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SUMMARY

A general formulation of the dynamical problems associ-
ated with powered flight of a two-stage flexible, variable~
mass missile with internal flow, discrete masses, and aero-
dynamic forces is presented. The formulation comprises
six ordinary differential equations for the rigid body mo-
tion, 3n ordinary differential equations for the n discrete
masses and three partial differential equations with the
appropriate boundary conditions for the elastic motion. This
set of equations is modified to represent a single stage
flexible, variable-mass missile with internal flow and aero-
dynamic forces. The rigid-body motion consists then of three
translations and three rotations, whereas the elastic motion
is defined by one longitudinal and two flexural displacements,
the latter about two orthogonal transverse axes., The dif-
ferential equations are nonlinear and, in addition, they pos~
sess time-dependent coefficients due to the mass variation.
The complete equations cannot be solved in closed form and
any solution must be obtained numerically by means of a high-

speed computer. Several cases are considered as examples.



1. Introduction

Investigations of the behavior of a rocket in flight
can be divided for the most part into two major classes accor-
ding to the mathematical models: the first is concerned with
rigid missile of variable mass and the second with a flexible
missile of constant mass.

The treatment of the missile as a rigid-body of time-
dependent mass has been adequately covered by many research-
ers, including Grubinl*, Dryerz, and Leitmann3. The ballistic
trajectories of spin- and fin-stabilized rigid bodies are
treated in the book by Davis, Follin and Blitzer4.

A considerable amount of effort has been devoted to
the analysis of an elastic body subjected to longitudinal
acceleration. For example, Seide5 has treated the effect
of both a compressive and a tensile force on the frequencies
and mode shapes of transverse vibration of a continuous slen-
der body. Others, such as Beals, have been concerned with
the problem of buckling instability of a uniform bar subjected
to an end thrust as well as with the change in the body nat-
ural frequencies as a result of that thrust. These investi-
gations regard the mass of the body as constant in time.

A series of reports by Miles, Young, and Fowler7 offers
a comprehensive treatment of a wide range of subjects associated

with the dynamics of missiles, including fuel sloshing. The

* See References listed at end of this work.



report by Keith, et. al.8 also.covers a wide range of sub-
jects associated with the dynamics of missiles. Again the
mass variation is not accounted for.

Attempts have been made to consider simultaneously the
mass variation and missile flexural elasticity by investi-
gators such as Birnbaum9 and Edelenlo. Both were concerned
with solid-fuel rockets and neither of them includes the
axial elasticity of the missile. On the other hand, Pricell
investigated the internal flow in a solid-fuel rocket and
ignored entirely the vehicle motion. An attempt to synthe-
size the problem of rocket dynamics has been made by Meirovitch
and Wesleylz. This latter work accounts for the mass var-
iation, rigid-body translaticn and rotation, and axial and
transverse deformation, but it assumes the motion to be
planar, which excludes spinning rockets. A later work by

Meirovitchl3’14

does away with the restriction of planar
motion and considers the general motion of a variable-mass
flexible missile in vacuum. A report by Meirovitch and
Bankovskis15 uses the developments of References 13 and 14
to include aerodynamic effects.

An extension by Meirovitch and Bankovskis16 of the work
reported in Reference 12 was done to include the planar motion
of a two-stage missile in which the first stage was assumed
to be the booster while the second was used to house packaged

instruments. The missile was assumed to be flexible and the

first stage had variable-mass.



The present work represents an extension of Reference
16 to include the general motion of a two-stage vehicle
with aerodynamic forces. It also includes some of the work

reported in Reference 14 with additional numerical examples.

2. Equations of Motion for a General Variable-Mass System

By a variable-mass system we understand a system of

changing composition. To examine this concept more closely,

we envision a control volume in space and assume that the
amount of matter within the control volume may change with
time. Since the system composition changes, it is not proper
to equate the time-derivative of the sum of momenta associ-
ated with the particles to the sum of the time derivatives,
because the summation involves different sets of particles

at different times. In this case, the proper procedure for
obtaining the equations of motion is to write the force eqgua-
tion in the form F = é*, where the rate of change of the
momentum, é, is derived by a limiting process consisting of
calculating P at two different instants, a time interval At
apart, dividing the difference of the two values by At, and
letting At - 0. In so doing, we ensure that the same total
mass is involved, although at one time it is entirely inside

the control volume and at the other time part of the mass

is outside.

* A wavy line under the symbol denotes a vector quantity or
operation.



We next seek the expression for the time rate of change
of the linear momentum. To this end we note that the linear
momentum associated with an element of fluid is pvdu, where
p is the mass per unit volume, v the velocity and du the
element of volume. The linear momentum of the fluid con-

tained by the control volume at any instant t is therefore

p = f v p du (1)
- cv

From Figure 1 we see that at time t the system occupies
regions I and II while at time t+At it occupies regions II

and III. The time rate of change of linear momentum is then

P _ lim (SIlyde * SIIIyde)t+At B (SIYde + SIIYpd”)t
dt = Atso0 At
lim (SIIyde)t+At - («SIIYde)t + lim (SIIIYde)t+At
- lim (SI v dv), )
A0 AT (2)

As At > 0, the volume II becomes that of the control volume

so that
pin Grpwav e - Qpwan 2 g vpdv (3)
At->0 At cv

As At » 0, the last two limits can be seen to approach the
rate of efflux of linear momentum along ARB and the rate of

influx of linear momentum along ALB, respectively. Thus, the



last two limits account for the flow of linear momentum
across the entire control surface at time t. With the
convention of dA pointing outward from the enclosed region,
we see that pv:dA is the mass efflux through dA per unit
time and hence Y(py:dé) is the efflux of the linear mom-
entum per unit time through dA. On integration for the

whole control surface we conclude that

1im (jIIIY‘OdU)t+At - lim (gIYde)t =
At>0 AT AE>0 AT

j v(py:da) (4)
cs” -

Hence we are lead to the expression for time rate of change
of linear momentum as (Reference 17, page 96)
dp

+ F = = = S Y(QY:dA) + _3_ S yde (5)
- - cv

F=F S t 5t
CcS

B

in which EB and ES are the resultants of the surface and
body forces, respectively, acting upon the system.

Equation (5), however, applies to a control volume at
rest in an inertial reference frame. Under consideration
here is a control volume which is translating and rotating
relative to an inertial space. Further it will be conven-
ient to assume that part of the matter is fixed in the con-
trol volume, while part of it moves relative to it. 1In
order to find the expression for this case, consider an

element of mass as in Figure 2 and write the force equation

in the form



dE = dgs + ng = EdM = p[§0+2+2wxv+9§£+gi(9§£ﬁ dv (6)

in which a is the absolute acceleration of the mass element

am, 2, is the acceleration of the origin 0 of the system

X, Y12, @ is the angular velocity vector of axes x,y,z, and
r is the position of dM relative to these axes. Upon in-
tegration Eg. (6) becomes

Is ¥ X = S g M = g lagtvr2usvrusrrox o | an (7
M

M

If we assume that the axes X,y,z are fixed in inertial space,

Eg. (7) becomes
+ F =S v aM (8)
- M

where Mf is the mass moving relative to the control volume.

Therefore, from Egs. (5), (7), and (8) we conclude that

+ S [§0+2w§v+&xr+mx(mxr{XdM (9)
M o - ey W o - ey, W e

where the partial derivative 3/5t is to be calculated by

regarding axes x,y,z as fixed. It is convenient to introduce

the following equivalent forces



~C - -
£

Fo= - 2 v am (10)
~U ot M.

£
F_ = - S v (pv-dA)
~R n -

where F. is recognized as the Coriolis force, EU is a force

due to the unsteadiness of the relative motion, and ER is

referred to as a reactive force. With this notation, Eq.

(9) becomes

+ FU + FR = SM[go+é§r+w§(w§r)]dM (11)

The terms on the right side of Eq. (11) may be regarded as
pertaining to a rigid body of instantaneous mass M.
In a similar manner, the torque equation about the

origin 0 can be written

g *Op * ¥ ¥ Ny * Mg = 5M55E0+é>:£+9>:<9>:£>] a2
where
N, = -2 g rx(wxv) dMm
-C M = wes
f
N =—3—§ rxv aM (13)
~U 3t g opd
M
f
Np = - 5 trxv) (pv-da)
-~ A - ™ - [N R



The significance of the various torques is self-evident.
Moreover, the expression for gU can be easily explained
by recalling that 3/3t implies a time rate of change with
axes x,vy,z regarded as fixed.

The above equations must be supplemented by the con-

tinuity equation

g py-_dé=—g—t-g am (14)
cs cv
which expresses the fact that the net efflux rate of mass
across the control surface must equal the rate of mass de-
crease inside the control volume.

Equations (11) and (12) can be given an interesting
physical interpretation by recalling that the system com-
prises one parﬁhsolid and another part of changing composi-
tion, and observing that the right sides of these equations
represent the moFion of the system as if it were rigid in
its entirety. Equations (11) and (12) can be regarded as the
equations of motion of a fictitious rigid body of- instantan-
eous mass M, provided that the actual surface and body forces
acting upon the system are supplemented by three equivalent
forces, namely the Coriolis force, the force due to the
unsteadiness of the relative motion, and the reactive force.
This statement is sometimes referred to as the "principle of
solidification for a system of changing composition" (Ref-

erence 18, p. 13).



3. The Rigid Body Egqguations of Motion

The formulation of the preceding section is ideally
suited for treating problems associated with the motior
of a rocket. We consider a two-stage missile, and of the
two stages, only the first one possesses variable-mass,
as it consists of a solid-fuel booster; the second stage
contains no charge and is used for the purpose of housing
certain measuring instruments. The mathematical model of
the first stage is assumed to comprise a long cylindrical
shell open at the aft end and closed at the fore end.
The inner part of the missile consists of the propellant
which surrounds a cylindrical cavity whose axis coincides
with the missile's longitudinal axis, namely axis X in
Figure 3. The cavity plays the role of the combustion
chamber, as it contains the burned gas which:flows relative
to the shell until expelled through a nozzle at the aft
end. The second stage consists of a flexible missile shell
containing attachment points for instrument packages. The
effect of these packages is felt by the case at the attach-
ment points through springs and dash pots used to connect
the packages to the missile shell. This mathematical model
is more representative of a solid~fuel rather than a liquid-
fuel missile. We consider first the case in which the missile
shell is rigid.

It will prove convenient to work with a vehicle first-

stage element of unit length comprising the missile casing,

10



=

the unburned fuel, and the hot gases flowing relative to

the first two, and for the second-stage unit element compris-
ing the missile casing and the discrete masses moving rela-
tive to it. If we denote the motion and mass associated
with the case by the subscript c, the ones related to tﬁe
burned fuel by the subscript £, and the ones related to the
discrete masses by the subscript i, we write in analogy with
Eq. (7) the force equation of motion for the rocket element

in Figure 4 as

s+ fp = gm[ 2o * E:.‘ffq + ﬂ’f(i”.ffc)] dm
C

+ [h(x+a)—h(x—bﬂgm‘:§0+yf+2gfy +e§ff+5f(ffffﬂ dm
f
* ‘S(X‘Xi)SM [agtysrauny; + bxxy + wxtwerplan (15)

1

where gs and EB are distributed surface and body forces re-
spectively, Ve is the fluid velocity relative to the body
axes, v, is the velocity of mass Mi relative to the body axes,
and g is the acceleration of the origin O. h(x—xo) is a
spatial unit step function applied at x = Xor §{x - xi) is

a spatial Dirac delta function applied at x = Xy while a and

b are the distances from the origin to the aft end of the mis-

sile and to the forward end of the first stage, respectively.

11



Defining

m = m, + me [h(x+a) - h(x—bi] + Mi 6(x—xi)

and considering the

(16)

arguments presented in proceeding from

Eg. (7) to Egq. (9), we may write Eq. (15) in the form
It Ip * [fc iyt gl‘\][h(x+a)—h(x—b)]+[f-Ci+§Ui+£Ri‘k6(X_xi)
=a0m+ﬁsxg£dm+m><(m>:5£dm) (17)
= “% Jm - = m
in which
£
-tI+ fR = - 5 Ve dm
Mg
(18)
foi =~ My 2ux v
fpi v Eri T "M Yy
are the corresponding equivalent distributed forces.
Upon integration along the entire missile, Eg. (17)
becomes
FgtEFp+t o~ Ey*tFrt g (fei * fys * fpy) =
M 2, + o x g S r dmdx + wx(wa g rdmdx) (19)
~*‘L’m - ~L'm”
where
M= S m dx (20)
L

12



With the definitions

r=xi+yj+zk, wn= wxi + w. 3 + w k (21)

as well as the assumption that the missile possesses rota-
tional symmetry which implies S ydm = S zdm = 0, we rewrite
m

m
Eg. (19) as

_F_' + F +§C+§U+§R+ Zi(fci+f.+f y =

S - B ~Ui ~Ri
Ma, + [(w2+w2)i—((:) +u_w )j+(<I) -w_w )k g xdM (22)
-0 y 2’'+« z xy'x xz'< M

In analogy with Eq. (12) we write the moment equation

for the element of Figure 4 as

ng + o + [5 +n +nR][h(x+a) h(x-—b)‘} [c ]c(x x;)

=§rx[a0+t:)§r+wx(w>:r)} dm (23)
m-.,_-. - - - = e A~
where Dg and n, are torques due to body and surface forces,
respectively, and
ne=-rxl2exf e anl
£
PU+9R='£5§ Ve dm
Me
(24)
PC1=_f§-Mi[29-§Y1-}
Dyi ¥ Bry =~ r:x M, vy

13



Upon integration along the length of the missile, Eq.

(23) becomes

§S + y + y + yU + yR + 2% (3Ci + nyi + n..) =

~R1
- 3y x g rdm+ L' + o x L (25)
-.M-- - - o e
where
L= (Ixxwx—Ixymy_Ixzwz)E t (—Iyx“x+Iyywy_Iyzwz)1
+ (-I_ _w. - I w. +I_ _w))k (26)

ZX X 2y Y zz 'z’ <

is the angular momentum of the "vehicle" about the origin 0
and g' is the rate of change of L due to the change in the
body angular velocity relative to the body axes. It is ob-
tained by replacing the components of w by the components of

® in Eq. (26). The quantities

]

H
il

2, 2 2,2 2, 2
% j(y+z Jam , I S(X+z )dM'Izz=“(M(X+y ) aM

M Yy M

I
I

5 Xy am , I j xzdM, I = y z dM
M xz M Yz j-M

(27)

I
Xy

are the instantaneous moments and products of inertia of the
"vehicle" about the body axes. It is to be noted that in the

present case the moments of inertia are time-dependent.

1%
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There remains to obtain explicit expressions for the
actual and equivalent forces and torques. The surface con-
sists of the aerodynamic forces on the vehicle wetted area
and the pressure forces across the exit area. Denoting by
g; the aerodynamic force per unit of the wetted area, Aw,
by Pg the pressure across the exit area Ae, by éa the atmos-

pheric pressure, the surface force takes the form

*
Fg = jA £, A+ (p, - P A, i (28)
W

Assuming that the gravitational field is uniform, the body

force is simply

FB = S mgdx =Mg (29)
- L 2 Rt

where L is the length of the rocket, m the distributed mass,
and g the acceleration due to gravity. Assuming the internal

flow everywhere is along the x-axis, with the possible ex-

ception of the exit point, we write

v=-vxyzt)i=-vixti (30)

Moreover, assuming that the flow across the cross—-sectional
area is uniform, the Coriolis force per unit length can be

written

15



(31)

]
|
N
’8\
N
.
I
[
M
1A
(WP N
b o
8
o
oy

b
vm. = - S md g (32)

Equation (32) results from the continuity equation, Eqg. (14),
by considering a control volume from a point x to the end of
the first stage of the vehicle. 1In Eg. (32), m. denotes
fluid mass per unit length at point x, b is the distance from
the origin of the body axis along the x-axis to the end of
the first stage, m is the mass rate of change per unit length,
and ¢ is a dummy variable of integration. Upon integration,

Eg. (31) becomes

b
F=-2(wj—wl_§_)g <5 m d g) dx (33)
it - Y Ll X

Similarly, the force per unit length due to the flow unstead-

iness takes the form

£U t

Q

b
=_a_gﬁ1dgi (34)
y i

which upon integration along the entire missile becomes

16



b
- o 9__ : ;
Fy = T g (S m dg) dx i (35)
L X
1
Finally, the reactive force per unit length may be written

as

ER = - [%§ (Vme) + A(Vsz)c(x+a)] (36)

which upon integration along the missile length becomes

Fp = - gL [%;(vymf) + A(vymf)s(x+a{] dx = vvm, (37)

X
e

where the symbol Xq indicates that the quantity vvm_ is to

£
be evaluated at the exit point. The integrand in Eq. (37)
can be easily derived by assuming one-dimensional flow along
the x-axis. It will be noticed that the expression makes
allowance for possible abrupt changes in the flow pattern,
as would occur if the rocket engine were to be gimbaled at

a certain angle with respect to the x-direction. This is
reflected by the second term in the integrand. Letting the
flow direction at the exit be defined with respect to axes
X,v,2 by the direction cosines &

L respectively,

XR' “yR’ 22zR’
and using the continuity equation, Eg. (32), the reactive
force becomes

Fo= = Mv(xe,t)(szi + 2le + 2

=) (38)

17



where M represents the total mass rate of change which is
a negative quantity.

The forces F

s and ER can be written in the form

Es I~ Eat &g (39)

where FA denotes the aerodynamic force

*
I T S fad 2y, (40)
A
\
and Fo is the "engine thrust"
Fo = (p P, AL + |M|v(xe,t)(szifzleszRE) (41)

In an analogous manner, the torques are obtained as

W
Np = - a [M] vix ,t) (2,23 = £,gK)
NB = - g x j r m dx (42)
- ERNA -

b
NC = - 2(w._J + o _k) g x([ ﬁdg) dx
= = L x
1

Ny = 0.

in which Iy is the radius vector to a point on the rocket

surface.

18



Using the various forces and torques defined above,

Egqs. (22) and (25) become

- [(m;+w§)§ - (m +u wy)l + (w —w W )k]g-de

* 3 »
= g EA d A, + (Pe_pa)Ae = +_M g - 2(mzl

A
w
b
- w k) g g mdg ) dx -\:%g (& Iﬁdg)dx]
L X
1
* M) vixg, ) (Rypd + fopd + 2, gK) ZM (u,

+2Ll)xl.1-) (43)

and

b
X(X m dg)dx - alﬁlv(xe,t)lzR]

- 2(my‘j+wzﬁ) g 1 X

2 w x uy) (44)

19



Next let us introduce the notation
(45)

for the velocity of the origin of the body axes and write

(43) and (44) in component from as

Egs.
M[ﬁ + Wo, -V ] - (w2+m2)5~ Xx dM = F
y Yz y “z' Jy Ax

b
, 3 .
+ (pe—pa)Ae + Mg:i - 3T g; (gxm de)dx
1
) (46a)

+ ]M]v(xe,t)lxR - zé'Mi(uxi+2wyuzi—2mzuyi

M[v + Umz - WwX] + (wz + wxmy) gM x dMm

b
m dg)dx + |M ;)2 R
. (Sxm g)ax + |M[v(x_, t) v

FAY+Mg:2—2ng
1
(46b)

-u)u))

S X dM = F
X Z M Az

M[W + me - Umyl - (my
b

(S m de)dx + [M|v(x_,t)2

SL < e zR

+ Mg-'k + 2 wy

T 1

- :g Mi(uzi + 2wxuyi - 2wyuxi)

(46¢c)



and

. . . 2 2

Tax® =~ Txy®y = Txz%z * Iyz(wz my)
+ (IZz - Iyy)wywz + wx(szxy - mnyz)
= NAX (47a)

. . . 2 2
T Ixetx toIyyty T Typ¥p Tyzlox = wy)
M e N P u’y(“’nyz - xy) = Npy

b
-2 g x(gﬁxdg)dx—[gXan. dM] j
L X - M 7 -
1

- aIMlv(xe,t)zzR + z;_Mixi(uzi+2mxuyi—2wyuxi) (47b)

. . . 2 2
= Iygux T o Igpuy I,29, * Ixy(“’y wy)
+ (Iyy - Ixx)wxmy + wz(“ylxz - wayz) = Naz

b —

-2 g x(g m dg)dx - lgx g xidM}. k

Z bt - - e

L X - M
1

+ a|M|v(xe,t)szYR - 2§_Mixi(uyi+2mzuxi—2mxuzi) (47¢)

21



§

where we used the definitions

I
1k
(4

* *
5ﬂ fA dAw FAx ’ :S Is fA dAw = NAx
Aw Ay

) b
.

