
III X m
'';ko &f- /n ?6/3

{NASA-CR-128513) ADVANCED DATA MANAGEMENT N72-31228
ISYSTEM ANALYSIS TECHNIQUES STUDY Final
Report (Intermetrics, Inc.) 30 Jul. 1972

-7' p CSCL 09B Unclas

:i6$, G3/08 39632

IlT ERmETRICSaII 3 a -

:°eprodued T.ECHNICAL

INFORMAT ON SERVICE
UINS DOart me of C1ommerC

e

VIIt' ''

https://ntrs.nasa.gov/search.jsp?R=19720023578 2020-03-11T19:30:13+00:00Z

FINAL REPORT

CONTRACT NAS-9-12119

ADVANCED DATA MANAGEMENT SYSTEM
ANALYSIS TECHNIQUES STUDY

30 JULY 1972

Submitted to:

National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas 77058

Submitted by:

Intermetrics, Inc.
701 Concord Avenue
Cambridge, Massachusetts 02138

Note: The Project Manager for NASA was Dr. William J. B.
Oldham, Information Systems Directorate, MSC. The Project
Manager for Intermetrics initially was Mr. Joseph Saponaro,
who was succeeded by Mr. Edward Copps.

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

3?
2-2q I

ACKNOWLEDGEMENTS

Intermetrics personnel contributing to this study were:

Neal A. Carlson, Ph.D.

Edward M. Copps

James T. Pepe, Ph.D.

Joseph A. Saponaro

- Chapter 3

- Chapters 2, 5, 6, 7, 8, 13

- Chapters 1, 4, 9, 10, 11, 12,
14, 16, 17, 19,
Appendices A and B

- Chapters 15, 18

INTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

TABLE OF CONTENTS

Section Page

PART I: INTRODUCTION

1. INTRODUCTION TO SYSTEM ANALYSIS 3

1.0 Introduction 3
2.0 Content of Study 4
3.0 A Step Toward Unity 5

3.1 Statement of Problem 5
3.2 Discussion of Problem 6

4.0 Summary 8

PART II: ANALYTIC TECHNIQUES

2. RELIABILITY ANALYSIS 13

1.0 Introduction 13
2.0 Derivation 13
3.0 Conclusions 18

3. REDUNDANT COMPONENT FAILURE ANALYSIS 19

1.0 Introduction 19
2.0 Summary of Results 19
3.0 Component Failure Statistics 22
4.0 Redundant Computer Failure Statistics 24
5.0 Sample Problem 37
6.0 Integration by Parts 40

4. COST CONSTRAINED RELIABILITY ANALYSIS 43

1.0 Introduction 43
2.0 General Redundancy Considerations 43

2.1 Reliability Equations 44

3.0 The Cost Constraint Problem 47
4.0 Non-Linear Programming Solution 48

4.1 Construction of the Dominating Sequence 49
4.2 Computation of mO 50

5.0 Numerical Example 50
6.0 Maximum Principle Procedure 53

6.1 Regula Falsi Iteration 56

7.0 Example 58
[I I

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Section Page

5. QUEUEING THEORY 61

1.0 Discussion 61
2.0 Erlang's Model 62
3.0 Measures of Congestion 66

3.1 Queueing Time 66

4.0 More Complex Models 67

4.1 Random Arrivals/General Service 67
4.2 Erlang - m Distribution 67
4.3 The Effect of Queueing Disciplines 68

5.0 Priority 71
6.0 Networks of Queues 72
7.0 Finite Queues 74
8.0 Summary 74

6. MACROSIMULATION 77

1.0 Introduction 77
2.0 Example 79
3.0 Computer Simulators 82

3.1 CSS II 83
3.2 IMSIM 83

4.0 Summary 83

7. MARKOV ANALYSIS AS AN ALTERNATIVE TO MACROSIMULATION 87

1.0 Introduction 87
2.0 Random Sequences and the Markov Property 87
3.0 Markov Sequences and Chains 88
4.0 The Generality of Markov Sequences 88
5.0 Methods of Solution for Markov Chains 89
6.0 An Example 90
7.0 Equilibrium Solutions 92
8.0 Comparison with Macro-Simulation 93
9.0 Speed of Solution 94

10.0 Summary 94

8. DISCRETE MARKOV TECHNIQUES IN COMPUTER ANALYSIS 97

1.0 Example 1 97
2.0 Example 2 100
3.0 Comments on the Examples 103
4.0 Characteristic Functions 104
5.0 Further Reading 105

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Section

PART III: HARDWARE TECHNIQUES

9. AEROSPACE COMPUTER ARCHITECTURE

1.0 Introduction
2.0 Structural Levels
3.0 HOL Architecture
4.0 Reliability
5.0 Modularity
6.0 Microprogramming
7.0 Multiprocessor Networks
8.0 Highly Parallel Organization

10. SYSTEM PERFORMANCE MONITORING TO AID OPTIMIZATION

1.0
2.0
3.0

Introduction
Design Issues
Two Approaches to Monitoring

3.1 An Example of Hardware Monitoring
3.2 An Example of Software Monitoring

4.0 Further Examples

4.1 Time - Sharing Performance Monitoring
4.2 Opcode Utilization

5.0 Summary

11. FAILURE DETECTION TECHNIQUES

1.0
2.0
3.0
4.0

Introduction
Diagnosing Sequences for Finite State Automata
Diagnosis Using Augmented Hardware
Additional Detection Methods

4.1 Voting

4.1.1 Detection Level

4.2 Path Sensitizing

5.0 Correction Techniques

5.1 Error Correcting Codes

5.1.1 Distance Codes
5.1.2 Binary Cyclic Codes

5.2
5.3
5.4

Quadded Logic
Reconfiguration
Software Restart

V

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Page

109

109
109
110
111
111
115
115
116

121

121
121
122

123
125

125

127
127

127

129

129
130
138
145

145

148

148

149

149

150
151

154
154
154

Section Pag

5.4.1 Apollo Restart 155
5.4.2 Single Instruction Restart 156

6.0 Additional Applications and Other Topics 156

6.1 Error Propagation 156

6.1.1 Error Correction in High-Speed
Arithmetic 157

6.2 Intermittent Failures 157
6.3 The STAR Computer 157

12. INFORMATION TRANSMISSION BY ORTHOGONAL FUNCTIONS 161

1.0 Introduction 161
2.0 Communication Channels 162

2.1 Entropy 163
2.2 Noisy Channels 164

3.0 Communication Systems 165
4.0 Orthogonal Functions 168

4.1 Orthogonalization 170
4.2 Representation by Orthogonal Functions 170

5.0 Fourier Transforms 172

5.1 Fast Fourier Transforms 173

5.1.1 Computational Savings 174
5.1.2 Hardware Implementation 175

5.2 Video Information 175

6.0 Hadamard Matrices 176

6.1 Hadamard Transforms 177
6.2 Sequency 178
6.3 Fast Hadamard Transform 179

6.3.1 Computational Savings 181

7.0 Advantages and Disadvantages of Orthogonal
Transforms 181

7.1 Bandwidth Compression 182
7.2 Quantization 182
7.3 Channel Noise 183

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Section Page

13. SAMPLED DATA ANALYSIS 187

1.0 Introduction 187
2.0 The Sampling Process 187
3.0 Reconstruction of the Unmodulated Signal 189
4.0 Basic Theorem of Sampling 192
5.0 Noise Into a Sampler 192
6.0 Analysis of Linear Sampled Data Systems 193

6.1 Difference Equations, z and w Transforms 194
6.2 Conditions for Stability of the Equations 195
6.3 w Transforms 195

7.0 Sampled Continuous Systems 196

7.1 An Example 198
7.2 Design of the Compensation 203

8.0 Design Tools 203

9.0 Practical Considerations in Realization of
Discrete Filters 206

9.1 Stability and Coefficient Accuracy 206
9.2 Canonical Forms 208
9.3 Noise Analysis 209

10.0 Summary 212

PART IV: SOFTWARE TECHNIQUES

14. DATA ORGANIZATION AND HANDLING 217

1.0 Introduction 217
2.0 Data Types 217
3.0 Data Organization 219
4.0 Data Handling 222

4.1 Searching 222
4.2 Sorting 223

4.2.1 Interchange Sort 223
4.2.2 Shell Sort 225
4.2.3 Radix Sort 225
4.2.4 Conclusions 225

5.0 Data Set Organization 228

5.1 Sequential Organization 228
5.2 Partitioned Organization 228
5.3 Indexed Sequential Organization 228
5.4 Direct Organization 230
5.5 Volume Structure 230
5.6 Conclusions 230

VII

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Section Page

6.0 Special Data Handling Languages 231

6.1 SNOBOL 231

6.1.1 Examples of String Manipulation
within SNOBOL 231

6.2 FILLIP 232
6.3 Extensible Languages 232

15. THE ROLE OF HIGHER ORDER LANGUAGE PROGRAMMING
IN AEROSPACE COMPUTERS 235

1.0 Introduction 235

2.0 Languages Needed for Advanced Space Flights 236

2.1 Role of the Crew Language 236
2.2 Crew Language Requirements 237
2.3 Role of the Software Development Language 238

3.0 Justification for Using a Higher Order
Programming Language 238

3.1 Higher Order Programming Language
Experience 240

4.0 Single Compiler Approach 241

4.1 Systems Programming 242

4.1.1 Approach to Systems Programming 243

5.0 Advantages of the HOL and Compiler to
Software Modularity 245

5.1 Apollo Experience 245

5.2 Software Modularity 245

5.2.1 Independent Compilation and the
Compool 245

5.2.2 Blocks Structure (Name Scope) 246
5.2.3 Control of Shared Data 250
5.2.4 Access Rights 250
5.2.5 Automatic Checking 250

5.3 Additional Advantages of the HOL Approach 253

5.3.1 Management 253
5.3.2 An Improvement in Communications 253
5.3.3 Prevention of Errors by Readability

of Code 254

5.4 Summary 254
H)l

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Section Page

6.0 Checkout Languages 254
7.0 HOL Compiler Implementation 255

7.1 Compiler Problem 255
7.2 Approaches to Efficient Code Generation 256

7.2.1 The Concept of an Intermediate
Language 256

7.2.2 Characteristics of Compact Form 257

7.3 Implementation Factors 257

7.3.1 Software Interpreter 257
7.3.2 Hardware Implementation and Use

of Microprogramming 258
7.3.3 An Interesting Example 259

16. THE DESIGN OF AN ADVANCED AEROSPACE EXECUTIVE SYSTEM 261

1.0 Introduction 261
2.0 Design Criteria 262
3.0 General Description of the Executive System 263

3.1 Identification of Executive Program Modules 264
3.2 Executive Operating Environment 265

4.0 Definitions 265

4.1 Executive Queues 266
4.2 Common Data Pool 266
4.3 I/O Request Block 268

5.0 General Discussion of Executive Design Issues 268

5.1 Interrupt Handling and Task Dispatching 268
5.2 Resource Allocation 270

5.2.1 Deadlock 271
5.2.2 Memory Fragmentation 271
5.2.3 Priority Conflict 272

5.3 Allocation of Specific Resources 272

5.3.1 Dynamic Memory Allocation 272
5.3.2 Common Data Sharing 274
5.3.3 Data Set Management 278

6.0 Features of the Executive System 279

6.1 Directories 279

6.1.1 The Program Module Directory 279
6.1.2 The Data Set Directory 281

iX 6.1.3 The Dynamic Core Directory 281

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

Section Page

6.2 Subroutine Linkage 281
6.3 Common Subroutines 281
6.4 Task Priority Levels 282
6.5 Assignment of Core Memory 283
6.6 Events 285

6.6.1 Event Handling 285

6.7 I/O Scheduling 289
6.8 Configuration Management 290

17. MICROSIMULATION IN SYSTEM DESIGN 293

1.0 Introduction 293
2.0 Features of the Microsimulator 294

2.1 User Options 294

2.1.1 Stress Testing 295
2.1.2 The Coroner Request 295
2.1.3 An Alternative Approach to

Diagnostics 295

2.2 The Environment 296
2.3 Rollback 298
2.4 Supporting Software 298

3.0 Design Issues and Structure of the
Microsimulator 299

3.1 Logical Structure 299
3.2 Coding in a Higher Order Language 303
3.3 Modularity 304

4.0 The Software Design Process 305

4.1 Overuse of Simulation 307

5.0 Factors Influencing Simulation Speed 307
6.0 Simulation and Microprogramming 308
7.0 Advantages of Microsimulation 308
8.0 The Poseidon System 309

18. BENCHMARK PROGRAMS AS AN AID TO COMPUTER
PERFORMANCE EVALUATION 313

1.0 Introduction 313
2.0 Review of Computer Performance Evaluation

Techniques 315

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Section Page

2.1 Cycle and Add Time Comparisons 315
2.2 Instruction Mixes 315
2.3 Benchmarks 319

2.3.1 Kernel Problems 319
2.3.2 Existing Programs 321
2.3.3 Synthetic Benchmark Programs 321

2.4 Simulation 322
2.5 Performance Monitoring 322

3.0 Review of the Problems of Evaluation Techniques 322

3.1 Benchmark Programs and Problems 323
3.2 Cost of Determining Performance Evaluation 323

4.0 Higher Order Language Benchmarks for Aerospace
Data Management Systems 324

4.1 Hand Compiled HOL Benchmarks 324

4.1.1 Sample FORTRAN Benchmark 325

4.2 Statistical Approach to HOL Benchmark 327
4.3 Problems with the HOL Benchmark Approach 330

PART V: FACILITIES

19. FACILITIES NEEDED FOR SYSTEM ANALYSIS 335

1.0 Introduction 335
2.0 System Design Phases 335
3.0 Needed Facilities 336

3.1 The Digital Computer Facility 336
3.2 The Hybrid Computer Facility 336

3.2.1 Types of Hybrid Computers 337
3.2.2 Apollo Hybrid Simulations 337
3.2.3 An Additional Feature of the

Hybrid Facility 338

3.3 The Use of a Microprogramming Computer 338

PART VI: APPENDICES

Appendix A 343

Appendix B 349

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

TABLE OF ILLUSTRATIONS

Figure Page

1.1 Communication and Computation System 9

(Elements and Interactions)

4.2 Parallel-Series Configuration 45

4.3 Dominating Sequence Table for Stages 1 and 2 52

4.4 Dominating Sequence Table for all 3 Stages 54

4.5 Regula Falsi Iteration 57

5.1 Poisson Distribution 63

5.2 Erlang-m Distribution 68

5.3 Queueing Time 69

5.4 Queue Length 70

5.5 Multiple Server Queue ,73

5.6 Branch & Merge Points 73

6.1 Creating the Job Stream 80

6.2 Complete Block Diagram 81

7.1 Subroutine Example 90

8.1 Flowgraph for Subroutine 97

8.2 Block Diagram for Subroutine 100

8.3 Transition Diagram for Queueing Example 101

9.1 Architecture of Star Computer 112

9.2 D-Machine Architecture 113

9.3 Interpreter Organization 114

9.4 Architecture of AADC 117

9.5 Organization of an Associative Array Processor 118

10.1 Translation of address (s,w) by
MULTICS, where n = page size 124

10.2 Multics Performance with Various Associative
Memory Sizes 126

V 11i

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Figure Page

11.1 State Diagram of M1 132

11.2 State Diagram of M
2

133

11.3 State Diagram of M
3

134

11.4 Construction of Distinguishing Sequence for M2 135

11.5a State Table for M4 137

11.5b Response of M 4 to 10 137

11.6a Machine M 139

11.6b Machine M' 139

11.7 State Diagram of M5 141

11.8 Testing Graph of M5 143

11.9 Voter Configurations 146

11.10 Network to Illustrate Path Sensitizing 153

11.11 Shift Register to encode (7,4) cyclic code
generated by x3 + x + 1 153

12.1 Hadamard Transform Computational Sequence 180

12.2 Computation of One Dimensional,
Third Order Hadamard Matrix 180

13.1 Components of a Digital Control Element 187

13.2 Waveforms of the Input and Output of a
Sampling Device 188

13.3 The Amplitude of the Fourier Transform of x(t) 188

13.4 The Amplitude of the Fourier Transform of y(t) 189

13.5 The Spectrum of a Sampled Signal 189

13.6 A Sampled Signal 190

13.7 A Zero'th Order Hold Reconstruction 190

13.8 A First Order Hold Reconstruction 190

13.9 A Smooth Fit 191

13.10 Another Signal that Could Produce the Same Set
of Samples ~ 191

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Figure Page

13.11 Effect of the Overlap on the Frequency Spectrum 192

13.12 Aliasing of High Frequency Noise 193

13.13 A Digitally Controlled System 193

13.14 Continuous Portion of the System 196

13.15 Partial Fraction Form 197

13.16 Reduction to a Discrete System 197

13.18 Pershing Autopilot 198

13.17 Continuous Systems 199

13.19 Bode Plot, Descrete System 201

13.20 Nichols Chart Discrete System 202

13.21 Nichols Chart Discrete System 204

13.22 Filter Implementation 205

13.23 Operational Processes 207

13.24 Canonic Form 210

13.25 Pickoff Noise Input 30.5 samples/sec 211

14.1 Threaded List Structure 220

14.2 Example of a Tree Structure 221

14.3 Comparison of Search Times 224

14.4 Example of a Shell Sort 226

14.5 Example of a Radix Sort. 227

14.6 Example of a Partitioned Data Set 229

15.1 Program Organization 247

15.2 Scope of Names 248

15.3 Example of Name Scope 249

15.4 Background in Problems of Controlled
Shared Data · 251

15.5 Use of Update Block to Avoid Data Conflicts 252

16.1 Task State Transition Diagram. 267
XIV

INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 '(617) 661-1840

Figure Page

16.2 Control of Shared Data 277

16.3 System Director Elements 280

16.4 Structure of Operating Memory 284

16.5 Format of Event Control Block 286

16.7 Format of Event Descriptor Byte 286

16.6 Event Handling 288

17.1 The Apollo Digital Simulator 297

17.2 Basic Simulator: Input, Simulator, Output 300

17.3 Simulator Logical Partitions 301

17.4 Simulator Physical Control Flow 302

17.5 Software Development Phases 306

17.6 Poseidon Assembler and Simulator Configuration 310

17.7 Poseidon Simulator Configuration 311

19.1 Apollo 204 Command Module Entry Simulator
Configuration 339

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

PART I

INTRODUCTION

-1-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138.- (617) 661-1840

PRECEDING PAGE BLANK NOT FITh,MM

CHAPTER 1

INTRODUCTION TO SYSTEM ANALYSIS

1-1.0 Introduction

With the continuous advance of technology more and more
automation is being introduced into our society. Combined
electrical and mechanical systems have been implemented which
reach all of us; e.g., billing by computer, satellite commu-
nications, medical information, air traffic control, etc.
The extent to which these large systems have evolved and
influenced our society should not be a surprise. They were
predicted by Norbert Wiener [1-3] over ten years ago. Moreover,
the future should see more of these systems designed and built
to assist man in his everyday life.

The methods that have been developed and used in design-
ing these systems constitute a major part of our engineering
literature. However, the system designer wishing to
learn these methods faces an enormous literature search to
find the significant papers. Hundreds of journals and text-
books dealing with system design have already been published,
and many more appear each year. To investigate this entire
literature would be a large, time consuming task. So far
no publication has summarized the major design techniques
and experience in a single volume to aid the student of system
design. Indeed such an undertaking would be very ambitious
considering the diverse areas in which large systems have
been applied. Yet, some of the known design methods in a
specific discipline, such as aerospace computer design, could
be consolidated in a single volume. If this information is
supplemented with practical experience gained in implementing
such systems, the resulting publication would be a valuable
aid to the aerospace computer designer. He could easily find
specific design methods related to his field of interest and
the results of having used these methods in the past.

Preceding page blank
-3-

INTERMETRICS INCORPORATED 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The purpose of this document is to provide such an aid
for the system designer. Specifically, we will concentrate
on analysis techniques for aerospace data management systems.
The known analysis and design methods in this area will
then be combined with our own experience in designing and
implementing the Apollo Guidance System to produce the final
contents of this document.

1-2.0 Content of Study

Trying to answer the question of "what is system design",
in all but the trivial sense, is perhaps as difficult as
trying to answer the question of "what is a system". The
answer is ellusive because systems take many forms and to
include all these in a single definition is difficult. A
general purpose computer with all its peripherals is a system,
as is its software operating system. Then again, the combined
hardware/software may also be considered a system but on a
higher level. As a further example consider the navigation
and guidance hardware for a spacecraft which includes gyros,
accelerometers, autopilot,etc. This is certainly a system
composed of each of its subsystems.

We will not attempt a precise definition of a system
here. Instead, we will rely on our intuitive concepts of
what a system is when discussing data management system
analysis and design, the main focus of this document. That
intuition tells us that in a trivial sense a system is an
organized collection of interacting elements [4]. The word
analysis stems from the ancient Greek words that mean "to
break up", and the modern usage is best described as "sepa-
rating a complex into its constituants and examining these
elements and their inter-relationships in forming the whole."
In this sense, analysis is a feedback procedure in the design
of engineering systems: The system must exist before it can
be analyzed.

Synthetic procedures for data management systems are
not complete enough to be described as a collection of precise
procedures. The synthesis or creative process must be, for
the most part, left to the genius of the designer. Where
synthetic techniques exist, we have included them in this
report.

Since systems take many forms; e.g., computation,
communication, control, etc., many methods for system design
have been developed. Not all these methods are applicable
to every system that is to be implemented. However, each
method has proven its value under specific design conditions.
Examples of these methods are:

a. simulation

b. performance monitoring

c. reliability analysis

d. redundancy

e. benchmarks, etc. -4-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

In our study we will survey the state of the art of
12 such design techniques. Each chapter will deal with a
specific technique, and numerous examples will be cited
of how these techniques have been successfully used implement-
ing large systems. No chapter exhausts the known information
on a topic since this would require a text devoted to each
topic. Hence, a bibliography is provided with each chapter
to direct the reader to further information on these design
methods. In addition, two appendices provide bibliographies
on important areas in which the designer should be know-
ledgeable but are beyond the scope of this contract to
include as chapters of this document.

1-3.0 A Step Toward Unity

There is a certain danger in presenting the variety of
topics that we will present in this report. Such a presenta-
tion can lead the reader to the conclusion that system analysis
is an incohesive process involving the application of seem-
ingly unrelated methods. To avoid this thought we now stress
the overall unity that the system design process should have.
Each analysis technique that we will present is a part of this
overall process, and the designer uses these as appropriate
system questions arise. Each step of analysis that he performs
using these methods, with which he should be familiar, is an
important step bringing him closer to achieving the complete
design of his system. We hope the reader will keep this point
of view in mind when reading this study.

To unify the system design methods which we will present,
we begin by describing a hypothetical system that we wish
to build. The statement of the problem will lead us'to an
understanding of the necessary elements of the system. Then
we will see which design methods enable us to optimize the
specification of these elements and their interactions.

1-3.1 Statement of Problem

A manned scientific laboratory is to be put in orbit
around Mars. Its purpose is to observe the planet and
conduct scieitific experiments. Visual data of the planet's
surface as well as the results of the experiments will be
transmitted back to Earth. In addition, the crew on board
the laboratory will receive communications sent from Earth
to start, stop or modify the experiments based upon previously
collected data.

-5-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

This laboratory must be designed for at least five years
of use and have safety features to safeguard the lives of
its crew. Some of the experiments it will conduct are the
following:

a. study atmospheric phenomena of Mars;

b. study terrain for possible future landing site;

c. identify and investigate any life forms on the
planet;

d. monitor quasi-stellar objects existing beyond our
solar system;

e. study the composition and distribution of inter-
stellar matter; etc.

In general, this laboratory will conduct experiments to try
to answer some of the important questions of planetary geology
and astrophysics [5]. Our problem is to determine the
computational systems necessary to support this laboratory.
A first step is to understand its computational requirements,
and then we can decide upon the needed hardware and software.
We begin this analysis by further reflection upon the above
problem.

1-3.2 Discussion of Problem

The requirements for at least five years of use demands
that the system design must employ reliability analysis.
Failure detection methods must be built into the system and
recovery algorithms established should a failure occur. This
detection and recovery is especially important for the life
support systems. Since the laboratory will be placed in orbit,
size, weight and power consumption might well be constraints
around which the overall system must be designed. This fact
implies a cost constrained reliability analysis is necessary.
That is, the most reliable system is desired which does not
exceed the given design constraints.

The large amounts of scientific data that must be
transmitted back to Earth could pose a communication bandwidth
problem. A solution is to process as much of the data as
possible on an airborne computer in the laboratory. Then only

-6-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

the computed results have to be communicated, thus reducing
the amount of information that needs to be transmitted. In
addition, these results will tell the crew of the laboratory
how to optimally conduct their future experiments.

The algorithms for the airborne computer must be
designed and their execution rates determined. This informa-
tion along with reliability requirements will help determine
what computer should be chosen. (Computer reliability is
crucial since experiments conducted in real time can be
invalidated because of a computer failure for a sufficiently
long time.) The choice can be aided by constructing a data
book containing the characteristics of available aerospace
computers. Part of this data would be the results of running
benchmark programs on each of the candidate computers. These
benchmarks measure performance characteristics under various
computational loads. All of this data will then enable an
intelligent choice of the airborne computer chosen.

The data may alternatively indicate that there is no
available computer that can do the given job. In this case
an aerospace computer with the designed characteristics will
have to be designed and built.

