for investigation, next, will utilize the formulation developed in Appendix
F ;‘ and will be used to show an unusual geometric property which was found in
.this relative motion problem,
. This exam’ple considers the special case wherein niz is detached from
m 1. at the nodal position, but released so that the two resulting planes are in-

| clined to one another. Necessarily, at the nodal axis, the two orbital radii are

|

eqkuaI (r2 = rl); however, the true anomalies are not equal, here, in general.
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In illustrating the unusual geometric traces which have been found, the
two orbits are assumed to have a same period of motion. In addition, it is pre-

sumed that the orbit for m_ is circular (hence r

1 = a constant), while that for

1
‘mz is an ellipse.

VII.3 Description of the orbits‘al and their béra‘rhéters. - In line with these

assumptions, then, at the line of nodes it is apparent that

where a, is the semi-major axis length for the orbit of m,,.

Next, using the conic equation it is seen that this initial position can be

defined as,

cos (pz' =- €_; (VIL.1)
o

2’

and, consequently, sin @y, = /1—62 . Making use of eq. (F.15), Appendix F,
o

and the above result, the circular functions for path 2 are,

= _ [ 2 '
cos ¢, = cos ((p20+ 6)-—-—[ezcos 6+,/1 € smG] ,
and

sin P, = /1—622 cos 6 - € sin 6. ‘ (VIL. 2)

The conic expressions describing these orbits may be recast in terms of

PR
'

the conditions imposed above; consequently,

(@) for m 15 r =r, (a constant);

1

and, (b) for m, (since a, =rc) :
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2
— rc (1_€2 )

thus r_= '
’ ) 1.3
2 1—62 (62 cos 6 + /1—622 sin 6 v )

(see Fig. VII.1 for a geometric representation of this problem).

In a like manner the speed components at representative points along each

trajectory are described as follows;

for m_:
@) or m1

Vr =0, V(p1 =Vc (EM );V;=Vc ; (VIL. 4a)

and, (b) for m ot

=—& [ - 2 - i ]=.
Vr2 h2 € '/1 € cos 6 €2s1n6 ry

- _LL[ _ oos B4 e 2 o 1 .
V(p2 h2 1 € (€, COS 6+,/1 €,” sin G)J (I'z(pz) . (VIL. 4b)
e T - : S SN -
_, Combining these, it is found that the speed for the second particle is: > ~
S o ; o - A _ ’ ,1 o
_ { 2 - [ 2 }z
v, h, 1+¢, (1-2cos 0) 2€, 4f1-€,” sin 6r°. (VIL 4c¢) *

As an aid to relating these two orbital motions one should note, in particular,

the descriptive quantities listed below:

A) The specific energy for the orbiting particles:

v o o
B =-7% amd Ey== - = (VL. 5a)
2 2 .
which, when evaluated at r,=r (the nodal line) leads directly to,
5 c
Vc
E2 =3 (since r, = az). (VIL, 5b)

*Subscripts, (~)1 and (~)2, signify the separate orbits; h is the specific angular
momentum for an orbit; € is the eccentricity; ¢ is the true anomaly, .
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nodal
axis
— Reference
P \-/ \ circle
ellipse, (re = 2y) T

(path '12 Vl)

\4a1
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\——/

P is a general position
6 is the position angle,
measured from nodal axis F locates the
oA =L‘a pocenter ) primary focus
4= pericenter -
7= P L% G is the geometric

‘L\ center, ellipse

Fig. VII.1. Geometry for the Deterministic Relative Motion Problem,
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Hence, from the energy expressions,

2 2
Vo = Ve
o
(B) The specific moment of momentum for each orbit is:

h1=rch, and h2=r2 V(pz;_ o

or, using the last eqs. (VIL.4b), and recognizing that 6 = 0 at the nodal line,
then

"R 1-¢ 2 .
b, v_ Vi @
leading to,
= _e 2
h1 ,/1 €

("C/')' The eccentricitly anomaly for these orbits is obtained from the

general relationship,

1-¢ tan —Z‘(D—

an &
an 9 = 1+e

When this is applied at the nodal point one finds that;

(@) for (ml): 81 o

o o
and
b) for (m,): €, = /2.
o
D). Kepler's equation ((njt = 8j - €j sin 8j); G =1, 2)) for these orbits
reduces to;
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for - :nt=8& = ;
(a) for m1 1 1 <p1
and f m : =& - i
®) _or m, n2t 9 62 sin 82 s

where each of the mean motions (n)) is,
]

- /_.U_ = )
n], 23 > (rc al a2),

]

hence, the nj are constants for this example, In particular nj reduces to

- [H _ L
nEYTs T9
r

c

VII.4 Geometric considerations. - Since the trajectories are presumed to be

a circle (for m 1) and an ellipse (for m 2), then the geometry of the starting

point is of particular interest. (See Fig.(VIL, 2) for this representation).

According to eq. (VIIL.7c) the eccentric anomaly locating the starting

point ("O") is 82 =T However, from eqs. (VIL 7b) and (VIL. 8¢),

'2_ .
o

wherein to is the time required to reach point "OQ'" from pericenter. Next,

using eqs. (VII. 8a) and (VIL. 7c) it is apparent that

This last expression states that the initial eccentric anomaly for orbit
1 is € radians less than that of orbit 2. Consequently m 1 must move only

-g— € radians along its path, to reach the initial point, while m, must move g
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Points Bj are representative positions beyond "O", (j =1,2)
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Fig. VIL.2, Orbit Geometry for the Study Example Case.



radians, from pericenter, to reach "O'" in the same time, to.

One explanation of this is the following: The speed on path 1 is constant
while that on path 2 varies. Then, near pericenter (2) the local speed Vz > Vc
(local). (Actually, the speed on this path decreases from its value at pericenter

to ,,‘Vc '.‘(local) at "O")., Consequently m_ moves over a larger angle in a given

2
time than does m 1 Hence, there must be a "pseudo-pericenter'* (for path 1)

which is located ¢ radians closer to ""O" than the pericenter for path 2.

Now, making use of this idea, it is apparent that the increments in
eccentric anomaly, locating points "B'' on Fig. VIf.Z, beyond the initial point

"O", are described by:

(a) for m,:

¢

€ ~&)=o -0 =0 ty-t)=0 O

B o} B o)

and, (b) for m,:

12 cos 6 - c. «i _
e =@, -€ )=2 {tan'l[ / 11’62 ( e T he )]}'
o

B +€y 1—(€2 cos B - 1-62 sin 6)

To determine 6 81 it is necessary to define the time increment, 60t;

this may be done in the following manner.

Since the time to reach 'O", from pericenter '2'","is

1 m
6 - . )=_(_- >
(2 €2s1n€2 S \3 62 ,
6] 0

t =
o

-

(see eqs. (VII. 8a), (VIL.7c)) then the time needed to reach a general point 'B 2"

from '"O", is

*The "pseudo-pericenter" is nothing more than an '"originating point' for path 1;

this is where m1 must start its motion in order to reach "O'" at time to .
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S~

[ 2 :
: 1-¢ cos 6 - ¢_ sin O
1 -1 f1te, (V2 2
= — —4 —— 2
ot tB to o {2 tan [ ™ ( )]
2 1-(¢, cos B+ [1-€ 2 sin 0)
2 2
€_./1-¢€ 2 (¢ sin 8- ,[/1-¢€ 2 cos 0
2¥ " ""2 2 N6 _ (1_r e )}
2 2 ’
2' .
1—62 (62 cos 6 + /1-62 sin 9)

(this is the time increment, 6t, in eq. (VIL. 10b).

+

Alternately, (see eq. (VIL.10a)) the increment in transfer angle, 8 <;51., from "O"

to "Bl", is
G(pl =nodt,
Eqs. (VII.10) and (VII, 11) aid in defining the relative position of m,,
with respect to m 1’ after m 2 has been placed on its orbit at the initial point

"O", In the next section the relative position and velocity components are des-

cribed for this example.

VII.5 Relative position and speed components'. - The relative position for m

2
is defined by eqs. (F.5) in Appendix F, However, in utilizing those expressions,

here, one should recognize that r, =r, while r, is obtained from eq. (VII. 3),
above. Also, for this problem the angle, ¢, in eqs. (F.5),is replaced by the
quantity, 6(,01, eq. (VII.11b).

Next, taking account of eq. (VII.3), the relative position coordinates may

be recast (in dimensionless form) as;

2
(1-€.,”) [cos B cos o+ sin B cos L sin ]
X _ 2 -1
r H

C — + - 2 3
1 € (€2 cos 6+ /1 €, sin 0)

3
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2 . .
pe L - (1-62 )[sin 6 cos L cos .~ cos O sin ]

r
e _ e 2 o
1 €, (62 cos 6+ €, sin 6)

(1—622) sin O sin L

c 2 .
1-€2 (62 cos O+ /1—62 sin 6)

wherein o has replaced 5<p1 for convenience of notation.

and C ri

In these expressions « is a determinable function of 6 and the eccentri-

city (€) according to eq. (VIL.11b).

Now, to obtain expressions for the relative speeds, using eqs. (¥.13),
Appendix F, it is necessary to take into account eqs., (VIL.4) and (VII.6), and
the definition, ch =pu/ r. Making the required substitutions, and simplifying,

it is found that (as dimensionless quantities) the speeds are;

. (e .[1-€ 2 —sin6]cosa+[cos9—€2]cos Lsin o
£ =X _ 2 2 2
Vv
cC 1 €2
(1—622)[sin B cos Lcos & - cos O sin a]
+ ?
1—52 (62 cos 6+,/1—622 sin 6)
. [sin 6 - € '/1-62]sina+[cos 6-62]cos L cos &
n' = Yy _ 2 2 2
v e 2
¢ 2
2 . .
(1-62 )[cos 8 cos a+ sin O cos L sin o]
- + - i
1 € (€2 cos 6 ,/1 622 sin 9)
and
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(cos O - 622) sin L

Z

rt=
¢ Vc 1-¢
A 2

Here, eqs. (VIL.12) and (VIL, 13) define the relative position and speed of

mz with respect to m 1’ Note that from these expressions, for a given path (€2)
and inclination (L), the state variables are strongly dependent on 6 - the position

for m_ measured from "O". Of course, the '"size' of the reference orbit is also

2
important here; this is evident by the implicit and explicit presence of r 1 (qc).

VII.6 Path for the relative motion. - After having determined the state variables

for this example, the expressions were found to produce an unusual geometry on
some of the relative motion traces. Specifically, it has been found that marked
changes in the displacement curves, for different sets of parameters describing
path 2, can occur. In particular, the planar traces develop cusps for a proper

set of pgrameters (52, L).

To determine the relationship required between these parameters, lead-

ing to a cusp, the trace found on the (7, {)-plane is considered, first.

When a cusp occurs the speed cdmponents 7' and L' vanish, simultan-

eously; consequently, one finds that the conditions necessary for this are:

2
(1) cos 6—62 ,

- - 2 cos ¢
and (2) L= cos 1 [ 2 2 - ] s
from eqs. (VIL.13).

Now, using the first condition, above, the expression for « (= (oz)cr)*

becomes;

*(()z)cr is the "critical' value; or, that value of & at which the cusp occurs.
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% 2
€ - -
2 (& «/1 € )

-1 Wy m
(o), =2tan { }+ - - (5 - 52). (VIL. 15)
2 2 2
-1+ + 1+e
(+ey )1~ [1+e, ) + €, 2

This expression and the second of eqs. (VII.14) depend on eccentricity alone;
hence the relationship between (i, 62) is explicitly defined. What this impli'és T
is that for a given eccentricity there is a unique inclination at which cusps may

appear on the (1, {)-plane.

Analogous to the case above there are similar conditions defining cusps
on the traces for the (£, {)-plane. These conditions, found from egqs. (VII.13)
also, are:

2
(1) cos 9—-€2 ,

2 2 2
(€ - y17€y ) € sin @

@ L= cos T { + . . (VIL. 16)

. 2 .4 cosu«
/1 62 Jl 62

Again, the value of (&) ,’impliediby eq. (VIL 16), is acquired from

and

eq. (VII.15). The difference between these two situations is found in the argu-
ment of the arc-cosine term. As a consequence, cusps on the planes of the motion

occur at different inclinations (L), for a same eccentricity.

In order to show the variation of t, with -62‘, a program was written to
evaluate eqs. (VII.14), (VII.15) and (VII.16). Results from these L;calculations 4

are found on Figs. VIL, 3.

Figs, (VIL. 3) show how ( must vary with eccentricity (ez), in order
that cusps occur on the (n, {)- and (£, {)-planes, respectively. These graphs
have a geometric similarity; however, the eccentricity range is larger for the
graph describing cusps on the (£, {)-plane. Also, the maximum inclination at

which cusps may occur, is largest for the traces on the .(§, {)-plane. It is
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apparent, now, that cusps may occur, but only for a limited range of eccentricity
(see the figures). Also, it is seen that the critical inclination changes most
rapidly at the extremes of the eccentricity range; and, for a very»small eccentri-

city cuSps may occur on both planes at nearly the same inclination.

Fig. VII.4 delineates the critical values for 0 and « as functions of

the eccentricity. These are the special position angles at which cusps occur.

The angle ecr is seen to decrease with increasing eccentribity (beginning
at ecr = m/2), while the value of acr increases almost linearly with the eccentri-
city. For small eccentricity, ecr remains close to /2, while acr increases
markedly! No particular significance is attributed to these variations other than
the fact that the cusps move "along' the planar traces, while the line of nodes is;_,rve—.

trograde, as the eccentricity increases.

VIL 7.1 Traces on the planes of motion, ' - Fig. VII.5 shows, in schematic, pro-

"jections of a given ''relative motion" on the three representative coordinate planes,
In addition to this one can construct plots for the speed components, which are
similar to the displacement traces but which represent the relative motion in an

appropriate velocity-space.

In order to clarify several interesting aspects of this investigation, a
series of plots has been prepared. These begin with a simplest case (F‘ig. VIL. 6),
where a circular orbit relative motion (62 =0) is described. Next.is a series of -
traces (Fig. VIL 7) for a slightly eccentric orbit, showing a progression in-inclina-
tion through that for a cusp; and, finally, on (Fig. VII. 8), plots for an inclination

of m/2 are presented.

In the next several paragraphs these graphs will be discussed, with

several salient points being noted.
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jo)
P (projection, of

O//d motion, onto
-~ (n, {)-plane)

~

O

——— motion of m2

trace of motion

Sketch depicting planar traces for a general three-space motion,

Fig. VIL. 5.
Shown is a relative motion for m 9 with respect to m, .
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VII.7.2 Clircular orbits for 'm1 and m,. - The simplest case for this relative

motion problem occurs when both particles have circular orbits. Here, the

critical inclination (for cusps) is zero degrees (see Fig. VII. 3) while ecr and

@ are both 7/2 (see Fig. VIL.4).

Traces for this case are found on Fig. VIL.6; there the relative motion
state for all inclinations, up to and including 7/2, is inferred. That is, all non-
zero inclinations are represented by geometrically similar curves -- the only

difference between cases would be a change in scale,

Fig. VII.6a shows the motion traces onto the (§, 'r))-plane in dimension-.*
less, normalized (£, 7)) variables.* These traces will be tircles on a properly
scaled figure; however, each circular trace has a period winch is ha]f of the (m )-
orbital period. It should be apparent that the circles increase in size with in-
creasing ''L". The view, on Fig. VIL.6a, is indicative of the motion as seen

from the +C-axis position.

Fig. VIL 6b describes the motion as it is projected onto the (1, {)-plane.
The trace here is a view as seen from "above'"; or, from the +{-axis. This figure
has a period equal to that of the reference orbit; hence one 'figure 8'" is obtained

for each complete orbit of 'ml.