4

|
1

e—
[at

n

fx

*
EA dAw = N (48)

LSS

. *
J SA Fpdn, = ay !
w W

{ %
+h
&
Il
2

*
E < g fA dAw = FAz ' 5 ;g fs
A A
W '

Introduce the set of conventional notation shown in Fig-
ure 5, where XYZ are a set of inertial axes with Z pointing
downward. Next we consider a rotation y about axis Z to
obtain the set zlylzl(yaw), a rotation 6 about the Yq axis to
obtain the set Xo¥Y52, (pitch), and a rotation ¢ about the X,
axis to obtain the set xyz (roll). Using the notation cosé¢
= c¢, sin¢ = s¢, etc., the relationships between the inertial

and the moving coordinate systems are

i = cecy i' + cosy j' - 565'
j = (sé¢secy~ c¢s¢)i'+(s¢sesw+c¢cw)j' + s¢ce&' (49)
k = (cosocy+sesy) i'+(cosesy~s¢cy)j'+cpcok’

22



Moreover, the angular velocities, in terms of the rate of

change of ¢, 6, ¢ are

wx=$-xbse
my = éc¢ + @ces¢ (50)
w. = - 8sé + Yceced

while the velocity of the origin 0 has the following compon-

ents along the inertial axes

Mo
It

Ucbcy+V(s¢socy-cosy)+W(cosocy+sosy)

<o
i

Ucosyp+V(s¢sosyp+cocy)+W(coés8sy-spcy) (51)

De
Il

- Use + Vs¢co + Wcoce

Equations (46), (47), (50) and (51) are sufficient to define
the position and orientation of the missile as a function of
time.

Under certain assumptions Egs. (46) and (47) can be simp-
lified appreciably. Let us assume that x, y, and z are prin-
cipal axes and the missile is symmetric such that I =1

vy zz"
Also assume that the internal flow is steady and that the mis-

sile is not cont;olled, which implies that sz =1, EYR = lzR
= 0, then Egs. (46) and (47) becomes
m{04wu~va, | - (w2+w2)g xdM = F, + (p_-p_)A
v b4 y 27y Ax e Fa'Te
-Mgse + |M|v(x_,t) - %;D%}uxi+2wyuzi—2wzuyi) (52a)
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M{V+Umz—wa-_l + (wz+mxu)y) SMXdM = FAY + Mgs¢cH

- 2w S
Z2 JL

L

( mdf;')dx - - M- (1.1 . |2(1) u -"2(.0 u -)
l

M
b S
+ 2u SL (Sx mdg)dx ~ T i(uzi+2mxu l—2w qu)
1
and
IXX Wy = NAx

Ly

Iyy v + (Ixx-Iyy)wxwZ = NAy—Zwyg x(SX mdg)dx
L

1

+ gcec¢§de + EM.X.(E[ 420 UL ~2w. U_.)
M L ititTzi X yi y xi

L

1
Iyywz + (Iyy—Ixx) wxwy = NAZ—ZmZ ng(gx mdg)dx
1

+ gces¢g xdM - :E M.x.(a 420 _U_.~2w_U_,)
M T iTiyi z xi x zi

in which we used the fact that

g =g k'

2l

(52b)

(52¢)

(53a)

(53b)

(53c)

(54)



The equations of motion for the discrete masses may be

written as

fsi + fBi = Miei i=1,2, ———-, n (55)
where'g‘Si and EBi are the surface and body forces acting upon

the ith discrete mass, Mi' whose total number is n, and a;
is the absolute acceleration of the ith mass. With the de-
finitions

r; = (xi+uxi)3 + (yi+uyi)2 + (zi+uzi)E (56)

as the position of the ith mass relative to the body axes,

we obtain

. = .+ x.. + 'x .+ X XY .

a3 = 2p ¥ Iy *o2wxry +owxr; +owx(exr;) (57)

as the acceleration of the mass Mi‘ X;1Y;02; are fixed co-

ordinates defining the position of mass M, while u_.,u_.,u_.
i xi’ yi’ zi

are displacements relative to this position. In subsequent
use y, and z; will usually be assumed to be zero.

Denoting by kx"k 'k_., the stiffness of the springs

i’ Tyi’Tzi

used to attach the masses to the case, and by c c.., C

xi’ “yi zi’

the associated damping coefficient in the x,y,z directions
respectively, the surface force on the ith discrete mass takes

the form
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Fsi =~ [kxiuxi+cxiuxi]£ - &kyiuyi+cyiuy;]1
- [kziuzi+cziuzi15 (58)
while the body force is simply

Fpi <M g (59)

Using the above definitions for the forces, the equa-

tions for the discrete mass motion become in component form

| U+We - 4 . +20 0. =2m 0.+ )
Ml[U me sz+uXl 2wyuZl 2wzuy1+myuZl

. 2, 2
- wzuyi+mxwyuyi - (xi+uxi)(wy+wz) + wxwzuzi] =
Miged = KojUpy T CyiVyy (60a)

a. . =2 u_ .+ (X, +u .
xi “Yx"zi z( i x1)

Ton _ . .
Ml(y Uwz WwX+uy1+2w2

2, 2 _
x zi+ ziwywz uyi(wz+wx) + (xi+uxi)wxwy]'—

(60Db)
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Mi[%+me—Uwy+uzi+2mxuyi-Zmyuxi+mxuyi

- . . U,
wy(xl+qu)+wxmz(xl u,

2, 2 _
l)—uzi(mx+my)+w w_u .] =

Y 2 y1
M.g*k - k_.u_, - c_.u (60c)

i zi“zi zi“zi

Since the discrete masses are assumed to be point masses,

there are no torque equations for them.

4. The Equations of Motion of a Flexible Rocket

When the rocket casing can undergo elastic deformations,
the problem requires further attention. To this end, consider
a rocket translating and rotating relative to the inertial
space X,v.2, as shown in Figure 3. As the control volume,
we consider the volume occupied by a rocket element of unit
length when the vehicle is at rest relative to the body axes
X,¥,2. Figure 4 shows the corresponding element. Because
the rocket shell is elastic, the entire mass associated with
the control volume in gquestion can move relative to that vol-
ume. In the first stage, the rocket case and unburned fuel
are assumed to more together and their motion is different
from the motion of the burned fuel, while for the second stage
the motion of the shell is different from the motion of the
discrete masses. Therefore, it will prove convenient to de-

note the motions and mass associated with the case element by
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the subscript c, the ones related to the burned fuel ele-
ment by the subscript f, and the ones related to the dis-
crete masses by the subscript i. In analogy with Eq. (7)
and Eq. (15), we write the force equation of motion in the

form

- emC - n wen wweC

£+ f_ = g {*O+v + 2wxv +wxrc+mx(mxr ) | dm
" m -C

C

+ [h(x+a)*h(x—b{]5 [a +v +2mxvf+mxrf+ wx(wxr )] dm

8 lxmxy )g [ao+v 20y axEyex (uxe;) | Ao (61)
where Ve is the elastic motion of a point inside the case
element, Ve is the fluid velocity relative to the body axes,
and v is the velocity of the ith discrete mass relative to
the body axes. It will be assumed that the elastic motion
is the same for the entire case element and a similar state-
ment can be made concerning the velocity of the fluid element.

Introducing the notation

= é(xi) + 4y (62)

1
]

o

<4

i
1]

tCe
+

<

fg
|

where u represents the elastic displacement vector, v the
velocity of the fluid relative to the case, and ﬁi the vel-
ocity of the ith discrete mass relative to the case, we can

rewrite Eqg. (61l) as
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- - " e

fS + fB = Sm[go +u + 2wxu + 255 + wX(mxrfl dm

+ [h(x+a)—h(x—b{lg (v + 2wxv) am
m -

£

+ 6(x—xi) SM{ u, + Zj‘_’f‘ii]dm = (.‘3 + u
i

+ 2pxu)m + &xg r dm + wﬁ(mﬁg r dm)

+ [h(x+a) - h(x—bﬂ (g + 2wxv) mg + (Gi

+ 2wxﬁi)Mi § (x-x) (63)

- -

Moreover, the radius vector r has the expression

r =xityj + zk + u = (x+ux)i+(y+uy)j+(z+uz)k (64)
in which Uy uy, u, are the elastic displacements of the case
element in the x, y, and z directions, respectively.

Invoking the analogy with Eg. (17), we can rewrite Eq.

(63) to read

fg + fg + [fc+fu+gR-“§(x+a)—h(x-b)l + (£o;+Ey; +ERy )08 (x-xy)

il
o
3

= (a +§ + 2w§g)m + éfj‘f dm + wX(wxg r dm)
m -t m

(65)
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where a is the absolute acceleration consisting of the
acceleration 2y of the origin and the acceleration of the

case element relative to the body axes. Moreover

fo = 7 2ux vmg
=~ 2 (vm,) (66)
_ _ 9_ -

= =2 (vymf) A(vymf) § (x+a)

are the Coriolis force, the force due to the unsteadiness of
the fluid relative to the case, and the reactive force, res-

pectively, all per unit length of ' the rocket. Similarly

Loy = - 2M; wxuy
(67)
Fgs ¥ fpi = M3 4y

If we express R, in terms of components along axes X, y,

0
z, then the position of the case element at any time is given
by

R=Ry+ I

(X + x + ux)} + (Y + vy + uy)g + (2 + 2z + uz)5(68)

Recalling that the unit vectors i, j, and k rotate with ang-

ular velocity w, the absolute acceleration of the case element

-



g

can be written in the form

a= axé + ayi + azE (69)
where

a, =0+ lef v, (WH2a,) = w, (V423 )

+ (Ay+mxmz)(z+uz) - (&z-wxwy)(y+uy)

- (m§+w§)(x+ux) (70a)
a, = v o+ ﬁy + wZ(U+26x) - wx(w+2ﬁz)

+ (Qz+mxwy)(x+ux) - (&x—wywz)(z+uz)

- (wi+m2)(y+uy) (70b)
a,=W+u_ + wx(v+2ay) - w, (U+20,)

+ (c:)x-l-_mywz) (y+uy) - (ij—wxwz)(x+ux)

- (w}z{ﬁn;) (Z+uz) (70c)

51
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In the above expressions the y and z coordinates may be
considered as offsets such as may result from the missile
not being perfectly symmetrical about the x-axis. In sub-
sequent use we will assume them to be zero. In addition,
the assumption that a given cross-section is uniform is
made.

Similarly, using Eq. (63), the torque equation about
the point 0 for the rocket element in question takes the
form

- e e e W oes

ES + EB = g rx[a0+u+2wxu+wxr+mx(wxr) dm

+ [h(x+a)—h(x—bf]§ £§(é+2£§z) dm
m
f

* S (xmxy) gM rx(ag+20xd;) dm =
i

S rx{a +u+2wxu) dm + Z' + wxg

~= <0 - - -

+ [h(x+a)—h(x-bﬂ S rx (V+20xv) dm
mf”w -oom s

+ 6(x—xi)g rX(u +2wxul) dm (71)

M. -
1
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where

.'.Q.' = (ixxwx _lxy Y lXZwZ)-} - lyxwx‘*'lyywy—lyzwz)l

+ (—1xzmx—1zywy+ szz)E (72)

is the angular momentum of the mass element m about the body

axes X,v,2, in which

P.
)]

- gm[(y+uy)2+(z+uz)2]dm . gm[(x+ux)2+(z+uz)216m

B
Il

22

I 2 2 .
&nt(x+ux) +(y+uy) ]dm ’ lxy —g (x+ux)(y+uy)dm (73)

m

|
]

%z g;(x+ux)(z+uz)dm R iyz = S;(y+uy)(z+uz) dm

are recognized as the associated moments and products of in-
ertia. Moreover, é' is obtained from Eg. (72) by replacing
mx’my’mz’ by wx,my,w , respectively. Eg.(71) can, be rewritten
as

.PS + ng + [n +n +nR][h(x+a) h(x—b)] + (n

2oy Dy thy; gy ) 8 (x-%;)

= g £§(§0+{é’+29§é)dm + é' + wxg (74)
m

-
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where the torques

n_ = - 2 g. rx (wxv) dm
-C . mf - -
= - g rx L (vm.) dm (75)
v ww ot '~
m
£
- - 3
g = Sm i [ax (Vme)+A(Vme)5(X+a)1 an
£

and

~Ci i
(76)
Bui FPraTCEIM Y

follow directly from Egs. (66) and (67) respectively.
Eguations (65) and (74) must be supplemented by the

continuity equation, Eg. (32).

5. The Equations for the Axial and Transverse Vibration

of a Rocket

Let us consider the rocket of the preceding section in
which u, is the axial elastic displacement and uy and u, are
the elastic transverse displacements in the y and z directions,
respectively. Assuming axial symmetry and that the elastic

displacements ux,uy,uZ and the angular velocity components

3h




wy'“z’ as well as their time derivatives are small quant-

ities, we can integrate Egs. (65) and (74) and obtain

FotEptFtEytlyg + ; (£oitEyitipy) = SL (ay+u

+ 2mxg)mdx + éi[ [ rdmdx + wX(mxg y rdmdx)
- - -v-Lm ,.h..-Lm-.

= M 2, + g (ﬁ+2m§ﬁ)mdx + éfg g r. dm dx
L - 77 T Lm

+ éxS g udmdx + wx(mxS g r dmdx+wX(mXS~g udmdx) (77)
-~ -~ P -l - Ve -~
L'm Lmn L'm

in which xr. is the rigid body position relative to the body

axes as defined by Egq. (21). Also

g + Ng + Np + Ny + Np # 2 (D *Ryi ¥0gs) = j‘ S rx(ag
1 LYm
+ U + 20x1) dm dx + \ (8' + wx2)
~ P L - - -
= - a 55 g r dmdx - a Xj\y u dm dx - 5 X [(G
~0 °m T ~0 Y m L Z
. ° . b _ . e L
+ 2mXuy+mXuy?3_ (uy 2mxuz mxuz)kldx + L +£{E_ (78)

Comparing Egs. (19) and (77) on the one hand, and Egs. (25)
and (78) on the other hand, we conclude that the elastic mo-
tion does not affect the rigid-body motions provided the

following relations are satisfied

25




L

g xu m dx = g xum dx = g‘ xﬁ mdx =0 (79)
L Y . Y L. Y

S xu m dx = S 'xﬁzm dx = s xazm dx = 0

L 2 L L

We assume that this is the case, and indeed Egs. (79) imply
that the elastic modes of deformation are orthogonal, with
respect to the modified mass, to the rigid-body modes of
displacement, namely the translation and rotation of the ve-
hicle as a whole. In view of the above arguments the problem
can be solved in two stages. First, the rigid-body motion
can be solved for using Egs. (19) and (25), then considering
these as known, Egs. (65) and (74) may be used to obtain the
elastic motion.

Equations (65), (66) and (67), representing the equations
of motion for the three components ux,uy,uz of the elastic
displacement u, are of a general form and, before we can at-
tempt their solution, we must specify the nature of the sur-
face forces fs and the body force fB' The surface force de-
pends not only on the external aerodynamic forces, but also
on internal stresses in the shell and fluid pressure. More-
over, the fluid flow characteristics must be known, as can be

concluded from Egs. (66), as well as the discrete mass motion,

as can be seen from Egs. (67).
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As far as the elastic motion is concerned, the vehicle
shell is assumed to behave like a bar in axial and flexural
vibration. Under these circumstances, the distributed sur-

face force can be written in the form

3 aux 32 _azu 5 au
~S §§(EAC ax) R ax2(EIcz ax2)+ 3% (P %) J

H
|

4

32 ‘azuz 3 auz 3
- Q(EICY —a?) + '3—}'{"(13 Bx) ]j - E(PAf)"'PAf(b)G(X‘b)

+

j+f. k

pAf(a)G(X+a)}[ h(x+a)—h(x-b)] I+ f dH e, Ik

(pe - pa) Ae § (x+a) E (80)

where the first three terms represent the force components

due to internal stresses caused by the axial and flexural
vibrations (see, for example, Reference 19, Sections 5-7 and
10-3), the fourth term is due to internal fluid pressure dif-
ferential, the next three terms are due to aerodynamic effects,
while the last term is due to pressure difference at the aft
end of the missile. The term P denotes the axial force on

the vehicle due to internal stresses and has the expression

Ju

_ X
P = EA, —3 (81)
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Finally, the differential equation for the flexural

vibration in the xz-plane is

2
32 3 u

- —= (EI
sz c

su
Z 2 —2) + + mg-k - 2 h(x+
y axz) + % (p ax) 2z mg: k wyvmf (x+a)

- h(x—b)] + |M|v(xe,t)£zR6(x+a)—MJ:uzi+2wqui-2myux;16(x—xi)

= mle+uz+mX(V+2uy)—wy(U+2ux) + (mx+wymz) uy

- lyuge,) (x4u) = (o)) uz] (87)

with the boundary conditions

2
] uz
EIcy 3x2 = 0 at x = ~ a,b+L2
2 (88)
5 o U,
- 5_'(EIcy 3X2) = 0 at x = - a,b+L2

At this point a discussion of some additional assumptions
implied by Egs. (83) through (88) is in order. First we note
that the aerodynamic forces are treated as distributed forces
causing no torques on the case element. Such torques, if
they exist, are assumed to affect only the rocket rigid-body
rotation. Although the nozzle has finite length, it was assu-
med, for simplicity, to be of negligible length. In a more

exact treatment of the gas flow, this assumption may have to



be relaxed by considering the pressure distribution along
the finite-length nozzle (see Appendix A).

The flow has been treated as if it possessed no vis-
cosity. As a result, any reactions between the gases and
the unburned fuel are assumed to be normal to the flow.
This is implied by the fact that the velocity is uniform
over the entire cross-sectional area which implies, in

turn, perfect burning in the sense that no gas-dynamic

eccentricity is present. The lack of gas-dynamic eccen-

tricity is ensured by any type of radially symmetric flow,

of which the uniform flow is a special case. Any torgques

due to gas flow may result from engine thrust misalignment,
if at all. Moreover, the velocity of the flow relative to
the body is assumed to have only one component, namely along
the x-axis. Although due to the transverse elastic displace-
ments uy and u,, there are velocity components vauy/ax and
vauz/ax in the y- and z-directions, respectively, the terms

involved are assumed to be small and, therefore, ignored.

