NASACONTRACTOR REPORT

NASA CR-2076

DYNAMIC CHARACTERISTICS

OF A TWO-STAGE VARIABLE-MASS
FLEXIBLE MISSILE WITH INTERNAL FLOW
by Leonard Meirovitch and John Bankovskis

Prepared by
UNIVERSITY OF CINCINNATI
Cincinnati, Ohio
for Langley Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JUNE 1972

1. Report No. 2. Government Accession No. NASA CR-2076	3. Recipient's Catalog No.
4. Title and Subtitle DYNAMIC CHARACTERISTICS OF A TWO-STAGE VARIABLE-MASS FIEXIBLE MISSILE WITH INTERNAL FLOW	5. Report Date June 1972
	6. Performing Organization Code
7. Author(s) Leonard Meirovitch* and John Bankovskis	8. Performing Organization Report No.
	10. Work Unit No.
9. Performing Organization Name and Address University of Cincinnati Cincinnati, Ohio	
	11. Contract or Grant No. NGR 36-004-030
	13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546	Contractor Report
	14. Sponsoring Agency Code
15. Supplementary Notes *Professor, Department of Engineering Mechanics Virginia Polytechnic Institute and State University Blacksburg, Virginia	

16. Abstract

A general formulation of the dynamical problems associated with powered flight of a twostage flexible, variable-mass missile with internal flow, discrete masses, and aerodynamic forces is presented. The formulation comprises six ordinary differential equations for the rigid body motion, $3 n$ ordinary differential equations for the n discrete masses and three partial differential equations with the appropriate boundary conditions for the elastic motion. This set of equations is modified to represent a single stage flexible, variable-mass missile with internal flow and aerodynamic forces. The rigid-body motion consists then of three translations and three rotations, whereas the elastic motion is defined by one longitudinal and two flexural displacements, the latter about two orthogonal transverse axes. The differential equations are nonlinear and, in addition, they possess time-dependent coefficients due to the mass variation. The complete equations cannot be solved in closed form and any solution must be obtained numerically by means of a high-speed computer. Several cases are considered as examples.
17. Key Words (Suggested by Author(s))

Dynamic Characteristics
Variable Mass
Flexible Missile
Ignition Transient
18. Distribution Statement

Unclassified-Unlimited
19. Security Classif. (of this report)

Unclessified
20. Security Classif. (of this page) Unclassified
21. No. of Pages

137
22. Price*
$\$ 3.00$

[^0]
LIST OF CONTENTS

SUMMARY 1

1. Introduction 2
2. Equations of Motion for a General Variable-Mass System 4
3. The Rigid-Body Equations of Motion 10
4. The Equations of Motion of a Flexible Rocket 27
5. The Equations for the Axial and Transverse Vibration of a Rocket 34
6. Distributed Aerodynamic Forces 41
7. Equations of Motion for a Flexible Two-Stage Missile with Discrete Masses and Aerodynamic Forces 46
8. Axially Symmetric, Spinning Single-Stage Missile 56
9. Results 74
10. Summary and Conclusions 80
Appendix A 83
Appendix B 88
References 118
Illustrations 121

Abstract

SUMMARY A general formulation of the dynamical problems associated with powered flight of a two-stage flexible, variablemass missile with internal flow, discrete masses, and aerodynamic forces is presented. The formulation comprises six ordinary differential equations for the rigid body motion, $3 n$ ordinary differential equations for the n discrete masses and three partial differential equations with the appropriate boundary conditions for the elastic motion. This set of equations is modified to represent a single stage flexible, variable-mass missile with internal flow and aerodynamic forces. The rigid-body motion consists then of three translations and three rotations, whereas the elastic motion is defined by one longitudinal and two flexural displacements, the latter about two orthogonal transverse axes. The differential equations are nonlinear and, in addition, they possess time-dependent coefficients due to the mass variation. The complete equations cannot be solved in closed form and any solution must be obtained numerically by means of a highspeed computer. Several cases are considered as examples.

1. Introduction

Investigations of the behavior of a rocket in flight can be divided for the most part into two major classes according to the mathematical models: the first is concerned with rigid missile of variable mass and the second with a flexible missile of constant mass.

The treatment of the missile as a rigid-body of timedependent mass has been adequately covered by many researchers, including Grubin ${ }^{1 *}$, Dryer ${ }^{2}$, and Leitmann ${ }^{3}$. The ballistic trajectories of spin- and fin-stabilized rigid bodies are treated in the book by Davis, Follin and Blitzer ${ }^{4}$.

A considerable amount of effort has been devoted to the analysis of an elastic body subjected to longitudinal acceleration. For example, Seide ${ }^{5}$ has treated the effect of both a compressive and a tensile force on the frequencies and mode shapes of transverse vibration of a continuous slender body. Others, such as Beal ${ }^{6}$, have been concerned with the problem of buckling instability of a uniform bar subjected to an end thrust as well as with the change in the body natural frequencies as a result of that thrust. These investigations regard the mass of the body as constant in time.

A series of reports by Miles, Young, and Fowler ${ }^{7}$ offers a comprehensive treatment of a wide range of subjects associated with the dynamics of missiles, including fuel sloshing. The

[^1]report by Keith, et. al. ${ }^{8}$ also covers a wide range of subjects associated with the dynamics of missiles. Again the mass variation is not accounted for.

Attempts have been made to consider simultaneously the mass variation and missile flexural elasticity by investigators such as Birnbaum ${ }^{9}$ and Edelen ${ }^{10}$. Both were concerned with solid-fuel rockets and neither of them includes the axial elasticity of the missile. On the other hand, Price ${ }^{11}$ investigated the internal flow in a solid-fuel rocket and ignored entirely the vehicle motion. An attempt to synthesize the problem of rocket dynamics has been made by Meirovitch and Wesley ${ }^{12}$. This latter work accounts for the mass variation, rigid-body translation and rotation, and axial and transverse deformation, but it assumes the motion to be planar, which excludes spinning rockets. A later work by Meirovitch ${ }^{13,14}$ does away with the restriction of planar motion and considers the general motion of a variable-mass flexible missile in vacuum. A report by Meirovitch and Bankovskis ${ }^{15}$ uses the developments of References 13 and 14 to include aerodynamic effects.

An extension by Meirovitch and Bankovskis ${ }^{16}$ of the work reported in Reference 12 was done to include the planar motion of a two-stage missile in which the first stage was assumed to be the booster while the second was used to house packaged instruments. The missile was assumed to be flexible and the first stage had variable-mass.

The present work represents an extension of Reference 16 to include the general motion of a two-stage vehicle with aerodynamic forces. It also includes some of the work reported in Reference 14 with additional numerical examples.
2. Equations of Motion for a General Variable-Mass System

By a variable-mass system we understand a system of changing composition. To examine this concept more closely, we envision a control volume in space and assume that the amount of matter within the control volume may change with time. Since the system composition changes, it is not proper to equate the time-derivative of the sum of momenta associated with the particles to the sum of the time derivatives, because the summation involves different sets of particles at different times. In this case, the proper procedure for obtaining the equations of motion is to write the force equation in the form $\underset{\underline{F}}{ }=\dot{\underline{p}}^{*}$, where the rate of change of the momentum, $\dot{\underline{p}}$, is derived by a limiting process consisting of calculating \underline{p} at two different instants, a time interval Δt apart, dividing the difference of the two values by Δt, and letting $\Delta t \rightarrow 0$. In so doing, we ensure that the same total mass is involved, although at one time it is entirely inside the control volume and at the other time part of the mass is outside.

* A wavy line under the symbol denotes a vector quantity or operation.

We next seek the expression for the time rate of change of the linear momentum. To this end we note that the linear momentum associated with an element of fluid is ρ vdu, where ρ is the mass per unit volume, v the velocity and du the element of volume. The linear momentum of the fluid contained by the control volume at any instant t is therefore

$$
\begin{equation*}
\underline{p}=\int_{c V} \underline{v} \rho \mathrm{du} \tag{1}
\end{equation*}
$$

From Figure 1 we see that at time t the system occupies regions I and $I I$ while at time $t+\Delta t$ it occupies regions $I I$ and III. The time rate of change of linear momentum is then

$$
\begin{aligned}
& \frac{d p}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\left(\int_{I I V \rho d u}+\int_{\left.I I I V^{V} \rho d u\right)_{t+\Delta t}}-\left(\int_{I I^{V \rho d}}+\int_{I I V \rho d u)_{t}}\right.\right.}{\Delta t}
\end{aligned}
$$

$$
\begin{align*}
& -\lim _{\Delta t \rightarrow 0} \frac{\left(\int_{I} v_{\Delta t} \rho d\right)_{t}}{\Delta t} \tag{2}
\end{align*}
$$

As $\Delta t \rightarrow 0$, the volume II becomes that of the control volume so that

As $\Delta t \rightarrow 0$, the last two limits can be seen to approach the rate of efflux of linear momentum along ARB and the rate of influx of linear momentum along ALB, respectively. Thus, the
last two limits account for the flow of linear momentum across the entire control surface at time t. With the convention of dA pointing outward from the enclosed region, we see that $\rho \underline{y} \cdot d A$ is the mass efflux through dA per unit time and hence $\underline{v}(\rho \underline{v}: d A$) is the efflux of the linear momentum per unit time through dA. On integration for the whole control surface we conclude that

$$
\begin{equation*}
\lim _{\Delta t \rightarrow 0} \frac{\left(\int_{I I I} \underline{V} \rho d v\right)_{t+\Delta t}}{\Delta t}-\lim _{\Delta t \rightarrow 0} \frac{\left(\int_{I} \underline{V} d u\right)_{t}}{\Delta t}=\int_{C S} V(\rho \underline{V}: d \underline{A}) \tag{4}
\end{equation*}
$$

Hence we are lead to the expression for time rate of change of linear momentum as (Reference 17 , page 96)

$$
\begin{equation*}
\underline{F}=\underline{F}_{B}+{\underset{m}{S}}=\frac{d \underline{p}}{d t}=\int_{C S} \underline{v}(\rho \underline{v}: d \underset{\sim}{A})+\frac{\partial}{\partial t} \int_{C V} \underline{v} \rho d u \tag{5}
\end{equation*}
$$

in which ${\underset{\sim}{B}}$ and $\underset{\sim}{F}$ are the resultants of the surface and body forces, respectively, acting upon the system.

Equation (5), however, applies to a control volume at rest in an inertial reference frame. Under consideration here is a control volume which is translating and rotating relative to an inertial space. Further it will be convenient to assume that part of the matter is fixed in the control volume, while part of it moves relative to it. In order to find the expression for this case, consider an element of mass as in Figure 2 and write the force equation in the form

$$
\begin{equation*}
\mathrm{dF}=\mathrm{d} \underline{-}_{S}+\mathrm{d}{\underset{\mathrm{~F}}{\mathrm{~B}}}=\underset{m}{a d M}=\rho\left[\underline{a}_{0}+\dot{\underline{v}}+2 \underline{\omega} \times \underline{v}+\dot{\underline{\omega}} \underset{\sim}{x} \underset{\sim}{r}+\underset{\sim}{\omega}(\underline{\omega} \times \underline{r})\right] d v \tag{6}
\end{equation*}
$$

in which \mathfrak{a} is the absolute acceleration of the mass element $d M,{\underset{o}{0}}_{0}$ is the acceleration of the origin 0 of the system $x, y, z, \underset{\sim}{\omega}$ is the angular velocity vector of axes x, y, z, and \underline{r} is the position of $d M$ relative to these axes. Upon integration Eq. (6) becomes

$$
\begin{equation*}
\underline{F}_{S}+{\underset{F}{B}}=\int_{M} \underset{M}{a} d M=\int_{M}\left[{\underset{a}{0}}^{+} \dot{\underline{v}}+2 \omega \times \underset{v}{ }+\dot{\omega} \times \underset{\sim}{r}+\omega \times(\omega \times \underset{\sim}{r})\right] d M \tag{7}
\end{equation*}
$$

If we assume that the axes x, y, z are fixed in inertial space,
Eq. (7) becomes

$$
\begin{equation*}
\underline{F}_{S}+\underline{F}_{B}=\int_{M_{f}} \stackrel{\dot{v}}{ } d M \tag{8}
\end{equation*}
$$

where M_{f} is the mass moving relative to the control volume. Therefore, from Eqs. (5), (7), and (8) we conclude that
$\underline{F}_{S}+{\underset{F}{B}}=\frac{\partial}{\partial t} \int_{C V} \underset{\sim}{v} d u+\int_{C S} \underset{v}{v}(\rho: d A)$

$$
\begin{equation*}
+\int_{M}\left[\underline{a}_{0}+2 \underset{\sim}{\omega} \times \underline{v}+\dot{\omega} \times \underline{r}+\underset{\sim}{x} \times(\underset{\sim}{\omega} \underset{\sim}{r})\right] d M \tag{9}
\end{equation*}
$$

where the partial derivative $\partial / \partial t$ is to be calculated by regarding axes x, y, z as fixed. It is convenient to introduce the following equivalent forces

$$
\begin{align*}
& {\underset{\sim}{C}}=-2 \underline{\omega} \underset{-}{ } \int_{M_{f}} \underset{\sim}{v} d M \\
& {\underset{\sim}{U}}=-\frac{\partial}{\partial t} \int_{M_{f}} \underset{\sim}{v} d M \tag{10}\\
& {\underset{\sim}{F}}_{R}=-\int_{A} \underline{v}(\rho \underline{v} \cdot d \underset{\sim}{d})
\end{align*}
$$

where F_{C} is recognized as the Coriolis force, F_{U} is a force due to the unsteadiness of the relative motion, and F_{R} is referred to as a reactive force. With this notation, Eq. (9) becomes

$$
\begin{equation*}
\underline{F}_{S}+\underline{E}_{B}+{\underset{\sim}{C}}_{C}+\underline{E}_{U}+\underline{E}_{R}=\int_{M}\left[a_{0}+\dot{\omega} \underline{x} r+\omega \underline{x}(\omega \underline{x} r)\right] d M \tag{11}
\end{equation*}
$$

The terms on the right side of Eq. (1l) may be regarded as pertaining to a rigid body of instantaneous mass M.

In a similar manner, the torque equation about the origin 0 can be written
where

$$
\begin{align*}
& N_{C}=-2 \int_{M_{f}} \underset{\sim}{x \times(\omega \times V)} d M \\
& {\underset{\sim}{N}}=-\frac{\partial}{\partial t} \int_{M_{f}} \underset{\sim}{x} \underset{\sim}{V} d M \tag{13}\\
& N_{R}=-\int_{A} \underset{\sim}{f r} \times(\rho \mathrm{v} \cdot \mathrm{dA})
\end{align*}
$$

The significance of the various torques is self-evident. Moreover, the expression for N_{U} can be easily explained by recalling that $\partial / \partial t$ implies a time rate of change with axes x, y, z regarded as fixed.

The above equations must be supplemented by the continuity equation

$$
\begin{equation*}
\int_{C s} \rho \underline{v} \cdot d A=-\frac{\partial}{\partial t} \int_{C v} d M \tag{14}
\end{equation*}
$$

which expresses the fact that the net efflux rate of mass across the control surface must equal the rate of mass decrease inside the control volume.

Equations (ll) and (12) can be given an interesting physical interpretation by recalling that the system comprises one part solid and another part of changing composition, and observing that the right sides of these equations represent the motion of the system as if it were rigid in its entirety. Equations (11) and (12) can be regarded as the equations of motion of a fictitious rigid body of instantaneous mass M, provided that the actual surface and body forces acting upon the system are supplemented by three equivalent forces, namely the Coriolis force, the force due to the unsteadiness of the relative motion, and the reactive force. This statement is sometimes referred to as the "principle of solidification for a system of changing composition" (Reference 18, p. 13).

3. The Rigid Body Equations of Motion

The formulation of the preceding section is ideally suited for treating problems associated with the motion of a rocket. We consider a two-stage missile, and of the two stages, only the first one possesses variable-mass, as it consists of a solid-fuel booster; the second stage contains no charge and is used for the purpose of housing certain measuring instruments. The mathematical model of the first stage is assumed to comprise a long cylindrical shell open at the aft end and closed at the fore end. The inner part of the missile consists of the propellant which surrounds a cylindrical cavity whose axis coincides with the missile's longitudinal axis, namely axis x in Figure 3. The cavity plays the role of the combustion chamber, as it contains the burned gas which..flows relative to the shell until expelled through a nozzle at the aft end. The second stage consists of a flexible missile shell containing attachment points for instrument"packages. The effect of these packages is felt by the case at the attachment points through springs and dash pots used to connect the packages to the missile shell. This mathematical model is more representative of a solid-fuel rather than a liquidfuel missile. We consider first the case in which the missile shell is rigid.

It will prove convenient to work with a vehicle firststage element of unit length comprising the missile casing,
the unburned fuel, and the hot gases flowing relative to the first two, and for the second-stage unit element comprising the missile casing and the discrete masses moving relative to it. If we denote the motion and mass associated with the case by the subscript c, the ones related to the burned fuel by the subscript f, and the ones related to the discrete masses by the subscript i, we write in analogy with Eq. (7) the force equation of motion for the rocket element in Figure 4 as
where f_{S} and f_{B} are distributed surface and body forces respectively, ${\underset{\sim f}{f}}$ is the fluid velocity relative to the body axes, ${\underset{\sim}{i}}$ is the velocity of mass M_{i} relative to the body axes, and a_{0} is the acceleration of the origin $0 . h\left(x-x_{0}\right)$ is a spatial unit step function applied at $x=x_{0}, \delta\left(x-x_{i}\right)$ is a spatial Dirac delta function applied at $x=x_{i}$ while a and b are the distances from the origin to the aft end of the missile and to the forward end of the first stage, respectively.

Defining

$$
\begin{equation*}
m=m_{c}+m_{f}[h(x+a)-h(x-b)]+M_{i} \delta\left(x-x_{i}\right) \tag{16}
\end{equation*}
$$

and considering the arguments presented in proceeding from Eq. (7) to Eq. (9), we may write Eq. (15) in the form

$$
\begin{align*}
& =\underline{-}_{0} m+\dot{\underset{\sim}{\dot{w}}} \times \int_{m} \underset{\sim}{r} d m+\underset{\sim}{x}\left(\underline{\omega} \times \int_{m} \underset{\sim}{r} d m\right) \tag{17}
\end{align*}
$$

in which

$$
\begin{align*}
& f_{C}=-2 \omega x \int_{m_{f}} \underline{v}_{f} d m \\
& \underline{f}_{U}+\underline{f}_{R}=-\int_{m_{f}} \dot{\underline{v}}_{f} d m \tag{18}\\
& \underline{f}_{\mathrm{Ci}}=-M_{i} 2 \omega x \underline{v}_{i} \\
& \underline{f}_{U i}+{\underset{m}{R i}}=-M_{i} \dot{v}_{i}
\end{align*}
$$

are the corresponding equivalent distributed forces.
Upon integration along the entire missile, Eq. (17)
becomes

$$
\begin{align*}
& M \underset{-}{a_{0}}+\underset{\sim}{\dot{\sim}} \underset{\sim}{x} \int_{L} \int_{m} \underset{\sim}{r} d m d x+\underset{\sim}{\omega} \times\left(\omega \times \int_{L} \int_{m} \underline{r} d m d x\right) \tag{19}
\end{align*}
$$

where

$$
\begin{equation*}
M=\int_{L} m d x \tag{20}
\end{equation*}
$$

With the definitions

$$
\begin{equation*}
\underset{\sim}{r}=x \underset{\sim}{i}+y \underset{\sim}{j}+z \underline{k}, \underset{\sim}{\omega}=\omega_{x} \underset{\sim}{i}+\omega_{y} \underline{j}+\omega_{z} \underline{\sim} \tag{21}
\end{equation*}
$$

as well as the assumption that the missile possesses rotational symmetry which implies $\int_{m} y d m=\int_{m} z d m=0$, we rewrite Eq. (19) as

$$
\begin{align*}
& \stackrel{M \underset{\sim}{0}}{ }+\left[\left(\omega_{y}^{2}+\omega_{z}^{2}\right) \underset{\sim}{i}-\left(\dot{\omega}_{z}+\omega_{x} \omega_{y}\right) \underset{\sim}{j}+\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right) k\right] \int_{M} x d M \tag{22}
\end{align*}
$$

In analogy with Eq. (12) we write the moment equation for the element of Figure 4 as

$$
\begin{align*}
n_{S} & +\underline{n}_{B}+\left[\underline{n}_{C}+n_{U}+\underline{n}_{R}\right][h(x+a)-n(x-b)]+\left[\underline{n}_{C i}+n_{U i}+\underline{n}_{R i}\right] \delta\left(x-x_{i}\right) \\
& =\int_{m} \underset{\sim}{r} \times\left[\underset{-0}{a_{0}}+\dot{\omega} \times \underline{r}+\underline{\omega}(\omega \underline{x})\right] d m \tag{23}
\end{align*}
$$

where \underline{n}_{S} and n_{B} are torques due to body and surface forces, respectively, and

$$
\begin{align*}
& \underline{n}_{U}+\underline{n}_{R}=-\underset{\sim}{x} \underset{\sim}{m_{f}} \dot{\underline{v}}_{f} d m \tag{24}
\end{align*}
$$

$$
\begin{aligned}
& n_{n i}+\underline{n}_{R i}=-\underset{\sim}{x} \times M_{i}{\underset{\underline{\dot{v}}}{i}}
\end{aligned}
$$

Upon integration along the length of the missile, Eq.
(23) becomes

$$
\begin{align*}
& -\underline{a}_{0} \underline{x} \int_{M} \underset{\sim}{r} d m+\underline{L}^{\prime}+\underset{\sim}{x} \underset{\sim}{L} \tag{25}
\end{align*}
$$

where

$$
\begin{align*}
\underline{L}= & \left(I_{x x} \omega_{x}-I_{x y} \omega_{y}-I_{x z} \omega_{z}\right) \underline{i}+\left(-I_{y x} \omega_{x}+I_{y y}{ }^{\omega} y-I_{y z} \omega_{z}\right) \underline{j} \\
& +\left(-I_{z x}{ }^{\omega} x-I_{z y}{ }^{\omega} y+I_{z z} \omega_{z}\right) \underline{k} \tag{26}
\end{align*}
$$

is the angular momentum of the "vehicle" about the origin 0 and L^{\prime} is the rate of change of I due to the change in the body angular velocity relative to the body axes. It is obtained by replacing the components of $\underline{\omega}$ by the components of $\dot{\underline{\omega}}$ in Eq. (26). The quantities

$$
\begin{align*}
& I_{x x}=\int_{M}\left(y^{2}+z^{2}\right) d M, I_{Y y}=\int_{M}\left(x^{2}+z^{2}\right) d M, I_{z z}=\int_{M}\left(x^{2}+y^{2}\right) d M \\
& I_{x y}=\int_{M} x y d M \quad, I_{x z}=\int_{M} x z d M, I_{y z}=\int_{M} y z d M \tag{27}
\end{align*}
$$

are the instantaneous moments and products of inertia of the "vehicle" about the body axes. It is to be noted that in the present case the moments of inertia are time-dependent.

There remains to obtain explicit expressions for the actual and equivalent forces and torques. The surface consists of the aerodynamic forces on the vehicle wetted area and the pressure forces across the exit area. Denoting by $\underset{\sim}{f}{ }_{A}^{*}$ the aerodynamic force per unit of the wetted area, A_{W}, by P_{e} the pressure across the exit area A_{e}, by p_{a} the atmospheric pressure, the surface force takes the form

$$
\begin{equation*}
{\underset{W}{S}}=\int_{A_{W}}{\underset{A}{A}}_{*}^{d A}{ }_{w}+\left(p_{e}-p_{a}\right) A_{e} \underline{i} \tag{28}
\end{equation*}
$$

Assuming that the gravitational field is uniform, the body force is simply

$$
\begin{equation*}
{\underset{n}{B}}^{F_{B}} \int_{L} m g d x=m g \tag{29}
\end{equation*}
$$

where L is the length of the rocket, m the distributed mass, and g the acceleration due to gravity. Assuming the internal flow everywhere is along the x-axis, with the possible exception of the exit point, we write

$$
\begin{equation*}
\underline{v}=-v(x, y, z, t) \underline{i}=-v(x, t) \underline{i} \tag{30}
\end{equation*}
$$

Moreover, assuming that the flow across the cross-sectional area is uniform, the Coriolis force per unit length can be written

$$
\begin{align*}
{\underset{\mathrm{f}}{\mathrm{C}}} & =-2 \underset{\mathrm{w}}{\omega} \underset{\mathrm{w}}{\mathrm{v}} \mathrm{~m}_{\mathrm{f}}=2\left(\omega_{\mathrm{z}}^{\mathrm{j}}-\omega_{\mathrm{Y}} k\right) \vee \mathrm{m}_{\mathrm{f}} \\
& =-2\left(\omega_{\mathrm{z}} \underset{\mathrm{j}}{ }-\omega_{\mathrm{y}} \mathrm{k}\right) \int_{\mathrm{x}}^{\mathrm{b}} \dot{\mathrm{~m}} \mathrm{~d} \xi \tag{31}
\end{align*}
$$

where use has been made of the continuity equation, namely

$$
\begin{equation*}
v \mathrm{~m}_{\mathrm{f}}=-\int_{\mathrm{x}}^{\mathrm{b}} \dot{\mathrm{~m}} \mathrm{~d} \xi \tag{32}
\end{equation*}
$$

Equation (32) results from the continuity equation, Eq. (14), by considering a control volume from a point x to the end of the first stage of the vehicle. In Eq. (32), m_{f} denotes fluid mass per unit length at point x, b is the distance from the origin of the body axis along the x-axis to the end of the first stage, \dot{m} is the mass rate of change per unit length, and ξ is a dummy variable of integration. Upon integration, Eq. (31) becomes

$$
\begin{equation*}
\underset{\sim}{F} C=-2\left(\omega_{z} \underset{\sim}{j}-\omega_{y} \underset{L_{l}}{ }\left(\int_{x}^{b} \dot{m} d \xi\right) d x\right. \tag{33}
\end{equation*}
$$

Similarly, the force per unit length due to the flow unsteadiness takes the form

$$
\begin{equation*}
{\underset{-}{U}}^{f_{U}}=-\frac{\partial}{\partial t} \int_{\mathrm{x}}^{\mathrm{b}} \dot{\mathrm{~m}} \mathrm{~d} \xi \underline{i} \tag{34}
\end{equation*}
$$

which upon integration along the entire missile becomes

$$
\begin{equation*}
F_{U}=-\frac{\partial}{\partial t} \int_{L_{1}}\left(\int_{x}^{b} \dot{m} d \xi\right) d x \dot{i} \tag{35}
\end{equation*}
$$

Finally, the reactive force per unit length may be written as

$$
\begin{equation*}
{\underset{n}{f}}^{f}=-\left[\frac{\partial}{\partial x}\left(v \underline{v m}_{f}\right)+\Delta\left(v \underline{v m}_{f}\right) \delta(x+a)\right] \tag{36}
\end{equation*}
$$

which upon integration along the missile length becomes

$$
\begin{equation*}
{\underset{\sim}{R}}=-\int_{L_{I}}\left[\frac{\partial}{\partial x}\left(\operatorname{vvm}_{f}\right)+\Delta\left(\operatorname{vVm}_{f}\right) \delta(x+a)\right] d x=\left.\operatorname{vvm}_{f}\right|_{x_{e}} \tag{37}
\end{equation*}
$$

where the symbol x_{e} indicates that the quantity $V_{\sim} \operatorname{mg}_{f}$ is to be evaluated at the exit point. The integrand in Eq. (37) can be easily derived by assuming one-dimensional flow along the x-axis. It will be noticed that the expression makes allowance for possible abrupt changes in the flow pattern, as would occur if the rocket engine were to be gimbaled at a certain angle with respect to the x-direction. This is reflected by the second term in the integrand. Letting the flow direction at the exit be defined with respect to axes x, y, z by the direction cosines $\ell_{x R}, \ell_{y R}{ }^{\prime} \ell_{z R}$, respectively, and using the continuity equation, Eq. (32), the reactive force becomes

$$
\begin{equation*}
{\underset{\sim}{F}}=-\dot{M} v\left(x_{e}, t\right)\left(\ell_{x R}{ }_{m}^{i}+\ell_{Y R} \underset{z}{j}+\ell_{z R}\right) \tag{38}
\end{equation*}
$$

where \dot{M} represents the total mass rate of change which is a negative quantity.