The trace for the (§, {)-plane is found on Fig. VIIL 6¢c, There the motion
trace is as it would be seen from 'behind'" m 1° This is a trace from "IP" to the
lower left extremity, back through '"IP'" to the right extremal, and thence to the

"IP'" again., All of this movement occuring in a time equal to the period of m

1

- . o

The corresponding relativé motion hodégraphs** are seen on these same 7 .
figure;s. Because of the similarity to the displacement traces, the various hodo-
graphs are presented as noted in the captions. Dimensionless scales, initial
points, (IP)', and directions of motion are as indicated on the plots. The period-

icity of these graphs match that of the displacements for each geometrical figure type.

*On the graphs initial points are designated by (IP); coordinates of this point are,
necessarily, (0, 0). On the hodographs a cross ('X") denotes the origin (0, 0).
The arrows indicate the progression of motion on these figures.

**The hodographs are scaled in dimensionless values. The normalizing quantity,
used here, is the speed of the reference particle ('inl); i.e., V1 = Vc .
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Fig. VII.6a. Relative Motion Traces, on the (§, 1) and (§', n') planes, for m

) 2’
when Both Particles move on_Circular Orbits. Trace equations are:

(§ + (1-cos l.)/2)2 + 'nz = ((L-cos L)/2)2; éj'z + 17'2 = (1-cos L)2
Extremals are: §, =1-cos L, Ny = (-cos L)/2; g'M =1-cos L= ‘n'M.

These circles have a period which is half the orbit period.
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Looking, for a moment, at the (§', ') hodograph (Fig. VIL 6b), it is
apparent that a cusp can occur on the (£, {)-plane since this curve passes
through the origin of the graph. Of course this geometry is seen on the dis-

placement figure.

(It should be noted that in this analysis '"'L' is a bounded parameter.
This restriction is made since, for (> 7/2, the trace(s) would infer retro-

grade motions -~ a condition not considered here).

VII.7.3 The evolution of a cusp. - Fig. VIL.7 shows a motion trace with a "cusp",

in addition to traces for orbits having inclinations less than and greater than the

critical value (for the prescribed eccentricity).

Specifically, these plots shown here are for € = 0.1,* and for inclinations,
L= 24.38° (below the critical); = 34.38° (the critical value); and, = 44,38°
(an inclination above the critical). On these plots the scales are incremented so

that the curves show an undistorted geometric shape for the traces.

On Fig. VII.7a, the "bean-shaped' curve is typical of subcritical traces.
Next is the critical case with what appears to be a cusp; and, finally, there is

a trace with a '"loop' which is typical of above-critical inclinations.

It should be apparent that the smooth (pre-critical) trace degenerates to
"almost a cusp'’; and, finally, the trace folds over itself forming a '"loop" indi-

cating a local reversal in the direction of the relative motion.

The true cusp, for this eccentricity, is found on Fig. VII.7b. - There the
smooth (pre-critical) curve develops into a cusp; and, finally forms a "loop"
at the super-inclination. The direction of motion, for a full excursion on each

plot, is noted on the figure.

For comparison, Fig. VII, Tb éhould be reviewed along with Fig, VII, ¢b;

this will illustrate the influence of eccentricity (and/or inclination) on this re-

*This choice of eccentricity was arbitrary.
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lative motion.

Fig. VIL.7c is analogous to Fig. VII. 6¢c; but, here, the trend toward the
cusp is fully evident. Also, the "loop' formed at the post-critical inclination,

is quite apparent. (All of these traces are for one orbital period, only.)

'The hodographs, Figs., VII.7d, VIL. 7e, are akin to the plots for the ”I‘f .

s 7

circufar c.aseA (é2 = 0), shoWn on Figs.,.,VII.FG;a In the present instance oirle.b’én
detect the cusp from the (n', £') curves since one graph passes through the
origin. For all of the remaining hodograph traces this condition is not found;

hence the cusp is typical to the (1, {)-plane, alone.

VII.7.4 The extreme inclination of an eccentric orbit. - On Figs. (VII. 8a)

through (VII. 8f) the relative motion traces for an extreme inclination (L= 7/2),
at eccentricity, 62 = 0.1, are found.

If these graphs are compared with Figs, (VIL 6), one sees that they tend
toward the former case. Obviously the symmetry of Figs. (VIL 6) is absent,
here, because of the orbit's eccentricity; needless to say, this asymmetry would
necessarily increase with increasing eccentricity. As in the circular orbit case,

here one plane:exhibits a double '"loop', with each '"loop' of the trace having

a period roughly equal to half of that for the reference circular orbit.

From an inspection of the hodographs, it is evident that no cusps are

predicted since none of the plots pass through the origin.

VII.7.5 Range and range-rate information. - In order to illustrate how range

and range-rate information may be influenced by the preéence'of a cusp, a set
of curves ‘has' been prepared. These graphs were obtained from the calculations
made for Section VII.7.3, above (for the critical inclination); and are designated
here as Fig. VII.9.. Note that these data are presented in dimensionless (or,
normalized) form, and are plotted against position angle, referred to the m 1

orbit.
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It is clear, now, that range-rate does not vanish during the period of
motion, even though it does diminish to a comparatively low level, in the neigh-
borhood of thé cusp. What is more interesting is that the range-rate curve is
composed of two, nearly symmetric, segments - these segments having their

local minima at about 7 radians apart. Though it is not immediately apparent,

the interior maximum is the true maximum for the figure, inthis case. -

The range data, plotted here, shows that m_ is cyclic in its relative

2
distance from m 1’ during the period of motion. It should be remembered that
these body motions are of equal period; and, that these data would be repeated

for each orbital excursion of the particles.

VII.8 General comments, - In this section of the report general and specific

relative motion expressions have been obtained, based on specific assumptions.
To demonstrate the deterministic relative motion results an example was
selected for study; and, in particular, the one chosen developed a ''cusp' on

one of the motion traces.

Other case studies were also included for comparison and illustrative
purposes. These were a case considering zero eccentricity; and one for maxi-
mum inclination at a selected eccentricity. These examples were indicative
of the degree of variation which could be expected for fhis type of relative

motion problem.

The most revealing feature of the -plotted traces was the "evolution of a
cusp'' on one of the coordinate planés. The graphs clearly show the change in
geometry, associated with the cusp, as it is developed. It should be mentioned
that this phenomenon was not found in the corresponding linearized solutions;
apparently it was lost when higher ordered terms were deleted from the des-
cribing differential equations. It is significant to note, also, that the "cusp"
was found by the deterministic solution, it was not a consequence of numerical

evaluations.
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Only limited results are included herein; the geometry associated with
very small eccentricities, or that associated with an eccentricity near to the
upper limit has not been presented. It would be informative and illuminating
to study a larger number of cases and to acquire a more clear understanding

of the described phenomenon.

Even though curves for "range" and "range rate" have not been mcluded

——

A§;

. ’;here for all of the study, it is falrly easy to Vlsuahze the general (geometry)

! trend for those traces not shown. For instance, it is ev1dent now that nelther -
of these curves will show a "cusp', but they may possess a shape which would
closely represent this geometric property. Once again, the need for a variety
of case studies, having different conditions imposed, would be useful for a best
understanding of the parameter influences. An extended investigation would be

valuable to more fully understand this problem.
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CONCLUDING REMARKS

VIIL. 1 Géﬁefaﬂ. - The investigation which has been described in this report was
concerned with various aspects of the relative motion problem as it applied to
orbiting mass particles moving about a common primary on closed trajectories.
The material presented herein has described these motions, for the bodies mov-
ing near to one another, by analytical formulae, and from the numerical integra-
tion of appropriate dynamical equations. Throughout this document, physical
aspects of the many problems examined have been discussed and illustrated.
Primarily thesé results have been presented in this manner, with the hope that
such would enhance the reader's understanding of the relative motions exhibited

by orbiting particles.

For this study the state of motion has been referred to a moving frame of
reference having one specific orientation. It was felt that the scheme selected,
here, was one which is generally accepted and well understood by those interested
in this problem area. Having reached this point in the investigation, it has become
apparent that there is at .l’east one other particular orientation which is equally as
important to the physical problem of relative motion as that one used, In this re-
gard it is suggested that in a future study, of this type, the relative motions should
be examined with respect to an inertially oriented, but moving, frame of reference.
In some respects such a system of axes may be more compatible with vehicle re-
ference slignment systems than is the scheme which has been employed herein.
Without regard to "best' or "better' orientations, the situation studied and reported
here has provided information leading to a much better grasp of the pecularities

particular to the relative state of motion for orbiting bodies.

In a like manner, the limitations and accuracies which can be ascribed
to linear theory, and to the approximations introduced here, are better under-
stood now than before. The inclusion of second order corrections, and a direct
comparison with numerically integrated results - as is available in the developed

computer program - will lead to a quick and direct comparison for a variety of
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sample cases.

The introduction of the relative motion hodograph and the correlation of
it with the displacements, leads to a more realistic representation and grasp of

the total motion history than has been noted previously in the literature.

One unusual and interesting phenomenon, noted and reported here, is
that of a cusp which was found to appear on certain of the relative motion traces.
The fact that these geometric anomalies were discovered and described from a’
purely analytical examination should be indicative of the value which analyses
such as these can provide. Also, it points to the worthwhile aspects of formula-
tions which extend, in some depth, beyond those of a more basic nature - those

for instance which arise from (say) the more familiar linear theory developments.

Hopefully the implications, .which should have come through to the readers
of this document, will suggest that the material contained herein has a much
wider application than that to which if has been put here. Due to the obvious |
limitations of space and time, it has not been feasible to attempt to set down all
likely situations which could be studied by the formulations developed and des-
cribed. It is expected that the inquisitive, future investigators in this area will

devise more unique and inventive problems to examine,

VIII.2 The J2 effect, - In the early stages of this study a question arose re-

garding the f)ossibilify that serious influences on the relative motion could be
missed by héving assumed, as a basis for the:investigation, Keplerian type orbits.
In order to ascertain whether or not this could be the case, it was decided that one
or more of these physical anomalies should be studied to determine the subsequent
variations produced. In the end, it was concluded that a most likely influence would
be that attributed to the J2-term in the gravitational potential! It was felt that this
quantity was as likely to affect the relative motions, for a large family of orbits,

as any of the other perturbation parameters.
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To test the influence of J2, on a relative motion, the following numerical

experiment was devised, executed and analyzed.

A pair of orbiting particles would be placed on well defined trajectories,
above the earth, having a selected orbital inclination, altitude and period. From
the motions of these two mass particles a relative displacement and velocity would
be determined (by numerically integrating the descriptive equations of motion).
For one case the gravitational potential would describe a spherically homogeneous
earth, In a second set of runs the J2-term would be added to the potential. Both
orbital problems were given the same initial conditions, etc.; and both were in-
tegrated to produce data for slightly more than one Keplerian orbital period.

(The computer program used for this purpose is described in reference 15, it

is the ITEM program. It should be noted that this program is quite versatile
and inclusive in its capabilities. For this numerical experiment, all perturbative
influences - such as other planets, the sun, moon, atmospheric effects, ete, -
were nulled in the input and calling sequences. Consequently, the one remaining
influence, included here, was the J2 term in an (6therwise) point mass, c¢entral

field gravitational potential).

To define an influence for the J2-term, on a satellite's relative motion,

- the following sample problem is examined and discussed:

Initial (and Uhperturbed) Values

Quantity Body (1); Circular Orbit © Body (2); Elliptic Orbit
Geocentric Alt. 1000 km 963.10917 km
Orbit Inclination 45.0° 45.0°
Period of Motion 1.75198 hr, ,1.75198 hr,
Eccentricity A =0 0.005.
Semi-major axis (a) 1.15678 1.15678
Orbit Pericenter 7378.165 kmy. 7341.274 km ~
Orbit Apocenter 7378.165 km 7415.056 km
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This problem begins at pericenter (Body 2); correspondingly, the initial (relative)

_state is:

Aro = 36.890825 km, AVO =(0.036609 km/sec.

Having examined results from the numerical integration of these cases,
it was found that the maximum variations in state, for the two orbits (one with
and one without J2), was less than one-quarter of one percent. The maximum
variation in the reiative state quantities was less than one-half of one percent.
Consequently it was deemed that the J2 effect on the relative motion was not
significant, Hence, the linear analysis (considering an idealized gravitational
influence) was not likely to be affected by any J2 inﬂuence, per se. The errors
which could arise from the linearization should not be adversely magnified if

this latter influence had been included in the analysis.

As a matter of interest, the orbits were initiated at the equator of the
planet; the subsequent influence of J2 was to redpce the orbital radii, as the
orbit progressed, and (correspondingly) to raise the speed, slightly. The
largest effect (noted for this example) was on the change in eccentricity for the
Body 2 orbit. Of course the eccentricity was initially small (. 005), and the

apparent, extreme change was of the order of thirty percent.

The consequence of this numerical experiment can be summarized as
follows: insofar as can be ascertained, from the data collected here, the
neglecting of J2 (as a representative, physically evident, perturbative parameter)
would not significantly affect the results of this in‘vestigation. The errors which
have been noted, between the linearized results, and other more accurate methods,
are truly indicative of this (the linearization) and should not be adversely in-

fluenced by othér neglected parameters.

All in all, it is felt that the information provided from this investigation
represents‘ai'significang contribution to the understanding of relative motions for

orbiting bodies.
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APPENDIX A

' THE LINEARIZED SOLUTION FOR THE RELATIVE MOTION
OF TWO ORBITING MASS PARTICLES, USING
CARTESIAN COORDINATES

Al The equations of motion (cartesian coordinates). - Under the assumptions

of a spherically homogeneous planetary mass, negligible perturbations and negli-

gible -attraction between particles, the equations of motion, for two distinet parti-

cles moving in a central force field, can be written-as:

m — =-m £ ;
T 2 rk
k
for k=T, I; fespectively. (Here 'T'" refers to the target particle, and "I"

signifies the interceptor; these names are used to make a recognition of the

parti¢les more precise). In eq, (A.1) the m  represents particle masses;

k
Vk their inertial velocities, while ér are unit vectors parallel to ;k’ their
k
position vectors. In the expression, —&2 describes the specific gravitational

Tx

attraction* of the central force field, on the masses, mk.
In form, eqs. (A.1) treat each particle as a restricted two-body problem;

in this regard these expressions are independent of one another. That is, there

is no interaction between these mass particles and, especially, there are no mu-

tual attraction forces present. -

According to definition, the velocity \71 is

-
= I
VI t

I

* u=GM = grkZ; G is the universal gravitational constant, M is the primary
(planetary) mass, and g is the 'local gravity", at a radius Iy
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and consequently the interceptor's equation of motion becomes, for a fixed mass

particle*,

; =-——%f e . (A.3)
dt rI I'I

From Fig. A.1 it is noted that, ;I = I_'T + ;r’ where r is the
r

relative position vector, which can be expressed as

r =xe +ye +tze ; .4
rr xeX yey zez (A.4)

and, accordingly, eq. (A.3) can be written as

’r,  dr i
— — =-?g r . (A.5)
dt dt rI

Recognizing, from the figure, that the position vector for the interceptor

can be written as

;=r (—3, +xé+é+z(_e
I T r xyy z’

T
then
2 2 /2
e [ X Pe ]2
I T rT r 2
T

Also, in agreement with Fig, A.1, it is apparent that

3 31/ 2 3/2
r, =r [§1+—X > +sin26] / ,
I T rT’

which can be approximated, for relatively small ;r values, as

*The assumption of fixed mass bodies is employed here in order to retain the
analytic nature of these developments. For small thrusting capabilities and
small quantities of stored propellants, such an assumption is physically reason-
able
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ST I

retaining only linear quantities in (x, y, z).