6. Distributed Aerodynamic Forces

Before a solution for the motion of the missile can be
attempted, we must determine the distribution of the aero-
dynamic forces along the missile. To obtain the transverse
forces, we use the method of virtual masses, whereas the ax-
ial forces are obtained by semi-empirical means. The latter
forces are assumed to act at several discrete stations of

the missile.
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The method of virtual, or apparent mass can be traced
to Lambzo. The method was extended by Munk21 and Jones22
and applied to missiles by Bryson23. The present deriva-
tion represents an extension of the method and reduces to
the results of References 24, 25, and 26 if suitable simp-
lifications and assumptions are made.

Consider a missile moving through an infinite expanse
of fluid which is stationary at infinity. With the coordi-

nate system shown in Figure 6, consider a set of axes xlylzi,

displaced relative to xyz by
r= (x+ux)£ + uyl + uz& (89)

where i,j,k are unit vectors along axes xyz. The X1¥125

axes are such that the X = 0 plane is a plane at rest with
respect to the fluid far away from the body and such that

the x,-axis is parallel to the x-axis at the instant under

1
consideration.

Next consider the element of unit length shown in Figure
6, and define the translational velocity of this element, ex-
pressed in terms of components along the coordinate system
with origin at 0, by
V. =u

11 + vid + w.k (90)

ko




Then the linear momentum of the element expressed in terms

of the same set of axes can be written as

P =pyl +pyJ + Pk
= mv(uli + v11_+ WlE) (91)
in which
ul = U + ux + uz - wzuy
vy = vV + uy + mz(x+ux) - el (92)
Wy = W+ u, + wxuy - my(x+ux)
and
m,=p S (x) (93)

where p is the free stream density and S is the cross-sect-

ional area. The distributed force acting on the missile is

then
dp
Ea = Bkt d YIRS T EE (54)

As the axial component for the distributed forces is
derived by a different method, we only consider the derivation
for the transverse components. Considering Egs. (91) and (92),

we can write the components for the linear momentum in the
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functional form

=p, (%X, Vv, 2, U, V, W,u_,u,u,u,u,u

P; = Py x’ "y’ Tz’ x' Ty’ Tzt
o, my, 0 m,) , i=2,3 {95)
The total time derivative of Eg. (95) is then
i _%Piax  Piay P Ty
dt 3x dt 3y dt amv dt
i=2,3 (96)

Introducing Eq. (92) into Eg. (91), using Egs. (96), and re-
calling that the unit vectors i,j,k are rotating, the trans-

verse components in Eq. (94) become

fAY =-m, ay - mv EY + uy + mz(x+ux)~wxuzl - mV EU + u,
aux
* z Yz% ][‘ + v, t Y 9% Y % -l_ p[?
+ U+ wu - ou V+u + o (xtu_ ) ~ o_u ] as (97)
X Yy 2z zZy y z X x'z ) dx
fAz = - mv a, - mV [W + u, + wxuy - wy(x+ux)] - mv [U + uX

r %u auy aux}
+¢ﬂyuz—wzuy ‘.3;{—+mx-§——wy—wy§;<— "'D[U

L



. N . as
+u o+ w U, mzuy]lw +u, + 0, wy(x+ux)} Ix (98)
where ay and a, are given by Egs. (70).

In the above expressions S(x) represents an area in a
plane perpendicular to the elastic axis. For a circular se-

gment this area is
2
S(x) = 7r7(x) (99)

in which r(x) is the radius. For a segment that has fins, the

equivalent area is represented by the expression

2 r2 r4
Seq(x)=ns (l—s—2+s—4')

(100)

in which s is the distance from the elastic line of the missile
to the tip of the fins in the cross-flow plane.
The axial aerodynamic force per unit length, fo , is de-

fined as
£ = - g S_ c (101)

in which g is the free stream dynamic pressure

q = % R .30 (102)
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and c, is the axial coefficient, which in general depends on

the local angle of attack, local sideslip angle, and local

Mach number. However, we shall assume that it is only a
function of the Mach number and that it acts at discrete sta-
tions along the missile. These stations are generally located
at points where there are changes in the cross-sectional area,
such as at the forward end and the aft end of the missile, where
the fins are located, as well as the stage intersection. Base
pressure also acts at the aft end of the missile. Viscous
forces due to friction are neglected. Hence, we can write Eq.

(101) as

£ = = @ S c (M, x;) 6 (x-x;) (103)

where 6(x—xi) is a spatial Dirac delta function and Ma is the

Mach number.

7. Equations of Motion for a Flexible Two-Stage Missile with

Discrete Masses and Aerodynamic Forces

This section concludes the analysis of a two-stage missile
with internal flow including discrete masses and aerodynamic
forces. Subsequent sections will include simplified eguations
and computer solutions. The resulting equations in this sec-
tion are such that no closed form solution appears possible and

numerical methods are called for.
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As indicated by Egs. (52) for the rigid-body motion, we
need expressions for the aerodynamic forces. These are found

from Egs. (97) and (98). For no elastic deformation they re-

duce to
fAy = - mV(V,+ xwz).— mv(V + sz) - vawz - vawz
+ m w (W-xw ) - Up (V+xw_) ds (104)
v X vy 2z’ dx
fAZ = - mv (W—xwy) - mV (W—wa) + mVUu)y
- mow (Vixe ) + mw U - Up (W-xw_) 5 (105)
vV X z vy y' dx

The body axes are taken to be at the end of the missile such
that a = 0, b = Ll' Before integration can be performed, some
description of the cross-sectional area is necessary. We assu-
me that each stage has a constant cross-section and changes
only occur at the intersection of the two stages. The fin area
at the aft end is considered as a spatial impulse and the nose
is assumed to be pointed such that S(L) = 0. Under these cir-

cumstances the cross-sectional area distribution becomes

S5(x) = s(0)s(x) + Sl[h(x)—h(x—Ll)] + AS 6(x—Ll)

+ Sz[h(x—Ll) - h(x-L)] (106)
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where S(0) is the fin cross-sectional area at the base, Sl

and 52 are the cross-sectional areas (assumed constant), of
the first and second stages, respectively, AS is the average
cross-section at the intersection of the two stages. With

this definition for the cross-sectional area, the integration

of Egs. (105) and (106) produces

L
FAY = S £ dx = - (V + Uwz - wXW)pAl - VpAl

- (Az + wxmy)pA2 - w25A2 - pUV A3 (107)
L L) L
FAZ = go fAZ dx = - (W + VU)X - Uwy)pAl - WpAl
- (&Y - wgw, oA, - vy Ay = oUV Aq (108)
in which
A1 = S(O)hO + SlLl + AS h2 + 52L2
L]2_Sl L%S2
A, = = + AS Ljh, + 5 (109)
A3 = S(0)

and hO, h2 are incremental distances along the x-axis on which
the areas S(0) and AS are assumed to be present. The axial
force is simply found by integration of Eg. {(103), which results

in
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FAx

- :§- cX(Ma ’ xj) q Sr

With the definition

Ay

Az

in which

- (& -

y

W o A2 +

- . +
(wz

p]
Il
W=

X

+ UWp A

4

Umy p A2

mxwy)pAS—sz5p

Uuw, ¢ A2 - UVp A4
A

3 2 1
SlLl + ASL1h2 + T SZL

49

® mz)pAS—wyASp + (W+me—Uwy)pA

(V+Uwz—WwX)pA

3
2

2

2

(110)

(111)

(112)

(113)

(114)

(115)



It may be noted that there is no torque produced about the
longitudinal axis of the missile by the aerodynamic forces,
and this needs further clarification. Physically it may be
assumed that there are control systems to maintain the mis-
sileunder a steady rolling velocity and therefore cancel any
aerodynamic forces that are produced about the x-axis. Math-
ematically the torque vanishes because the missile was assumed
to have negligible width,

With the above definitions for the rigid-body aerodynamic

forces, Egs. (52) for the rigid-body translation become

. 2 2
MU + me - Vu)z] - (u)y + wz) fM xdm = —Zq Srcx(Ma,Xj)
]
+ (pe - pa)Ae - Mg s6 + lM| v(xe,t) - ZZ Mi[uxi
i
+ 2000, - 2wzuyi] (116)
* [. ] . * .
M V+Uwz—wa + (wz+wxwy) Ml—"Vp Al
Ly
- w, 5A2 - pUVA; + Mgs¢co - 2w, y (g mde) dx
L X
1
- D M (h. 4 208, - 20.0..) (117)
i 1 Yi 2 X1 X Z1
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B

. - *
M [W + me - Umy] - (my - wxwz)Ml = -Wp Al
: SLl .
- mypA2 - pUWA3 + Mgcéce + 2my g ( N mdg)dx
Ly
- 21 My (R, + 20,80 - 2008,;) (118)
in which
* * _ S .
M =oA, + M , My = oA, + y *xdM (119)

Consistent with the assumption of negligible width, such
that Ixx/Iyy<<l’ and using the aerodynamic torgues defined

above, the torque equations become

I w, =0 (120)
XX X
* . _ . .
Iyy(wy - wxwz) = - wypAS + (W + wa - Uwy) A2
. SLl )
+ WpA2+ Umy_pA2 + UMbAS - 2wy x( N mdg) dx
Ly

+ gchco g# xdM + Z;-Mixi(uzi + zwxuyi - zmyuxi) (121)
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* . L] *
Iyy(mz + mxwy) = - w, pA5 - (V + Uu)z - ooXW)pA2
. L
- VpA2 + Uuozg:'A2 - UVpA4 - 2u)z x( X mde) d4dx
Ly
+ gces¢g]M xdM - :§-Mi xi(uyi + 2mzuxi - zwxuzi) (122)
where
I = A, + T (123)
yy = P95 7 tyy

The discrete mass motion is described by Egs. (60) and

repeated here as

Mi [U + Wwy - Vu)z + uXi + 2“’yuzi - 2mzuYi

. . 2 2
+ wyu21 wzuyl + wxmyuyi (Xi + uxi)(wy + wz)
* mxwzu21] = Mi glt- kx:L xi
T Cxi Yxi (124a)
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+ éz(xi+ux1) - éxu21 + uzi“’ymz - uyl(w + wi)

+ (Xi + uxi) wxwyf] = Ml E = 2 - yiuyi

-S4 ﬁyi (124b)
My [ W+ Vo, = Un, +u,,; + 2mx.yi - 2o .x1

+ éxuyi - éy (x; + ugy) + oo (x, +u,)

- (w}z{ + u);) u,. + mymzuyil = Mi g :E

-k ., u., -c., u_. (124c)

Z1 Z1l 21 Z1l

Finally, using the distributed aerodynamic forces from
Egs. (97), (98) and (103), the equation of motion for the axial

elastic motion become
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au

3 X 3

{jh(x)—h(x—Ll)] - (pe-pa)AeG(X) - qucX(Ma,xj)s(x-xj)

mg so - L%E (vmf) + %; (vszfl [h(x)-h(x—Ll)]

- Mi\_uXi + 2Luyuz:.L - 2wzuyi] é(x—xi) = m [U

+ wy(W + 2uz) -, (V + 2uy) + (wy + mxmz)u

+
[

X Z

- (éz —_wxwy)uy - (w; + wi)(x+ux)] + |ﬂ|v(xe,t)ng5(x) (125) .

subject to the boundary conditions

EA_ S 0 at x = 0,L (126)

while those for the transverse motion take the form
2

82 3 uy 5 auy
-2 (EI__ —2&) + 2= (P —X) - m [ﬁ + U + o u

axz cz aX2 ox X v x v Z

ou au ou

— Y X _ 2z - X

wzugl [ 5% T Wy T Uy 3% Yy TX ] D[b tu, t wyly
- w u ] [V + 0+ w (xtu) - w.u s _p lv+a

z2'y Yy z X X'z dx v Yy

+ wz(x+ux) - wxuz] + mg s¢co + szvmf[h(x)—h(x—Ll)]
- |M| V(xe,t) gyRa(x) - Mi[juyi + zwzuxi—zwxuzi] 5(x—xi)

- * L A . - L] .
m [v + uy + mZ(U+2ux) wx(W+2uz) + (wz +

2, wi)uy ] (127)

w0 ) (X + 0 = oy = wpeu, = (o)

X

subject to the boundary conditions
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2

3 u
— ¥ = =
EIcz 5 0 at =x 0,L
X
azu (128)
- 8_ —¥) = =
=z (EL_, %) 0 at x = 0,L
oxX
and
82 azuz 3 auz .
-2 (BT —2) + (P =2 - m [U+u + wu
sz cy BXZ X X v . X Y 2
au ou Ju
- 2z Y _ - =X\ _ 3
wzu;}[ax + W 3% wy wy % l p[U + ux + wyuz

- w u-]EN + 0+ wou. - w_(x+u) ds _ m [jW + 10
zZ'y z X'y v X dx v z

+ mxuy - my(x+ux)] + mg c¢chb- 2wyvmf [h(x)—h(x—Ll)}
- |M|v(xe,t)2zR §(x) - Mi[:uzi + zwxuyi - zwyuxi] 6(x—xi)

— * L] b Ll _ . L]
m [W + u, + mX(V+2uy) wy(U+2ux) + (mx + wywz)uy

- (&Y - wxwz)(x + ux) - (wi + mi)uzlx (129)

with the boundary conditions

9 uz
EX 5 = 0 at x = 0,L
¢y X
(130)
9 azuz
- 3% (EICy axz) =0 at x = 0,L.
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In Egs. (127) and (129) we introduced the notation m* =
m+ m_.

v

Equations (116) through (130) must be solved in conjunc-
tion with the appropriate initial conditions to obtain the
rigid-body motion, the motion of the discrete masses, and the
elastic displacements. The equations are coupled and nonlinear,
so that no closed form solution appears possible. Hence, num-

erical methods, such as used in Reference 16, are indicated.

8. Axially Symmetric, Spinning Single-Stage Missile

The previous section considered a two-stage missile whose
characteristics were different in each stage. ©Not only are
their stiffnesses and mass distributions different, but there
is variable mass in the first stage, while it is constant in
the second. As a result, the center of mass moves along the
missile axis with time.

As a special case, we wish to consider a slender single
stage uniform missile as shown in Figure 7, where the missile
is subject to the following assumptions: (1) the nose and fins
are short in comparison to the total length of the missile, so
that the transverse aerodynamic forces associated with the nose
and fins can be regarded as acting at the ends of the missile;
(2) the axial aerodynamic forces act only on nose and fins,
where the nose has the shape of a cone; (3) the missile is
unguided and the thrust is directed along the x-axis at all

times; and (4) the internal flow is steady.
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As a result of the first two assumptions, the effect of
aerodynamic forces on the nose and fins of the missile can be
expressed in the form of boundary conditions. From the third
assumption it follows that the direction cosines have the values
lxR =1, lyR = zzR = 0. As a result of the fourth assumption,

we conclude from Reference 13 that the internal flow satisfies

the equation
=0 (131)

Since the nose and fins are assumed to be short, the missile

is regarded as being uniform, so that it proves convenient to
choose the origin of the moving coordinates system xyz at the
center of the missile, from which it follows that a = b = L/2.

This leads to the expression for the pressure distribution as
A.(x) = pA.(L/2)-v’m (132)
Phg £ £

For uniform burning, Eq. (32) yields the relation

me = mos (L/2 - x) (133)

where mos = - m = constant is the uniform rate of mass burning

per unit length. Substituting Eg. (133) into (132) results in

pAf(x) = pAf(L/Z) - vmoS(L/Z - x) (134)
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We next rederive expressions for the rigid-body aerodynamic

forces. From Egs. (92) we obtain

u, = U, vy = vV + Xa,, Wy = W - xwy (135)

so that Egs. (97) and (98) become

fAy = - mV(V + sz) - mV(V + sz) - mVUmZ
- m Uu_+m_o, (W-xu_)-Up (Vixw, ) S (136)
vz VX y z' dx
fAz = - mV(W - me) - mV(W - me) + mVUwy
- m o (VExe )+m o U-Up (W-xw_) as (137)
vV X z vy y o dx

Integrate Egs. (103), (136), and (137) along the missile
length use the fact that the forward end is pointed such that

S(L/2) = 0, and obtain

L/2 n _
Fau =j—L/2 £a,d% = - as, %éicx(Ma,xj) = - quI%X(Ma,L/Z)
+ CX(Ma'_L/Z)} (138)
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L/2

FAy = S fAydx = - MV[Y + Uwz - me] - MVwZU - MVV
-L/2
+ UV’pS_L/2 - Upmz L/2 Sl (139)
L/2
FAZ = S fAde = - MVYW + wa - Uw?] + MvmyU - MOW
-L/2
+ UWpS_L/2 + Upwy L/2 Sl (140)
in which
M_ = nmL (141)
v v
S—L/2 = S(-L/2) (142)
L/2
Sl = S(~L/2) - % g S(x) dx (143)
-L/2

and n is the number of stations at which axial forces are assumed
to act.
The rigid-body aerodynamic torques are found from the first

of Egs. (42) where

=x i _ (144)
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The resulting expressions are

NAx =0
va3 . ﬁVL3 L L2
NAY = = T(my—wxwz)- —1-2— (L)y+UW 7 Slp+Up my 4— Sz (145)
mVL3 . xth3 L 12
Npaz =~ 132 (wz+wxwy)_ 13 Y70V 3 8; + Upu, 7= 8,
in which
L/2
S, = S(-L/2) + 8—23 x S(x) dx (146)
L -L/2

With the above expressions for the aerodynamic forces and

torques, the rigid-body equations of motion, Egs. (52) and (53)

become
M U+Wwy—sz] = = qsr[cx (Ma L/2)+ CX (Ma ’ -L/Z)] + (pe-pa) Ae
+ |ﬁ|v(xe,t)~Mgse
* | - = - -M -
M LV+UwZ wa] MVwZU MVV+UVpS_L/2 + Mgso¢ce UprL/Z Sl

*. -— 1: --.
M [w+wa Uwy, MvaU IVIVW+UW'pS_L/2 + Mgcécod + Uwpr/Z Sl

(147)
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and

I w, =20
XX X
« 3
L 2
I*(tl)—wm)=—mv m+UWp£'-S—Upw L—S
YY Y X z 12 Yy 2 "1 y 4 2
. m L L L2
* = - - - - —
Iyy(wz+wxmy) 15 Yz Uvp 5 Sl Upuoz 7 82
(148)
respectively, in which we introduced the notation
M* = M + M
v
(149)
m L3

I* =TI + —an—
vy Yy 12

The differential equations (147) and (148)1 together with Egs.
(50) and (51), must be solved simultaneously to obtain the po-
sition and orientation of the missile as a function of time.
Before turning to the elastic motion of the missile, some
mathematical preliminaries are in order and these deal with the
solution of the boundary value problems. The solution is possi-
ble by means of modal analysis, provided the mass m is constant.
This, of course, is not the case but let us assume for the mo-
ment that it is. The modal analysis amounts to solving the
eigenvalue problem associated with the constant mass system,

obtaining the so-called normal modes, and expressing the system
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response as a superposition of the normal modes multiplied by
corresponding generalized coordinates; such a solution is re-
ferred to as normal-mode vibration. Because the actual boundary-
value problem possesses time-dependent coefficients, however,
no normal-mode vibration is possible. Nevertheless, by virtue
of the uniform-burning assumption, it turns out that a proced-
ure based on the normal-mode approach can be used here to ob-
tain sets of ordinary differential equations which are far
simpler to solve than partial differential equations. But,
because the normal modes imply a physical behavior which the
actual system does not possess, we shall regard the solution as
a superposition of eigenfunctions associated with the constant-
mass system, rather than superposition of normal modes. To

this end we will assume that

o]

w6, 8) = 2wy () gy (e)
uy(x,t) = Eé; vr(x) nr(t) (150)
uz(x,t) = zfi vr(x) Kr(t)

=1

where dpr M k.. are generalized coordinates and Mo and v_ are

r' "r r
certain functions representing the normal modes. To obtain Mo
we consider the eigenvalue problem consisting of the differential

equation
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2

EAc "+ 27 m =0 (151)

Ou
over the domain -L/2 < x < L/2 and the boundary conditions
' (L/2) = u'(-L/2) =0 (152)

where primes denote differentiation with respect to x.