The forces $\underset{w_{S}}{F}$ and $\underset{{\underset{m}{R}}^{F}}{ }$ can be written in the form

$$
\begin{equation*}
\underline{\mathrm{F}}_{\mathrm{S}}+\underline{\mathrm{F}}_{\mathrm{R}}=\underline{\mathrm{F}}_{\mathrm{A}}+{\underset{\mathrm{F}}{\mathrm{~T}}} \tag{39}
\end{equation*}
$$

where ${\underset{F}{A}}$ denotes the aerodynamic force

$$
\begin{equation*}
{\underset{\sim}{A}}_{A}=\int_{A_{W}}{\underset{-}{A}}_{*}^{d} A_{W} \tag{40}
\end{equation*}
$$

and ${\underset{F}{T}}$ is the "engine thrust"

$$
\begin{equation*}
\underline{F}_{T}=\left(p_{e^{-p}}\right) A_{e^{i}}^{i}+|\dot{M}| v\left(x_{e}, t\right)\left(\ell_{x R}^{i+\ell} y R_{-}^{j+\ell} z_{m}^{k}\right) \tag{41}
\end{equation*}
$$

In an analogous manner, the torques are obtained as
${\underset{N}{A}}=\int_{A_{W}} \underline{r}_{S} \underset{\sim}{f}{\underset{A}{*}}_{*}^{d} A_{W}$
${\underset{\sim}{N}}_{T}=-a|\dot{M}| v\left(x_{e}, t\right)\left(\ell_{z R} \underset{\sim}{j}-\ell_{Y R} k\right)$
${\underset{-N}{B}}^{N_{-}} \underset{\sim}{x} \underset{\sim}{ } \underset{\sim}{r} m d x$
$N_{C}=-2\left(\omega_{y} \underset{\sim}{j}+\omega_{z_{-}} k\right) \int_{L_{1}} x\left(\int_{x}^{b} \dot{m} d \xi\right) d x$
$\mathrm{N}_{\mathrm{U}}=0$.
in which \underline{I}_{S} is the radius vector to a point on the rocket surface.

Using the various forces and torques defined above, Eqs. (22) and (25) become

$$
\begin{align*}
& \text { M }{\underset{-0}{ }}-\left[\left(\omega_{y}^{2}+\omega_{z}^{2}\right) \underline{i}-\left(\dot{\omega}_{z}+\omega_{x} \omega_{y}\right) \underline{j}+\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right) \underline{k}\right] \int_{M} x d M \\
& =\int_{A_{w}} f_{A}^{*} d A_{w}+\left(p_{e}-p_{a}\right) A_{i} e^{i}+M \underline{g}-2\left(\omega_{z} j\right. \\
& \left.-\omega_{y} k\right) \int_{L_{1}}\left(\int_{x}^{b} \dot{m} d \xi\right) d x-\left[\frac{\partial}{\partial t} \int_{L_{1}}\left(\int_{x}^{b} \dot{m} d \xi\right) d x\right] i \\
& +|\dot{M}| v\left(x_{e}, t\right)\left(\ell_{x R} \underline{i}+\ell_{y R} \underset{\underline{j}}{ }+\ell_{z R-}\right)-\sum_{i} M_{i}\left(\ddot{u}_{i}\right. \\
& \left.+2 \underset{\sim}{\omega} \underset{\sim}{\dot{u}_{i}}\right) \tag{43}
\end{align*}
$$

and

$$
\begin{align*}
& -2\left(\omega_{Y} j+\omega_{z} \underline{k}\right) \int_{L_{1}} x\left(\int_{x}^{b} \dot{m} d \xi\right) d x-a|\dot{M}| v\left(x_{e}, t\right) \ell_{z R}{ }^{j} \\
& \left.-\ell_{y R} \underset{\sim}{k}\right)-\underset{\sim}{g} \int_{M} x \underset{\sim}{i} d M-\sum_{i} M_{i} \underset{\sim}{x}\left(\ddot{\underline{u}}_{i}+\right. \\
& \left.2 \underset{\sim}{w} \underset{\sim}{\dot{u}_{i}}\right) \tag{44}
\end{align*}
$$

Next let us introduce the notation

$$
\begin{equation*}
{\underset{-}{\dot{R}_{0}}}=\underline{i}+V \underset{\sim}{j}+W \underline{k} \tag{45}
\end{equation*}
$$

for the velocity of the origin of the body axes and write Eqs. (43) and (44) in component from as

$$
\begin{align*}
& M\left[\dot{U}+W_{y}-V \omega_{z}\right]-\left(\omega_{y}^{2}+\omega_{z}^{2}\right) \int_{M} \dot{x} d M=F_{A x} \\
& +\left(p_{e}-p_{a}\right) A_{e}+M g: \dot{i}-\frac{\partial}{\partial t} \int_{L_{1}}\left(\int_{x}^{b} \dot{m} d \xi\right) d x \\
& +|\dot{M}| v\left(x_{e}, t\right) \ell_{x R}-\sum_{i} M_{i}\left(\ddot{u}_{x i}+2 \omega_{y} \dot{u}_{z i}-2 \omega_{z} \dot{u}_{y i}\right) \tag{46a}\\
& M\left[\dot{V}+U \omega_{z}-W \omega_{x}\right]+\left(\dot{\omega}_{z}+\omega_{x} \omega_{Y}\right) \int_{M} x d M=
\end{align*}
$$

$$
F_{A Y}+M \underline{g} \cdot j-2 \omega_{z} \int_{L_{1}}\left(\int_{x}^{b} \dot{m} d \xi\right) d x+|\dot{M}| v\left(x_{e}, t\right) \ell_{y} R
$$

$$
\begin{equation*}
-\sum_{i} M_{i}\left(\ddot{u}_{y i}+2 \omega_{z} \dot{u}_{x i}-2 \omega_{x} \dot{u}_{z i}\right) \tag{46b}
\end{equation*}
$$

$$
M\left[\dot{W}+V \omega_{x}-U_{\omega_{y}}\right]-\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right) \int_{M} x d M=F_{A z}
$$

$$
+M g \cdot k+2 \omega_{Y} \int_{L_{1}}\left(\int_{x}^{b} \dot{m} d \xi\right) d x+|\dot{M}| v\left(x_{e}, t\right) \ell_{z R}
$$

$$
\begin{equation*}
-\sum_{i} m_{i}\left(\ddot{u}_{z i}+2 \omega_{x} \dot{u}_{y i}-2 \omega_{y} \dot{u}_{x i}\right) \tag{46c}
\end{equation*}
$$

$$
\begin{align*}
& \text { and } \\
& I_{x x} \dot{\omega}_{x}-I_{x y} \dot{\omega}_{y}-I_{x z} \dot{\omega}_{z}+I_{y z}\left(\omega_{z}^{2}-\omega_{y}^{2}\right) \\
& +\left(I_{z z}-I_{Y y}\right) \omega_{Y} \omega_{z}+\omega_{x}\left(\omega_{z} I_{x y}-\omega_{y} I_{x z}\right) \\
& =N_{A X} \tag{47a}\\
& -I_{x y} \dot{\omega}_{x}+I_{y y} \dot{\omega}_{y}-I_{y z} \dot{\omega}_{z}+I_{x z}\left(\omega_{x}^{2}-\omega_{z}^{2}\right) \\
& +\left(I_{x x}-I_{z z}\right) \omega_{x} \omega_{z}+\omega_{y}\left(\omega_{x} I_{y z}-\omega_{z} I_{x y}\right)=N_{A y} \\
& -2 \omega_{y} \int_{L_{I}} x\left(\int_{x}^{b} \dot{m} d \xi\right) d x-\left[\begin{array}{c}
g \times \int_{M} x i \\
m
\end{array} d \cdot \underset{\sim}{j}\right. \\
& -a|\dot{M}| v\left(x_{e}, t\right) \ell_{z R}+\sum_{i} M_{i} x_{i}\left(\ddot{u}_{z i}+2 \omega_{x} \dot{u}_{y i}-2 \omega_{y} \dot{u}_{x i}\right) \tag{47b}\\
& -I_{x z} \dot{\omega}_{x}-I_{y z} \dot{\omega}_{y}+I_{z z} \dot{\omega}_{z}+I_{x y}\left(\omega_{y}^{2}-\omega_{x}^{2}\right) \\
& +\left(I_{y Y}-I_{x x}\right) \omega_{x} \omega_{y}+\omega_{z}\left(\omega_{y} I_{x Z}-\omega_{x} I_{y z}\right)=N_{A z} \\
& -2 \omega_{z} \int_{L_{1}} x\left(\int_{x}^{b} \dot{m} d \xi\right) d x-\left[g \times \int_{M} x i d M\right] \cdot k \\
& +a|\dot{M}| v\left(x_{e}, t\right) \ell_{y R}-\sum_{i} M_{i} x_{i}\left(\ddot{u}_{y i}+2 \omega_{z} \dot{u}_{x i}-2 \omega_{x} \ddot{u}_{z i}\right) \tag{47c}
\end{align*}
$$

where we used the definitions

$$
\begin{align*}
& j: \int_{A_{W}}{\underset{A}{A}}_{*}^{*} d A_{W}=F_{A Y}, \underset{-}{j} \cdot \int_{A_{W}} \underset{\sim}{r} \times{\underset{A}{*}}_{*}^{*} d A_{W}=N_{A Y} \tag{48}
\end{align*}
$$

Introduce the set of conventional notation shown in Figure 5, where $X Y Z$ are a set of inertial axes with Z pointing downward. Next we consider a rotation ψ about axis Z to obtain the set $\mathrm{z}_{1} \mathrm{Y}_{1} \mathrm{z}_{1}$ (yaw), a rotation θ about the y_{1} axis to obtain the set $\mathrm{x}_{2} \mathrm{Y}_{2} \mathrm{z}_{2}$ (pitch), and a rotation ϕ about the x_{2} axis to obtain the set $x y z$ (roll). Using the notation $\cos \phi$ $=c \phi, \sin \phi=s \phi$, etc., the relationships between the inertial and the moving coordinate systems are

$$
\begin{aligned}
& \underline{i}=c \theta c \psi \underline{i}^{\prime}+c \theta s \psi \underline{j}^{\prime}-s \theta \underline{k}^{\prime}
\end{aligned}
$$

Moreover, the angular velocities; in terms of the rate of change of ϕ, θ, ψ are

$$
\begin{align*}
& \omega_{x}=\dot{\phi}-\dot{\psi} s \theta \\
& \omega_{y}=\dot{\theta} c \phi+\dot{\psi} c \theta s \phi \tag{50}\\
& \omega_{z}=-\dot{\theta} s \phi+\dot{\psi} c \theta c \phi
\end{align*}
$$

while the velocity of the origin 0 has the following components along the inertial axes

$$
\begin{align*}
& \dot{\mathrm{X}}=\mathrm{Uc} \theta \mathbf{c} \psi+\mathrm{V}(\mathrm{~s} \phi \mathbf{s} \theta \mathbf{c} \psi-\mathrm{c} \phi \mathbf{s} \psi)+\mathrm{W}(\mathbf{c} \phi \mathbf{s} \theta \mathbf{c} \psi+\mathbf{s} \phi \mathbf{s} \psi) \\
& \dot{\mathrm{Y}}=\mathrm{Uc} \theta \mathbf{s} \psi+\mathrm{V}(\mathrm{~s} \phi \mathbf{s} \theta \mathbf{s} \psi+\mathbf{c} \phi \mathbf{c} \psi)+\mathrm{W}(\mathrm{c} \phi \mathbf{s} \theta \mathbf{s} \psi-\mathbf{s} \phi \mathbf{c} \psi) \tag{51}\\
& \dot{\mathrm{Z}}=-\mathrm{Us} \theta+\mathrm{Vs} \phi \mathbf{c} \theta+\mathrm{Wc} \phi \mathbf{c} \theta
\end{align*}
$$

Equations (46), (47), (50) and (51) are sufficient to define the position and orientation of the missile as a function of time.

Under certain assumptions Eqs. (46) and (47) can be simplified appreciably. Let us assume that x, y, and z are principal axes and the missile is symmetric such that $I_{y y}=I_{z z}$. Also assume that the internal flow is steady and that the missile is not controlled, which implies that $\ell_{x R}=1, \ell_{y R}=\ell_{z R}$ $=0$, then Eqs. (46) and (47) becomes

$$
\begin{align*}
& M\left[\dot{U}+W \omega_{Y}-V \omega_{z}\right]-\left(\omega_{y}^{2}+\omega_{z}^{2}\right) \int_{M} x d M=F_{A x}+\left(p_{e}-p_{a}\right) A_{e} \\
& -M g s \theta+|\dot{M}| V\left(x_{e}, t\right)-\sum_{i} M_{i}\left(\ddot{u}_{x i}+2 \omega_{y} \dot{u}_{z i}-2 \omega_{z} \dot{u}_{y i}\right) \tag{52a}
\end{align*}
$$

$$
\begin{align*}
& M\left[\dot{V}+U_{\omega_{z}}-W \omega_{x}\right]+\left(\dot{\omega}_{z}+\omega_{x} \omega_{y}\right) \int_{M} x d M=F_{A y}+M g s \phi C \theta \\
& -2 \omega_{z} \int_{L_{l}}\left(\int_{x}^{L_{1}} \dot{m} d \xi\right) d x-\sum_{i} M_{i}\left(\ddot{u}_{y i}+2 \omega_{z} \dot{u}_{x i}-2 \omega_{x} \dot{u}_{z i}\right) \tag{52b}\\
& M\left[\dot{W}+V \omega_{x}-U \omega_{y}\right]-\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right) \int_{M} x d M=F_{A z}+M g c \phi c \theta \\
& +2 \omega_{y} \int_{L_{1}}\left(\int_{x}^{L_{l}} \dot{m} d \xi\right) d x-\sum_{i} M_{i}\left(\ddot{u}_{z i}+2 \omega_{x} \dot{u}_{y i}-2 \omega_{y} \dot{u}_{x i}\right) \tag{52c}
\end{align*}
$$

and

$$
\begin{align*}
& I_{x x} \dot{\omega}_{x}=N_{A x} \tag{53a}\\
& I_{Y Y} \dot{\omega}_{y}+\left(I_{x x}-I_{Y y}\right) \omega_{x} \omega_{z}=N_{A Y}-2 \omega_{y} \int_{L_{1}} x\left(\int_{x}^{L_{l}} \dot{m} d \xi\right) d x \\
& +\operatorname{gc} \theta c \phi \int_{M} x d M+\sum_{i} M_{i} x_{i}\left(\ddot{u}_{z i}+2 \omega_{x} \dot{u}_{y i}-2 \omega_{y} \dot{u}_{x i}\right) \tag{53b}
\end{align*}
$$

$$
\begin{align*}
& I_{y y} \dot{\omega}_{z}+\left(I_{y y}-I_{x x}\right) \omega_{x} \omega_{y}=N_{A z}-2 \omega_{z} \int_{L_{1}} x\left(\int_{x}^{L_{1}} \dot{m} d \xi\right) d x \\
& \left.+\operatorname{gc\theta s} \int_{M} x d M-\sum_{i} M_{i} x_{i} \ddot{u}_{y i}+2 \omega_{z} \dot{u}_{x i}-2 \omega_{x} \dot{u}_{z i}\right) \tag{53c}
\end{align*}
$$

in which we used the fact that

$$
\begin{equation*}
\underset{m}{g}=g \underline{k}^{\prime} \tag{54}
\end{equation*}
$$

The equations of motion for the discrete masses may be written as

$$
\begin{equation*}
\underline{m}_{\mathrm{Si}}+{\underset{m B i}{ }}_{\mathrm{Bi}}=\mathrm{M}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \quad \mathrm{i}=1,2, \ldots, \mathrm{n} \tag{55}
\end{equation*}
$$

 the i th discrete mass, M_{i}, whose total number is n, and a_{i} is the absolute acceleration of the ith mass. With the definitions

$$
\begin{equation*}
\underline{r}_{i}=\left(x_{i}+u_{x i}\right) \underset{\underline{L}}{ }+\left(y_{i}+u_{y i}\right) \underset{m}{j}+\left(z_{i}+u_{z i}\right) \underline{k} \tag{56}
\end{equation*}
$$

as the position of the ith mass relative to the body axes, we obtain

$$
\begin{equation*}
a_{i}={\underset{-}{0}}+{\ddot{\underset{r}{r}}}_{i}+2 \underset{\sim}{\omega} \times{\dot{\underset{r}{x}}}_{i}+\underset{\sim}{\dot{\omega}} \times{\underset{\sim}{r}}_{i}+\underset{\sim}{\omega} \times\left(\underset{\sim}{\omega} \times{\underset{\sim}{r}}_{i}\right) \tag{57}
\end{equation*}
$$

as the acceleration of the mass $M_{i} . x_{i}, y_{i}, z_{i}$ are fixed coordinates defining the position of mass M_{i} while $u_{x i}, u_{y i}, u_{z i}$ are displacements relative to this position. In subsequent use y_{i} and z_{i} will usually be assumed to be zero.

Denoting by $k_{x i}, k_{y i}, k_{z i}$, the stiffness of the springs used to attach the masses to the case, and by $c_{x i}, c_{y i}, c_{z i}$, the associated damping coefficient in the x, y, z directions respectively, the surface force on the ith discrete mass takes the form

$$
\begin{align*}
{\underset{S}{S i}} & =-\left[k_{x i} u_{x i}+c_{x i} \dot{u}_{x i}\right] \dot{\sim}-\left[k_{y i} u_{y i}+c_{y i} \dot{y}_{y i}\right] \underset{\sim}{j} \\
& -\left[k_{z i} u_{z i}+c_{z i} \dot{u}_{z i}\right] \underset{\sim}{k} \tag{58}
\end{align*}
$$

while the body force is simply

$$
\begin{equation*}
\underline{F}_{B i}=M_{i} \underline{g} \tag{59}
\end{equation*}
$$

Using the above definitions for the forces, the equations for the discrete mass motion become in component form

$$
\begin{align*}
& M_{i}\left[\dot{U}^{+}+\omega_{\omega_{y}}-v_{\omega_{z}}+\ddot{u}_{x i}+2 \omega_{y} \dot{u}_{z i}-2 \omega_{z} \dot{u}_{y i}+\dot{\omega}_{y} u_{z i}\right. \\
& \left.-\dot{\omega}_{z} u_{y i}+\omega_{x} \omega_{y} u_{y i}-\left(x_{i}+u_{x i}\right)\left(\omega_{y}^{2}+\omega_{z}^{2}\right)+\omega_{x} \omega_{z} u_{z i}\right]= \\
& M_{i} g \cdot \dot{\sim}-k_{x i} u_{x i}-c_{x i} \dot{u}_{x i} \tag{60a}\\
& M_{i}\left[\dot{v}+U \omega_{z}-W \omega_{x}+\ddot{u}_{y i}+2 \omega_{2} \dot{u}_{x i}^{-2 \omega_{x}} \dot{u}_{z i}+\dot{\omega}_{z}\left(x_{i}+u_{x i}\right)\right. \\
& \left.-\dot{\omega}_{x} u_{z i}+u_{z i} \omega_{y} \omega_{z}-u_{y i}\left(\omega_{z}^{2}+\omega_{x}^{2}\right)+\left(x_{i}+u_{x i}\right) \omega_{x} \omega_{y}\right]= \\
& M_{i} g \cdot j-k_{y i} u_{y i}-c_{y i} \dot{u}_{y i} \tag{60b}
\end{align*}
$$

$$
\begin{align*}
& M_{i}\left[\dot{W}^{\dot{W}}+V \omega_{x}-U \omega_{y}+\ddot{u}_{z i}+2 \omega_{x} \dot{u}_{y i}-2 \omega_{y} \dot{u}_{x i}+\dot{\omega}_{x} u_{y i}\right. \\
& \left.-\dot{\omega}_{y}\left(x_{i}+u_{x i}\right)+\omega_{x} \omega_{z}\left(x_{i}+u_{x i}\right)-u_{z i}\left(\omega_{x}^{2}+\omega_{y}^{2}\right)+\omega_{y} \omega_{z} u_{y i}\right]= \\
& M_{i} g \cdot k-k_{z i} u_{z i}-c_{z i} \dot{u}_{z i} \tag{60c}
\end{align*}
$$

Since the discrete masses are assumed to be point masses, there are no torque equations for them.

4. The Equations of Motion of a Flexible Rocket

When the rocket casing can undergo elastic deformations, the problem requires further attention. To this end, consider a rocket translating and rotating relative to the inertial space x, y, z, as shown in Figure 3. As the control volume, we consider the volume occupied by a rocket element of unit length when the vehicle is at rest relative to the body axes x, y, z. Figure 4 shows the corresponding element. Because the rocket shell is elastic, the entire mass associated with the control volume in question can move relative to that volume. In the first stage, the rocket case and unburned fuel are assumed to more together and their motion is different from the motion of the burned fuel, while for the second stage the motion of the shell is different from the motion of the discrete masses. Therefore, it will prove convenient to denote the motions and mass associated with the case element by
the subscript c, the ones related to the burned fuel element by the subscript f, and the ones related to the discrete masses by the subscript i. In analogy with Eq. (7) and Eq. (15), we write the force equation of motion in the form

$$
\begin{align*}
& +\delta\left(x-x_{i}\right) \int_{M_{i}}\left[a_{m}+\dot{w}_{i}+2 \omega \times v_{i}+\dot{\dot{\omega}}_{x}{\underset{m}{r}}^{r}+\omega \times\left(\omega \times r_{i}\right)\right] d m \tag{61}
\end{align*}
$$

where \underline{v}_{c} is the elastic motion of a point inside the case element, \underline{v}_{f} is the fluid velocity relative to the body axes, and v_{i} is the velocity of the ith discrete mass relative to the body axes. It will be assumed that the elastic motion is the same for the entire case element and a similar statement can be made concerning the velocity of the fluid element. Introducing the notation

$$
\begin{equation*}
\underline{v}_{c}=\dot{\underline{u}}, \quad{\underset{v}{f}}=\dot{\underline{u}}+\underset{v}{v}, \quad{\underset{w}{i}}=\dot{u}\left(x_{i}\right)+\dot{u}_{i} \tag{62}
\end{equation*}
$$

where u represents the elastic displacement vector, v the velocity of the fluid relative to the case, and ${\underset{\sim}{u}}_{i}$ the velocity of the ith discrete mass relative to the case, we can rewrite Eq. (61) as

$$
\begin{align*}
& \underline{f}_{S}+{\underset{-}{f}}_{f}=\int_{m}\left[\underline{a}_{0}+\ddot{\underline{u}}+2 \underset{\sim}{\omega} \times \underset{\sim}{\dot{u}}+\underset{\sim}{\dot{\omega}} \times \underset{\sim}{r}+\underset{\sim}{\omega} \times(\underset{\sim}{\omega} \times r)\right] d m \\
& +[h(x+a)-h(x-b)] \int_{m_{f}}(\dot{v}+2 \underset{\sim}{\omega} \times \underset{\sim}{v}) d m \\
& +\delta\left(x-x_{i}\right) \int_{M_{i}}\left[\ddot{u}_{i}+2 \underset{\sim}{\omega}{\underset{\sim}{u}}_{i}\right] d m=\left(\underline{a}_{0}+\underset{\sim}{\ddot{u}}\right. \\
& \left.+2 \underset{\sim m}{\omega \times \dot{u}}) m+\underset{\sim}{\dot{w}} \times \int_{m} \underset{\sim}{r} d m+\underset{m}{\omega \times} \underset{m}{\omega} \underset{m}{x} \int_{m} \underset{\sim}{r} d m\right) \\
& +[h(x+a)-h(x-b)](\underset{\sim}{\dot{v}}+2 \underset{\sim}{\omega} \underset{\sim}{v}) m_{f}+\left(\ddot{\underline{u}}_{i}\right. \\
& \left.+2 \underset{\sim}{\omega} \underset{\sim}{\dot{u}_{i}}\right) M_{i} \delta\left(x-x_{i}\right) \tag{63}
\end{align*}
$$

Moreover, the radius vector \underline{r} has the expression

$$
\begin{equation*}
\underset{\sim}{r}=x \underset{\sim}{i}+y \underset{\sim}{j}+z \underset{\sim}{k}+\underset{\sim}{u}=\left(x+u_{x}\right) \underset{\sim}{i}+\left(y+u_{y}\right) \underset{\sim}{j}+\left(z+u_{z}\right) \underset{\sim}{k} \tag{64}
\end{equation*}
$$

in which u_{x}, u_{y}, u_{z} are the elastic displacements of the case element in the x, y, and z directions, respectively.