The use of an airborne computer raises several software
system issues. An executive system must be designed and
implemented to control execution of the necessary processes.
In addition, the data formats to represent scientific infor-
mation within the computer must be specified so that program
design can be optimized. Finally, the software system designer
must decide if a higher order language will be used to
encode the computer's algorithms. When all these issues
have been settled, work on the software system can proceed.

The communication system between the laboratory and
Earth raises additional questions. Visual and scientific
data will be transmitted to Earth, and the laboratory will
receive information from Earth partially directing its
experiments. To insure economy in the transmitted data and
reduce signal distortion from atmospheric and galactic
sources, transform methods might be needed to encode transmitted
data. If this is the case, more decisions must be made
concerning what transform to use and whether to implement it
in hardware or software.

On the other side of the communication link the data
received on Earth must be further processed to provide

-7-

INTERMETRICS INCORPORATED '701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

scientists with valuable information on the nature of Mars,
the solar system and the galaxy. Since large amounts of
data can be expected, a sufficiently powerful computer is
necessary to process this data. This computer will probably
be a commercial machine with an already existing operating
system. However, the software for processing the received
data will have to be designed and implemented, depending upon
the algorithms provided by the scientists directing the experiments.

Once these systems have been specified, their overall
design and performance must be verified. Microsimulation
is the best method for the airborne computer. This is a
standard way of verifying aerospace computer software. On
the other hand, the overall system can be modeled using
Markov analysis and queueing theory. Then the model can be
simulated on a large commercial computer yielding valuable
data on the expected performance of the entire system. Most
importantly, this simulation will show if the system has been
properly designed by showing whether it can successfully
meet the computational needs of the orbiting laboratory.

1-4.0 Summary

The overall communication and computation system required
is shown in Figure 1.1.We have arrived at the necessary
elements and their interactions from an analysis of the given
problem combined with our knowledge of system analysis tech-
niques. As we have seen, the design of this entire system
has many phases and requires many design and analysis methods.
The system designers must be familiar with the proper use of
all of these methods. This knowledge combined with an under-
standing of the given problem will help insure
system design.

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

4o
4J

rO
 U

E
-e

W
.

WHI-U
)

rd
4JU

)

U
)04

-O

O
r

m

H

4J

04)rOW

U
'

-
_

E
H

P:W

4)0U

-9
-

REFERENCES

1. Wiener, N., The Human Use of Human Beings, (Houghton
Mifflin Co., Boston, 1950).

2. Wiener, N., God and Golem, Inc., (M.I.T. Press,
Cambridge, Mass., 1964).

3. Wiener, N., Cybernetics, 2nd ed., (M.I.T. Press,
Cambridge, Mass., 1961).

4. Von Bertalanffy, L., "General System Theory", in Main
Currents in Modern Thought, 71(75), 1955.

5. Sciama, D.W., Modern Cosmology, (Cambridge University
Press, New York, 1971).

-10-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

PART II

ANALYTIC TECHNIQUES

-11-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

*I'tC2 LDLNG PAGE BLANK NUT rLi'lxiED

CHAPTER 2

RELIABILITY ANALYSIS

2.1.0 Introduction

Reliability analysis is one tool in the kit bag of the
system designer. It is useful when considering many problems
associated with Data Management such as redundancy, on board
checkout, switch over policy and so forth. This chapter develops
an approach to reliability analysis that is useful under circum-
stances that arise frequently. These results will then be
expanded in Chapter 3.

A typical problem in reliability analysis is the computa-
tion of the probability of failure as a function of time of a
system of components, each subject to random failure, characterized
by a failure rate X or its inverse, the mean time to failure, T .
Solutions to this problem can be obtained in the general literature.
This chapter considers a somewhat different problem statement:
Suppose that a system of m components are arranged in parallel
(redundantly). What is the average time it will take for only
n of these components to be left. We will develop a general
solution to this problem, a simple approximate solution, and an
illustration problem that shows that the formulae derived are use-
ful for a class of problems encountered in space flight.

2.2.0 Derivation

We will start with a formula that describes the probability
that exactly n systems remain out of m, as a function of time.

Pn/m m) (-xt) m-n (e -nXt (2.1)

The three terms in this product are first: the binomial
coefficient which enumerates the number of ways that n specific
components can be permutated out of m components, second: the
probability that at least m-n components fail, third: the probability
that at least n components have not failed.

We now note that the probability that the (n+l)th component
fails in time t+At, as a function of t is the probability distribution
function for the random variable, the failure of the (n+l)th component.

Preceding page blank
-13-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840

This function is the product of the probability that exactly n+l
systems exist at t and that one fails in t+At. Using equation
(2.1) this can be seen to be

P[n/] = e -Xt m-(n+l) e -t(n+l)n+ l) A, (2.2)

where we let At = 1.

The terminology P [n/m] is used because the event that the (n+l)th
component fails is the event that the system makes the transition
to n systems remaining. Note that P n/m and P [n/m] mean different
things and have different formulae. We now compute the mean time
to "come down to" n components from m. The mean is by definition:

Tn/m = ft P[n/m] (t) dt (2.3)

The integral need only be taken over positive time since
P = 0 for t<O.
[n/m]

Substituting (2.2) into (2.3) we obtain

Tn/m =X (n+l
(n+l)J t (1-e-

A
t) m-n-l eA

t (- n -l) dt.

Rearrangements yield

Tn/m= (n+l)n/mn n+l f t (eXtl) m-n-l - tm
e dt, and

the term (eXt-l)m - n - l

(eAt_l) m-n-l
m-n-l

= z
j=0

can be expanded in a binomial series as

m-n-l Jt (m-n-l-j) (

This permits after more manipulation,

m m-n-1 l
Tn/m =) (n+l) (n+l) (-) tet(nlJ) dt (2.7

j=-wt

The integral - te Wtdt can be shown

to be equal to 1
2w

-14-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

(2.4)

(2.5)

(2.6)

Using this fact, we can write

m
Tn/m = (n+l) (n+l)

m-n-1

j=0

(_1)j 1-)i 1(n+l+j)
(n+l+j)2 I (2.8)

In equation (2.8) we have stated the desired result non-
dimensionalized by dividing by T, the mean time to failure. Table
1 presents values of Tn/m for values of m, the number of components
started with, and n, the number of components which defines the time
when the mission must be ended.

+ Start with

End

with

1 2 3 4n

0 1 1.5 1.83 2.08

1 0 .5 .84 1.1

2 0 .33 .60

3 0 .25

TABLE 1: Values of Tn/m for small m, n

Equation (2.8) is not difficult to evaluate numerically for
small m and n. However, it can be tedious for large values. We
will therefore turn to the evaluation of a somewhat similar parameter
which has the virtue of being computable using natural log tables.

We begin again with equation (2.2). This time we compute the
time that it is most likely that the system makes the transition from
n+l components unfailed to n components unfailed. The maximum likely-
hood occurs where

dP [n/m /dt = 0 (2.9)

We solve for condition (2.9) and obtain the desired relationship

Tml/ T = ln(n+l)ml n+l (2.10)

-15-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

We note that T / T is single valued, and therefore no question need
arrise about reiative maxima. Table 2 presents values of Tml / in a
manner similar to Table 1.

End
With

+

- Start with -

n] 1 2 3 4

0 0 .69 1.1 1.38

1 0 .40 .69

2 =0 .28

3 j _____- 0

TABLE 2: Values of Tml/T for small m, n

It will be seen that the maximum likelyhood formula yields a
smaller T/T than does the mean. In fact, the value Tn/m/T lies some-

m m
wnere between ln(n-m) and ln(-), which is proved in Chapter, 3.

n+l n

The logarithmic character of the Tml/T formula points out
quite clearly the well known difficulty associated with obtaining
lifetimes long with respect to T. The ratio of m to n must be
squared to double the "lifetime of the system", and so forth.

We now turn to an example problem that illustrates the
significance of these results. It has been determined that a piece
of equipment is necessary during re-entry from space. It has a
T = 1000 hours. Re-entry takes one hour. The probability that the
equipment fails prior to or during re-entry must be kept below .001.
The equipment can be considered to be redundantly spared with no
reliability associated with switch over. Compare the redundancy
required for the following missions:

-16-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Mission : A space flight of 1000 hours. Once the
trip begins it cannot be shortened.

Mission) : A space flight which can be terminated
at any time (by a one hour re-entry)
if necessary because of equipment
failure. The equipment must be spared
such that the average time until termination
due to equipment failures is 1000 hours.

We consider mission ® first.

Step 1: Calculate the number of components necessary at the
beginning of re-entry to assure no worse than .001 probability of
failure.

Pf = (1-et/Tn

Try n=l:

Pf = .001; which is o.k.

Step 2: We now compute how many we have to start with (m) to end
up with the one we need. Table 1 indicates that 4 systems will yield
an average lifetime of 1100 hours.

We now turn to mission . We compute the probability that all
m systems fail in 1001 hours.

P = (l-e-t/T)m

For our problem Pf < .001. We compute:

log (Pf)
m <

log (l-e- 1 0 0 0 / 1 0 0 1)

m < 16 + = 17 systems.

We see that 17 systems are required to achieve specification
, while 4 are required to achieve specification ® . It makes a

difference how the requirements are stated. Mission ~ is more
like what might be desired for a near earth mission such as a space
shuttle.

-17-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

2.3.0 Conclusions

This chapter illustrates an approach to reliability analysis
which emphasizes the situation where the length of the mission is a
random variable whose length can be characterized by statistical
parameters. This approach permits the designer some increased
latitude in formulating redundancy policy, as shown in the examples.
However, one should examine higher statistical moments of equation
(2.2) in order to be certain that the standard deviation is stable
and that the mean is useful in characterizing the distribution. This
has not been done although the method of integration by parts described
after equation (2.7) would apply as well to higher moments. Therefore,
the obtaining of higher moments is straight forward.

-18-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

CHAPTER 3

REDUNDANT COMPONENT FAILURE ANALYSIS

3-1.0 Introduction

Required system reliability often must be achieved through
redundancy of critical subsystems or components. Typical
questions then to be answered by the system designer are these.
How many redundant components are necessary to provide a speci-
fied operating lifetime with a prescribed probability of success?
Conversely, what minimum lifetime can be guaranteed with a
prescribed confidence level for a given number of redundant
components? What mean lifetime can be expected for this number
of components? The design parameters of interest are clearly
interrelated, and include the following:

m original number of redundant components

n number required for successful operation

T operating lifetime

T mean time to failure

P probability of success (operation)

Q l-P, probability of failure

3-2.0 Summary of Results

A single component exhibiting an exponential failure rate
has the following probabilities of successful operation p and
failure q during a time interval t,

-At
p = e (3.1)

q = 1 - p = 1 - et (3.2)

-19-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

where X is the mean rate of failure. The mean time to failure
T is

T = 1/X (3.3)

The minimum component lifetime T during which the probability
of success is > P, or probability of failure is < Q = 1 - P, is

T = -TnP= +12 13T = -T kn P = Tr (Q +1 2 1 3 ..
2 Q 3- (3.4)

Given m identical redundant components characterized by
the exponential failure rate above, the probability that exactly
n remain in operation (i.e., that m-n fail) during a time
interval t is

Pn/m = (m) n qm-n

(m) e t n
n (e

-t -n
(l-e

The probability that at least n components remain operational
during t (or that at most m-n fail) is

m

k=n k) P (3.6)

n-l

- (mk)k m-k
k=0 k

The time of maximum probability that exactly n components
remain unfailed, and that probability, are

* rn
t =T n m
n/m n

(Pn/rnmamx (m) nn (m-n) m-n/mmnmmax n

(3.7)

(3.8)

-20-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The mean time to failure of one of the remaining n
components, i.e., the mean time for the system to degenerate
to n-l components, is Uiven by

nl/m = (n + n+ + + m (3.9)

This time can be bracketed by logarithmic bounds,

m+l m
T Zn n < < T Zn

n n-1/m n-i (3.10)

The standard deviation of this degeneration time is

at

n-1/m

i1 1i i1/2
= T 1 + + .. +

n (n+l) 2

(3.11)

which can be bracketed by similar bounds,

rn-+l < a
T (m+l)n t

n-1/m

/m-n+l< T -n
m (n-i) (3.12)

The minimum system lifetime T during which the probability
that at least n components remain equals P, or during which
the probability of at most m-n failures equals Q = 1-P, is
obtained from

n-l

Q= E
k=O

(m k qm-k
k) (l-q) q

+ q(Q)

Tn/m = -T in (l-q)

(3.13)

(3.14)

When system failure corresponds to all components failed,
(i.e., operation requires n > 1), the minimum system lifetime
with probability P = 1 - Q) is

-21-

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Tl/m = -T in (1 - Ql/m) (3.15)

=T (Q1/m + 12/m + 3 + 3)

3-3.0 Component Failure Statistics

To begin, we presume that the m redundant components are
identical, and that they operate (and fail) independently. The
probability of success or failure of each component is assumed
to be a known function of time:

p = p(t) = probability of successful operation

q = q(t) = probability of failure

with (3.16)

p + q 1

In the most commonly observed case, operating components
exhibit an exponential failure rate. The probability that a
component will fail in the next instant dt, given that it is
operating at t, is a constant independent of how long it has
been operating:

Prob [t < tf < t + dt I tf > t] = A dt (3.17)

where tf represents the time of failure and A is a constant
which equals the mean failure rate. This probability relation
can be expressed as follows,

dq = p A dt = (l-q) A dt (3.18)

That is, the incremental probability of failure between t and
t+dt equals the probability that no failure has yet occurred,
multiplied by a constant times the interval dt. The consequence
of (3.18)is evidently

-22-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

p-(t) = eX(t-to)p (t) = e
(3.19)

q(t) = 1 - e X(t-to)

(For simplicity, we henceforth set t = 0.) Hence, the
incremental failure probability in tRe interval dt is

-At
dq = e A dt (3.20)

We next define the one-component failure probability density
f(t) as follows:

f (t) - d- q(t) = A e (3.21)

In terms of f, the probabilities of failure and success can
be written

t
q(t) = f f(t') dt'

0 (3.22)

t o0
p(t) = 1 - f f(t') dt' = f f(t') dt'

0 t

Further, the mean time to failure T for a single component
is defined and obtained as

co co

T - f t f(t) dt = f tX e dt -
0 0

(3.23)

For sake of interest we note in Table 1 the success and
failure probabilities for a single component as functions of
time measured in T-units:

-23-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

p(t)

.999

.99

.95

.90

.50

.368

.10

.05

.01

Table 1.

.001

.01

.05

.10

.50

.632

.90

.95

.99

t/T

.001

.010

.051

.105

.693
1.000
2.303
2.996
4.605

Probabilities of success and failure
of a single component as functions of
operating time

The "half-life" of a large number of single components is

t = .693 T
.50

(3.24)

3-4.0 Redundant Computer Failure Statistics

Consider now m redundant components beginning independent
operation at t=0. The joint failure probability density for
these m components is the product of the individual densities:

fm(tlt2 ' ... ttm) = f(tl)f(t2)...f(tm)' ' '
(3.25)

= m e-(tl+t2+...+tm)

The probability that specific components 1 to n operate success-
fully, and components n+l to m fail, during time t is

~ t
Pl-n(t) = fdt 1 ... f dtn f

t t 0

t

dtn+ ... j
0

dtm fm (tl' .. tm)

= pt) q(t) m - n (3.26)

-24-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

The probability that any n components operate successfully,
and the remaining m-n fail, during time t is then

Pn/m (m) pn qm-n (3.27)

where the binomial coefficient

(m\ = m! _ m(m-l)... (m-n+l) (3.28)
n n! (m-n)! n(n-l)...l

gives the number of different ways that n components can be
selected from a total of m. Note that p is the k=n term
in the binomial expansion n/m

m

(p+q)m = (m) k -k 1 (3.29)
k= 01

Equation (3.27) is valid in general for any component failure
probabilities q = 1-p. For the exponential failure proba-
bilities (3.19), eq. 3.27) becomes

At n nt m-n
Pn/m(t) = ((et) (l-e (3.30)

In either case, p, represents the probability that exactly
n of m components remain operational after time t. It is
evident that, since no components can fail in zero time,

(1 n=m

Pn/m() = (3.31)
0 n<m

The most probable time at which exactly n of m components
remain can be obtained from eqs. (3.16) and (3.27) as follows:

d q m\ n-l m-n-l
q Pn/m~ n) P q (m-n-mq) = 0

(3.32)
* m-n

qn/m - t2 n/m

-25-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

The corresponding maximum probability density at tn/m is

(Pn/m) = (n (m-n)m-n/mm (3.33)n/m max (max

For the exponential failure probability (3.19), the time of
maximum probability is

t T n - (3.34)
n/m n

Also of interest is the probability that at least n of m
components remain in operation at time t. This probability,
denoted Pn/m' is equal to

Pn/m Pn/m + Pn+l/m + ''' + Pm/m

m
(m) k m-k

k=n

n-l m k m-k (3.35)
k=O

Hence Pn/m is the sum of the last m-n+l terms of the binomial
expansion (3.29), or unity minus the first n terms. Note that,
in this case,

Pn/m(0) - 1 all n < m (3.36)

We next determine the incremental probability that one
of the remaining n components fails during the interval dt
following time t. From eqs.(3.27) and (3.21), this probability
is

-26-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

= dqn/m = Pn/m(t) n A dtP [n-l/m]
(3.37)

=() Pn m-n=) p q n A dt

where p is the probability that exactly n of m components
remain amt, and nXdt is the incremental probability that
any one of these n components then fails between t and t+dt.
Hence the probability density of the (m-n+l)th failure (i.e.,
degeneration to n-1 components) occurring at time t is

dq
f (t) d= n- 1 /m _ m p(t)n rnt)m-n

n-/f q(t)n-l/m ~dt
(3.38)

For the exponential component failure (3.19), this probability
density becomes

fn-1/m(t) = (m) (e-t)
m-n

(l-e

The mean time to the (m-n+l)th failure, i.e., the mean
time for the system to degenerate to n-l components remain-
ing, is obtained for the exponential case from eq. (3.39)
as follows:

co

T nl/m f t fn-/m (t) dtn-1/ '~ 0 n-i/rn

oo n
= (m) n A At (et)

0

= T (m) n f
0

00oo
x e

-At m-n
(l-e)

-nx (l-e-X)
m-n

dx

This integral can be evaluated in series form by utilizing a
binomial expansion of the last term in the integrand, as
in Chapter 2:

-27-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

n X (3.39)

dt (3.40)

m-n
m-n k

(l-e
-
x) = (mkn) (-eX (3.41)

The result of substituting this expansion into eq. (3.40) and
integrating is

m-n

Tm = mn m-n) (-1k x e-(n+k)x dx
n-l/m (n k=-O 0 k 00

(3.42)

(m\) ir-n) (1k-n 1
=T-umjn/ (-1) k

T(m)n k (k-n 2
k=n k

However, the integral (3.40) can be evaluated through inte-
gration by parts to yield a simpler form for the same result,
namely,

TUn 1/ __1 (+1 _(343)Tnl/m T n = T(+ n +-- (3.43)
k=n

The integration can be performed most readily by use of an
auxiliary integral, considered to be a function of two
exponents:

oo~ kJ -nx -X
I(n,k) - e (l-e

-
x
) dx (3.44)

0

This integral is evaluated by transforming variables and
integrating by parts:

-x -x
y = e , dy = -e dx

k 1 n-l k
I(n,k) = f y (l-y) dy

k (- n 0 +Yn(l-Y) dy
0n ~~0

k yn(L-yk-1 dy

0

-28-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Successive integration by parts then yields

I(n,k) = l)k(k-1) ... l1
n(n+l) ... (n+k-l)

yn+k-l
0 y dy
0

-k(k-l)l _. k! (n-l) ! - 1/n (n+k)
n(n+l) ... (n+k) - (n+k)! / \ n!

(3.46)

Note that the integral of the probability density (3.39) is
readily obtained from this formula:

f fn-1/m(t)dt = (n enX(-e-)m-n dx
0 0

= (m)n I(n,m-n) E 1 (3.47)

To evaluate the mean degeneration time T we define
a second integral function of the two exponen sl/m'

J(n,k) E f x e-nx (le-)k dx
0

and note that Tn l/m can then be expressed as

Tn-l/m = T (m)n J(nm-n)

(3.48)

The function J(n,k) can be integrated directly by parts (see
Section 3-6.0),or more simply as follows. We first note that

-29-

(3.49)

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

a I(n,k)
ann

= f a (e-n)(l-e-)k dx
0

= (-x) e- nX (1-e-x)k dx
0

- - J(n,k)

However, from eq. (3.46) we see that

Qn I(n,k) = Qn k! - Qnn - Qn(n+l) -

1 a I(n,k) = - 1 + 1 +
I an n n+l '''- + nk)n+k/

- n (n+k)

(3.51)

Hence, from (3.50) and (3.51)

J(n,k) = I(n,k) (+ 1 +
n n+l *-+)n+k

k!(n-l)! 1 + 1 + + 1-- + + +) (3.52)
(n+k)! n n+l n+k

Letting k=m-n and substituting (3.52) into (3.49) then yield
the desired result:

Tnl/m =T (+ + + m (3.53)

It is easy to show, next, by considering a rectangular integra-
tion rule, that the following logarithmic bounds apply to the
series of inverse numbers:

k Ax b dx

[a+iAx x
i=l a

k-l Ax b-a
O a+iAx ; Ax ki=0

(3.54)

1 +1 + 1 n b < 1 + 1 x=
a+l a+2 b a a a+l b-l

-30-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

(3.50)

Thus,

in m+l < 1 + 1 + ... + 1 < In m
n n n+l m n-l

m+l m
T in m T < < T n m

n n-1/m n-l (3.55)

By comparison with eq. (3.34), we see that Tn-l/m lies between
t* and t* , the times of greatest probability that n and
n- componen4 remain, respectively. Table 2 presents
values of T , measured in T-units, for various initial
and final numbers of components, m and n-l.

Tn-l/m /

End
with

T

Start with

m 1 2 3 4 5

0 1.0 1.5 1.833 2.083 2.283

1 0 .5 .833 1.083 1.283

2 0 .333 .583 .783

3 0 .250 .450

4 0 .200

Table 2 Mean time to degenerate from m to n-1 components

As an aside, we note that the time T is also
the mean time to at least n systems remaining Equation
(35) for p+ gives the probability that at least n components
remain at P/m The converse probability, that at most n-l
components remain (or at least m-n+l have failed), is

-31-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

C+ mk m-k

qn -/ = 1 - P = 1= (-) P q (3.56)n-1/m n/m k=n

-k (m)k m-k (3.57)
k=0

The failure probability density is then

d n-i ()k-1 m-k-1
f m_k-lklP 9 [(m-k) p-kq] d-~

n-1/m dt n-1/m = P --
k=0

= r(k+-k-) dq

dq (m) n- qm-n (3.58)
dt nnp q

For the exponential failure probability, dq/dt = pX, and
eq. (3.58) becomes

m n m-n
fn-1/m (n)P q n X (3.59)

This relation is identical to eq. (3.38). Consequently, the
mean time during which at least n components remain is identical
to the mean time T n-l/ at which the system degenerates to
n-l components, givenA y (3.40). (That these two times should
be identical perhaps is obvious.)

The mean-squared time of degeneration to n-l components,
and hence the standard deviation of the degeneration time, can
also be determined by the previous method. First, we note that

2
2 -nx k

2 I(n,k) = f x e (1-e- x) dx (3.60)
an 0

and that the mean-squared degeneration time to n-l
components is

-32-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

t 2

n-1/m

o0

= I
0

2

t f (t) dtn-i/m

(In) f x enx (1 -e-x)m-n dx (3.61)

From eqs. (3.50) and (3.52),

nik)]
(3.62)

= I 1 + +
n2 (n+k) 2

+ n+k
+ I 1 +

In

Letting k=m-n and substituting (3.62) into (3.61) then yield

t 2 2
n-1/m T

1 + n+1n m
+ T -- +

n2[1i
The second time is simply the square of the mean,
Hence the first term represents the variance, or

2
at

n- 1/m

Tn-l/m'

n (-/)2
n-l/m

= T + ... + 12]

n m

The standard deviation of the degeneration time to n-l compo-
nents remaining is thus

atnl/m
n-i/m +.. + /2

(3.65)

-33-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-18401

(3.63)

(3.64)

n= - [I (. ..~_n n

... + 11 2
mJ

= t 2

n-l/m

Again, it is relatively easy to establish the following
bounds:

b dx _ b-a

a x

1 1 1
> 1 + 1 + ... +

(a+l)2 (a+2)2 b 2

(3.66)

< 1 + .+ + 1
a (a+l) (b-1)

such that

-n+l
(m+l)n tn/m

-< n+l
m< T (n-l) (3.67)

The times at which the probability p_ has certain
prescribed values are also of interest. Recall that P m
represents the probability that at least n of the m sysPems
remain operational.) Define Tn/m to be that time at which

n/m (t) = Pn/m (T)
P (3.68)

We determine in T-units as a
from eqs. (3.35) and (3.19):

n-l
Q = 1 - P = (k)

k=0

function of P, m, and n

k qm-k
(l-q) q

- q = q(Q,m,n)

Tn/m = - T n(l-q)

-34-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

(3.69)

(3.70)

When P is near unity, such that Q<<1, and q<<l, q and T
are approximately equal to

1

q - [Q/ (nm -1) I (3.71)

(3.72)T T q
n/m

Perhaps of greatest interest is the case n=l, for which
n-l=0 corresponds to all components failed. For this case,
eq. (3.69) is simply

Q = q (3.73)

such that q and Tn/m are given by

q = Ql/m = (1-P)l/m

Tl/m = -T Zn(l-Ql/m)

The values of T14 for several probabilities
original components m are given in Table 3.

l/m_ @Inc:
1/m redr

to H
Co U
oW o

0) 0-1-

Q)0
Ca

P and numbers of

reasing
undancy

Table 3 Probable lifetimes and confidence levels for
at least 1 of m components operating

-35-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

(3.74)

(3.75)

P \I 1 2 3 4 5

.999 .0010 .0032 .1054 .1958 .2893

.99 .0101 .1054 .2427 .3802 .5077

.95 .0513 .2528 .4594 .6403 .7969

.90 .1054 .3802 .6239 .8263 .9969

.50 .6932 1.228 1.578 1.838 2.044

Similar tables can be constructed for the cases n=2,
n=3, etc. For example, the case n=2 corresponds to mission
termination when all but one component fail. Equation (3.69)
becomes

Q = qm + m(l-q)qm-1

m-l m-l=mq (1 - q)
m

(3.76)

Here, q is approximately equal to

1

q (Q/m)
m - 1 (3.77)

and can readily be obtained from eq. (3.76) by successive approxi-
mations. The values of T2 m for a number of probabilities P
and original components m are given in Table 3.