The eigenvalue problem, Egs. (151) and (152), corresponds to
the axial vibration of a uniform, constant mass bar with both
ends unconstrained. The solution of the problem can be shown
to consist of the denumberably infinite set of eigenfunctions

(see, for example, Reference 19, pp. 151-154)

By = v2/m0L cos rn(x/L-1/2) r =1,2,3,-—-- (153)

and the eigenvalues

———

B 2
o = rn \ EA_/mL

r (154)

The eigenfunctions are orthogonal and, in addition, they are

normalized so as to satisfy the relation
L/2
S m ur(x) us(x)dx =48 , r,s=1,2,3,-~-- (155)

-1/2 © rs

where Grs is the Kronecker delta. The eigenfunction correspond-
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ing to r = 0 represents the rigid-body mode Hg = fi?ﬁ;f and
the associated eigenvalue is zero, QO = 0, as is to be expected
for a semidefinite system. It is easy to see also that Ho is
orthogonal to the eigenfunctions B (s = 1,2,3, ---).
Similarly, to obtain v, we consider the eigenvalue problem
for transverse vibration of a uniform beam comprising the dif-

ferential equation

ET_ v = A% mv (156)

v = v =0 at x = - L/2, L/2 (157)

The solution to this problem (also given in Reference 19, Sec-
tions 5-10 and 10-5) consists of the denumberably infinite set

of eigenfunctions. They can be shown to have the expressions

1 ( cosBrx coshsrx )
+ r=1,3,5, —--
—— —ﬁ_ r7 r ’
VmOL cos BrL/Z coshsrL 2
v, = (158)
1 ( sinsrx sinhsrx )
- + —_—— r =2,4,6, ———
VEEE 51n3rL/2 51nhBrL/2

where the eigenvalues are found by solving the equation cosBrL-

coshBrL = 1, or equivalently
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8L B L |
tan 5 + +tanh > =0 r=1,3,5, ——
(159)
B L B,.L
tan —5— — tanh -5 = 0 r=2,4,6, ——~
in which-
2
A m
4 _'r
Br = —ﬁ: (160)

The eigenfunctions are orthogonal and they are normalized so as

to satisfy
L/2
g movr(x) vs(x)dx = § r,s =1,2,3, ——- (161)

-L/2 rs

It may be noted that two rigid-body modes exist and it is not

difficult to show that they are orthogonal to the remaining

eigenfunctions.

(a) Axial Vibration of a Rocket.

Using the above assumptions, and the aerodynamic forces

of Section 6, we may write Eg. (83) as
Bzux
EAc —;;7 - qucx(Ma,L/Z)d(x—L/Z) - qucx(Ma,-L/Z)6(x+L/2)+mg:£
= m[U+ux+wy(W+2uz) - wZ(V+2uy)+(my+wxmz)uz
- (o mw e du = (x+u ) (02 + wz)] — P_,8 (x+L/2)+P_ 8 (x-L/2)
z Xy 'y x y z x1 x2

(162)
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with the boundary conditions

1
x-— = -
EAc rralie 0 at X = L/2 , L/2 (163)

In Eg. (162) the forces P and P, are given by the expression

<1 = P Bg(L/2)

(164)

g
|

x2 = P B (L/2) ~ (p-p A, ~ v M8

and they represent forces due to internal fluid flow and thrust.

L/2

In Eq. (164), M, is the total mass M, = m, dx and B is
0 0 —L./2 0

the burning rate. We may now insert expressions (150) in Eqg.

(162) with the result

- " o — 2 2 = —
ZZ- EAc W g, +mu_ g m(w +mz)urqr = le § (x-L/2)

r °r r r
I Y

- PX25(X+L/2) - qucx(Ma,L/Z)é(x—L/Z) - qucX(Ma,—L/2)6(x+L/2)

+

mgei - m U+wyW—wZ\;} -m {Zwy Z VoK

-

. . 2 2
- 2u),z Z v n,. + (my-i-mx_wz) Z Vi Ky x(my + wz)

(0, - wy0y) Z v N, } (165)

r
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Using Eq. (151), multiplying Eq. (165) by Ugr integrating along

the missile, and using the orthogonality conditions, we obtain
m |- 2 2 2 -
mg [qr - (g + “z)qr] * R Ay = Py up(1/2)
- B, up-1/2) - as (o /200 (1/2) + e b, 1/2)u (1)

- & Zs L2uykg-20, 7y + (5y = wye,) kg = (b,

L/2

m 2 2
- mxwy)n51 g—L/z movs(x)ur(x)dx + Eg (wy + wz) g

L/2

m.xu_ (x)dx
~L/2 0" ' r

r=1,2,3, --- (166)

which are subject to the initial conditions

L/2 L/2 ou_ (x,0)
S moux(x,o)ur(x)dx, ér(O) = g' m, — ur(x)dx

qr(O) = = 0 ot
-L/2 L/2
L/2 . L/2 du_(x,0)
n.(0) = mouy(x,O)vr(x)dX, n.(0) = m, —la’—t——- v, (x)ax
-L/2 ~L/2
L/2 . L/2 Buz(x,O)
Kr(O) = mouz(x,o)vr(x)dx, Kr(O) = My —5F vr(x)dx
~-L/2 ~L/2
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(b) Transverse Vibration of a Rocket.

Consider the differential equation for vibration in the
xy-plane. Assuming constant stiffness, Icy = Icz = Ic, neg-
lecting Coriolis forces (see Reference 18, page 14), and using

Eq. (97), we write Eg. (85) as

34u 5 3u . da
-EI —Y -2 _ ¢p _3%) + mgej - mV[U+ux+myuz—mzwy][_—3§

o] ax4 oxX o
du, du, . .

+ w, + W, T5x T Yy —5§.] - pS[V + uy + wz(x+ux)
- - * . h . _ ]

wqu] m [V + uY + wZ(U+2ux) wX(W+2uZ)
- 0 (xtu) - w w (x+u ) - w w_u_ - (w2 + wz)u 1

z X Xy X y 2z 2 X z' 7y

- Pyl § (x-L/2) - Py2 § (x+L/2) (168)

in which we introduced the notation

* = =
m m + m, m + me + m, (169)

and Pyl and PY2 are aerodynamic forces produced by the changes

in the cross—sectional area at the forward and aft ends of the

missile, respectively. Their form will be developed shortly.
Using expressions (150) as well as Egs. (156) and (81),

multiplying the resulting expression by 2 integrating along

the missile, and using the orthogonality conditions, we obtain
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m
m* - + S - 2 v 2 m* 2 2
o= Ny PP e t lA -— _E (v + w) kn

mo Y mo r mo Zz
_ L/2 L/2
- ] T ' A 1] o
Z? ;Z nsntAc.g My v v dx + m Um E g usvr dx
s t -L/2 -L/2
L/2
V m* .
+ m_ Z Z g (nt - ugke) g mousvtvrdx + z [I_nz(wzqs
s -L/2 s

L/2

. mV . « S

+ wxmyqs + 2wzqs) + ﬁg w,dg + p ﬁ; mzq;} 5 mousvrdx
-L/2

m L/2
v - ° — [
+ iy ZE. E (wYKS wzns)(nt wat)~§ MEV VeV, dx
s t -L/2
%5 T e | s <
— ' —
+ mg Y Z%I A9 mous“tvrdX + m, jz? ;Zi (mst
s t -L/2 s t

L/2
- dx - 2 BF
wzns)wzqt g mOvs“tvr X m, war
~-L/2

--—91 - TX + 0 = k. = P_.v_(L/2) - P__v_(- L/2)=0
m, ¥z m, Wz P m. “x r yl'r y2'r -

o

r=12,3, -—- (170)
which are subject to the initial conditions, Egs. (167).
The transverse boundary forces Pyl and Py2 arise from
aerodynamical effects and can be obtained from Eg. (97). They

are simply the definite integrals of the last term in Egq. (97)

M
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with proper integration limits. The forward portion of the
missile is assumed to consist of a cone starting at x = L/2

and ending at x = X, at which point r(xn) = r*, Hence

2
S(x) = wrz(x) = | (L/2-x) Ei——————] L/2 < X < X
(L/2-x ) ! - % ="n

(171)
from which
ds 2T r*2
== - T3 (L/2 - x) (172)
(L/2-x )
n
so that
L/2 5 _
* . .
Pyl =J. 21—5;———7- pl:U + ux + wyuz - wzu;lt.v + uy
L/2—xn(L/2-xn) '

+ wz(x+ux) - wxuzl (L/2 - x) dx

= ﬂpr*z{U + z éSuS(L/Z) + Z [myKr - wzn;l vr(L/Z)ElV
s r
mZL
+2+quu(L/2)+Z[n—va(L/2)}

S

(173)
The aft force, P o is found in a similar manner. Because

the equivalent area for the finned region is

2 r2 r4
S =7 (l"'s—2+s—4), xrix_<_-L/2 (174)
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and since r = r* is constant, whereas s is the variable, we

obtain

ds

dx

]
N
3
L
n

1

u

4
r, ds (175)
S

Let s increase linearly from s = r* to s = s*, where s* is the
distance from the center line of the missile to the tip of the

fin at its aft end, so that

% _ % X_s¥*-r*L/2
s = (S 3 ) X + —

Xr—L72 x_ - L/2 (176)

r

in which X, is the position from the origin along the missile

axis to the point where the fin begins. Hence

L - *
ds s r (177)

dx X, - L/2

and Eg. (175) becomes

X_s*=r*L/2
48 _ on J(EXE x4 2 (=S x
dx xr-L/2 xr—L/2 xr—L72
-3
Kk
N i (=) (178)
xr—L/2 xr—L72
Using Eg. (97), we write
L/2

_ _ s*-r¥ . _ [ .

Py2 = OJ/ /221T (W) (U + ux+wyuz mzuy) V+uy+wz (x+ux)
-L

T1




X_S*-r*L/2
- w1 ( s*—r*)x + £ - r*4 (_E::Ei)x
X 2z xr-L72 X, - L/2 xr—L/2

X S*-r*L/2 -3 o
dx = pn&s*—r*)(Zs*-r*)

+ ————
xr—L/2
ai 1 1 { E .
+ r* - U + g, u_(- L/2)
\}25*_r*)2 s*ilX . s s
wZL <
+ Z(wyKr_mznr)vr(—L/z) v + —— * Z wzqsus(—L/Z)
r s
+ j}:(ﬁr - wXKr)vr(-L/2)‘} (179)
r

For vibration in the xz-plane, we use the same technique

as above and obtain the equation for Ky in the form



L/2

i Z ZE
v _ y '
+ o (myxs wzns)(Kt+mxnt).§ MEV ViV, dx

0 s t ~-L/2
v, 3 e DL
- o— ' - —
m, my ZE. ;Z 959 MoHsHeVr dx m, (wy s
s t ~1./2 s t
L/2
- w_w_n_)g m.v_u'v,. dx + 2 UL
y z s’ "t 0's"t’r my X r
-L/2
m
- | m* - ¥ - S -
{ m. “y¥z m. “yYz P m wx] Ny Po1 vr(L/2)
0 0 0
- PZ2 vr(—L/Z) = 0 r=1,2,3, --- (180)

where the initial conditions, Egs. (167), apply and

d
1]

21 N'wpr*z [U + jz éSuS(L/Z) + ZZ(wyKr—wznr)vr(L/Z)]{;W
s r

w L .
- -, ?qsus(L/Z) + Z (Kr+mxnr)\)r(L/2)} (181)
s r

Ii¢

_ _ _ LA 1 1 Z _1/2
PZZ pw%s* r*) (2g*-r*)+ r UZS*—I*)Z S*;]i{y + sqsus( L/2)

+

w_ L
Z (wyKr—wznr)vr(-L/2)3{W - J2"— - uy, quus(-L/Z)
r S
+ Z (.'<r + wxnr)vr(—L/z)} (182)
r
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9. Results

Since no closed form solution for the coupled nonlinear
differential equations of the previous section seems possible,
the equations for both the rigid and elastic motion were solved
numerically on an IBM 360/65 computer. In seeking numerical
solutions to differential equations, it is frequently more ad-
vantageous to work with first-order rather than second-order

differential equations. Given the n second-order equations

Yi = fi(yl’ .er -~y Ynl 1‘71! 3.72! a4 Ynl t) i=1,2,---,n
(183)

introduce the auxiliary variables

z; =y, i=1,2, ———, n (184)

so that we can replace Egs. (183) by the 2n first-order equations

i=1,2,---, n (185)

zZ, = fi (yerZI_——lynlzllzzI__-Iznlt)

We have now obtained a system of equations whose solution con-
sists of n coordinates and n velocities. Of the 2n equations
the first n are purely kinematical, whereas the remaining n

equations result from the dynamical laws governing the motion,

as reflected by Egq. (183). For a discussion of this type of
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formulation, as well as ones involving coordinates and momenta
instead of coordinates and velocifies, see Reference 27, pages
91 through 97.

The technique described above is used on the differential
equations of the previous section to obtain a set of first-
order differential equations. These are then solved numerically
by means of a fourth-order Runge-Kutta formulae with the modi-
fication due to Gill. This method is described in Reference 28.
An IBM supplied SSP subroutine RKGS is then used for solving
these equations. This subroutine as well as the rest of the
computations necessary for solving the differential equations
was written for the computer in the FORTRAN IV (G level) langu-
age (see Appendix B).

The constants which were used to describe the missile were

E =30 x 10° psi, L =100 in., A_ = 7.53 in’
m g = 4.25 lbs/in, m_g = 0.5 lbs/in/sec, I_ = 93 int
v(xe,t) = 1000 ft/sec, Wy, = 0 rad/sec, Sr = Op in2

The initial conditions used were

X{0) = ¥Y(0) = 2(0) = 0 f£ft, ©U(0)

It

v (0)

W(0) = 0 ft/sec

my(O) wZ(O) = 0 rad/sec, ¢(0) ¢ (0) 0 rad.

8 (0) 90 deg. ux(x,O) = uZ(X,O) = 0, ft.

™



u, (x,0) = 107 (cosmx/L-2/1) + 0.5x10"°(sin 2mx/L-6x/7L),ft

In computing the density we assume an exponential atmos-

phere of the form

k)
il

p. exp (-x/23,500)

0

2.7x107°>

il

exp (-x/23,500)

in which o is the sea level density and x is the altitude
above sea level.

The axial coefficient has the general shape shown schema-
tically in Figure 8 (see for example References 29 and 30).

We assume these curves to be approximated by polynomials of

the form

- - 3.1
c, = i-[chl + 27 cxl/3 27 CXZ/Q]Ma 5 [chl + 45 cxl/3

2 1
- 36 cx2/31 Ma + 5'[2 Cy1 + 18 cxl/3 -9 cx2/3] Ma

+ Cx0 0 < Ma <1

_ 1 _ _ 3 _1 _
Cx T 35'[cx6 lOcX3+15 Cx2 6 cxi}Ma Iﬁijcx6 15 Cx3

2 1
+ 25 cX2 - 11 cxi}Ma + €Ui:ll cx6 - 2000x3 + 4050X2
1 9 18
- 216 cxi}Ma T 70 Sx6 T2 C%%3 7 7% " 8§ °x1
1 =M_=Z6
a
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where Cy1 cx1/3, etc. represent experimentally determined
values for the coefficients at Ma =1, Ma = 1/3, etc. The same
type of curve is used for both the forward and the aft part of
the missile, the difference being in the constatns used. For

the nose we use (References 29 and 30)

Cyo = 0.2 , Cx1/3 0.2 , Cx2/3 0.2 , Cp1 = 0.55
Cyn = 0.4 , c. 5= 0.24 , cye = 0.2

While for the aft portion we use

Cyo = 0.05 , Cx1/3 = 0.1, Cx2/3 0.15 , Cyy = 0.4
Cyp = 0.2 , Cy3z = 0.15 , cpe = 0.1

Of current interest is the fluctuations of the chamber
pressure and their effect on the elastic motion of the missile.
Various types of pressure-time histories may be used such as,
for example, a step function which was used in References 13
and 15. A schematic representation of an actual pressure-time
history as well as a step function is shown in Figure 9a. We
assure that this curve may be approximated by a curve which
represents the response of a second-order system to a step

applied at time t = 0. Hence, we write

T



_ ~zwt - 4 . _ ]
PL = PLSS [1 + e (———2 51nwdt COSwdt) (186)
. 1-¢

in which

2 1/2
w(l - %) (187)

ol |

In Egq. (186), P is the steady state value of the pressure,

LSS
z is the damping ratio, w is the natural frequency of the system.

We assume that the first two variables have the numerical values

PLSS = 1000. psi , ¢ = 0.4

We choose several values for w and these correspond to

1: a period of 0.0001 seconds w = 27/0.0001
2
2: the first axial frequency w = nVEAc/mOL

2V 4
3: the first transverse frequency w = (1.5067) ‘ EI/moL

The pressure-time history for the first two cases ‘are shown in
Figure 9b.

Using the above constants, variables, and inital conditions,
Figure 10 shows the resulting graph for the rigid-body motion
with and without aerodynamic forces. As expected, at a given

period in time, the missile travels to a higher altitude without
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aerodynamic forces than with aerodynamic forces.

Figure 11 shows two resulting elastic motions, one due to
a pressure-time history assumed to be a step as in References
13 and 15 and the other case 1 listed above. Figure 12 shows
the elastic motions for cases 2 and 3.

In comparing the curves in Figures 11 and 12, there are
noticeable differences in the various cases considered, which
indicates that internal pressure may be a significatn parameter
influencing the elastic motion of the missile. Considered here
is only one type of approximation to the pressure which approaches
a constant fairly rapidly. Thereafter the pressure remains
constant without any fluctuations. It is to be noticed that,
although the steady state value for the pressure is of the same
magnitude, the cycle times for the elastic motion are not the
same for all cases considered. This may be attributed to the
frequency associated with the pressure fluctuations. Hence,
the pressure acts like a forcing function and, if the fluctu-
ations are sufficiently violent, the missile structure may fail
due to excessive loading.

Another interesting phenomenon appears due to the pressure
fluctuation and this is the fact that, unlike previous analysis,
axial compressioﬁ also takes place. This may be accounted for
by recalling that in the present case a finite time is necessary
for the pressure to build up in the combustion chamber. During
this time the thrust, assumed to attain its magnitude immediate-

ly, acts at the aft end so as to push the missile. Hence,
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compression results there until the pressure inside the combus-
tion chamber is sufficient to counteract this thrust force.
As there is no damping in the axial direction, compression may
appear again during the next cycle of its motion.