Invoking the analogy with Eq. (17), we can rewrite Eq.
(63) to read

$$
\begin{align*}
& =(\underset{0}{a}+\underset{\sim}{\dot{u}}+2 \underset{\sim}{\omega} \times \underset{\sim}{\dot{u}}) m+\underset{\underline{\dot{u}}}{x} \int_{m} \underline{r} d m+\underset{-\infty}{\omega \times}\left(\underset{-}{\omega} \underset{m}{ } \int_{m} \underline{r} d m\right)=\underset{\sim}{a m} \tag{65}
\end{align*}
$$

where a is the absolute acceleration consisting of the acceleration a_{0} of the origin and the acceleration of the case element relative to the body axes. Moreover

$$
\begin{align*}
& {\underset{\sim}{C}}^{C}=-2 \omega \times \mathrm{Vm}_{f} \\
& {\underset{\sim}{U}}_{f}=-\frac{\partial}{\partial t}(\underset{\sim}{f}{\underset{f}{f}}) \tag{66}\\
& {\underset{\sim}{f}}_{f}^{f}=-\frac{\partial}{\partial x}\left(\operatorname{vvm}_{f}\right)-\Delta(\underset{\sim}{v i}{\underset{f}{f}}) \delta(x+a)
\end{align*}
$$

are the Coriolis force, the force due to the unsteadiness of the fluid relative to the case, and the reactive force, respectively, all per unit length of the rocket. Similarly

$$
\begin{align*}
& {\underset{\sim}{\mathrm{C}}}=-2 \mathrm{M}_{\mathrm{i}} \underset{\sim}{\omega \times{\dot{\underset{G}{i}}}} \tag{67}
\end{align*}
$$

If we express R_{0} in terms of components along axes x, y, z, then the position of the case element at any time is given by

$$
\begin{aligned}
R & =R_{0}+\underline{r} \\
& =\left(x+x+u_{x}\right) \underline{i}+\left(Y+y+u_{y}\right) \dot{\underline{p}}+\left(z+z+u_{z}\right) k(68)
\end{aligned}
$$

Recalling that the unit vectors $\underset{\sim}{i}, \underset{\sim}{j}$, and k rotate with angular velocity $\underset{\sim}{\omega}$, the absolute acceleration of the case element
can be written in the form

$$
\begin{equation*}
\underset{\sim}{a}=a_{x} \underline{i}+a_{y} \underset{\sim}{j}+a_{z} \underline{k} \tag{69}
\end{equation*}
$$

where

$$
\begin{align*}
a_{x}= & \dot{U}+\ddot{u}_{x}+\omega_{y}\left(W+2 \dot{u}_{z}\right)-\omega_{z}\left(V+2 \dot{u}_{y}\right) \\
& +\left(\dot{\omega}_{y}+\omega_{x} \omega_{z}\right)\left(z+u_{z}\right)-\left(\dot{\omega}_{z}-\omega_{x} \omega_{y}\right)\left(y+u_{y}\right) \\
& -\left(\omega_{y}^{2}+\omega_{z}^{2}\right)\left(x+u_{x}\right) \tag{70a}
\end{align*}
$$

$$
\begin{align*}
a_{y}= & \dot{v}+\ddot{u}_{y}+\omega_{z}\left(U+2 \dot{u}_{x}\right)-\omega_{x}\left(W+2 \dot{u}_{z}\right) \\
& +\left(\dot{\omega}_{z}+\omega_{x} \omega_{y}\right)\left(x+u_{x}\right)-\left(\dot{\omega}_{x}-\omega_{y} \omega_{z}\right)\left(z+u_{z}\right) \\
& -\left(\omega_{x}^{2}+\omega_{z}^{2}\right)\left(y+u_{y}\right) \tag{70b}
\end{align*}
$$

$$
\begin{align*}
a_{z}= & \dot{w}+\ddot{u}_{z}+\omega_{x}\left(V+2 \dot{u}_{y}\right)-\omega_{y}\left(U+2 \dot{u}_{x}\right) \\
& +\left(\dot{\omega}_{x}+\omega_{y} \omega_{z}\right)\left(y+u_{y}\right)-\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right)\left(x+u_{x}\right) \\
& -\left(\omega_{x}^{2}+\omega_{y}^{2}\right)\left(z+u_{z}\right) \tag{70c}
\end{align*}
$$

In the above expressions the y and z coordinates may be considered as offsets such as may result from the missile not being perfectly symmetrical about the x-axis. In subsequent use we will assume them to be zero. In addition, the assumption that a given cross-section is uniform is made.

Similarly, using Eq. (63), the torque equation about the point 0 for the rocket element in question takes the form

$$
\begin{align*}
& +[h(x+a)-h(x-b)] \int_{m_{f}} \underset{\sim}{r} \times(\dot{\mathrm{v}}+2 \underset{\sim}{\omega} \times \underset{\sim}{x}) d m \\
& +\delta\left(x-x_{i}\right) \int_{M_{i}} r \times\left(\ddot{u}_{i}+2 \omega \times \dot{u}_{i}\right) d m= \\
& \left.\int_{m} \underset{m}{r \times(\underset{\sim}{a}} \underset{-0}{ }+\ddot{\underline{u}}+2 \underset{\sim}{\omega} \times \underset{\sim}{\dot{u}}\right) d m+\dot{\underline{i}}^{\prime}+\underset{\sim}{\omega} \times \ell \\
& +[h(x+a)-h(x-b)] \int_{m_{f}} \underset{\sim}{r x} \underset{\sim}{(\dot{v}+2 \underset{\sim}{w} \times \underset{\sim}{v})} d m \\
& +\delta\left(x-x_{i}\right) \int_{M_{i}} \underset{\underbrace{}_{i}}{ } \times\left(\ddot{\underline{u}}_{i}+2 \underset{\sim}{x}{\underset{\sim}{u}}_{i}\right) d m \tag{71}
\end{align*}
$$

where
is the angular momentum of the mass element m about the body axes x, y, z, in which

$$
\begin{aligned}
& i_{x x}=\int_{m}\left[\left(y+u_{y}\right)^{2}+\left(z+u_{z}\right)^{2}\right] d m, i_{y y}=\int_{m}\left[\left(x+u_{x}\right)^{2}+\left(z+u_{z}\right)^{2}\right] d m \\
& i_{z z}=\int_{m}\left[\left(x+u_{x}\right)^{2}+\left(y+u_{y}\right)^{2}\right] d m, i_{x y}=\int_{m}\left(x+u_{x}\right)\left(y+u_{y}\right) d m(73) \\
& i_{x z}=\int_{m}\left(x+u_{x}\right)\left(z+u_{z}\right) d m, i_{y z}=\int_{m}\left(y+u_{y}\right)\left(z+u_{z}\right) d m
\end{aligned}
$$

are recognized as the associated moments and products of inertia. Moreover, i^{\prime} is obtained from Eq. (72) by replacing $\omega_{X}, \omega_{Y}, \omega_{Z}$, by $\dot{\omega}_{X}, \dot{\omega}_{Y}, \dot{\omega}_{Z}$, respectively. Eq. (71) can, be rewritten as

$$
n_{S}+n_{B}+\left[n_{\sim}^{n}+n_{U}+n_{R}\right][n(x+a)-n(x-b)]+\left(n_{\sim i}+n_{U i}+n_{R i}\right) \delta\left(x-x_{i}\right)
$$

$$
\begin{equation*}
=\int_{m} r \times\left(a_{0}+\ddot{u}+2 \omega \times \dot{u}\right) d m+\dot{i}^{\prime}+\omega \times \ell \tag{74}
\end{equation*}
$$

$$
\begin{align*}
& \left.\underline{\ell}=\left(i_{x x}{ }^{\omega} x^{-i} x_{x y}{ }^{\omega} y^{-i}{ }_{x z}{ }^{\omega} z_{z}\right) \underset{\sim}{i+(-i} y x^{\omega} x^{+i} y y^{\omega} y^{-i} y z^{\omega}{ }_{z}\right) \underset{\sim}{j} \\
& +\left(-i_{x z}{ }^{\omega}{ }^{-i}{ }_{z y}{ }^{\omega}{ }_{y}+i_{z z}{ }_{z}\right) \underline{k} \tag{72}
\end{align*}
$$

where the torques

$$
\begin{align*}
& \mathrm{n}_{\mathrm{C}}=-2 \int_{\mathrm{m}_{\mathrm{f}}} \underset{\sim}{r \times(\omega \times v)} \mathrm{dm} \\
& n_{m}=-\int_{m_{f}} r x \frac{\partial}{\partial t}\left({\underset{\sim}{f}}_{f}\right) d m \tag{75}\\
& n_{n}=-\int_{m_{f}} \underset{\sim}{r x}\left[\frac{\partial}{\partial x}\left(\underset{V_{f}}{ }\right)+\Delta\left(v \underline{m}_{f}\right) \delta(x+a)\right] d m
\end{align*}
$$

and

$$
\begin{align*}
& \underline{w}_{C i}=-2 \underset{\sim}{r} \underset{m}{x}(\underline{w} \times{\underset{\underline{u}}{i}}) M_{i} \tag{76}
\end{align*}
$$

follow directly from Eqs. (66) and (67) respectively.
Equations (65) and (74) must be supplemented by the continuity equation, Eq. (32).
5. The Equations for the Axial and Transverse Vibration of a Rocket

Let us consider the rocket of the preceding section in which u_{x} is the axial elastic displacement and u_{y} and u_{z} are the elastic transverse displacements in the y and z directions, respectively. Assuming axial symmetry and that the elastic displacements u_{x}, u_{y}, u_{z} and the angular velocity components
$\omega_{\mathrm{Y}}, \omega_{\mathrm{z}}$, as well as their time derivatives are small quantities, we can integrate Eqs. (65) and (74) and obtain

$$
\begin{aligned}
& +2 \underset{\sim}{\omega} \dot{\dot{u}}) m d x+\underset{\sim}{\dot{\omega}} \underset{\sim}{x} \int_{L} \int_{m} \underline{x} d m d x+\underset{\sim}{\omega} x\left(\omega x \int_{I} \int_{m} r d m d x\right) \\
& =M{\underset{-}{a}}_{0}+\int_{L}(\ddot{\underline{u}}+2 \underset{\sim}{\omega} \times \underline{\dot{u}}) m d x+\underset{\sim}{\dot{\omega}} \times \int_{L} \int_{m} \underline{r}_{r} d m d x
\end{aligned}
$$

in which ${\underset{\sim}{r}}_{r}$ is the rigid body position. relative to the body axes as defined by Eq. (21). Also

$$
\begin{align*}
& +\ddot{u}+2 \omega \times \dot{\underline{u}}) d m d x+\int_{L}\left(\dot{\ell}^{\prime}+\underset{m}{\omega}\right) \\
& \cong-\underline{a}_{0} \underline{x} \int_{L} \int_{m}{\underset{m}{r}}_{r} d m d x-{\underset{m}{0}}^{x} \times \int_{L} \int_{m} u d m d x-\int_{L} x\left[\ddot{u}_{z}\right. \\
& \left.\left.+2 \omega_{x} \dot{u}_{y}+\dot{\omega}_{x} u_{y}\right){\underset{\sim}{j}}^{j}-\left(\ddot{u}_{y}-2 \omega_{x} \dot{u}_{z}-\dot{\omega}_{x} u_{z}\right) \underline{k}\right] d x+\underset{\sim}{\dot{L}}+\underset{\sim}{\omega} \times \underset{m}{I} \tag{78}
\end{align*}
$$

Comparing Eqs. (19) and (77) on the one hand, and Eqs. (25) and (78) on the other hand, we conclude that the elastic motion does not affect the rigid-body motions provided the following relations are satisfied

$$
\begin{align*}
& \int_{L} u_{m} m d x=\int_{L} \dot{\underline{u}} m d x=\int_{L} \ddot{u} m d x=0 \\
& \int_{L} x u_{y} m d x=\int_{L} x \dot{u}_{y} m d x=\int_{L} x \ddot{u}_{y} m d x=0 \tag{79}\\
& \int_{L} x u_{z} m d x=\int_{L} x \dot{u}_{z} m d x=\int_{L} x \ddot{u}_{z} m d x=0
\end{align*}
$$

We assume that this is the case, and indeed Eqs. (79) imply that the elastic modes of deformation are orthogonal, with respect to the modified mass, to the rigid-body modes of displacement, namely the translation and rotation of the vehicle as a whole. In view of the above arguments the problem can be solved in two stages. First, the rigid-body motion can be solved for using Eqs. (19) and (25), then considering these as known, Eqs. (65) and (74) may be used to obtain the elastic motion.

Equations (65), (66) and (67), representing the equations of motion for the three components u_{x}, u_{y}, u_{z} of the elastic displacement \underline{u}, are of a general form and, before we can attempt their solution, we must specify the nature of the surface forces f_{S} and the body force ${\underset{\sim}{B}}$. The surface force depends not only on the external aerodynamic forces, but also on internal stresses in the shell and fluid pressure. Moreover, the fluid flow characteristics must be known, as can be concluded from Eqs. (66), as well as the discrete mass motion, as can be seen from Eqs. (67).

As far as the elastic motion is concerned, the vehicle shell is assumed to behave like a bar in axial and flexural vibration. Under these circumstances, the distributed surface force can be written in the form

$$
\begin{align*}
& \underset{m S}{f}=\left[\frac{\partial}{\partial x}\left(E A_{C} \frac{\partial u_{x}}{\partial x}\right)\right] \underset{\sim}{i}+\left[-\frac{\partial^{2}}{\partial x^{2}}\left(E I_{C z} \cdot \frac{\partial^{2} u_{y}^{y}}{\partial x^{2}}\right)+\frac{\partial}{\partial x}\left(P \frac{\partial u_{y}}{\partial x}\right)\right] \underset{\sim}{j} \\
& +\left[-\frac{\partial^{2}}{\partial x^{2}}\left(E I_{C Y} \frac{\partial^{2} u_{z}}{\partial x^{2}}\right)+\frac{\partial}{\partial x}\left(P \frac{\partial u_{z}}{\partial x}\right)\right] \underline{k}-\left[\frac{\partial}{\partial x}\left(p A_{f}\right)+p A_{f}(b) \delta(x-b)\right. \\
& \left.+p A_{f}(a) \delta(x+a)\right][h(x+a)-h(x-b)] i+f_{A x}{ }^{i}+f_{A Y}{ }_{\sim}^{j}+f_{A z} \underline{k} \\
& -\left(p_{e}-p_{a}\right) A_{e} \delta(x+a) \underset{i}{i} \tag{80}
\end{align*}
$$

where the first three terms represent the force components due to internal stresses caused by the axial and flexural vibrations (see, for example, Reference 19, Sections 5-7 and 10-3), the fourth term is due to internal fluid pressure differential, the next three terms are due to aerodynamic effects, while the last term is due to pressure difference at the aft end of the missile. The term P denotes the axial force on the vehicle due to internal stresses and has the expression

$$
\begin{equation*}
P=E A_{C} \frac{\partial u_{x}}{\partial x} \tag{81}
\end{equation*}
$$

Finally, the differential equation for the flexural vibration in the $x z-p l a n e$ is

$$
\begin{align*}
& -\frac{\partial^{2}}{\partial x^{2}}\left(E I_{C y} \frac{\partial^{2} u_{z}}{\partial x^{2}}\right)+\frac{\partial}{\partial x}\left(P \frac{\partial u_{z}}{\partial x}\right)+f_{A z}+m g \cdot k-2 \omega_{y} v m_{f}[h(x+a) \\
& -h(x-b)]+|\dot{M}| v\left(x_{e}, t\right) \ell_{z R} \delta(x+a)-M_{i}\left[\ddot{u}_{z i}+2 \omega_{x} \dot{u}_{y i}-2 \omega_{y} \dot{u}_{x i}\right] \delta\left(x-x_{i}\right) \\
& =m\left[\dot{W}+\ddot{u}_{z}+\omega_{x}\left(V+2 \dot{u}_{y}\right)-\omega_{y}\left(U+2 \dot{u}_{x}\right)+\left(\dot{\omega}_{x}+\omega_{y} \omega_{z}\right) u_{y}\right. \\
& \left.-\left(\dot{\omega}_{y}-\omega_{x} w_{z}\right)\left(x+u_{x}\right)-\left(\omega_{x}^{2}+\omega_{y}^{2}\right) u_{z}\right] \tag{87}
\end{align*}
$$

with the boundary conditions

$$
\begin{array}{r}
E I_{C y} \frac{\partial^{2} u_{z}}{\partial x^{2}}=0 \quad \text { at } x=-a, b+L_{2} \\
-\frac{\partial}{\partial x}\left(E I_{C y} \frac{\partial^{2} u_{z}}{\partial x^{2}}\right)=0 \text { at } x=-a, b+L_{2} \tag{88}
\end{array}
$$

At this point a discussion of some additional assumptions implied by Eqs. (83) through (88) is in order. First we note that the aerodynamic forces are treated as distributed forces causing no torques on the case element. Such torques, if they exist, are assumed to affect only the rocket rigid-body rotation. Although the nozzle has finite length, it was assumed, for simplicity, to be of negligible length. In a more exact treatment of the gas flow, this assumption may have to
be relaxed by considering the pressure distribution along the finite-length nozzle (see Appendix A).

The flow has been treated as if it possessed no viscosity. As a result, any reactions between the gases and the unburned fuel are assumed to be normal to the flow. This is implied by the fact that the velocity is uniform over the entire cross-sectional area which implies, in turn, perfect burning in the sense that no gas-dynamic eccentricity is present. The lack of gas-dynamic eccentricity is ensured by any type of radially symmetric flow, of which the uniform flow is a special case. Any torques due to gas flow may result from engine thrust misalignment, if at all. Moreover, the velocity of the flow relative to the body is assumed to have only one component, namely along the x-axis. Although due to the transverse elastic displacements u_{y} and u_{z}, there are velocity components va $u_{y} / \partial x$ and va $u_{z} / \partial x$ in the y - and z-directions, respectively, the terms involved are assumed to be small and, therefore, ignored.

6. Distributed Aerodynamic Forces

Before a solution for the motion of the missile can be attempted, we must determine the distribution of the aerodynamic forces along the missile. To obtain the transverse forces, we use the method of virtual masses, whereas the axial forces are obtained by semi-empirical means. The latter forces are assumed to act at several discrete stations of the missile.

The method of virtual, or apparent mass can be traced to Lamb ${ }^{20}$. The method was extended by Munk ${ }^{21}$ and Jones ${ }^{22}$ and applied to missiles by Bryson ${ }^{23}$. The present derivation represents an extension of the method and reduces to the results of References 24,25 , and 26 if suitable simplifications and assumptions are made.

Consider a missile moving through an infinite expanse of fluid which is stationary at infinity. With the coordinate system shown in Figure 6, consider a set of axes $x_{1} y_{1} z_{1}$, displaced relative to xyz by

$$
\begin{equation*}
\underset{\sim}{r}=\left(x+u_{x}\right) \underset{\sim}{i}+u_{y} \underset{j}{j}+u_{z}^{k} \tag{89}
\end{equation*}
$$

where $\underset{\sim}{i}, \underline{j}, \underline{m}$ are unit vectors along axes xyz. The $x_{1} y_{1} z_{I}$ axes are such that the $\mathrm{x}_{1}=0$ plane is a plane at rest with respect to the fluid far away from the body and such that the x_{1}-axis is parallel to the x -axis at the instant under consideration.

Next consider the element of unit length shown in Figure 6, and define the translational velocity of this element, expressed in terms of components along the coordinate system with origin at 0 , by

$$
\begin{equation*}
\underline{v}_{1}=u_{1} \underline{i}+v_{1} \underline{j}+w_{1} \underline{k} \tag{90}
\end{equation*}
$$

Then the linear momentum of the element expressed in terms of the same set of axes can be written as

$$
\begin{align*}
p & =p_{1} \underline{i}+p_{2} \dot{j}+p_{3} k \\
& =m_{v}\left(u_{1} \underline{i}+v_{1} j+w_{1} k\right) \tag{91}
\end{align*}
$$

in which

$$
\begin{align*}
& u_{1}=U+\dot{u}_{x}+\omega_{y} u_{z}-\omega_{z} u_{y} \\
& v_{1}=v+\dot{u}_{y}+\omega_{z}\left(x+u_{x}\right)-\omega_{x} u_{z} \tag{92}\\
& w_{1}=w+\dot{u}_{z}+\omega_{x} u_{y}-\omega_{y}\left(x+u_{x}\right)
\end{align*}
$$

and

$$
\begin{equation*}
m_{v}=\rho S(x) \tag{93}
\end{equation*}
$$

where ρ is the free stream density and S is the cross-sectional area. The distributed force acting on the missile is then

$$
\begin{equation*}
\underline{f}_{A}=f_{A x} \underline{i}+f_{A Y} \underline{\underline{j}}+f_{A z} \underline{k}=-\frac{d \underline{p}}{d t} \tag{94}
\end{equation*}
$$

As the axial component for the distributed forces is dexived by a different method, we only consider the derivation for the transverse components. Considering Eqs. (91) and (92), we can write the components for the linear momentum in the

functional form

$$
\begin{gather*}
p_{i}=p_{i}\left(x, y, z, u, v, W, u_{x}, u_{y}, u_{z}, \dot{u}_{x}, \dot{u}_{y^{\prime}}, \dot{u}_{z^{\prime}}\right. \\
\left.\omega_{x^{\prime}}, \omega_{y}, \omega_{z}, m_{v}\right), i=2,3 \tag{95}
\end{gather*}
$$

The total time derivative of Eq. (95) is then

$$
\begin{array}{r}
\frac{d p_{i}}{d t}=\frac{\partial p_{i}}{\partial x} \frac{d x}{d t}+\frac{\partial \underline{p}_{i}}{\partial y} \frac{d y}{d t}+\cdots+\frac{\partial p_{i} \frac{d m_{v}}{\partial m_{v}}}{d t} \\
i=2,3 \tag{96}
\end{array}
$$

Introducing Eq. (92) into Eq. (91), using Eqs. (96), and recalling that the unit vectors i, j, k are rotating, the transverse components in Eq. (94) become

$$
\begin{align*}
f_{A Y} & =-m_{v} a_{Y}-\dot{m}_{v}\left[v+\dot{u}_{y}+\omega_{z}\left(x+u_{x}\right)-\omega_{x} u_{z}\right]-m_{v}\left[U+\dot{u}_{x}\right. \\
& \left.+\omega_{y} u_{z}-\omega_{z} u_{y}\right]\left[\frac{\partial \dot{u}_{y}}{\partial x}+\omega_{z}+\omega_{z} \frac{\partial u_{x}}{\partial x}-\omega_{x} \frac{\partial u_{z}}{\partial x}\right]-\rho[U \\
& \left.+\dot{u}_{x}+\omega_{y} u_{z}-\omega_{z} u_{y}\right]\left[v+\dot{u}_{y}+\omega_{z}\left(x+u_{x}\right)-\omega_{x} u_{z}\right] \frac{d S}{d x} \tag{97}
\end{align*}
$$

$$
\begin{aligned}
f_{A z} & =-m_{v} a_{z}-\dot{m}_{v}\left[W+\dot{u}_{z}+\omega_{x} u_{y}-\omega_{y}\left(x+u_{x}\right)\right]-m_{v}\left[U+\dot{u}_{x}\right. \\
& \left.+\omega_{y} u_{z}-\omega_{z} u_{y}\right]\left[\frac{\partial \dot{u}_{z}}{\partial x}+\omega_{x} \frac{\partial u_{y}}{\partial x}-\omega_{y}-\omega_{y} \frac{\partial u_{x}}{\partial x}\right]-\rho[U
\end{aligned}
$$

$$
\begin{equation*}
\left.+\dot{u}_{x}+\omega_{y} u_{z}-\omega_{z} u_{y}\right]\left[W+\dot{u}_{z}+\omega_{x} u_{y}-\omega_{y}\left(x+u_{x}\right)\right] \frac{d S}{d x} \tag{98}
\end{equation*}
$$

where a_{y} and a_{z} are given by Eqs. (70).
In the above expressions $S(x)$ represents an area in a plane perpendicular to the elastic axis. For a circular segment this area is

$$
\begin{equation*}
S(x)=\pi r^{2}(x) \tag{99}
\end{equation*}
$$

in which $r(x)$ is the radius. For a segment that has fins, the equivalent area is represented by the expression

$$
\begin{equation*}
S_{e q}(x)=\pi s^{2}\left(1-\frac{r^{2}}{s^{2}}+\frac{r^{4}}{s^{4}}\right) \tag{100}
\end{equation*}
$$

in which s is the distance from the elastic line of the missile to the tip of the fins in the cross-flow plane.

The axial aerodynamic force per unit length, $f_{A x}$, is defined as

$$
\begin{equation*}
f_{A X}=-q S_{r} c_{X} \tag{101}
\end{equation*}
$$

in which q is the free stream dynamic pressure

$$
\begin{equation*}
q=\frac{1}{2} \rho{\underset{\sim}{R}}_{0}: \dot{R}_{0} \tag{102}
\end{equation*}
$$

and c_{x} is the axial coefficient, which in general depends on the local angle of attack, local sideslip angle, and local Mach number. However, we shall assume that it is only a function of the Mach number and that it acts at discrete stations along the missile. These stations are generally located at points where there are changes in the cross-sectional area, such as at the forward end and the aft end of the missile, where the fins are located, as well as the stage intersection. Base pressure also acts at the aft end of the missile. Viscous forces due to friction are neglected. Hence, we can write Eq. (101) as

$$
\begin{equation*}
f_{A x}=-q S_{r} c_{x}\left(M_{a}, x_{i}\right) \cdot \delta\left(x-x_{i}\right) \tag{103}
\end{equation*}
$$

where $\delta\left(x-x_{i}\right)$ is a spatial Dirac delta function and M_{a} is the Mach number.
7. Equations of Motion for a Flexible Two-Stage Missile with Discrete Masses and Aerodynamic Forces
This section concludes the analysis of a two-stage missile with internal flow including discrete masses and aerodynamic forces. Subsequent sections will include simplified equations and computer solutions. The resulting equations in this section are such that no closed form solution appears possible and numerical methods are called for.

As indicated by Eqs. (52) for the rigid-body motion, we need expressions for the aerodynamic forces. These are found from Eqs. (97) and (98). For no elastic deformation they reduce to

$$
\begin{align*}
f_{A y}= & -m_{v}\left(\dot{V}^{\prime}+x \dot{\omega}_{z}\right)-\dot{m}_{v}\left(v+x \omega_{z}\right)-m_{v} U \omega_{z}-m_{v} U \omega_{z} \\
& +m_{v} \omega_{x}\left(W-x \omega_{y}\right)-U p\left(V+x \omega_{z}\right) \frac{d S}{d x} \\
f_{A z}= & -m_{v}\left(\dot{W}-x \dot{\omega}_{y}\right)-\dot{m}_{v}\left(W-x \omega_{y}\right)+m_{v} U \omega_{y} \\
& -m_{v} \omega_{x}\left(V+x \omega_{z}\right)+m_{v} \omega_{y} U-U \rho\left(W-x \omega_{y}\right) \frac{d S}{d x} \tag{105}
\end{align*}
$$

The body axes are taken to be at the end of the missile such that $a=0, b=L_{1}$. Before integration can be performed, some description of the cross-sectional area is necessary. We assume that each stage has a constant cross-section and changes only occur at the intersection of the two stages. The fin area at the aft end is considered as a spatial impulse and the nose is assumed to be pointed such that $S(L)=0$. Under these circumstances the cross-sectional area distribution becomes

$$
\begin{align*}
S(x)= & S(0) \delta(x)+S_{1}\left[h(x)-h\left(x-L_{1}\right)\right]+\Delta S \delta\left(x-L_{1}\right) \\
& +S_{2}\left[h\left(x-L_{1}\right)-h(x-L)\right] \tag{106}
\end{align*}
$$

where $S(0)$ is the fin cross-sectional area at the base, S_{1} and S_{2} are the cross-sectional areas (assumed constant), of the first and second stages, respectively, ΔS is the average cross-section at the intersection of the two stages. With this definition for the cross-sectional area, the integration of Eqs. (105) and (106) produces

$$
\begin{align*}
F_{A y}= & \int_{0}^{L} f_{A y} d x=-\left(\dot{V}+U_{\omega_{z}}-\omega_{x} W\right) \rho A_{1}-V \rho A_{1} \\
& -\left(\dot{\omega}_{z}+\omega_{x} \omega_{y}\right) \rho A_{2}-\omega_{z} \dot{\rho} A_{2}-\rho U V A_{3} \tag{107}\\
F_{A z}= & \int_{0}^{L} f_{A z} d x=-\left(\dot{W}+V \omega_{x}-U \omega_{y}\right) \rho A_{1}-W \dot{\rho} A_{I} \\
& -\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right) \rho A_{2}-\omega_{y} \dot{\rho} A_{2}-\rho U V A_{3} \tag{108}
\end{align*}
$$

in which

$$
\begin{align*}
& A_{1}=S(0) h_{0}+S_{1} L_{1}+\Delta S h_{2}+S_{2} L_{2} \\
& A_{2}=\frac{L_{1}^{2} S_{1}}{2}+\Delta S L_{1} h_{2}+\frac{L_{2}^{2} S_{2}}{2} \tag{109}\\
& A_{3}=S(0)
\end{align*}
$$

and h_{0}, h_{2} are incremental distances along the x-axis on which the areas $S(0)$ and ΔS are assumed to be present. The axial force is simply found by integration of Eq. (103), which results in

$$
\begin{equation*}
F_{A x}=-\sum_{j} c_{x}\left(M_{a}, x_{j}\right) q s_{r} \tag{110}
\end{equation*}
$$

With the definition

$$
\begin{equation*}
\underline{r}_{s}=x \underline{i} \tag{111}
\end{equation*}
$$

the aerodynamic torques are found to be

$$
\begin{align*}
N_{A x} & =0 \tag{112}\\
N_{A y} & =-\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right) \rho A_{5}-\omega_{y} A_{5} \dot{\rho}+\left(\dot{W}+V \omega_{x}-U \omega_{y}\right) \rho A_{2} \\
& +W \dot{\rho} A_{2}+U \omega_{y} \rho A_{2}+U \omega_{\rho} A_{4} \tag{113}\\
N_{A z} & =-\left(\dot{\omega}_{z}+\omega_{x} \omega_{y}\right) \rho A_{5}-\omega_{z} A_{5} \dot{\rho}-\left(\dot{V}+U \omega_{z}-W \omega_{x}\right) \rho A_{2} \\
& +V \dot{\rho} A_{2}+U \omega_{z} \rho A_{2}-U V \rho A_{4} \tag{114}
\end{align*}
$$

in which

$$
\begin{align*}
& A_{4}=-A_{1} \\
& A_{5}=\frac{1}{3} S_{1} L_{1}^{3}+\Delta S L_{1}^{2} h_{2}+\frac{1}{3} S_{2} L_{2}^{3} \tag{115}
\end{align*}
$$

It may be noted that there is no torque produced about the longitudinal axis of the missile by the aerodynamic forces, and this needs further clarification. Physically it may be assumed that there are control systems to maintain the missileunder a steady rolling velocity and therefore cancel any aerodynamic forces that are produced about the x-axis. Mathematically the torque vanishes because the missile was assumed to have negligible width.