Using this approximation, then

r r
L~ ! (A.Ta)
3 3[ 2x ]3/2 ’

r r 1+—

I T rT

and after expanding the denominator, as a first estimate,

r
I o~ 1 [1_3L+m], (A.Tb)
r 3 r 3 rT
I ‘T
. 2
where the terms deleted are of order (—)-(—2 ) and greater. Next, expressing
r
T

I in terms of the coordinates (x, y, z), and collecting terms (recognizing that

e = e ), it is found that

r X

T

r

- - - t i

I E(1 _g X )e P AN S S erms.ofhlgher } . (. 8)
r3 r2 r3 b:¢ r3 y r3 z \order inx, y, z.

I T T T T

Eq. (A.8) is the linearization to be used on the right side of eq. (A.5); this

should be a valid approximation so long as ; that is, so long as

Pl < |
r | T

the interceptor is not at too large a distance from the target particle, As a

matter of practical interest distances up to a few hundred kilometers, between

particles, have been found to satisfy this'l restriction‘.reasonably well,

Now, using eq. (A.8) in the differential equation of motion, eq. (A.5)

one can write
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as a first order representation.

In this expression, the lead terms on both sides of the equality are noted
to constitute eq. (A.1) for a k =T - a statement which is assumed to be satisfied

at all times - hence eq. (A.9) reduées to

a7
r

X - y - Z - ]
r 3 eX - 3 ey 3 eZ .
T T T

dt2 o [2

This equation is presumed to describe the relative motion of the interceptor with

respect to the target satellite (to the degree of approximation noted above).

A.2 Kinematic description of the acceleration. - Before eq. (A.10) can be

solved it will be necessary to describe the relative acceleration,

kinematically, for the problem. In Vévalu:i‘tiﬁé;the acceleration, it will be necess-
ary to properly account for the fact that the coordinates (x, y, z) are relative
values and thereby constitute a moving frame of reference, Thus, there is an
added motion which must be accounted for in the formulation of the acceleration
in this problem. In particular the coordinate frame moves with the particle
("T'") and rotates in space, so that the unit vector éx is parallel to érT at all
times.

To establish a kinematic expression for the acceleration one can begin

with the definition of ;r , and differentiate to obtain the velocity; that is, write

the relative velocity vector as,
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dr _ dy - dz - d(_ax de de
+ —
T at Oy T at 2T X &

4
YRR

<
i
"
8|8

y

where the unit vector derivatives arise as a consequence ¢f their motion (with
the moving frame of reference). Recalling that these vector derivatives are ob-

tained from

de,
—tl =w><‘ei, i=x,y, 2),

where  is the (instantaneous) angular velocity of this moving frame of refer-

ence (X, y, z); then, for wE=E.w éz (which describes the present case),

.

ex= w(ez)(ex) = wey s

de,
i
dt

= w(ézf)(éi), or ﬁ and

m'.

=wEe Xe)=-we
y €, X y) we_.
Using eqs. (A.12), in (A.11), it follows that the velocity vector is,

dr
r . b . — . -
— =( - +(y +w +
G E-wye +@ X) e, tze,
where the ""dots' infer differentiation with respect to time. Correspondingly,

the acceleration vector, formed by differentiating eq. (A.13), can be shown

to be

r=[§—yio-w2(gz+x>15 +[§r+xcb +w2<§§-y>]é +7 6 .
dtz w X w y 4
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Eq. (A.14) includes the relative (coordinate) acceleration terms
x, v, Z); the Coriolis terms (2 wy, 2 wx); the Euler accelerations (wy, d)x),

and the centripetal tegr_ns (cc wz). These quantities properly describe the abso-
d°r

lute acceleration, zr , kinematically. This result, eq. (A.14), will be
dt

introduced into eq. (A.10); and, as a consequence the equation of motion for

the interceptor is expressed, then, in terms of its position coordinates relative

to the target.

A.3 A formulation of the restricted equations of motion. - Introducing eq.

(A.14) into (A.10), the motion of the interceptor (or rendezvous vehicle) is

described by the differential expression,

.. . 2 - - e . 2 - w- " [ -
- - - + (y. + + 2 - + =- -
X - Wy -2 wy - wx) eX (v + wx Wwx - Wy ey Z ez 3 2xeX

I
+ye +ze :
yey Z ez ] ; (A.15a)
which is equivalent to the following set of scalar equations:
. . . P
X —wy—2wy—w2x=—H§— ,
Ip
.y. +o3x+2w;2-w2y=ﬂ 3
op
and Z =~ —‘% : (A.15b)
Ir

Eqs. (A.15b) are the approximate differential equations of motion sub-

ject to the restrictions that: (1) the target and the interceptor particles are
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not coupled through their mutual attraction; and, (2) the inequality for distances
(rT +x) >> y, z is retained. For terminal guidance and maneuvering the last
restriction can certainly be retained; however, for large separation distances,

between satellites, this ‘approxima‘ti_on'is weakened.

When attempting to solve the above scalar equations of motion, one should
note that the first two are kinematically coupled and must be solved together.
However, the last equation, being independent, is easiiy solved to obtain a des-

cription of the distance z as a function of time.

In order to facilitate an analytic solution to eqs. (A.15b) it is prudent to
assume that the target moves on a circular orbit. Then, in accord with this
last assumption, w = éT EZ) is a constant; and, consequently, eqs. (A.15b)

may be reduced, further.

A.4 A special case, the target moving on a circular orbit. - The added re-

strictions imposed here-are that w (= <;3T) is constant, and that the radius
vector (I_‘T) has a fixed magnitude. For these conditions eq. (A.1), for
k =T, is manipulated as follows; Since
2-
d ' uo -

at? r 2 Tp

and, kinematically, it can be shown that

2_
. d rT

BPENIPIE NI T B PSS
2~ p rTqDT)ex+rT a Cp op)ley

dt

then, for a circular orbit (rT, qu are constants), this last expression re-

duces to
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a’r
fp - ¢ 2) py _,_L[_d_ Ity qu )]é
&2 1) %% Ty bae T O S

where the quantities in the parentheses are noted to be constants. Consequently,

from the scalar equations of motion (A.16a, A.16b) one finds that,

-, @ T2 =~ _#_2 (expressing a balance between gravity

T ' and centrifugal force);

and

2 .

'p @p

= constant (describing the specific moment of
momentum for the motion). (A.16c)*

Introducing these two results into eqs. (A.15b) leads to a modification and special-
ization- of the interceptor's equations of motion. That is, after making the

appropriate substitutions one finds that eqs. (A.15b) become;

.- .. < 9
X —2y<pT-3x<pT =0,

y +2x¢,, =0,
. . 2
and z + ZQy = 0. (A.17)

These last expressions goverﬁ the relative motion of the interceptor, with res-

pect to a target which is flying on a circular path,

A.5 A solution for the relative motion of the interceptor. - The first two of

egs. (A.17) remain kinematically coupled through the Coriolis terms; hence they

must be solved together.

P ~ N

_ - R

< " *The first expression is a description of the circular satellite speed‘.. That is,

) \// since Vp =V, = V... = W, u7rT', then by a simple manipulation (rp <pT)2 =
v u7rT' = Vcif (as expected). Thus, the balancing of gravity and centrifugal
‘  force implies a circular orbit,

b : T
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A solution for the coupled expressions may be obtained by the following
scheme: First, lt should be noted that the second of eqs. (A.17) has a first in-
'tegral; namely, .

) y = Kl -2 (DT X,
" where K1 is an integration constant. . Now, when eq. (A.18) is inserted into

the first expression of the set (eqs. (A.17)) one obtains

. ) . .
x=3x<pT +2<pT (K1—2x<pT),

which reduces the expression to one involving only the dependent variable, x.
2K

Now, if this is rewritten in terms of a transformed coordinate q (= x -:——— ),

eq. (A.19) can be replaced by T

q=- ('.DT2 q, (where ('bT is a constant),
which has a simple, elementary solution, such as

q=K_ cos ((,BTt + K3),

2

where K2 and K3 are constants of integration to be described from the initial
conditions. As an alternate form of eq. (A.20), the displacement x can be
written as

2K

1 3
3 + K2 cos ((th + K3),
T

X:

accounting for the transformation q(x), introduced above.

Next, using the above resultant in eq. (A.18), and integrating, one finds

that
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= - - i - +
y=K, - 3Kt - 2K, sin (9t + K,), (A.22)

wherein K 4 is another of the constants of integration.

A.6 Evaluation of constants. - In order to retain the generality of this pro-

blem it will be assumed that the initial values are those specified below:

att =t )=0: X=X, X=X,
(o] o]
Y=Y, y=Y,

Z=z , zZ =z ; (A.23)

which is equivalent to- stating. that at the initial time the relative motion state

may be represented by the vectors,

=TI, V.=V
o o

Applying these general initial conditions to eqs. (A.18), (A.21) and (A. 22) it is

easy to show that the various constants may be expressed by,

=. -+ p
K1 Yo 2Xo(pT’

and K = -2 —
o
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After substituting for these constants the equations for the relative motion coor-

dinates (x, y) are found to be;

X 2 y 2

-y |
o o] 0 .
x=2(. +2x +\/(——> +<2-.——+3x> cos (.t +K_),
O o) O Op o T 3

and

—

2

N id . A”g’o /é'o 2 ;’o .
Y=(%f2$;)‘3¢T<5;+2%)t‘2 (5;’)*(25_”+&%) sin @t +K,).

T

Before seeking a solution for the z-displacement, it would be construct-
ive to rewrite egs. (A.24) in another form. This will:be accomplished by expand-
~ ing the trigonometric terms, and re-grouping quantities. As a result of these

manipulations, the following expressions for the relative displacements are ob-

tained:
3;0 );o .
= - - + -— si
X X + (3 x0 + 2 % ) (1-cos (th) P sin <th,
T T
and . .
Yo : X, : Yo :
= -3{——+ t-2-— (1- t) + < +2 — ) i t;
y=y, 3 (‘PT 2x0)rpT 2 b (1-cos O ) +2 3x0 b sin @,

wherein the ( ~)O quantities infer initial values, and ch is the constant angular

speed of the target moving along its assumed circular orbit.

A7 A solution for the z-displacement. - The differential equation of motion,

in the z-coordinate is (from eqs. (A.17)),
Z =- (pT z.

This expression, being similar to eq. (A.19b), also has an elementary solution,

such as,
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~

z = K5 cos (<th + K6), (A.27a)

where K5 and K6 are integration constants. Analogous to the manipulations

carried out above, an alternate form of this solution is

= A + i A
7 K7 cos qut K8 sin goTt, (A.27Db)

‘wherein the K] are integration constants. Introducing the initial conditions,

eqgs. (A.23), one finds that these constants may be described by,

2.

| ; B
K=¢2+(#),andK =tan1[——o———TJ;
5 o] (’DT 6 Z

o

with K7 = Zo’ and K8 = Z.o/(bT' Making the necessary substitutions, the z-

displacement expression(s) can be written as:

‘ Z 2
= 2 —0—) ’ + aj
A z <¢ cos (@t K6), (A.282)
T
and/or z =z COS Qpt+ (p_ sin @, t. : (A.28b)

T

A.8 The displacement expressions (summary). - The purpose of this appendix

was to develop equations which would describe the displacement of the "interceptor"
particle relative to the "target" (or ''satellite') particle, as these moved along
their mdependent paths. The desired equations, which are expressed in rec!—{"

tangular coordmates and given by eqgs. (A.24)(or eqs (A 25)) and (A 28) For ™'

convenience, these are summarized here: From eqs. (A.24) and (A 28a):
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3;o };o 2 3;0 2 .
x=2<—.——+2x)+ (-—) +(2-.—+3x> cos(qut+K3),
= —2—.—)—3<—.—‘—+2 >. t.-2 <—.'_)+<'._—+ ) i t +
y (yo b GDT X O P 2 o 3xo ' s1n(¢>T K3),
and
/ 2 Z‘o 2 .
= —_— -+ .
T
wherein
- : e -g,
K3 =ta.n_1 [_(2- +3‘; 5 ) ], and K6 =tan_1[ . ~ ] (A.29a)
yo o(pT 0<pT
Similarily; from egs. (A.25) and (A.28b):
v x
X=X + (3 X, + 2 p3 > (1-cos <th) + 2 sin <th,
T T
).’0 . '}20 . 3.’0 M
= - -—+ t-2 — (1- + + '—'—-> i
y yo 3((0 2x0><pT 2 % (1~cos (th) 2<3x0 2 o sin (th,
T T T
and
. Z, .
z=z, cos @Tt + E sin <th. (A.29Db)

A9 The relative speed expressions. - Egs. (A.29) may be differentiated to

yield equations describing theiinterceptor's speed components. Recognizing that
only the trigonometric, and secular, terms are those having time dependencé',; ~

then the speed components are easily obtained. -
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On differentiating eqs. (A.29a), one can show that:

. 3 T o'\ . -
X =_(*/Xo +(2y0+3xo<pT) ) sin ((th+K3),

s _e . . - 9 . . 27) . ]
Y=Y, 2[(2y0+3x0¢T)+(Jxo +(2yo+3x0qu) cos (qut+K3) ,

. - ) 5! ) . .
and z <Jz o + (zo <pT) sin ((th + K6), (A.30a)
wherein
% < ~
-1 0 -1 (¢]
K_ =tan [ ‘ - ] , and K, = tan [———.—— ] , as before.
3 —(2yo +3x0 goT) 6 zZ, <pT

In additipn, the differentiation of eqs. (A.29b) leads to:
X = )EO cos (ngt) + [3x0 (bT + 23}0:, sin-(éTt),
y=y, -2 {[3 X O + 23}0] [;-cos (¢3Tt)1+ x_sin (ngt)} ,
and z = Z.o cos (éTt) N (;T sin (ngt). (A.30Db)

A.10 Dimensionless representation for the relative displacements and speeds. -

The problem being studied has the target (hence, the relative coordinates origin)
moving along a circular path; therefore, I and ng are constants. A look at
eqs. (A.29) and (A.30) suggests a transformation which will lead to a full set of
dimensionless quantities, For this reduction the displacements will be normalized
by Ty the speeds will be referenced to the (target's) circular speed, oy (,BT ;
and, finally, the independent variable will be changed from '"t" to "(pT” by

means of:
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o5 = (th (since ('bT = constant; note that t = 0 will nominally
correspond to goT = 0).

Defining the dimensionless state variables as: displacement (§, 7, {),

d =.d = .d ; then the two
do,,  @opdt  d@t)

and speeds (£', 1", £'), wherein (~)' =

sets of quantities are related by:

¢ ] [: [ ¢ & ]
nl== |y |: |7 =d% n | ;and|n’ =£— 1
) T . T
| € 2z L&) | € ¢ ) | ¢

Conversely, to revert to dimensional variables, from dimensionless ones,

it is apparent that one can'do so by means of the following transforms:

- _— . .
x| £ rx - £
y|=rp | m]sand, |y | =@pep | M
2z} L% 2 | &)

Utilizing the transformations in egs. (A.31),it is easy to replace eqs,*
(A.29) and (A.30) with the following sets of (dimensionless) displacements and

speed relations. Thus,

(a) From eqs. (A.29a):-

£(=2)=2e¢_+n)+(fe)?+ @e, +2m)® ) cos (o + K,

=l = f " 1 1 2 t z' .
n (— )- (M, -26))-3@E +n')o, -2 (ﬁ&o) + @€, +2m)) ) sin @ +K,),
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and

¢ (E?ZT_ >= (\/céz * (C(;)z ) cos (¢ * K (4.332)
wherein
| K —taﬁ 1[-——_5—'— ] and K =tan_1[ _C:) :l
3 (3g +2n!) 4 6 Co )

(b) From eqs. (A.29b): -

— ] - 1 :
E=¢ +@BE +2m') (l-cos )+ EO sin @,
— - ! - ai 1 -
n=m +n'o. -2[@E +2n) (@ - sine) + ! A-cos o) ],
and = Co cos @, + C(; sin Pope (A.33b)

(c) From eqs. (A.30a); -

g (= d—é) - (€2 + @n! +36 )2 ) sin (o +K,),

n (=20 )= nt -2 [eng + 0t )+ (fl6)7 + @ny + 08 2 Yeos (0 +xp].

d(pT
and
C'(Eﬁr)L(«/Cf*@é)z ) sin (p, +K,). (A. 34)
wherein

1

K3 —tan-l [m—') ] and KG n_1 [ —_C:O—].
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@ From eqs. (A.30b): -

£r= gg cos <pT + (3£0 + 277(')) sin <pT,
= at  _ ! _ [ —
n=m -2 (@6 +2m) (-cos @) +£! sinoy |,
=1 - i
and ¢! Co cos @, CO sing,, . (A. 34b)

In egs. (A.33), (A.34) the independent variable (<pT) has its origin at
a preselected, arbitrary position for the target vehicle. Consequently, there is
no need to define (or determine) a pericenter for theée problems; in this regard
the choice of a circular path for the target was fortituous. Any selected position
along this base trajectory (the circle) will serve, adequately, to define an initial

state (or value) for the problem.