Although not obvious from the graphs, the transverse motion
is affected by the pressure-time history. The reason that these
effects are not obvious is that the differences between the dif-

ferent cases are too small to show on the graphs.

10. Summary and Conclusions

The present work, written in two parts, considers first
the general formulation of a two-stage variable-mass flexible
missile. This formulation, based on work done in References
13 and 14, which considers as its basis a single-stage missile,
represents a logical extension and shows the versatility of its
formulation. The mathematical formulation is reduced to six
ordinary differential equations for the three rigid-body trans-
lations and three rigid-body rotations, 3n ordinary differential
equations representing the motion of the n discrete masses as
well as three partial differential equations with corresponding
boundary conditions for one longitudinal and two transverse
elastic displacements. The equations are nonlinear and possess
time-dependent coefficients due to the mass variation. At
present the resulting equations do not appear to lend themselves
to a solution other than by numerical techniques, such as those

presented in Reference 16.



Special interest lies in a single stage variable-mass
flexible rocket with no discrete masses. A reasonable assumption
is that the elastic displacements do not affect the rigid-body
motion appreciably. Under this assumption, the rigid-body motion
can be solved independently of the elastic motion. The equations
for the rigid-body reduce to the familiar case of a six-degree-
of-freedom rigid-body, possessing variable mass, and subjected
to forces due to engine thrust as well as aerodynamic forces.

If the mass distribution, as well as the rate of decrease of
mass, is assumed to be uniform along the missile, then the mass
center does not shift relative to the vehicle.

For zero viscosity, the equation for the internal gas flow
can be separated from the equation for the longitudinal elastic
displacement. The gas flow problem is one of a steady adiabatic
flow in a channel of uniform cross-—-sectional area to which mass
is added continuously at constant enthalpy and negligible kinetic
energy. The solution to this problem leads us to forces applied
at the boundaries, namely the closed end and the nozzle end. Due
to the aerodynamic forces, coupling exists between the axial and
transverse elastic motion. Hence, the problem consists of solv-
ing three nonhomogenous coupled partial differential equations
with homogenous boundary conditions. A solution of this problem
is obtained in the form of an infinite series of eigenfunctions,
associated with a constant-mass missile free at both ends, multi-
plied by time-dependent generalized coordinates. A procedure

resembling modal analysis then leads to a set of coupled ordinary
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differential equations. This set of equations as well as the
rigid-body equations of motion are then solved using a high-
speed digital computer.

In conclusion, a general treatment for a two-stage flexible
missile is treated under a new unifying formulation. Vehicle
flexibility and mass-variation as well as aerodynamic force
and discrete masses are included. This formulation is then
used on a simplified single-stage missile and results illustrat-
ing the effects of pressure fluctuations on the elastic motion

of a flexible missile are presented.
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Appendix A - Calculations of the Engine Thrust

The purpose of a nozzle is to convert the enthalpy of the
flowing gas into kinetic energy in an efficient manner while, at
the same time, restricting the escape of the gas to a rate suit-
able for the propellant reaction inside the combustion chamber.
We shall assume that the nozzle under consideration is convergent-
divergent, designed to allow an isentropic expansion to an am-
bient pressure less than critical. In the convergent portion
of the nozzle, before the throat, the flow is subsonic, reaching
sonic level at the throat section, at which point the flow pro-
perties are referred to as critical, and becoming supersonic in
the divergent portion after the throat. Although losses may
occur in the nozzle, they are assumed to be small so that the
analysis is based on the equations for one-dimensional isen-
tropic steédy flow of a compressible perfect gas.

Let us consider the one-dimensional isentropic flow of
Figure Al and assume that the stagnation conditions, denoted by
the subscript 0, are known. Under these circumstances, we may
write the equations governing the flow as follows:

First the flow must satisfy the first law of thermodynamics.

Considering the control volume shown in Figure Al, and denoting

the enthalpy per unit mass by h, this law can be stated

_ 1 .2
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Assuming *hat there is no friction or heat transfer present,

the second law of thermodynamics becomes simply

s =85 = constant (A2)

or the entropy s is constant, as implied by the name of the type

of flow under consideration.

The flow must also satisfy the continuity equation. Since

there is no mass addition within the nozzle, we must have

plAlVl = p2A2v2 = constant (A3)
where the flow properties at stations 1 and 2 are denoted by the

corresponding subscripts.

Similarly the flow must satisfy the momentum equation.

Denoting the force exerted by the nozzle wall on the gas by FT,

this equation can be written

_ ) _ 2 _ 2
Fp = PpRy — PpBy = 05RV) — 0y AV (Ad)

Equations (Al) through (24) must be supplemented by the

equation of state which for a perfect gas has the form
p = pRT (A5)

in which R is the universal gas constant and T the temperature.
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The above relations can be used to derive expressions for
the pressure, density, etc., at any point along the nozzle.
For a perfect gas the speed of sound is given by

1/2
(kRT) (A6)

Q
Ii

where

(A7)

in which cp and c, are the specific heats. Then the following
relations can be shown to hold true.*

T 1
== (A8)

O 1+ [ix-1)/2]?

P - 1
Po {1+ [(x-1)/2) 2§/ =1) (29)

p =

1
o_ (A10)
Po {1+ Lix-1) 72]u? 2/ (e D)

where M = v/c is the Mach number. Moreover, the cross-sectional
area A at any point is related to the cross-sectional area A,

at the throat by

* See Reference 17, Section 13-5.
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A _G 1| 2 g4kl M2)] Gert)/ {20600
A, G " M| k#l 2 (All)
where
G =»pvVv (Al2)
is the mass flow per unit area at any point and
kpg 1/2 , 1)/ [2 (k-1)]
G* = RT (le) (A13)

0

is the mass flow per unit area at the throat.

Equations (A8) through (Al3) are sufficient to determine the
isentropic flow in the nozzle provided the stagnation condi-
tions are known. We are interested primarily in the flow con-
ditions at the nozzle exit. For a given rocket design the
cross-sectional areas Ae and A, may be regarded as known.

Since k is also a known quantity, we can use Eqg. (All) and
obtain the Mach number Me at the exit. Introducing this

value into Eg. (A9) we can determine the exit pressure Por
which enables us to write the expression for rocket thrust

_ 2 _ 2
FT = peAe + peAeve = peAe(l +]<Me) (a14)

for flight in vacuum. If the rocket operates in the lower
fringes of the atmosphere, then the term paAe’ where P, is
the atmospheric pressure, must be subtracted from the right

side of Eg. (Al4).



In the above analysis, we have-assumed that the stagna-
tion conditions are known. This assumption necessitates fur-
ther scrutiny. The stagnation conditions are determined by
events occurring upstream of tﬁe nozzle. The flow in the
combustion chamber may be regarded as a steady, adiabatic
flow in a channel of uniform cross-sectional area with mass
addition at constant enthalpy, and at negligible kinetic en-
ergy. The flow is not isentropic and the stagnation condi-
tions are not constant but decreasing as the nozzle is ap-
proached. This problem is discussed in detail in Reference
11. The conclusion that can be reached is that for a Mach
number less than 0.4 in the combustion chamber the drop in
the stagnation pressure may not be significant. Hence, we
shall assume that the stagnation pressure as well as the re-
maining stagnation conditions occurring at the fore end of
the combustion chamber are equally applicable to the nozzle.
In a more refined analysis of the gas flow this assumption

may have to be revised.
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TV Y e

a6

1N

EXTERMAL FCT,,HITP

CXTERNAL AINT

NIMENSTUN PRMTIS),,Y(T75) 4DIRYLTS) yAUX{AL,T75)

COMMOM/EL AST/MX o NY ,OMGIT0) e MG (10 ) 85T L1C)»H o IPRNT, NOPRNT
CVIRMONZACE A /C  SL 2 g Ay AET o F Ly 39 SEaPEZVF 3 Xy PT MYy PLyAFGRST 4 CAyEHES
CAMMONFCNEEFCRN CEL 3,823, TF L G0 F 742 3,0FA, (BN, C3i2,0R823,CR1+CR?,CR

$£2,C22

COMMON FIRTERZATN( 41 0,103,10)

COMMON DFLT ,DELTY

BT =3,14:15227

RIAD{S, 100 ¢ ENDI=RIAGINXGyNY,y PR T, ID
FORMAT (& 12)

AR I TE{ 5,1 COZYNYZNY

CORSAT (1 NX=1,12," NY=1,12 )
WRITF{A,2N7)TN
ENEMAT(//? CASE NUMBER - 11%)

PEAT(RLIONIYOX,DELT,NELTE
RARMAT(3570,2)

REAT A, "O0OAYFaCACTyAr 2L, 1L ,,Y,7 %)
RUAN(S LT GOA YR ET LV
READLI S, 10NAYIR ,RST

REAN(S J INCAYIPRMT (Y )y PRAT (2 ), Y ()
CARMATIARRYIO, )

CEN=N,?

TFI3=0,25%

CFZ23=0,.3%

fE1=N,585

CFRE2=0,%

CF3=0,24

fE6=N,.7?

faN=G, N5

fR12=19 1

TH?23=0,15

CRI=0.4

TR2=0,7

TR3A=N.15

qu):(_)- ..

READIS 4 IDNCYICENZCFI3,CF23 ,0F5 2OF2 ,0LF2,(FA
REAND(S, 2000 )CHN,CB12,0R224CR14TR2,LPE 12,0846
EARMAT(7F: D.4 )

RASTC CONFIGURATION

NM=11+24NX+4 7 NY
H=H /12,

T o= FE144,F46
fA=  CA/T44,

CI= CI/}"""-O/‘,A("o
ND TM=NM

AF= AR/l4a,

PL = PL*1a%,
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FlL= EL/712.
Y(9)=C3LE(Y (G ) )=DBLE(PI)/1,80D+2
DO 6§ T=1,NN
DERY(I)=1./FLOAT(NNY}
IF(T.£Q.9) GO TO 5
Y{I1=92.0
CONTINUE
ARFAS
S=P IR =R
ES=S
SL?2=S%4,C
G=32.2
EMO= EMOE1D /6
AE=0,
RET = BET*12,/6G
BET=BET/FMD
SR=S§
PRMT (3 )=H=SORT (EMQ/T/CA)
PAMT(4)=0,0001
CALL RTS{MNYyBFTAL 45041 .F-6)
TR INX,FQ.DLANDJNY.EQ.Q) GO TO o6
1008 FORMAT(SE15.8)
C=1.0E-4
CC=0.0
D=N.5E--6
DR=0.0
TEMP2= SQRT(EMO*EL)
PP=PT%=2*TEMD2
IFINY.®C.0) GO TO 26
J= 11 #2=NX+NY
JJI=J+2 NY
N 25 =1 ,NY
CO=BFETALITI) *BETAL(I)
C1SQ=Co=Lo
RLP1=P T 4-015Q
L. P2=14 »PI*%4-(C1S0Q
1E(T/2=2,N°,.T1) GO TO 28
Y{I+J )=C *322,0%PP/BLP2
Y{I+JJ)=DN*32 ., 0%PP/BLP?
G TOQ 25 :
8 Y{I+d )=C *4,0*%pPP/BLP1
Y{I+JJ)=CC*4 ,0%PP/RLPY
28 CONTINUE
26 CONTINUF
NN 6 I=1,4NY
& MMGIET)=BETAL(T)*BETALII)*SQRT(EXCI/EMO/ELR%SL)
DO 7 T=1,NX
7T OMG(T) =FLATUI )= PIXSQRTAFXCA/EMO/EL/EL)
N X X=NX
NYY =AY
NN 27 M=1 4NXX
ATN(2,MgM,M)}=AINT(2,M,0,0)
27 COKNTINYE

-5
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35

31

0

101

0

9990

DD 35 M= GNXX

DD 25 J=1.NYY

ATN{T 4MyJ,M)=AINT{1,M,J,0)
ATN(3 +JaMaeM)=8INT(24,JeM.0}
CONTINUE

NN 31 J4=1 ,NYY

NN 321 M=1,NXX

00 31 N=1,NXX
AIN{AsJeMyN)=AINT (6 9JyMeN)
CONTINUE

DO 32 J=1,NYY

DN 32 K=1,NYY

NN 22 L=1,4NYY
AIN(4,JyKeL)=AINT (4,JyK,yL)
CONTIMUE

DO 30 Jd=1,NYY

DO 30 M=1 4NXX

DD 30 K=1,MYY

ATN(F g Jy Ko MI=DINT (599K eM)
AIN(?,J,MyK)=AINT(7'JvaK)
AIN(R.JpM’K ’=A‘NT(8,J’M'K,
CONTINUE

IFCIPRNT NE.OYWRITE(6,101)
FORMAT(////715X, " NO AERD!
WRITE(A,1720)

FORMAT( IHY)

NOPRNT=0

CALL RKGS{PRMT Y DERYZMNDIM, IHLF,FCT,OUTP,AUX)

GO TO 1
cAaLL EXIT
FRN

}
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RS

3

o

SUHARMITING PTS{H,RES,TTER, TOL
NIMENSION RES(Y)

J=1

r=)

PT=3,%4;{5527

Xt=1,58vD]

LX=00G(XY)

TOX=rNSHIX )

SHY=GTHM(XT)

SEX=SINHIXY )

FEXTNSX-0,

ENEOX ESX-SY=rSX

X=X" . F/FD

NYEeE=x7%-X"!

LELABSINTEE) ~THL)ZN 20,10
XT=X? :

NN

IF(J.GT. T Y=R) G} TH 18

5 T2

Ngjl"'rai‘(,c"!(.,'\,

SET N

TTRS(T)=X"

t=T+"

THRQT AT SN YRETHEN

X =X" 407

=
AnTo
FARMAT (! GCONVERGSNET TN
“H D

)
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FUNCTTION M5 (Xs 1)

SN IART N/ S SL? yAEyRET 3 TL oG o SRy PE Y VE X s PT4EMO2 PLYyAFWRST,CAy E5ES
T=SOARTL2,/0/F )

TR(TI/2:2,50.1) GO TG 10

1P9=(1+7)/7 R

Fr=T 2 (=1 (Y= 1D%S [IN(FLOAT (I IPI =X/TL)

RETURY

ID=7/2

FMU=T (=3 ) =2 I PxCOSAFLOAT (I )P I 2X/EL )

L TURN

THTRY EMUPIX, T)

T=SQRT(?., /M) /5L)

TOQTI/2 -0 ,1) GO T 27

IP=(T+!}/"

EMYPETARELCS TOINEPIZELE (=7, Vs wIPECHSFLNAT (1)=PI%X/EL )
" E TR

IpP=1/"

SMYP= - TR AT T)EPT/FL=(=7 )&% PxSTN(FLOAT (1)XPT#X/EL)
e

gy
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"~

FUNCTION SNU(X,I)
COMMON/FELAST/NXoNY,OMG{10)20MG1{10) oBETAL(10) 4H o T PRNT, NCPRNT
COMMON/AREA/S SL2 s AESBET 4 ELyGaSRaPE,VEG DXy PTo EMOy PLoAFSRST4CASESES
4=1

CB=COS(RFTALLT)*0 .5)

SR=STN(RETALIT)I*O.5)

SHA=SINH(ASTAL(T1%0.5)

CHB=COSH(BFTAL(T1%0.5)

T=X/7L

CBT=COS(RETAL(T)*T)

SOT=SIN(BFTAL(II"T)

SHBT=SINH(AFTAL(T) =T)

THRAT=COSHIRFTAL(T)*T)

GO TN (243,4) 4

IF(I/2+2,E0.1) 60 Tn 21

TNUS? L/ SGRT (FMO=EL) % (CBT/CB+CHRT/ CHB)

RE TUPN

ENUST L /SORTUEMN*EL ) #( SBT/SR+SHB T/ SHA)

PR TURN

SNTPY ENUP(X,T)

J=2

60 TO 1

TFQT/2%2,00.1) GO TN 31

ENUP=RETAL( 1)/ FL/SORT(EMI*EL ) *(SHAT/ CHB-SRT/CB)

RE TURN

ENUP=BETAL (1) /EL/SQRT(FMOSEL ) #{CRT/SB+CHBT/SHR)

RF TURN

ENTRY FNUPPLX,1)

J=3

50 TO

IFCI/2%2.6Q.T) GO TO 4]

ENUPP=RET AL {T)*RETAL( I/ EL/EL/SQRT (FMO*EL)* (CHBT/CHB-CET/CRI
RE TURN '

FNUPP=BETAL (T )“BETAL(T)/EL/EL/SQRTITMOREL ) *{ SHB T/ SHB- SBT/SB)
RE TUPN

END
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SYBROUTINE QUTP(X,Y,DERY, IHLF,NDIM,PRMT)
DIMENSION UX{20),UY{20),UZ{20),STA(20)
DIMENSTON Y{1-}yDERY (L}, PRMT( 1}
COMMON/ELAST/NXyNY yOMG(10),0MG1(10)yBETALL10)yH o IPRNT,NOPRNT
COMMON/AREA/SySL24sAEsBET,EL 4Gy SR yPEy VE9OX9PIsEMOsPLyAF,RST yCA,ELHES
COMMON DELT ,DELT?
COMMON/PRESS/PLO
IF(IHLFGT.10IWRITE(6,100)IHLF
100 FORMAT(? ERROR IN RKGS IS *15)
NOPRNT=0
DELT2=DELT+DELT
IT=X/DELT?
ITL=(X-DELTI/DELT?2
IF(IT.NE.ITL)INOPRNT=1
IF(X.LE,DELT)NOPRNT=1
1E(NOQPRNT .EQ.OIRETURN
NMOPRNT=0
N1=114NYX
N1 1=NT1+NX
N7 =NT+NX+NY
N2 2=N2+NY
N3 =NZ +NY +NY
N23=N3I+NY
WRITF{6,5555)PLO
5555 FORMAT('  PRESSURE ' E20.5)
WRITF(OH,10LIXa (Y UT) oT=14A) 40Xy (Y{I),I=7411)
TFINXLEQ.OAMDLNY .FQ.OYRETURN
XX=—FL%0.5
PO 10 I=1,70
UX(I)=0.0
UYEI)=0,0"
HZ(1Y=9,0
STA(I)=0.0
10 CONTIMUE
J=1
T3 IF{NX.EQ.Q) GO TQ 17
DN 1i T=1,NX
T UXAIEUX CIYEY (NI +T)REMU (XX, T)
'7 1F(NY.FQ.0) GJ TO 18
NO 12 T=1,NY
UY I =UY (I +Y(N2+T)RENILIXX, 1)
12 UZ(SY=UZL Iy +YINI+IYEENU{ XX, 1)
10 TE(XX.GT.EL*N,.5) 6D TN 15
XX =X X+H
J=J+1 ~
STA(J)=STA(J-1)+H*12,
O TO 13
'8 CANTINUE
Jd=J
PO 16 T=14JJ410
KK=149
IF(TABS(JJI-I) LT 10YKK=J
WRITM{Ay 106V (STA(K) yK=T1,KK)
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16
173

102
102
195
ing
P04

WRITE (A, 103V {UXIK) s K=14KK)
WRITE(G,704)(UY{K)yK=1,yKK)

WRITF( 65105 L UZIK) 4K=1,KK)

CONT INUE '

FORMAT(IHO 15X TIME= *E15,.4/

L3 * POSITION {FT): X= YF15,.4,°? Y= t£15,
$agt I= VE15 .4/ VELOCITY (FT/SEC): Us 'E35,4,1 V= 'E15,4,
% W= YEIS, 4/ ANGULAR VFLOCITY (RAD/SEC): CMEGA-X= 'F15 .4,
49 NMEGA~Y= 'YE15,4,0 OMERA-Z= 1E1 R 4/ ANGULAR POSITIGNS (RAD
)3 THETAs 1£15,4,¢ PSI= TFL R b, PHI= 'F15,4 )
FORMAT(6F20,7) _

FORMAT(2X y6HUX (FT) 42X, 10DEY 2,4

FORMATUZX,6HUYIFT) 42X,10F12,.4)

CORMAT (2X, 6HUZ(FT ), 2X,10E12,4)

FORMAT{TIHO,8H STA(IN)10F12,.4)

RETURN :

CND
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SURKUIUTINY CD(CXFsCXB«MACHND)
COMMIDN/ELAST/NXy NYOMG(10) ,OMGLLLD) yBRETAL(10) yH +TPRNTyNTPRNT

REAL MACHND

COMMON/CNEEJUFNZCF13,(F23,CF1 _,Cf-?vc!:? 2CFAhCBRH,CBI13,CB23,CB1,(B2,CB
$3, (B4, .