With the above definitions for the rigid-body aerodynamic forces, Eqs. (52) for the rigid-body translation become

$$
\begin{align*}
& M\left[\dot{U}+W_{\omega_{y}}-V_{z}\right]-\left(\omega_{y}^{2}+\omega_{2}^{2}\right) \int_{M} x d m=-\sum_{j} q S_{r} c_{x}\left(M_{a}, x_{j}\right) \\
& +\left(p_{e}-p_{a}\right) A_{e}-M g s \theta+|\dot{M}| v\left(x_{e}, t\right)-\sum_{i} M_{i}\left[\ddot{u}_{x i}\right. \\
& \left.+2 \omega_{y} \dot{u}_{z i}-2 \omega_{z} \dot{u}_{y_{i}}\right] \tag{116}
\end{align*}
$$

$M^{*}\left[\dot{V}+U \omega_{Z}-W \omega_{X}\right]+\left(\dot{\omega}_{Z}+\omega_{X} \omega_{Y}\right) M_{l}^{*}=-V \dot{\rho} A_{1}$
$-\omega_{z} \dot{\rho} A_{2}-\rho U V A_{3}+M g s \phi c \theta-2 \omega_{z} \int_{L_{1}}\left(\int_{x}^{L_{1}} \dot{m} d \xi\right) d x$
$-\sum_{i} m_{i}\left(\ddot{u}_{y i}+2 \omega_{z} \dot{u}_{x i}-2 \omega_{x} \dot{u}_{z i}\right)$

$$
\begin{align*}
& M^{*}\left[\dot{W}+V \omega_{x}-U \omega_{y}\right]-\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right) M_{I}^{*}=-W \dot{\rho} A_{I} \\
& -\omega_{Y} \dot{\rho}_{2}-\rho U W A_{3}+M g c \phi c \theta+2 \omega_{y} \int_{L_{I}}\left(\int_{x}^{L_{1}} \dot{m} d \xi\right) d x \\
& -\sum_{\dot{i}} M_{i}\left(\ddot{u}_{z i}+2 \omega_{x} \dot{u}_{y i}-2 \omega_{y} \dot{u}_{x i}\right) \tag{118}
\end{align*}
$$

in which

$$
\begin{equation*}
M^{*}=\rho A_{1}+M \quad, \quad M_{1}^{*}=\rho A_{2}+\int_{M} x d M \tag{119}
\end{equation*}
$$

Consistent with the assumption of negligible width, such that $I_{x x} / I_{y y} \ll 1$, and using the aerodynamic torques defined above, the torque equations become

$$
\begin{align*}
& I_{x x} \dot{\omega}_{x}=0 \tag{120}\\
& I_{y Y}^{*}\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right)=-\omega_{y} \dot{\rho}^{A_{s}}+\left(\dot{W}+V \omega_{x}-U \omega_{y}\right) A_{2} \\
& +W_{\rho}^{*} A_{2}+U \omega_{y} \rho A_{2}+U W_{\rho} A_{5}-2 \omega_{y} \int_{L_{1}} x\left(\int_{x}^{L_{1}} \dot{m} d \xi\right) d x \\
& +g c \theta c \phi \int_{M} x d M+\sum_{i} M_{i} x_{i}\left(\ddot{u}_{z i}+2 \omega_{x} \dot{u}_{y i}-2 \omega_{y} \dot{u}_{x i}\right) \tag{121}
\end{align*}
$$

$$
\begin{align*}
& I_{Y Y}^{*}\left(\dot{\omega}_{z}+\omega_{x} \omega_{y}\right)=-\omega_{z} \dot{\rho A_{5}}-\left(\dot{V}+U \omega_{z}-\omega_{x} W\right) \rho A_{2} \\
& -V \rho A_{2}+U \omega_{z} \rho A_{2}-U V_{\rho} A_{4}-2 \omega_{z} \int_{L_{I}} x\left(\int_{x}^{L_{1}} \dot{m} d \xi\right) d x \\
& +\operatorname{gc\theta s} \phi \int_{M} x d M-\sum_{i} M_{i} x_{i}\left(\ddot{u}_{Y i}+2 \omega_{z} \dot{u}_{x i}-2 \omega_{x} \dot{u}_{z i}\right) \tag{122}
\end{align*}
$$

where

$$
\begin{equation*}
I_{Y Y}^{*}=\rho A_{5}+I_{y Y} \tag{123}
\end{equation*}
$$

The discrete mass motion is described by Eqs. (60) and repeated here as

$$
\begin{align*}
& M_{i}\left[\dot{U}+W_{y}-\omega_{y}+\ddot{u}_{x i}+2 \omega_{y} \dot{u}_{z i}-2 \omega_{z} \dot{u}_{y i}\right. \\
& +\dot{\omega}_{y} u_{z i}-\dot{\omega}_{z} u_{y i}+\omega_{x} \omega_{y} u_{y i}-\left(x_{i}+u_{x i}\right)\left(\omega_{y}^{2}+\omega_{z}^{2}\right) \\
& \left.+\omega_{x} \omega_{z} u_{z i}\right]=M_{i} g \dot{i}-k_{x i} u_{x i} \\
& -c_{x i} \dot{u}_{x i} \tag{124a}
\end{align*}
$$

$$
\begin{align*}
& M_{i}\left[\dot{v}+U \omega_{z}-\omega \omega_{x}+\ddot{u}_{y i}+2 \omega_{z} u_{x i}-2 \omega_{x} \dot{u}_{z i}\right. \\
& +\dot{\omega}_{z}\left(x_{i}+u_{x i}\right)-\dot{\omega}_{x} u_{z i}+u_{z i} \omega_{y} \omega_{z}-u_{y i}\left(\omega_{z}^{2}+\omega_{x}^{2}\right) \\
& \left.+\left(x_{i}+u_{x i}\right) \omega_{x} \omega_{y}\right]=m_{i} \underline{g} \dot{j}-k_{y i} u_{y i} \\
& -c_{y i} \dot{u}_{y i} \\
& M_{i}\left[\dot{W}+V \omega_{x}-U \omega_{y}+\ddot{u}_{z i}+2 \omega_{x} \dot{u}_{y i}-2 \omega_{y} \dot{u}_{x i}\right. \\
& +\dot{\omega}_{x} u_{y i}-\dot{\omega}_{y}\left(x_{i}+u_{x i}\right)+\omega_{x} \omega_{z}\left(x_{i}+u_{x i}\right) \\
& \left.-\left(\omega_{x}^{2}+\omega_{y}^{2}\right) u_{z i}+\omega_{y} \omega_{z} u_{y i}\right]=M_{i} \underline{g} \cdot k \\
& -k_{z i} u_{z i}-c_{z i} \dot{u}_{z i} \tag{124c}
\end{align*}
$$

Finally, using the distributed aerodynamic forces from Eq. (97), (98) and (103), the equation of motion for the axial elastic motion become

$$
\begin{align*}
& \frac{\partial}{\partial x}\left(E A_{c} \frac{\partial u_{x}}{\partial x}\right)-\left[p A_{f}(0) \delta(x)+p A_{f}\left(L_{1}\right) \delta\left(x-L_{l}\right)+\frac{\partial}{\partial x}\left(p A_{f}\right)\right] \\
& {\left[h(x)-h\left(x-L_{1}\right)\right]-\left(p_{e}-p_{a}\right) A_{e} \delta(x)-q S_{r} C_{x}\left(M_{a}, x_{j}\right) \delta\left(x-x_{j}\right)} \\
& -m g s \theta-\left[\frac{\partial}{\partial t}\left(v m_{f}\right)+\frac{\partial}{\partial x}\left(v^{2} m_{f}\right)\right]\left[h(x)-h\left(x-L_{l}\right)\right] \\
& -M_{i}\left[\ddot{u}_{x i}+2 \omega_{y} \dot{u}_{z i}-2 \omega_{z} \dot{u}_{y i}\right] \delta\left(x-x_{i}\right)=m[\dot{U} \\
& +\ddot{u}_{x}+\omega_{y}\left(W+2 \dot{u}_{z}\right)-\omega_{z}\left(V+2 \dot{u}_{y}\right)+\left(\dot{\omega}_{y}+\omega_{x} \omega_{z}\right) u_{z} \\
& \left.-\left(\dot{\omega}_{z}-\omega_{x} \omega_{y}\right) u_{y}-\left(\omega_{y}^{2}+\omega_{z}^{2}\right)\left(x+u_{x}\right)\right]+|\dot{M}| v\left(x_{e}, t\right) \ell_{x R} \delta(x) \tag{125}
\end{align*}
$$

subject to the boundary conditions

$$
\begin{equation*}
E A_{C} \frac{\partial u_{x}}{\partial x}=0 \quad \text { at } \quad x=0, L \tag{126}
\end{equation*}
$$

while those for the transverse motion take the form

$$
\begin{align*}
& -\frac{\partial^{2}}{\partial x^{2}}\left(E I_{C z} \frac{\partial^{2} u_{y}}{\partial x^{2}}\right)+\frac{\partial}{\partial x}\left(P \frac{\partial u_{y}}{\partial x}\right)-m_{v}\left[U+\dot{u}_{x}+\omega_{y} u_{z}\right. \\
& \left.-\omega_{z} u_{y}\right]\left[\frac{\partial \dot{u}_{y}}{\partial x}+\omega_{z}+\omega_{z} \frac{\partial u_{x}}{\partial x}-\omega_{x} \frac{\partial u_{z}}{\partial x}\right]-\rho\left[U+\dot{u}_{x}+\omega_{y} u_{z}\right. \\
& \left.-\omega_{z} u_{y}\right]\left[v+\dot{u}_{y}+\omega_{z}\left(x+u_{x}\right)-\omega_{x} u_{z}\right] \frac{d S}{d x}-\dot{m}_{v}\left[V+\dot{u}_{y}\right. \\
& \left.+\omega_{z}\left(x+u_{x}\right)-\omega_{x} u_{z}\right]+m g \operatorname{s\phi c\theta }+2 \omega_{z} v m_{f}\left[h(x)-h\left(x-L_{I}\right)\right] \\
& -|\dot{M}| v\left(x_{e}, t\right) \ell_{y R} \delta(x)-M_{i}\left[\ddot{u_{y i}}+2 \omega_{z} \dot{u}_{x i}-2 \omega_{x} \dot{u}_{z i}\right] \delta\left(x-x_{i}\right) \\
& =m^{*}\left[\dot{v}+\ddot{u}_{y}+\omega_{z}\left(U+2 \dot{u}_{x}\right)-\omega_{x}\left(W+2 \dot{u}_{z}\right)+\left(\dot{\omega}_{z}+\right.\right. \\
& \left.\left.\omega_{x}{ }^{\omega}\right)\left(x+u_{x}\right)-\left(\dot{\omega}_{x}-\omega_{y} \omega_{z}\right) u_{z}-\left(\omega_{x}^{2}+\omega_{z}^{2}\right) u_{y}\right] \tag{127}
\end{align*}
$$

subject to the boundary conditions

$$
\begin{align*}
& E I_{C Z} \frac{\partial^{2} u y}{\partial x^{2}}=0 \text { at } x=0, L \\
& -\frac{\partial}{\partial x}\left(E I_{C Z} \frac{\partial^{2} u y}{\partial x^{2}}\right)=0 \text { at } x=0, L \tag{128}
\end{align*}
$$

and

$$
\begin{aligned}
& -\frac{\partial^{2}}{\partial x^{2}}\left(E I_{C y} \frac{\partial^{2} u_{z}}{\partial x^{2}}\right)+\frac{\partial}{\partial x}\left(P \frac{\partial u_{z}}{\partial x}\right)-m_{v}\left[U+\dot{u}_{x}+\omega_{y} u_{z}\right. \\
& \left.-\omega_{z} u_{y}\right]\left[\frac{\partial \dot{u}_{z}}{\partial x}+\omega_{x} \frac{\partial u_{y}}{\partial x}-\omega_{y}-\omega_{y} \frac{\partial u_{x}}{\partial x}\right]-\rho\left[U+\dot{u}_{x}+\omega_{y} u_{z}\right. \\
& \left.-\omega_{z} u_{y}\right]\left[W+\dot{u}_{z}+\omega_{x} u_{y}-\omega_{y}\left(x+u_{x}\right)\right] \frac{d S}{d x}-\dot{m}_{v}\left[W+\dot{u}_{z}\right.
\end{aligned}
$$

$$
\left.+\omega_{x} u_{y}-\omega_{y}\left(x+u_{x}\right)\right]+m g c \phi c \theta-2 \omega_{y} v m_{f}\left[h(x)-h\left(x-L_{1}\right)\right]
$$

$$
-|\dot{M}| v\left(x_{e}, t\right) \ell_{z R} \delta(x)-M_{i}\left[\ddot{u}_{z i}+2 \omega_{x} \dot{u}_{y i}-2 \omega_{y} \dot{u}_{x i}\right] \delta\left(x-x_{i}\right)
$$

$$
=m *\left[\dot{\mathrm{w}}+\ddot{u}_{z}+\omega_{x}\left(V+2 \dot{u}_{y}\right)-\omega_{y}\left(U+2 \dot{u}_{x}\right)+\left(\dot{\omega}_{x}+\omega_{y} \omega_{z}\right) u_{y}\right.
$$

$$
\begin{equation*}
\left.-\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right)\left(x+u_{x}\right)-\left(\omega_{x}^{2}+\omega_{y}^{2}\right) u_{z}\right] \tag{129}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
& E I_{C Y} \frac{\partial^{2} u_{z}}{\partial x^{2}}=0 \text { at } x=0, L \tag{130}\\
& -\frac{\partial}{\partial x}\left(E I_{C y} \frac{\partial^{2} u z_{z}}{\partial x^{2}}\right)=0 \text { at } x=0, L
\end{align*}
$$

In Eqs. (127) and (129) we introduced the notation $\mathrm{m}^{*}=$ $m+m_{v}$

Equations (116) through (130) must be solved in conjunction with the appropriate initial conditions to obtain the rigid-body motion, the motion of the discrete masses, and the elastic displacements. The equations are coupled and nonlinear, so that no closed form solution appears possible. Hence, numexical methods, such as used in Reference 16 , are indicated.

8. Axially Symmetric, Spinning Single-Stage Missile

The previous section considered a two-stage missile whose characteristics were different in each stage. Not only are their stiffnesses and mass distributions different, but there is variable mass in the first stage, while it is constant in the second. As a result, the center of mass moves along the missile axis with time.

As a special case, we wish to consider a slender single stage uniform missile as shown in Figure 7, where the missile is subject to the following assumptions: (1) the nose and fins are short in comparison to the total length of the missile, so that the transverse aerodynamic forces associated with the nose and fins can be regarded as acting at the ends of the missile; (2) the axial aerodynamic forces act only on nose and fins, where the nose has the shape of a cone; (3) the missile is unguided and the thrust is directed along the x-axis at all times; and (4) the internal flow is steady.

As a result of the first two assumptions, the effect of aerodynamic. forces on the nose and fins of the missile can be expressed in the form of boundary conditions. From the third assumption it follows that the direction cosines have the values $\ell_{x R}=1, \ell_{y R}=\ell_{z R}=0$. As a result of the fourth assumption, we conclude from Reference 13 that the internal flow satisfies the equation

$$
\begin{equation*}
-\frac{\partial}{\partial x}\left(p A_{f}\right)-\frac{\partial}{\partial x}\left(v^{2} m_{f}\right) \cong 0 \tag{131}
\end{equation*}
$$

Since the nose and fins are assumed to be short, the missile is regarded as being uniform, so that it proves convenient to choose the origin of the moving coordinates system xyz at the center of the missile, from which it follows that $a=b=L / 2$. This leads to the expression for the pressure distribution as

$$
\begin{equation*}
p A_{f}(x)=p A_{f}(L / 2)-v^{2} m_{f} \tag{132}
\end{equation*}
$$

For uniform burning, Eq. (32) yields the relation

$$
\begin{equation*}
\mathrm{vm}_{\mathrm{f}}=\mathrm{m}_{\mathrm{O}} \beta(\mathrm{I} / 2-\mathrm{x}) \tag{133}
\end{equation*}
$$

where $m_{o} \beta=-\dot{m}=$ constant is the uniform rate of mass burning per unit length. Substituting Eq. (133) into (132) results in

$$
\begin{equation*}
\mathrm{pA}_{\mathrm{f}}(\mathrm{x})=\mathrm{pA} \mathrm{f}_{\mathrm{f}}(\mathrm{~L} / 2)-\mathrm{vm}_{\mathrm{O}} \mathrm{~B}(\mathrm{~L} / 2-\mathrm{x}) \tag{134}
\end{equation*}
$$

We next rederive expressions for the rigid-body aerodynamic forces. From Eqs. (92) we obtain

$$
\begin{equation*}
u_{1}=U, v_{1}=v+x \omega_{z}, w_{1}=W-x \omega_{y} \tag{135}
\end{equation*}
$$

so that Eqs. (97) and (98) become

$$
\begin{align*}
f_{A y}= & -m_{v}\left(\dot{v}+x_{z}\right)-\dot{m}_{v}\left(v+x \omega_{z}\right)-m_{v} U \omega_{z} \\
& -m_{v} U \omega_{z}+m_{v} \omega_{x}\left(W-x \omega_{y}\right)-U \rho\left(V+x \omega_{z}\right) \frac{d S}{d x} \tag{136}\\
f_{A z}= & -m_{v}\left(\dot{W}-x_{y}\right)-\dot{m}_{v}\left(W-x \omega_{y}\right)+m_{v} U \omega_{y} \\
& -m_{v} \omega_{x}\left(V+x \omega_{z}\right)+m_{v} \omega_{y} U-U \rho\left(W-x \omega_{y}\right) \frac{d S}{d x} \tag{137}
\end{align*}
$$

Integrate Eqs. (103), (136), and (137) along the missile length use the fact that the forward end is pointed such that $S(L / 2)=0$, and obtain

$$
\begin{align*}
F_{A x}=\int_{-L / 2}^{L / 2} f_{A x} d x= & -q S_{r} \sum_{j=1}^{n} c_{x}\left(M_{a}, x_{j}\right)=-q S_{r}\left[c_{x}\left(M_{a}, L / 2\right)\right. \\
& \left.+c_{x}\left(M_{a},-L / 2\right)\right] \tag{138}
\end{align*}
$$

$$
\begin{align*}
& F_{A y}=\int_{-L / 2}^{L / 2} f_{A y} d x=-M_{v}\left[\dot{V}+U \omega_{z}-W \omega_{x}\right]-M_{v} \omega_{z} U-\dot{M}_{v} V \\
& +U V \rho S_{-L / 2}-U \rho \omega_{z} L / 2 S_{1} \tag{139}\\
& F_{A z}=\int_{-L / 2}^{L / 2} f_{A z} d x=-M_{v}\left[\dot{W}+V \omega_{x}-U \omega_{y}\right]+M_{v} \omega_{Y} U-\dot{M}_{o} W \\
& +U W \rho S_{-L / 2}+U_{\rho} \omega_{\mathrm{Y}} \mathrm{~L} / 2 \mathrm{~S}_{1} \tag{140}
\end{align*}
$$

in which

$$
\begin{gather*}
M_{v}=m_{v} I^{\prime} \tag{141}\\
S_{-L / 2}=S(-L / 2) \tag{142}\\
S_{I}=S\left(-L_{l} / 2\right)-\frac{2}{L} \int_{-L / 2}^{L / 2} S(x) d x \tag{143}
\end{gather*}
$$

and n is the number of stations at which axial forces are assumed to act.

The rigid-body aerodynamic torques are found from the first of Eqs. (42) where

$$
\begin{equation*}
\underline{r}_{s}=x \underset{\sim}{i} \tag{144}
\end{equation*}
$$

The resulting expressions are

$$
\begin{align*}
& N_{A x}=0 \\
& N_{A y}=-\frac{m_{v} L^{3}}{12}\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right)-\frac{\dot{m}_{v} L^{3}}{12} \omega_{y}+U W \frac{L}{2} S_{1} \rho+U_{\rho} \omega_{y} \frac{L^{2}}{4} S_{2} \tag{145}\\
& N_{A z}=-\frac{m_{v} L^{3}}{12}\left(\dot{\omega}_{z}+\omega_{x} \omega_{y}\right)-\frac{\dot{m}_{v} L^{3}}{12} \omega_{z}-U V \rho \frac{L}{2} S_{1}+U \rho \omega_{z} \frac{L^{2}}{4} S_{2}
\end{align*}
$$

in which

$$
\begin{equation*}
S_{2}=S(-L / 2)+\frac{8}{L^{2}} \int_{-L / 2}^{\mathrm{L} / 2} \mathrm{xS}(\mathrm{x}) \mathrm{dx} \tag{146}
\end{equation*}
$$

With the above expressions for the aerodynamic forces and torques, the rigid-body equations of motion, Eqs. (52) and (53) become

$$
\begin{align*}
& M\left[\dot{U}+W \omega_{y}-V \omega_{z}\right]=-q S_{r}\left[c_{x}\left(M_{a}, L / 2\right)+C_{x}\left(M_{a},-L / 2\right)\right]+\left(p_{e}-p_{a}\right) A_{e} \\
&+|\dot{M}| v\left(x_{e}, t\right)-M g s \theta \\
& M *\left[\dot{V}+U \omega_{z}-W \omega_{x}\right]=-M_{v} \omega_{z} U-\dot{M}_{v} V+U V \rho S_{-L / 2}+M g s \phi c \theta-U \omega_{z} \rho L / 2 S_{1} \\
& M *\left[\dot{W}+V \omega_{x}-U \omega_{Y}\right]=M_{v} \omega_{Y} U-\dot{M}_{V} W+U W_{\rho} S_{-L / 2}+M g c \phi C \theta+U \omega_{y} \rho L / 2 S_{I} \tag{147}
\end{align*}
$$

and

$$
\begin{align*}
& I_{x X} \dot{\omega}_{x}=0 \\
& I_{Y y}^{*}\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right)=-\frac{\dot{m}_{v} L^{3}}{12} \omega_{y}+U W \rho \frac{L^{2}}{2} S_{1}-U \rho \omega_{y} \frac{L^{2}}{4} S_{2} \\
& I_{Y y}^{*}\left(\dot{\omega}_{z}+\omega_{x} \omega_{y}\right)=-\frac{\dot{m}_{v} L^{3}}{12} \omega_{z}-U V \rho \frac{L}{2} S_{1}-U \rho \omega_{z} \frac{L^{2}}{4} S_{2} \tag{148}
\end{align*}
$$

respectively, in which we introduced the notation

$$
\begin{align*}
& M^{*}=M+M_{V} \tag{149}\\
& I_{Y Y}^{*}=I_{Y Y}+\frac{m_{v} I^{3}}{12}
\end{align*}
$$

The differential equations (147) and (148)', together with Eqs. (50) and (51), must be solved simultaneously to obtain the position and orientation of the missile as a function of time.

Before turning to the elastic motion of the missile, some mathematical preliminaries are in order and these deal with the solution of the boundary value problems. The solution is possible by means of modal analysis, provided the mass m is constant. This, of course, is not the case but let us assume for the moment that it is. The modal analysis amounts to solving the eigenvalue problem associated with the constant mass system, obtaining the so-called normal modes, and expressing the system
response as a superposition of the normal modes multiplied by corresponding generalized coordinates; such a solution is referred to as normal-mode vibration. Because the actual boundaryvalue problem possesses time-dependent coefficients, however, no normal-mode vibration is possible. Nevertheless, by virtue of the uniform-burning assumption, it turns out that a procedure based on the normal-mode approach can be used here to obtain sets of ordinary differential equations which are far simpler to solve than partial differential equations. But, because the normal modes imply a physical behavior which the actual system does not possess, we shall regard the solution as a superposition of eigenfunctions associated with the constantmass system, rather than superposition of normal modes. To this end we will assume that

$$
\begin{align*}
& u_{x}(x, t)=\sum_{r=1}^{\infty} \mu_{r}(x) q_{r}(t) \\
& u_{y}(x, t)=\sum_{r=1}^{\infty} v_{r}(x) n_{r}(t) \tag{150}\\
& u_{z}(x, t)=\sum_{r=1}^{\infty} v_{r}(x) k_{r}(t)
\end{align*}
$$

where q_{r}, η_{r}, k_{r} are generalized coordinates and μ_{r} and ν_{r} are certain functions representing the normal modes. To obtain μ_{r} we consider the eigenvalue problem consisting of the differential equation

$$
\begin{equation*}
E A_{C} \mu^{\prime \prime}+\Omega^{2} m_{0^{\mu}}=0 \tag{151}
\end{equation*}
$$

over the domain $-I / 2<x<I / 2$ and the boundary conditions

$$
\begin{equation*}
\mu^{\prime}(L / 2)=\mu^{\prime}(-I / 2)=0 \tag{152}
\end{equation*}
$$

where primes denote differentiation with respect to x . The eigenvalue problem, Eqs. (151) and (152), corresponds to the axial vibration of a uniform, constant mass bar with both ends unconstrained. The solution of the problem can be shown to consist of the denumberably infinite set of eigenfunctions (see, for example, Reference 19, pp. 151-154)

$$
\begin{equation*}
\mu_{r}=\sqrt{2 / m_{0} L} \quad \cos \quad r \pi(x / L-1 / 2) \quad r=1,2,3, \ldots \tag{153}
\end{equation*}
$$

and the eigenvalues

$$
\begin{equation*}
\Omega_{r}=r \pi \sqrt{E A_{c} / m_{0} L^{2}} \tag{154}
\end{equation*}
$$

The eigenfunctions are orthogonal and, in addition, they are normalized so as to satisfy the relation

$$
\begin{equation*}
\int_{-L / 2}^{L / 2} m_{o} \mu_{r}(x) \mu_{s}(x) d x=\delta_{r s}, r, s=1,2,3, \ldots \tag{155}
\end{equation*}
$$

where $\delta_{r s}$ is the Kronecker delta. The eigenfunction correspond-
ing to $r=0$ represents the rigid-body mode $\mu_{0}=\sqrt{1 / m_{0} L}$ and the associated eigenvalue is zero, $\Omega_{0}=0$, as is to be expected for a semidefinite system. It is easy to see also that μ_{0} is orthogonal to the eigenfunctions $\mu_{s}(s=1,2,3,--)$.