T2/m / T

Increasing
redundancy

2 3 4

.999 .0005 .0185 .0299

.99 .0050 .0606 .1520

.95 .0256 .1454 .2859

.90 .0527 .2179 .3864

.50 .3460 .2500 .9544

Table 4 Probable lifetimes and confidence levels
for at least 2 of m components operating

-36-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

u]) Q
.H

0

3-5.0 Sample Problem

To illustrate the application of the previous results,
we consider the example of Chapter 2. A particular system compo-
nent is known to be essential during re-entry from space.
This component has a mean time to failure of T=1000 hr., and
re-entry takes one hr. The probability that the component
fails prior to or during re-entry must be kept below .001,
i.e., the probability of safe return must be > .999.

The probability of failure of this one component during
re-entry itself is

q = 1 - e-1/1000 =001

The probability of failure of all of the m components during
a 1000 hour mission plus re-entry, or 1001 hours, is

qo/m = (1
-

e
-

1 0 0 1

/

1 0 0 0

)m

= .6 3 3 m < .001

which leads to

m > 15.1 or 16 components required

If the mission is terminated and re-entry initiated whenever
the system degenerates to 1 component remaining, the mean
mission lifetime for m=16 will be

T1/16 = 1000(+ + + 1 = 2381 hrs.

However, from Table 2 we see that only 4 original systems are
required to provide a mean mission lifetime (to one component
remaining) of slightly over 1000 hours:

T1/4 =1000(+ + 1) = 1083 hrs.

-37-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

What is the probability that the mission thus defined will
last at least 1000 hours? Using eqs. (3.19) and (3.35), the
probability that two or more components operate at least for
1000 hrs. is determined as follows:

p = e-1000/1000 = .368

q = 1 - p = .632

P2/4 = P2 / 4 + P3 /4 + P4/4

= 6p q + 4p q + p

= .324 + .128 + .018 = .470

(or) = 1 - P0/4 - P1/4

= 1 - q4 _ 4 pq3

= 1 - .159 - .371 = .470

Thus, the probabilities that exactly 4, 3, or 2 components
remain after 1000 hrs. are, respectively, .018, .128, and
.324. Hence, the probability that at least 2 remain is .470.
From Table 4, we note the following probable mission life-
times for m=4 with n>2 components operational:

P = .999

P = .99

P = .95

P = .90

P = .50

T > 30 hrs.

T > 152 hrs.

T > 286 hrs.

T > 386 hrs.

T > 954 hrs.

Note that the probability of safe re-entry is always .999,
and with m=4 original components, the probability is .47

-38-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

that the mission will last (i.e., will not be terminated by
degeneration to n=l component) for at least 1000 hours.

On the other hand, note that if the mission cannot
be terminated at any desired time, its pre-determined duration
must be limited to 196-1 = 195 hours for P = .999 (see Table 3)
probability of safe return, if only m=4 redundant components
are utilized. As determined previously, a 1000-hour mission
duration with no possibility of early termination necessitates
m=16 redundant components for P > .999 overall.

-39-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

3-6.0 Integration by Parts

We have given the integral (eq3.46 of the text)

co

I(n,k) =f-n x - dx = k! (n-l)
(n+k)!0

and desire to evaluate the integral

o

J(n,k) = f x e-nx (1-e-x)k dx
0

We first note the indefinite integral,

f -nx 1 -nx 1
fx e

- n x
dx = - 1 e (x+-)

n n

and then integrate eq. (3.79) by parts:

J(n,k) -1 e-nX (X+l)(1-e-x)klx
n n 0

co
+ k f

n 0
(x+l) (e-x) n + (1-e-x)

k -
dx

k k
= k I(n+l,k-l) + - J(n+l,k-l)
n

= n1 I(n,k) + kn n J(n+l, k-l)

-40-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

(3.78)

(3.79)

(3.80)

(3.81)

where the transformation of I(n+l, k-l) to I(n,k) follows
from eq. (3.78) Integrating J(n+l, k-l) next by parts yields

J(n,k) I(nk) + I(n+l,k-l) + k-l J(n+2,k-2)
n nn+l n+l

n- n+] I (n k) + kJ(n+2, k-2)= n n+ n(n+l)
(3.82)

Proceeding in this fashion leads, after k-2 more integrations,
to

J(n,k) = - + n+l + ...' n+k-l I(n,k)

+ k(k-) ... J(n+kO)
n(n+l)... (n+k-l) J(n+k0)

(3.83)

The last integral can be evaluated directly using eq. (3.79)

0

1 -(n+k)x (+ 1
n+k e n+k 0 (n+k)2

(3.84)

Hence the second term in (3.83) is

k(k-1)...1 1 = I(n,k)
n(n+l)... (n+k) n+k- n+k (3.85)

and the desired integral J(n,k) is equal to

J(n,k) = I(nk) [n + n+l n+k]
' nn+l n+ ''+ -

(3.86)

in agreement with eq. (3.52).

-41-

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

piECEDING PAGE BLANK NOT FILMED

CHAPTER 4

COST CONSTRAINED RELIABILITY ANALYSIS

4-1.0 Introduction

We now turn to a slightly different reliability question.
How does one design the most reliable system within given cost
constraints? In fact, the fundamental problem of cost contrained
reliability analysis may be stated very succinctly: How should
redundancy within a system be allocated to achieve maximum reli-
ability without exceeding one or more cost constraints? Several
solutions have been proposed for this problem [1-6], most of
which involve non-linear programming techniques [7-8] and have
been implemented on digital computers.

This chapter will examine two specific solutions to this
problem and present numerical examples of reliability optimization
employing these methods. However, before pursuing this goal, we
will examine some fundamental redundancy engineering principles.

4-2.0 General Redundancy Considerations

Redundant units are often added to hardware systems to
increase the overall system reliability. Should one unit fail,
a duplicate unit can be used as a replacement. Through redundancy
the life span of the entire system can be extended. However,
there are several modes of operation and configuration that these
redundant units can assume.

A. Active Mode of Operation

Within this mode the redundant equipment is
powered up and is fully operational for the
duration of system operation. When a unit
failure is detected, the faulty unit can be
immediately switched out of the circuit, and
an active spare switched in, enabling unin-
terrupted system operation.

Two disadvantages of active redundancy are:

1. increased system power consumption; and

2. the failure rate of an active unit may
increase with time in operation.

Preceding page blank
-43-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

B. Standby Mode of Operation

In standby mode the redundant units are
powered down until the active unit fails.
At this time a spare is powered up and if
necessary, initialized so that system
operation can continue. The amount of
time necessary to power up and initialize
a standby unit can be a disadvantage in
using this mode of operation.

C. Series - Parallel Configuration

A typical series-parallel configuration
is shown in Figure 4.1. In this configura-
tion each unit Aij has (mj-l) spares.
The system operates successfully if at
least one unit at each stage is operational.
Although this configuration is the most
reliable in terms of organizing the
individual components, it requires much
more switching equipment than other
configurations.

D. Parallel - Series Configuration

A system can also be organized in a
parallel-series configuration as shown
in Figure 4.2. Although there is less
switching equipment needed than in the
series-parallel configuration, one
failed unit Aij will put the entire row
i out of operation. Thus, the saving
realized in switching equipment is
compensated for by the fact that this
organization is not as reliable as a
series-parallel organization.

4-2.1 Reliability Equations

In developing the equations for system reliability there
are five redundancy models to be considered:

Model a: series-parallel, active redundancy

Model b: series-parallel, standby redundancy

Model c: parallel-series, active redundancy

Model d: parallel-series, standby redundancy

Model e: no redundancy

-44-
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

0 * *

A1 N -I

C

-I A

Figure 4.1: Series-Parallel Configuration

All A11 4 (2 2 ~12

_ _ _ _ _ A 2 _ _ _ _ _

o

a

I 1N I

0 {

¢

r'S

{3|Aml 2 _

a

0o m

Figure 4.2: Parallel-Series Configuration

-45-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

A1 2

A22

o
O

A2 1

0

Stage 1

Stage 2

Stage 2

Now let us define the following notation:

pij(t) = the probability that unit Aij operates

successfully at time t;

f(t) = the time to failure density function;

R(t) = system reliability at time t;

A(t) = instantaneous failure rate at time t;

qij(t) = 1-Pi
j

(t)

Note that

R(t) = 1-f f(t)dt = f(t)dt

We assume that f(t) follows an exponential distribution
-At

with f(t) = Xe and that X is constant for all units and

constant in time. Then Pij(t) = ftf(t)dt = e- t .

We may now proceed to state the reliability equations for
each of the redundancy models. The derivation of these
equations may be found in Barlow's Text [6].

N t .
R (t) = N (1 - (1-et) J)

j=l

N -t m.-l1

Rb(t) = 1 [e Z (At)]
j=l r=O r!

Rc(t) = 1 - (l-eANt)m
c

Rd (t) = eANt m (NAt)r
r=O r!

R (t) = e
e

These equations do not take into account the unreliability
of failure detectors or switching units used in the given
systems. When these factors are included in the equations,
a more complex set results. These equations are presented
in Barlow's Text [6].

-46-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

With these equations, we can now give a numerical example
and examine the reliability of each model. Suppose a
system is designed for use in a space vehicle with an
expected mission time of five (5) years. Then t =43,80g

hours. Let the subsystem failure rate be X = 2.5 x 10
failures/hour. Finally, suppose m = mi = 3 for all i=l,
...,N and N = 4. Then

-Xt -. 10950
e o = e = .89628

R (t) = .99554

Rb(t
o
) = .99919

R (t
o
) = .95538

Rd(t
0
) = .98988

R (t) = .64533e o

We see that the greatest reliability is achieved with series-
parallel organization and standby redundancy. In fact, series-
parallel organization shows a higher reliability than parallel-
series, as we would expect. All four redundancy models are
more reliable than a non-redundant system.

4-3.0 The Cost Constraint Problem

We will now turn to our main problem, that
of determining how many levels of redundancy to use at
each system stage so as to achieve the most reliable
design while not exceeding certain constraint criteria.
These criteria can include system cost, weight, power
consumption, volume, etc. However, let us now state
the problem more analytically.

Suppose we are given a series-parallel system with active
redundancy. There are N stages and m. identical units in
each stage. I

N m.
System Reliability, R=f (l-qj J)

j=l

-47-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

The constraints imposed on the system are C 1, C 2, ..., Cr,

where r can be any integer greater than or equal to 1.
cij represents the ith cost parameter for a unit in stage j.

We seek to find the mj, j=l, ..., N such that we maximize

R and satisfy the inequalities

N
cijmj< C

i
, Vi = 1,2,...,r.

j=l J 1

The first solution to this problem that we will explore is
due to Proschan and Bray [1]. It uses a non-linear programming
technique iterating on the number of units allocated to each
system stage while not violating any of the constraints. A
heuristic is employed to prevent this process from being an
exhaustive search procedure.

Fan, et al. [2] employ a maximum principle technique to
maximize R. They assume that there is only one linear
constraint that cannot be violated. Then to find the mj,

j=l, ..., N, a system of N equations in the N unknowns m.

is numerically solved. The resulting solution yields the
optimal redundancy allocation. This method is the second
solution to the cost constraint problem that we will present.

4-4.0 Non-Linear Programming Solution

Let m represent a reliability allocation (ml, m2 , ..., mn),
N

and let C
i () = c..m. be the ith cost of m. We say ml

j=l 1j

dominates m 2 if Ci(ml) s Ci(m2), Vi=l,...,r and R(m1) 1R(m2).

Moreover, m 1 strictly dominates m2 if at least one of the

inequalities is strict. We define a dominating sequence S
of redundancy allocations as a sequence mk, k=l, 2, ...

such that

a. no mk in S is strictly dominated by another in S,
and

b. all mk satisfying condition (a) and the r con-
straints are in S.

Thus, the solution mj to our problem is a member of the

dominating sequence S. We must present an algorithm for
constructing S and then choosing that member m. that maximizes R.

-48-
,~ 3

NTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

We may use an induction principle to construct the
dominating sequence for an N stage system. That is, we
first construct the sequence for a 2 stage system. Then
using the dominating sequence for an h stage system we
may construct the sequence for an (h+l) stage system. In
this way the full dominating sequence for an N stage system
can be constructed. This procedure is an application of the
Principle of Optimality, as defined by Bellman [11].

4-4.1 Construction of the Dominating Sequence
N m. N m.

Let Q(m) = 1 - R(m) = 1- (-q i qi To construct a
i=l i=l 1

dominating sequence for the first two stages of the system
we set up a table as shown in Figure 4.3. The entry in row
m i and column m

2
is the vector (Cl(mlm2), C2 (ml,m2), ...,

Cr(ml,m 2), Q(ml,m2)), computed from the equations for Ci and

Q given above. Any strictly dominated entries are then removed
from the table. The result is a dominating sequence for the
two stage system.

Now suppose we have constructed a dominating sequence for an
h stage system, and we wish to go to (h + 1) stages. We
construct a similar table. The entry at row mh+l corresponds

to mh+l units at stage (h + 1). The entry at column k corresponds

to the kth member of the dominating sequence for the first h
stages. A table entry at row mh+l and column k is the vector

(Cl(mk, mh+l)' C2(mk, mh+l)' .- Cr(mh+l mh+l) Q(mk, mh+l)).
As before, we remove any strictly dominated entries from the
table and then have a dominating sequence for the first (h+l)
system stages. We continue in this manner until the dominating
sequence for the full N stages is constructed. From this
sequence we find the entry with the lowest unreliability that
does not violate a system constraint. This entry corresponds
to the optimal value of m N and a member of the dominating

sequence for the (N-l) stage system. We use this latter entry
to trace back through the dominating sequences to find the
remaining optimal values of m..

3

Before proceeding to a numerical example using this
method, we should mention that several approximations
can be employed to shorten the computation time for this
algorithm. One such approximation is to limit the size
of the dominating sequences to be handled. This may be
done by choosing a large initial value of m to begin the
algorithm. We will call this initial value mo. A method
of computing m° will be presented in the next section.

-49-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

4-4.2 Computation of mo

To find mo we add one unit at each stage of the system until
a constraint will be violated by one more addition. We then
have a vector m'. Next compute R(m') for the system using
the above equation for R. Each m° i is then found by computing

the minimum mi such that

m.

(1 - qi) - R(m').

The solution to our cost constraint problem will require
an m . m.°0, Vi=1,2,...,N. We can be sure that m i will be
at least 1 as large as the value obtained by this procedure,
because otherwise, the system will be less reliable than that
described by m' even if all other elements were redundant to
the point of perfect reliability. We will now demonstrate this
algorithm with a numerical example.

4-5.0 Numerical Example

Suppose we are designing a 3 stage system having series-
parallel organization and active redundancy. We are told
that cost and weight will be the two constraints within
which we must design the system. The unit parameters are
the following:

Stage, i 1 2 3 Constraint

Cost 1 2 3 33

Weight 1 1 1 14

9qi .2 .3 .25

ml m 2
Thus, we must find m such that R(m) = (1-.2), (1-.3 2)

M 3

(1-.25) is maximized and

m 1 + 2m
2

+ 3m3~ 33

and mi + m 2 + m 3 14

We first compute mO. From Table 1 we see that a constraint is
first violated for m = (5,5,5). Thus, m' = (5,5,4) and R(m')

m.
=.9933. Computing the minimum mi such that (l-qi 1) - 9933

yields m ° = (4,5,4).

Using m ° we now construct a dominating sequence for stages 1 and
2. The result of this construction is shown in Figure 4.3. Each
triple in the table represents (cost, weight, unreliability).
A crossed out entry means that the entry is strictly dominated
by another entry. Hence, the former is removed from the table.

-50-
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840

TABLE I

m Cost Weight

111 6 3

211 7 4

221 9 5

222 12 6

322 13 7

332 15 8

333 18 9

433 19 10

443 21 11

444 24 12

544 25 13

554 27 14

555 30 15

-51-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Stage 1

Seaae 2

(m2 =5)

(10,5,.00243)

(m2 =6)

(12,6,.000729)

(m2 =7)

(14,7,.0002187)

(ml=4)

(4.4..0016)

(ml=5)

(5,5,.00032)
"DL.CL .i % . . - - -

(14,9,.00403)

(16,10,.002329)

(17i- 1r . 187)

(15,10,.00275)

(17,11,.001049)

(19,12,.0005387)

(ml 6)

(6,6, .000064)

(16,1 2494)

(18,12,.000793)

(20,13,.0002827)

etc.

Figure 4.3: Dominating Sequence Table for Stages 1 and 2

-52-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

I

This dominating sequence then becomes the column headings for
the table in Figure 4 .4 . In this table we compute the dominating
sequence for the 3 stage system. Only the 4 entries shown in
the table are possible. Any other entries would violate a
system constraint. Our solution for the optimal m 3 is the entry

with lowest unreliability; namely, (29, 14, .005005)
which implies the optimal m3=5. Now from Figure 3 we find

the optimal m
1
=4 and m2=5. Thus, the most reliable system

that we can design observing the given constraints is given
by m = (4,5,5).

4-6.0 Maximum Principle Procedure

A different method of solving the cost constraint problem
was proposed by Fan et al. [2]. This method uses the
Pontryagin Maximum Principle [9] to maximize the net profits
for a system while observing a single cost constraint C.
Again we assume a system with series-parallel organization.

N
Let S = PR - E c.m. (4.1)

i=l 1
where P * profit for reliable system operation and R =
system reliability. We seek the m which maximizes S and
does not violate

N
C < Z cim.

i=l

Let us now make some definitions. Let Pi = the reliability
of a component in stage i of the system ; then we define

m.
el = e.- [1 - (1-Pi) 1], i=l, . N

o = 1

Si =i-l + Cim
i

=l, ..., N

N0

Now equation (4.1) can be written as

S = Pe N - SN' (4.2)

-53-

INTERMETRICS INCORPORATED .701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

o
4

Oot r-4

-4

rc(
n

-4U
)

a)0)

4JU
)

LAN Cu'
ooo-4LA)
-4ooo-4

v

(nact
.4

oo.0 r
-

o4Nr
-

C
o

oCtD.v0o
o0oC
v

U
)n)

-40E
d 0)

4o .,i 0)A0U
)

L
n

or-4L
O

ooo
.

r
-

r-4

ooco-4

-5
4
-

IN
TE

R
M

E
TR

IC
S

IN

C
O

R
P

O
R

A
TE

D

· 701
C

O
N

C
O

R
D

 A
V

E
N

U
E

· C

A
M

B
R

ID
G

E
,

M
A

S
S

A
C

H
U

S
E

TTS

02138 · (617) 661-1840

IIIIIIIIIIIrIvIu0iI

We will now state the discrete form of the Maximum Principle
here since it is rather lengthy and can be found in Reference
9. However, we will proceed with its application to equation
4.2. The Principle states that the m which makes S maximal
is the m which makes a Hamiltonian function H maximal. For
this problem the Hamiltonian is

m.

i i il [l(lPi)] - (il+cimi)

m.

where ai-l=ai [1-(1-Pi)], aN=P, and i=l, ..., N.

We will not derive the equation for H since it can be found
in Reference 9. It is our job then to find m such that H
is maximal. We will do this by solving the set of equations

aH.
0 for i=l, ..., N.

am.
1

Taking the partial derivatives of Hi with respect to mi and

equating the results to 0, gives us
m.

ai ai-l , (1-pi) 1 in (1-pi) + ci = O (4.3)

Note that a. can be written
1

N m.
a. = P [1 - (1-p.)]] , (4.4)
°1 j=i+l

and ai. can be written

i m.
a= i [1 - (-p) (45)

j=l

Substituting (4.4) and (4.5) into (4.3) yields

N m. m.
[(1- (1p))] (lpi) 1 =-Ci= 1

jfi P ln(l-p
i

) , (4.6)

for i=l, ..., N

-55-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

We now have a set of N equations in the N unknowns, mj.

m.

To simplify solving (4.6)for the mj, let Yi = (l-Pi) 1 and

-c
i (4.7)

ln(l-Pi)

Then (4.6) becomes

N

PYi n (l-y) = 6 (4.8)
j=l
jfi

Note that (4.8) can be rewritten as

P nN (l-y) =
1
(l-Y

1
) - (l-i) . = (-YN)

j=l ~ Y1 Yi YN
1

(4.9)
Numerical solution of (4.9) will yield y , and hence,
m follows readily.

4-6.1 Regula Falsi Iteration

A regula falsi iteration [10] can be employed to solve
(4.8) for the Yi which in turn yield the m i . Let Yij be
the jth iteration of Yi. With this method each two
successive iterative values of yi are of opposite sign.
(See Figure 4.5). The intersection of the secant line
joining these points with the x-axis determines the next
iterative value of Yi. Each successive value Yi,j is
closer to the desired value yi than the last iteration
Yi 1. Finally, when an iteration is within a given
err6r bound of Yi, the process ends. Now let us begin
applying this procedure to the problem of the last
section. We begin the iteration procedure by choosing
values for Yl,1 and Y1,2 where 0 <yi < 1. Next we compute

p = 6(1-Y1) and

Y1

6.
Yi 1 ,i=2, ... , N., where each 6 is

Q +6.p~i given by (4 i).

Finally, S can be computed from
N

S = PI (l-yi).
i=l

-56-

NTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

i /

/

Figure 4.5:

/
Yi, j+2

Regula Falsi Iteration

-57-
INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Pj

Pj+2

Pj+i

If the error e = S-p is within bounds, we are done and can
compute mi from yi. Otherwise, we begin the next step of the

iteration by calculating

Yl,j+2 = Y1,j Pj+l-Yl,j+lPj

Pj+l -Pj

61 (1-¥1,j)
where pj =lj

Yl,j

We then repeat the above procedure using Y1, 2 and Y1,3

and again determine the error.

Finally, when we have iterated sufficiently many times so
that the error is within bounds, we are done. We can then
easily calculate m from y.

The advantage of this cost constraint algorithm is that
lengthy dominating sequences do not have to be calculated.
m is found by solving N equ'..ions in N unknowns by numer-
ical methods. This algorithm can easily be implemented on

a digital computer. The disadvantage is that only
one cost constraint can be taken into account in
designing the system.

4-7.0 Example

This algorithm was applied to an 8 stage system having
the following characteristics:

Stage, i Pi Ci

1 .90 .5

2 .75 .4

3 .65 .9

4 .80 .7

5 .85 .7

6 .95 .4

7 .75 1.0

8 .60 .8

-58-

NTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

with P = 100.0

The solution found was

m = (3,4,5,3,3,2,4,5) and S = 75.64.

-59-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

REFERENCES

1. Proschan, F. and Bray, T., "Optimum Redundancy under Multiple
Constraints", (Operations Research, 13, Sept. - Oct. 1965),
pp. 800-814.

2. Fan, L.T., et al., "Optimization of Systems Reliability", (IEEE
Trans on Reliability, R-16 (2), Sept. 1967), pp. 81-86.

3. Bellman, R., and Dreyfus, S., "Dynamic Programming and the
Reliability of Multicomponent Devices", (Operations Research,
6, March - April 1958), pp. 200-206.

4. Black, G., and Proschan, F., "On Optimal Redundancy", (Operations
Research, 7, Sept. - Oct. 1959), pp. 581-588.

5. Selman, V., and Grisamore, N., "Optimum System Analysis by Linear
Programming", (Proc., 1966 Annual Symposium on Reliability),
pp. 696-703.

6. Barlow, R., and Proschan, F., Mathematical Theory of Reliability,
(John Wiley and Sons, New York, 1965).

7. Garvin, W.W., Introduction to Linear Programming, (McGraw-Hill,
New York, 1960).

8. Arrow, K. L., et al., Studies in Linear and Nonlinear Programming,
(Stanford Univ. Press, Stanford, California, 1958).

9. Fan, L.T., and Wang, C.S., The Discrete Maximum Principle,
(John Wiley and Sons, New York, 1964).

10. Hildebrand, F., Introduction to Numerical Analysis, (McGraw-
Hill, New York, 1956).

11. Bellman, R., and Dreyfus, S., Applied Dynamic Programming,
(Princeton Univ. Press, Princeton, New Jersey, 1962).

-60-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

CHAPTER 5

QUEUEING THEORY

5-1.0 Discussion

Queueing theory deals with congestion in systems con-
sisting of networks of service facilities. It is a relatively
recent branch of probability theory, generally considered to date
from the work of A. K. Erlang in the period 1900-1920, in the
service of the Copenhagen Telephone Company. The most important
abstractions involved in queueing theory involve customers, servicers
and queues.