CITLYNCMIAL APPRIOXIMATICN

[FCIPRNTLNTLO)GO TO 11
TE(MACHNG .GT.1.00 GO TD 10 :
CXF=0,55(0  SCRL+27 o #CF13- 27 o #CF23)#MACHNO*%3~ 0, 5%( G #CF 1445, #CF 13~
£738 % 0TF 22) A MACHNIR MACHND+0 0 5% (2 % CF1 418 . #CF13-0 (% F23 ) *MACHNO+CFO
CXR=0,S%( 2, *CRI4 27, #CR1 3= 27,03 23 ) *MACHNU%? 3-0, 5% {9, %CR1+45,%CR13 -
$36,%CR23 ) <MACHNDAMACHND+0 .55 (2. #CB1+1 9, %08 13- 9, %CB23) *MACHNO +CB O
RS TURN
10 CXE=(CFA-1N . *CF3415,#CF2-6.<CF1)"MACHNG /60, *MAC HNO* MACHNO-
$0.1((F6="5,CF3$25 ,£0F2 =17 ,5CF) JAMACHNO*MACHNO+( 11 . ¥CF6-200.%CF 3
$ 4405 %O E2- 214 #CE 1) EMACHND /600= 5. 1ACF 642 % CF2-4 . 5%CF2+18 ,#CF1/5.,
CXB=(CRA-10 (ACHR4IB (5CHZ -4 =081 ) *MACHND/ 60 o #MAC HNO#MACHNO -
$0.TH(CAH= 15, " CR3426,%CRZ-11 ,*CRT ) #MACHND* MACHNO+ (11 .*CB6-200 .%CB3+
$405 . CA2-271 A 2CBL)=MACHNO /6N, —0, 1ACH 6+ 2.=CR3-4, 5% CB2+18.%CB1/5,
R=TURN
CXB=0.0
CXF=0 .0
AR TUPN

= P_g l')

I
i
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SUBROUTINE ALT(HGT,RHO,PA,TEMP,RHCD U4 MACHNG) :
COMMON/ ELAST/NXZNY,,OMG{10),MG1{(10),BETAL(10) 4H 5 IPRNT,NOPRNT
REAL MACHND

RHO=0 ,27F~2%EXP(-HGT/ 2. 35F+ 4)

TF{HGT JLT J WO )RHD=0,27F~2

TFUIPENT.NFLOIRHO=1.0

RHON= =2 ,7/2 .35%1 o F=THEXP{ -HGT/2.358+4)
TE(HGT LT N.N)IRHON=0 ,0

IF{IPPNTJNRE LOYRHOND=0, 0

PA=2.1162E+3+EXP(-HGT/2.35+4+4)

TF(HGT.LT.0.0)PA=2116,2

TF{TPRNT .NF,N)PA=Q,0

T=MP=PA/32.2/FHI/53,.3

TFLIPRNT.NF.O)TEMP=1,0 _

MACHNO=U/SORT (1,.4%22,2%53.3%TEMP )

IF(IPRNT.NE,O) MACHNG=N. 0

TFLIPRNT JN=L,0D)RHD=0.0

RETURN

END

98



RKGS

.oocu-o..-.---a..---.--.-a-oc---I-o.-0-..o-.?-.n.....-.-o--.no.-.-RKGS

SUBROUTINE RKGS

| PURPDSE

TO SOLVE A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL

EQUATIONS

USAGE
CALL RKGS

WITH GIVEN TNITIAL VALUES.

(PRMT,Y DERY,NDIM,IHLF,FCTOUTP,AUX)

PARAMET ERS FCT AND DUTP REQUIRE AN EXTERNAL STATEMENT.

DESCRIPTION
PRMT -

PRMT (1) -
PRMT(2) -
PRMT(2)-

PRMT( 4) -

PRMT (5) -

DERY -

NNIM -

THLF -

OF PARAMETERS

AN INPUT AND OUTPUT VECTOR WITH DIMENSION GREATER
OR EQUAL TO 5, WHICH SPECIFIES THE PARAMETERS OF
THE INTERVAL AND DOF ACCURACY AND WHICH SERVES FOR

COMMUNICATION BETWEEN OQUTPUT SUBROUTINE (FURNISHED
EPT PRMT (%)

RY THE HSEFR} AND SURROUTINF RKGS. EXC

THE COMPONSNTS ARE NCT DESTROYED BY SUBROUTINE

RKGS AND THEY ARE

LOWER BNOUND 0OF THE INTERVAL (INPUT),

UPPER BOUNND OF THI INTERVAL (INPUT),

INITIAL INCREMENT OF THE INDEPENDENT

( INPUT },

UPPER ERRDR BOUND (INPUT). IF ABSQLUT

VARIABLE

E ERRCR IS

GREATER THAN PRMT(4), INCREMENT GETS HALVED,

IF INCREMENT IS LESS THAN PRMT(3) AND

ERROR LESS THAN PRMT(4) /50, INCREMENT GETS DOUBLED.

ABSOLUTE

THE USER MAY CHANGE PRMT(4) BY MEANS OF HIS

OUTPUT SURRDUTINE.

NO INPUT PARAMETFR, SUBRROUTINE RKGS INITIALIZES
PRMT(5)=0., IF THE USEF WANTS TO TERMINATE

SUBROUTINE RKGS AT ANY QUTPUT POINT,

HE ‘HAS TO

CHANGE PRMT(3) TO NNN-ZFRM BY MEANS OF SUBROUTINE

CUTP. FURTHER CAOMPNNENTS NF VECTOR PR

MT ARE

FEASIBLE T1F ITS DIMENSINN IS DEFINED GREATER
THAN 5. HOWEVER SUBRDUTINE RKGS DOES NOT RFQUIRE

AND CHANGE THEM,
FOR HANDING RESULT VALUES TO THE MAIN

NEVERTHELESS THEY MAY BE USEFUL

PROGRAM

(CALLING RKGS) WHICH ARE NBTAINFD BY SPECTAL

MANIPULATIONS WITH OUTPUT DATA TN SUBRCUTINE OUTP.

INPUT VECTOR OF (INITIAL VALUES. (DESTROYED)

LATERON Y IS THE RESULTING VECTOR OF
VARIABLES COMPUTED AT INTERMEDIATE PO

DEPENDENT
INTS X.

INPUT VECTCR 0OF ERRNDR WFIGHTS. (DESTROYED)

THE SUM OF ITS COMPONFNTS MUST BE ECQU
LATERNN DFRY- IS THE VECTOR OF DERIVAT

AL TC 1.
IVES, WHICH

BELONG TO FUNCTION VALUES Y AT A PGINT X.
AN TINPUT VALU=, WHICH SPECIFIES THE NUMBER CF

EQUATIONS IN THE SYSTEM.
AN OUTPUT VALUE, WHICH SPECIFIES THE
BISECTIONS DNF THE INITIAL INCREMENT.
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NUMBER CF
IF IHLF GETS

RKGS

RKGS

RKGS
RKGS
RKG S
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
FKGS
RK GS
RKGS
RKGS
RKGS
RPKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKG S
RKGS
RKGS
RKGS
RKGS
RKG S
RK GS
RKGS
RKGS
RKGS
RKGS
RK S
RKGS
RKGS
RKGS
RKGS

180
150
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
280
260
400
410
420
430
440
450
460
470
480
490
500
510
520
530



GREATER THAN 1D, SUBROQUTINE RXGS RETURNS WITH RKGS 540

FRROR MFSSAGE THLF=11 INTQ MATN PRCGRAM, EREOR RKGS 550
MESSAGE THLF=12 0OR THLF=13 APPEARS IN CASE RKGS 560
PEMT(3)=0 OR IN CASF STIGN(PRMT (3 ) ) NESIGN{PRMT{Z}-RKGS 57C
PRMT(1)) RESPECTIVELY, RKGS 580
=T - THE NAMZ NF AN EXTERMAL SUBRDUTINE USED, THIS RKGS 590

SUBRDUTINE COMPUTES THE RIGHT HANE SIDES DERY QF RKGS 600
THE SYSTEM TN GIVEN VALUFS X AND Y, ITS PARAMETFR RKGS 610

LTIST MUST 2F X,Y,NFRY. SUBROUTINE FCT SHOULD RKGS 620

NOT DFSTROY X AN[ Y. RKGS 6730

nuTe - THE NAMF 0OF aN SXTERFNAL OUTPUT SUBROUTINE USED. RKGS 640
ITS PARAMETER LIST MUST BE X,Y,CERY, THLF,NDIM, PRMT ,RKGS 650

NONE NF THFESFE PARAMETEPRS (FXCVWPT, IF NECESSARY, RKGS 6&£0

PRMT (&) 4 PPMT {5)y..e) SHOULD BF CHANGED BY RKGS 670

SUBROUTINFE QUTP, TF PRMTI(5) 1S CHPANGED TO NCN-ZERD,RKGS 680

SUBRDUT INE RKGS IS TIRMINATED. RKGS 690

AUX - AN AUXILTARY STORAGE APRAY WITH 8 ROWS AND NDIM RKGS 70C
COLUMNS, RKGS 710

RKGS 720

REMADKS RKGS 730
THE PROCEDUPE TERMINATES AND RETURNS Ti: CALLING PROGRAM, IF RKGS 740
{*) MORF® THAN Y0 BISFCTJIONS OF THE INITIAL INCREMENT ARE RKGS 750
MECTSSARY TO GUT SATI SFACTORY ACCURACY (ERRCR MESSAGE RKGS 760
THLF=11), RKGS 770

(?) IMITIAL INCREMENT IS FQUAL TGO G OR HAS WRONG SIGN RKGS 780
{~FROP MESSAGHES THLF=1Z DR IHLF=13), RKGS 7<0

(3) THE WHOLEZ INTEGRATION INTERVAL TS WORKED THROUGH., RKGS 800
() SURROUTINE OOTP HAS CHANGFD PRMT{S) TC NCON-ZERC. RKGS 810
RKGS 820

SUBROUTINES AND FUMCTION SUBPROGRAMS REQUIRED RKGS 830
THE EXTERNAL SUREAMTIND S FOTIX,Y,DERY) AND RKGS 840
QIO XY $ODERY g THLFHNNIM,PRMT Y MUST RE FURNISHED BY THE USER.RKGS 850
RKGS 860

MTTHOD RKGS 87¢C
TVALUATIAN IS DONE BY MEANS OF FOURTH DRDER RUNGE-KUTTA RKGS 880
EORMILAS IN THZ MODIFICATION DUF TD GTiLL. ACCURACY IS RKGS BR9D
TECTED COMPARING THE RESUHLTS 2F THE PRUCEDURE WITH SINGLE RKGS 500
AN DOIRLE TNCRFEMENT, RKGS 910

SURPAUT INE RKGS AUTOMATICALLY ANJUSTS THF INCREMENT DURING RKGS @920
THFE WHNLE COMPUTATINN BY HALVING OR DOUBL ING. IF MORE THAN RKGS 930

TOOBTSECTIONS OF THE THNCREMENT ARE NECESSARY TO GET RKGS 940
SATISEACTNRY ACCURACY, THE SURRDUTTNE RETURNS WITH RKGS 950

FRROR MESSAGE THLF=13 INTD MAIN PROGPAM, RKGS G40

TH GFT fYLL FLEXIBRTILITY IN NUTPUT, AN OUTPUT SUBROUTINE RKGS 970

MUST BE FURNISHED BY THE JSFR, RKGS SGRD

FOOR PFEFERENCE, SEF RKGS 920

DA STON/WILFy MATHEMATICAL METHDODS FOR DIGITAL COMPUTERS, RKGS1000
WILTY, NEW YORK/ZLONDNN, 1940, PP,110-1:0, RKGS1010
RKGS1020
tesvacsessrenesrseseesese s esanuraseassenesssssenassnreascsscscssss RKGSININ
RKGS1040

SUBPOTINT PRKGSIPRMT Yy DERYWNNIM,THLF ,FCTHDUTP,AUX) RK6S51.050

RKGS1060
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H

DIMENSTEN YUI) yDERY (1) 4,AUX{2,31) A (4 ) o8B () C{4) PPMT (1)

Pit T T=1,MN0 M
AUX{ET )= nAAERBETHNERY (T)
X=PPMT (1)

XENR=PRMT (2)

H=DRMT(32)

PRMT (=)=0,

CALL FOTUXeY4NERY)

EREROER TEST
TRAH>(XEND-X) ) 28,3742

POEPAEATIONS FOP RUNGE-KUTTA M=THDY
A()=.5

A2 Y= 03280727
A{ )= ,TnT7: 07
A{ABY=t cRrEAT
R(l)y=2.
S{2)=",
r{3)=",
2{4) =2,
T{1)=.58
C{?)=,7c;2-57
Ce3Yy =", 77707
ClL)= .=

PR EPARATIMNG AF FIRST RUMAT-KYTTL STLP
Y3 T=1,KN00H
AUXEY ,T)Y=Y(T)
AUXLE 2, 1= P Y(T)
AIX(?, 1=,
AXLF,1) =00,
[eeC="

H=1i4H

THLF=-

fRTrp=)

TEMNN=

START NF 7 [ UNGE-KUTTA §TZP
TR (X+H=X DY H) Ty b,y 5
1H=XT NDY - X

TEN=!

PECARNTNG 1F INTTTIAL VALUSS NFE THIS STF

CALL TP (XY, NIRY, IREC (NI PEMT)
TFR(PEMT (R ) )b o9 4,40

TTEST=N

ITER=T8T #0045

START AF INMIRMOST RUNGE-KUTT 2 LOOP
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FKGS1O70
RKGS1L0G0
RKGSLYG0
RKGS11 1D
RKGSI1IZ0
RKGS L1220
RKGSL140
RKGSLIB0
PKGS 1160
RKGSL170
RKGS 1100
RKGSi19o0
RKGSLZ0D
RKGSY210
RKGS:I 22N
RKGS1220
RKGS 124D
BKGS1250
RKGS12 40
RKGS1270
RKGS124G
RKRS 1260
RKI(S130N
RKGS13L0
PKGS1320
RKGS1 330
RKNRSY 34n
RK51 350
RKGSTIAD
ZKAS1AT0
RKG ST 380
RK (S 1300
RKGSY 600
RKGS141G
RKGS 1420
QKRG ST e
RK G5 440
RKGSYT 450
RKGS1460
REGS 1470
RKGST 480
RKGS14Q0
RKSGSYHO0
RKGSLBLN
RKGSis20
PKGS182D
RKG L1540
RKGSIBSD
RKGS15ED
RKG3S1570
RKGSYEAR0
RK{SY RGO



AREEE B T

e}

(]

10

Ny

J=1

Ad=At.)

RJ=R({J)

CJ=C(J)

1D I=14NDIM

R =HNERY (1)
R2Z=AJX{RI-BI=AUX{H,1)
Y{T)=Y{T)+R?

RP?=RZ+PZ+R?

AUXT A, TI=AUX( 6,5, T)Y+R2-C IR 1
IF{J-4)12+15,15

J=J+1

IF(J-3)113,14,13

x:xi—.r'-y'?‘H

CAatL FCT{XaY,DFRY)

GOTO 0

END OF INNFRMNIST RUNGE-KUTTA LUOP

TEST NF ACCHURACY
TE(ITFST)16,16,20

IN CASE ITcST=0 THERE 1S N3 POSSIBILITY FOR TFSTING OF ACCURACY

D17 T=1,NDTM
AUXCa, 1) =Y(T)
TTEST=1
ISTEP=TISTEP+ISTEP-2
IHLF=THLF+"

X=X-H

H=,5%H

DR 1a I=71,NDIM
Y(T)=AUX{1,1}
DERY(IY=AUX(2,1)
AUX(6, 1)=0UX(3,1)
GOTN 9

IN CASE TTEST=1 TESTING OF ACCURACY IS POSSIBLE
1MOD=1STEP/2

TF({ISTEP-IMOD-TMOD)21,23,21

CALL FCYIX,Y,NDERY)

DO 22 T=7,MDIM

AUX(5,1)=Y(T1}

AUX(T7,1)=DERY(])

GATe 9

COMPUTATICN OF TEST VALUE DELT
DELT=0.