Similarly, to obtain ν_{r} we consider the eigenvalue problem for transverse vibration of a uniform beam comprising the differential equation

$$
\begin{equation*}
E I_{C} \nu "=\Lambda^{2} m_{0} \nu \tag{1.56}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
v^{\prime \prime}=v^{\prime \prime}=0 \text { at } x=-\mathrm{L} / 2, \mathrm{~L} / 2 \tag{157}
\end{equation*}
$$

The solution to this problem (also given in Reference 19, Sections 5-10 and 10-5) consists of the denumberably infinite set of eigenfunctions. They can be shown to have the expressions

$$
\begin{align*}
& \frac{1}{\sqrt{m_{0}^{L}}}\left(\frac{\cos \beta_{r} x}{\cos \beta_{r}^{L / 2}}+\frac{\cosh \beta_{r} x}{\cosh \beta_{r}^{L / 2}}\right) r=1,3,5, \ldots \\
v_{r}= & \frac{1}{\sqrt{m_{0}{ }^{L}}}\left(\frac{\sin \beta_{r} x}{\sin \beta_{r}^{L / 2}}+\frac{\sinh \beta_{r} x}{\sinh \beta_{r}^{L / 2}}\right) r=2,4,6, \ldots \tag{158}
\end{align*}
$$

where the eigenvalues are found by solving the equation $\cos \beta_{r}{ }^{L} \cdot$ $\cosh \beta_{r}{ }^{L}=1$, or equivalently

$$
\begin{align*}
& \tan \frac{\beta_{r} r^{L}}{2}+\tanh \frac{\beta_{r}^{L}}{2}=0 \quad r=1,3,5, \ldots \\
& \tan \frac{\beta_{r} r^{L}}{2}-\tanh \frac{\beta_{r}}{2}=0 \quad r=2,4,6, \ldots \tag{159}
\end{align*}
$$

in which

$$
\begin{equation*}
\beta_{r}^{4}=\frac{\Lambda_{r}^{2} m_{0}}{E I_{C}} \tag{160}
\end{equation*}
$$

The eigenfunctions are orthogonal and they are normalized so as to satisfy

$$
\begin{equation*}
\int_{-L / 2}^{L / 2} m_{0} \nu_{r}(x) \nu_{S}(x) d x=\delta_{r s} \quad r, s=1,2,3, \ldots \tag{161}
\end{equation*}
$$

It may be noted that two rigid-body modes exist and it is not difficult to show that they are orthogonal to the remaining eigenfunctions.
(a) Axial Vibration of a Rocket.

Using the above assumptions, and the aerodynamic forces of Section 6, we may write Eq. (83) as $E A_{C} \frac{\partial^{2} u_{x}}{\partial x^{2}}-q S_{r} c_{x}\left(M_{a}, L / 2\right) \delta(x-L / 2)-q S_{r} c_{x}\left(M_{a},-L / 2\right) \delta(x+L / 2)+m g \cdot i$ $=m\left[\dot{U}+\ddot{u}_{x}+\omega_{y}\left(w+2 \dot{u}_{z}\right)-\omega_{z}\left(V+2 \dot{u}_{y}\right)+\left(\dot{\omega}_{y}+\omega_{x} \omega_{z}\right) u_{z}\right.$
$\left.-\left(\dot{\omega}_{z}-\omega_{x} \omega_{y}\right) u_{y}-\left(x+u_{x}\right)\left(\omega_{y}^{2}+\omega_{z}^{2}\right)\right]-P_{x 1} \delta(x+L / 2)+P_{x 2} \delta(x-L / 2)$
with the boundary conditions

$$
\begin{equation*}
\mathrm{EA}_{\mathrm{C}} \frac{\partial u_{\mathrm{x}}}{\partial \mathrm{x}}=0 \quad \text { at } \quad \mathrm{x}=-L / 2, L / 2 \tag{163}
\end{equation*}
$$

In Eq. (162) the forces $P_{x l}$ and $P_{x 2}$ are given by the expression

$$
\begin{align*}
& P_{x 1}=p A_{f}(L / 2) \tag{164}\\
& P_{x 2}=p A_{f}(L / 2)-\left(p_{e}-p_{a}\right) A_{e}-v_{e} M_{0} B
\end{align*}
$$

and they represent forces due to internal fluid flow and thrust. In Eq. (164), M_{0} is the total mass $M_{0}=\int_{-L / 2}^{L / 2} m_{0} d x$ and β is the burning rate. We may now insert expressions (150) in Eq. (162) with the result

$$
\begin{align*}
& \sum_{r}-E A_{c} \mu_{r}^{\prime \prime} q_{r}+m \mu_{r} \ddot{q}_{r}-m\left(\omega_{Y}^{2}+\omega_{z}^{2}\right) \mu_{r} q_{r}=P_{x l} \delta(x-L / 2) \\
& -P_{x 2} \delta(x+L / 2)-\mathrm{qS}_{r} C_{x}\left(M_{a}, L / 2\right) \delta(x-L / 2)-\mathrm{qS}_{r} C_{x}\left(M_{a},-L / 2\right) \delta(x+L / 2) \\
& +\underset{m \cdot}{ } \underset{\sim}{i}-m\left[\dot{U}+\omega_{Y} W-\omega_{z} V\right]-m\left\{2 \omega_{Y} \sum_{r} v_{r} \dot{k}_{r}\right. \\
& -2 \omega_{z} \sum_{r} \nu_{r} \dot{n}_{r}+\left(\dot{\omega}_{Y}+\omega_{x} \omega_{z}\right) \sum_{r} v_{r} k_{r}-x\left(\omega_{Y}^{2}+\omega_{z}^{2}\right) \\
& \left.-\left(\dot{\omega}_{z}-\omega_{x} \omega_{y}\right) \sum_{r}{ }_{\nu_{r}{ }^{n} r}\right\} \tag{165}
\end{align*}
$$

Using Eq. (151), multiplying Eq. (165) by μ_{s}, integrating along the missile, and using the orthogonality conditions, we obtain

$$
\begin{align*}
& \frac{m}{m_{0}}\left[\ddot{q}_{r}-\left(\omega_{y}^{2}+\omega_{z}^{2}\right) q_{r}\right]+\Omega_{r}^{2} q_{r}=P_{x 1} \mu_{r}(L / 2) \\
& -P_{x 2} \mu_{r}(-L / 2)-q S_{r}\left[c_{x}\left(M_{a}, L / 2\right) \mu_{r}(L / 2)+c_{x}\left(M_{a},-L / 2\right) \mu_{r}(-L / 2)\right] \\
& -\frac{m}{m_{0}} \sum_{s}\left[2 \omega_{y} \dot{k}_{s}-2 \omega_{z} \dot{n}_{s}+\left(\dot{\omega}_{y}-\omega_{x} \omega_{z}\right) k_{s}-\left(\dot{\omega}_{z}\right.\right. \\
& \left.\left.-\omega_{x} \omega_{y}\right) \eta_{s}\right] \int_{-L / 2}^{L / 2} m_{0} \nu_{s}(x) \mu_{r}(x) d x+\frac{m}{m_{0}}\left(\omega_{y}^{2}+\omega_{z}^{2}\right) \int_{-L / 2}^{L / 2} m_{0} \mu_{r}(x) d x \\
& r=1,2,3,--- \tag{166}
\end{align*}
$$

which are subject to the initial conditions

$$
\begin{align*}
& q_{r}(0)=\int_{-L / 2}^{L / 2} m_{0} u_{x}(x, 0) \mu_{r}(x) d x, \dot{q}_{r}(0)=\int_{-L / 2}^{L / 2} m_{0} \frac{\partial u_{x}(x, 0)}{\partial t} \mu_{r}(x) d x \\
& n_{r}(0)=\int_{-L / 2}^{L / 2} m_{0} u_{Y}(x, 0) v_{r}(x) d x, \dot{n}_{r}(0)=\int_{-L / 2}^{L / 2} m_{0} \frac{\partial u_{y}(x, 0)}{\partial t} v_{r}(x) d x \\
& k_{r}(0)=\int_{-L / 2}^{L / 2} m_{0} u_{z}(x, 0) v_{r}(x) d x, \dot{k}_{r}(0)=\int_{-L / 2}^{L / 2} m_{0} \frac{\partial u_{z}(x, 0)}{\partial t} v_{r}(x) d x \tag{167}
\end{align*}
$$

(b) Transverse Vibration of a Rocket.

Consider the differential equation for vibration in the xy-plane. Assuming constant stiffness, $I_{c y}=I_{c z}=I_{c}$, neglecting Coriolis forces (see Reference 18, page l4), and using Eq. (97), we write Eq. (85) as
$-E I_{C} \frac{\partial^{4} u_{y}}{\partial x^{4}}-\frac{\partial}{\partial x}\left(P \frac{\partial u_{y}}{\partial x}\right)+m g \cdot j-m_{v}\left[U+\dot{u}_{x}+\omega_{y} u_{z}-\omega_{z} \omega_{y}\right]\left[\frac{\partial \dot{u}_{y}}{\partial x}\right.$

$$
\left.+\omega_{z}+\omega_{z} \frac{\partial u_{x}}{\partial x}-\omega_{x} \frac{\partial u_{z}}{\partial x}\right]-\dot{\rho}\left[v+\dot{u}_{y}+\omega_{z}\left(x+u_{x}\right)\right.
$$

$$
\left.-\omega_{x} u_{z}\right]=m^{*}\left[\dot{v}+\ddot{u}_{y}+\omega_{z}\left(U+2 \dot{u}_{x}\right)-\omega_{x}\left(W+2 \dot{u}_{z}\right)\right.
$$

$$
\left.-\dot{\omega}_{z}\left(x+u_{x}\right)-\omega_{x} \omega_{y}\left(x+u_{x}\right)-\omega_{y} \omega_{z} u_{z}-\left(\omega_{x}^{2}+\omega_{z}^{2}\right) u_{y}\right]
$$

$$
\begin{equation*}
-\mathrm{P}_{\mathrm{y} 1} \delta(\mathrm{x}-\mathrm{L} / 2)-\mathrm{P}_{\mathrm{y} 2} \delta(\mathrm{x}+\mathrm{L} / 2) \tag{168}
\end{equation*}
$$

in which we introduced the notation

$$
\begin{equation*}
m^{*}=m+m_{v}=m_{c}+m_{f}+m_{v} \tag{169}
\end{equation*}
$$

and $P_{y 1}$ and $P_{Y 2}$ are aerodynamic forces produced by the changes in the cross-sectional area at the forward and aft ends of the missile, respectively. Their form will be developed shortly.

Using expressions (150) as well as Eqs. (156) and (81), multiplying the resulting expression by v_{s}, integrating along the missile, and using the orthogonality conditions, we obtain

$$
\begin{align*}
& \frac{m^{*}}{m_{0}} \ddot{n}_{r}+\dot{\rho} \frac{S}{m_{0}} \dot{n}_{r}+\left[\Lambda_{r}^{2}-\frac{m_{v}}{m_{0}} \omega_{z}^{2}-\frac{m^{*}}{m_{0}}\left(\omega_{x}^{2}+\omega_{z}^{2}\right)\right] n_{r} \\
& -\sum_{s} \sum_{t} n_{s} q_{t} E A_{c} \int_{-L / 2}^{L / 2} \mu_{t}^{\prime} v_{s}^{\prime} v_{r}^{\prime} d x+\frac{m_{v}}{m_{0}} U_{\omega_{z}} \sum_{s} q_{s} \int_{-L / 2}^{L / 2} m_{0} \mu_{s}^{\prime} \nu_{r} d x \\
& +\frac{m}{m_{0}} \sum_{s} \sum_{t} \dot{q}_{s}\left(\dot{n}_{t}-\omega_{x} \kappa_{t}\right) \int_{-L / 2}^{L / 2} m_{0}{ }^{\mu} \nu^{\nu}{ }_{t} \nu_{r} d x+\sum_{s}\left[\frac { m ^ { * } } { m _ { 0 } } \left(\dot{\omega}_{z} q_{s}\right.\right. \\
& \left.\left.+\omega_{x} \omega_{y} q_{S}+2 \omega_{z} \dot{q}_{s}\right)+\frac{m_{v}}{m_{0}} \omega_{z} \dot{q}_{S}+\dot{\rho} \frac{S}{m_{0}} \omega_{z} q_{s}\right] \int_{-L / 2}^{L / 2} m_{0}{ }_{s} \nu_{r} d x \\
& +\frac{m v}{m_{0}} \sum_{s} \sum_{t}\left(\omega_{y} \kappa_{s}-\omega_{z} \eta_{s}\right)\left(\dot{\eta}_{t}-\omega_{x} \kappa_{t}\right) \int_{-L / 2}^{L / 2} m_{0} \nu_{s} v_{t}^{\prime} v_{r} d x \\
& +\frac{m_{v}}{m_{0}} \omega_{z} \sum_{s} \sum_{t} \dot{q}_{s} q_{t} \int_{-L / 2}^{L / 2} m_{0}{ }^{\mu} s^{\mu} t^{\prime} \nu_{r} d x+\frac{m^{v}}{m_{0}} \sum_{s} \sum_{t}\left(\omega_{y} k_{s}\right. \\
& \left.-\omega_{z} \eta_{s}\right) \omega_{z} q_{t} \int_{-L / 2}^{L / 2} m_{0} \nu_{s}{ }^{\mu} t^{\nu} r_{r} d x-2 \frac{m^{*}}{m_{0}} \omega_{x} \dot{k}_{r} \\
& -\left[\frac{m^{*}}{m_{0}} \omega_{y} \omega_{z}-\frac{m_{v}}{m_{0}} \omega_{y} \omega_{z}+\dot{\rho} \frac{S}{m_{0}} \omega_{x}\right] \kappa_{r}-P_{Y} \nu_{r}(L / 2)-P_{y}{ }^{\nu} \nu_{r}(-L / 2)=0 \\
& r=1,2,3, \ldots- \tag{170}
\end{align*}
$$

which are subject to the initial conditions, Eqs. (167).
The transverse boundary forces $P_{Y 1}$ and $P_{Y 2}$ arise from aerodynamical effects and can be obtained from Eq. (97). They are simply the definite integrals of the last term in Eq. (97)
with proper integration limits. The forward portion of the missile is assumed to consist of a cone starting at $x=L / 2$ and ending at $x=x_{n}$ at which point $r\left(x_{n}\right)=r *$. Hence

$$
\begin{equation*}
S(x)=\pi r^{2}(x)=\pi\left[(I / 2-x) \frac{r^{*}}{\left(L / 2-x_{n}\right)}\right]^{2}, L / 2 \leq x \leq x_{n} \tag{171}
\end{equation*}
$$

from which

$$
\begin{equation*}
\frac{d S}{d x}=-\frac{2 \pi r^{*}}{\left(L / 2-x_{n}\right)^{2}}(L / 2-x) \tag{172}
\end{equation*}
$$

so that

$$
\begin{align*}
& P_{y l}= \int_{L / 2-x_{n}}^{L / 2} \frac{2 \pi r^{*}}{\left(L / 2-x_{n}\right)^{2}} \rho\left[U+\dot{u}_{x}+\omega_{y} u_{z}-\omega_{z} u_{y}\right]\left[v+\dot{u}_{y}\right. \\
&\left.+\omega_{z}\left(x+u_{x}\right)-\omega_{x} u_{z}\right](L / 2-x) d x \\
& \cong \pi \rho r^{*} 2\left\{U+\sum_{s} \dot{q}_{s} \mu_{s}(L / 2)+\sum_{r}\left[\omega_{y} \kappa_{r}-\omega_{z} n_{s}\right] v_{r}(L / 2)\right\}\{v \\
&\left.+\frac{\omega_{z} L}{2}+\sum_{s} \omega_{z} q_{s}{ }_{s}(L / 2)+\sum_{r}\left[\dot{n}_{r}-\omega_{x} \kappa_{r}\right] v_{r}(L / 2)\right\} \tag{173}
\end{align*}
$$

The aft force, $\mathrm{P}_{\mathrm{y} 2}$, is found in a similar manner. Because the equivalent area for the finned region is

$$
\begin{equation*}
S=\pi^{2}\left(I-\frac{r^{2}}{s^{2}}+\frac{r^{4}}{s^{4}}\right), \quad x_{r} \leq x \leq-L / 2 \tag{174}
\end{equation*}
$$

and since $r=r *$ is constant, whereas s is the variable, we obtain

$$
\begin{equation*}
\frac{d S}{d x}=2 \pi\left(s-\frac{r^{4}}{s^{3}}\right) \frac{d s}{d x} \tag{175}
\end{equation*}
$$

Let s increase linearly from $s=r *$ to $s=s^{*}$, where s^{*} is the distance from the center line of the missile to the tip of the fin at its aft end, so that

$$
\begin{equation*}
s=\left(\frac{s^{*}-r^{*}}{x_{r}-L_{L} / 2}\right) x+\frac{x_{r} s^{*}-r * L / 2}{x_{r}-L / 2} \tag{176}
\end{equation*}
$$

in which x_{r} is the position from the origin along the missile axis to the point where the fin begins. Hence

$$
\begin{equation*}
\frac{d s}{d x}=\frac{s^{*}-r^{*}}{x_{r}-L / 2} \tag{177}
\end{equation*}
$$

and Eq. (175) becomes

$$
\begin{align*}
\frac{d S}{d x}=2 \pi\left\{\left(\frac{s^{*}-r^{*}}{x_{r}-L / 2}\right) x\right. & +\frac{x_{r} s^{*}-r^{*} L / 2}{x_{r}-L / 2}-r^{*} 4\left[\left(\frac{s^{*}-r^{*}}{x_{r}-L / 2}\right) x\right. \\
& \left.\left.+\frac{x_{r^{*}} s^{*}-r^{*} / 2}{x_{r}-L / 2}\right]^{-3}\right\}\left(\frac{s^{*}-r^{*}}{x_{r}-L / 2}\right) \tag{178}
\end{align*}
$$

Using Eq. (97), we write
$P_{y^{2}}=-\rho \int_{-L / 2}^{L / 2} 2 \pi\left(\frac{s^{*}-r^{*}}{x_{r}-L / 2}\right)\left(U+\dot{u}_{x}+\omega_{y} u_{z}-\omega_{z} u_{y}\right)\left[v+\dot{u}_{y}+\omega_{z}\left(x+u_{x}\right)\right.$

$$
\begin{align*}
& \left.-\omega_{x_{z}} u_{z}\right]\left\{\left(\frac{s^{*}-r^{*}}{x_{r}-L / 2}\right) x+\frac{x_{r} s^{*-r * L / 2}}{x_{r}-L / 2}-r^{*} 4\left[\left(\frac{s^{*}-r^{*}}{x_{r}-L / 2}\right) x\right.\right. \\
& \left.+\frac{x_{r} s^{*}-r^{*} L / 2}{x_{r}-L / 2}\right]^{-3} d x \cong \rho \pi\left[\left(s^{*}-r^{*}\right)\left(2 s^{*}-r^{*}\right)\right. \\
& \left.+r *^{4}\left[\frac{1}{(2 s *-r *)^{2}}-\frac{1}{s *^{2}}\right]\right\}\left\{U+\sum_{S} \dot{q}_{S} \mu_{S}(-L / 2)\right. \\
& \left.+\sum_{r}\left(\omega_{y}{ }_{r} r^{-} \omega_{z} n_{r}\right) \nu_{r}(-L / 2)\right\}\left\{v+\frac{\omega_{z} L}{2}+\sum_{s} \omega_{z} q_{S} \mu_{s}(-L / 2)\right. \\
& \left.+\sum_{r}\left(\dot{n}_{r}-\omega_{X}{ }_{K_{r}}\right) \nu_{r}(-L / 2)\right\} \tag{179}
\end{align*}
$$

For vibration in the $x z-p l a n e$, we use the same technique as above and obtain the equation for k_{r} in the form

$$
\begin{aligned}
& \frac{m^{*}}{m_{0}} \ddot{k}_{r}+\dot{\rho} \frac{S}{m_{0}} \dot{k}_{r}+\left[\Lambda_{r}^{2}-\frac{m_{v}}{m_{0}} \omega_{y}^{2}-\frac{m^{*}}{m_{0}}\left(\omega_{x}^{2}+\omega_{Y}^{2}\right)\right] \kappa_{r} \\
& -\sum_{s} \sum_{t} k_{s} q_{t} E A \int_{-L / 2}^{L / 2} \mu_{t}^{\prime} \nu_{s}^{\prime} \nu_{r}^{\prime} d x-\frac{m_{v}}{m_{0}} U \omega_{y} \sum_{s} q_{S} \int_{-L / 2}^{L / 2} m_{0} \mu_{s}^{\prime} \nu_{r} d x \\
& +\frac{m_{v}}{m_{0}} \sum_{S} \sum_{t} \dot{q}_{S}\left(\dot{k}_{t}+\omega_{x} n_{t}\right) \int_{-L / 2}^{L / 2} m_{0} \mu_{s} v_{t}^{\prime} v_{r} d x+\sum_{S}\left[\frac { m ^ { * } } { m _ { 0 } } \left(2 \omega_{y} \dot{q}_{S}\right.\right. \\
& \left.\left.+\dot{\omega}_{y} q_{s}-\omega_{x} \omega_{z} q_{s}\right)-\frac{m_{v}}{m_{0}} \omega_{y} \dot{q}_{s}-\dot{\rho} \frac{s}{m_{0}} \omega_{y} q_{s}\right] \int_{-I / 2}^{L / 2} m_{0}{ }^{\mu} s{ }^{\nu} r d x
\end{aligned}
$$

$$
\begin{align*}
& +\frac{m_{v}}{m_{0}} \sum_{s} \sum_{t}\left(\omega_{y} k_{s}-\omega_{z} n_{s}\right)\left(\dot{k}_{t}+\omega_{x} \eta_{t}\right) \int_{-L / 2}^{L / 2} m_{0} v_{s} \nu_{t}^{\prime} v_{r} d x \\
& -\frac{m}{m_{0}} \omega_{y} \sum_{s} \sum_{t} \dot{q}_{s} q_{t} \int_{-L / 2}^{L / 2} m_{0}{ }^{\mu} s^{\mu} t^{\prime} v_{r} d x-\frac{m_{v}}{m_{0}} \sum_{s} \sum_{t}\left(\omega_{y}^{2} \kappa_{s}\right. \\
& \left.-\omega_{y} \omega_{z} n_{s}\right) q_{t} \int_{-L / 2}^{L / 2} m_{0} \nu_{s} \mu_{t}^{\prime} v_{r} d x+2 \frac{m^{*}}{m_{0}} \omega_{x} \dot{\eta}_{r} \\
& -\left[\frac{m^{*}}{m_{0}} \omega_{y} \omega_{z}-\frac{m_{v}}{m_{0}} \omega_{y} \omega_{z}-\dot{\rho} \frac{S}{m_{0}} \omega_{x}\right] \eta_{r}-P_{z l} \nu_{r}(L / 2) \\
& -P_{z 2} \nu_{r}(-L / 2)=0 \\
& r=1,2,3, \ldots \tag{180}
\end{align*}
$$

where the initial conditions, Eqs. (167), apply and

$$
\begin{align*}
& P_{z 1} \cong \pi \rho r *^{2}\left[U+\sum_{S} \dot{q}_{S}{ }^{\mu}(L / 2)+\sum_{r}\left(\omega_{Y}{ }^{\kappa_{r}}-\omega_{z} \eta_{r}\right) v_{r}(L / 2)\right]\{W \\
& \left.-\frac{\omega_{y}{ }^{L}}{2}-\omega_{y} \sum_{s} q_{s}{ }_{s}(L / 2)+\sum_{r}\left(\dot{k}_{r}+\omega_{x}{ }^{n} r\right) \nu_{r}(L / 2)\right\} \tag{181}\\
& P_{z 2} \cong-\rho \pi\left\{\left(S^{*}-r^{*}\right)\left(2 s^{*}-r^{*}\right)+r *^{4}\left[\frac{1}{\left(2 s^{*}-r^{*}\right)^{2}}-\frac{1}{s^{2}}\right]\right\}\left\{U+\sum_{S} \dot{q}_{s}{ }_{s}(-L / 2)\right. \\
& \left.+\sum_{r}\left(\omega_{y} \kappa_{r}-\omega_{z} \eta_{r}\right) \nu_{r}(-L / 2)\right\}\left\{W-\frac{\omega_{y}}{2}-\omega_{y} \sum_{S} q_{S}{ }_{S}(-L / 2)\right. \\
& \left.+\sum_{r}\left(\dot{k}_{r}+\omega_{x} n_{r}\right) v_{r}(-L / 2)\right\} \tag{182}
\end{align*}
$$

9. Results

Since no closed form solution for the coupled nonlinear differential equations of the previous section seems possible, the equations for both the rigid and elastic motion were solved numerically on an IBM 360/65 computer. In seeking numerical solutions to differential equations, it is frequently more advantageous to work with first-order rather than second-order differential equations. Given the n second-order equations
$\ddot{y}_{i}=f_{i}\left(y_{1}, y_{2},-\cdots, y_{n}, \dot{y}_{1}, \dot{y}_{2}, \cdots, \dot{y}_{n}, t\right) \quad i=1,2,---, n$
introduce the auxiliary variables

$$
\begin{equation*}
z_{i}=\dot{y}_{i} \quad i=1,2, \ldots, n \tag{184}
\end{equation*}
$$

so that we can replace Eqs. (183) by the $2 n$ first-order equations
$\dot{y}_{i}=z_{i}$

$$
\begin{equation*}
i=1,2,---n \tag{185}
\end{equation*}
$$

$\dot{z}_{i}=f_{i}\left(y_{1}, Y_{2},---, Y_{n}, z_{1}, z_{2},---, z_{n}, t\right)$

We have now obtained a system of equations whose solution consists of n coordinates and n velocities. Of the $2 n$ equations the first n are purely kinematical, whereas the remaining n equations result from the dynamical laws governing the motion, as reflected by Eq. (183). For a discussion of this type of
formulation, as well as ones involving coordinates and momenta instead of coordinates and velocities, see Reference 27, pages 91 through 97.