There are two sets of relations--for displacement, and for spe'edj = included
in the above listing. These describe the relative state of motion for thé/"')in_tercebzgr—"?
with respect to the target. In principlle,“ these two sets are included here for cc;rri-““
parison purposes; however, in some instances it is more informative to refer a

motion to one type of these relations than it is the other.
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APPENDIX B

'DEVELOPMENT OF THE EQUATIONS OF MOTION
(SHELL COORDINATES)

B.1 Shell coordinates, defined. - This system of relative motion coordinates

has its origin at the "target' satellite. Here the displacement of the interceptor
relative to the target will be described by (0, s, z). For this coordinate re-
presentation p is the radial separation distance, s is an arc distance, and z

is the out-of-plane displacement. Since the present problem is primarily a planar

one, the z-coordinate will not be included in the analysis.
Accordingly, it is evident that the shell coordinates (p, s) may be ex-
pressed by:
p=rI—rT, and s=rT ((pI—tpT). (B.1)
(The z-coordinate would complete an orthogonal coordinate system, centered
at T). See Fig. B.1.

B.2 Equations of motion (planar case). - Treating both vehicles as two-body

problems (without mutual attraction) then the central field equations of motion are:

dzEk mu ‘
2 TT T3 % v (B.2)
) dt T k
r
wherein e = Tk— ; k=1, T, as before.
e Irl

It should be recalled that for the kinematics of this problem (wherein a

single simple rotation, <;.), is assumed for the triads) the acceleration is:
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Fig. B.1. Geometry of the Relative Motion Problem expressed in
Shell Coordinates.
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2-

dr . -2 - .o - :
=(f, -r, ) e + @F @ +r o)e (B.3)

42 k™ k'k’ Cry k'k kUK o

where the unit vector éw is orthogonal to ér ; k=1, T. Using the coordinate
"k k
relations noted above, it is presumed that solutions for the displacement of both

vehicles can be obtained by solving, independently, the following sets of equations:

for the TARGET VEHICLE ‘ for the INTERCEPTOR VEHICLE
_ .2 W v ad_ M
Ip ~TpPp T 2 Ty~ 0P =79 >
rT I'I
and and
E_l__c_l__(Z-): "EL_Q(Z')___
2 Pp ¥ TP =7 @ \fp P17/ 70 2 optTio =g \Fp ¢/ 70 B4

T I

In order to describe the relative motion of the interceptor, the shell coordi-
nates defined above will be used. However, in order to obtain analytic results it
- is necessary, again, to assume that the target particle moves along a circular
orbit. Also, the relative motion equations must be linearized so that the required

mathematical manipulations can be performed.

Supposing the target vehicle flies a circular orbit; then necessarily:

rn = constant (hence o = rp = 0)
and
by = tant , O =0: =
¢ = constant (so <pT 0; P th). (B.5)

As a consequence of these restrictions the equations of motion for the target

vehicle reduce to:
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o (sz = -'&2 (describing a circular speed for this vehicle),
Iy
and
Lo qu = constant = hT’ (defining the specific angular momentum (B.6)

magnitude).

Next, turning to the shell coordinates and using these to describe the

problem, then the following kinematic relations are obtained:

With the position coordinates defined as,

= - y = - = - . t): ’ °
[o] rI rT and s Lo ((pI (pT) rT ((,DI O then (B.7a)
@) the speed relations become,

p=ry and s =Trq ((pI-(,DT) ;

hI
wherein <,61 == (B. 7b)
r
I
®) and, the scalar accelerations are,

p=rI, and s=rquI,

B.3 The general case. - Generally, the planar motion of the interceptor about

the target will be expressed in shell coordinates (p, s). These corresponding

relative motion expressions will be developed from eqs. (B.4), utilizing eqs. (B.7)

As outlined below a transformation scheme, leading to the desired rela-

tive motion equations, expressed in shell coordinates is used; i.e.,
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(a) From eq. (B.7a), note that: r_=r (1 +— ) 3
I T I'rp
and )
®) from eq. (B.7b): (,o =5 4 (p .
I r T
T
(c) If these results are substituted into the second of eqs. (B.4) one
obtains:
s 2p ( s
(p = — = (p + — ) ;
I r rI T Iy
or, solving for .s., find that:
. S .
+
2P (1 r..©0 ) (pT
T T .
s =~ . (B. 8)
(1+2)

@) In addition, from the first of eqs. (B.4) one can show that:

;0.=rT{(1+r: >(rTZT+1>2-—(1—:z_—52—}<bT2, (B.9)
fr

after incorporating eq. (B.6).

Next, eqs. (B.8, B.9) may be expressed in_}glimensionless"f_orm, after

the following transformations are introduced:

Letting A =;&, and 0’=—§— ;

T Ir
then )\ =—r£-, o= ;S— ; or, alternately: ).\d =—p—. , and c'rd = S. ;
T T TpPr TPy

and, finally,
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5\ = ;& , and 6 = ?S—; or, alternately, )\ =L , and o, =

d . 2 d 2 (B.10)
T T p
%1 T
here, (™) d infers a fully dimensionless quantity. In a real sense these trans-
forms suggest a normalization of distances, using the radius (r T); the speeds
are placed in ratio to the circular speed (rT <bT); and, the kinematic accelera-
tions are normalized by the target's centrifugal acceleration component, (rchTz).
Introducing these newly defined coordinates into the differential equations
of motion one obtains, from eqs. (B.8, B.9):
.« =2X (1 +0)
0 - ’
L+x)
and
.o - 92 -2
A=@L+X)Q1+0) -@+A) ", (B.11)
Note that identical equations would result if one used expressions for o d and
A q
In the alternate form of eqs. (B.10),the powers of éT follow the order
of differentiation; conseqliently, a convenient transform for the independent
variable is suggested; namely, with
= p t
(pT <pT ?
then
d d ®.12)
= — . .1
dp,;  d@t)

Taking advantage of this substitution, and recalling that (for instance)
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X=—&;then).td= p_ .1 g: = dd)\ = X', ete.;

then eqs. (B.11) may be alternately expressed as,

" — -2’ @a+ao'

@ +2x)

and

At=a+n)a+on’-oa+n?,

where primes signify differentiation with respect to the angle, ¢ T used as the

independent variable, now.

B.4 The linearized differential equations of motion. - Because eqs. (B.13)

are nonlinear, and because there is coupling between these two expressions, it

is evident that analytic results are not readily obtained. Hence, in order to
proceed, it will be necessary to replace the general expressions with others
more amenable to mathematical manipulation. To accomplish this task it is
suggested that the equation's denominator might be expanded in a-binomial series.
'Thus, after expanding, and grouping on powers of the variables (A, cand A', o),
it is found that:

o= -2l AT g - AN A AZN A et 0 0],

and
2 4
At=20t 430+ a4 2h o -+ a0t + xS +0 0%,
Eqs. (B.14) are ''correct' through a third order combination of terms;
however, a first order (linear) solution is developed in the next paragraphs.

This should lead to a result which is valid for small (A, o) and their derivatives;

such results are analogous to the linearization carried out in Appendix A. .
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B.5 A linear solution. - From egs. (B.14) a first order solution is obtained

from the "reduced' equations of motion. Thus, if only first order quantities are

retained the system of equations reduces to:
g''= -2,
and
” AT = 207 + 3. ' (®.15)
The first expressiop provides a-first integral, immédiately.; :

o'=-2) + K, (B.16)

where K1 is a constant of integration.

Using this result in the second of eqs. (B.15), then:
AT+ A=2K1, . (B.17a)
which integrates to give:
= + i +
A 2K1 K2 sin @, K3 cos @, B.17b)

wherein K2 and K3 are also integration constants.

Next, this relation can be used in eq. (B.16) in order to complete the

general 'linear solution'’; from this substitution:
e - -2 sin +K_ ¢
(o) 3K1 (K2 i <pT 3 08 (pT),
which integrates to:

= - + 2 - i + K
Ny 3K1 goT K2 cos (pT 2K3 sin goT 4° (B.18)

with the Ki (i =1 — 4) being integration constants. One should remember that

(here) Py =¢th, since @, is a constant.
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B.6 Evaluation of constants. - In order to retain the generality of this problem

the following set of initial values are assumed:

att=0: let p=po, s=s

o
and p =P, S =S .
This is equivalent to stating'that, at t = 0:

A=A ,0=0 ; A'=)A'" ando'=0' ;
o o ) o

since

A= L ete: O'E:idi<=>d_—g's—t—-
)\ Pr wpOpt)

, ete.

An evaluation of the constants (Ki)’ ~using egs. (B.19), (B.16), (B.17b)

and (B.18), allows one to write the '"linear' solution as:
= + ) i + + ' -
A )\o A o Sino, (3AO 20 0) (1 - cos (pT),

and

= 1 _ ry - 1 _ Qi
o oo+oo<pT 2[)\0(1 cos<pT)+(3)\O+20 O)(@T s1n<pT)].

It should be evident that time is implied here, as the independent variable,
through ¢ T = (th. Also, an inspection of egs. (B.20) indicates that this predicted

motion could be rather complicated in its geometric interpretation.

B.7 Speed components for the interceptor. - The relative motion of the inter-

ceptor is approximated by eqs. (B.20), the linearized solution. Associated with
these coordinates is a set of relative speed quantities which may be obtained by
differentiating the displacements. These quantities are also expressed as dim-

ensionless variables (A', 0'), which can be converted to dimensional speeds.

**It should be recognized that ¢ can be measured from any convenient origin
on the circular orbit; then, selecting the origin at the initial point (corresponding

(B.19a)

(B.19Db)

(B.20)x*

to t=0), it follows that ¢ is a measure of the transfer (angle) for the target particle.

In this regard it is not necessary to describe a pericenter location for the target.
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by a multiplication, using the constant quantity, (r T (bT).

Consequently, the dimensionless speeds, corresponding to eqs. (B.20),

are:
1 — 1 + (3 + 1 i
A=) o COS @ ( >‘o 20 0) sino,,
and

t=qg! - ! i ! -
o'=0' ZDtosmqu+(3)\o+20 O)(l cosgoT)].

B.8 Displacements and speedé (a summary). - The purpose of this appendix

was to develop a second set of state variables representing a solution to the re-
lative motion problem. For this representation the problem is defined in (planar)
shell coordinates; subsequently these were expressed »ifl‘d_i‘mensionless variables.
For these expressions the position angle, referred to the "target' trajectory,
serves as the independent variable; the appropriate dimensionless displacements
and speeds are given by eqs. (B.20) and (B.21). For convenience these several

relations are listed below:

(@) The dimensionless displacements, from eqs. (B.20) are:

A= AO + )\'0 sin (pT + (3>\O + 20’0) (1 - cos <pT),

and
= H - 1] - + 1] - 3
oc=0_+0' o 2[x o (1 -cos <pT) + (3)\0 20 o)«DT sin <pT)].
®) The dimensionless speeds, from eqs. (B.21), are:
t = ! + 1 3
A=A 0 08 O + (3A0 20 0) sin @,
and

o'=c' -2[\' sing + @A +20' )1 =cos )],
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wherein A = £ , 0= & , AT =S do , o= ds ; and (~) indicates initial values.
' ' dcpT d(pT o

B.9 Dimensionless variables. - Eqs. (B.22), having been expressed in dimension-

less form are adequate for representing the linearized solution; but they do not des-
cribe the physical and dimensional (or size) aspects of a relative motion, as time

progresses.

In order to convert to dimensional quantities, and to employ time as the
independent parameter, one can perform the same transformation manipulations
as noted in Appendix A. Thus, to convert from A, o, A', ¢' to p, s, ;3, s the

operations are, simply:

[5] " I [2] ,  and [sj =T [221 ’

with the definitions for p, s being those given by eqs. (B.1), in agreement with
Figure B.1. For clarity, it should be recalled that T (;)T are the radius and

angular rate for the target vehicle as it moves along its circular ﬂiggt path.
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APPENDIX C

LINE-OF-SIGHT ANGLES FOR THE RELATIVE MOTION
OF TWO ORBITING MASS PARTICLES

C.1 Defining the angle for line-of-sight (LOS); in-plane. - In this appendix
analytic expressions are derived which describe the "liﬁé—;f;sigﬁi'*; “or "ook"
direction, used to locate the target from the interceptor (or vice-versa). Two
cases are considered; one for-the relative motion described in cartesian coor-
dinates; and, the second case, for a representation in shell coordinates. In

both developments the motions will be restricted to a common plane, initially;

the extension to three dimensions follows a same general pattern.

C.1.1 Cartesian coordinates (two dimensional case): The sketch, on Fig. C.1,
indicates a typical situation as it might occur at some time, t > to. The inter-

ceptor (I) is assumed to be at a position (x, y) relative to the target (T).

The line of sight (angle), designated as ¢ LOS, is measured from the

interceptor's local forward horizon (i.e., from e. ) ina clockwise (or anti-

O
motion) direction to the target.

Relative to a fixed origin (O) the target and interceptor are located by
- - d . .
coordinates (rT’ (pT) an (rI, (pI), respectively
From the sketch, one notes that
= +
r  cos oo rntx,
and

rI sin dp=1y,

where §¢= ®; =9r (the difference in position angle for the two vehicles).

According to the geometry shown on the figure;
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= tan-1 (—X— ) .
rtx
T
It should be apparent that the target-to-interceptor line-of-sight angle

( & los), locating the interceptor from the target, is described by
-1 /Xx
los = tan ( = ) .
st Ay

Using this last description, it is evident that the line-of-sight angle
(¥ LOS) which locates the target vehicle from the interceptor, may be ex-

pressed as;
¥ LOS=7 + 8¢ + & los;

or, using eqs. (C.2) and (C. 3);

y/r.. o ] x/r,., -
m};—)+tan1<y/r”rr )

JLOS=1m+ tan—1 (

Expressed in terms of the dimensionless quantities (§, n), it is easily shown

that;

X LbS=1T +ta1n_1 (-1—_?€—> +tan™t <'§7),

wherein- § =2 and n =L (introduced in Appendix A).
I r'n
One notes that so long as the interceptor is above the target, then the

line-of-sight lies in the range
T < & LOS < 27,

generally, For the converse situation, when the target is above the interceptor,

.then the range for ¢ LOS is,
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0 <y LOS < 7.