Customers arrive, wait in a queue and when the servicer is
free, are themselves serviced and then leave the system. Queueing
theory obtains analytic solutions to the probability distributions
of variables that measure congestion in the system such as length
of queues, time spent waiting and so forth.

Computing systems have been successfully modelled as
queueing systems. The purpose is to predict performance, and to
identify and correct efficiency problems in the system. In a

computing system, the customers are the stream of jobs arriving
at the system interface, and the servicers are the collection of
equipment, processors, file storages, data links, printers, etc.,
and their interconnections.

Using queueing theory, partial analytic solutions have been

developed for quite a wide variety of problems. This chapter will

serve to acquaint the systems analyst with some of the most important

analytic results and with the methodology associated with the theory.

For many applications an analyst can be satisfied with

solutions which describe the behavior of a model in statistical
equilibrium. Statistical equilibrium occurs when the probability
distribution functions which describe the random variables in the

system are static. Statistical equilibrium does not mean that' the
variables themselves are static. In an ergodic system, the

variables will undergo constant and unpredictable dynamic change,

"filling in" over a sufficiently long period, a pattern whose

statistics approach a static distribution. It is fortunate that

statistical equilibrium solutions are useful because with few
exceptions, that is all that is available. We will discuss this

briefly later in the chapter.

-61-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Furthermore, it is often considered acceptable to know the
first and second moments of a distribution, rather than a more
complete description. Even so, the mathematics involved in
developing analytic solutions is burdensome, and for complicated
problems, overwhelming. At some point, the analyst must choose
between reducing the fidelity of his model, or abandoning analytic
approaches and using iterative or simulation techniques to obtain
the data he needs. Subsequent chapters discuss the second choice.

5-2.0 Erlang's Model

Many of the concepts and techniques of queueing theory
appear in a discussion of a model consisting of a single server,
servicing a waiting line fed by a randomly arriving customer
stream. It is convenient, and often realistic to assume that
customer arrivals satisfy a Poisson probability distribution
function. We will describe the Poisson process here because it
exposes some of the mathematical techniques of queueing theory.

A Poisson distribution results from assuming that the
chance that a customer arrives in a short time interval At is
?At, where X is constant. The chance that two or more customers
arrive in At is presumed to be proportional to higher orders of
At and therefore negligible for sufficiently small At. Let Pm(t)
be the probability that exactly m customers have arrived by time t.
During a subsequent small interval At customers arrive according
to the Poisson assumption. Then at t + At we can state

Po(t+At) = P0 (t)(l-XAt)

Pm(t+At) = P (t) (l-XAt)+Pm_l At m>l

and in the limit as At - 0,

dPo/dt = -APo

dPm /dt = -XAP + XP -1m>

These are linear, first order differential equations with respect
to t, and linear first order difference equations with respect to m,
generally called differential difference equations. Solutions to
the above equations can be obtained by sequentially solving each
equation and substituting the solution into the equation for next

_62-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

higher m.* The general solution, defining the probability that m
customers arrive in an interval t is

P (t) = (At) m e m>O

A typical graph of this distribution function for Xt=4
is shown in Figure 5-1.

0 1 2 3 4 5 6
I I I

7 8 9 10

Number of Customers in Time Interval T = 4/X

Figure 5-1 Poisson Distribution

In Erlang's model, the Poisson customer arrival assumptions
are made.

Service time is the amount of time to service a customer.
In Erlang's model it is a random variable governed by the same basic
assumptions that governed the arrival of customers. The probability
that a customer completes service in a small interval At is VAt,
where P,the service rate,is constant.

Customers wait in line for prior customers to complete
service. Using the same procedures used to develop the Poisson
distribution, we obtain an expression for the probability that m
customers are in the system at t+At, given the distribution at t.

P0 (t+At) = Po(t)(l-XAt) + Pl(t) P At

P (t+At) = Pm(t)(l-(X+P)At)+ Pm_l(t) XAt

+ Pm+l (t)p At m>l

*Another method of solution involves the use of generating functions,
which are discussed in chapters 6 and 7.

-63-
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

.20 4

.15

.10

.05

0 k

yielding as At + 0,

dP /dt = -AP + P 1 (5-1)

dPm/dt = -(X+p)Pm + XPm-1 + P m+l m>l

The solution of these equations cannot be obtained by a
sequential process, since the interdependency between equations
extends in both directions.

However, methods of solution, using generating functions
are known and the solution is

(t) = e -(X+)t (m-l)/2) + m+l

+ pm(l-p) r p-(m+r)/2 im+r(X

where

p = A/p (called traffic intensity)

x = 2tf-W

Ik(X) = Bessel functions of imaginary argument

Lee, in reference 2 comments, "confronted with this expression,
the reader, mindful that this system is the simplest of all, will
experience a feeling of alarm. This will only be increased when we
point out further that whilst the solution describes the growth of
the queue of number of customers present, it tells us nothing of
the waiting times during the transitional period. To obtain these,
we would have to consider expressions of even more complex form. If
such are the difficulties of general solutions in the simplest of
models, what will the solutions to more elaborate models be like?
This is answered by the first working rule of queueing theory: time
dependent solutions to queueing models are either unobtainable or
unmanageable."

-64-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Steady state solutions to the differential equations are
easy to derive and simple to use. We obtain them by setting
derivatives to zero in equation 5-1. These equations become

(1 + P)n Pn+l + Pn-l n > 1

P1 = p Po

again using p = X/p. p is a commonly used parameter, called
traffic intensity, since it describes the average rate of customer
arrivals normalized by the average rate that they can be serviced.
To solve these equations, consider the member of n=l

(1 +p)P
1

= P 2 + P Po

Eliminate P by substitution using the relation between
P1 and Po, yielding

2
P2 = Po

Repetition of the process yields

P = P n>l
n o 0

Po can be obtained by noting that

0

n P
E pnp = 1 = Po

n=O l1-p

or

P =1 - p
o

hence

P = p (1 -p)
n

is the probability distribution for the number of customers in the
system in the steady state.

-65-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

5-3.0 Measures of Congestion

The mean queue size is

00

L= Z nP =
n=O 1-p

and the variance is

2 2
V = Z n P -L = p

n=O (l-p)z

The mean length of the queue grows without bound, as does
the variance, as traffic intensity approaches 1. (For our
purpose the queue includes the customer being serviced.)

5-3.1 Queueing Time

The next task is to derive the time that a customer would
spend in the system. A customer arriving with no one ahead of
him would experience a service time distribution of pe-ut. With
customers ahead of him, his total wait is the sum of the service
times for him and the others ahead of him. The probability distri-
bution for the sum of these times is best found by the Laplace
transform. This is because, since the computation of the distri-
bution of a sum of random variables involves convolution, the
Laplace transform of the distribution of the sum is the product
of the Laplace transforms of the distribution of the addends.

The Laplace transform of the probability distribution for
the time to service one customer is

P(s) = X ie
-

P
t

e
- s

dt =

Consequently, the transform of the distribution for
the sum of r customer services is

The transform of the distribution for the waiting time is
obtained by weighting the wait time as a function of r, the length
of the queue by multiplying by the probability of occurrence.

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

(1-) pr u r+lZ (l-p)p (u-) = u(l-p)
r=O u (l-p)+s

But this is the Laplace transform of

(u-w) e-(u-X)t

which therefore is the probability distribution of waiting times
in the steady state.

The mean and variance of waiting time are given by

Mean = 1
u(1-p)

Variance = 1
2 2u (1-p)

5-4.0 More Complex Models

The previous section has developed the most commonly desired
measures of congestion for the simplest non-trivial queueing model,
in statistical equilibrium. We will now discuss briefly extensions
of the theory towards more realistic and/or more complex models.

5-4.1 Random Arrivals/General Service

The assumption of exponential service time in the Erlang
model is often considered unrealistic. While arrivals can often
be approximated by Poisson distribution, service times are rarely
exponentially distributed.

The analysis of the mean and variance parameters for a
simple single server queue with a generalized service time probabil-
ity distribution has been solved, and are known as the Pollaczek-
Khintchine formulae, Ref. [1]. It turns out that the mean queue
statistics depend only on the first two statistical moments of the
service distribution. Reference 3 contains the formulae. They are
derived in reference 1.

5-4.2 Erlang - m Distributions

Another approach to the assignment of more realistic service
time distributions involves the use of Erlang-m distributions. This
distribution can be considered to be the probability distribution of

-67-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

a servicer which consists of m substages of service each with an
exponential service distribution, whose service rates are m times
the overall rate.

The resulting sequence of distributions all have the same
mean service time, but as m increases, the variance decreases, and
the probability distribution becomes more and more concentrated
about the mean value. In the limit as m -+ , the distribution
becomes a unit impulse, representing constant service of length
1/u. Figure 5-2 illustrates Erlang m distributions for m=l, 2
and 10.

P(t) mean value

1.0 m m=10

m=2

of
ts t+

Figure 5-2 Erlang-m Probability Distribution

Figure 5-2 Erlang-m Distribution

Figures 5-3 and 5-4, extracted from Reference 3 summarize
congestion parameters for a single server model.

5-4.3 The Effect of Queueing Disciplines

We have implied that customers are served in order of arrival,
commonly called the FIFO, first-in, first-out queueing discipline.

Other queueing disciplines have been studied. It is interesting
to note that the mean length of the queue and the average time
spent waiting in queue are independent of the queue discipline.

-68-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840

~~r ~.. k-qT'.-f. ~r --j-W I':....:Ii --;i t ;' ~-i.fl.f--m .!- --I f- ir-Ffk-i!Ii-- '1
ii N'0 M-,;.AI..IZED ME/',hl QUEUING 1 " ,i"

i.'fTI! , Tq/Ts, vs.
-; I ~-I :.L; r- SERVERn UTILIZATION: p XT,

GC-l T1-FR EXPONEIN;TIA',L- -?~ 'i"
EXPONiENTIAL'l;]-I. [: -i T i -";
'ERLANG-2

' E I? ' A' Ni G : .

i-·

~~~~~.o.s',', , .- I:--;Ii1i;:--, ::x-:. /7' ': '·; .- i

i": i CONTA

- i :T', : 'i , ; |i i:'r '"T~
Ts 4 -I-,- ~ ~ ~ ii-

C .1

'-i I T',-'~t:':--i :. ' -

' i-: i . ' ,' :

i~ i~i ; _ .' <':- ' lx ii:"::./':, 

'1- l,-i i 1 TD :.':' , ' O''

"-' t. i. . . . . . . . 1'1

m ~ ~~~~~~SRE UTILIZATIION p

E 8 i -1TI;- t i ! P.L ANG 

~~~~I k!--! ~ f -t- -~ t:: -" ''':..'" ..'i '..I . ..... + ;t'

11~r~T-I NO!.CLIENSTAII", D OEITIN5il

O'Tq Al..---, ~ t, , / ,

-!

,
.

4~~~~~~~~~~~~~~~~~~~~~

I"J'-i~'£.i~ ~~~i i.-.--'! .-i;-q! :.i]- :~.~1: :. :.

-I-I--! SERV~n UTILIZATION P .