The technique described above is used on the differential equations of the previous section to obtain a set of firstorder differential equations. These are then solved numerically by means of a fourth-order Runge-Kutta formulae with the modification due to Gill. This method is described in Reference 28. An IBM supplied SSP subroutine RKGS is then used for solving these equations. This subroutine as well as the rest of the computations necessary for solving the differential equations was written for the computer in the FORTRAN IV (G level) language (see Appendix B).

The constants which were used to describe the missile were
$E=30 \times 10^{6}$ psi, $L=100$ in., $\quad A_{C}=7.53 \mathrm{in}^{2}$
$\mathrm{m}_{\mathrm{o}} \mathrm{g}=4.25 \mathrm{lbs} / \mathrm{in}, \dot{m}_{\mathrm{c}} \mathrm{g}=0.5 \mathrm{Ibs} / \mathrm{in} / \mathrm{sec}, \mathrm{I}_{\mathrm{c}}=93 \mathrm{in}^{4}$
$v\left(x_{e}, t\right)=1000 \mathrm{ft} / \mathrm{sec}, \quad \omega_{x}=0 \mathrm{rad} / \mathrm{sec}, \quad S_{r}=9 \pi \mathrm{in}^{2}$
The initial conditions used were
$X(0)=Y(0)=Z(0)=0 \mathrm{ft}, \quad U(0)=V(0)=W(0)=0 \mathrm{ft} / \mathrm{sec}$
$\omega_{y}(0)=\omega_{z}(0)=0 \mathrm{rad} / \mathrm{sec}, \quad \psi(0)=\phi(0)=0 \mathrm{rad}$.
$\theta(0)=90$ deg. $\quad u_{x}(x, 0)=u_{z}(x, 0)=0, f t$.

$$
u_{y}(x, 0)=10^{-6}\left(\cos \pi x / L-2 / \pi j+0.5 \times 10^{-6}(\sin 2 \pi x / L-6 x / \pi L), f t\right.
$$

In computing the density we assume an exponential atmosphere of the form

$$
\begin{aligned}
\rho & =\rho_{0} \exp (-x / 23,500) \\
& =2.7 \times 10^{-3} \exp (-x / 23,500)
\end{aligned}
$$

in which ρ_{0} is the sea level density and x is the altitude above sea level.

The axial coefficient has the general shape shown schematically in Figure 8 (see for example References 29 and 30). We assume these curves to be approximated by polynomials of the form

$$
\begin{aligned}
c_{x}= & \frac{1}{2}\left[9 c_{x l}+27 c_{x 1 / 3}-27 c_{x 2 / 3}\right] M_{a}^{3}-\frac{1}{2}\left[9 c_{x l}+45 c_{x 1 / 3}\right. \\
& \left.-36 c_{x 2 / 3}\right] M_{a}^{2}+\frac{1}{2}\left[2 c_{x 1}+18 c_{x 1 / 3}-9 c_{x 2 / 3}\right] M_{a} \\
& +c_{x 0} \\
c_{x}= & \frac{1}{60}\left[c_{x 6}-10 c_{x 3}+15 c_{x 2}-6 c_{x 1}\right] M_{a}^{3}-\frac{1}{10}\left[c_{x 6}-15 c_{x 3}\right. \\
& \left.+25 c_{x 2}-11 c_{x 1}\right] M_{a}^{2}+\frac{1}{60}\left[11 c_{x 6}-200 c_{x 3}+405 c_{x 2}\right. \\
& \left.-216 c_{x 1}\right] M_{a}-\frac{1}{10} c_{x 6}+2 c_{x 3}-\frac{9}{2} c_{x 2}+\frac{18}{5} c_{x 1} \\
&
\end{aligned}
$$

where $C_{x l}, c_{x l / 3}$, etc. represent experimentally determined values for the coefficients at $M_{a}=1, M_{a}=1 / 3$, etc. The same type of curve is used for both the forward and the aft part of the missile, the difference being in the constatns used. For the nose we use (References 29 and 30)
$c_{x 0}=0.2, \quad c_{x l / 3}=0.2, \quad c_{x 2 / 3}=0.2, \quad c_{x 1}=0.55$
$c_{x 2}=0.4, \quad c_{x 3}=0.24, \quad c_{x 6}=0.2$

While for the aft portion we use
$c_{x 0}=0.05, c_{x 1 / 3}=0.1, c_{x 2 / 3}=0.15, c_{x 1}=0.4$
$c_{x 2}=0.2, \quad c_{x 3}=0.15, \quad c_{x 6}=0.1$

Of current interest is the fluctuations of the chamber pressure and their effect on the elastic motion of the missile. Various types of pressure-time histories may be used such as, for example, a step function which was used in References 13 and 15. A schematic representation of an actual pressure-time history as well as a step function is shown in Figure 9a. We assure that this curve may be approximated by a curve which represents the response of a second-order system to a step applied at time $t=0$. Hence, we write

$$
\begin{equation*}
P_{L}=P_{L S S}\left[1+e^{-\zeta \omega t}\left(\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \omega_{d} t-\cos \omega_{d} t\right)\right] \tag{186}
\end{equation*}
$$

in which

$$
\begin{equation*}
\omega_{d}=\omega\left(1-\zeta^{2}\right)^{1 / 2} \tag{187}
\end{equation*}
$$

In Eq. (186), $\mathrm{P}_{\text {LSS }}$ is the steady state value of the pressure, ζ is the damping ratio, ω is the natural frequency of the system. We assume that the first two variables have the numerical values

$$
\mathrm{P}_{\mathrm{LSS}}=1000 . \mathrm{psi}, \zeta=0.4
$$

We choose several values for ω and these correspond to

1: a period of 0.0001 seconds $\omega=2 \pi / 0.0001$

2: the first axial frequency $\quad \omega=\pi \sqrt{E A_{C} / m_{o} L^{2}}$

3: the first transverse frequency $\omega=(1.506 \pi)^{2} \sqrt{E I / m_{O} L^{4}}$

The pressure-time history for the first two cases are shown in Figure 9b.

Using the above constants, variables, and inital conditions, Figure 10 shows the resulting graph for the rigid-body motion with and without aerodynamic forces. As expected, at a given period in time, the missile travels to a higher altitude without
aerodynamic forces than with aerodynamic forces.
Figure 11 shows two resulting elastic motions, one due to a pressure-time history assumed to be a step as in References 13 and 15 and the other case 1 listed above. Figure 12 shows the elastic motions for cases 2 and 3.

In comparing the curves in Figures 11 and 12 , there are noticeable differences in the various cases considered, which indicates that internal pressure may be a significatn parameter influencing the elastic motion of the missile. Considered here is only one type of approximation to the pressure which approaches a constant fairly rapidly. Thereafter the pressure remains constant without any fluctuations. It is to be noticed that, although the steady state value for the pressure is of the same magnitude, the cycle times for the elastic motion are not the same for all cases considered. This may be attributed to the frequency associated with the pressure fluctuations. Hence, the pressure acts like a forcing function and, if the fluctuations are sufficiently violent, the missile structure may fail due to excessive loading.

Another interesting phenomenon appears due to the pressure fluctuation and this is the fact that, unlike previous analysis, axial compression also takes place. This may be accounted for by recalling that in the present case a finite time is necessary for the pressure to build up in the combustion chamber. During this time the thrust, assumed to attain its magnitude immediately, acts at the aft end so as to push the missile. Hence,
compression results there until the pressure inside the combustion chamber is sufficient to counteract this thrust force. As there is no damping in the axial direction, compression may appear again during the next cycle of its motion.

Although not obvious from the graphs, the transverse motion is affected by the pressure-time history. The reason that these effects are not obvious is that the differences between the different cases are too small to show on the graphs.
10. Summary and Conclusions

The present work, written in two parts, considers first the general formulation of a two-stage variable-mass flexible missile. This formulation, based on work done in References 13 and 14 , which considers as its basis a single-stage missile, represents a logical extension and shows the versatility of its formulation. The mathematical formulation is reduced to six ordinary differential equations for the three rigid-body translations and three rigid-body rotations, $3 n$ ordinary differential equations representing the motion of the n discrete masses as well as three partial differential equations with corresponding boundary conditions for one longitudinal and two transverse elastic displacements. The equations are nonlinear and possess time-dependent coefficients due to the mass variation. At present the resulting equations do not appear to lend themselves to a solution other than by numerical techniques, such as those presented in Reference 16.

Special interest lies in a single stage variable-mass flexible rocket with no discrete masses. A reasonable assumption is that the elastic displacements do not affect the rigid-body motion appreciably. Under this assumption, the rigid-body motion can be solved independently of the elastic motion. The equations for the rigid-body reduce to the familiar case of a six-degree-of-freedom rigid-body, possessing variable mass, and subjected to forces due to engine thrust as well as aerodynamic forces. If the mass distribution, as well as the rate of decrease of mass, is assumed to be uniform along the missile, then the mass center does not shift relative to the vehicle.

For zero viscosity, the equation for the internal gas flow can be separated from the equation for the longitudinal elastic displacement. The gas flow problem is one of a steady adiabatic flow in a channel of uniform cross-sectional area to which mass is added continuously at constant enthalpy and negligible kinetic energy. The solution to this problem leads us to forces applied at the boundaries, namely the closed end and the nozzle end. Due to the aerodynamic forces, coupling exists between the axial and transverse elastic motion. Hence, the problem consists of solving three nonhomogenous coupled partial differential equations with homogenous boundary conditions. A solution of this problem is obtained in the form of an infinite series of eigenfunctions, associated with a constant-mass missile free at both ends, multiplied by time-dependent generalized coordinates. A procedure resembling modal analysis then leads to a set of coupled ordinary
differential equations. This set of equations as well as the rigid-body equations of motion are then solved using a highspeed digital computer.

In conclusion, a general treatment for a two-stage flexible missile is treated under a new unifying formulation. Vehicle flexibility and mass-variation as well as aerodynamic force and discrete masses are included. This formulation is then used on a simplified single-stage missile and results illustrating the effects of pressure fluctuations on the elastic motion of a flexible missile are presented.

Appendix A - Calculations of the Engine Thrust

The purpose of a nozzle is to convert the enthalpy of the flowing gas into kinetic energy in an efficient manner while, at the same time, restricting the escape of the gas to a rate suitable for the propellant reaction inside the combustion chamber. We shall assume that the nozzle under consideration is convergentdivergent, designed tu allow an isentropic expansion to an ambient pressure less than critical. In the convergent portion of the nozzle, before the throat, the flow is subsonic, reaching sonic level at the throat section, at which point the flow properties are referred to as critical, and becoming supersonic in the divergent portion after the throat. Although losses may occur in the nozzle, they are assumed to be small so that the analysis is based on the equations for one-dimensional isentropic steady flow of a compressible perfect gas.

Let us consider the one-dimensional isentropic flow of Figure Al and assume that the stagnation conditions, denoted by the subscript 0, are known. Under these circumstances, we may write the equations governing the flow as follows:

First the flow must satisfy the first law of thermodynamics. Considering the control volume shown in Figure Al, and denoting the enthalpy per unit mass by h, this law can be stated

$$
\begin{equation*}
h_{0}=h_{1}+\frac{1}{2} v_{1}^{2}=h_{2}+\frac{1}{2} v_{2}^{2} \tag{Al}
\end{equation*}
$$

Assuming that there is no friction or heat transfer present, the secorid law of thermodynamics becomes simply

$$
\begin{equation*}
s=s_{0}=\text { constant } \tag{A2}
\end{equation*}
$$

or the entropy s is constant, as implied by the name of the type of flow under consideration.

The flow must also satisfy the continuity equation. Since there is no mass addition within the nozzle, we must have

$$
\begin{equation*}
\rho_{1} \mathrm{~A}_{1} \mathrm{v}_{1}=\rho_{2} \mathrm{~A}_{2} \mathrm{v}_{2}=\text { constant } \tag{A3}
\end{equation*}
$$

where the flow properties at stations 1 and 2 are denoted by the corresponding subscripts.

Similarly the flow must satisfy the momentum equation. Denoting the force exerted by the nozzle wall on the gas by $F_{T^{\prime}}$ this equation can be written

$$
\begin{equation*}
F_{T}=p_{1} A_{1}-p_{2} A_{2}=\rho_{2} A_{2} v_{2}^{2}-\rho_{1} A_{1} v_{1}^{2} \tag{A4}
\end{equation*}
$$

Equations (Al) through (A4) must be supplemented by the equation of state which for a perfect gas has the form

$$
\begin{equation*}
p=\rho R T \tag{A5}
\end{equation*}
$$

in which R is the universal gas constant and T the temperature.

The above relations can be used to derive expressions for the pressure, density, etc., at any point along the nozzle. For a perfect gas the speed of sound is given by

$$
c=(k R T)^{1 / 2}
$$

where

$$
\begin{equation*}
k=c_{p} / c_{v} \tag{A7}
\end{equation*}
$$

in which c_{p} and c_{v} are the specific heats. Then the following relations can be shown to hold true.*

$$
\begin{align*}
& \frac{T}{T_{0}}=\frac{1}{1+[(k-1) / 2] M^{2}} \tag{A8}\\
& \frac{p}{\rho_{0}}=\frac{1}{\left\{1+[(k-1) / 2] M^{2}\right\}^{k /(k-1)}} \tag{A9}\\
& \frac{\rho}{\rho_{0}}=\frac{1}{\left\{1+[(k-1) / 2] M^{2}\right\}^{1 /(k-1)}} \tag{Al0}
\end{align*}
$$

where $M=v / c$ is the Mach number. Moreover, the cross-sectional area A at any point is related to the cross-sectional area A_{*} at the throat by

* See Reference 17, Section 13-5.

$$
\begin{equation*}
\frac{A}{A_{*}}=\frac{G_{k}}{G}=\frac{1}{\bar{M}}\left[\frac{2}{k+1}\left(1+\frac{k-1}{2} M^{2}\right)\right](k+1) /[2(k-1)] \tag{A11}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{G}=\rho \mathrm{v} \tag{Al2}
\end{equation*}
$$

is the mass flow per unit area at any point and

$$
G_{*}=\left(\begin{array}{l}
\left.\frac{k p_{0}^{2}}{R T_{0}}\right)^{1 / 2} \quad\left(\frac{2}{k+1}\right) \tag{Al3}\\
(k+1) /[2(k-1)]
\end{array}\right.
$$

is the mass flow per unit area at the throat.
Equations (A8) through (A13) are sufficient to determine the isentropic flow in the nozzle provided the stagnation conditions are known. We are interested primarily in the flow conditions at the nozzle exit. For a given rocket design the cross-sectional areas A_{e} and A_{*} may be regarded as known. Since k is also a known quantity, we can use Eq. (All) and obtain the Mach number M_{e} at the exit. Introducing this value into Eq. (A9) we can determine the exit pressure p_{e}, which enables us to write the expression for rocket thrust

$$
\begin{equation*}
F_{T}=p_{e}^{A} e+\rho e^{A} e^{v_{e}^{2}}=p_{e}^{A} e^{\left(1+k M_{e}^{2}\right)} \tag{Al4}
\end{equation*}
$$

for flight in vacuum. If the rocket operates in the lower fringes of the atmosphere, then the term $p_{a} A^{A}$, where p_{a} is the atmospheric pressure, must be subtracted from the right side of Eq. (Al4).

In the above analysis, we have-assumed that the stagnation conditions are known. This assumption necessitates further scrutiny. The stagnation conditions are determined by events occurring upstream of the nozzle. The flow in the combustion chamber may be regarded as a steady, adiabatic flow in a channel of uniform cross-sectional area with mass addition at constant enthalpy, and at negligible kinetic energy. The flow is not isentropic and the stagnation conditions are not constant but decreasing as the nozzle is approached. This problem is discussed in detail in Reference 11. The conclusion that can be reached is that for a Mach number less than 0.4 in the combustion chamber the drop in the stagnation pressure may not be significant. Hence, we shall assume that the stagnation pressure as well as the remaining stagnation conditions occurring at the fore end of the combustion chamber are equally applicable to the nozzle. In a more refined analysis of the gas flow this assumption may have to be revised.

Appendix B

```
    FXTEPAAL FGT, HMITF
    - XTEPAAL AINT
    NIMENSIUN PF&T(5),Y(75),DE2Y(75),AUX(A,75)
```



```
    CSMM!N/ACCA/S,SL?,AE,DET,FL,",SF,PE,VF,TX,PI,FMO,PL,AF,RST,CA,E,ES
```



```
    &3,036
    EOMMIN/INTER/AIN(0,10,1.3, B)
    COMmCA DFLT,DELT!
    \r=3. ?4 5.027
```



```
    |O! EORMAT(41?)
        MRI「=(6,?OO%1MX,NY
```



```
    WRITF(6.2.?)!口
    3! EOBMAT(//' CASE NUMBFR - *Y)
```



```
    :CO3 EпPMAT(351O.2)
```



```
    Q:An(a,160&)R:GT,VF
    RFAO|G,1तीमlQ,OST
    REA!(5, iOCA)PRMT (?),PRMT()), Y(U)
    #)OG ENRMAT(BETC.3)
    C.co=0.?
    CF'3=0.?5
    CF23=0.习上
    CR1=0.55
    CF?=O. '% 
    CF3=0.24
    r.FG=?.?
    CO0=\:05
    (HI3=`.1
    C.423=).15
    CR1=0.4
    5日2=%.?
    CB2=0.15
    C3S=0.:
    RFAD(5,LOOO)CEO,CF:3,CF2F,CF:,CFZ,CFZ,CFG
    READ(5, OOO)CHO,C313,CQ23,CB,,O2,CP3,CRG
C(O.3N EORMAT(7F:0.4)
                                    RASIC CTNFIGURATION
    NN=11+2*NX+4%NJY
    H=H /12.
    E=F#144.F+6
    CA= C.//i4/,
    CI= CI/144./144.
    NOTM=NM
    AF= AF/T4%.
    PI_ = P! - ! < 4.
```

```
            EL= EL/I2.
            Y(9)=5月LE(Y(9)|%OBLE(PI)/I.8OD+2
            DO 5 I = I,NN
            DEFY(I)=1./FLOAT(NN)
            IF(I.EQ.9) GO TO 5
            Y(I)=0.0
            F CONTINUE
            ARFAS
            S=PI*RMR
            ES=S
            SL2=S:%4.C
            G=32.?
            540=F4O*:2./G
            \triangleE=O.
            BET = BET:I2./G
            BrT=BET/FMO
            SR=S
            ORMT (3) =H=SORT (EMO/E/CA)
            DOMT (4)=0.0OO!
            CALL RTSIMY,BFTAL,50,1.F-6)
            IF(NX.FQ.O.ANO.NY.FQ.O) GO TO 2O
1095 FORMNT(5E:5.9)
            C=?.\capF-S
            CC=0.?
            D=0.55..6
            D0=0.0
            TEMP2= SQRT(EMO*EL)
        FP=PI**?2TFMO2
            IF(NY.EG.O) GOTO TO
            J=11+2mNX+NY
            JJ=J+?*NY
            \!) 25 T =?, NY
            CO=BFTALII) #RETAL(I)
            ClSO=CO*CO
            RLP!=P{必4-C1SQ
            SLP2=? S.*PI**4-C1SO
            IF(I/2\div2.NF.I) GOTO 2R
            Y(I+J )=C *22.0*PP/BLP2
            Y(I+JJ)=[D* 32.0*PP/BLP?
            G? TO 25
    <e Y(I+J )=C *4.0*PP/BLPI
            Y(I+JJ)=CC*4.0*PP/BLPI,
            35 RONTINUE
            2f CINNTINUF
            00 6 I=?,NY
            5 MMG!(I)=EETAL(I)*BETAL(I)*SQRT(E*CI/EMO/EL**4)
            OO 7 I=?, NX
            7 OMG(I)=F(SAT(I)*PI*SQRT(F*CA/EMO/EL/EL)
            NXX=NX
            NYY=NY
            O!) 27 N=1,NXX
            AIN(2,M,M,M)=AINT(2,M,O,DI
    27 C.ONTINUE
```

```
    Dn 35 M=1 ,NXX
    DO 35 J=1.NYY
    A{N{1,M,J,M)=AINT (1,M,J,O)
    AIN(3,J,M,M)=AINT(3,J,M,OI
    35 CONTINUE
    DD 3l J=?,NYY
    O0 3! M=1,NXX
    00 31 N=3,NXX
    AIN(6,J,M,N)=AINT(6,J,M,N)
    37. CONTINUE
    DO 32 J=1, NYY
    0% 32 K=1.NYY
    nO 3? L=?,NYY
    AIN(4,\mp@code{J,K,I)=AINT (4,J,K,L)}
    32 CONTINUE
    DO 30 J=?,NYY
    DO 30 N=1,NXX
    DO }30\textrm{K}=1,\textrm{M}Y
    ATN(F,J,K,M)= \INT(F,J,K,M)
    AIN(7,J,M,K)=AINT(7,J,M,K)
    A[N(R,J,M,K)=AINT(8,J,M,K)
    30 CONTINUF
    IF(IPRNT.NE.O)WRITE(6,101)
10? FORMAT(/////15X,' NO AERO'
    WRITE(6.1n0)
!OO FORMAT(IH))
    NOPRNT=?
    CALL RKGS(PRMT,Y,DERY,NOIM,IHLF,FCT,OUTF,AUX)
    GOTOl
gOOG CALL EXIT
    FND
```

```
    SUBROUTINE FTS(M,RES, TTER, TDL)
    MIMENSIRN RES(:)
    \(J=1\)
    \(!=1\)
    \(D T=3 . \quad 4-5097\)
    \(x:=? . r \times p 1\)
\(\Rightarrow\) " \(x=r \cos \left(x^{2}\right)\)
    rex=ench(x:)
```



```
    \(==6 x \cdot r .5-\cdots\)
    \(=\pi-r x: s c-s y=r s x\)
    \(x:=x\) - \(F / F D\)
```



```
\(\because x:=x\) ?
    \(J=\mathrm{J}+{ }^{\circ}\)
```



```
    B? TR ?
```



```
    \(3:\) rum
そのシャ1「1=xつ
    \(!=I+{ }^{1}\)
```



```
    \(x^{:}=x^{n}+\cdots!\)
    \(1=1\)
    rr Tr
```



```
    - 0 万
```

```
    FuNCTIGN F4!f(x, If
    CGMACA/ARE:/G,SL`,AE,RGT,EL,G,SP,PE,VE,OX,PI,EMO,PL,AF,RST,CA,E,ES
    T=SORT(?./EuO/FL'
```



```
    l?=1 [+] |/?
    FAU=T=(-!)*+ID*SIN(FLOAT(I)+QI*X/EL)
    AF PUEPN
\because!D=T/?
```



```
    GETURN
    -gTpy Fm(1P(X,I)
    T=S@QT(?./EMO/EL)
```



```
    IP=(T+! )/O
```



```
    i=: FT|Pr
¢ [P=!/7
```



```
    シー「!RN
    &\vartheta?
```

```
    FUNCTION FNU(X,I)
    C\capMMON/FLAST/NX,NY,OMG(1O),OMGL(10),BETAL(IO),H ,IPRNT,NCPFNT
    COMMEN/AREA/S,SLZ,AE,BET,FI,G,SR,PF,VF,OX,PI,EMO,PL,AF,RST,CA,E,ES
    J=?
    1 CA=COS (BFTAL(I)*O.51
    SP=STN(AFTA\(I)*0.5)
    SHO=SINH(RSTAL.(I)*0.5)
    CHB=COSH(BFTAL(T)*C.5)
    T=X/r L
    CBT=COS(RETAL(I)HT)
    SOT=SIN(BETAL(I)MT)
    SHBT=SINH(PFTALIT)=T)
    SHPT = OSSH(BETAL(T)#T)
    G! Tn (2,3,4),J
? IF(I/?*?.EO.I) GO TO 23.
    CN(J=?./SCRT(FMO*EL)*(CBT/CS+CHBT/CHB)
    RE TUON
2: EAU=?./SORT(EMO*FLI*(S马T/SR+SHBT/SHR)
    PFTUPNN
    GNTFY FNUP(X,I)
    J=2
    GO T0 1
    3 TF(T/2*2.EO.I) Gח TO 3I
        ENUP=BETAL(T)/EL/SORT (FMO*EL)*(SHRT/CHB-SRT/CG)
        RFTURN
T: ENUD=RFTAL(I)/EL/SORT(FMO:EL)*(CRT/SB+CHBT/SHR)
    RrTURN
    FNTRY FNUPO(X,I)
    J=2
    Gח TO?
    4 IFII/?*?.EQ.TI GO TI| 4.
        ENUPP=AFTAL(I)*GETAL(I)/EL/EL/SORT(EMD*EL)*(CHHT/CHB-CET/CB)
        RETUPN
4. FNUPP=BETAL(I)*BETAL(T)/EL/EL/SORT(TMO*EL)*(SHBT/SHB-SBT/SB)
    qETUPN
    CND
```

```
    SIJBROUT INE OUTP{X,Y,DERY, IHLF,NDIM,PRMT}
    DI MENSI DN UX(20),UY(20),UZ{20),STA(20)
    DIMENSFON Y(1-1TGERY(I),PRMT(1)
    COMMON/ELAST/NX,NY,OMG(10),OMG1(10), BETAL(10),H ,IPRNT,NOPRNT
    COMMON/AREA/S,SL2,AE,BET,EL,G,SR,PE,VE,DX,PI,EMO,PL,AF,RST,CA,E,ES
    COMMON DELT,DELT1.
    COMMON/PRESS/PLO
    IF(IHLF.GT.10)WRITE(6,100)IHLF
    100 FORMAT(' ERROR IN RKGS IS 'I5)
    NOPRNT=0
    DELT?= NELT+DELTI
    IT=X/DELT?
    ITL=(X-OELTI/DELT2
    IF(IT.NE.IY:)NOPRNT=1
    IF(X.LE.OELT)NOPRNT=1
    IC(NOPRNT.EQ.OJRETURN
    NOPRNT=0
    N:=!l+NX
    NT1=NI+NX
    N? =N7+NX+NY
    N2?=N?+NY
    N3=N?+NY+NY
    N23=N3+NY
    WRITF(6,5555)PLO
55.55 FRRMAT(' PRFSSURE ' E20.5)
    WRITF(G,10:)X,(Y(I),T=1,6),OX,(Y(I),I=7,I.1)
    IFINX.EQ.O.AND.NY.FG.OIRETURN
    XX=-FL*0.5
    00 10 I= 1.?0
    UX(I)=0.0
    UY(I)=0.n
    IZ(I)=0.0
    STA(I)=0.0
    O c.ONTINUE
    J=?
    y= IF(NX.EQ.O) GOU TO ??
    Dn ?: I=?,NX
    ITX(7)=IJX( J) +Y(NX +I)*FMU(XX,I)
    ,7 IF(NY.EQ.O1 CO TO 28
    DO :2 T=?,NY
    UY(J)=UY(J)+Y(N2+I)*ENSS XX,I)
    ?? UZ(J)=UZ(J)+Y(N3+1) =ENU(XX,!)
    20 If (XX.GT. FI*N.5) GO TO ?5
    xx=xx+H
    J=J+!
    STA(J)=STA(J-I)+H*12.
    GO TO 13
    :5 cINTINUE
    JJ=, J
    mo it I={,jJ,10
    KK=I +9
    IF(IABS(JJ-I).LT.IO)KK=J.J
    WRITT(G,IOS)(STA(K),K=I,KK)
```

```
        WRITE(G,T03){UX(K),K=I,KK)
        WRITE(6,] O4)(UY(K),K=I,KK)
        WRITF(6,IO5)(UZ(K),K=I,KK)
    15 CONTINUE
1): FORMAT(1HO,15X,:T1ME= El5.4/
    * POSITION (FTI: X= 'F15.4,' Y= E15.
    $4,' Z= 'FI5.4/' VFLOCITY (FT/SECI: U= 'E.5.4,', V= 'E15.4,
    $: W= 'E:5.4% ANGULAR VFLOCITY (RAD/SECI: ONEGA-X= %F15.4,
    $' IMMEGA-Y= 'FI5.4,' OMEFA-Z= 'EYF.4/' ANGULAR POSITIGNS IRAD
```



```
102 FORMAT(GF2O.7)
102 FORMAT(2X,6HUX(FT),2X,10E??.4)
!\:FORMAT(2X,&HUY(FT),2X,!OF`?.4)
!O5 E:]RMAT(3X,6H|II(FT),2X,1OF??.4)
!OE FORMAT{IHO,RH STA(IN),IOFI?.4)
    qETURN
    CNO
```

```
        SURRIIUTINE ED(CXF,CXB,MACHNO)
        CTMMIIN/FLDST/NX,NY, OMG(IO),OMGI(IO),PFTAL(%O),HH,IPRNT,NCPFNT
        RFAL MACHNO
        C\capMMON/COEF/CFO,CF23,CF23,CF1,CF2,CF?,CF6,CBO,CB13,CB23,CB1,CB2,CB
    $3,CH5
                    GILYNOMIAL APDR!]XIMATIEN
        IF(IPRNT.NE.O)GO TOLI
        TF(MACHNO.GT.!.0) GO TO :O
        CXF=O.5~(9.*CFi+27.*CF13-27.*CF23)*MACHNO%*3-0.5*(9.*CF1+45.*CF13-
```



```
        $35.*CR23)%MACHNOTMACHNO+0.5=(2.*CB1+3.3.*(P13-9.*(C23) *MACHNO+CBO
        Q:TUFN
:0 CXF=(CFG-? .CF3+15.*CF2-G. CF1I-MACHNO/GO.*MACHNO*MACHNO-
    $0.9:(CFG-?5.#(F3+25.*CF?-1!.*CF1)*MACHNONMACHNO+(11.*CF6-2OO.*CF3
    $+405.*rF?-?!A.*CF1)*MACHNO/60.-5.1*CF6+?.*CF3-4.5*CF? +1.g.*CF1/5.
        SXR={CBA-10."CB2+15.4CB2-G. CBI) MMACHNO/GO.%MACHNOKMACHNO-
    $\cap.7*(C40-15**R3+25.*CP2-11.*C81)*MACHNO*MACHNO+(11.*CB6-2OO.*CB3+
```



```
        p=TUPN
2: CXB=0.0
    CXF=O.0
    QrTUPN
    ENTO
```

```
SUBROUTINE ALTIHGT,RHO,PA,TEMP,RHCO,U,MACHNOI
COMMON/FLAST/NX,NY,OMG(1O), OMGI(10), BETAL(IO),H, IPRNT,NOPRNT
REAL MACHNO
RHO=0.27F-2-5EXP(-HGT/2.35E+4)
IF(HGT.LT.O.O)RHO=0.27F-2
IF(IOPNT.NF.C)RHO=1.O
RHON=-2.7/2.35*1.F-7*EXP(-HCT/2. 35E+4}
IF(HGT.LT.O.O)RHON=0.O
IF(IPPNT.NF.O) RHOO}=0.
PA =2.1 162E+3*FXP(-HGT/2.3E+4)
IF(HGT.LT.0.01PA=2116.?
IF(IPRNT.NF.O)PA=0.0
TFMP=PA/32.2/FHO/53.3
IF(IPRNT.NF.O)TEMP=1.0
MACHNO=1/SORT(1.4*32.2*53.3*TEMP)
IF(IORNT.NF.O) MACHNO=0.0
IF(IPRNT.NF.O)RHO=0.0
RFTURN
FNO
```