NN 24 T=1 4NDTM
DELT=DZLTHAUX{ B, 1) =ABS(AUX(%4,1)-Y(I))
[F(DFLT-PRMT (4})28, 28, 25

ERROR 1S TOO GREAT
IF{THLF-10)264+36436
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RKGS1 560
RKGS 1614
RKGS162¢
RKGS163

RKGS 164
RKGS165

RKGS166

RKGS16T!
RKGS168
RKGS 169t
RKGS170¢
RK3S171:
RKGS172¢(
RKGS173:
RKGS 1744
RKGS175¢
RKGS176:
RKGS1771t
RKGS178!
RKGS 179¢
RKGS51801(
RKGS18l:
RKGS182¢
RKGS183¢
RKGS184:
RKGS185¢(
RKG S186:
RKGS5187t
RKGS1R88!¢
RKGS1869:
RKGS190¢
RKGS191t
RKGS192¢
RKGS193¢(
RKGS194:
RKGS 19 5¢
RKGS196¢
RKGS197:
RKGS198¢
RKGSlQQj
RKGS 200

RKGS201¢
RKGS202¢
RKGS203(
RKGS204

RKGS205

RKGSZObj
RKGS?207

RKGSZOSj
RKGS209

RK6$2101
RKGS2114
RKGSZ!24



2600 27 1= 4,NDTM RKGS213¢0

7 OAUX{ 4y TI=AUX{S,T) RKGS2140
ISTEP=ISTEPH+ISTREP-4 RKGS2150
X=X-H . RKGS2160
I#ND=D : ) RKGS2170
GOTO 18 RKGS52180

RKGS 2190
RESULT VALUES ARE GOND RKGS2200

PR CALL FOT{X,YeDERY) RKGS2210
NN 29 T=1,NDTM RKGS2220
AX(1 4, 1Y=Y(T) RKGS2230
AUX( 2,1 )=NEPY{T) RKGS 2240
AUX L2, 1)=21)X{Ry 1) RKGS2250
Y{I)Y=AUX{5,7) RKGS2260

e PDERY(TI=AUX{7,1) RKGS2270
CALL CUTPUIX -HaYDEPY, IHLFyNDIM, PFMT ) RKGS2280
TF(PRMTIS)) 4D, A0, 40 RKGS2290

DD RT I=1,MOIM RKGS2300
Y(I)Y=AUX(",1) RKGS2310

T DERY(TI)=AUXI2,T1} RKGS 2320
IREC=THLF RKGSZ2330
FTRFEIFNN)32,32,39 RKGS2340

RKGS2350
INCREMENT GFTS HNURLED RKG S2360

2 THLF=THLF- 3 RKGS2370

TETFERP=TSTEP/? RKGS2380

H=H+H RKGS2350

TRITIHLE) 4,322,373 RKGS 2400

3% IMOD=ISTIR/2 RKGS2410
TEATRTEP-IMIN-TMON} 4 424 4,4 RKGS2420

YL OTE(DP AL T .07 %PRMT(£)) 35, 35,4 FKGS2430
G THLF=IRLE - RKGS2440
TSTEP=1STP /7 RKGS 2450
H=H+H RKGS2460
GT0 4 RKGS 2470
RKGS2480

RKG 52490

R TURNS TR CALLING PROGRAM RKGS2500

16 THLF=17 RKGS2510
CALL FOTUX,Y,yNERY) RKGS2520
5T 29 RKGS2530

37 THLF=1? RKGS2540
GoTn 39 RKGS2550

3% THLF="7% RKGS2560
39 CALL NUTPIX Y+ DERY 2 THLFZKNTIM, PRMT) RKGS2570
L RETURN RKGS?580
END RKGS2590
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SHURROUTINE FCTUX,Y,DERY)

REAL MACHNG

FOMMON/AREA/ S SL2 yAEsBET ¢ EL oGy SRyPE,VE,OX g PIyEMOy PLOy AR RSToCAy By E
55

FOMMON/EL AST/NX,NY, 0MGL10),0MGL (10 ), BETAL(10)4H » IPRNT, NOPRNT
COMMANZTINTEG/ATNIB,10,10,10)

EOMMIN/PRESS/PL

DIMERSTON Y7 )) 4 BERY (1)

7=0.6

AM=57R73,3

T=SN4T(ie-2"7)

NMGN=OM AT

PLRPLI® {7 L #EXP(=Z50M2X) = (Z/T=SIN{OMGDSX)-CASIAMGD %X ) )

.')]_-:PL()

SST=51 2

ST=5IN(Y(2))

TTECOSLVE))
TE(ARSUABSIY(S))~PI/2.) LT 7.#PT/180,ICT=SINIPI/2.~Y(9))
SPH=ITN({Y(* 7)) ’

CPHE=CRS (Y (T0))

SPS=STHAY (1))

TRESIAS(Y(11))

CALL AT Y ()R HE,PA, TFP,RHNN, Y(4) y MACHNO )

SALL PO XT T XLT o MACHAD)

EMT= 0]

TMASTLT A () ~RET X )

VEN= VA4 (PR-PAYEAF RET/SMT

THY = PHES

FHYT MY EL

TR A EM\ S EMO

TME MMM BETEX T,

TMGT eI MG O

PEBY L =Y (A )=CTROPS+Y(S) & SPHESTACPS-CPHESPS)+Y (&)= (CPHEST*CPS+
LIRS DY )

PIEYL ) =Y (&) " LT SPSAY (5 )¢ (SPHESTHSPS4CPHS CPS) +Y (£ )% (CPH*ST*SPS -
G PH=CDS )

PURY (Y =oY (e ) STAY LS ) SSPH OTHY (A)FCPHECT

E Qs

TMNT=ouE L

DY (L) =Y AR PEY (Y=Y (5 )Y (7Y -GN T <B4 5 5 WY (&)Y (£ )SR/EMBR(CXL +
BEXLT YV RYEQ B r T/ 1 -RITHX)

-

1 -FHMYT Y3 Y ) mTMDTEY (R4 Y (4 ) =Y (5 ) RHI S 1L 2 4+ 0MBT CHSPHECT~Y (4 ) *RHO
GoY L) Ny T T (8] 2-8)

DTRY (Y SY (A IX Y (2 ) PY (R ) ST/IMET

TEATAVT OYLTY) YUL)-FMDTRY (L) 4Y ()Y (2 ) DR S LT 4 DMPE RO PHEO T 4Y (4 ) *
BN Y (T R T (8L T-8)

MERYE Y=V Y Y LT) =Y A(S) DX HT/EMST

e YY) T Y (T )G PR e w UL (SL YA S HL SSLT JHY(a)R Y (&) =0y 5%
S B RS R _

DAV =X YR Y1 JEMET T/TL/SL-EME/EMS YL T)

T=
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$o-Y{L )Y {BY AP HORG JISARL SR A{SL2 -4 /FLESL2 b -¥(a)EY{5) 50,55
$EL RS2 -5 ) RN

NEZRY (R I=—OXAY (T4 12, /5MST=T/EL/EL-"MD/THSHEY (=)
TR(ABSIARS(Y(R)I)-PI/2.3.,LT.,0.087) G T ¢
DERY(9)=Y(7)=(PH-Y(A)“5PH

TE(ARSUDERY ()} LT T o F-1 D) INERY(G)=0.0

DERY (LD )=CX4Y (T ) aSPH=EST/LTHYAS)YACPHRIST /LT
DERYL LI ¥={V(T7T)=SPHEY(R)=OPH) /CT
GOCTH LT

PDERY{F) =Y (T)EOPH-Y (R )5S DH
DIRY L )=0X+Y L Ty 2S5PH/Y IO+ Y(B)YCCPH/Y(R)
NDEBY {1 Y=IY (T )=SPERY IR} =CPH)/Y (D)

NX - NUMBER NP AXTAL TERMSG
NY - NOMBER (7 TRANSVERST TERMS

CONT ING T
MX2=2AX
‘\! Y 2 =7 r\! Y
MY 2=NY 2 +NY
NYZINYI+NY
NXY=MX24NY+ ]
MXY2=NXZANY 1+
NXY A=A THNY 34000
MYY4=NX2+NY 4+ 1
EMU=SORT(? . /FEMN/ELY)
DX1=0 “AF
DX)=PX1~VFQARFT=EMT
Q=N 52UHT Y)Y (4)
TRFINX,L,TD,.N) Gy TO RZ2
DN 81 L=1 ,MX
J=L
SUM=D,0
TFINY.S0.D) 60 TH 49
DO S5LL =1 ,MY
T=LL
T=2.7Y{ 7} YL ANXY2) =2 .Y (S} YLI+NX2+L ) Y+ {DERY (7 )-0X*Y (B} )Y (T+NXY3
$)-(DERY(8)-OXEY(T)IRY(T+NXY)
SO SUMsSSUMETHAIN (0 1.de 1, 4)
40 CONTINUF
NERY(J+11Y )= —{BXZ+0y sR={ XL 1) *FMY
$-OMGEN - OMGII )Y (J+1 T +MX)
PP=(PX1 Q=R = XL ) =EMUY
TE(M/ 2?2 ,FO.JINCPY (J+11)=DFRY{J+11)4+pPP
TE(S/25 2 N L IIDERY{I+IT )=DERY(J+1L Y )~PP
NERY(J+1L1)=NERY(J 4211 )I/(1 ,,=BET »X}-SUMEIY(8)EY(R)+Y(TIXRY(T))AIN
£ 2o d eV HIY(TYI=Y (7YY (RIY (8) IRV (J+7 1L4NX)
DFIY(IENX+1 1))=Y J+11)
37 CONTINUFE
=7 JFANY.Z5Q.0) FETURN
TX=?,/S3RTIEMT) b
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PY1l= PI#RHO*RSTHRST
S{IML =Y (4)
SUM?=Y( S} +¥Y{RI=EL/2,
SUM3I=Y(6)-Y (T )*EL*0,5
IF(NX.E6.0) GO TO &7
DO SA L=1,NX
J=L
IF(J/222.NE.J) GO TC 100
SUMI=SIMI Y {J+11)%FMY
SUMZ =SUM2 +Y (8 )Y (J4NX+11 ) =FMY
SUM3=SUMA-Y({ 7)== JENX+T 1) =EMY
51 TN 57
T on CONTINYE
SUML=SMI-Y{ J+1 1) cFMY
SUM2=SUM2 =Y (B )%V (J+NX+11 ) =EMY
SUMB=SUM3+Y(7)=Y( J+NX+1 1 )+ SMU
223 CONT TNNE
67 CLNTTINUS
P B4dd=1,8Y
J=J4J
SUMT=SUMI (Y(T7)=Y(JHENXY3 ) ~Y{B) =Y {(J4MXY ) )RTX
SUM2=SUMP+ (Y{JHNX2+1 L) -OX2Y( J+NXYR) )= TX
A SUMB=SUMI+ (Y {JENXY2 Y +0X %Y (JINXY ) ) =TX
PY1=PY1¥SUMIL UMD
PZ1=DY? nEYM ] =SUM3
TG=7,%$ST-RST
DYR=PT*RHOX({ SST-RSTI4TS+2STxdew (1, /TS/TE-1./5ST/SSTH)=(-1.)
SUML=Y (%) : .
SUM2=Y(S)+Y(RI=FL/2.
SUMA=Y({E)-Y(T7)=EL%0,.5
TFINX.EQLD) GO T 456
PNBS L=1,NX
J=L
SUMY =SUMI +Y{ J+1 1) =EMY
SUMP=SUMP4Y (S =Y{ J+NX+1 1) =SM)
HR SUMB=CHUMA—Y (T )Y {JENX+L T ) ®FEMI)
5A LONTINYC
N1 856 L=1,NY
J=L
TE(I/25207 .4) GO 7O 1M
SUMI=SUMI ~(Y{ 7)Y {JENXYI)-Y(R)EYI{JH+NXY))=TX
SUMZ=SUMI = (Y { J+NX2+1 1 1 —OXEY (JHNXYR ) ) %TX
SUMI=SUMIHIY(JENXYZ Y HIXEY(JENXY) ) = TX
GU TD 56
9% CONTINUFE
SUMI=SUMT4(Y{T)AY (JHNXY2)-Y{B)AY{J+NXY) ) =TX
SUMP =SUMZ + (Y J+NX2+11) ~0OX*Y [ J+NXY3) )4TX
SUMI=SUMI- (Y JENXY2 1+ OXEYJ+NXY) ) % TX
CONTINYE
DYI=LY I SUM IR SUM?
P22=PY2=SUM1=SUM3
EMM=ENS /M0
PO S57J1=1,NY

R3]
o

106

)



70

s
57

50

I=J1
DERY (T+NX2+11 )=-RHON*ES/EMO#Y (T +NX2+11)-{(
s . .

EMM =Y (T )AY (R ) +RHOD* ES/EMO*DX) *Y ( T+NXY3)+PY1*TX
TF(I/2%2.50. 1 )DERY(I+NX2+11}=DFERY{(I+NX2+11)—PY2%TX
TF(1/2%2 .NELTIDERY(T+NX2+11)1=DFRY{(T+NX2+11)4+PY2%TX
NERY(T+NXYZ ) =—RHOD*ES/EMORY (T4+NXY 2 )~ {

$ —EMMMEY(7):Y{T7)+0MGL{ T )*CMGL (I

$)-EMME: (OXEDX4Y (TIAY (7))

$ EY(T+NXY3 ) -2 , “EMM*OX*Y (I+NX2+11) +{ { EMMM—~EMM

$)=Y(T)IX*Y{B)-RHOD*ES/EMO=NXI=Y(T+NXY)+PZ1*TX
TF(1/2%2 EQ I IDERY{ I+NXY2)=NERY (T +NXY21-P22%TX
TELTI/7222 NEJTIDERY(THNXY2)Y=DERY (T +NXY2)}+PZ2*TX
SUM2=0.0

SUM3=0.0

SUM1=0.,0

IF(NX.EQeN) GO TO 62

B 5R L=1,NX

J=L

T=EMM: ((DERY (B I+OXEY(T)IAY(JHNX+L1 I +2.*3Y(B)FY(J+11) J+EMMM=Y(8) % Y(J

$+1TI)+RHODTF S/ZEMO*Y( 8) &Y J+NX+11 )

TT=FMM* [((DERY (7)-0X=Y(BIV=Y(JHNX+11)+2.2Y{ T) = Y{ J+11) J+EMMMEY(7) > Y (

$J+1Y1 ) -RPHOD=FS/FMO2EY (7)Y (J+NX4+1 1)

SUMTI=SUMT+TXATN ( 1,Jd07,4)

SUM2=SUMP+Y (JENX+111%ATN ( 3,1,d94d)

SUMI=SUM3+TT=AIN ( 1 4J01,J)

CONT ITNUE

DERY(T+NX2+13 ¥=DERY{I+NX2+L [ })-SUM]-SUM2=EMMM *Y {4 )%Y(8)
DEPY(I+NXY3)=DFQY(I+NXY2)—SUM3+SUME*FMMM*Y(A)ﬁY(7)
SUMI =0 N

SiMZ=0,.0

SUME=0,N

SUMe =0 .0

N7 59 L=1,NY

J=1

T=Y (JHENX2+1 7 ) -DOXEY (J+NXY 2)

TT=Y(J+NXY?2)+0OXEY { J+NXY)

D0 70 JJ=1,4NY

L=JJ

SUM3=SUM3+THIY( 7)) =Y{LENXY2) ¥ (B) R Y{(L+NXY))®AIN ( 4 el edyedd)
SUMA=SUMAATT A (Y (T ) 2Y (L+NXYII-Y(B)XY(LHNXY})I=AIN ( 49T 4deJd)
SiUM2 =0, 0

SUM7=n,0

IF(AY.EQ.0) (0 TO-63

N A0 LL="4MNX

Jda=LL

SUM2=SHM2+TxY (JJ+ T1Y%ATN | Gy lededd)
SUMT7=SUMT+TT2YJJI+NX+1T ) *ATN { 591 4dyJd)

CUONT TNYE

CONTINUE

StM=,9

SUML 0,0
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$GLIT)-EMMATOX*OX+Y( 8I*Y(8)) ) =Y T+NXY )+ 2, *EMM*OX*Y{I+NXY2)+ ((EMM-EM



TEFINX.IG.n) GO TO 64
N T L= 4NX
J=L
N 7 LL=T 4 NX
JJ=1_L
SHM=SGUM-Y {JJ+T 1) =Y (JSJHNX+T 1) =ATN 3T 409JdJ)=Y(T)
d ML Y (U JHTT I EY(JIENXAH] L) AN (0 BeledydJ )XY (R)
S CONT INHTE
NURY LT #NX T4 )= NERY {T4NX2+1 3 )= SUM?2+SUM2+S5UM4S ) %E MMM
VREY{T+NXY2)=DF QY (TH+NXYZ2 ) - ( SUINMe SUM&+SUNMNT ) = EMMM
SHMiz=ngn
SUHM? =), 0
(;r’Mq:r'\. s
SUIMA =T U0 .
TF{NX.7"Ra7) 67 TN A5
DO AT L=, NY
J=1
N K- LL=T o MX
Jd=tL
CHMT QM+ (Y (7)Y EY (J+MXY ) -V ) 2Y (J#NXY ) )Y L2 Y{JJINX+ L) =pIN | 7
FeT yddy )
RSUMP=SUIM2 4 {JJ+MN X+ ) =Y (J+NXY ) =a TN Qe 1 4Jdsd)
GUMI=CSHMY # (VLT Y (JHNXY3D) =Y (B3 Y (IENXY D)) =Y (T ) Y(IIANX+T )42 IN | 7
2T eddy 1)
SSRGS UMARY LY ErIXY 2 )Y LD HNXE G ) AT | Belydded)
sy TNTT MY
DERAYLTHMX 24 T =DE R Y (T #MX2+ 0 D)= SUM LS EMgMeSUMZ e CA /T MO
DERY L TENXTE T )=OCRY (THNX2+Y L) /TEM
DORYATENXYD )Y =Ry ([4NXY2 ) - SUMT-EMMMe UM <8 “CA/ T MO
NEOY (T4MXY P )=00RY { T4HMYXY2) /5™
N Y THMXY =Y (T+NK2+ 1)
DTAYLT XY YoV THrXY?)
L7 T TRy T
e TN

I

s
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FUNCTION ATNTIT ,J,KsL)
EXTFRNAL ET

COMMUN/ ARSA/S 9SL2 s AEsBET s EL9GeSRyPEYVESOXs PIy EMOsPLyAFJRSTHCALEHES
COMMAON/FLAST/NX, NY,LMG(’O),UMG (10} +BETAL(10)4yH 4 IPRNT,NOPRNT

COMMOM/FUM/ N, T 1,12, 73, IP(5)
BlL=-FEL*N.,5"
_=~-"L
GO TC (10420,30 505609 72980490)s 1
CONTIMUE

FLK=FLMAT(K)
FLJ=FLNAT(J)
FLUG=FLI*FLJ=FLI*FLY
RL4=BETAL(K)=BETAL(K)
BLA=ALARBETAL(KY*BETAL (K}

P12=PIxPI
PI4=PI2=PIxPT
AINT= 4,5SORTL2.)*FL P L J=PI2%BETAL(K)

$4xPT4A Y/ STIN(RFT AL (K} )

TE(Y/?252.50.d) GG TC i
TEIK/2%2,E0Q0.K) 6O TO 12
AINT=0,0

RETURN

AINT=AINT #(1,+COS{BFTAL(K)))
RETURN

TRIK/2%2.FQ.K) GO T 13
ATNT=AINT (1 .-COS{RETAL(K)))
RETUPN

AINT=0.0

RE TURN

TFU3/2%2,EQ.4) GO 10 21
ATNT=-2 (=7 L*EL/FLODAT (J)/FLOAT(I ) /PL1/PI*SQRT(2.*¥EMO/EL)
RFE TUPN

AINT=N.0

&F TURN

TF{{J/2%2.EQa Je ANDK/2%2 sNE oK) e DR ( J/2%2 dNE o JANDJK/2%2

$ GO 7O 21

31

an

FLK=FLOAT (K)

FLJ=F LOATLD)

Pla=PiaPIRPTI*P]

FLKG=FLK*FLK*FLK*FLK
BLA=BETAL(JI=RETAL(JI)
BlLa=BLA=BETAL{(JIY=BETAL{J)}
AINT==4,"SQRTLZ)*FLK&=PI4/EL/IBLA-FLK4G*PI4)
TFRUI/272.NE S dANDLK/2%2 JNEK) AINT=-ATINT
RF TURN