C.1.2 Shell coordinates: A definition for the line-of-sight (angle), when the
motion is described in shell coordinates, follows here in agreement with the
sketch shown above. Again the development considers the planar case only;

that is, both vehicles are in a same plane of motion.
Here, the dimensional coordinates locating the interceptor (I), but

measured from the target (T), are (p, s); where

p =Ty~ Iy

and

s =rp 00; Go=¢ - o). (C.5)

Correlating the two descriptive sets of relative coordinates, (x, y) and

(0, s) one can see that;

y=(p+r,)sin 6o,
and

x=(p+rT) cos 6p-r (C.6)

T

As a consequence the 'look' angle (& los) is, by definition,

(p+r,) cos bp - T ]

X los = tan—1 (? ) = tan " [ (p +r,)sin 20

Next, recalling that
¥ LOS=7 + 6¢ + & los,

then it follows that;
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(p+rT) cos 6<p—rT :]

- -1 [
Y LOS=7 +6¢p + tan o+ rT)Sin 50 (C.7)
where O¢ = s/rT (by definition).
Expressed in dimensionless coordinates (A, ¢) this last relationship
can be rewritten as;
-1 [(1+>L) cos 0 -1
=g +0+
¥ LOS=7 +0 +tan Y , (C.8)

with A=p/r., 0= =
T rT
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APPENDIX D

A SOLUTION FOR THE RELATIVE MOTION OF ADJACENT
ORBITING PARTICLES, WITH THRUSTING

D.1 Equations of motion. - In Appendix A, the general problem of two adjacent

mass particles was examined. There the relative motion, for one particle with
respect to another, was formulated and an analytic (linearized) solution was ob-

tained.

In this Appendi.x the linearized problem is reexamined for that case where
a thrusting capability, for one particle, is included. By suitably restricting the
formulation, it is possible to obtain analytic solutions for the relative motion with
this added influence included. It is expected that by including this additional in-
fluence the reader will have an even more complete grasp of this problem; but

without the complexity of a myriad of mathematical statements.

D.2 Formulation of the problem. - The formal description of this problem is

quite similar to that found in Appendix A; it does differ in that it has the added
thrust (acceleration) term. This added capability, to alter the relative motion,
is applied to the interceptor particle, hence its influence on the state variables

is direct.

In the formulation, the general thrust is assumed to have components

(Fx, Fy’ FZ); thus, the fixed, specific thrust terms will be denoted as (TX, Ty’ TZ),

Since the linearization of the differential equations, describing the problem,
would follow the same steps as outlined in Appendix A, they are not repeated here.
Consequently, the linearized expressions to be solved for the relative displace-

ments, including the specific thrust terms, are those noted below:
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. . 2 F
X -20.y -3¢ x= —— =T,

m X
LL] . F
y+2<,oTx = ——Xm = Ty,
F
. -2 X
+ = —= =
and Z (pTz ™ TZ.

D.3 /;Solutidns to the equations of motion, - Once again the descriptive ex-
Pz

pressions, for the :moti—on, are separated ini:o two sets. The third equation in
egs. (D.1), is not influenced by the other two, hence it may be solved independ-
ently. Contrary to this, the remaining expressions are coupled and must be
solved together. The scheme which has been employed here is the same as that
noted in Appendix A. In this regard the second equation‘yi'elds' a first integral,
which can be inserted into the first expression to obtain an equation in one de-
pendent variable. The resulting expression provides a solution for (here) x;
and, this resultant can be utilized, then, in the previously acquired first integral

to obtain a solution for the remaining variable.
In an outlined form, the several steps involved are as follows:

A first integral of the second of eqs. (D.1) can be written as:
7 +20 x=T t + ,
y +20px=T ¢1

where ¢1 is a constant of integration. In terms of the general initial values

for the problem, this constant can be expressed by:

¢1 Yo * szXo'

*As in the previous analysis, it has been assumed here that the particle, 'mT,
travels along a circular orbit about the primary (u).
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When eq. (D.2) is inserted into the first of egs. (D.1), one obtains
X +oix=(T_+2¢ o)+ 20Tt
T X 17T "y ?

which has a standard solution form - a harmonic resultant for the homogeneous

expression, plus the particular solution. It is not difficult to show that,

o ) T z¢1 2T
x=Asin(th+Bcos(th_,_(‘x‘zl+ 5 >+. Zt,

GE T )

T T

where A, B are constants to be evaluated. Modifying eq. (D.2), using eq. (D.4),

then the elementary integral, resulting, can be written down immediately;

T 3T 9 )
— - X Y - _ . .
y= ¢4 [<3¢1 +2 @ )t + 5t -2Acosot-Bsin (th)] ,

T C'DT

wherein ¢ 4 is a (second) constant of integration.

Since the last differential expression can be solved, independently, then

by inspection it is apparent that its solution may be written as:

T
Z

2 H

z=K sianTt+K coséTt+

1 2

i\
where the Kj are (initial valued) constants.

D.3.1 Evaluation of constants: Expressing the initial values as parameters,
designated by (~')o, then the constants appearing in eqs. (D.4, D.5, D.6) may

be described. These several quantities are found to be:
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A= _g X ,B=‘[3x +2 —— + X J ,
<pT < 2 o} T < 2
P T
o, T
=2 +y ,¢ =y -2A= -2(—-2 )
A KRR T y T . 2
L\
Zo T3
= ) K- = - . .7
and K 3 0 =% T (D.7)
T O

D.4 Summ‘amof relative motion state equations. - The relative motion dis-

placement equations may be written down, now, in terms for the (general)
initial state parameters. Similarly, by differentiation, the relative motion
speed components may (also) be obtained; hence, the full state of the relative
motion is known from the prescribed linearized equations of motion. A set of
these expressions is ' included here, below; however, it should be noted that
the speed component expressions have been altered slightly in order to present
them in a more concise and homogeneous form. (The manipulation has been in-

volved in substitutions through the constants (A, B) above).

(a) Relative motion displacements:
X.o - ’ . .

X=X + 5; ((th) - [A ((th - sin (th) + B (1-cos (th)] .

3}0 3 Tz . . .
y= y0 + -(p— - E 5 (<th)] goTt +2 [B (<th - sin (th) -A (1-cos <th)J ,

T .
T
. z T,
and z =1z COS (th + F sin (th + - 2 (1-cos (th). (D. 8a)
T O
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M) Relative motion speed components:

. b
X 0 [ . .
—=~<—-|A (1-cos ¢,.t) + B sin ¢ t],
(pT ‘DT T T
5 Y, X T ; . . .
S—= = - - - t [ - - si t]
3 " [ ) —L. 2 ](pT +21B (1 cosgoTt) +A((th 31n<pT) ,
T T T ©
T
: ; Z T, .
and —=— = —— cos @ t+<. —z)sin(p t;
Op O T (pz o T
T
X T - : 5}0 T
whereinA=.—o-—2 —X,and B=—<3x +2 — + —= )
. 2 o © * 2
T O T op

In these expressions the argument for all trigonometric terms is
(th (= - since ng = constant). Also, the speeds appear in ratio to (bT; the
reason for this is in anticipation of the nondimensionalization which is to occur
(below). As a matter of fact, in this next operation the independent variable is
changed, from t, and the state variables, etc are all recast as dimensionless

variables (and constants).

D.5 Equations for the relative motion in dimensionless form. - Here the state

variables (dependent variables) and the forcing quantities (thrust components)
are expressed in dimensionless form. Also, the independent variable (t) is
transformed to the position angle, via (¢ T (th)’ and the expressions above,

eqs. (D.8), are recast in this alternate form.

The nondimensionalization is identical to that used in Appendix A, hence

it is obtained by the operations indicated in eqs. (A.31). In addition, the specific
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thrust terms are normalized by the quantity, (p,I? Lo the centripetal accelera-

tion (term) for the circular orbit (of mT). These last quantities will be written

as follows:

T,

T - '—jlz—, k=&, m C; j=x,9, z). (D.9)

P

A summary (set) of these dimensionless expressions is noted below; they

correspond to, and are drawn from, egs. (D.8) above:

(a) Dimensionless relative motion displacements:
= + £7 - - i - ]
£=¢ +¢& o [Ao (o -sin@ ) +B_(1-coso) |,

3 X
n=n,+ M) - 5 T e ep 2B (o - singy) A Q-cos o) ],
and (= Co cos @, + C(') sin @, + TC (1-cos @) (D.10a)

with Ao and Bo defined below.

®) Dimensionless relative motion speed components:
£ = g'o - [AO (L-cos <pT) + B0 sin O :l ,
m'=nl - @&, -7 ) o, +2[B (-cos @) +A_ (o -sin@p) |,
and C'= C’O cos @y, + (TZj‘ - CO) sin P (D. 10b)

=£r _ = _ ]
where Ao €O 2'r_n and B0 (3£o + 277o + Té')'
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% y T
= _ ; O i -2 _ - X n- -
X=X (4-3 cos (th) + o sin (th + 2 (p (1-cos (th) + 2 (L-cos (th)
T b7

T
+2 T (@t - sin @ t)

)
S;O . . yo . XO .
y=y, -3 (Zxo + 5— )((th - sin <th> + -(p—-— sin (th -2 ::D—- (1-cos (th)
T T T
o e T
. _ 3. o X o
| — [4 (1-cos <th) 2 (goTt) ] 2 - 9 (goTt sin <th),
| er | P
1
and
. Z.o . TZ .
z =z cos (th + 6— sin (th + - 2 (1-cos (th). (D.11)
T <pT

Symbolically, these last equations can be represented as,

x] (5] x_x _x 1 [rT.]
X XX Xy Xz X
vi=}J |+}K K K T ,
y yx yy Jyz y
K K K T
| 2 ) LJZJ | zx zy zz | | Z | (D.12a)

or | f)- §}+[x]{x}. ©.120

Actually, in the scheme above there is no need to include the z-component
since this is not coupled with the x, y components. Hence, in the determination
to follow it will be presumed that the matrices are constructed without the z-th

elements being present.
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Now, setting {x} =0 as the requirement for intercept, it follows that
the thrusts needed to null {x} are obtained by the following method:

Since intercept infers

0} ] {ee}
- (m}e-fe] o}

where [K* J -1 is the inverse of the matrix [K* ] ; here (~)* infers those

quantities particular to t =t*, the intercept time.

A
When the operation in eq. (D.13) has been carried out, the following set

of equations (plus the z-th component) is obtained:

T*
X

. . . 2 3 . .
= >k i * - * - *) — - £ 3
> A X, [24 (qut ) sin (th 3 (goTt )" @+ cos @Tt ) - 28 (1-cos (th )

@)

+2y_ [ngt* ~’sin (th*] + —q.)i [% ((th*) sin @, t* - 4 (1-cos qut*)] @, t*
' T

y
_9_ . * . . _ . 2 _ . _ _ - j
+ (bT [14 (('DTt ) sin <PTt* 3 ((,oTt*) (1-cos (th*) 16 (1-cos <th*) ,

T* Xy, . ) . .
= . - * - - * - - i
—¥ a=[(s T 6 ) (t-cos §, %) ] - 2 [x_ 6% - sin o, t%)
G T T
%
9 ik cin o
+¢T ((th ) sin (th*],

wherein, the determinant,
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. 2
- . . . ((th*) .
A=8 [1-cos <th* - ((th*) sin (th*] + — [5 + 3 cos @Tt*] . (D. 14b)

Lastly, the z~th thrust component is found to be,
z'~o .
_— i * *
. ‘bT sin <th + z, cos <th
9 T - . (D.14c)
- %k
@) 1-cos gt

T*

The expressions above, egs. (D.14), specify the magnitude and direction
of the (specific) thrust required to produce an intercept, with mT, from a known
(a priori) state. Of necessity, these quantities presume the intercept will occur
in a predetermined time (t*); br, after the target (mT) has traversed a specified
transfer angle (<,o>':r = goTt*). In the next sub-section, the above expressions will

be rewritten, but (now) in dimensionless form.

D.6.2 Dimensionless thrusts, for intercept: The following equations are equiva-
lent to eqs. (D.14),but are given in dimensionless quantities. Here, as before,
the nondimensional parameters follow the scheme illustrated by eqs. (A.31), in

Appendix A.
The desired expressions are:

. 2 3 _ _
T"g‘ A= Eo [24 ((p",‘r) sin <p",‘r -3 go":l, @+ 5 C0S <p":r) 28 (1-cos go”:r)]
3 .
Qi ' =2 i - -
+ 2170 [(p":r sin <p%] + (é_}o) [2 (p":r sin cp":r 4 (1-cos <p>':r) :I <p",‘r

+ ) [14 0%, sin o, - 3 @) (reon o) - 16 a-cos o) ]

r - - C
r*n A= [(453 - M Q% - M )(L-cos qo*T)] - 2[60 (¥ - sing¥) +& 1 @%, singk, J .| (D.152)
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wherein
2
(90"51,)
= - * o *k i *
A 8[1 cos ¥, <stm<pT]+ 3 [5+3cos<p=':r]. (D.15b)

Finally, the last intercept requirement (component) is,

! i * + *
o Co s1n(pT l‘:ocosqu 0.156)
_ * . .
g 1 cos<pT
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APPENDIX E

A SECOND ORDER CORRECTION FOR THE RELATIVE
MOTION OF TWO ORBITING MASS PARTICLES

E.1 The equations of motion. - In Appendix A, equations governing the relative

motion of one orbiting particle, with respect to another particle, were developed.
These expressions were of particular use in providing general descriptioné '

of the relative motion state; and, in explaining the geometrical traces of such mo-
tions. Of course, the applicability of those expressions is limited, due to the in-
herent inaccuracies arising from the attendant assumptions employed. In order to
overcome some of this inadequacy, due to linearization, a second order correction
(to be applied to the "linear solution') is developed, here. This development is

an extension of the work presented in Appendix A; consequently, it will follow the
same general procedures presented there. For conciseness of notation, the major
portion of this work will be carried out in dimensionless variables; and, as before,

the "target' particle is presumed to follow a circular orbit about the primary ().

E.2 Development of the governing equations. - Here, as in Appendix A, each of

the two particles are assumed to have a Keplerian motion about the primary (u),
but without any mutual attraction force, or other perturbative influences. The geome-
 try for this problem is described on Fig. A.1; there one sees the reference triad

with origin at "T".

Since the particle m_ is located by the relative position vector, ;r’ where

I
;r = (x<—eX + yéy + zéz), then from eqs. (A.1) one can construct the expression
bl _ M - -
ry 3 (Cptr) (E.1)
1

recognizing that r.=r. + r.
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When eq. (A.1) is applied to the particle "T'", on its assumed circular

orbit, it is found that

3. 2
and
r 26, = h_, (constant)
R A\ ’ ‘ (E.2)

as shown by eq. (A.16). Making use of the equations above, and expressing ;I’
kinematically, as -

: .’. Ps . . .o - 2 -— .o . . . e
o= [EL 205 - yon - ks |8 +[F 2o G i) )@,

) 2]6 +7 e (E'lg)
T y Z b -

taking account of the factthat @ = ¢ _e and r.,=r_e , asineq. (A.14).
1%, T Tr%

. Recognizing that rT and ('bT are fixed quantities, here, then eq. (E.1) can be
recast as

. . . . 97 _ v o . . 27 - . B
(5 -20,5 - e by |8 + [V 42005 -yp, |8 +ie, =

‘b Zr 3
T T [ - - - :
el m———— -+
iE x+r.) ex+yey+zez]], (E.4)
I

accounting for eqs. (E.2) and (E.3).
For eq. (E.4), the term (rT/rI)3 can be expressed by
-~ 2.2 _3/2

(fli >3=[(1+r’;‘ )2+ I -2 ] ; (E.5)
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then the scalar equations describing the problem follow directly.

E.3 Dimensionless variables. — For the conciseness of notation, mentioned

earlier, a change of the independent variable, and dimensionless dependent var-
iables are introduced. The scheme which is used here is that indicated by eq.

(A.31), Appendix A.