Figure . Q ue i- ng Tim

':......' "'-'Z"- ...:' 1'-T ':' i i '-
,--....:....n:'..:.7:-~.J:.' :'i

' r
~~~~~~~ '

~ It ~"'~:--"-T' i-;",' l--f.']"ti:.%.
3 `-1 , j. -'~j 'i' ." ;" i-:-T ; 'T

-

r ' ' i-]i, -",I';''-I'I ~ 1 r l ''' i -ir : ~T'' 'r -t- 'r ,n-i ;'r i' t-,-t4
i '']I'FT- ]-I~iiili l'r' !,1..:-r--' '~tllTl/"! '-1-

HI-I: 'LL1-~-!-li-. .!'! '.:."'7 .! !- -::r¥1. i 1!--i.

0~~.1.. _~i.~]~
I=1 _ 1 O.Z 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

UTILIZA'TION :P

C:3 ~Fgue53QeuigTm

a..

-69-



'i t TT 1 FT- -iT-' -rI- F
.IEAI OEI IZ I V
,I I i I -I I , L , I i

!.MEAI. QUEUF SIZE , Lq, VS

i i .i SLRVER UTILIZATION p: XT,

.i ;ti SERVICE DISTRILUTIONS
j'i 1 1EXPONIJITlt.L--_

1oE RL.TA.IlG-2 -

I 'i ERLA:.G-5

I' ..! , Cosl.,, .. .-.,".,_.
rt '... .. : . _ ._ . , -.1- .... .

'!1', .: ',, ,1 I, I:'" I...lI-',

.'.l.j . i T' -''i:'Ii":' i';/ ' .1i
. !.. .. ... ': : .l i.i. .'T! i::,,~:

0.3

UTILIZATION : p

II

i- - - -Til
: f.

IThI~

1- 1 -1:-t i -ttT h i-t i r1 T 1 -

STANDARD DEVIATIONl OF
QUEUE SIZE , Lq, vs. 
SERlVER UTILIZATION P :XT,:

SERVEP DISTRIBUTIONS -

EXPOiE lTIAL------
ERLAIIG - 2 
ERLAiNG-3 -
CONSTANT

2 'I-, -' ; j i -t- j t I - - -h~~~~:- !- |4: r, j : :.:-_-i ::stl~__
H r --t - L -L- A.! ;gLIF.t:iF -:p~--t-: i ..... . '-<t'j :l d-t

fl-t44-3,X'~-l-l-l '- l-lat-i r-

1 --- - i t-' I .4 It-
AfJilLll-- Xl l S r-;-t

N -1 :['-: [/

:--:" .! f;~'-,-,~ ..1 li_!iS-~-":'" :'-i-i~I:IIii:Ill
O 0.1 0.2 0.3 0.4 0.5

· :,t..' .. .'.

:/:>-i/..~::.n

*. ~,/ *- .

Q .i. i...

zj IH.

I- "t,

4 '
I 

1-9'4'1 I:::

F1,1

.- ...t-.- ,rlI:71-t,.,,

--'r

I

:,-, i tt---i -.I-2-__. -, ,IL4-t-;--, , 11-

-I-1 142
WA,.f

$f1_t:

0.6 0.7 0.8 0.9 1.0

UTILIZATION :p

Figure 5-4 Queue Length

-70-

Lq

-j

C:)

o

C0

0

4

3 

O.Lq

.l

--l'
LI



However, the waiting time distribution is a function of discipline,
with FIFO producing the smallest variance.

5-5.0 Priority

Assignment of relative priorities to types of customers
can have a dramatic effect on congestion in queues. We will
discuss two simple priority concepts. In the first concept, a
customer once he begins service, continues to be serviced. The
next customer to be serviced is the customer with the greatest
priority. If there is more than one such customer, the one who
has waited longest is selected.

This is called non-preemptive priority. A second concept
permits a customer of greater priority to displace the customer
being serviced. The displaced customer is placed at the head of
the line for his priority. This is called preemptive priority.

For non-preemptive priority, the mean waiting time before
a customer with priority j begins service, where increasing j
denotes decreased priority with j=l greatest, can be derived,
Ref. [1], as

Tw. = X var (Ts )
2(1-uj_1 )(l-uj)

where

X = mean of total arrival rate over all priorities

var(T
s
) = variance of service rate over all priorities

uj = Pl+P2+...+Pj , traffic intensity for j highest priorities

With preemptive priority, the queueing time is

-qj = 1 1 + =l1

Reference [3 ] uses these formulas in an example of a message-uj

Reference [3 ] uses these formulas in an example of a message
processing center being fed by a random traffic stream, consisting
of two types of messages. Type 1 requires a short constant process

-71-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



time. Type 2 requires a much longer process time which is
exponentially distributed. The actual parameters are

Type 1 message: X1 = .5 msg/sec

T = .2 sec
s

-2=
T =
5

.22 sec2

Type 2 message: A2 = .1 msg/sec

T = 5 sec

T 2=T 2= 50 sec2

s s

Some comparitive results are presented in Table 5-1.

NO PRIORITY
NON-PREEMPT
PRIORITY

PREEMPT
PRIORITY

Type 1 msg 6.45 sec 3.0 sec .211 sec

Type 2 msg 11.25 sec 12.0 sec 12.5 sec

OVERALL 7.25 sec 4.5 sec 2.26 sec

Table 5-1 Effect of Priority on Mean Time in System

Note that preemptive priority method greatly reduces the
backlog (both delay and queue length) for the type 1 messages with
relatively small effect on the delay and queue length of the longer
type 2 messages.

5-6.0 Networks of Queues

Solutions to problems involving a network of interconnected
queues can be solved if the job stream from queue to queue retains
a Poisson distribution. In that case the individual queues can be
separately analyzed. In order for the job streams to retain their
Poisson character, input job streams must be Poisson, the waiting
lines must be infinite (no jobs lost) and the service time must be
exponentially distributed.

-72-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840



Under these ground rules, multiple server queues, such as
Figure 5-5 have an output distribution equal to the input. Job
streams that partition and merge, as in Figure 5-6 retain the
Poisson character. When a partition occurs, the mean traffic rates
of a partitioned path are proportional to the probability that that
path is taken. On a merge, the mean rate is the sum of the merge
rates.

input

line

servers

Figure 5-5 Multiple Server Queue

PX

2

(1-P)A

Figure 5-6 Branch & Merge Points

Under these circumstances, elements of the network can be
individually analyzed and the results for the total system obtained
by statistical means. Generally speaking, the calculation of the
combined statistics involves Laplace transform techniques.

Networks that do not permit the assumption that each partition
is a Poisson input, exponential service, infinite length queue are
likely to be unsolved.

-73-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



5-7.0 Finite Queues

Finite waiting lines are easy to model as a modification
of Erlang's Model. For a line of maximum length L, the probability
that the line has length k is

k L+l
Pk = p -p k<L

1-p

where p is the traffic intensity X/u. Other statistical measures
of congestion follow in straightforward fashion.

However, solutions to more complex networks or more realistic
presumptions about the service time are not easily constructed,
assuming limited queue lengths. It is often acceptable to approx-
imate using infinite queue lengths and careful interpretation of the
resulting solution.

5-8.0 Summary

Queueing theory, although new, has been rapidly exploited to
yield a large body of solved models. With some experience a user
can often obtain useful results by modeling his problem as a
solved problem. A most useful handbook is Reference [ 3 ].

Queueing theory provides excellent insight into the
frequently observed characteristics of congestion and bottlenecking
in computer systems. In particular, the non-linear and divergent
increase in congestion as traffic intensity approaches 1, and the
even more dramatic increase in variance of congestion parameters,
as a function of traffic intensity are most important. Analytical
insight into the effect of priority algorithms is also a very
significant product of queueing theory for the computing system
analyst.

-74-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



REFERENCES

1. Saaty, T.L., Elements of Queueing Theory with Applications,
(McGraw-Hill, New York, 1961).

2. Lee, A.M., Applied Queueing Theory, (MacMillan, Toronto,
St. Martins Press, New York, 1966).

3. IBM, Analysis of Some Queueing Models in Real Time Systems,
(GF20-0007-1, Technical Publications Department,
112 East Post Road, White Plains, New York, 10601,
November, 1969).

-75-

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



PRECE)ITNG PAGE BLANK NOT FTTMED

CHAPTER 6

MACROSIMULATION

6-1.0 Introduction

The concept of models is a unifying technique common to
all eras and all branches of science and engineering. Simulation,
a form of modeling, occupies a central role in modern engineering.
Computer systems are both vehicles for and objects of simulation.
Computers are used to simulate spacecraft trajectories, industrial
plants, economic policy, fast food franchises, ..., and computers.
The fundamental technique of modeling or simulation is to isolate
and define the collection of (system of) elements relevant to
the problem at hand, and to exercise these models as a learning
step in the solution of the problem.

Simulation of computer systems can occur in several forms.
We have chosen to describe in this report two levels of computer
system simulation. Chapter 17 discusses the use of simulation
as a design and verification tool for computer controlled systems.
This use of simulation emphasizes detailed replication of the
operation by operation sequencing of the computer, and detailed
modeling of the environment that interacts with the computer logic.
We have chosen to call this microsimulation of computers. This
chapter discusses another application of simulation in the develop-
ment of computer based systems. We will be concerned here with
abstractions of computer systems, designed to expose and analyze
critical design parameters. Generally speaking, these simula-
tion techniques deliberately suppress design detail, and concen-
trate on broadly defined measures of system effectiveness, For
this reason, we have chosen to categorize these simulation tech-
niques as macrosimulation.

Computer simulation at this level has its basis in queueing
theory, the probabalistic analysis of the interaction between
users and facilities. The role of simulation is to exercise user
and facility interactions whose complexity exceeds the bounds of
known or feasible analytic solutions, by Monte Carlo methods.

Digital computer facilities have long exhibited the symptoms
dear to the queueing analyst; namely, bottlenecks. The reader will
probably have personal familiarity with situations where a data
processing facility has become hopelessly inefficient due to one
or a combination of bottleneck elements.

Preceding page blank

-77-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



Presumably, the objective of simulation is to obtain advance
notice of the performance of a computing facility at the design
stage. To be successful, the simulation anticipates the way the
system would work if it were built. The successful simulation
designer must accomplish all of the following steps:

1. He must satisfy himself that simulation is an
appropriate analytical method, and that the
elements of the system and the job stream are
sufficiently defined.

2. He must verify that the results of the simula-
tion are correct, and that they are appropriate
to the purpose.

3. He must explain his results and proselytize his
conclusions in order to affect future events in
a constructive way.

These generalizations are noted here because there seems to
be a general unease among professional personnel that the tech-
nique of simulation has been often misused, and often because of
neglect of the fundamentals listed above.

Macrosimulation of computer systems are discrete simulations.
Such simulations are characterized by a time ordered sequence of
events whose occurrence, and time of occurrence is predestined
either by deterministic formulae or by the result of a pseudo-ran-
dom process. The simulation consists of computing the sequence of
events that characterize the movement of users through the various
facilities of the system. In a computing system, users are
elements of the job stream. Facilities might be processing units,
working memory, data links and so forth. Generally speaking,
such simulations involve macroscopic levels of description of
system interactions. Thus, interactions between jobs and facili-
ties are often defined in terms of the amount of time a facility
is occupied, on the amount of core that is pre-empted in accomp-
lishing a computing event. The level of detail to be achieved
by the simulation is actually unlimited, and must be related back
to the purpose of the simulation. It is both a practical and
aesthetic rule to minimize the level of complexity of any simula-
tion.

The results of the simulation are compiled by defining
measures of effectiveness of the system in responding to the job
stream. If there are random processes involved, a sufficient
ensemble of data must be computed to obtain statistically valid
results. Often the purpose is to evaluate a steady state job
stream. In this case, a single run can be sufficient, provided
that some means is found to verify that there is a steady state
condition, and that some means is used to gather the data after a
steady state has been reached.

-78-
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840



Discrete simulations can be generalized into a collection
of elements and operators. This kind of generalization permits
the development of high order programming languages for discrete
simulation. As an example of such a language, we will briefly
discuss GPSS, a language developed by Gordon of IBM.

GPSS deals in transactions, events, racilities, storages,
and queues. A transaction is generated for each element in the
job stream. Events mark the movement of the transaction through
the system of facilities, storages and queues. A facility is a
system element that can accomodate only one transaction at a time.
A storage is a system element that can accomodate many transactions,
up to a specified limit, at a time. A queue is a waiting line.
Gordon, Ref. [2], gives examples of these concepts as they might
occur in different systems:

TYPE OF SYSTEM TRANSACTION FACILITY STORAGE

Communications Message Switch Trunk Lines

Transportation Car Toll Booth Road

Data Processing Record Key Punch Memory

6-2.0 Example

We are interested in the performance of a computing system
that consists of a processor that completes service on a job in
multiples of one time unit. At each time unit the job either
reoccupies the processor again or is completed. The probability
of branching back for recomputation is .5, independent of the
number of times that the job recycles. New jobs arrive at the
computing system with probability .1 at each time interval.

There is a buffer space sufficient to hold one incoming job
if the processor is occupied when a new job arrives. If the buffer
space is also filled, the arriving job is lost.

The intent of the simulation is to find out what percentage
of jobs is lost. We will sketch out the simulation of this system
using GPSS.

GPSS is a block diagram oriented language, designed to
permit development of the program by an intermediate step of
creating a block diagram that graphs the sequential events that
mark the progress of a transaction through the facility. Our
problem will be simulated by defining a storage sufficient to
accomodate two transactions (two jobs), and one facility, which
will be the processor. We will call the storage; core. We will
create jobs by generating a transaction every 1 time unit, but
we will discard nine-tenths of these jobs, on a random basis, to

-79-

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840



account for the .1 probability that a new job will arrive at a
given interval. A GPSS block diagram for this section of the
simulation is shown in Figure 1.

GENERATE 1

TERMINATE

Figure 6.1 - Creating the Job Stream

Next, the transaction attempts to occupy core. If it succeeds,
it attempts to occupy the processor. The declaratives enter and
leave are associated with storages. An enter increments a counter
associated with the capacity of the storage, and leave decrements
the counter. The declaritives seize and release are used for
facilities, which can accomodate only one transaction at a time.

Figure 2 is a complete block diagram. In this diagram we have
used a conditional transfer test (BOTH) which attempts to pass the
transaction into core, but, if that storage is full, it passes the
transaction to a terminate block. Having entered core, the trans-
action attempts to seize the processor. If it succeeds it will,
after one time unit, signified by the advance block, either release
the processor and leave core, or return to occupy the processor for
another time unit.

The program will maintain records of where each transaction is
in the system, and when it is due to move. It proceeds by completing
all events that are scheduled for a particular time and that can
logically be performed. Where there is more than one transaction due
to move, the program processes transactions in the order that they
were generated. This order is sufficient in our problem to assure
that it will execute properly, since we wish to be assured that the
simulation will first process a transaction that is occupying the
processor, thus possibly releasing the processor facility and open-
ing up a sapce in core storage before it generates a new job at
the otherwise simultaneous time unit interval. There is provision
sion within GPSS for altering the priority of a transaction, if
necessary, in order to dictate the order in which otherwise
simultaneous events will occur.

-80-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



The transaction will succeed in
it is released by the previous job.

Generate transaction
every 1 interval 1

action enters

seizing the processor when

Terminate 901
of potential
jobs to get
desired distri-
bution

Enter core

Seize processor

Advance

Test, processing
over?

return, continue
to occupy processor
and core

Release proceE

Leave core

Tabulate

Terminate
Transaction

Figure 6.2 - Complete Block Diagram

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



The object of this simulation is to observe the number of
jobs that terminate at 1 (core buffer occupied), relative to
the number that terminate at 2, (job complete). To gather these
statistics, we must insert tabulate blocks in the paths to these
termination blocks, and create tables which output these statistics.

GENERATE
TRANSFER
TRANSFER
ENTER
SEIZE
ADVANCE
TRANSFER
RELEASE
LEAVE
TABULATE
TERMINATE

1
.9, NOJOB, JOB
BOTH, NOCORE
CORE
PROC
1
.5, CONT, DONE
PROC
CORE
DONE
1

NEW TRANSACTION EACH INTERVAL
NEW JOB DISTRIBUTION
CHECK FOR AVAIL. CORE
OCCUPY CORE SPACE
OCCUPY PROCESSOR IF FREE
COMPUTE
CHECK FOR FINISH
FINISH, RELEASE PROC
FREE UP CORE
TABULATE TIME IN SYSTEM
COMPLETED JOBS END HERE

NOJOB TERMINATE

NOCORE TABULATE
TERMINATE

DONE TABLE
LOST TABLE

CORE STORAGE

START
RESET
START

LOST

M1
M1

NOT A JOB

TABULATE TIME FOR LOST JOB

TIME IN SYSTEM TO FINISH
TIME IN SYSTEM TILL LOST

2

50, NP

1000

NUMBER OF CORE SPACES

RUN 50 JOBS, NO PRINT
WIPE OUT STATISTICS
RUN 1000 JOBS THROUGH

This example is identical to example 2 in Chapter 8 and if
properly coded should yield similar results. The examples were
deliberately made identical so that the reader could compare the
analytical approach with the method of simulation. Analytical
methods, of course, are limited to problems which satisfy the
assumptions necessary to derive the method of solution, whereas
the construction for a simulation can accomplish any finite
sequence of operations permitted by the programming language.
GPSS provides many operations and procedures beyond those developed
in this example.

6-3.0 Computer Simulators

There are many published examples of the use of discrete
simulation languages to model and study computer systems,
Refs. [1, 6, 7, 9].

-82-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

JOB

CONT

DONE



There have been at least two efforts to develop computer

simulators of sufficient generality that they are in effect,
a specialized simulation language for simulating computer
systems.

6-3.1 CSS II

CSS II, developed by IBM is such a simulator. This simulator

was developed by IBM to support its own system analysis needs, and

to aid in analysis of customer facility requirements.

IBM now provides CSS II as proprietary software on a rental

basis. CSS II is similar in concept to GPSS but differs in one

important aspect: it is not general but applies specifically to

computer systems. Thus its language speaks in terms of tape units,

disk files, communication lines, and terminals, and provides

instructions for the modeling of programming systems.

CSS programming consists of a specification of system elements,

a specification that generates job streams, and specification of

the logical opreations to be performed on the job elements. Its

generality is enhanced by permitting a more or less complete

construction of both the system hardware configuration and the

software operating system, to a level dependent on the users needs

and interests.

6-3.2 IMSIM

IMSIM was developed by Systems Development Corporation for

the NASA Manned Spacecraft Center. It presents a less general

approach to computer simulation, in comparison to CSS, because

user constructions are confined to the preparation of input tables

which define the configuration of computer system elements and the

job stream. The algorithms that define the software operating

system cannot be modified, except for a few switch setting choices.

The operating system programmed into IMSIM includes capability to

simulate priority dependent multiprogrammed, and multiprocessor

computing systems. IMSIM is supported only at the Manned Space-

craft Center, NASA. It is written in Modlit, a language similar

in many respects to GPSS.

6-4.0 Summary

In concluding this chapter on macrosimulation, it is

appropriate to quote from the IBM Program Product Description

for CSS II, Ref. [11].

"There are three lessons to be learned from these case

studies ... The first is that a great deal of groundwork precedes

-83-

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840



the actual construction of a simulation model. One must know
what he wishes to model. The system description does not result
from the simulation but is an input to the simulation.

The second lesson is that one must have a plan of attack.
Very little information is learned from a single simulation. An
understanding of system operation comes after running many
alternative designs under many different job loads.

The final lesson is that the effort required to carry out a
simulation is not minor. This of course arises from the fact
that the studies themselves require extensive analysis effort.

These lessons apply not only to CSS but to any comprehensive
system design technique. Much of the work required to carry out
a CSS study is work that must be done anyway, in one form or
another, in defining and understanding system operation."

-84-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



REFERENCES

1. Lehman, M., & Rosenfeld, J., "Performance of a Simulated Multi-
programming System", (Proc. FJCC, 1968), pp. 1431-1442.

2. Gordon, Geoffrey, System Simulation, (Prentice-Hall,
Englewood Cliffs, New Jersey, 1969).

3. Gragg, D.M., "Review of Simulation Languages, Programs
and Systems", (L&C Document ISD-C1-SIM-H-002, MSC,
NASA, 23 June 1971).

4. Interactive Sciences Corp., GASP II A Reference Manual,
Braintree, Mass.

5. Putsker, Kiriat, Simulation with GASP II, (Prentice-Hall,
New Jersey, 1969).

6. Day, E.C., "Simulating the Operation of an Aerospace
Computer System", (AIAA Aerospace Computer Systems
ConferenceJ8-10 Sept. 1968, AIAA Paper 69-973), pp. 1-12.

7. Katz, J.H., "Simulation of a Multiprocessor Computer
System", (Proc. SJCC, 1966), pp. 127-139.

8. MacDougall, M.H., "Computer System Simulation: An
Introduction", (Computing Surveys, 2(3), Sept., 1970), pp.191-
209.

9. Merikallio, R.A., and Holland, F.C., "Simulation Design of
a Multiprocessing System", (Proc. FJCC, 1968), pp. 1399-1410.

10. System Development Corporation, "Information Management
System Design for Future Missions, Users Manual",
(Report TM-(L)-4719/001/01, Contract NAS 9-11211, NASA
Manned Spacecraft Center, Houston, Texas).

11. IBM, CSS II General :Iformation, Technical Publications
Department, 1133 Westchester Ave., White Plains, New York.

-85-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840



PRECEDING PAGE BLANK NOT FII,MED

CHAPTER 7

MARKOV ANALYSIS AS AN ALTERNATIVE
TO MACROSIMULATION

7-1.0 Introduction

Modern computing systems show a marked tendency towards com-
plexity in the interrelationships between job streams and computing
elements. Multiple access computing, multiple processors, resource
scheduling algorithms, all imply a requirement that the computing
system designer understand the stochastic behavior of computer system
elements as a network of job stream queues and processors.

Monte Carlo simulation is a significant and useful tool in
gaining insight into these problems. However, as the system being
simulated grows in complexity, these simulations tend to become
expensive to run, and accuracy requires very large ensemble samples
or running times. When simulation is to be used as a design tool,
exploration of the effect of design parameters requires repeated
simulation. Under this situation simulation can become
expensive.

An alternative to simulation is available in situations
where the system can be modelled as a finite state markov chain.
Actually, markov chains represent a quite broad and useful class
of stochastic models for computer systems. The process of creating
a markovian model to study a given computer system is not presented
here. It is our purpose to indicate that techniques exist for
obtaining state solutions to such models by numerical analysis
techniques. Two examples of Markov sequences will be presented in
Chapter 8.

7-2.0 Random Sequences and the Markov Property

A random sequence is a collection of random variables indexed

by a discrete valued parameter such as

x(o), x(l), ..., x(n) (7.1)

The variable x may be either continuous or discrete valued.

Preceding page blank
-87-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



To describe a random sequence completely, the joint probability
function

p[x(n), x(n-l), ... , x(0)] (7.2)

of all elements in the sequence must be specified. Fortunately, most
random sequences encountered in applications have the property that
each succeeding probability distribution depends only on the previous
distribution, or at most on a few preceeding distributions. If the
probability distribution is a function only of the preceeding probability
distribution, the sequence is markovian.

7-3.0 Markov Sequences and Chains

A random sequence x(k), k=O, 1, ... N is Markovian if

p[x(k+l)/x(k), x(k-l), ... x(0)] = p[x(k+l)/x(k)] (7.3)

for all k.

If x is a continuous variable, p[x(n)] is a probability density
function, and the joint probability density function between any
values of the ordering index can be obtained given the initial density
function p[x(0)] and the intervening transition density functions
p[x(k+l)/x(k)].

If x is a discrete variable, p[x(n)] is a vector whose dimension
is the number of discrete values obtainable by the state x. p[x] sums
to 1 over the complete set of possible values of x. In this situation,
the markov sequence is usually called a markov chain, and p[x(n)] can
be obtained given an initial distribution p[x(0)] and the intervening
probability transition matrices, which define the probability associated
with a transition from any value of x at k to any value of x at k+l.

7-4.0 The Generality of Markov Sequences

Although many applications of interest appear to fit with ease
within the framework described above, it should be pointed out that
any sequence that depends on a finite number of past values of the
sequence can be make markovian by redefining the variable x[n] to be
a vector whose components include past values of x, for example, an
appropriate expanded definition of x would be

x'[n] = [x[n] (7.4)

x[n-l]

-88-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



for a system where transitions are a function of the two most recent
states of the variable.

7-5.0 Methods of Solution for Markov Chains

Numerical solutions to Markov chains can be obtained by explicitly
performing the sequential transition from an interval for which the
p[x] is known,by successive multiplication by the probability transition
matrix.

p[x(k)] = M(k-l)M(k-2) ... M(n)p[x(n)] (7.5)

If the functional relation defining the transition is non-linear,
numerical solutions are still obtainable by the method described above,
except, for each step, a more general functional operation is implied;

p[x(k+l)] = F(p[x(k)]) (7.6)

When the probability transition matrix is independent of the
ordering index, equation (7.5) becomes

k-n
p[x(k)] = M p[x(n)] (7.7)

This "index invariant" situation also permits the application of the
transform calculus of generating functions. This procedure involves
the formation of generating functions which are infinite polynomials
in an ordering variable z. Equation (7.8) is an example.

n
G(z) = a 0 +alz + ... + anZ + ... (7.8)

The coefficients an are a number sequence, where the successive
increasing powers of z order the sequence for increasing values of
the index n.

By using generating functions, the following infinite set of matrix
transition equations

p[x(l)] = M p[x(0)]
(7.9)

p[x(k)] = M p[x(k-l)]

can be reduced to a single matrix equation

P(z) = z M P(z) + p(0) (7.10)

-89-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



where P(z) is the (vector) generating function for the sequence of
probabilities associated with the various discrete values of x(n).

M is the probability transition matrix, and the scalar multiplier
z increases the power of z in each scalar generating function corres-
ponding to the transition of the index in the sequence.

The vector p(O) is the initial value of p[x(0)]. It is the
initial probability distribution for the various discrete values
of the variable x. p(O) may be considered an initial condition on
the transformation which picks up the effect of all previous transitions
prior to the value of the index assigned to the beginning of the
problem.

By rearranging equation (7.10) we obtain

(I - z M)P = p(O) (7.11)

which is a matrix algebraic equation defining the transform variable
P in terms of the probability transition matrix M, and initial
conditions p(0). This equation can be solved for the various
components of the generating function; pl(z), p2 (z) ... , where each
generating function contains complete information on the sequence of
probabilities as the markov sequence unfolds.

7-6.0 An Example

To be concrete, we turn to an example. We wish to analyze
the performance of a subroutine which consists of a compute element
followed by a branch which with equal probability either exits the
subroutine or returns and begins the subroutine again. The flow
diagram is shown in Figure (7.1).

(.5)

Figure 7.1 - Subroutine Example

-90-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



We define a discrete variable x which has two states;

x = 1 subroutine is entered

x = 2 subroutine is finished

Associated with this variable is a (vector) probability sequence

p [x(k)] - probability that x=l at kth
interval

p [x(k)] - probability that x=2 at kth
interval

Since x is either 1 or 2, EP[x] = 1 for all k. We define genera-
ting functions for each probability sequence

Pl(z) = Z pl[x(k)] = P0 + Po z + P'z
(7.12)

P (z) = Z2 [x(k)] = P2 + P Z +
2 P[(k)] x 2 pl

~

z+

The probability transition matrix for this problem is

M = (7.13)

.5 1

where mij is the probability associated with a transition from the
state x=j to the state x=i, in an interval.

Thus, for this problem, equation (7.10) becomes

1 - .5z 0 1

P(z) (7.14)

-.5z Al-z . 0-

where we choose for an initial condition that

x(0) = 1 with certainty.

_91-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



Solving this set of equations yields

1 1 1 1 2
P1(z) = 1 -z 1+ z + ...1-. 5z2 4

(7.15)

2 .5z 1 32 73
(z) (1-.5z)(1-z) = O + Z + 2 + +

which are seen to be the ordered set of probabilities for x=l, and
x=2 respectively.

The inverse transformation; getting the number sequence from the
generating function is accomplished by long division, as in the above
example or by noting that

n

n dzn P(z) (7.16)
n dz nz=0

the initial value is

P0 = P(z) (7.17)

z=0

and the final value is

f = (-z) P() (7.18)

z=l

It is also of great value in many cases to be able to determine
statistical moments of the probability sequence. This will be
demonstrated in example 1 of Chapter 8.

7-7.0 Equilibrium Solutions

The transform methods discussed above yield complete solutions
for finite, linear, index invariant, markov chains. However, analytic
methods for many problems are too tedious to use due to the order of
the algebraic equations.

-92-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



One can frequently be satisfied with obtaining equilibrium solutions,
which are defined by the equation

p =Mp

(7.19)
or

(I - M)p = 0

These are terminal solutions to the markov chain since these
distributions regenerate themselves on each transition. One must not
presume that there is a single equilibrium solution to a process.
There may be as many equilibrium solutions as there are discrete
values of the random variable. A knowledge of the physical process
is usually sufficient to recognize the number of possible equilibrium
states and their proper interpretation.

It is fortunate that the most frequent objective of practical
computer analysis projects is to find the equilibrium probability
distribution of the state. Since the state consists of the value of
the discrete variable x (x=l, x=2, etc.), the equilibrium probability
distribution is a vector whose elements can be roughly interpreted
as the probability that x (the state) will assume each of its various
discrete values. Care must be taken to realize that at any given
interval, the state assumes exactly one and only one value, and
therefore, its associated distribution must be interpreted as a limit
of either an ensemble average, or if the sequence is ergodic, as the
average condition over a large interval, following sufficient elapsed
intervals to eliminate transient effects due to initial conditions.

Once the equilibrium probability distribution for the state of
the computing system is known, many other probabilistic measures of
system sufficiency or performance are readily established as combi-
national distributions, expected values,variances, and so forth.
Throughput rates, wasted core space, length of wait times, "busy