AINT=0,0

RETURN

N=32

12=J

T1=K

109
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[P(3)=t
60 TQ 101
60 FL=FLOAT (L)
TA=TANIBETALIJ)=0,5)
TAL=TAN(BETAL (K1%0.5)
TAH=TANH(BETAL(J ) =0 .5)
TAHLI=TANHIRETAL(K)*0.5)
ST=FL*D1-RET AL (K)
S2=FL*PT+AFTAL(K)
S3=FL*P [-RETAL{J)
S4=FL*PI+3ETAL(J)
RY=AFTAL(K) -RETAL (J)
B2=RFTAL (K)+RFTAL (J)
[F(J/252.50.0) GC TG 62
TF(K/2%2,50,.K) 60 TO 62
TF(L/277.E0.L) GO TO Al
ATNT=RE TAL(K) /(RETALIK) %+ 2456556 ) 4BRETAL (K)/ (BETAL(K)#*2+53%53 )+
$ST/{BETAL (J)*%2481=S1 )~ S2/{BFTAL(J) 4 2452%52)+ (S4/(RETAL (K )xxp
$4S4%560-S%7 (BETAL(K)**2 +S253) ) «TA=T AH1+B2/ (R2%R24FL = FL*P [#p ) %
SUT  +TAHKXTAH L) 4B) /(R L*RI+F L= FLEPTEPT ) (1, ~TAHTAHL )-B2 / (FL*FL*PT%
$PT-R2¥BP )% (1 ,~TA*TAL)-B1/ (FLEFL=P TP I=B1#B1)=( 1+ TAXTALI+{BETAL(S)
S/(RETAL(I) <= 2+S1=ST ) +BFTALLII/{BETAL (J) =2 +52%S2 ) 1*TAL*TAH
AINT=AINT*{ ~SQRTI2./EMD/ELY*BETALIK) /ELY
RETURN
51 AINT=0.0
RETURN
42 IF(L/2%¥2.E0.L) GO TO 64
AINT=D,0
RETURN
S4 AINT=RL1/(FL=FL¥PI*PI~R1%B! )= (TA/TAI -1 ,)=B2/ (FLEFLEP[*P[-R2*A2) %
SOTA/TAT41.)+S2/(BETALLJI#%2452552)-S1/ (BETAL( J)*% 2451%51)
SEBETALII) = (1 ./ IBETAL(I )% «24S2552 )47 o/ (BETAL(J ) #%2451%51) )« TAH
$/TAL+BETALIK) = (14 /(BETAL(KI**24 545540+ 1./ (BETAL(K)#*2+53%53) )+
$(S4/ (BETAL(K) *%2+54%S4)-S3/(BFTAL (K)*%2+S$3%53) ) *TA /TAH1+B2/(B2%82
S+FLRFLEPI«PI) = (1o +TAH/TAHL)+R1/ (Bl =31 +FL*FLAP I¥PT )+ (1 .~TAH/TAHL)
ATNT=ATNT*SQRT( 2, /FMO/EL) *RETAL(K) /=L
RETURN
A2 [F(K/2%2.EQ.K) GO TG 65
IF(L/2%2.EQ.L) GN TO 66
ATNT=0.0
RETURN
At AINT=RETALAKI*(1./{RETAL(K )=%2454%55)+ 1, /(BETAL(K) *%2+S3%53) )~
5S4/ (BETALIK)*%2+S4%Sa 1453/ (BETAL(K) %2 +S3%#53 ) )#T AHL/TA-R2/ (FL*FL
$EP TP T-R2*B )+ ( La#TAL/TA) 4R 1 /{FL=FL*PI4PI~B1*B1)¥ (TAL/TA-1.)+
SRETAL (U)= {2 o/ (BETAL(J)I*=24S2%52) 41,/ (BETAL(J)*%2451%S1) ) #TAL/TAH
$+SI/(BETAL(JI¥%2+S1%S51)-S2/(BETAL(J)*¥2452%52)
AINT=AINT#SORT (2./EMO/EL ) /SL*RE TALIK)
RE TURN
65 IF(L/2%2.E0.L) GO TO &7
ATNT=B2/ (FL2FL*PI=PI-B2%B2)*(1./TA/TAl-1.)+B1/(FL¥FL*PI*PI-B1%B1)
S0 1. /TA/TAL4Y () +BETALUI) % (1 o/ (BETAL(JI 522482752 )41 ./ (BETAL (J 1 k%2
$+S1%S1))/TAY/TAH+(S3/(BETAL(K ) *#24 53553} =S4/ (BETAL(K)#%2454%54) )
$/TA/TAHI #S2/ (BETAL(J)%%2+52%52)-S1/ [BETAL(J)*%24S1%S1)+BETALIK ) %
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67

70

7

77

T4

73

75

7

${L./(BETALIKY**24S53%53) 41 ./ (BETALIK)*%2+454%84})
AINT= AINT*SQRT(? /EMO/EL)/FL*BCTAL(K)

RETURN :

AINT=0.0

RETURN _

IFCI/2%2.EQ.d) GO TO 73
CTFRIK/2%2.EQ.K) GD TY 72

IF{L/2%2.E0.L) GO TO 71

FK=FLOAT(K)

FL=FLOAT(L)

PISQ=PI&P] : '

S1=FK*PI+BETAL{ I}

S2=FX*P1-BETAL(J) -

AINT=2 *FL*PI/FL/SQRT(EMOXELI*(SL1/(S1*S1-FL*FL*PISQ)~-S2/(52%52
$-FLXFL#PISQ)}) .

RETURN

FK=FLOAT(K)

FL=FLOAT (L)

PISQ=PI=PI]

S1={FK-FL)*PI

S2={FK+FL ) =PT
ATNT=2,%FL¥PI/EL/SQRT(EMOSEL) = (S1/{BETAL(J)*BETAL(J)+S51%51)~
$S2/7(BETALIJ)=%2+52%52))

RETURN :

IFIL/2%2.E0Q.L) GO TO 74

EK=FLOAT({K)

EL=FLOAT(L)

S1=(FK+FL) %P1

S2=(FK-FL)*P

ATNT=~4 *FEL"PI/EL/SQRT(EMO=EL ) = {S1 =¥/ (S1¥*4-BETAL(J)*%4)-52%%*3
$/{S2%x4-BETAL (J)**x4]))

RETURN

ATNT=D.0

RETURN

IT(K/2%2.5Q.K) GO TO 75

TFIL/2%2.,FQ.L) GO IO 74

AINT=9.0

RETURN

AIMT=3,0

RFTURN

IF(L/2%2.%Q. L) GC TO 77

AINT=0,0

RE TURM

FL=FLOAT(L)

FK=ELNAT {K)

St =(FK-FL)*PI

S2={FK#FL )P T

AINT=-4 = FLEPT/EL/SQRT {EMOSEL )= { S1==3/ (ST 4-BETAL{J)**4)

$-S20 /{2 H L -RETAL(J)**4))

34

RFETURAN

EXK=FLOAT(K)
TA=TAN{BETAL{J)}*0.5)
TAL=TAN{(BETAL(L)*0.5)
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TAH=TANH(BETAL(J)*0.5)
TAHI=TANH{(BETAL(L)*0.5)
SI=FK*BT-BETALtT)
S2=FK*xPI+BETAL(J)
S3=FK*P I-BETALI(L)
564=FK*P I+BETAL(L)
BR1=BETAL{L)-BETAL(J)
B2=BETAL(L)+BETAL{J)
1F{4/2%2.EQ.d) GO TO 83
IFIK/2%2.5Q,K)} GO TD 82
IF(L/2%2.FQ.L) GO TO 81
AINT=FK*PI/((FKAPT)**2-B2%B2) % (1., ~TA*TALI+FK*P T/ { (FK*P T } k%2~
$BIABUI {1 +TA*TALI-BETALUI)I* {1, Z{RETAL(J)¥#2+54%S4)+1 . /(BETAL (J)
$x2+83%S3) V1 HTAT*TAH+S4/ (BETAL(J ) #%2+54%54)+S3/(BETAL{ J)*%2+S3%S53)
$-BETALIL)I % {14 /UBETAL(L)*%2482%52 ) +] o/ (BETAL{L)**2451%51) )*TA*TAHL
$+S2/ (BETAL(L ) **2+52%S2)+S1/(BETAL (LY **2+4 851 S1)+FK*PI*(1,/(B2%B2
$+(FKEPTI*%R2 )41 . /(B1*BI+{FK*PT ) %2) )k {1 -TAHXTAHL)
AINT=AINT*{-FK*PY /EL*SQRT (2, /JEMO/ELY})
RETURN
37 AINT=0.0
RFTURN
82 IF(L/2%2.F0.L) GO TO 84
AINT=0,0
RETURN
AL ATNT=FK=PI/J((FR=PT)#*%2~-B2%*B2 )4 (1 +TA/TAL)J+FK*P I/ ({FK*PI)4A*2-B1%*B1)
$2{1a-TA/TALI+BETAL(J) =1L J/(BETAL(J)#=2453%853) -1, /(BETAL(J)**x2
$+Sa%S4) )XTAH/TAL-FK=P T4 (1 o/ (BETAL(J ) *%2+453%53)+1, /(BETAL(JY**2+
$S4%XSA)Y+BETALILI* (1 4 /(BETALILY%%¥2452%52)-1./ (BETAL(L)**2451%S1))
$HFTA/TAHIAS 2/ (BETAL(L ) **2452%S2)+S1/(BETAL(L) =% 24S1*S) }+4FK*PI /(B2
SXB2H(FRK*PIN=4.2 )% (L +TAH/TAHI J4FK*P I/ (BI*BL+(FK=P ] ) #¥2 )%{) ,~TAH/
$TAHL)
ATNT=AINTHFK4PI*SQRT(?./EMO/EL)/EL
RETURN
A3 [F{K/?2%2.F0.K)} GO TO 85
IF{L/2%2.50.L) GO TO 85
AINT=0.9
RETURM
36 AINT=FK*PT/((FR*PI) %x2+B2#%R2)*(1 /TA/TAL-1 .)-FK¥P T/ {{FK®P I }%%2
S+BIARI)H{ Lo /TA/TAI L )4+BETALLJ) 2 (1o /{BETAL{J)S*2453%53)~1./ (BETAL
$ ()X 2456556 ) ) /TAH/TAL -S4/ (BETAL(J ) **2+4S4%S4)-S3/(BETAL{J ) **2+
BS3HSINFBOTALLLIX L S /{BETAL{L)**2+ 51+ S1) ~1./(BETAL{L)**2+452%821})
$/TAHT/TA-S2/(BETALILY®=2452%52)-51/(BETAL(L) %% 2+4S1%S1 }-FK*PI /(B2
$AF2H(FRKEPTY 42 )2 (1o /TAH/TAHL 41  J+FKEP T/ (BIXBI+(FK#P T ) #%#2)%( 1,
£/TAB/TARL-1,)
AINT=ATNT*FK*PI*SQRT(2 ./ EMO/EL)}/EL
RETURN
35 TF{L/2%¥2.EQ.L) GO TO 87
AINT=FKRPI= (1 (/{(FKEPT )2 -R2%R2) =1/ ((FKHFPT)&*2-B1XkRT)I%(] .+
STAL/TANIBETALIII=( 1./ (RETAL(I)**2+83%853) -1 ,/(BETAL(J)*¥2+454%54))
$xTAV/TAH4SA/ (RETAL(I) 02454554 )+ 53/ (BETAL(J)*%2453*#S3)-BETAL(L)*
ST /(BETAL(L) =224 52=S2) 41 . /(BETAL (LY +S1=S1 ) )=TAHL/TA-S2/ (BFTAL(L)
$x%24525S2)+ST/UBETAL (LY =¥ 24#51%51 )-FK*PT /{B1*Bl+ (FK#PY a2 )5 (
STAHL/TAH-T L)+ FKEPI/ (B2 *¥B2 + (FK*PT )22 ) X (TAHL/TAH+1,)
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AINT=AINT*FK=PI&*SQRT(2./EMO/ELY/ EL
RETUAIN

27 AINT=0.0
RE TURN

a0 N=3

NIMENSICN aux(250
P07 CALL QATR{RL,ULs1.E-5,2004FTaY,IER,AUX)
TF{TERJNELOIWRITE(S,1001) 1TER
1GD? FORMAT(' FRROR IN QATR IS ',13)
AINT=Y
RE TURN
END
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FUNCTION FT(X)
DIMENSICON TPP{3)

COMMON/ AREA/S 3SL23AEy BETy EL s Gy SRyPESy VEyDOXsPIWEMOIPLYAFJRSTHCAELES

COMMION/FUN/N,L14,12,13,1IP(5)
FCTT=1.

1EP(1)=11

IPPI2)=17

1PP{2)=13

I=1

T=X/FL+0.5

TT=X/%L-0.5

K=1P(T)

M=1PO(T)

GO TR (10420930 9%0,50450480),K
FCTIT=FRLTT=FEMU{ X M)

I=1+!

TF{I.GT.N) GT T3 70
D TN 5
FCTT=FCTT*ENUP(X M)
T=1+1

IF{T.GT.NY GO TQ 70

GO T0 5
FCTT=FCTT=ENUPP(X,M)
I=1+1

IF(TIGT,NY GO T 70
GO TN %

P=ENMU(X ,M)
FCTT=FCTT#P

I=1+1

IF(T.GT.N) GO TO 70
80T NS

P=EMIUP (X, i)
FCTT=FCTTP

T=1+41

IF(I.GT.N) GO TO 70
50 70 5

p=1.

FCTT=FCTT*P

1=141

IF(I1.GT.N) 6O TO 70
60 T0 5

o=X

FCTT=FCTT%pP

T=1+"

IF(1.6T.N) GO TO 70
60 T 05

FT=FCTT*EMO

RETUR N

END
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SURROUTINE QATR

PURPOSE
T COMPUTE AN APPROXIMATICN FOR INTEGRAL(FCT (X}, SUMMED
AVER X FROM XL TO Xu).

USAGE
CALL QATPR (XL 4 XU.FPS.NDIM,F TeYs IERy AUX)
PARAMETER FCT REQUIREZS AM EXTERNAL STATEMENT.

NDESCRIPTIGN OF PARAMETERS
XL - THE LOWRR B0OUND OF THE INTERVAL.
Xt - THE UPPER ROUND OF THE INTERVAL.
EPS - THF UPPCR B0UND OF THE ABSCLUTE FRRCR,
N T ~ THy DIMINSION 0F THE AUXTLIARY STCRAGE ARRAY AUX,

NDIM=1 TS THZ MAXTIMAL NUMRER 0OF BISFCTIONS 0OF
THE TNTFRPVAL (XL 4X1)).

=CT ~ THE NAME DF THF FXTOSRNMAL FUNCTION SUBPROGRAM USED.

Y - THF RESHLTING APPROXIMATICN FNOR THE INTEGRAL VALUE.

TFEP - A RESULTING FRRPOR PARAMSETER,

ALIX - AN AUXIL TARY STARAGRE ARRAY WITH DIMENSION NDIM,.
REMARK S

EREOR DARAMETER IFR IS COADEDR IN THE FOLIOWING FORM

TER=0 ~ IT WAS POSSTIEBLE T RFACH THE FEQUIRFED ACCURACY.

NO FRROR,
ITR=1 - 1T IS IMPASSIRLE T{1 RFACH THE KFQUIRED ACCURACY

RECAUSE PFE ROUNDING FRFEAORS,

1Ep=? -~ IT wAS [MPNSSIPRL ™ T CHECK ACCURACY BECAUSE NDIM
IS LESS THAN 5, 1IF THE REQUIREE ACCURACY CCULD NOT
BL PFACHED WITHIN NDIM-1 STEPS, NDIM SHOULD BE
INCPREASED,

SURROUTINTS AND FUNCT 1IN SURPRNOGPAMS FEQUIRED
THE TXTRNAL FUNCTTION SUBPRIIGRAM FCT(X) MUST RBRE CODEL BY
THT JSTe . ITS APGUMENT X SHOULD NOT BE DESTROYED.

METHOD

SYALDATYON OF Y IS DONE RY MEANS OF TRAPCZNIDAL RULE 1IN

CONNECTION WITH ROMBFERGS PRINCIPLE. €N RETURN Y CONTAINS

THE REST POSSIBLE APPRAXTMATION OF THE INTEGRAL VALUE AND

VECTNE AUX THFE UPWARD DTIAGCNAL CF ROMBERG SCHEME,

COMPONENTS AUX(T) (121429000 1ENDy WITH TENC LESS THAN OR

FQUAL TO NDIMY RFLNOMS APPROXTMATIONS T0 INTEGRAL VALUE WITH

NECETASTMNG ACCUPACY BY MULTIPLICATION WITH (XU-XL).

FNR RFFERFNCF, SFE

(1) FILIPPI, AS VERFAHREN V(N FOMBERG-STIEFREL-BAUER ALS
SP-ZIALFALL DES ALLGEMFINEN PRINZIPS VCN RICHARESCN,
MATHEMATIK-TECHNIK-WIRTSCHAFT, VOL.11y ISS.2 (1964),
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CATR
QATR
CATR
QA TR
QATR
QATR
QA TR
QATR
CATR
GATR
CATR
QA TR
QATR
CATR
QA TR
QATP
CATR
QATP
CATR
QA TR
QATR
CATR
QATR
CATR
QA TR
QATE
GATR
QATR
GATR
CATR
QATR
CATR
QA TR
CATR
CATR
CATR
CATR
QA TR
QATR
CATR
QATR
CATR
QATR
QATR
QATR
QA TR
CATR
CATR
OATR
CATR
DATR
CATR
CATR

520



sEnleNe!

o0

-

3]

PP.‘!9'54-

{2) BAUER, ALGORITHM 60, CACM, VOL.4, ISS5.6 (1961), PP.255.

QATR 530
QATR 540

~@AFR~- 550

l.I.l..'......II.‘.‘..‘.'.......'..'..."'.........‘.l............QATR 560

SUBROUTINF-QATRIXL y XU yEPSHINDIMyF T, Y, TER,AUX)

‘DIMENSICON AUX{Y)

PREPARATIONS 0OF ROMBERG~LQOOP
AWK =5 (F -FAXLYSF TEXU})
H= XU~ XL

IF(NDIM-118,R,y1

IF{H)Z2410,2

NDIM IS GREATER THAN 1 AND H IS NOT EQUAL TO O.
HH =H- :

E=EPS/ABS(H)

NELT2=0,

p=1.

JJ=1

DO 7 I=2,NDIM

Y=AUX{1)}

DELTI=DELT2

HN=HH

HH= . 5%HH

P=,5%p

X= XL +HH

SM=0.

DO 3 J=lydd

SM=SM+F T (X}

X=X+HD .

AUXET )=, 5#AUX{ I-1)+P*SM

A NEW APPROXIMATION OF INTEGRAL VALUE IS COMPUTED BY MEANS CF
TRAPEZOTDAL RULE,

START (OF ROMBERGS EXTRAPOLATION METHOD.

Q:’.

JI=1-1

NN &4 J=1,J1

I1=1-J9

N=Q+0Q

Q=0+Q
AUXTTIII=AUX{ T I+ 1+ 0AUXCTI+ 1) =-2UX{ITI})/(Q-1.)
END 0OF RCMBERG-STEP

DELT2=ABS{Y-AUX(1))
IF{T1-5)174545
IF(DELT2-F)1D,10,6
IF{DELT2-DELT L) 7y 11,11
SRENNE NN

IFR=2
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QATR 570
QATR 580
QATR 590
CATR 600
CATR 610
QATR 620
CATR 630
CATR 840
QATR 650
CATR 660
GATR 670
CATR 680
CATR 690
QATR 700
QATR 710
QATR 720
CATR 730
CATR 740
QATR 750
QATR 760
QATR 770
QATR 780
QATR 790
QATR 800
QATR 810
CATR 820
CATR 820
CATR 840
QATR 850
QATR B&0
CATR 870
QATR 880
QATR 890
QATR 900
QATR 910
CATR 920
CATR 9130
CATR 940
CATR 3§50
QATR 960
CATR 970
CATR ¢80
QATR 990
QATR1N00
QATRIOL0
CATR1I020
CATR1IO30
QATR 1040
CATR1050



[a]

10

1l

Y=H%aUX (1)
RETURN
IFR=0

60 TO 9
JER=1
Y=H%Y
RFTURN
END
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CATR1060
GATR1070
QATR1080
QATR1090
QATRI100
QATR1110
QA TR1120
QATR1130
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CONTROL VOLUME

Figure 2 - Noninertial Control Volume
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Figure 8 - Axial Coefficient vs. Mach Number
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