Also, in this formulation, the quantities in eq. (E.5) are expanded (bino-
mially) - up to third order - so that the dimensionless scalar expressions for the

relative motion are:
gr-2n' -3E7-387+ 5 (n +2?),
n"+28'=3&n,

and C"+C = 3¢&C. (E.6)

It is immediately apparent that a linearized solution can be obtained from
this "reduced' set of expressions if one deletes the higher order terms in the de-

pendent variables.

E.4 First and second order equations. - A scheme which is most direct in

describing the second order corrections is indicated below:

Here, each of the dependent variables is assumed to be composed of a first
and second order element, with the second order elements assumed to be of an
order of magnitude "smaller' than the first order elements. That is, the second
order components are 'megligibly small' when they are compared, directly, with
the first order terms. However, any multiplicity of first order terms is assumed
to constitute second, third, etc. order quantities depending on the order of the

multiplicity.
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For this purpose, then, write the dependent variables as
=§ +g +...;m=n +m ... E=0 +C +...
£=¢€ +§ ; m=n, v, E=8 + &, (E.7)

where the subscripts indicate the order for the terms. For orders of magnitude,

for instance, write
O(E,) = 0(&, %) = O(&, n,), ete:
2 1 11”7 ’
and, correspondingly, the order of magnitude for the derivative terms is assumed

to follow this same argument.

When terms like those shown in eq. (E.7) are substituted into eq. (E.$6),
and grouped according to orders of magnitude, one finds that the first and second

order equations are:

(@) first order (linearized) differential equations;

n_z | . =
€1 n'y 351 0,

11" + | J—
ny +2 £1 0,
and Cl" + Cl= 0. (E.8)
b) second order differential equations;
2 2
2 M Y
" o_ LI - _ e .
EZ 2 772 3 §2 3 (gl 2 ) ?
1" | -
and Ly +¢, =38 L . (E.9)
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Equations (E. 8) are seen to have the form of eqs. (A.17), in Appendix A.

Hence the solution to these expressions would be identical to eqs. (A.33). Of
course, the dimensionless relative speed components (shown in the previous
Appendix) can be obtained by direct differentiation; these results would match :
thése given as eqs. (A.34), Appendix A. (In Appendix A the variables bearing
the subscript "O", ( )o’ are initial values; these would be assigned according

to conditions for an initial value problem being studied).

When eqs. (E.9) are being solved, analytically, one should note that these
expressions (in £ 9’ n 9’ C 9 etc) depend explicitly on the linearized results.
For reference purposes the linearized solutions, to solve eqs. (E.9) are, from

Appendix A:
El = go + (3 go +2 n'o)(l—cosqu) + 6(; sin @1,
My =N =3 28 ) -28" (1-cos @) +2BE +2n' )sing,,
and Cl = Co cos @, + C'o sin P

In a formal sense, eqs. (E.10) will serve as Ydriving functions' for egs.
(E.9). One should r‘ecognize that when using eqs. (E.9),the initial state has been
accounted for, already, consequently the initial values (needed to describe con-
stants arising in the analytic solutions to eqs. (E.9)), for the second order results,

will be set to zero.

In the following paragraphs a method for solving for the ( ) 2—ter‘ms will
be outlined; no attempt is made here to present the work in detail since the pro-

cedure is one used frequently and is well understood.
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E.5 A solution for the second-order correction terms. - Even though the so-

lution is straight forward, some comments may be appropriate. For this reason

the statements, below, are given as an aid in following the procedure.

On looking at eqs. (E.9) it is apparent that the first two are coupled (in the
second order terms) and, consequently, they must be solved together. The third
expression, however, is independent of the first two and can be solved directly.
(The fact that the driving functions are not uncoupled is of no concern since these

are known; they are eqs. (E.10)).

When solving the first two differential equations, one should recognize an
immediate first integral is obtained from the second expression. With this in hand,
a substitution into the first equation can be made, yielding a differential equation
for 52” = '52” ((pT) which can be solved, analytically. Then, with an expression for
62, the first integral of the second equation is solved, for nz. This completes the

solution for the second order correction terms (£2, 172, Cz).

The second order cbrrections for the speed components (€2' , 17'2, C'z) may be
obtained by direct differentiation; or, these could be obtained (in part) during the so-
lution procedure outlined above. It should be kept in mind that the initial values for

the second order corrections are all zero-as mentioned earlier.

For convenience some notes on the mathematical operations, leading to the
second-order corrections, are included below. These will serve as a guide for ob-

taining the final results.

E.6 Notes on the second-order solution manipulations.

(@) A solution procedure leading to 2:2 _. - The third expression in eqgs.
(E.9) is the simplest in form and the easiest to manipulate. For this reason it is

examined, first, and the steps leading to its solution will be described here.

For convenience, the following quantities, in the driving functions,

are renamed as shown below:
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A=3€ +2n ;s B=n +2¢& . (E:11)

Using eqs. (E.10), the driving function appropriate to this step in

the procedure can be written as:
Y 3 oo
3 El Cl = 3(A+§0)(C0 cos @, + C(; sin (pT) + > [(&(’) Co - ACO) sin 2<pT
-AL +L! &) cos 20, + (61 L - AL ) |, (E.12)

A solution to the homogeneous differential expression (for Cz) leads
directly to a harmonic resultant, while the particular solution is assumed to be of

the form:
= + i + + i +K . :
(CZ)p K1 K2 sin 2¢>T K3 cos 2(pT K4<pT sin @, 5P COS Oy (E.13a)

Here the (Kj) are constants to be evaluated by matching like terms in the inde-
pendent variable, <pT.
Symbolically, the full solution for 9 is expected to be in the form:

= i + + + i + + i
Cz ¢3s1ncpT (Z400s<pT K1 K2s1n2<pT K300s2<pT K4(stm<pT

+ KstpT CoS @, - (E. 13b)

E.6.1 Evaluation of the constants (¢i 1__K]l - As mentioned above, the constants
in eq. (E.13) are obtained by matching coefficients of like terms in the variable,

0 When the assumed solution (E.13a) is substituted into the last of eqs. (E.9),

T
and due account of eq. (E.12) is taken, one finds that the Kj are described as:
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K = [ere -¢ BE v2n) ],

1 2
_:_l_ 1] 1 - 1
K, =5 [¢ eg v2n)-L & ],

K= 5 (G Bh 2+ 88, ]
K, =3C [250“7:)] ,
and K5 = - 32:2) ‘:2£O+17<')]. (E.14)

Recalling that Ez 0) = C2' (0) =0, it can be shown that the remaining con-

stants (¢i) are:
G388 s v 80
and ¢4=3CO£0+2(C0 17(;- 5(; C(;)- (E.15)

This should complete the (analytic) solution for 'Cz, when the various con-

stants are inserted info eq. (E.13b).

E.6.2 An expression for the state component ' gt "~ Having obtained the analytic

expression for ¢ 9’ it is a simple matter to define the relative speed component

(CZ'). That is, differentiating eq. (E.13b), one obtains the symbolic expressions:

- - ; _ .
Cz (K4 ¢4)Sm<pT+(K5+¢3)cos<pT+2(chos2<pT K, sin 29,

3
+ (K4 cos cpT - K5 sin <pT)(pT . (E.16)

The constants (Kj, ¢i) appearing here are described in eqs. (E.14, E.15).
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E.6.3 A solution for the component 52_. - Due to the coupling which exists be-
tween the differential equations for 52 and 772, it is necessary to manipulate
these expressions simultaneously. The direct method of solving for Ez is to,

first, obtain an expression for . n'2 and then to solve explicitly for Ez.

(@) A first integral, for 77’2_. - The "driving function' appearing in

the second of eqs. (E.9) can be written as:
= ' i t - - !
3§1 n, 3[¢0¢1+(2A ¢1+£o ¢O) s1ngoT+(2£0(Zf1 A(Zo) cos @, 2A £ o 08 2<pT
+(€'2—A2) sin2¢,, + 3B .(Acos¢> -&'sing,, - ¢ )]

o T T T ®o T 1'4°

wherein
= - ! =
(Zo 770 2€o’ (Zl €0+A’

with A, B as given in eq. (E.11). An appropriate first integral, of the differen-

tial equation, is readily shown to be:

ny = - 2¢, +Kn+3{¢0 ¢ 0 -CAE +£ & )coso + @ € -A¢ )sing,,

2 42
(€ - A%

T A
_ 1 i R © S .= ;
Ago sin 2, 5 cos 20,1 - B¢l<pT+3B[A (cos@ 1+, 5ing, )

-§, (5in@, - @, cos wT)] } ,

with Kn being a constant of integration. Necessarily Kﬂ is obtained from the

initial condition, 7)'2(0) = £ 2"(0) =0; thus,

- 'y - 3 g 2. A2
Kn—3(2A¢1+£O¢o) 9AB+ L (€' " -A%).
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®) A solution for £2 _. = The solution for 52 follows from the first
of eqs. (E.9), after one substitues for ‘r)'2 and the "driving function'" appearing
on the right side of that expression. Using eqs. (E.10), the driving function is

found to be: .
p2 a2 p2yp2
0

2
: ¢

o, 2 2 271 _ 0 42 0 0 .

3%(771+C1)'€1}_3{[2 Gt T T T ]+2¢o(€o°°S‘pT

¢ &

. 2
. LR - o . S g2
+ A sing,) +2 (Zl (A coso,, -£! sing) + (3A go 5 ) sin 2<pT+l 5 (go A%)

e2 e 2 :
0 1 9B° 2 _ - :
+ —_4_-_ ] COS,.2(,DT + < 9 (pT - 3B¢0(pT ) 6B (g(; COS(pT+A SlIl(PT)(,DT} * (E.21)

After making the necessary substitutions it is apparent that the so-
lution for £ 9 involves a harmonic part (for the homogeneous expression) and the
particular integral corresponding to eq. (E.21). Symbolically the inhomogeneous

solution takes on the form:
2 . .
= + + + +
(52)p K6 K7<pT K8<pT+K9<pT sin@ ., K10<pT cosQ,, K11 sin 20,1,

+ 2 .
K12 cos <pT (E.22)

Incidentally, the complementary solution to this ordinary differen-

tial equation has the simple form:
= i +
€,5), ¢5 sing,, (Z6 cosQ,p.. (E. 23)

The constants (Kj) are obtained by matching coefficients of like

terms in (pT, while the (¢i) are defined from the conditions: § 2(0) = g'z (0) =0.
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E.6.4 Evaluation of constants. - In the subsection above, the means for evaluat-

ing the constants was noted. All that needs to be done, now, is to set down the
values ascertained from that procedure. After matching coefficients in the differ-

ential equation, for gz, it was found that:

Gl B Y :
K =3‘{ + - +2B (A-B) +(£' + }
6 2 2 2 (A-B) (go ¢o)
= B
K7 3(2,'0 ,
9 2
Ko=- 5 B,
K, =3AB,
=3 f
K10 6oB’
55
K =-[ag+—22 ]
11 £0 2
2 2
_C'
- 1[12 2 EO___LJ 4
and Klz— > go A+ 5 , (E. 24)

where the various quantities (A, B, ¢j) have been described earlier. Next, the
¢i (i=5, 6) are obtained from the prescribed initial state (for £ o’ t'-;'z); these

are found to be,

=- K +K_ _+2K

and ¢6 = - & +K_ ). (E. 25)
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E.6.5 The solution for &' 92 £ . - Having determined the constants for £2 s

2—-
one can write the solution (form) for this state component immediately. Similar
to what was indicated earlier, the solution for §£' 9 follows directly by differen-

tiating 52. For convenience, a symbolic form for these variables is noted below:
2 .
= i + + + + +
52 ¢5 smqpT ¢6 coszpT K6 K7qu KS(’DT + (K9 smqu KlO coscpT) ©

+K_, sing +K

1 cosZ<pT ,

12
and

t — _ : 1 .
Ez K, + &g ¢6) sinpp, + K o+ (2'5) cos@ + 2(K11 cos 20, - Ky, sin 20,

+ (K9 cosqcaT - K10 sing ., + 2K8) <pT.

In the next section a solution for the components 7 9’ ‘n'2 is presented;

this will complete the development of the second-order corrections being sought.

E.6.6 A solution for the components 7_, ‘n'z_
4

components to be evaluated are 172 and 17'2. These could be readily obtained

. - The remaining second-order

from the first integral described in Section E. 6. 3 since, there, a solution for n'2 .
was acquired. The solution for n2 could, of course, be had by means of one

more integration procedure.

Actually, the scheme followed here was to integrate for 172, and then
obtain n'z by direct differentiation. This procedure was adopted in order to

follow a common method of approach throughout the evaluations.

It is easy to show that a symbolic form for 172 can be given as: i
I
i

= + + i +
My =Kpp* K3 @p H Ky S0P +K

cos (pT +K_  sin 2<pT +K__ cos 2<pT

15 16 17

i +
+ (K18 sin (pT K19 cos (pT) (pT ,

(E. 26)

-~




with KTI n being a constant of integration, evaluated from the condition ‘n2(0) =0,

Differentiating eq. (E.27) one finds that the second-order component, 77'2
is:

'=K__+ - i + + + - i
My =Kig+ Ko~ Kg)sing, + K g +K, ) cos o +2 K, cos 20, - K, , sin 20.)

+ - i . .
(K18 cos goT K19 sin (pT) §0T (E' 28)

As before the constants (Kj) included here are obtained by matching coefficients

in appropriate expressions. For reasons of conciseness these are not listed here,

but will be noted in the summary section which follows.

E.7 Summary. - In the foregoing sections of this Appendix a method used to
determine the set of second-order correction variables has been outlined. In this
section the results are summarized, and briefly discussed, in regard to their use

and application.

Throughout this development the manipulations have been made in terms
of dimensionless variables (¢, 1, £, §', m', £'), using the position angle (<pT)
as an independent variable. Since the path for '"T'" is a circular orbit the value
of goT is arbitrarily set to '"zero' when the problem is at its initial state. Hence,
there is no need to be concerned about initial angles, arguments of pericenter and

the like.

If one wishes to convert the dimensionless quantities to dimensional var-

iables, he may do so according to the scheme noted in eqs. (A.32), Appendix A.

The second order quantities, obtained here, will be described in terms of

constants (defined by initial values) and terms involving the independent variable,
¢T’
When one wishes to describe a problem's solution, including the second-

order correction terms, he may do so as follows:
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Having the linearized (first-order) solution, the
second-order corrections are added, algebraically,
to the linear results to complete the solution form.
That is, for any of the variables (§, 7n, ), the

(symbolic) solution is given as,

H=n_+ A
1 2’
=l o+ unl
2

1

the subscripts representing the solution order.

For convenience, and immediate reference, the formal solutions for the

(~)1 and (~)2 variables are listed below; and, for the second-order correction

terms, the constants are tabulated following the symbolic expressions.

E.7.1 Linear (first-order) results.

214

(@)

and

()

and

Dimensionless relative motion position coordinates.

= t - ] :
€1 €0 + (350 + 2no)(1 cos goT) + go sin (pT’
= - t - 1 - t 3
m =M, -3 428 )@ - 26 (1-cos @) +2BE +2n)) sino,,
= t i
Cl Co cos @, + );O sing,, . (E.29)

Dimensionless relative motion speed components.

1 £t ' ;
§1 €o cos @, + (3!-,‘0 + 2170) sin @,
= - 1 ! 1 5
17'1 2(3[;',0 + 217:)) Cos Q.. [3(7)0 + zgo) + 250 sin @, ] ,

1t — P! - i
Cl Co cos <pT Co sin qDT . (E. 30)



E.7.2 Second-order corrections.

and

and

@) Dimensionless relative motion coordinates.