signals" are but a few of the derived measures of performance that
are computable from the equilibrium probabilities of state.

7-8.0 Comparison with Macro-Simulation

Solution of equation 19 can be obtained either analytically, as
will be done in example 2 of Chapter 8 or numerically, by assuming
a value for P and solving the fundamental transition equation

k+l = Mpk (7.20)

until

pk+l pk

-93-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840



This procedure is an alternative to Monte Carlo simulation
techniques which form ensemble or ergodic averages of solutions
obtained by sequencing the state variable x from interval to
interval by transitions which are based on random numbers, generated
according to the probabilities defined in the transition matrix.

7-9.0 Speed of Solution

Reference [1] describes the implementation of a computer program
to solve the equilibrium distribution equation. The program described
was designed to efficiently solve the equation for systems with as
many as 5000 discrete states. The conclusion of that paper is that
for most problems of significance, solution of the markov equilibrium
equation will require several orders of magnitude less computing time
than solution by simulation.

7-10.0 Summary

This chapter has described a series of alternatives to simulation

in the analysis of computing systems. We have shown that significant
analytical tools are available for problems where the state of the
computing system can be modelled as a markov chain. In particular
we have shown that explicit analytic solutions are available if the
chain is linear and index invariant.

Equilibrium numerical solutions can be obtained by direct use
of the state transition equation. We have quoted from Reference [1]
to claim that such procedures are superior in terms of computing
requirements in comparison to Monte-Carlo simulation.

_94-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



REFERENCES

1. Wallace, V.L., and Rosenberg, R.S., "Markovian Models and
Numerical Analysis of Computer System Behavior", (Proceedings,
Joint Spring Computer Conference, 1966), pp. 141-148.

2. Bryson, A.E., and Ho, Y.C.,Applied Optimal Control, (Blaisdell
Publishing Co., Waltham, Mass., 1969)

-95-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



PRECEDIG PAGE BLANK NOT FILMED

CHAPTER 8

DISCRETE MARKOV TECHNIQUES IN
COMPUTER ANALYSIS

8-1.0 Example 1

Suppose that one has a subroutine, characterized by a compute
time T, followed by a branch, which, with equal probability, either
repeats the computation or exits. A flowgraph is shown in figure 8.1.

Figure 8.1 - Flowgraph for Subroutine

The minimum time for the subroutine is T. The maximum time is infinite.
What is the average time?

This problem is sufficiently simple so that one can easily construct
the sequence of probabilities associated with possible discrete results:

P(O) = 0

P(T) = 1/2

P(2T)= 1/4

(8.1)

The average time is
00

t = T kPk
0 k

. Preceding page blank
-97-

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

(8.2)



where

Pk = P(kT) (8.3)

Similarly, the variance is

2 2 2 2
var = t - t = T ( k2Pk - ( kP ) (8.4)

The probabilities associated with the various possible subroutine
times is a countably infinite sequence of numbers. A very interesting
procedure for analyzing such number sequences involves the introduction
of the concept of generating functions, as we have seen in Chapter 7.

We define an ordering variable z, and create an infinite sum in
terms of the number sequence and z. Thus,

2 k
G(z) = PO + Plz + P2Z + * pk z (8.5)

is a generating function for the probability of exiting the subroutine
at the various intervals.

Let Gl(z) be another generating function associated with the
probability sequence that the subroutine is entered at the kth interval.
Since it is equally likely that the subroutine will branch back or
exit, we can conclude that the function for the branch back path is
also G(z), and, since the function for the first entry is equal to 1;

Gl(z) = 1 + G(z) (8.6)

where z=O corresponds to the interval that the subroutine is first
entered.

Let G2 (z) be the function for the arrival at the branch point.
This sequence of numbers is identical to Gl(z), except that one
interval has elapsed. Therefore, its generating function is

G 2(z) = G1 (z) z (8.7)

= z(l + G(z))

Finally we close the loop by noting that

G(z) = .5 G2 (z) (8.8)

-98-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS'02138 · (617) 661-1840



yielding

G(z) = .5z (1 + G(z))

(8.9)

G(z) = .5z
1-.5z

This equation is a closed form expression for the generating
function. It has been derived by recognizing the recursive nature
of the process which generates the sequence.

We can recover the individual values of the number sequence by
explicit division, or by noting that

dn G(z) =P (8.10)

dzn z=0

Since

G(z) = Z Pk Z (8.11)

the derivative with respect to z, evaluated at z=l is

G'(z) =1 Z kPk (8.12)

which is the average value of k.

The second derivative, evaluated at z=l, is
00

G"(z)| = Z P k(k-l) (8.13)

z=l

Thus, the variance can be calculated from

var = G"(z) + G'(z) - G'(z) (8.14)

For our subroutine

G'(z) = .5 + .25z (8.15)
1-.5z (1-.5) 2

yielding

G'(z) = 2 (8.16)
z=l

-99-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



Evaluating the variance according to equation (8.14) yields
the following average time, and standard deviation in time for
the subroutine

avg = 2T (8.17)

S. D. = T

The procedure used to obtain the closed form solution for the
probability generating function can be constructed directly from the
block diagram. The procedure is to substitute the variable z for the
compute box, signifying the transition in the ordering variable, and
to assign multipliers in the paths equal to the probability that the
path will be taken. The block diagram becomes; Figure 8.2:

.5

Figure 8.2 - Block Diagram for Subroutine

Those familiar with the technique of block diagram reduction,
will be able to determine that this system has a "transfer function"
of

G(z) = .5z (8.18)
1-.5z

For more complicated processes, standard techniques of block
diagram reduction yield the closed form expression desired. The reader
will notice the similarity between the ordering variable z and the
delay operator z used in the analysis of sampled data systems. They are
in fact equivalent, although the most common practice defines the operator
in sampled data analysis such that the ordering function is reversed,
generating past values, rather than future values of the sequence for
increasing powers of z, [7].

8-2.0 Example 2

Suppose, now that we are interested in a system that consists of
a device (or subroutine) that services users in a manner similar to the
subroutine example. However, the users of the device will wait for
service if the device is busy. However, the queue is of length one, and
if the place in line is filled, subsequent users are lost to the system.

-100-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



We define two parameters that are sufficient to characterize
the system:

1. Service rate p; the probability that service is
completed at an interval.

2. Arrival rate A; the probability that a new user
arrives at an interval.

We specify that only one user can arrive per interval. There
are three possible states of this system, all mutually exclusive:

state 0; no users in the queue or being served

state 1; a user is being served

state 2; a user is being served and the place in
line is filled

We can construct a transition diagram for this problem (or a
block diagram for that matter), by defining the probabilities that are
associated with transitions between states at an interval. The
transition diagram is as follows:

P 1 0= P21= (1-u)

P 0 0 =l-X

P 2 2 =l-(1-A)

Po01= (1-X)

Pll = (1-X) (1-u)+Ax

Figure 8.3 - Transition Diagram for Queueing Example

-101-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



The probabilities for the transition are

P no new users arrive
00

P = a user arrives

P0 1 = a user finishes service, no new users arrive

P1 1 = no new users, no finished service, or a new user
and a finished service,

P2 1 = a user arrives, no finished service

P1 2 = no new users, and a finished service

P2 2 = not (no new users, and a finished service)

The unusual definition of P2 2 illustrates the use of the fact
that that since some transition must occur, and since state 2 can
transition either to state 1 or state 2, the sum of these probabilities
must be one, hence P2 2 = 1 - P2 1 .

In a problem of this type, we are often interested in the steady
state behavior of the system. The transient behavior can be analyzed,
using the generating functions, as before, but here we will confine our
interest to the condition where the system has reached a steady state.
Let R be a vector whose elements are, in order, the probability that the
system is in state 0, state 1, or state 2. Then, in steady state R
will be constant, and the following equation must be true

R = PR (8.19)

where P is the matrix whose elements were defined above, and described on
the transition diagram. Rearranging this equation, we obtain

(I-P)R = 0 (8.20)

The matrix (I-P) is written out below

I-P = [ -p + A- 2 X-p P(X-1) (8.21)

0 (-1) (1-X)

-102-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



In order that there be a-solution to equation (8.20) other than

R=0, the determinant of I-P must equal zero, [4, ch. 1].

Inspection of equation (8.21) confirms that this will be so, since

the sum of the elements of each column are zero, (even one column would

have been sufficient). The fact that the sum of columns are zero

follows from the fact that the sum of a column in P is the sum of the

probability of all possible transitions from a state, which must equal 1.

Therefore, a non-trivial solution for R always exists. An arib-

trary constant must be supplied by recalling that ER=1.

We will solve the problem for values of i=.1 (arrival probability)

X=.5 (completed service
probability)

The equation becomes

.1 R
0

- .45 R1 = 0

-.1 R
0

+ .5 R1 45 R
2

= 0 (8.22)

-. 05 R
1

+ .45 R
2

= 0

Solving these simultaneous equations, the steady state probabilities

are found to be

R 0 (system empty) = .802

R 1 (server busy) = .179 (8.23)

R2 (queue full) = .019

It is interesting to note that somewhat less than one in a

hundred arriving users will be turned away.

8-3.0 Comments on the Examples

The preceeding examples have introduced several concepts useful

in the analysis of computing systems. The most important concept was

not commented on during the development. Both of these examples

involve the analysis of a markov sequence. A markov sequence exists

where the transition from state to state is a random event whose

probable outcome is completely defined by the previous state.

The stock market is a good example of a system which is not a

markov process, since the price of stock, and all the events that

happen during the day do not seem sufficient to determine closing

-103-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



prices. Past experience, previous tops, limit lines, and so forth
are being avidly tracked by technical traders, and other interrela-
tionships reaching far into the past are at work and serve to make
the problem "non-Markovian". Of course, at some level of complexity,
any physical system can presumably be made markovian. (One description
of Markov sequences, or processes, is to say that a process is Markov
if the future is connected to the past only by the present.)

Furthermore, the systems are linear, yielding linear difference
equations, or algebraic equations in the ordering variable.

Finally we have introduced the concept of generating functions,
first invented by LaPlace. Generating functions greatly increase the
power to solve problems involving number sequences, since closed form
solutions can often be found by inspecting the recursion formula that
generates the sequence. Having found an expression for the generating
function, it is a simple matter to obtain the individual terms of the
sequence. Limit values, such as initial value, or final value can also
be easily obtained. When the number sequence is a complete set of
probabilities, the statistical moments of the set are also easily
determined as was demonstrated.

We have also shown that there is an equivalence between the concept
of generating functions and the z transform functions of sampled data
analysis.

8-4.0 Characteristic Functions [2]

Characteristic functions are used in probability theory. They are
also sometimes referred to as moment generator functions. We will
describe them briefly here in order to perceive the duality between
the use of generating functions for the discrete random process in
example 1, and the use of characteristic functions for continuous
processes.

The characteristic function of a random variable, whose probability
distribution function is f(x), is

¢(u) = jf(x)eu dx (8.24)

It will be noticed that ¢(u) is actually an inverse Fourier transform
of f(x). It can be shown that u is real, for x real, that f(u) exists
for any f(x) that is a probability distribution, and that f(x) is uniquely
defined by (u).

Now, we expand p(u) in a MacLaurin series;

f(u) = 4(0) + V'(0) u + "(0) u2 + . + (n)(0) tn + . (8.25)
2! n!

-104-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840



but

c(0) = j f(x)dx = 1

q'(0) = jx F(x)dx =jx (8.26)

"(0) = i2 x2 f (x)dx = x

Thus, the moments of the probabilities distribution function
f(x), can be determined from the derivatives of the characteristic
function, evaluated at the origin. This is analagous to evaluating
moments of the discrete distribution by evaluating the derivatives
of the probability generating function at z=l.

8-5.0 Further Reading

The reader is advised to read section 1.2.10 of Reference 1
entitled 'Analysis of an Algorithm" to see an example of tne application
of these techniques in determining the solution time to be expected
of an algorithm designed to search through a set of randomly ordered
numbers in order to obtain the largest number in the set.

Also, Reference 5 contains a comparative analysis of two methods
of performing binary multiplication, using the analysis techniques
described in this chapter.

-105-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



REFERENCES

1. Knuth, D.E., Fundamental Algorithms, (Addison-Wesley Publishing
Company, Reading, Mass., 1968).

2. Laning, J.H., and Battin, R.H., Random Process in Automatic
Control, (McGraw-Hill, New York, 1956).

3. Saaty, T.L., Elements of Queueing Theory, (McGraw-Hill, New York,
1961).

4. Hildebrand, F.B., Methods of Applied Mathematics, (Prentice-
Hall, Englewood Cliffs, New Jersey, 1961).

5. Ramamoorthy, C.V., "Discrete Markov Analysis of Computer Programs",
ACM, 20th National Conference, 1965, pp. 386-392.

6. Wallace, V.L., and Rosenberg, R.S., "Markovian Models and
Numerical Analysis of Computer System Behavior", Proceedings,
Spring Joint Computer Conference, 1 9 6 6

t
pp. 141-148.

7. Ragazzini, J.R., and Franklin, G.F., Sampled-Data Control Systems,
(McGraw-Hill, New York, 1958).

-106-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840



PART III

HARDWARE TECHNIQUES

-107-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



\iECED1qG PXGE BLPAG NOT Fi1I

CHAPTER 9

AEROSPACE COMPUTER ARCHITECTURE

9-1.0 Introduction

In this chapter we will review the architectural properties of
some recent aerospace computers. The salient features of these
machines are characteristic of trends that have been evolving in
aerospace computer design. Features such as stack organization,
microprogramming and modularity are becoming commonplace in today's
systems. A clear understanding of these features is important to the
system designer if he hopes to efficiently utilize the computational
power of these machines, and an excellent way of building this under-
standing is to study some typical computer architectures. Such a
study is the purpose of this chapter.

An expanded version of this chapter covering all aerospace
computers presently available would be a useful system design aid.
Computer systems would be listed according to available features and
physical characteristics. When the need to specify a computer arises,
those systems having the desired characteristics could then easily
be isolated and chosen. The industry search and system analysis
necessary to compile such a book is large and beyond the scope of this
contract. However, we will attempt to show the benefits of such a
design aid by reviewing the features of some recent aerospace computers,
such as the Burroughs D-Machine, the Navy's Advanced Avionic Digital
Computer (AADC), the JPL STAR Computer, etc.

9-2.0 Structural Levels

The structure of a digital computer may be specified on several
levels each having a specific category of components [1]. These levels
are the following:

a) Circuit Level: the components are resistors,
capacitors, transistors, etc.

b) Switching Level: the components are flip-flops,
delays, logical gates.

- Preceding page blank
-109-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



c) Register-Transfer Level: the components are
registers, control operations, transfers, data
operators.

d) Program Level: the components are programs, instructions,
memory cells, etc.

e) Architectural Level: the components are memory modules,
processors, data buses, switches, instructions.

It is the last level, the Architectural Level, upon which we
will concentrate.

9-3.0 HOL Architecture

One of the interesting trends in computer organization has
been toward higher order language (HOL) architectures [2]. That is,
architectures designed for efficient execution of HOL source state-
ments. A good example of this concept is the SPLM computer [3,4]
designed to directly execute SPL source code without compilation.
The system employs a one pass loader to transform the source code
into reverse Polish notation (intermediate code) and then load it
into the machine's memory. Compilation can be eliminated because
the machine does not have a traditional von Neumann architecture, but
rather a stack organization. These stacks are used for dynamic
storage allocation, addressing, and nesting of processes.

The SPLM requires three stacks and one pushdown list. (A stack
is a last-in-first-out (LIFO) queue in which all elements are
visible, while a pushdown list is a LIFO queue in which only the
top element is visible.) The machine has a declaration stack to
define data objects for later manipulation by procedure execution, a
parameter stack to hold the actual values of parameters, and a
slice control stack to control nested procedures. The pushdown list
is used for expression evaluation.

Upon calling a procedure its beginning is marked in the parameter
and declaration stacks. Then all parameters to be passed to the
procedure are evaluated and put into the parameter stack. Next the
procedure code is executed using the pushdown list, and during this
execution the procedure's declarations are put into the declaration
stack. When the procedure is finished, the stack pointers are
returned to a position appropriate to execute the next statement
following the procedure call.

The instructions needed to efficiently perform this process
are rather unusual compared to a von Neumann architecture. Some of
these instructions are specially designed for stack and list manipu-
lation as well as the usual arithmetic operations. They allow efficient
execution of the intermediate code via the stacks and the pushdown
list.

-110-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



9-4.0 Reliability

Reliable performance is a prerequisite of aerospace computers.
Should a malfunction occur, immediate fault isolation and correction
techniques must be employed. This philosophy has guided the develop-
ment of the STAR Computer [5], perhaps the most advanced design for
reliability. Its architecture is illustrated in Figure 9.1.

Reliability is achieved by modularizing the system into a set
of replaceable functional units, a technique which simplifies fault
isolation and unit replacement. Each unit is then backed up with
several spares, and replacement is implemented by power switching.
Special hardware carries out the fault detection, recovery and
replacement. This topic is further treated in the chapter on failure
detection methods.

9-5.0 Modularity

The Burroughs' D-Machine [6-8] is a highly modular aerospace
computer. Its architecture is shown in Figure 9.2. There are four
major units: interpreters, memory units, devices, and a switch inter-
lock. The interpreters are the processing units of the computer.
Each interpreter has five functional parts:

a) logic unit (LU) - performs arithmetic, shift and
logical operations;

b) control unit (CU) - provides commands to LU, global
commands to other interpreters, tests and sets control
conditions;

c) memory control unit (MCU) - controls accesses to
memory and device units and to microprogram memory;

d) microprogram memory (MPM) - contains addresses of
control words;

e) nanomemory - contains control words pointed to by MPM.

These five functional parts of the interpreter are modularly
organized as shown in Figure 9.3. Furthermore, additional modularity
results from some of these units themselves being modularly designed.
The LU is modular in 8 bit increments. Word lengths from 16 to 64
bits can be provided using the same functional unit. In addition,
the MCU is expandable depending upon the addressing capability required.

The switch interlock (SWI) connects interpreters to memory units
and devices. Such a connecting device allows modular expansion for
incremental numbers of interpreters, memory units and devices. It also

-111-

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840



;. 
, 

Pa o 
M

4I 
II

O
 

0
3
 

X
E

4
0
 

3cn

.
l 

=

I 
X

 
_O

t 
_ 

_ _ 
_)_0_ _ 

_ 
a)

IR
R

* 
NBAHUSETS2 

*(

·I 
C

r

zS
 

~ 
I 

O
>

4
H

I fc

IN
TER

M
ETR

IC
S 

IN
C

O
R

PO
R

ATED
 

701 C
O

N
C

O
R

D
 AVEN

U
E 

, 
C

AM
BR

ID
G

E, 
M

ASSAC
H

U
SETTS 

02138 
(617) 661-1840



e e O

DEVICE MEMORY
1 MODULE 1

_ .- SWITCH

INTERLOCK

DEVICE MEMORY
2 MODULE 2 

FIGURE 9.2: D-MACHINE ARCHITECTURE

-113-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



3xternal conditions

Addresses to SWI To other interpreter To SWI

FIGURE 9.3: INTERPRETER ORGANIZATION

-114-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



allows an optional amount of parallel transmission between connected
units. The less complex SWI operations per clock pulse compared to
the interpreter allows the SWI to be run at a higher rate. Thus,
more serial operations can be introduced reducing the number of
parallel paths needed and reducing complexity. This unit can be
easily modified to go from full serial to an optional level of
parallel operation.

The result of this modularity is a smoothly expandable system,
one that can be tailored to match the complexity of the application.
We will see that additional versatility results from the D-Machine's
unique microprogramming organization, a topic we will treat in the
next section.

9-6.0 Microprogramming

The D-Machine takes a rather unique approach to microprogramming.
Each of the 56 bit words in nanomemory is a microprogram control word
with each bit corresponding to a control line for the LU, CU and MCU. A
nanoword is selected under control of a microword, a word in MPM,
specifying the nanoword's address. Thus, the microprogram for a given
machine instruction is a series of addresses in MPM with each address
selecting a control word in nanomemory. If a control word is used by
several instructions, it need only be stored once in nanomemory.
Although its address must be repeated in MPM, a considerable bit
savings still results due to this two level organization of micro-
program control.

The dynamic microprogramming capabilities of the D-Machine allow
great versatility in the use of this computer. Several interpreters
can be provided with different microprograms, each one specialized to
a particular language. This fact would enable the interpreters to
have a HOL architecture via the microprogram and enable direct
execution of source code for several HOLs simultaneously. A second
potential of the D-Machine for dynamic microprogramming is the ability
to switch the microprogram of a single interpreter. By doing so an
interpreter can execute sequential processes each tailored to a
particular instruction set without needing extra hardware.

The advantages of using microprogramming in an aerospace
application are vast. Most importantly as mission requirements change
new computers do not have to be bought; the capabilities of the
original computers can be modified by new microprograms. We will not
list additional applications and benefits of microprogramming here.
The reader is referred to Reference [9].

9-7.0 Multiprocessor Networks

The D-Machine and the Navy's AADC [10,11] are two recently
designed aerospace multiprocessors. We have already seen how several

-115-

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



interpreters can be connected to the D-Machine's switch interlock
to make the system a multiprocessor. We will now study the archi-
tecture of the AADC, which is illustrated in Figure 9.4.

The system is being designed to meet airborne computational
requirements for 1975-1985 naval missions. It is modularly organized
so that it can be assembled from off-the-shelf units, and it can be
configured as needed, from a single processor machine to a large
multiprocessor. Each processing element (PE) contains a processor
and a cache, called the task memory (TM), of from 1K to 4K words with
paging and an address space of 65K words. Program modules are stored
on a block oriented random access memory (BORAM) and are read into the
TMs as necessary. The use of a cache decreases the number of needed
accesses to the shared memory.

Sequentially organized problems are handled by the PEs. For
parallel organized problems there is a programmable matrix-parallel
processor, which consists of a fast Fourier processor, an associative
processor, and associative memory. These devices are connected by
logic controlled by the master executive control (MEC), which coordi-
nates the computational power of this computer.

9-8.0 Highly Parallel Organization

The last trend in recent aerospace computer design that we will
investigate is that of highly parallel organization. This is a topic
that is a variation upon the theme of multiprocessor networks. Instead
of having several processors, each executing an independent computation,
these machines operate on a string or an array of data in parallel [12].
The Goodyear STARAN computer [13], an associative array processor (see
Figure

The STARAN contains up to 32 arrays, where each array consists
of 256 processing elements and an associative storage of 256 words of
256 bits each. Long word length are used because computing is done
within a word rather than between words. Each array can perform an
arithmetic or logical operation on 256 data elements simultaneously.
The processing time for a given instruction is independent of the
number of data elements being operated upon. In addition, using an
associative organization enables search time for an array element
to be reduced to one memory access. With an associative memory data
is located by content not physical address searching.

Associative array processing has been applied successfully to
solving problems in numerical analysis, air traffic control, pattern
recognition, and radar signal processing. It is best suited to
applications in which large amounts of data can be processed simul-
taneously.

-116-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



IN
TE

R
M

E
TR

IC
S

 
IN

C
O

R
P

O
R

A
TE

D
 

· 701 
C

O
N

C
O

R
D

 A
V

E
N

U
E

 
· C

A
M

B
R

ID
G

E
, 

M
A

S
S

A
C

H
U

S
E

TTS
 

02138 
· (617) 661-1840



ASSOCIATIVE
MEMORY

PROCESSING
ELEMENTS

FIGURE 9.5: ORGANIZATION OF AN ASSOCIATIVE ARRAY PROCESSOR

-118-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



REFERENCES

1. Bell, C. G., and Newell, A., Computer Structures: Readings and
Examples, (McGraw-Hill, New York, 1971).

2. Foster, J. R., "Development of a Higher Order Language
Architecture", (NAECON '71 Record), pp. 201-205.

3. Keeler, F. S., et al., Computer Architecture Study, (Information
and Communication Applications, Inc., Silver Spring,
Maryland, October 1970, SAMSO-TR-70-420).

4. Cirad Corp., Architectural Study for Advanced Guidance Computers,
(Claremont, California, February 1971, SAMSO-TR-71-6).

5. Avizienis, A., et al., "The STAR (Self-Testing and Repairing)
Computer: An Investigation of the Theory and Practice of
Fault-Tolerant Computer Design", (IEEE Trans. on Comp.,
C-20(11), November 1971), pp. 1312-1321.

6. Burroughs Corp., Microprogramming Manual for Interpreter Based
Systems, (Defense, Space and Special Systems Group, Paoli,
Penn., November 1970).

7. Davis, R. L., et al., "The Building Block Approach to Multi-
processing", (Proc. SJCC, 1972), pp. 685-703.

8. Reigel, E.W., et al., "The Interpreter - A Microprogrammable
Building Block System", (Proc. SJCC, 1972), pp. 705-723.

9. IEEE Trans. on Comp., Special Issue on Microprogramming,
C-20(7), July 1971.

10. Entner, R.S., "The Advanced Avionic Digital Computer", Chapter
10 in Parallel Processor Systems, Technologies, and
Applications, (Hobbs, L.C. et al., (eds.), Spartan Books,
New York, 1970), pp. 203-214.

11. Entner, R., "Advanced Avionic Digital Computer Development
Program Report Number 9", (Naval Air System, Washington, D.C.,
November 1, 1971, Code AIR-5333F4).

12. Bell, C. G., et al., "Effect of Technology on Near Term Computer
Structures", (Computer, 5(2), March/April 1972), pp. 29-38.

13. Goodyear Aerospace Corp., "STARAN - A New Way of Thinking",
(Sales Brochure, Computer Marketing Division, Akron, Ohio).

-119-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840



'l:iCEDING PAGE BLANK NOT FIILMn

CHAPTER 10

SYSTEM PERFORMANCE MONITORING
TO AID OPTIMIZATION

10-1.0 Introduction

A method of optimizing computer system design that has been
successfully used [1,2], is to monitor the system while it is in
operation and collect data reflecting its performance. This data
then indicates how to vary system parameters to achieve better
performance, or it indicates if optimal performance with respect to
these parameters has already been achieved. Monitoring can also be
done at the process level to enable programmers to observe the
dynamic performance of their programs and how they interact with the
system. Very often static measurements of a program cannot determine
its dynamic performance. For example, the number of different
operation codes included in a program does not indicate the number
of times each type of opcode is executed when the program is run.
For this reason a dynamic monitoring of performance is necessary.

The purpose of this chapter is to survey some of the ways system
designers have used monitoring to aid both hardware and software
system design and to review their findings. More specifically, we
will present some of the issues that the system designer should be
aware of when building a monitoring system. Then we will see two
approaches to building such a system that one can take and present
an example of each in the form of a specific implementation. Most
importantly we will see how the data collected can help optimize
system design, thus making performance monitoring a technique with
which a system designer should be familiar.

10-2.0 Design Issues

One might ask the value of performance monitoring over micro-
simulation in optimizing system design. For a large system such as
MULTICS or TSS/360 having random job streams, microsimulation is

Preceding page blank

-121-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



impractical, if not just about impossible, due to the size of the
system. On the other hand, macrosimulation presents a statistical
simulation of system performance but does not carry the simulation
down to the register level. Thus, there are questions it cannot
answer about the design. To observe the actual performance of a
large system down to the register level dynamic monitoring is necessary.
However, in designing such a monitoring system the architect must be
aware of several design issues.

1. The designer must be able to monitor during normal
system operation. This point is obvious, otherwise
the monitoring system would be worthless.

2. The monitor should interfere as little as possible
with the actual processes being measured so as not
to destroy the integrity of the data.

3. It must record all occurrences of the events being
measured so that no sampling uncertainty is introduced.

4. The monitoring algorithm should concentrate on gathering
data and save as much analysis of this data as possible
for later processing.

5. If the monitoring system is meant to be general
purpose, i.e., meant to measure many aspects of system
performance at the option of the designer, it should
be expandable to allow easy inclusion of monitoring
functions determined necessary in the future. Such a
general purpose system can be a diagnostic aid to
programmers.

10-3.0 Two Approaches to Monitoring

The two approaches to performance monitoring are by means of
hardware and by means of software. With the former a special piece
of hardware is interfaced with the system to count the occurrences
of a specific event(s). If this approach is chosen, the designer
must know exactly what he wishes to monitor since a hardware redesign
can be costly. Schroeder [1] discusses a monitoring experiment using
extra hardware to determine the optimal number of associative registers
the MULTICS system should have. We will describe this work shortly.

The second approach to performance monitoring is via a programming
system using as little extra hardware as possible. In this case the