RKGS
RKG S
RKGS
SUBROUTINE RKGS
PURPDSE
TO SOLVE A SYSTEM OF FIRST DRDER ORDINARY DIFFERENTIAL
EQUATIONS WITH GIVEN INITIAL VALUES.
USAGE
CALL RKGS (PRMT, Y, DFRY, NDIM, IHLF,FCT,OUTP,AUX)
PARAMETERS FCT AND DUTP REQUIRE AN EXTERNAL STATEMENT.
DESCRIPTION OF PARAMETERS
PRMT - AN INPUT ANO OUTPUT VECTOR WITH DIMENSION GREATER OR EQUAL TO 5, WHICH SPECIFIES THE PARAMETERS OF THE INTERVAL AND OF ACCURACY AND WHICH SERVES FOR COMMUNICATION BETHEEN QUTPUT SUBROUTINE (FURNISHED RY THF USFR) AND SURROUTINE RKGS. EXCEPT PRMT(E) THE COMPONENTS APF NOT DESTROYED BY SUBPOUTINE RKGS AND THEY ARE
PRMT (1)- LOWER BOUND OF THE INTERVAL (INPUTI,
PFMT(2)- UPPFR BOUND OF THE INTERVAL (INPUT),
PRMT (3)- INITIAL INCREMENT OF THE INDEPENDFNT VARIABLE (INPUT),
PRMT(4)- IJPPER ERROR BOUND (INPUT). IF ABSOLUTE EPRCR IS GREATER THAN PRMT(4), INCREMFNT GETS HALVED. IF INCREMENT IS LESS THAN PRMT (3) AND ABSOLUTE ERROR LFSS THAN PPMT(4)/50, INCRENENT GETS DOUBLE THE USER MAY CHANGE PRMT (4) BY DUTPUT SURROUTINF.
RPMT(5)- NO INPUT PARAMETFF. SURROUTINE RKGS INITIALIZFS PRMT (5) $=0$. IF THE USEP WANTS TO TERMINATE SUBROUTINE RKGS AT ANY DUTPUT POINT, HE HAS TO CHANGE PRMT (5) TG NחN-ZFRO BY MEANS OF SUBROUTINE OUTP. FURTHER COMPONENTS OF VFCTOR PRMT ARF FEASIRLS IF ITS DIMENSION IS DEFIAED GRFATER THAN 5. HOWEVER SUBRDUTINE RKGS DOES NOT RFOUIRE and change thfm. nevertheless they may be useful FOR HANDING RESULT VALUES TO THE MAIN PROGRAM (CALLING RKGS) WHICH ARE DBTAINED BY SPECIAL MANIPULATIONS WI TH DUTPUT DATA IN SUBR CUTINE OUTP.
Y

- INPIT VECTOR OF INITIAL VALUES. (DESTROYED) LATERON Y IS THE RESULTING VECTOR DF DEPENDENT VAPIABLES COMPITED AT INTERMEIIATE POINTS X.
DEPY - INPUT VFCTOR OF ERROR WFIGHTS. (DESTROYED) THE SUM OF ITS COMPONFNTS MUST BE EGUAL TC 1. LATERON DFRY IS THE VFCTOR OF DERIVATIVES, WHICH BELONG TO FUNCTICN VALUES Y AT A PCINT X.
NDIM - AN INPUT VALUE, WHICH SDECIFIES THE NUMBER CF EQUATIONS IN THE SYSTEM.
IHLF - AN QUTPUT VALUE, WHICH SPECIFIES THE NUMBER CF EISECTIONS DF THE INITIAL INCREMENT. IF IHLF GETS

RKGS
RKGS
RKGS 60
RKGS 70
RKGS 80
RKGS 90
RKGS 100
RKGS 110
RKGS 120
RKGS 130
RKGS 140
RKGS 150
RKGS 160
fKgS 170
RKGS 180
RKGS 190
RKGS 200
RKGS 210
PKGS 220
RKGS 230
RKGS 240
RKGS 250
RKGS 260
FKGS 270
RKGS 280
RKGS 290
RKGS 300
RKGS 310
RKGS 320
RKGS 330
RKGS 340
RKGS 350
RKGS 360
RKGS 370
RKGG 3RO
RKGS 390
RKGS 400
RKGS 410
RKGS 420
RKG $S 430$
RKGS 440
RKGS 450
RKGS 460
RKGS 470
RKGS 480
RKGS 490
RKGS 500
RKGS 510
RKGS 520
RKGS 530

```
                        GREATER THAN IO, SURROUTINE RKGS FETURNS WITH RKGS 540
                        FRRIIR MESSAGE IHLF=I? INTO MAIN PRCGRAM. ERROR RKGS 550
                        MFSSAGE IHLF=1? OP IHLF=13 AFPEARS IN CASE RKGS 560
                        PRMT(3)=0 OR IN CASF SIGN(PFMT(3)I.NE.SIGN(PRMT(2)-RKGS 570
                PRMT(1)I FESPECTIVFLY. RKGS 580
    FCT - THF NAME DF AN EXTFPIUAL SUBROUTINE USED. THIS RKGS 59O
                SUBPDUTINF COMPUTES THE RIGHT HANC SIDES DEFY OF RKGS GOO
                THE SYSTEM TO RIVFH VALUFS X AND Y. ITS PARAMETFR RKGS 6IO
                LIST MUST EF X,Y, OFRY. SURRIUTINE FCT SHOULD RKGS 62O
                NOT RFSTRDY X ANTI Y.
                    RKGS 630
    MUTP - THE NAMF OF NN =XTEFNAL OUTPUT SUGRDUTINE USED. RKGS 64O
        ITS PARAMETER LIST MUST BE X,Y, [ERY,IHLF,NRIM,PRMT. RKGS 650
        NONE DF THFSF PARAMETEPS IFXCFPT, IF NECESSARY, RKGS GEO
        PRMT(\angle),PFMT (5)....) SHOULO RF CHANGED BY RKGS 670
        SUBFOUTINF GUTP. IF PRNT(5) IS CHANGED TO NCN-ZERO,RKGS 6BO
        SUBROUTINE RKGS IS TIRMINATED. RKGS 600
    IUX - AN AUXILIARY STOFAGE ADRAY WITH & ROWS AND NDIM RKGS 7OO
        COLUMNS.
    pCMAOKS
    THF RQOCEDUPF TERMTNATES AND RETURNS TI, CALLING PROGRAM,
    (') MORF THAN !O BISFCTJJNS OF THE INITIAL INGREMENT ARE RKGS 750
        NFGESSARY TO GET SATJ SFACTORY ATCUEACY (ERRCR MESSAGE RKGS 76O
        IHLF=:I),
        (?) INITTAL INGREMENT IS FOUAL TO G OR HAS WRONG SIGN RKGS 78O
        (-FROP MFSSAGES IHLF=12 OR IHLF=13).
    (#1 THF WHOLE INTEGRATTON INTERVAL IS WORKEO THROUGH. RKGS 8OO
    |) SURQOUTINE MUTP HAS CHANGFD PRMT(5) TC NCN-ZERC. RKGS 810
    SUBROIITINES AND FUMCTIGN SUPPROGRAMS RFOUTRED
    THF FXTYRVAL SURFクIITIN:S FCT(X,Y,OLFY) ANO RKGS 84O
    #HTD(X.Y,DFQY,IHLF.NOIM,PRMTI MUST RE FURNISHED BY THE USER .RKGS 85O
RKGS 860
M-THON RKGS 870
    ZVALUATI'N IS DOAE BY MEANS OF FOURTH ORDER RUNGE-KUTTA RKGS GRC
    FORMMLAF IN THE MODIFICATION DUF TD GILLL ACCURACY IS AKGS ROO
    T!-TED CGMPAFING THE RESIILTS TF THE PRUCFDURE WTTH SINGLE RKGS GOO
    ANH DHUPLE INCREMENT.
    GUHPGUT !HE FKKGS AITOMATICALLY ADJUSTS THF INCREMENT DURING
    THF WHMIE COMPIUTATION RY HALVING OR DOUBLING. IF MORE THAN
    :O BTSECTIONS OF THE INCRFMENT ARE NECESSARY TO GET
    SAT:SFACTORY ACCURACY, THE SIRROUITINE FETURNS WITH
    FEROG *rSSAGE IHLF=13 INTO MAIN PROGPAM.
    TU CI'; CULL FLFXIGILITY IN OUTOUT, AN GUTPUT SUBROUTINE
    MUST BE FUENISHEN BY THE IJSFE.
    FQR DEFFPENCE, SFE
    =ALSTCN/WILF, MATHEMATICAL METHDDS FOR OIGITAL COMPUTERS,
```



```
    RKGS 910
    RKGS 920
    RKGS 930
    RKGS 940
    RKGS 950
    RKGS 960
    RKGS 970
    RKGS GRO
    RKGS 990
    RKGS1000
    RKGS1010
    PKrSS1020
RKG5?030
RKGS!040
SIJPRDITINE PKGS(PRMT,Y,DERY,NNIM,IHLF,FCT,OUTP,AUX) RKGSIO50
RKGSI060
```

```
PKGS1071
```



``` Eil \(I \quad I=?\) ，NMTOA
```



```
\(X=\) PPMT（，1）
XFNח＝PRNT（？）
\(H=\square R A!T(3)\)
PPMT \((E)=0\) ．
CALI FCT（X，Y，MEPY）
FRRGETEST
fF（H：\((X E N R-x)) 38,37, ?\)
MOEPADNTIGNS FOP RUNGE－KIJTT A MTHD：
,\(A\left({ }^{i}\right)=.7\)
\(A(2)=? \because 8: ?\)
\(A(\underline{3})=* .7 r 7: \cap 7\)
```



```
\(n(1)=2\).
\(?(2)=\)
\(\dot{E}(3)=1\).
\(3(4)=?\)
\(-(1)=.5\)
```



```
\(r(3)=\bullet .797 \cdot 17\)
\(r\left(\begin{array}{l}\text {（ }\end{array}\right)=\).
P！FPAVATIGA，MF FIRST RUNOT－K！JTTA STLP
1） \(3 \quad[=1, N \cap I \leq 1\)
\(A 11 X(T, T)=Y(I)\)
```



```
1！ \(112,(2)=\) ．
\(\therefore\) AiJX（t．l）\(=-3\) ．
\(\operatorname{corc}=\) ？
\(H=1.1+H\)
THLF＝－，
［GTrロ＝3
\(!-\mathrm{rln}=\) ？
STAPT MF ノ FUNrE－KUTTA STEP
```



```
\(\therefore 11=x\) NO \(x\)
\(\therefore\) TrM！\([\) ：
```



```
7 CALL＇MTF（X，Y，חTFY，IDEC．MのI M，PGMT）
```



```
5．\(\quad T T E S T=O\)
\(\therefore \quad\) STFD＝IST：\(\because+\) ；
FTART TF INNERMOST RUNGF－KIITY LTIOP
```

CKCST080
RKGS1．090
RKGSITOO
RKGSII！O
PKRST 220
FKGSLi？i）
RKGSIT40
RKGSI：50
PKGS 1160
RKGSI170
RKGSI 100
RKGSIT00
QKCS： 200
RKGST？ 10
RKGSI2天n
RKかS？？？O
PKな§！2ட0
QKのS1250
FKGS12 20
RKOS1270
RKG5：2H0
RKRS：290
PKrSS1．30r
RKGS1310
PKSE1320
RKCS：330
PK CS 3.345
PKGST．350
RKGS 1360