2
= i +K, +K +K i
§2 ¢5 sin @ +¢6 cos o, + K, 7 Op K Op + Ky sing

+ K_ _cos qu) (pT + K__ sin ZgoT + K12 cos 2(pT,

10 11
Ny = K"lﬂ+ K13 Ot K14 sin Op + K15 coska + K16 sin 2(,DT
+ K17 cos 2<pT + (K18 sin qu + K19 cos <pT) goT,
Cz = ¢3 sin @, + ¢4/cos Ot K1 + K2 sin 20, K3 cos 2,1,
+ (K4 sinqu +K5 cos (pT) <pT .
®) Dimensionless ielative motion speed components.

t — _ :
£ =K + Ky -C)sing, + K+ &) cos o +2(K  cos 2,

- i - i +
K12 sin 2<pT) + (K9 coSs (pT K10 sin qu 2K8) goT,

ny =K+ K

- i + + + cos 2
13 Kigh s+ K g+ K, ) cos o +2(K, ; cos 20,

18

-K__ sin 2(pT) + “(1{18 cos <pT -K

17 SIn Q1) @

19
t = - 3 - s
Cz ®, ¢4) sin @, + (K  + ¢3) cos @ + Z[K2 cos 20, - K, sin 2<pT]

+ ‘(K4 cos <pT - K5 sin <pT) (pT.
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The constant coefficients used in the above second-order correction terms
are tabulated below; these are expressed in terms of the general initial values for

the problem.

(a) The Kj =1, ..., 19, nn.

3 ] 4 1
K =588 -2 @8 +2m)]

_l 1 1 l-
KZ T2 [Co (3€o "'2770) - Co go_]
\—l 1 1 1
KS T2 [Co (350"'2770) +£o Co]

K, =38 (2§ + n)

Ky =-38,@E +n') (E. 33a)

=_?.’. 2 2 l 2_ 12 .]_' 12 1 12
K6 2[7£o+no+zco go +2Co]+12€ono+3no
= r _ 1 - t 1
K =3(n mni-4€ & +26 n 2€0 )
__9 .2 ' 2
KS— 2 ("70+4€0 770"‘450)

— 2 1
K, =306 +7¢_n +2n7)

K =3@8 & +& n) (E.33b)
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1
= o ? f 1 = '
Kll (3€o €o * 2€o 770 * 2 Co Co)

N W 2 . 201 2
K12~+2[ é.o +(9€O+12€0 770"‘4770) Z(Cf C(') ).]

->e2 1,2 1 , R B
2 %5 770 Co ~2 o) 250+?70€ -75077 2 L)] /
K 30¢ +3n2+§’2+2§' +1077'2+2C' +36¢ nr -3¢ n
14 o) o 0 "o o ‘o
' r ! P oaat
15 6€O€o+2t’oé’o 360 n0+2§o . (E.33c)
=12, .2 2 :
Kl6~4(9§0+co_§'0+4770 g +12€0n )
K :l(3€ gl +2£7 nr __C Cl)
17 2 0 °o 0 ‘o 0 "o
= ) r 4
K18 6€o €o * 3Eo 77o
- _ 2 ' )2
K19 3(66‘.0 * 760 770 +2?70)
RUR ST A JRESEY
nn 070 25, o o ‘o (E.33d)
[(9)] The ¢i i=3 tee, 6).
— ? !
¢3 3€o CO’“W; 9 +€oco
= f r 1]
¢4 34.o Co+zco 770 2€o Co
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¢ =-@n m +66 M -6 M -126 £ -C L)

— _qrp2_3
¢6" 15¢, 5 7

2

1 .2 2 2 2
_ = + 2 1 - [ _ t _ !
o) 2 co €0 5""o Co 18€o 770

In the preceding list of equations the independent variable has been goT,
the position angle of the target particle ('T"). This angle is measured from an
initial position on the target's circular orbit; it is the primary variable in this

problem's formulation.

One should recognize that the second-order (corrective) solution differs
from the first-order (linear) solution, in one main respect; namely, that the
corrections involve terms in both (pT and 2<pT; however, both solution forms
do incorporate secular terms. Even so, the corrective expressions are more
heavily dependent on the secular terms. Because of the more formidable ex-
pressions involved in the second-order equations, it would be most difficult to
describe the geometry of the state displacement figures generated by these re-

sultants, in general. For this reason no attempt at this has been made, here.

*Generally, the procedure used here to determine the second-order-corrections -

is similar to that carried out by Anthony and Sasaki (see reference [1]). An ex-
ception in these results is that the constants obtained here are different, for some

values, from those given in this article.
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APPENDIX F
A GENERAL DESCRIPTION OF RELATIVE MOTION

F.1.1 The relative motion displacement. - In this appendix the general des~

cription of a relative motion is described, in terms of the natural geometry for

the problem.

Results in the following pa_ragrapﬁs describe a means for obtaining
deterministic relative motion solutions which, in principle, do not suffer the

consequence of linearizationﬁmposed on others of the methods.

Consider the moﬁon of two particles (in mz) about a common primary

1’
(4). It is assumed that the two orbits are closed curves, produced by a central
field attraction, with no other forces present. In particular, there is no mutual
attraction between the bodies, Consistent with this constraint the particles are

located by the bounded radius vectors (r 1’ 52), measured from u.

The position of m,, relative to m,, is
rrzrr (X’ Ys Z)=r2-rl’ (F'l)
see Fig. F.1.
From the notation on the figure, the relative position coordinates (x, y,z)
are obtained by means of;
X=r *X, Vy=r °y1, z=rr'z1, (F.2)

r 1’ r

. where 521, etc., are unit vectors, .

On Fig. F.1 the unit triad (}?1, frl, 21) is presumed to move with m,.

Now, in representing a particle's motion, in a moving framé of reference, re-
H b

lative to (say) a fixed frame of reference, such as (ﬁo, s;o’ 25)‘; it is necessary




Fig. F.1. Geometry Descriptions of a Relative Motion, m_, with respect.

to ml.

2

N

220



to provide suitable "transformation matrices", relating the orientation of one
frame relative to the other. (A proper set of matrices has been developed;

these are found in Appendix G).

When using the transformation matrices, it should be noted that the
triad fixed to m, in Appendix G is denoted as (ﬁl, 371, z ))» Wwhile the one
attached to m2 is designated as (;Eb, frb, ib), there. Al_so, it is important
to recognize that the unit vectors (;Ej) are directed radially (away from u),
while the (ij) are normal to the (two) planes of motion. Finally, the unit

vectors (§j) complete each orthogonal triad; these are described by
y.=z. XX, (=1, 2).
y; J)( po 6-L2)
Lastly, it should be apparentithat’ thez(two) position vectorssmay be written as.
r,=r, X,
J I

where ' rj = |;jl’ =1, 2).

F.1.2 Scalar equations for the relative position. - The relative position coordi-

nate, x, is described by eq. (F.2) as,

X=I'r‘X1=1‘2‘X1"I‘1 Xl',

or, making use of eqs. (F.4), (G.3), (G.4), then

x=r_(cos 86X +sinfcostLy +sinfsintz): (cosh X +sinpy)-r_,
2 o] o o] o o] 1

(accounting for X+ X =1). Carrying out the required multiplications one finds

1 1
that

W Mt e -t

x=r, (cos 6 cos Y + sin 6 cos L sin ¥) - T

221

T®.3)

F.4)

(F.5a)



Likewise, the other two relative coordinates are obtained as;

y=;2 - ¥ -r. - § =r, (-cos 8 sin Y + sin O sin  cos ¥), (F.5b)

and z =i'-2 . 21 -51 . £1=r2 (sin B sin ). (F.5¢c)

The description of a position for m2 is not yet complete since each of
the r]. depends on its true anomaly, <pj. In the expressions above, the angles,
6 and ¥, are particular position angles, measured from the line of nodes (see
Appendix G). In fact, these angles are related to the true anomalies, but in a

manner not yet described.

F.2.1 The relative speeds. - Since the relative velocity of m, can be written

- as

r 2 "1’ (F.6)
then the relative speeds may be obtained by differentiating eq. (F.2). That is,
for instance, since x = ;r . Sil, then
x=L ¢ .2)=7 -% +7 % .7
dt r 1 r 1 'r 1’ X
the derivative x 1 arises because the triad, (~) 1’ moves relative to the 'fixed'
frame of reference, Here, derivatives like (:21) may be obtained by the opera-
tion
x1=w1)( X0 (F.8)

where 5)1 is the angular velocity for m 1 which is the angular velocity of the

triad.

In order to complete the description for ;r’ one needs to obtain ex-
pressions for ;j (G =1, 2) in order to satisfy eq. (F.6). For this purpose define

these derivatives as,
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where the ﬁj are acquired from eq. (F.8) above.

Since the plane of motion for a particle is described by both ;j and ;j’
then, necessarily, the angular velocities ((.:)]_) are normal to these planes; and

c:)j may be defined as,

w=¢. 2, =1,2).
) <PJ] G )

Here go is the '"local" angular speed for each of the (j) orbits.

Taking account of eqs. (¥.8), (¥.9) and (F.10), then

thus, eq. (F.7) is found to reduce to

'=| "~ .A + L N .0\ -..+ L] A .'6
X 1-2(x2 xl) r2<p2 (y2 xl) rl r2<p1 (x2 yl).

(The scalar multiplications in egs. (12) are carried out using the matrices de-

veloped in Appendix G). Similar to°the above, expressions for 3;, z are readily

shown to be:

y=r, (X 'y1)+r2 [(Pz (Yz' y1)~<01 (x2° yl)],

2 2

'=' A .2 + * A .2
and Z rz(x2 zl) r2<p2 (y2 zl).

F.2.2 Scalar speed equations. - Having performed the multiplications indicated

in eq. (F.12a); then, after some reduction one finds that
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x =fz (cos B cos Y + sin B cos L sin P) +r2 q.:>2 (-sin 6 cos Y + cos chs L sin ¥)

—1.‘1+r2 qbl (-cos O sin Y +sin Bcos Lcos P). (F.13a)

Similar operations are carried out for y and z; and, as a consequence, it is

found that these relative speed components reduce to;
5'7 = 1:2 (-cos O sin Y + sin 6 cos L cos YP) +r2 q32 (sin B sin Y + cos O cos L cos ¥)
- T, gbl (cos Bcos P + sin B cos Lsin P), (F.13b)

and

z =(r2s1n 6+r2<p2 cos 0) sin . (F.13c)

In the above expressions the angles (¥, 6) are measured from the line
of nodes (see Fig. G.1, Appendix G), in the planes of:motion for m, and m,,
respectively. The angle, t, the dihedral angle between these orbital planes,

is a constant for the present formulation.

It should be evident that in eqs. (F.13) the speed components (I:j, rj (,5].)
are particular to the motion offe_ach particle ‘(mj). Consequently, these quanti-
ties must properly account for associated initial conditions imposed on the pro-

blem,

F.2.3 Local speed components. — General expressions for the radial and trans-

verse speed components; describing a central field, inverse square motion are:

- _d p . Kk .
Ve ST T R (1+€cos¢) p €smo, (F.14a)
and Vsre=2=4 14+ccoso, (F.14b)
100) r h
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recognizing that p = hz/ . Here, the position angle, ¢, is the true anomaly

measured from the periapsis position.

On combining the expressions above, one finds that the local speed ([V |)

can be expressed by,

b 2 z
V= te +2€cos @) . , (F.14c)

F.3 Angle relations. ~ To make a proper use of the Euler angles introduced
in Appendix G, it is necessary to relate the particular position angles (6, ¥) to

the true anomalies (qoj).

For the polar conic equations, true anomalies (@) are measured from
the periapse positions; however, the Euler angles introduced here, (8, ¥),
are measured from the line of nodes .(NN'). * Generally, the line of nodes does
not coincide with the line of apsides; consequently, the nodal axis is at a position -

(say <pj ) relative to the apsidal line at pericenter,
o)

. Taking these conditions into account, then the angular position for a particle

on the two trajectories will be described by,

o, =@+ {2},0=1, 2), ' (F.15)
] ]o
depending on the orbit considered.

The angles (goj ), above, locate the nodal line (hence the intersection)
o .
for the two planes of motion. For the two-body, central field studies conducted

herein these angles are constants.

The last angle description needed for this problem is that for the eleva-
tion angle (Y). This is used in describing the local speed components and can

be expressed from

*See Fig. G-1 in Appendix G.
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r Eéin(p ’
t =— = . .
any ro 1+€cosop (. 16)

This completes the formal developments for the deterministic relative
motion problem., Applications of these formulas will be made in thezmain body
of this report. There, an example will be used to illustrate the geometry of a

relative motion, and to describe the character of the resulting motion traces.
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APPENDIX G
AN EULER ANGLE DEVELOPMENT

G.1 Euler angles used to describe orbit positions. - Here a set of Euler angles

is defined to locate a particle, on an orbit, referred to a pre-selected frame of
reference, This development is carried out to provide transformation matrices
for the rotations used to connect the triads of interest for a particular type of

motion,

Fig. G.1 shows the geometry which is to be considered: First, a reference .
. [
i X,V , z )are assumed. Beginning with axes
plane, and a reference triad (xo, Y, zo) r um ginning ]

paraﬂél to this triad, the Euler angles (L, 9) are used to: ® define an inclined
plane, and to locate a "transformed" triad (ﬁa, j‘ra, ﬁa); and, (2) to describe a
rotation (8) in this inclined plane, thereby locating a second triad (Sib, gfb’ ib).
This two-angle sequence is employed to define positions on the inclined plane;

and, to refer these positions back to the initial (reference) triad,

The line of intersection (NN'), for the two principal planes, plays the role
of a line of nodes. Note that the nodal axis coincides with the initial unit vector,
ﬁo’ as shown.on the figure.

. In order to provide for the positioning of a m-oving triad in the reference ‘1 )

plane, a third rotation () is introduced; this angle locates the_jti-iaiat ()21, §1, 21)
relative to the reference triad ()20, S;o’ 20).

G.2 The Euler rotations. - The first angle (L) is a displacement about the

line of nodes (NN'); it is used to locate the triad ()'Ea, S}a’ ia). In matrix notation

the transformation corresponding to this rotation is: -
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L, 6, Euler Angles

7
r]>y . \ NN' is line of nodes

/ ¢ i 2 Y, position angle,
xO 1 ref. plane
/ (X, y, z) , Initial Triad

x,¥5, Z)a’ Triad due; to rotation,
X,y, Z)b , Triad due to rotation, 6

x,v, z)l, Triad due to rotation, Y

Sketch describing Euler Angles, and Reference Position Angles,

Fig. G.1.
used with Triad Transformations,




[ A ] i 7 [ & ]
X 1 0 0 b
a o
vy | = 0 cos sin ¢ y
a 0
zZ 0 -sin t cos L Z (G.1)
a 0
b o be o L d
The second angle (8) occurs about the za—axis; it locates a new triad,
denoted as ()'ib, §b, ﬁb). The transformation matrix for this displacement is:
o -I P - o -
ib cos 6 sin 6 0 X
- a
A — —ai O A
¥y sin 8 cos 6 Y,
ZbJ 0 0 1 z, (G.2)
- - - - L E
Combining eqs. (G.1) and (G 2), the transformation matrix connecting
the triad (~ )b’ to the initial one, (~)0, is:
T A ] i . . . '1 P
X cos 6 sin 6cos L sin Bsin L X,
j;b =|-sin® cosBcost cos BOsint “0
I Zb_ i 0 .=sin cos L ] LZO. (G.3)
In order to position a moving triad in the reference plane the angle, ¢,
is introduced. The axis of rotation is chosen, here, to be the zo-axis; this ro-
tational displacement locates the triad (X 1’ 5‘71, 21). This resulting triad is re-
lated to the initial, or (.) triad, by the transformation matrix:
o A
p:’i- Pcosd) sin ¥ 0 l ri-
1 o]
A - o O A
1 sin ¢ cos P v
Z 0 0 1 L ZoJ . (G.4)
b ol e =
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Egs. (G.3) and (G.4) will be used to describe positions for the (~ )b and
=) l-triads, respectively, in the (~)0 frame of reference. Such matrices are
employed to refer quantities of interest, in a moving triad, back to the base

frame of reference.
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APPENDIX H
RELMOT, A RELATIVE MOTION COMPUTER PROGRAM

H.1 Introduction. - RELMOT is a computer program to calculate the relative
motion of two bodies under the influence of a fixed initial thrust or a fixed initial
impulse, or both. The program has several options which permit it to calculate
an integrated solution, a linear approximation to the solution, and the corres-
ponding second order corrections thereto. It can, in addition, iterate for an
optimum solution with respect to the initial thrust or impulse which will generate

a fixed, final position.