designer must be sure the system is general enough so that massive

-122-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840



reprogramming is unnecessary should monitoring requirements change.
Grochow [2] designed such a system using a graphic display unit to
present data and implemented it as part of MULTICS. We will also
describe his work as an example of the software approach.

10-3.1 An Example of Hardware Monitoring

The MULTICS system, implemented on a GE 645 computer, allows
paging and segmentation of addressable memory [3,4]. A given address
reference contains a segment number s and a word number w. To
translate this address into an absolute memory location a several
step process is necessary, as shown in Figure 10.1.

1. The contents of the descriptor base register is added
to part of s to give the address of the desired page
of the descriptor segment.

2. This address and the remainder of s locate the segment
descriptor word (SDW), which points to the page table
for segment s.

3. Part of w is added to the SDW to give the address of the
desired page table word (PTW), which points to the starting
location of the desired page.

4. This address and the remainder of w determine the absolute
core address desired.

If this entire process were performed every time a core reference was
made, the MULTICS system would be unacceptably slow. To increase
execution speed a set of m associative registers was added to the
system to aid in address translation.

The associative registers contain the m most recently used SDWs
and/or PTWs. Upon referring to an address a search is made of this
associative memory under the assumption that most programs have
sufficient reference locality to enable reuse of a small set of
address translation table entries. The search key is the segment
number and word number of the address being translated. The desired
result is the PTW and/or SDW needed.

The value of the associative memory is obvious, and we will
present quantitative results shortly. However, Schroeder wanted to
determine the optimal value of m. He attached an electronic counter
to the GE645 to measure four events: instruction executions,
associative memory searches, no match associative memory responses, and
absolute core references by the processor. During the measurement
period MULTICS ran under a normal user load. In addition, measurements

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



descriptor base
register

page table
for descrip
tor segment

page table
for segment
s

i

[w/n]

desired
page

Figure 10.1:

i

page of
descriptor
segment

s mod n

w mod n

Translation of address (s,w) by
MULTICS, where n = page size

-124-
INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

[s/n]



were taken for m=0, 4, 8, and 16. Schroder's results are shown in
Figure 10.2.

The inclusion of even 4 associative registers has a dramatic
effect upon system performance. Moreover, the optimal number of
registers was found to be 16. An increase beyond this number was
predicted to have no significant effect upon system performance.
This experiment is an excellent example of system study and optimi-
zation through hardware monitoring.

10-3.2 An Example of Software Monitoring

Grochow [2] has implemented a Graphic Display Monitoring System
(GDM) as part of MULTICS, enabling a visual presentation of the
dynamically changing properties of the operating system. GDM runs
on a PDP-8 computer with CRT units, the display computer, which is
in turn interfaced with the GE645. This is a programming system
which allows users to type in their display requests on the PDP-8
using a special language for describing the desired data manipulation
and display formats. Users may request predefined displays or create
their own displays. In the latter case they must define format,
data to be displayed, and sampling rate. This use of two computers
insures as little interference with MULTICS processes as possible.
The only requirement upon MULTICS is the running of a special process
to transmit data as requested to the display computer.

Some typical displays for overviewing the MULTICS system are
the following:

a. the major hardware modules in the configuration,
e.g., number of drums, memory modules, etc.;

b. a core map which indicates system loading; and

c. the number of active processes.

Displays can also be presented on the process level. The general

nature of the monitoring system allows flexibility in the data

displayed. The user may provide any segment number and offset of a

piece of data and get an octal and ASCII representation of the data,

updated once per second.

10-4.0 Further Examples

In this section we will review two further examples of dynamic

monitoring used to optimize system performance. The first example

studies a time sharing system's performance, while the second studies
opcode utilization on a computer.

-125-

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



600,000

500,000

400,000

Events in
one second

300,000

200,000

100,000

0

absolute core references

"instruction executions

"no match" responses to
associative memory searches

0 4 8 16

Number of associative memory registers

Figure 10.2- Multics Performance with Various Associative Memory
Sizes [1]

-1 26-



10-4.1 Time - Sharing Performance Monitoring

The University of Michigan has implemented a performance
monitor on their time sharing system which executes on an IBM System/
360, model 67 [5]. It is a software monitoring facility that has
been used to collect a variety of data on system performance. Such
basic data as interrupt processing times, resource utilization, and
page swap times have been collected and studied. The result has been,
as with MULTICS, that system programmers can now make informed
choices of system parameters in their quest of optimizing performance.
For example, the data on page swap times and delays has enabled
helpful changes to the demand paging algorithm which led to a decrease
in these delay times. Furthermore, as more data of this type is
collected, similar improvements can be expected.

10-4.2 Opcode Utilization

Foster et al., [6], have studied opcode utilization on a CDC
3600 computer. Their goal was to determine if all opcodes are
sufficiently used to justify their inclusion in the instruction
repetoire. Two types of code were statically and dynamically monitored
for opcode usage. The first was a set of hand coded assembly
language programs. The second was object assembly code produced by
Fortran, Cobol and Simscript compilers.

The static measures show that the hand coded programs have more
diverse opcode usage than the compiler code. If the 142 CDC3600
instructions were limited to 64, about 2% of the hand coded instructions
would not be included but all the object code would be covered.
Moreover, if the instruction set were limited to 32, 10-16% of the
hand code and 0-3% of the object code would have to be redone.
Thus, little flexibility would be lost in somewhat limiting the avail-
able CDC3600 instructions.

The dynamic measures show little difference in opcode usage
for hand code and object code. About half of the available instructions
were rarely executed. This fact provides further justification to
limit the available opcodes and thus, save on the cost of CPU hardware.
Studies such as this are useful to the system architect who must
design an instruction set which is flexible yet not too costly to
implement.

10-5.0 Summary

The conclusion we wish to draw is obvious from what has been
presented. Dynamic performance monitoring can provide valuable data
for the system designer. The examples cited substantiate this point.
It is certainly a design technique with which the informed system
designer should be familiar.

-127-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



REFERENCES

1. Schroeder, M.D., "Performance of the GE-645 Associative
Memory While MULTICS is in Operation", ACM SIGOPS Workshop
on System Performance Evaluation, Harvard University,
April 1971, pp. 227-245.

2. Grochow, J.M., The Graphic Display as an Aid in the Monitoring
of a Time-Shared Computer System, Project MAC, M.I.T.,
TR-54(Thesis), October 1968.

3. Corbato, F.M., and Vyssotsky, V.A., "Introduction and Overview
of the MULTICS System", Proc. FJCC, 1965, pp. 185-196.

4. Denning, P.J., "Virtual Memory", Comp. Sur., 2(3), September 1970,
pp. 153-189.

5. Pinkerton, T.B., "Performance Monitoring in a Time-Sharing
System", CACM, 12(11), November 1969, pp. 608-610.

6. Foster, C.C. et al., "Measures of Op-Code Utilization",
IEEE Trans. on Comp., C-20(5), May 1971, pp. 582-584.

-128-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



CHAPTER 11

FAILURE DETECTION TECHNIQUES

11-1.0 Introduction

Whenever a system is in operation, a prime concern of those
who are using it is its correct performance. Any error that the
system commits must be caught and somehow corrected to insure
the integrity of the process it is performing. Even presuming
extremely careful system design and implementation, factors such
as aging components can cause costly system errors. To prevent
these errors from having catastrophic effects, failure detection
techniques must be employed to identify malfunctioning equipment.

Failure detection techniques take many forms and may be
employed at many levels in the system. At the circuit level
diagnostic input sequences can be periodically fed into a circuit
to check for its correct operation. The corresponding circuit
output then indicates any faulty circuit performance. On a higher
level error detecting and correcting codes can be employed to
identify transmission errors between system modules.

Redundancy is a frequently used technique to detect errors.
For example, the output of three identical subsystems is fed into
a voter. Should two of the three subsystems have identical output,
these subsystems are presumed to be operating correctly. The
remaining subsystem is judged to be faulty and can be replaced with
standby equipment. In this case we say that the system has been
reconfigured. Voting is a technique that may be employed at many
system levels.

In this chapter we will investigate several methods of error
detection such as those mentioned above. However, when one discusses
error detection, the topic of error correction also arises. We will
devote part of this chapter to error correction techniques as well.

-129-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



We will begin by introducing the topic of error detection from the
point of view of finite state automata. Fault detection methods
for these machines will lead us to the idea of designing machines
with diagnosis in mind. It will also be seen that these techniques
are readily applicable to digital circuits. Next we will investigate
error detection and correction methods in digital circuits, such as
voting, quadded logic, and error detecting codes. Other methods of
correction, including reconfiguration and software rollback, will
also be treated. Finally, we will look at some specific applications
of these methods in computers such as STAR and SIRU.

11-2.0 Diagnosing Sequences for Finite State Automata

Finite state automata provide a convenient model for discussing
sequential circuit design. Properties of these circuits become
apparent when represented as automata in their state table form,
and this fact provides a means of studying the diagnosability of a
sequential circuit. In order to diagnose we must fully understand
the state transitions of the circuit as shown by the state table.
We will now present a brief introduction to finite state machines
(FSM) before proceeding to diagnosing sequences. More complete treat-
ments of these topics may be found in the literature [1,2].

Def: A finite state machine M is a 5-tuple

(S, I, O, p, n) where

S = a set of states l, , Sn } ;

I = a set of input variables i ..., im} 

O = a set of output variables {l' ...,p

p : S x I - S is a map taking M into a new state
depending upon the old state and input variable; and

n : S x I + O is a map yielding an output variable from
M depending upon the old state and input variable.

We will assume here that I = O = {0, 1 ;. i.e., there are two
possible input and output
variables, 0 and 1.

Example: We may represent a machine M 1, by Table 1. This is Ml's
state table representation. Each table entry denotes the new
state and output variable of M1 , for M1 in a given state being presented

-130-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



with an input variable. M1 may also be represented in the state

diagram form of Figure 11.1. Table 2 and Figure 11.2 are another
example of these FSM representations for machine M2 .

Def: An FSM is strongly connected if from every state we can get
to every other state.

M 1 and M 2 are strongly connected. M3 shown in Figure 11.3 is not.

Def: An FSM is reduced if there are no equivalent states. That is,
for each two states of the machine there is a finite input
sequence which yields one output sequence when the machine is
started in one state, and a different output sequence when it
it started in the other state.

We assume for the remainder of this section that all FSMs are strongly
connected and reduced. We will now begin defining the properties of
some very useful input sequences for FSMs. These properties will in
turn be used for diagnosis.

Def: An input sequence is a homing sequence for M if its application
yields an output sequence which uniquely determines the final
state of M, independent of initial state.

Example: The sequence 10 is homing sequence for M1. The possible
output sequences corresponding to this input sequence are
00, 01, 10, 11. These correspond to the final states 3, 1,
2, 1, independent of Ml's starting state. Thus, by applica-
tion of 10, the final state of M 1 is determined by its output
sequence. Hennie [2] gives an algorithm for determining a
homing sequence which we will not present here. Let us just
note that every reduced, strongly connected FSM possesses a
homing sequence. However, the homing sequence provides no
information about M's initial state. Thus, we make the
following definition.

Def: An input sequence is a distinguishing sequence for M, an
n state machine, if its application yields n different output
sequences depending upon M's initial state. Thus, such a
sequence enables the determination of M's initial state.

To construct a distinguishing sequence for M, combinations of
input symbols must be systematically tried to eliminate the ambiguity
of what M's initial state is. Figure 11.4 shows the construction of a
distinguishing sequence for M 2. Each succeeding lower level of the
tree represents a part of the initial state ambiguity being resolved
until finally no ambiguity remains. For example, in going from level

-131-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



0

Table 1:

1

State Table for M
1

b

)0/0

1/0

Figure. 11.1: State Diagram of M
1

- 132-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

)utnp

state

1

2

3

4

5

2,0 3,0

4,1 1,1

3,0 5,1

5,0 3,0

1,1 5,0



\~nput 0

1

2

3

4

Table 2: State Table for M
2

2) 

1/0

Figure 11.2: State Diagram of M 2

-133-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

1

3,0 4,0

1,0 3,0

4,1 2,0

3,1 1,1



o/0 o/ o, 1/1
0/1

1

/0

/1

/0

Figure 11.3: State Diagram of M
3

-134-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

1,



cN-
0o

c4c,.

o

4JC
)

H
4

r-I

d

t2~ mni
c

0H
,

>
 

>
)

>
 

>
0

) 
I R

P
E

 C
IN

TER
M

ETR
IC

S 
IN

C
O

R
PO

R
A

T
E

D

I
-4

0
4
0

04

0oa)C
u

a)U
,

.fl

.1-44- cn
"-4o,-u O

)

4,E
n

00U4fl Ha,

r-Ht~v(nr-O a)C
 

-1
3

5
-

701 
C

O
N

C
O

R
D

 A
V

E
N

U
E

 
· C

A
M

B
R

ID
G

E
, 

M
A

S
S

A
C

H
U

S
E

TTS
 

02138
·

(617) 661-1840

I



0 to level 1, application of a 0 input results in 0 output if M
2

is in states 1 or 2 and 1 output if M is in states 3 or 4. The
new states to which M2 goes after application of 0 or 1 are noted on
level 1. Finally, at level 3, we see that the sequences 010 and
011 are distinguishing sequences for M because their application to
M 2 yields 4 distinct output sequences depending upon M 2 's initial
state. No initial state ambiguity remains at level 3.

Note that all FSMs do not possess distinguishing sequences.
For example, M1 does not, as may be verified by trying to construct
a distinguishing sequence similar to that of Figure 11.4. With the
concept of homing and distinguishing sequences in mind let us now
proceed to diagnosis of FSMs.

Def: An input sequence for M is a diagnosing (testing) sequence if
it determines whether M's state table accurately describes
M's present performance.

Thus, a diagnosing sequence must check M's performance for each
possible transition from each state. To do this testing M must
possess a distinguishing sequence as a prerequisite to possessing a
diagnosing sequence. Hennie [2] presents an algorithm for construct-
ing a diagnosing sequence for such an FSM.

In using this algorithm we presume that any malfunction of M,
for which we will use the diagnosing sequence to test, does not
increase the number of M's states. Hence, we always know the number
of states of M from its state table. The steps of the algorithm
are the following:

a) apply a homing sequence to identify M's present
state, followed by a sequence to bring M to a
desired state from which the diagnosing begins-

b) apply a sequence incorporating the distinguishing
sequence such that the correctly operating machine
displays the response of each of its states to the
distinguishing sequence;

c) apply an input sequence checking the remaining
transitions unchecked in (b).

The output of M under steps (a)-(c) determines if M is operating
correctly. Any incorrect output response from M indicates a mal-
function.

We will now construct a diagnosing sequence for M4 whose state
table is given in Figure 11.5a. First note that 10 is a homing sequence
for this machine, and 10 is also a distinguishing sequence. Figure 11.5b
shows M4's response to 10. The homing sequence allows us to bring

-136-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



state
1

2

3

0 1

Figure 11.5a: State Table for M4

initial
state

1

2

3

final
state

1

1

2

output

0 0

1 0

0 1

Figure 11.5b: Response of M 4 to 10

-137-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

2,1 1,0

3,0 1,1

1,0 2,0

It



M4 to state 1 to begin diagnosis. Now assuming M4 works correctly,
application of the distinguishing sequence with initial state 1
leaves the machine in state 1. Applying 1, M4 is then in state 2.
We apply the distinguishing sequence again while M4 is in state 2
and similarly for state 3. The input sequence for part (b) of the
algorithm is

1 0 1 1 0 0 1 0 0 1 0 1, and the correct response is

0 0 0 1 0 0 0 1 0 0 0 0. Any incorrect response demonstrates
a machine malfunction.

It now remains to check the reamining state transitions. To
do this we must be sure that the state of M4 before and after each
transition can be uniquely specified in terms of behavior shown
previously in the testing. The sequence of part (c) of the algorithm
is

0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 with correct
response

00001100110000100010010.

The total testing sequence uses 37 input variables for a 3 state
machine. Even using heuristics to reduce the number of input variables
does not yield a very practical testing procedure for a sequential
circuit. However, the use of some extra hardware greatly reduces the
length of the diagnosing sequence needed [3]. We will now discuss
this approach to diagnosis.

11-3.0 Diagnosis Using Augmented Hardware

An n state FSM M is said to be definitely diagnosable (DD) if

any input sequence of length k, where k < n(n-1 is a distinguishing
- 2 ' is a distinguishing

sequence for M. We will see how testing the state table will reveal
if M is DD or not. In the latter case a hardware augmentation will
transform this machine into a machine M' which is DD. This trans-
formation consists of addinq output variables to M, as shown in
Figure 11.6. In M' the original operation of M is not changed, but we
now have an additional output channel to aid diagnosis. Kohavi [3]
has shown that every strongly connected and reduced FSM can be made
DD in such a manner, whether or not the original FSM possesses a
distinguishing sequence. We will see how diagnosing sequences for
a DD machine need far less input variables than for a non DD machine.

-138-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



Figure 11.6a: Machine M

I- - - -

I

Logic

I

I _ ______

M

Figure 11.6b: Machine M'

-139-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

i .
a

I
I
I
I a

a

I
I
I



To test M for the DD property we augment its state table to
form a testing table. A testing table for M5 shown in Figure 11.7, is
given in table 3. The lower half of the testing table contains all
possible uncertainty pairs of states and is constructed from the
upper half. A row index of the lower half represents pairs of states
which are distinguishable if the entries in its row are distinguish-
able. A circled entry represents a pair of states indistinguishable
by means of an input variable equal to the column index.

From the lower part of the testing table of M we construct a
testing graph as shown in Figure 11.8. To transform M into M' we must

a) eliminate all circled entries of the testing table
by assigning different outputs to the corresponding
next state entries, and

b) open all testing graph loops by eliminating the
smallest number of branches in the graph. The
elimination is done by assigning distinct output
symbols to the next state entries covered by the
node to which the branch leads.

Table 4a shows step (a) applied to M5 , and table 4b shows
step (b) applied. Table 4b is the state table of M', a DD FSM.

Kohavi [3] outlines the construction of a diagnosing sequence
for a DD FSM. The algorithm is the following:

a) bring M' into a known state, say A;

b) choose the shorter distinguishing sequence
S consisting of all O's or all l's, (assume
here all O's);

c) apply S followed by a 0 to check M''s first transi-
tion from A under a 0 input;

d) continue with 0 inputs as long as new transitions
are being checked;

e) when more O's don't yield new transitions apply 1
followed by S;

f) apply O's as long as new transitions are being
checked, otherwise go to step (e);

g) when (e) and (f) yield no new transitions, go to a
state whose transition has not been checked, using a
sequence that goes through checked transitions only;

h) repeat (e)-(g) until all transitions are checked.

-140-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840



1/0

0/0

1/0

1/0

Figure 11.7: State Diagram of M
5

-141-
INTERMETRICS INCORPORATED .-701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



stat

to

0/0 0/1 1/0

1 2 - 4 -

2 1 2

3 - 4 1 

4 - 4 3 -

12 12 - 24

13 - _ 14

14 - - 34

23 - _ 12

24 - _ 23 

34 - 0 13

U
1/1

Table 3: Testing Table for M 5

-142-

INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

-



0

1/0 ,1/0

1/0

Figure 11.8: Testing Graph of M 5

-143-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840



nput

state

1

2

3

4

0 1

Table 4a: Step (a) applied to M 5

input

state

1

2

3

4

0 1

Table 4b: State Table of M5

-144-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

2,0 4,0

1,0 2,0

4,10 1,0

4,11 3,0

2,01 4,00

1,00 2,00

4,10 1,01

4,11 3,01

Ik-

%I-



Application of this algorithm to M; yields the diagnosing
sequence:

input: 0 0 0 1 0 1 0 0 1 0 0 1 1 0

state: 1 2 1 2 2 1 4 4 4 3 4 4 3 1 2

output: 1 0 1 0 0 0 3 3 1 2 3 1 3 1

This sequence needs only 14 symbols, as compared to the 152
symbols Hennie [4] needed to diagnose M5 . This is an 11 to 1
savings. Thus, by the addition of a small amount of hardware
dramatic reductions in the length of diagnosing sequences can be
realized. Hennie's method (section 2) has a bound of 2n 4 (n + 1)!,
where n is the number of states of M; Kohavi's method has a bound
of n3 . For n = 8, we have 3 x 108 vs. 512. However, either method
is only useful when periodic diagnosis of the circuit is acceptable.

For a circuit with a large number of states even the second
method of diagnosis becomes impractical. The system designer now
faces two choices to achieve fault detection. First, he can decompose
his circuit into a series-parallel array of subcircuits using methods
of partition algebra [2,5]. Then the subcircuits can be checked in
parallel, each having a much shorter diagnosing sequence than the
original circuit. Second, he can use voting or quadded logic to
detect and correct errors. However, either approach involves
additional hardware costs.

11-4.0 Additional Detection Methods

We will now investigate other methods of failure detection
in digital circuits. These detection methods will ofteh involve
correction of the error as part of the method.

11-4.1 Voting

Voting detects errors by comparing three redundant signals.
If two out of the three agree, the nonagreeing signal is judged
erroneous, and the faulty equipment that generated this signal is
identified. Thus, voting automatically provides correction by
transmitting the correct signal as its output and automatically
locates the faulty equipment. The price to be paid for using voting
is the triplication of equipment and the cost of the voter.

Despite this price the reliability of most networks can be

improved using voting. Let us consider the three networks shown
in Figure 9, where the reliability of each module in stage i is Pi
and the reliability of eacn voter is v. If the number of stages

-145-

INTERMETRICS INCORPORATED *701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



a*-

(a) nonredundant

(b) redundant with one voter per stage

-0-

-0-
(c) redundant with three voters per stage

Figure 11.9: Voter Configurations

-146-

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840

S l1

I s15 S 2



n = 1, the reliability of the nonredundant network, N1, is R(N1) = p,
and the reliability of the redundant network with one voter per
stage, N2 , is R(N2) = v(3p2 - 2p3 ). For voting to be advantageous
in this case we must satisfy the condition

p < v(3p2 - 2p3 ).

For v z 1 this condition reduces to p > 12 That is, even using a

very reliable voter the reliability of a module must be greater than
1
2 for voting to increase the reliability of the circuit.

Let us now state the reliability equations for the three net-
works of Figure 9 where we now have n stages.

n
R(N

1
) = Pi

1 i=l 1

n 2 3
R(N2 ) = vn ~ (3Pi - 2pi), and

i=l

2 3 n 22 33
R(N3 ) = v(3p21 - 2p) · (3 Pi v - 2Pi v

i=2 1 1

Gurzi [6] shows that R(N2) and R(N3) are maximized when

a) 1 = P 2 = =
Pn = p and

b) dR(N) = 0 is observed.
dp

Condition (b) for R(N2) yields

v = , where a = 3-2p

(3-2p)p

For R(N3 ) condition (b) becomes

(3-2pv)ln(3v2-2pv3 ) + 2pv ln p = 0

In both cases the optimal reliability is independent of the relia-
bility of the nonredundant network.

-147-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



11-4.1.1 Detection Level

Detection at a high system level, e.g., modular vs. circuit,
has certain advantages and disadvantages. Its advantages are:

a) The cost of voters is reduced because
less voters are necessary.

b) There is easier replacement of faulty
equipment. An entire module detected
to be in error is either replaced manually
or by automatic system reconfiguration.

c) In the case of a digital computer (b)
implies less complex reconfiguration
software.

The disadvantages are:

a) There is no identification of where in
a module the error occurred. Hence,
repair is more difficult.

b) More redundant equipment must be standing
by for replacement. This fact means added
weight and volume in aerospace applications.

c) There can be a time lag in detecting an
error. The module must communicate with
its environment through the voter before
an error can be detected.

The level at which to detect for system malfunctions depends
upon the characteristics of the equipment, costs, reliabilities of
subsystems, and the application involved. There is no readily avail-
able rule to a priori decide whether to use redundancy, and if so,
where to place voters in a system. The above factors must all be
weighed before deciding where to detect for malfunctions.

11-4.2 Path Sensitizing

Armstrong [7,8] developed a method of testing combinatorial
circuits, called path sensitizing. An input pattern is applied to
the circuit so that the output depends only on the one input lead
being tested. For example, consider the network shown in Figure 11.10.
Suppose we wish to make the output z directly dependent upon the
input variable c. By letting a = 0, b = 0, d = 1, e = 1, the output

-148-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



z equals the value of c. Systematic use of this technique allows
tracing of signal flow in a network and determining the output
due to specific inputs and faults present [9-11].

The disadvantage of this method is that certain errors cannot
be detected when the circuit has fan-out and convergent paths.
This problem has been overcome with a generalization of path
sensitizing known as the D-algorithm [11,12].

11-5.0 Correction Techniques

In this section we will discuss error correction techniques
that can be employed when a system error is detected. These
techniques include error detecting and correcting codes, quadded
logic, and software restart.

11-5.1 Error Correcting Codes [13-15]

We are all familiar with elementary types of error detecting
codes. For example, the use of parity bits in a digital computer
is a method of detecting a single error in a group of bits. However,
there is no correction of this error possible with the use of parity
bits, so we must use a more sophisticated code to correct a detected
error.

The Hamming code allows single error detection and correction.
Suppose a transmitted word of m bits is to be checked using a
Hamming code. We require k extra bits to locate any error in one
of the transmitted bits. The code bits are transmitted along with
the information bits and are designed so that a single error in any
one of (m + k) transmitted bits can be found and corrected.

The value of

k = the smallest integer such that 2 > m + k + 1.

For example, if m = 8, k = 4.

The k check bits are placed in positions 1, 2, 4, 8, ..., 2 k

-

l
of the transmitted word. Each check bit is assigned a value so
that a subset of the (m + k) bits (including the check bit) has
even parity. For example, the check bit in position 1 has value
so that all bits in odd positions have even parity. The ckeck
bit in position 2 has value so that bits in positions 2, 3, 6, 7,
10, 11, ... have even parity)etc.

-149-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



When each of these subsets of bits are checked upon receiving
the coded word, an odd parity denotes an error. In fact the code
is constructed so that the positions of all odd parities correspond-
ing to check bit positions denotes the position of the error. The
correction procedure is merely assigning the erroneous bit its
complement value.

As an example suppose m = 8. Let the word to be transmitted be
1 1 0 1 1 1 0 0. Its coded form is k 

1
k

2
1 k4 1 0 1 k

8
1 1 0 0, where

we calculate k. as follows.

k
I

= k @ k
3

k k
7

kg @ kll = 0

k2 = k2 k3 ® k6 G k7 ® k10 ® kll = 1

k 4 k
4
Q k 5 0 k6 k

7
k

12
0

k8 =
8

8 kg 9 G k
1 0

® kll E k12 0

Thus, the transmitted word becomes

0 1 1 0 1 0 1 0 1 1 0 0. Now suppose an error occurs in
position 9 upon receiving the word. Thus bit 9 is 0. When the
Hamming code is reconstructed odd parities are found for kl and k

8
.

Thus, klk2k4k8 = 1001 = 9. The code gives the position of the error.

Hence, we can correct by setting bit 9 to 1. Such a correction tech-
nique can easily be implemented in digital hardware.

11-5.1.1 Distance Codes

The Hamming code falls into a more general category of codes
called distance codes. Some other distance codes have greater
capabilities such as detecting and correcting multiple errors. Let
us now define the distance d between two n bit words, p and q. Let
the words be represented in binary form

P = Pl P2 . . . Pn and q = ql q2 ' ' ' qn'

n 2
Then we define d = (pj-qj)2

j=l ] ]

-150-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



If the collection of information that we wish to work with
is encoded into a set S of words, the distance between any two
distinct members of S must be at least 1. The higher the minimum
value of d for any two members of S the greater the detection and
correction capabilities of our encoding. We summarize these
capabilities in the following table.

Minimum distance d Capability of
between any two Encoding
distinct members of
S

1 unique words, no
detection

2 single error detection

3 single error correction,
or double error detection

4 single error correction
and double error detection,
or triple error detection

5 double error correction,
or single error correction
and triple error detection,
or quadruple error detection

Note that a Hamming code is distance 3. As the capabilities of the
code increase (i.e., d increases), more bits must be used to encode
the working set of information. This fact must be considered when
deciding upon what detection and correction capabilities the code
is to have.

11-5.1.2 Binary Cyclic Codes

Many codes utilize algebraic structures, such as groups and
rings, for their error detection properties [14]. One such-code
utilizing the properties of polynomials is the binary cyclic code
[13].

Def: A code C is cyclic if it has the property:

an n-tuple a=(a0,al, ... an_1 ) E C

implies_(1)

a = (an-1, a 0 , a, ... , an_2) c C also.

-151-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS '02138 . (617) 661-1840



We may consider the members of C to be coefficients of (n-l)th
order polynomials. We define

n-i
a(x) = a

0
+ a1 x + ... + an-i x and

-(i) n-ia( ) () an
i

+ i+l X... an-i-_i x

-~~(i) 1~~ni- n
Then a (x) is the result of dividing x a(x) by x +1. Thus,