RKG5 380
WK CS 1 3re
PKRS：400
RK丁S：41万
RKGSIム？
QKCSI42n

RKGS？ 450
QKG 5 ， 1460
RK．GS． 470
RKGST4RO
RKRS．4．40
RKGG：500
RKCSA510
ロKGS：520
PKGSTE？
RKGS！540）
RKCS：5－
RKGS：5e0
RKGST570
RKGSTEス0
PKCST5GO

```
    J=1. RKGS\60:
    10 AJ=A(J)
        BJ=B(J)
        CJ=C(J)
        OM 1S I=1,NOIM
        QI=H:OERY(I)
        R2=AJ*(RT-RJ**AUX(6,I))
        Y(T)=Y(I)+R?
```



```
    7: AlIX(6,I)=AUX(6,I)+R2-CJ)!R1
        IF(J-4)12,:5,\5
    2 2 J=J+1
    I[(J-3):3,14,13
    *2 X=X+. 5*H
    `< CALL FCT(X,Y,OFRY)
    GOTO 19
F FNO GF INNFRMOST RUNGE-KUTTA LOOP
r
r
C TEST IIF ACCURACY
    IS TEITTESTILG,In,20
C
    IN GASE ITEST=0 THERE IS ND POSSIEILITY FGR TFSTING OF ACGURACY
    :G DO 17 I=?,NOIM
    :7 1!\X(4.I) =Y(!)
        ! TEST=?
        ISTEP=ISTEP+ISTEP-2
        :\Omega IHL.F=IHLF+*
        X=X-H
        H=.5*H
        DR IG I=?,NDIM
        Y(I)=A|X(!,I)
        DERY(I)=AUX(?,I)
    OQ AUX(B,I)=AUX(3,I)
        GOT! ?
    IN CASE ITEST=T TESTING OF ACGJRACY IS POSSIBLE
    20 IMOD=I STEP/?
        IF(ISTEP-IMOD-IMOD)21,23,21
    Z CALL FCT(X,Y,DERY)
        00 22 I=?,NDIM
        A|X(5,I)=Y(I)
    22 AUX(7,I)=DERY(I)
        gotn a
    C
    & COMPUTATICN OF TEST VALUE DELT
    23 DFIT=O.
    OO 24 I=T, NDIM
    24. DFLT=DELT+AUX(R,I):ABS(AUX(4,I)-Y(I))
    IF(DFLT-PRMT(4))28,28,?5
O
    EFROR IS TOO GREAT
    25 IF(IHLF-10)26,36,36
RKGS 1611
RKGS1621
RKGS163
RKGS164:
RKGS165
RKGSS166
RKGS1674
RKGS168
RKGS 1691
RKGS1701
RKGS171:
RKGS172%
RKGS1731
RKGS 1741
RKGS1751
RKGS176:
RKGS1771
RKGSI78,
RKGS1791
RKGSI80%
RKGS181.
RKGS182'
RKGS183'
RKGS184,
RKGS1854
RKGS!861
RKGS1871
RKGS188!
RKGS189%
RKGS1901
RKGS191t
RKGS1921
RKGS193!
RKGS194'
RKGS 1951
RKGS196%
RKGS197:
RKGS1986
RKGS1994
RKGS2000
RKGS2010
RKGS202&
RKGS2034
RKGS204d
RK GS2050
RKGS2060
RKGS ?076
RKGS 2084
RKGS209d
RKGS210!
RKGS211t
RKGS2120
```

```
26 n\ 27 I=? NDIM RKGS2130
7 AUX(4,I)=AUX(5,I) RKGS2140
    ISTFP=ISTEP+ISTEP-4
    X=X-H
    I = ND=0
    GOTO ?.8
    RESULT VALIES ARE GOOD
OC CALL FCT(X,Y, DERY)
    0) 刀二 I=?,NOTM
    A|X(1, I)=Y(1)
    AuX(?,I)= MEPV(I)
    MuX(2,!)=$!]X(A,T)
    Y(I)-4ux(5,!)
20 UFPY(T)=A|X\7,I)
    CAIL DUTPP(X-H,Y,DEPY,IHLF,NDIM,PFMT)
    IF(PRMT(F))4O, ?O,4त
2, DO 3: I=, ,M\capIM
    Y(I) =AUX(1, I)
3! DEPY(I)=AUXI?,I)
    IREC=THIF
    1F(15NO)3?.32,39
    INRREMENT GFTS OMUBLEO
< !HLF=THLF.;
    ICTFD=ISTEO/,
    H=H+H
    IF(IHLE)<, 3x,33
3x [MON= \STrP/2
    TF(T:TER-1MON-TMCN)4,2ム,*
2\angle !F(r-IT-.O2%POMT(L))35,35,*
25 THIF=IHIF.
    ISTFN= [<TrF/つ
    H=H+H
    GワT04
    RFTUPNS IN CMLIING PPOGRAM
3G IHLF=11
    C^LL FCT(X,Y, ПERY)
    GTT 30
37 THLF=1?
    GOT] 39
3E IHLF=13
3O (ALL OUTP(X,Y,DERY,IHLF,NOIM, PEMT)
4G RETUFN
    FND
RKG S2150
RKGS2160
RKGS21.70
RKGS2180
RKGS 2190
RKGS2200
RKGS2210
RKGS2220
RKG S2230
RKGS 2240
RKGS22.50
RKGS2260
RKGS2270
RKGS2280
RK GS2290
RKGS2300
RKGS2310
RKGS 2320
RKGS2330
RKGS2340
pKgS2350
RKGS2360
RKGS 2370
RKGS2380
RKGS2390
RKGS 2400
RKGS2410
RKGS2420
FKGS2430
RKGS2440
RKGS2450
RKG,S2460
RKGS2470
RKGS2480
RKGS2490
RKGS 2500
RKG$2510
RKGS2520
RKGS 2530
RKGS2540
RKGS2550
FKGS2560
RKGS2570
RKGS 2580
RKGS2590
```

```
    SIPROUTTNE FCT(X,Y,DERY)
    REAL WACHNO
    CONMON/AREA/S,SL?,AF,BET,EL,G,S足PE,VE,OX,PI,EMO,PLO,AF,RST,CA,E,E
$S
    COMMON/EL OST/NX,NY,IMMG(ID),DMGI(LO),BETAL(IO),H, IPRNT, NOPRNT
    CCMMTN/INTEG/AIN(8,1O,3O,IO)
    CimMMT/PPGSS/PL
    CIMEAcIGN Y(: ) , DEEY(:O)
    Z=0. 
    7A=5283.8
    T=SO<T(:-2* 7)
```



```
    PI=PL) = (. + + EXD(-Z*(OM*X)*(Z/T*SIN(OMGOFX)-COS(OMGU*X)))
    暗=P!',
    ST=ST?
    ST=SIN(Y(O))
    CT=CTS(Y(U))
    !F(AHS(ABS(Y(心))-PI/2.).LT.7.*PI/IRO.)CT=SIN(PI/2.-Y(9))
    SPH=S\N(Y(?))
    COH=(OS(Y(5O))
    SOS=`\\{Y(: % )
```



```
    SAL M,T(-Y(Z),DHE,PA,FFP, QHOD,Y(4),MACHNO)
    AALL (R(rXI OXXL?,MACHAG)
```



```
    VF\cap=VF+(DF-RA)*AF/EFT/EMT
    O*V=butc% 
    \thereforeRVT=TMV=FL
```



```
& SOH*SDS)
    RGOY(`)=Y(4)*ST*SPS+Y(5)*(SPH*ST*SHS+CPHF(PS)+Y(f)*(CPH*ST*SPS-
$5PH=CDS1
    ORY(:)= Y(A) ST+Y(F):SPH ST+Y(A)*CPHNCT
    #n!=e:H?M: c
    * *ПT= -4\Gamma: - L
```



```
    T}
```



```
4`Y(Q)ध.".5! (SL?-S)
```



```
    O! RY(, )-V(+) :Y(7)-Y(5) & OX+T/FMST
    \Gamma=
```



```
    T-
```



```
    *-L:(C|.2-S):RH!)
```



```
    |F(ABE(AFS(Y(O))-P|/?.).LT.0.087) GO TO ?O
    DE.RY(7)=Y(7)*CDH-Y(9):SOH
    IF(ABS(OEPY(0)).LT.T.F-1O)DGRY(O)=G.O
    OEFY(T) = =X+Y(7)*SPH*ST/CT+Y(B)*CPHEST/CT
    P:RY(: =IY(7) =SPH+Y(\Omega)凶\GammaPH)/CT
```



```
:OERY(O)=Y(7): C.PH-Y(R)=SOH
    OTRY(;))=OX+Y(7) %SPH/Y(G)+Y(F) OCPH/Y(D)
    Rify(:?)={Y(7)=SPH+Y(O)xCPH)/Y(O)
                VX - NUMB:FR ח: AXIAL TFFMS
```



```
: C.JNTINMIE
    * ? = ? *-1 
    |YZ=つ白Y
    VY?=NY?+MIY
    NY&=NYT+NY
    MXY=NX?+NY+17
    WXY?=NXC+NYO+!?
    * \XYY=\X?+4Y 3+:?
    I. Y:Y4=NX?+NY4+:?
    EMU=SORT(?./FMO/ELI
    DXI=PL*AF
    DXP}=PXP-VEQ*RFT*FM
```



```
    On 5% L=1, NX
    |=1
    5!1M=0.0
    IF(NY.50.3) r,n Tח 4%
    On BOLL=?,MY
    T=LL
```



```
    $) - (DERY(S)-OX:Y(7))*Y(I+NXY)
50) SUM= SUM+T :IIM ( 1,J,I,J)
1:O CONTENUJF
    DERY(J+:')= -(PX 2+O:SQ:EXLI):FMU
```



```
        PP=(PX!-Q\divSP&(XX) &EMU
```



```
        TF(J!P&?.NF.J)DFRY(J+!?)=\CRY(J+!?)-PP
```



```
    $ 2,J.J.J)+(Y(7)=Y(7)+Y(R):Y(&))次(J+Y ! +MX)
    DFQY(.j+NX+i!)=Y(J+111)
5% CONTTNHE
IFFNY.EO.O) FETIJRN
    rX=?./SQRT(EMT)
```

```
    PYT= PI*RHO*RST*RST
    SUMI =Y (4)
    SUN ?=Y(5) +Y(8) %FL/2.
    SUM3=Y(6)-Y(7)*EL*0.5
    IF(NX.EG.O)GOTO 67
    OO 53 L=I,NX
    J=L
    IF(J/2:3.NE.J) GO TC 900
    SUMMI=SIJM!+Y(J+IB)*FMU
    SUM% =SUMZ+Y (&)*Y(J+NX+11)*FMU
    SUM3=SUM?-Y(7) =Y(J+NX+'?)=FMU
    ヶ079 52
*M SINNTINUF
    SUM:= SIMM -Y(J+31) -FMU
    SUMP =SUM2-Y(8)*Y(J+NX+11) द EMU
    SiNM=SUM3+Y(7)=Y(J+NX+? ) ) = SMU
: a CNNT TNHE
G7 CIINTTMUE
    O7 54,NJ=?,NY
    J=JJ
    SIMM!=S!1M! + (Y(7) #Y(J+NXY3)-Y(8) =Y(J+NXY)| :TX
    Sun?=SiJA>+(Y(J+NXZ+11)-nX*Y(J+NXYZ))*TX
1. SUM3 = SUM3+(Y(J+NXY2) +חX :Y (J +NXY)) =TX
    PYT=PY!+SUMT+SUM?
    DRI=OY'NSIN1 =SUMz
    TS=?.4SST-RST
    OYZ=DI :RHN*((SST-RST)*TS+PST**2*(1./TS/TS-1./SST/SST))*(-1.)
    SUM1 =Y(4)
    SUM2=Y(5)+Y(S)*FL/Z.
    S!JM?=Y(E)-Y(7)=FL\div0.5
    IF(NX.5O.O) GO TO Sb
    @\cap 5: L=1,NX
    J=L
    SUMT =SUM\ +Y(J+1:1) EFNU
    SUM, =SUMZ+Y(9)-Y(J+NX+1.1)*smU
#n SUM3=51!M?-Y(7)*Y(J+NX+i!)*FMI)
AB rINTTAUC
    07 56 L=1,NY
    J=L
    IF(J/?ニ2.NE.J) GO TO 101
    S!MMl=SIMM]-(Y(7) RY(J+NXY 3)-Y(8)*Y(J+NXY))=TX
    S!M? =SUM?-(Y(J+NX2+!? - OX*Y(J+NXY3))*TX
    SUM2=SUM 2+{Y(J+NXYZ)+!IX*Y(J+NXY))*TX
    G0 TD 56
B CONTINUE
    SUMl = SUM1 + (Y(7)*Y (J +NXYZ)-Y(8)*Y(J+NXY))*TX
    SUM?=SUM? + (Y(J+NX? +1I) - DX*Y (J+NXY 3) ) =TX
    SUM3=SUM2-(Y\ J+NXY2)+OX*Y(J+NXY))*TX
5& CONTIMUE
    SY?=OYO+SUM!*SUM?
    PZZ= PYZ=SUM1 =SUMZ
    EMM=ENS/FNO
    OO 57JI=1,NY
```

```
    I= JI
    OERY(I +NX 2+11)=-RHOO*ES/EMO*Y(I+NX2+11)-(
    $
                                    -EMMM*:Y(8)*Y(8)+OMG靑(I)*OM
    $G1(I)-EMM*(OX*OX+Y(8)*Y(8)))*Y(1+NXY)+2.*EMM*OX*Y(I+NXY2)+((EMM-EM
    $MM ) *Y(7)*Y(8)+RHOD* ES/EMO*OX)*Y(I+NXY3)+PYI#TX
        IF(I/2*?. EQ.I IDERY(I N NX2+1!1=DERY(I+NX2+11)-PY2*TX
        IF(I/2%2.NE.IIDERY(I +NX2+11)=DERY(I+NX2+11)+PY2* TX
        OFRY(I +NXYZ) =-RHOD*FS/EMO*Y(ITNXYZ)-1
    $
    $)-EMM* (חX*OX+Y(7)*Y(7)))
    $
        *Y(I +NXY3)-2. #EMM*OX*Y(I +NX2+11)+(IEMMM-EMM
    $)*Y(7)*Y(B)-RHOD#ES/EMO#ПX)\divY(I+NXY)+PZ1&TX
        IF(I/2*2.EQ.I)DERY(I+NXYZ)=OERY(I+NXY2I-PZ2*TX
        IF(I/2*2.NE.I)DERY(I+NXYZ)=DERY(I+NXYZ)+PZZ*TX
        SUM2=0.0
        SIMM =0.0
        SUM1=0.0
        IF(NX.FG.O) GOTO 62
        OU 5R L=1,NX
        J=L
```



```
    $+11)+RHOD`FS/EMO*Y(8)#Y(J+NX+1?)
    TT=FMM<((DERY(7)-[1X*Y(B)) #Y(J +NX+11)+2.*Y(7)*Y(J+11)) +EMMM*Y(7)*Y(
    5J+11)-RHOD:FS/FMO*Y(7)*Y(J+NX+1?)
        SUM!=SUM!+T*AIN ( I,J,I,J)
        SUM2 = SUM? +Y(J+NX+11)*AIN ( 3,I,J,J)
59 SUMZ=SUM3+TT*AIN ( I,J,I,J)
G? CONTTNUT
    OERY(I+NXP+1: )=DERY(I+NX)+11)-5UM1-SUM2*EMMM *Y(4)*Y(8)
    OERY(I+NXY2)=DEPY(I +NXY2)-SUMZ+SUMZ:FFMMM*Y(4)*Y(7)
    SUMT=?.n
    SUM?=n.0
    SUM5=0.n
    SIMM6=0.0
    O% 59 L=?,NY
    J=t
    T=Y(J+NX?+?)-DX*Y(J+NXYa)
    TT=Y(J+NXY?)+חX*Y(J+NXY)
    D\ 7\capJJ=?,NY
    L=JJ
    SUM3=SU:A 3+T*(Y(7)\divY(L+NXY?)-Y(Z)*Y(L+NXY))*AIN (4, 4,J,JJ)
```



```
    SIMM?=?. त
    S\M%=?.0
    IF(NX.EQ.0) fO TO.63
    ?\ 60 LL =?, NX
    JJ=LL
    S|M2=S|M2+T:Y(JJ+ 1I)*ATN ( 5,I.J.JJ)
5! SUM7=5\M7+TT*Y(JJ+NX+1])*AIN ( 5,I,J,JJ)
5? GUNT TMIE
GO CONTINUF
    SuM=0.:1
    SUM4-0.0
```

```
        IF(NX.:G.O) GOTO 64
        ก] 7: 1=,NX
        J=L
        9] 7: LL=$, NX
        J.J=1.L
        SIM=S!{4-Y(JJ+!1)*Y(JJ+NX+T?)*AIN ( &,I,J,JJ)*Y(7)
```



```
G二 r:NT [N|F
```



```
        CPY(I +NXY?)=חFQY(I +NXYZ)-(SUN+ SUM& +SUN7)=EMMN
```



```
        3(14)=0. %
        S!M{-'和
        4ML=?
        !F(NX.-n.g) rm TME5
        nOT: L=E,\mp@code{M}
        J=l
        )! b. LL=?,NX
        NJ=1L
```



```
    *.1,J., 1)
```



```
        SMm=C!m?+(Y(7):Y(J+NXYZ)-Y(B):Y(J+NXY))=Y(7)*Y(JJ+NX+I!):AIN ( 
    $.!,\J, J
```



```
ASGn!TMNU*
```



```
.7 COATTH:H:
    - r!|N
    1-1!
```

```
    FUNCTION AINT(I,J,K,L)
    EXTFRNNI ET
    CDMMCN/AREA/S,SL?,AE,GFT,EL,G,SR,PE,VE,OX,PI,EMO,PL,AF,RST,CA,E,FS
    CRMMON/FLAST/NX,NY,CMG(1O),OMGl(IOI, BFTAI.(1OI,H.IPRNT,NOPRNT
    COMMINN/FUN/N,I1,I2,13,IP(5)
    BL=-FL`n.5
    !L=-7L
    50 TC 1]0,20,30, 50,60,70,80,901,I
:O RONNTINUF
    FLK= FL\cap\AT (K)
    FLJ=FLOAT(J)
    ELJ4=FLJ*FIJ*FLJ*FLJ
    RL4=BETAL(K) % BETAL(K)
    BL4=3L4*SET4L(K)*BETAL(K)
    PI ?=PI:NT
    PI4=PI?*PI云PI
    AINT=4.*SORT(2.)*FLJ#FLJ*PI2*BETAL(K) /(BL4-FLJ
    $4*PT&)/SIN(RFTAL(K))
    IF(J/?*?.「0.J) GC TC il
    IF(K/?*?.EO.K) GO TO l?
    AINT=0.0
    QETURN
3 AINT=AINT = (1. +COS(BETAL(K)))
    PF TUPA
: IF(K/2*2.FO.K) GOTO 13
    AINT=ATNT%(!.-COS(BETAL(K)))
    RFTUPN
: AINT=0.O
    RETURN
O IFI.J/?*?.FQ.Jl GO TH 2?
    ATNT=-?.*FL*EL./FLDAT(J)/FLOAT(J)/PI/PI*SORT(2.*FMO/EL)
    RF TUPN
2: AINT=0.0
    RFTIJRN
3\cap [F((J/?%2.EQ.J.AND.K/2*2.NE.K).OR.(J/2*2.NE.J.ANO.K/2*2.EQ.K))
    $ GOTO 21
    FIK=FLOAT(K)
    FLJ=F LOAT(J)
    PI4=PI*PI&PI#PI
    FLK4=FLK*FLK*FLK*FLK
    BL4=BᄃTAL(J)*RETAL(J)
    BL4=EL4%BETAL{J)* BETAL(J)
    AINT=-4.*SQRT(2.)*FLK4*PI4/EL/(BL4-FLK4*PI4)
    IF(J/2*2.NF.J.AND.K/2*2.NE.K) AINT=-AINT
    RF TURN
3) AINT=0.0
    RETURN
5^ N=?
    I2=J
    l1=K
    I 3=L
    IP(1)=1
    IP(2)=2
```

```
        IP(3)={
        GO TO iO?
60 FL=FIOAT(1.)
    TA=TAN(BFTTAL(J)=0.5)
    TAL=TAN(BETAL (K)*0.5)
    TAH=TANH(BETAL(J):00.5)
    TAH1= TANH(PETAL(K)*0.5)
    S?=FL*DI-RETAL (K)
    S2=FL*PI+BFTAL(K)
    S3=FL*P [-BETAL(J)
    S&=FL"P|+BFTAL(J)
    R? =PFTAL(K)-FETAL(J)
    B?=RFTAI (K) +RFTAL, (J)
    IF(J/2:?.5\cap.J) GC TO 6?
    IF(K/2*?.EO.K) GO TO 6?
    IF(L/?*?.FO.LI GOTD 6!
    AINT=RFTAL(K)/(RETAL(K)**2+54*S4)+BETAL(K)/(BETAL(K)**2+S3%S3)+
    क SI/(BETAL(J)**2+S?*S1)-S?/(BFTAL(J)**2+S2*S2)+(S4/(BFTAL(K)**?
    $+S4*54.)-S?/(RETAL(K)**2+S *S3))*TA*TAHI+B?/(82*B2+FL*FL*PI*PI)*
```



```
    $PI-R2*&?)
    #/(RETAL(J)<=2+S!*S!)+HFTAL(J)/(GETAL(J)*-? +S!*S2))*TAL*TAH
        AINT=AINT*(-SORT(2./EMO/EI)*RETAL(K)/EL)
        RETURN
AINT=O.O
    RETURN
S2 IF(1/2*2.EO.L) GOTO 64
        \triangleINT=0.0
        RETURN
&4 AINT=RI/(FL=FL*PI*PI-BI*B!)*(TA/TA: - . ) - B2/(FL*FL*PI*PI-B2*R2)*
    $(TA/TA1+T.)+S?/(BETAL(J)**2+S2%S2)-SI/(BETAL(J)*22+S1*S1)
```



```
    &/TAl+BETAL(K)=(1./{BETAL(K)**2+S4*S4)+ L./(BETAL(K)**2+53kS3))+
    $(S4/(BFT AL (K)**2+S4*S4)-S3/(BFTAL(K)**2+S3*S3))*TA/TAH1+B2/(B2*B2
    $+FL*FL*PI*PI)=(l. +TAH/TAHI)+RI/(EI*BI+FL*FL*PI*PI)*(I.-TAH/TAHI)
        AINT=AINT&SOPT(?./FMO/EL)*&FTAL(K)/CLL
        RETUPN
G2 [F(K/2*?.EO.K) GO TG 65
    IF(L/2*2.EO.L) GO TO 66
    AINT=0.0
    RETURN
GE AINT=RFTAL(K)*(1./(BETAI(K)**2+54*S4)+1./(BETAL(K)**2+S3*S3))-
    $(S4/(BETAL(K)**2+S4%S4)+S3/(BETAL(K)**2+S3*S3))*TAH1/TA-R2/(FL*FL
```



```
    &RETAL(J)*{./(BETAL(J)**2+S2*S2)+1./(BETAL(J)**2+S1*S1))*TA)/TAH
    5+Si/(BETAL(J)**2+SI*SI)-S2/(BETAL(J)**2+S2*S2)
        AINT=AINT#SORT(2./EMO/EL)/EL*RFTAL(K)
        RFTURN
65 IF(L/2*2.E0.L) GO TO 67
        ATNT=B2/(FL*FL*PI*PI-B2*B2)*(1./TA/TA1-I.)+B1/(FL*FL*PI*PI-B1*B1)
```



```
    5/TA/TAHI +S2/(BETAL(J)*%2+S2*S2)-S1/(BETAL(J)**2+S1*S1)+BETAL(K)*
```

```
    $(l./(BETAL(K)**2+53*S3)+1./(BETAL(K)**2+54#S4))
    AINT=AINT*SQRT(2./EMO/EL)/FL*BETAL(K)
    RETURN
67 AINT=0.0
    RFTURN
70 IF(J/2*2.EQ.Jt GO TO 73
    IF(K/2*2.FQ.K) GO TO 72
    IF(L/2*?.EQ.L) GOTO 71
    FK=FLOAT(K)
    FL=FLQAT(L)
    PISQ=PI*PI
    SI =FK*PI + BETAL{(J)
    S?=FK*PI - BFTAL(J)
    AINT=?.*FL*PI/EL/SQRT(EMO*EL)*(SI/(S1*S1-FL*FL*PISQ)-S2/(S2*S2
    $-FL*FL*P[SQ)]
    RFTURN
7] FK=FLOAT(K)
    FL=FLOAT(L)
    PISQ=PI*PI
    S!=(FK-FL) %PI
    S?=(FK+FL) <PI
    AINT=2.*FL*PI/EL/SQRT(EMO*EL)*(SI/(BETAL(J)*BETAL(J)+S1*SI)-
    $S2/(BETAL(J)*%2+S2*S2))
    RETURN
?? IF(L/2*2.EQ.L) GO TO 74
    EK=FLOAT(K)
    FL=FLOAT(L)
    S!=(FK+FL)}\approxP
    S?=(TK-FL)}<P
    AINT=-4.*FL*PI/EL/SQRT(EMO*FL)*(SI**3/(SI**4-BETAL(J)**4)-S2**3
    &/(S)\%#4-HにTAL (J)**4|)
    DETURN
7% AINT=9.0
    RFTURN
73 IF.(K/2\div2.FO.K) GO TO 75
    IF(L/2:2.FO.L) r, TO 76
    AINT=0.0
    RETURN
76 AINT= 3.0
    RFTURN
75 IF(L/2*2.50.L) GC TO 77
    AINT=0.O
    RETURN
77 FL=FLOAT(L)
    FK=FLGMT (K)
    SI=(FK-FL)*PI
    ST=(FK+FL) NFS
    AINT=-4.*FL*PI/FL/SQRT(EMD:EL)*(SI**3/(SI**4-BETAL(J)**4)
```



```
    RFTIIRN
3:3 FK=FLOAT(K)
    TA=TAN(BSTAL(J)*0.5)
    TAI=TAN(BETAL(L)XO.5)
```

```
    TAH=T ANH(BETAL(J)*0.5)
    TAH1=TANH(BETAL(L)*0.5)
    SI=FK*PI-BEFAL{才)
    S2=FK*PI+BETAL(J)
    S3=FK*PI-BETAL(L)
    $4=FK*PI+BEFAE(t)
    BL=BETAL(L)-BETAL{J)
    B2=BETAL(L)+BETAL(J)
    IF(J/?*2.EQ.J) GO TG 83
    IF(K/2*?.FQ.K) GO TO 82
    IF(L/2*2.FO.L) GO TD 81
    AINT=FK*P1/((FK*PI)**2-B2*B2)*(1.-TA*TA1)+FK*PI/({FK*PI)**2-
    $B1*BT)*(1.+TA*TAL)-BETAL(J)*(1./(RETAL(J)*2*2+S4*S4)+1./(BETAL(J)
    $** 2+S3%S3))*TA1*TAH+S4/(BETAL(J)**2+S4*S4)+S3/(BETAL(J)**2+S3*S 3)
    $-BETAL(L)*(?./(BETAL(L)**2+S2*S2)+]./(BETAL(L)**2+SI*S!))*TA*TAHL
    $+S2/(BETAL(L)**2+S2*S2)+SI/(BETAL(L)**2+S1*S1)+FK*PI*(1./(B2*B2
    $+(FK*PI)**2)+1./(Bl * B1+(FK*PI)**2))*(1.-TAH*TAHI)
        AINT=AINT*(-FK*PI/EL*SORT(2./FMO/EL))
        RETURN
3) AINT=0.0
        RFTURN
92 IF(L/2*2.FO.L) GO TD 84
    AINT=0.0
    RFTURN
Qx AINT=FK*PI/((FK*PI)**2-B2* S?)*(1.+TA/TA1)+FK*PI/((FK*PI)**2-BI*B1)
    S*(1.-TA/TAII+BETAL(J)*(1./(RETAL(J)#w2+S3*S3)-1./(RETAL(J)**2
    $+S4* S4)|{TAH/TA]-FK*P[*(1./(BETAL(J)**2+S3*S3)+1./(BETAL(J)**2+
    $S4*SA)) +BETAL(L)*(1./(BETAL(L)**2+S2*S2)-1./(8ETAL(L)**2+SI*S1))
    $*TA/TAHI +S 2/(BETAL(L)**2+S2*S2)+S (/ (BETAL(L)**2+S1*S1)+FK*PI/(B2
    &*P2+(FK*PI)**?)*(l. +TAH/TAHI)+FK*PI/(B1*B1+(FK*PI)**2)*(1., -TAH/
    $TAH?)
        AINT=AINT*FK*PI*SQRT(?./EMO/EL)/EL
        PETURN
33 [F(K/?*2.FO.K) GO TO 85
        IF(L/2*2.EO.L) GOTG TS
        AINT=0.0
        RETURN
% AINT=FK*PI/((FK*PI)**2+B2*B2)*(1./TA/TAI-1.)-FK*PI/((FK*PI)**2
    $+B1%R3)*(l./TA/TAI+1.)+BETAL(J)*(1./(BETAL(J)**2+53*53)-1./(BETAL
    5(J)**2+S4=54 ()/TAH/TA1-S4/(9ETAL(J)**2+S4*S4)-S 3/(BETAL(J)**2+
    $53*S3) +8FTAL(L)*(1./(SETAL(L)**2+SI*Sl) -1./(BETAL(L)**2+52*S2))
    $/TAHT/TA-SZ/(BETAL(L)**2+S2*S2)-51/(BETAL(L)**2+S1*S1)-FK*PI/(B2
    $*马?+(FK*FT)**?)*(l./TAH/TAHT +l.) +FK*PI/(G!*B? +(FK*PI)**2)*(l.
    &/TAH/TAHI ?.)
        AINT=ATNT*FK*PI*SQRT(2./EMO/ELI/EL
        RFTURN
05 IF(L/2*2.EQ.L) GO TO P7
            AINT=FK*PI=(1./((FK*PI)**?-R2*B2)-1./((FK*PI)**2-EI*R1)|*(1.t
    &TAI/TTA) +RETAL(J)*(?./(RETAL(J)**2+53*S3)-?./(BETAL(J)**2+54*S4))
    **TAl/TAH+S</(BETAL(J)**2+S4*S4)+S3/(BETAL(J)**2+S %*S3)-BETAL(L)*
    &(?./(BETAL(L)**2+S?*S?)+I./(BETAL(L)+S! #S!))*TAH2/TA-S2/(BETAL(L)
    $**2+52*S2)+SI/(BETAL(L)**2+SI*S1)-FK*PI/(BI*BI+(FK*PI)**2)*(
    &TAHI/TAH-?.)+FK*PI/(B2&B2+(FK&PI)*&) =(TAH1/TAH+1.)
```

```
    AINT=AINT*FK*PI*SQFT(2./EMO/EL)/EL
        RETURN
    97 AINT=0.0
    RETURN
    90 N=3
    I?=K
    I!=J
    I 3=L
    IP}{1)=
    IP(?)=5
    IP(3)=?
    OIMFNSICN AUX(2OO)
    J! CALI QATR(ML,UL,1.E-5,200,FT,Y,IER,AUX)
    IF(IER.NE.OIWRITE(S.100I) TER
IO!: FIRMAT(' FPROR IN QATR IS 'I31
    A INT=Y
    RE TURN
    FNO
```

```
    FUNCTIINN FT(XI
    DIMENSICN IPP\3)
    COMMON/AREA/S,SLZ,AE,BET, EL,G,SR,PE,VE,DX,PI,EMO,PL,AF,RST,CA,E,ES
    COMMON/FUN/N,I1,I2,I3,IP(5)
    FCTT=1.
    IPP(1)=I1
    IPP(7)=1?
    IPP(?)=13
    I=l
    T=X/FL+0.5
    TT=X/EL-0.5
    5 K=IP(I)
    M= [PO(I)
    G0 TR (10,20,30.40,50,50,80),K
\OCTT=FCTT*EM|H(X,M)
    I= I+!
    IF(I.GT.N) GOTO TO
    GO Tn 5
20 FCTT=FCTT*ENUP(X,M)
    T = T + !
    IF{I.GT.N\GO TO 70
    GO TO }
30 FCTT=FCTT*FNUPP(X,M)
    T = I + ?
    IF(I.GT.N)GOTO TO
        GOTO 5
40 P=EM(IXX,M)
    FCTT=FCTT*P
    I= I+l
    IF(T.GT.N) GOTO TO
    TO T \%5
50 D=EMUP (X,M)
    FCTT=FCTT:P
    I= I+1
    IF(I.GT.N) GO TO 70
    O0 T0 5
60 P=1.
    FCTT=FCTT:O
    I= I + !
    IF\I.GT.NI GO TO 70
    GOTO 5
3) p=x
    FCTT=FCTT*D
    I=I+`
    IF(I.GT.NI GO TO 70
    G0 T 05 
7\cap FT=FCTT水FMO
    RETUR N
    FNO
```


References

1. Grubin, C., "Mechanics of Variable Mass Systems," Jour. Franklin Inst., Vol. 276, 1963, pp. 305-312.
2. Dryer, M., "Equations of Motion for an Arbitrary Body of Variable Mass," Martin-Denver Res. Dept. R-61-18, 1961.
3. Leitmann, G., "On the Equation of Rocket Motion," Jour. Interplanetary Soc., Vol. 16, 1957, pp. 141-147.
4. Davis, L. Jr., Follin, J.W. Jr., and Blitzer, L., Exterior Ballistics of Rockets, Van Nostrand Co., Princeton, N.J., $\overline{1958 .}$
5. Seide, P., "Effect of Constant Longitudinal Acceleration on the Transverse Vibration of Uniform Beams," Aerospace Corp., TDR-169 (3560-30) TN-6, 1963.
6. Beal, T. R., "Dynamic Stability of a Flexible Missile Under Constant and Pulsating Thrusts," AIAA Jour., Vol. 3, 1965, pp. 486-494.
7. Miles, J. W., Young, D., Fowler, J.R., et. al., "Generalized Missile Dynamics Series," Space Technology Labs., Vols. I-VII, GM-TR-0165, 1958.
8. Keith, J.s., et. al., "Methods in Structural Dynamics for Thin Shell Clustered Launch Vehicles," Air Force Flight Dynamics Laboratory Report Number FDL-TDR-64-105, April, 1965.
9. Birnbaum, J., "Bending Vibrations of a Perforated Grain Solid Propellant During Powered Flight," IAS Paper No. 61-30, 1961.
10. Edelen, D.G.B., "On the Dynamic Effect of Fuel Flow on the Motion of Boost Vehicles," Rand Corp., RM-3268-NASA, 1962.
11. Price, E.W., "One-Dimensional, Steady Flow with Mass Additions and the Effect of Combustion Chamber Flow on Rocket Thrust," ARS Jour., Vol. 5, No. 2, 1955, pp. 6168, 78.
12. Meirovitch, L., and Wesley, D.A., "On the Dynamic Characteristics of a Variable-Mass Slender Elastic Body Under High Accelerations," AIAA Jour., Vol. 5, No. 8, 1967, pp. 1439-1447.
13. Meirovitch, L., "The General Motion of a Variable-Mass Flexible Rocket with Internal Flow," NASA CR-1528, February, 1970.
14. Meirovitch, L., "General Motion of a Variable-Mass Flexible Rocket with Internal Flow," J. Spacecraft and Rockets, Vol. 7, No. 2, Feb., 1970, pp. 186-195.
15. Meirovitch, L., and Bankovskis, J., "Dynamic Characteristics of a Variable-Mass Flexible Missile," Sixth SemiAnnual Technical Progress Report, NASA Research Grant NGR 36-004-030, December, 1970.
16. Meirovitch, L. and Bankovskis, J.; "Dynamic Characteristics of a Two-Stage Variable-Mass Flexible Rocket," Fourth Semi-Annual Technical Progress Report, NASA Research Grant NGR 36-004-030, August, 1969.
17. Shames, I.H., Mechanics of Fluids, McGraw-Hill, 1962.
18. Gantmakher, F.R., and Levin, L.M., The Flight of Uncontrolled Rockets, Pergamon Press, New York, 1964.
19. Meirovitch, L., Analytical Methods in Vibrations, The Macmillan Company, New York, 1967.
20. Lamb, H., Hydrodynamics, Cambridge University Press, 6th ed., 1932.
21. Munk, M.M., "The Aerodynamic Forces on Airship Hulls," NACA Rept. 184, 1924.
22. Jones, R.T., "Properties of Low-Aspect-Ratio Pointed Wings at Speeds Below and Above the Speed of Sound," NACA Rept. 835, 1946.
23. Bryson, A.E. Jr., "Stability Derivatives for a Slender Missile with Application to a Wing-Body-Vertical Tail Configuration," J. Aeronautical Sci., Vol. 20, No. 5, pp. 297-308, 1953.
24. Nielsen, J.N., Missile Aerodynamics, McGraw-Hill Book Company, New York, 1960.
25. Bisplinghoff, R.L., Ashley, H., and Halfman, R.L., Aeroelasticity, Addison-Wesley, Cambridge, Massachusetts, 1955.
26. Kacprzynski, J. and Kaliski, S., "Flutter of a Deformable Rocket in Supersonic Flow," Advances in Aeronautical Sciences, Vol. 4, pp. 911-926, 1962.
27. Meirovitch, L., Methods of Analytical Dynamics, McGrawHill, New York, $\overline{1970 .}$
28. Ralson, A. and Wilf, H., Mathematical Methods for Digital Computers, Wiley, New York/London, 1960, pp. 110-120.
29. Bustamante, A.C., and Walker, W.E., "Design of the Sandia High-Altitude Sampler Rocket System (HAS)," Sandia Corporation Research Report SC-4589(RR), August, 1961.
30. Early, L.J., "Development of a Small Animal Payload and Integration with a Sounding Rocket," NASA SP-109, 1966.

Figure 1 - The Control Volume

Figure 2 - Noninertial Control Volume

Figure 3 - Two-stage Missile

Figure 4 - The Rocket Element of Unit Length

Figure 5 - Inertial and Moving Coordinate Systems

Figure 6-Coordinate Systems for the Rocket

Figure 7 - Rocket Characteristics

Figure 8 - Axial Coefficient vs. Mach Number

TIME
a.

b.

Figure 9 - Pressure vs. Time

Figure 10 - Altitude vs. Time

$$
t=0.0 \mathrm{sec} .
$$

$t=0.000349$

Figure IIa - Elastic Motions For Missile With Pressure As A Parameter (Case I And Reference 15(4))

Figure IIb - Elastic Motions For Missile

Figure IIc - Elastic Motions For Missile

Figure I2a-Elastic Motions For Missile With Pressure As A Parameter (Cases 2 And 3)

Figure 12b - Elastic Motions For Missile

Figure I2c - Elastic Motions For Missile

Figure Al- The Nozzie

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22151

[^1]: * See References listed at end of this work.