The equations to be integrated are:

‘R =f (R, R, Th, t) where R, R are the position and velocity vectors,

Th is the specific thrust vector, and t is the time.

Letting
R =&,y 2);
and X1l Ex+1,

then the scalar equations may be expressed by:

3
w = (x12 +y2 +Z2) /2

x"=2y" +x1 - X Th

w X
H,=_21+ - X Th
y X' Ty w— y

Th

Z
Zh=_- =
W Z

where the x, y, z are now dimensionless variables and (~)' denotes differentiation.
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A development leading to the equations for the linear solution and second

order corrections are found in Appendix A and E, respectively,

H.2 Inputs. - The inputs are in dimensional units; however, the program
performs all calculations and yields outputs in dimensionless units. The pro-
gram is written in the FORTRAN IV language under the H compiler for the
IBM 360 Operating System. A description of the inputs, program operations,

and outputs follows below.

Inputs to RELMOT are given through the namelist feature of the IBM
Fortran IV programming language. The input namelist is named NML; every
input required or used in the program is declared by name in the list. The

general form for assigning an input value to a quantity is, simply:
NAME = VALUE,

where NAME is the name assigned to the variable and is included in the namelist,
VALUE is a numerical or logical quantity, consistent in form (i.e., logical,

integer, or real) with NAME, . Unless otherwise specified, all NML names com-
mencing with the letters I-N represent integers, whereas all names commencing

with the letters A-H or O-Z are double precision floating point numbers.

Each namelist case must begin with the characters
&NML,

commencing in card column 2 and followed by at least one blank., Each case must

end with the characters,
&END,

preceded by at least one blank if data is specified on the same line,
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Card column 1 is ignored on all input cards.

Multiple data assignments on a single card are permissible if separated
by commas. Blanks in the variable field, VALUE; are taken as zeroes. A

comma following the last specified VALUE on a card is optional.

The order of the input data assignments is arbitrary; i.e., they need not
be in the same order as listed in the namelist. In fact, it is not a requirement
that any specific input parameter be represented in the input data set. If no
value is included in input set, for a particular parameter, the default value is

used, if defined. (See Default Values).

For other details regarding the namelist feature, the reader is referred
to the IBM System/360 Fortran IV Language manual. Namelist cases may be
stacked in sequence; a single namelist error could wipe-out the remaining name-

list iﬁputs .

Definition of input.parameters.,

NAME DIMENSION DESCRIPTION DEFAULT

RIN 3 initial input position vector
(mominally in miles (km))

RDIN 3 initial input velocity vector
' (nominally in feet/sec. (m/sec))

THRIN 3 initial input thrust vecgor
© (nominally in feet/sec

(m/sec?))
BBB 3 step size for computing

partial derivative matrix,

for iterations 3*¥1.D-7
TO initial time, in sec.
TFIN final time, in sec.
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NAME DIMENSION

EMU

RCNV

VCNV

HS

ICASE

12D

IPLLNR

IPLINT

234

DESCRIPTION

Earth's gravitational con-
stant (feet3/sec2 m3/sec?y)

conversion factor, to con-
vert input position vector.
(nominally into feet (meters))

conversion factor to convert

input velocity vector (nomi<
nally into feet/sec. (m/sec))

input circular orbital radius
(nominally in miles (km))

integration step size

case number, to determine
which option to run

trigger to indicate if problem

should be treated as two-dim-
ensional or three dimensional:

(12D=1, 2-dimensional case)
(I2D#1, 3-dimensional case)

trigger to indicate if plots of
a solution, resulting from
linear equations, should be
generated:

(=1, generate plots)

(#1, do not generate plots)

trigger to indicate if plots
of solution, resulting from
integrated equations, should
be generated:

(=1, generate plots)

(#1, do not generate plots)

DEFAULT

1.40771289D16

5280D0
(1.D3)

—
B

0.1325D0
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NAME DIMENSION - DESCRIPTION DEFAULT

ISHELL trigger to print solutions
in shell coordinates.
Applicable to cases 1, 4
and 5:
(ISHELL=1, convert to shell
coordinates)
(ISHELL#1, nominal printout) 0

H.3 Program capabilities. ~ There are five different options in the program,

these are specified by case number, ICASE. The options, and a description of

what they solve, are noted below:

ICASE=1 Linearized and Integrated Solutions for a Thrusting Particle
inputs: R, V, Th
computes: Linear solution, using subroutines STB and STC.

Integrated solution, using subroutines RKFOR and DERIV.

output: Time history printout of R, V, A; linear and integrated
solution plots.
ICASE=2 Linearized and Integrated Solutions for Intercept by a Thrusting
Particle.
inputs: R,V
computes: Th, using subroutine STA,

Linear intercept solution, using subroutines STB and STC.
Integrated solution, using subroutine RKFOR and DERIV.

output: Time history printout of R, V, A; linear and integrated
solution plots.

ICASE=3 Linearized, Integrated, and Second Order Correction Solutions
for a Non-Thrusting Particle.

inputs: R,V
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computes: (for computations set Th=0)
Linear solution, using subroutines STB and STC..
Second order corrections, using subroutine SNDCR.
Integrated solution, using subroutines RKFOR and DERIV,

output: Time history printout of R, V, A; for linear,
linear + second order correction, and integrated solutions;
also, plots of linear, linear + second order, and integrated

solutions.
ICASE=4 Intercepfc Problem for a Thrusting Particle (Iterated "exact' Solution).
inputs: R, V
computes: Iterates for correct thrust, Th, so thaf R (tf) =0; i.e.,

final R goes to 0. Uses subroutines STA (for initial guess
of thrust), MINMX3 (iterator package),and TRAJ, RKFOR -
and DERIV (to generate trajectories).

outputs: Th, final converged thrust vector.
Time history of R, V, A from the integrated solution.
Plots of the integrated solution,

ICASE=5 Intercept Problem using an Initial Impulse.
inputs: R, Th (usually = 0)
computes: Iterated value of initial impulse (V§), such that R (t)=0.

Uses subroutine VINIT (for initial fg‘g‘éss_;of the impulse);
MINMX3 (iterator package),and TRAJ, RKFOR and DERIV
(to generate trajectories).

output: V*, converged value of initial velocity vector.
Time history of R, V, A from integrated solution.

Plots of integrated solutions,

Additional output. - Whenever two ICASE=5 cases are run, in sequence, the

difference of R and V, at each time step, is calculated. These differences
are then printed out and plotted. Note that data defined from the first input
are substracted from data developed from the second input, describing the

relative values, of R, V of the first with respect to the second.
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SAMPLE INPUTS

&NML .
RIN=-50,,50.,0., RDIN=3*0., values needed for each case
TO=0,, TFIN=1200., in addition to default values

12D=1,IPLLNR=1, IPLINT=1,

ICASE=1, THRIN=3*2, 05D-2 &END } case 1
&NML ICASE=2, THRIN=3*0, , &END } case 2
&NML ICASE=3, & END } case 3
&NML ICASE=4, BBB=6*1, D-7 &END } case 4
&NML ICASE=5, &END } case 5
&NML ICASE=5, RIN=50, , -50., &END } second case 5

The above are cases to be run in sequence. The two successive case 5's

will generate plots of their differences.

The iterator. - The iterator is the software module (MINMX3) which drives the
two-boundary-value problem to a solution. The following discussion is taken

from a previous report*.

Correction Scheme. - The iterator's underlying mathematical operation is for-

mulated as follows: Let X denote the vector of independent variables and Y de-
note the vector of dependent variables. The relationship between these two

vectors is assumed to be given by

Y=F X).

The vector function, F, is evaluated by integrating a trajectory; that is, given
a complete set of control parameters and initial conditions, the corresponding
values of the end conditions (Y) can be determined. Subroutine TRAJ maps X

onto Y and is, therefore, the software package which corresponds to the function

*Horsewood, J. L., et al: HILTOP, Heliocentric Interplanetary Low Thrust
Trajectory Optimization Program; Report No. 71-38, Contract NAS5-11364,
Nov, 1971; Analytical Mechanics Associates, Inc., Seabrook, Md.
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F. The problem becomes one of finding the vector X* which will lead to the
specified values of the dependent variables, Y*; that is, a set of values leading

to

v*=F (X¥),

where Y* is known,

This procedure is treated as a minimization problem. The weighted sum

of the residuals (qi) is given by;
q=[Y*—F(X)] TW [Y*-F(X)]
i i y J’

where Xi is the "current estimate' of the independent variables, and W isa
y

diagonal, positive definite weighting matrix,

The situation becomes one of choosing a new value, Xi+ 1’ which will

minimize, q, _.
i+

If X, is close to x_, then
1 i+l

1

F&,) =F.X)*+PAax,

where AX = Xi+ - Xi; and, the partial derivative matrix, P, is

1

oY

o)

P
Evaluating g, 1 with the approximation leads to an expression

q. . = (AY - PAX) TW (AY - PAX)
i+l y
where AY, the residual vector, is obtained from

AY=Y*-F (Xi).

Finally, the problem is to choose a AX which will minimize q.
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Inhibitor Control. - For nonlinear functions, F, linear approximations will work

only if AX is small. Therefore, the following constraint is imposed on this

variant;
T
AX Wx AX < ¢,
where Wx is the input diagonal, positive definite weighting matrix associated
with the independent parameters.
Attaching to the constraint a scalar inhibitor, A, the vector to be mini-
mized is given by;

Q= (AY - PAX)TWy (AY - PAX) + A (AXTWX AX).

Finding the minimi;m of the vector function yields a solution,

T -1 T
AX=P W _P+AW) 1P W _AY.
: y X y
It has been shown (see HILTOP reference) that as A increases, 4 decreases,
monotonically, Therefore A can always be chosen large enough to satisfy the
above inequality. Moreover, if A is sufficiently large, the condition is,

approximately, _
1 -
AX = - W 1 (PTW ) AY.
A X y
For AX small enough, or A large enough, one can guarantee that

<
94 = 9

It is advantageous to take as large a step as possible toward satisfying
Y* =F (X*). The procedure is initiated with a relatively small value of A.
The idea is: make a correction, determine if any improvement can be made;

and, if not, reduce the correction.
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The following iteration scheme is utilized. Given an Xi’ the trajectory
is integrated (again) to produce Yi+ 1’ starting with the values Xi+1 = Xi + AX;
and, then, qur 1 is calculated. This value, qi+1 is compared with qi. If there
is no ﬁmprqvem_eni:,'- A is increased; then AX is recalculated and a new trajectory
is integrated. This procedure is repeated until an improvement does result, When
this happens, the trajectory is integrated, again, and a partial derivative matrix is
computed. Next, A is reset to its original value and the iteration continues until
g is less than the prescribed tolerance, or no further improvement can be made, or

the maximum number of iterations is exceeded.

Constraints (dependent variables). - The constraints, Y, are divided into two

types: parameters that are driven to a given "value',(point constraints), and para-

meters to be maximized or minimized (performance indices).

For a well-posed problem, there is only one performance index. For each
dependent variable, y., two values must be specified; y . and y . If ade-
i min max
pendent variable is a point constraint, y . and y are chosen close together;
min max

i.e.,

y .n=y*-5; =y*+0,

mil yma,x

where y* is the desired value and 0 is a tolerance utilized for weighting purposes,

For the performance index, the interval is chosen so that it cannot possibly be:

attained if the other constraints are satisfied. For instance, if y is to be mini-

mized, y . and y are taken larger than attainable. In this way the itera-
min max

tion procedure drives the variable (to be optimized) in the correct direction until

no further improvement is possible or the input maximum number of iterations is

exceeded.

Modes, - Two modes of solution are available, the indirect (select) mode and the

direct (optimize) mode. In the jind{récf ‘mode, a solution which satisfies the end
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conditions is attempted. Indirect optimization is performed in this mode. The
direct mode computes a series of trajectories, each of which satisfies the speci-
fied end conditions while successively ‘mini‘mizing the performance index residual.
The specified end conditions are first satisfied, using the indirect mode, ignoring

the performance index.

Weighting. - The scale matrices, WX and Wy’ are used to insure that elements
of the vectors X and Y are jcompatible for the iteration procedure. The relative
importance of the variables is representéd in this way. Differing magnitudes are
compensated for through the weighting matrices. W_ is input to the program,
while Wy is computed (internally) using input tolerances and importance factors.
For point constraint variables, the elements of Wy are given by the following

relation:

where 6y is the corresponding tolerance.

The weighting factor for a performance index is computed from,

W = % 2—38 ’
Y o

when n is the number of dependent variables and r is the performance index

residual. This balances the residual for the parameter being optimized against

the weighted residuals in the other variables, in order to satisfy constraints as

the optimization proceeds.

241



)

2]

3]
(4]

(5]

(6]

(7]

(8]

(9]
[10]
[11]

[12]

242

REFERENCES AND BIBLIOGRAPHY

Anthony, M. L. and Sasaki, F.T., '"Rendezvous Problems for Nearly
Circular Orbits", AIAA J., 3, 1666-1673 (1965).

Barbieri, R.W., "An Analytical Development of the Relative Motion of
Two Close Satellites of an Oblate Planet", NASA X-551-70-313, Goddard
Space Flight Center, (1970).

Clohessey, W, H. and Wiltshire, R.S., '"Terminal Guidance System for
Satellite Rendezvous", J. Aero. Sci, 27, 653-658 and 674 (1960,

Darby, W.G., "Correction for the Effect of Finite Thrusting Times in
Orbit Changing Maneuvers', IAS preprint 61-154-1848 (1961).

Eades, J.B. and Wyatt, G,.H., "A Study from Kinematics - The Problems
of Intercept and Pursuit", NASA X-643-69-106, Goddard Space Flight
Center (1969).

Eades, J.B. and Drewry, J.W., "Relative Motion of Near Orbiting
Satellites', Cel. Mech. (to be published).

Eggleston, J.M. and Beck, H.D., "A Study of the Positions and Velocities
of a Space Station and a Ferry Vehicle during Rendezvous and Return',
NASA TR-87 (1961).

Englar, T.S., "A Lagrangian Derivative of the Clohessy-Wiltshire
Equations and Some Remarks Concerning their Application", TR 66-310-3,
Bell Com, Inc., (1966).

Hord, R.A., '"Relative Motion in the Terminal Phase of Intercépt of a
Satellite or a Ballistic Missile", NASA TN 4399 (1958).

Knollman, G.O. and Pyron, B.O., '"Relative Trajectories of Objects
Ejected from a Near Satellite", ATIAA J, 1, 424-429 (1963).

London, H.S., '"Second Approximation to the Solution of Rendezvous
Equations'", AIAA J., 1, 1691-1693 (1963).

Meirovitch, L., Methods of Analytical Dynamics, pp. 428-430, McGraw-
Hill (1970).




[13] Ruppe, H.O., Introduction to Astronautics, Vol. 2, pp. 70-80, Academic
Press (1967).

[14] Szebehely, V.G., Theory of Orbits, Art 10.4, Academic Press (1967).

[15] Whitlock, F.H., Wolf, H., et al, "Interplanetary Trajectory Encke
Method Fortran Program Manual for the I. B. M. System/360", NASA
X-643-70-330, Goddard Space Flight Center (1970).

243