i- n -(i)x a(x) = q(x) (x +l) + a(i)(), where q(x) is a polynomial
in x.

If our code C uses k out of n bits for information and n-k
for redundancy, we have an (n,k) cyclic code. In an (n,k) cyclic
code there is one unique polynomial g(x)EC of degree n-k such that
every polynomial in C is a multiple of g(x) and such that every
polynomial of degree n-l or less which is a multiple of g(x) must
be a member of C. Thus, every member of C can be expressed as
a(x) = m(x) g(x). m(x) is of degree k. Let the coefficients of
m(x) be the k information bits. Then every coded message is generated by
multiplying m(x) by g(x). We call g(x) the generator polynomial of
the code. The following facts apply to g(x):

a) the generator polynomial of an (n,k) cyclic
code is a factor of xn + 1 ; and

b) if g(x) is of degree n-k and is a factor of xn+l ,
g(x) generates an (n,k) cyclic code.

An (n-k) stage shift register can be used to generate a
(n,k) cyclic code. The k information bits m(k) are fed into the
circuit and form the first k bits of the code unchanged. The
circuit output then forms the next n-k bits, and this is the
redundancy information (check bits). For example,
x7 +1 = (x3 + x + 1) (x4 + x2 + x + 1). Thus g(x) = x 3+x+l generates
a (7,4) cyclic code. This code can be generated by the circuit
in Figure 11.11. It is a distance 3 code so single error correction
is possible.

When the transmitted word is received, correction proceeds
as follows. The received word r(x) = p(x) · g(x) + s(x), where
s(x) is called the syndrome. If s(x) = 0, r(x) is a code vector.
Otherwise, r(x) is not a code vector, and an error has been detected.
This decoding process can also be implemented with shift registers [13].

-152-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840



Figure 11.10: Network to Illustrate Path Sensitizing

Check
bits

Infor-
mation bits

Figure 11.11: Shift Register to encode (7,4)
cyclic code generated by
3x +x+1

-153-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

c

d z



11-5.2 Quadded Logic

Another redundancy technique to achieve correction in com-
binatorial circuits is quadded logic. Instead of having a voter
decide if any signal is incorrect, we interconnect components in the
quadded circuit so that single errors and some multiple errors are
automatically corrected by the hardware and will not cause failure.
The disadvantage is that four times as much hardware than the non-
redundant network is necessary, and a complex interconnection of
components is necessary. Jensen [16] shows an example of a quadded
half adder built from NOR gates. In the nonredundant case 5 gates
are needed, for quadding 20 gates are needed. However, if these
gates are already very reliable, this technique reduces the
probability of failure by several orders of magnitude.

11-5.3 Reconfiguration

So far we have seen several methods of detecting errors.
Several active units can operate in parallel whose output is compared
by a voter. A faulty unit can then be detected by the voter. On
the hand, a single module need only be used employing redundancy
within its generated output, i.e., error detecting codes. When the
code is analyzed, an error indicates a faulty unit. In either case
the (persistent) occurrence of an error requires the faulty equipment
to be removed from the network.

Reconfiguration, either manually or automatically, is simply
the switching out of a faulty unit and its replacement by a standby
spare. A drawback of this technique is the extra cost (monitary,
volume, weight) of the standby equipment needed. If a unit must be
protected against 3 failures, at least 4 such units are necessary.
The cost can get high, but at times it is justified for the sake of
reliability.

An important question to keep in mind when using reconfiguration
is how to handle time critical processes that are going on at the time
of failure. Such processes impose additional complexity upon the
reconfiguration algorithm. As little information as possible must be
lost (hopefully none at all). How this goal is accomplished is a
function of the specific application and the ingenuity of the system
designer.

11-5.4 Software Restart

So far we have dealt primarily with hardware correction of system
failures. We will now consider the case of software recovery from a
digital computer failure. Clearly upon the occurrence of a hardware
failure in a digital computer, a method must exist for restarting the
software after the malfunction is corrected. If voting is used in the
system, the two computers that did not fail can continue their
computations after a possible system reconfiguration. In this case the

-154-

INTERMETRICS INCORPORATED .701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



two properly operating computers do not actually need software
restart since the hardware error did not destroy the integrity of
their computations. However, when voting is not used, a method of
software restart is necessary.

The program can be restarted by rolling it back to a known
restart point in the computation. That is, a point at which the
program is known to have executed correctly before the failure
occurred. In many large computer facilities restart points are
established by taking complete core and register dumps at fixed times.
This information is then stored on some secondary storage device.
Upon system failure the programs can be restarted by loading memory
with this information. Such a technique has large overhead in terms
of recovery time and the need for secondary storage. It can be
impractical in other than large commercial applications. Furthermore,
fixed restart points can be established in programs without the need
for dumping the contents of core. With this method a minimal amount
of restart information is associated with each restart point and is
kept in core. Should a restart be necessary, all necessary restart
information is readily available for the restart point used. This
fact enables faster restarts. In fact, such a technique was used
in the Apollo project.

11-5.4.1 Apollo Restart [17]

In the Apollo Guidance Computer (AGC) the restart process is
initiated upon detection of a computer malfunction. These malfunctions
include:

a) parity errors,

b) a program not checking often enough for a
ready higher priority program,

c) endless one-instruction loops,

d) oscillator failure,

e) voltage failure, and

f) excessive time spent in interrupt mode.

The computer begins restart by transferring control to location
4000 in fixed memory. The mission programs are organized into five
restart groups each having redundant restart pointers which are used
to restart these programs. Programs that run simultaneously must be

-155-

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840



in different restart groups. At location 4000 the restart program
uses the restart pointers to restart the active programs. Each
pointer contains the address of restart information in the Restart
Table. During execution these pointers are advanced to successively
point at the proper restart information for that phase of the program.

Alternative restart options are available in the AGC. The
instruction that began the last display sequence was often considered
a proper restart point. Another method was to let the next instruction
to be executed be the restart point. In this case no Restart Table
is necessary.

11-5.4.2 Single Instruction Restart

The M.I.T. SIRU Computer [18,19] uses a single instruction
restart method. All errors are detected in the instruction in which
they first occur so no errors are propagated to later instructions.
Upon detection of an error the program is restarted from the
instruction in which the error is detected. This recovery is trans-
parent to the programmer.

To aid recovery and restart SIRU instructions are executed in
two phases by the microprogram. During phase 1 results are computed
and stored in scratchpad restart buffers. During phase 2 the results
are moved from the buffers to their final destinations. Since input
data is not overwritten during phase 1, restart during this phase is
easy. During phase 2 restart uses the data in the restart buffers.

One of the important advantages of single instruction restart
is the small amount of time necessary to restart. This fact is especially
important for real time processes.

11-6.0 Additional Applications and Other Topics

11-6.1 Error Propagation

When triple redundancy and voting are used for error detection
and correction, error propagation is not too serious a problem. The
system has two correctly operating units after the faulty one is
switched out. However, without this redundancy an error may propagate
extensively through a system before it is detected. Should this
condition occur, even the software restart mechanisms we have discussed
can be inadequate to correct the process. In short, the sooner an
error is detected, the smaller the error propagation, and the higher
the probability of being able to correct for the error. Quick detection
eliminates otherwise uncorrectable errors but requires carefully
designed computer modules, such as arithmetic units.

-156-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



11-6.1.1 Error Correction in High-Speed Arithmetic

Chien and Hong [20] present a solution to the above problem

of quick error detection in computer modules, by using error correcting

codes in arithmetic units. The particular problem they discuss is

the correction of any single, iterative failure in a high speed

multiplier. The advantages of such a technique are obvious: fast

detection and correction invisible to the user, and no error propagation

for a single failure.

11-6.2 Intermittent Failures

Intermittent failures pose special problems for digital

systems. Because of their temporary nature isolation of faulty

units becomes very difficult. During factory checks vibrational and

thermal testing can locate some intermittent faults in equipment but

not all are found. Although they do not solve this problem, Ball and

Hardie [21] have recently performed a study on intermittent failures.

This study simulated intermittent failures in a digital computer.

The results show only a small percentage of single occurrence inter-

mittent failures being detected. However, many of these intermittent

failures do not make the faulty hardware act differently from their

non-failed state. To detect the failure the hardware must have the

appropriate input data to make the failure visible. The probability

of fault detection is monotone increasing with the duration of the

failure. For a failure lasting one clock cycle the probability of

detection was close to 0; for 10 computer word cycles about 1/2; for

50 computer word cycles about 1. Thus, the longer the failure, the

more easily it can be detected and the faulty unit isolated.

11-6.3 The STAR Computer

The STAR Computer [22] is being built by the Jet Propulsion Lab,

to satisfy all predictable requirements of a spacecraft computer used

in a long mission (at least ten years) and to study fault-tollerant

computing. The goal is to achieve fault tollerance for intermittent,

permanent, random and catastrophic failures. To do this STAR uses

coding, monitor detection, standby redundancy, redundancy with voting,

and component redundancy to protect against faults and enable self-

repair. (See Figure 9.1).

Specifically STAR employs the following detection and correction

methods:

a) Error detecting codes for all machine words

with simultaneous detection and program execution;

-157-.

INTERMETRICS INCORPORATED .701i CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



b) Decentralization of functional units to allow
simple fault isolation;

c) Special hardware for detection, recovery and
reconfiguration;

d) Correction of intermittent faults by program
restart;

e) Reconfiguration by powering down faulty units
and powering up replacements;

f) Monitoring circuits supplement error detecting
codes to check synchronization and internal
operation in functional units; and

g) A special test and repair processor protected by
triple redundancy.

At present, research on this project is continuing in order
to improve the above detection and correction methods in a second
generation STAR computer. The results should provide new state-
of-the-art concepts in fault tollerant computing.

-158-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840



REFERENCES

1. Gill, A., Introduction to the Theory of Finite State Machines,
(McGraw-Hill, New York, 1962).

2. Hennie, F., Finite State Models for Logical Machines, (John Wiley
and Sons, New York, 1968).

3. Kohavi, Z., and Lavallee, P., "Design of Sequential Machines with
Fault Detection Capabilities", (IEEE Trans. on Elect. Comp.,
EC-16(4), August 1967), pp. 473-484.

4. Hennie, F., "Fault Detecting Experiments for Sequential Circuits",
(Proc. 5th Ann. Symp. on Switching Theory and-Logical Design,
Princeton University, November 1964), pp. 95-110.

5. Hartmanis, J., and Stearns, R., Algebraic Structure Theory of
Sequential Machines, (Prentice-Hall, New Jersey, 1966).

6. Gurzi, K.J., "Estimates for Best Placement of Voters in a
Triplicated Logic Network", (IEEE Trans. on Elect. Comp.,
EC-14(5), October 1965), pp. 771-717.

7. Armstrong, D. B., "On Finding a Nearly Minimal Set of Fault
Detection Tests for Combinatorial Logic Nets", (IEEE Trans.
on Elect. Comp., EC-15, 1966), pp. 66-73.

8. McCluskey, E.J., "Test and Diagnosis Procedure for Digital
Networks", (Computer, 4(1), January-February 1971), pp. 17-20.

9. Seshu, S., and Freeman, D.M., "The Diagnosis of Asynchronous
Sequential Switching Networks", (IRE Trans. on Elect. Comp.,
11, 1962), pp. 459-465.

10. Kautz, W.H., "Fault Testing and Diagnosis in Combinational Digital
Circuits", (IEEE Trans. on Comp., EC-17(4), April 1968),
pp. 352-366.

11. Bennetts, R. G., and Lewin, E.W., "Fault Diagnosis of Digital
Systems - A Review", (Computer, 4(4), July-August, 1971),
pp. 12-20.

12. Roth, J.P., "Diagnosis of Automata Failures: A Calculus and a
Method",(IBM Journal, July 1966), pp. 278-291.

13. Lin, S., An Introduction to Error Correcting Codes, (Prentice-
Hall, New Jersey, 1970).

14. Peterson, W.W., Error Correcting Codes, (M.I.T. Press, Cambridge,
Mass., 1961).

-159-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840



15. Sellers, F.F., et al., Error Detecting Logic for Digital
Computers, (McGraw-Hill, New York, 1968).

16. Jensen, P. A., "Quadded NOR Logic", (IEEE Trans. on Reliability,
September 1963), pp. 22-31.

17. Copps, E. M., "Recovery from Transient Failures of the Apollo
Guidance Computer", paper 68-823, AIAA Conference, Pasadena,
California, August 12-14, 1968.

18. Crisp, R., et al., "SIRU - A New Inertial System Concept for
Inflight Reliability and Maintainability",(M.I.T. Draper Lab.,
E-2407, May 1964).

19. Griggs, K.M., and Schwartz, G., The DCA Computer, (M.I.T. Draper
Lab., E-2590, December 1970).

20. Chien, R.T., and Hong, S.J., "Error Correction in High-Speed
Arithmetic", (IEEE Trans. on Elect. Comp., C-21(5), May 1972),
pp. 433-438.

21. Ball, M., and Hardie, F., "Effects and Detection of Intermittent
Failures in Digital Systems", (FJCC, 1969), pp. 329-335.

22. Avizienis, A., et al., "The STAR (Self-Testing and Repairing)
Computer: An Investigation of the Thoery and Practice of Fault -
Tolerant Computer Design", (IEEE Trans. on Elect. Comp.,
EC-20(11), November 1971), pp. 1312-1321.

-160-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



CHAPTER 12

INFORMATION TRANSMISSION BY
ORTHOGONAL FUNCTIONS

12-1.0 Introduction

The increasing complexity and duration of exploratory space

missions has led to a demand for increased information capacity

in space-to-ground communication links. The information includes

a variety of data, such as voice transmitted communication, bio-

medical data, scientific data, and video information. Practical

limitations on available transmitted power, antenna gain and

receiver noise have constrained attainable signal-to-noise ratios

for a given bandwidth, propagation path and wavelength. This

constraint necessitates more efficient carrier modulation (or

coding) techniques so that information capacity can be increased

at acceptable error rates. Recently more attention has been

turned to the converse problem of reducing redundancy in the raw

data. By removing redundancy, a reduction results in the amount

of information that needs to be transmitted. Orthogonal trans-

form techniques are applicable to the signal processing necessary

for both coding and compression. These transforms allow a

reduction in communication complexity and power by,relaxing the

bandwidth requirements of the transmitted signals and by reducing

signal degradation due to channel noise.

This chapter studies the use of orthogonal functions in trans-

mitting information. We will present an introductory discussion

of communication channels followed by a summary of past experience

-161-

INTERMETRICS INCORPORATED 701 CONCORD AVENUE .CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840



in space communication. With this background material in mind

a mathematical introduction to orthogonal functions and trans-

forms is then presented enabling a detailed discussion of

specific transform methods. We will concentrate on the Discrete

Fourier Transform (DFT) and the Discrete Hadamard Transform

(DHT). Computational algorithms for the Fast Fourier Transform

(FFT) and Fast Hadamard Transform (FHIT) will also be presented.

As we will show, these algorithms enable fast computer processing

of transmitted information. Finally, we will discuss the

advantages of using orthogonal transforms to transmit information.

12-2.0 Communication Channels

Transmission of information requires a transmitter, a

receiver, and a communication channel. The channel is the path

over which the information is sent from the transmitter to the

receiver. This information can be discrete (bits) or continuous

as in the case of voice transmission. Continuous signals are

often broken down by time quanta. Discrete orthogonal transforms

can then be applied to improve communication efficiency. We

will be primarily concerned here with discrete orthogonal trans-

forms .

The capacity of a communication channel can be stated ana-

lytically. If each symbol transmitted over the channel contains

s bits of information, then a total of 2s different symbols can

be transmitted. Suppose symbols are freely chosen from this set

of 2s members, and suppose a noiseless channel can transmit n

symbols per second. Then the capacity C of the channel is given

by

C = ns.

Shannon [1] generalized this result by considering the

communication system to have a finite number of states, and with-

in each state only certain symbols can be transmitted. Upon trans-

mission the state changes to a new state depending upon the old

-162-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



state and the symbol transmitted. Shannon then proved the

following fundamental theorem.

s th
Theorem: Let bs be the duration of the st symbol which is

allowable in state i and leads to state j. Then the channel

capacity C = log2 W, where W is the largest real root of the

determinantal equation

_ ij = 0, and where 6.. = 1 if i j
51] 1J

and is zero otherwise.

This theorem may be applied to the case of a telegraph.

For the telegraph there are 2 states and 6 symbol durations of

2, 4, 5, 7, 8, and 10 time units T-. The determinantal equation

in question is

-1 (W
-
2 + W-4)

(W (W + W -1)

Upon reduction we get the equation

W + 1 + W + W + W + W- 4 + -2

The largest real root W = 1.45, and hence, C = .539 bits/T.

12-2.1 Entropy

Information is a measure of one's freedom of choice in

selecting a symbol to transmit. Suppose k independent symbols

can be transmitted with probabilities of choice P1 , P 2 ', *- Pk

The expression for information is

k

H = 1 Pi g2 Pi
i=l

H is referred to as entropy and is used in information theory as

a measure of information, choice, and uncertainty. The above

-163-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



equation possesses the following properties:

a) H = 0 if and only if all the Pi but one are 0;

the one being equal to 1. Thus, the information

measure is 0 because there is no freedom of choice.

Only one symbol can be selected.

b) H is maximal if pi = n ,Vi = 1 , ... , n

That is, all symbols can be chosen with equal

probability. (This is the most uncertain

situation.)

Using the concept of entropy Shannon proved the Fundamental

Theorem for a Noiseless Channel:

Let a source have entropy H (bits per symbol) and a

channel have a capacity C (bits per second). Then

it is possible to encode the output of the source in

such a way as to transmit at the average rate (- - E)

symbols per second over the channel, where c is arbi-

trarily small. It is not possible to transmit at an

average rate greater than H.

12-2.2 Noisy Channels

In actual applications communication channels are limited by

the signal to noise ration (SNR) at the receiver. Although noise

has been reduced by the use of MASERs and other low noise devices,

noise sources occur in nature. The Galaxy, the atmosphere, and

interferring transmissions are sources of noise. The effects of

interferring sources are often theoretically intractible because

of their localized nature and non-ergodic signal statistics.

However, the desire for increased channel bandwidth and freedom

from interference tends to cause an increase in carrier frequen-

cies. Combined galactic and atmospheric noise shows a broad

minima in the 2-10 GHz range, but higher atmospheric "windows"

at 30 and 80 GHz have been considered and are particularly

-164-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



applicable to telemetry from re-entry bodies [2].

The effect of noise upon information received can be

measured in terms of entropy. With noise the received message

contains distortions and, hence, has greater uncertainty. 'We

may represent this fact as follows. Let x represent a message

transmitted through a noisy channel, and y the corresponding

received signal. Then the amount of useful information trans-

mitted despite noise effects is given by I = H(x)-Hy (x)

H(y)-H (y),

where II(x) = average amount of information
transmitted

H1(y) = average amount of information
received

II (x) = average amount of information
Y lost due to noise (equivocation),

and

H (y) = that part of y's entropy due to
noise 

The capacity C of this noisy channel is the maximum rate at which

useful information can be transmitted over the channel.

Shannon has extended his Fundamental Theorem for a Discrete

Noiseless Channel to the case of a noisy channel. This theorem

may be stated as follows.

THEOREM: Let a discrete channel have the capacity C and a discrete

source the entropy per second H. If H < C there exists a coding

system such that the output of the source can be transmitted over

the channel with an arbitrarily small frequency of errors '( or

an arbitrarily small equivocation). If H > C, it is possible to

encode the source so that the equivocation is less than H - C + E

where c is arbitrarily small. There is no method of encoding

which gives equivocation less than H - C.

12-3.0 Communication Systems

Space communication systems of increasing complexity have

been flown since the launching of the earlier satellites. The

-165-

INTERMETRICS INCORPORATED '701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



communication links have been divided into telemetry (down-

link), command (uplink), voice and TV systems due to the

differing techniques applied to each class of signals. We

will ignore the special needs of communication (relay)

satellites here.

Early telemetry systems used various combinations of AM,

FM, PFM, and PDM for transmitting analog quantities. Subse-

quently use of the FM-FM technique became standard, using

standardized channels adopted by the Inter-Range Instrumen-

tation Group. These IRIG channels define subcarrier frequencies,

bandwidths and percentage FM deviations. Low frequency signals

can be conveniently time division multiplexed (sub-commutated)

onto an individual channel. Other commuted methods of analog

telemetry have used sequences of PAM, PDM or PFM signals.

These pulse-analog techniques have not virtually been displaced

by Pulse Code Modulation. Strictly speaking PCM represents the

transmission of digital information, and the preceeding analog-

to-digital conversion represents a coding technique.

The transmission of digital data now has become most

advantageous becuase of the ease with which modern digital

computers can handle the reception and editing of such data.

Furthermore, the sampling techniques allow great flexibility in

mixing signals at differing sampling frequencies as appropriate,

and the use of digital signals allows the introduction of

redundancy where low error rates are important.

The provision of secure, low error rate transmission is

particularly important in the case of command channels. For-

tunately ground stations do not have the power limitations

inherent in space systems, and the information rates are reason-

able, although future uplink data rates may be considerably

higher than those used currently. Early command systems used

tone (FDM) signals, but resulted in very limited capability in

which a high degree of redundancy results in great channel security.

-166-
INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



It is instructive at this stage to review the character-

istics of some modern space communication systems. Due to the

integrated nature of these systems it is necessary to look at

the overall system rather than at individual aspects as above.

Project Apollo uses a most sophisticated unified S-Band

System. The S-band system provides for ranging, telemetry,

command signals, voice and TV signals. The ground station

transmits a carrier phase modulated by a pseudo noise code

sequence for ranging, and two sub-carriers, one carrying voice

and the other carrying up-telemetry. This uplink uses a

standard code sequence for both commands and date transmission.

Each code word is begun with vehicle and system address codes,

and each bit is further sub-bit encoded to increase security.

The spacecraft contains duplex transponders where the signal is

synchronously demodulated using a phase-lock loop containing a

VCO used to synthesize the transmitted carrier. This carrier-

is remodulated (PM) by the ranging PN sequence and subcarriers

for down-telemetry (PCM-PSK) and voice (FM1). In addition, a

separate FM S-band transmitter can transmit TV, recorder infor-

mation, or scientific data alternatively. Besides the

S-band,AM is used at VHF for orbital, lunar module and extra-

vehicular communication. The Manned Space Flight Network now

used to communicate with Apollo contains sophisticated data

transmission and signal formatting capabilities.

Command and telemetry systems for lunar and'deep space

probes have become increasingly complex. The transmission of

TV pictures from Mars represents a remarkable achievement. High

Rate Telemetry (HRT) using block data coding was used in this

reception from Mariner VI, obviating the need for the tedious

collection and processing for the standard low rate telemetry

from many ground stations. HRT subcarrier signals were decoded

using high rate correlators. Pioneer IX carried a convolution

coding experiment (CCSP) using 100% redundancy, demonstrating a

-167-

INTERMETRICS INCORPORATED 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



significant improvement in error rate at great distances.

Due to the flexibility of computers there has been a tendency

to use programmable facilities. The Multiple Mission Telemetry

System started this trend, although much special purpose hard-

ware remains. The Multiple Mission Command System will permit

the assembly and generation of complex command words of variable

length, selectable subcarrier frequencies, and a choice of

modulation and synchronization techniques at selectable bit rates.

Post reception processing of Surveyor lunar pictures has demon-

strated the potential of processing techniques.

12-4.0 Orthogonal Functions

Before discussing Fourier and Hadamard Transforms, we will

present a general description of orthogonal functions and trans-

forms [3,4]. A clear understanding of the mathematical structure

of orthogonal functions will make the discussion of specific

functions in later sections easier.

Let h(x) and g(x) be real valued, almost everywhere non-

vanishing functions on the interval (a,b). We say that these

two functions are orthogonal on (a,b) if

a bg(x)h(x)dx = 0 .

For example, if g(x) = x 3 , h(x) = 1 and (a,b) = (-1l,), 1 x3 *1 dx=0.

Thus, these two specific functions are orthogonal on (-1,1).

We may extend this definition of orthogonality to a system

of functions {0i(x), i=0, 1, ... } . Each i (x) is real valued

and almost everywhere non-vanishing on (a,b). We say that the

system is orthogonal on (a,b) if

jfb j(X) k(X)dx = Mj 6 jk (12.1)

where Mj is a nonzero real number and 6jk = 0 if j f k and 1 if

j = k.

-168-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



If, in addition, each IM. = 1, j = 0, 1, ..., the set of

functions {Pi(x)} is said to be orthonormal. A set of ortho-

gonal functions {~i(x)} can always be normalized by dividing by

the M i. We then get M(X i

An interesting property of orthogonal functions is summarized

in the following remark.

Remark: A system of m orthogonal functions l()..., (x)}

is linearly independent.
m

Proof: Suppose the system is linearly dependent. Then E ci.i(x)=0
i=l

without all the constants ci being zero. For each j < m, by ortho-

gonality

c mab 2
j (x) · Z ci.i(x)dx =j (x)dx = 0
JaJ ( i=l J

Therefore, each c. = 0 which implies that {¢i(x)must be linearly

independent.

Orthogonal functions occur quite often in nature. For example,

consider the heat conduction problem

af(x,t) - k 3 2(x,t) - 0
at ax2

with boundary conditions

0(0,t) = 0 and 0(l,t) = 0.

Solution of the equation yields particular solutions

2 2

n(x,t) = en kt sin nrx.

This system of equations {i(x,t)}is orthogonal on the interval

0 < x < 7r.

-169-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



12-4.1 Orthogonalization

An orthogonal set of m functions {Oi(x)}may be constructed

from a linearly independent set of m functions {0
i
( x)} by use

of the Schmidt Orthogonalization Procedure.

We let
i

qi(x) = cCik Ok(X) . (12.2)
k=0

It remains to determine the cik so that the resulting Qi(x) are

orthogonal. To do this we use equation (12.1). Substitution of

(12.2) into (12.1) yields a system of equations which enable determina-

tion of the cik. The M. may be arbitrarily chosen in this procedure.
3

Example: Let the 0.i(x) be Bernoulli Polynomials:

00 (x) = 1

01(x) = x 1

02 (x) = X2 - x + 1

03(X) = x3 3 2

04 (x) = x 4 - 2 x 3 + x
2 _ 

30

Also, let Mj = 2 Application of the Schmidt Orthogonalizationj (2j+l) '

Procedure yields the orthogonal functions:

0 (x) = 1

1 (x) = x

¢2 (x) = -(3x -1)

=1 3
¢3 (x) 2 (5x3-3x)

c
4
(x) = 1 4 24 (x) 3(35x4-30x2 + 3)

12-4.2 Representation by Orthogonal Functions

A given function f(x) can be expanded in terms of an ortho-

gonal set of functions {4i(x)} in (a,b). We desire an expansion

-170-

INTFRMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE. MASSACHUSETTS 02138 . (617) 661-1840



in the form

f(x) = Z a.ii(x) . (12.3)
i=0 1 1

The a. can be calculated to be
1

b

a f (x) i (x)dx
a. =f(x)~(x)dx (12.4)

jb 2i (x)dx

At this point we do not know that the above series truly represents

f(x) in (a,b), and we do not know if the series even converges in

(a,b). We will say more about convergence shortly.

A set of orthonormal functions is said to be complete if for
b

any continuous function f(x) such that j f2 (x)dx is finite,.

lim Fa m 
m f(x) - Z ai (x) dx = 0 .

i=0 1

The most important property of complete sets of orthonormal

functions that concerns us here is the fact that any continuous

function f(x) for which X f 2(x)dx is finite is completely

determined by the series given by equation (12.3) with coefficients

given by (12.4), where the .i(x) are a complete set of orthonormal

functions.

An example of a complete set of functions is the Fourier

series given by the functions 1, sin x, cos x, sin 2x, cos 2x,

... . It can be shown [4] that this set of functions is complete

on the interval [-r,n]. Hence, for any continuous f(x) such that

| _f2(x)dx is finite,

n n
Sn = a

0
+ E aksin kx + Z bkcos kx

k=l k=l

04{~ - ~~~-171-
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS G2138 * (617) 661-1840



can be used to approximate f(x) in [-r,T]. This fact enables the

approximation of a continuous communication signal by a discrete

Fourier series.

12-5.0 Fourier Transforms

A general integral transform may be expressed in the form

h(P) = g(a) K(a,I)da. The quality h(R) is the transform of

g(a) by the kernel K(a,B). If we let a = I, b = -I, a=t (time),

-27rift
= f (frequency) and K(t,f) = e , we obtain the Fourier

transform for a signal g(t). We have h(f) =f g(t) e 2niftdt,

which transforms the signal g(t) into the frequency domain.

Similarly h(f) can be transformed back into the time domain by the

inverse Fourier transform; namely

g(t) = h(f) e2 iftdf.

The discrete Fourier transform and inverse transform are the

following

1 -27ijk/Nh(j) =1 NZ g(k)eN and
k=O

N-l
g(k) = Z h(j) e i /

j=0

For a continuous signal g(t) we can take a discrete Fourier

transform by constructing a time series g(kAt). We assume the

series is periodic with period T and the Fourier coefficients of

h(jf s
) are periodic over the sample frequency fs. For each At

time interval a discrete Fourier transform of g(t) is calculated.

Such a discrete transform can be used for efficient infor-

mation transmission as follows:

a) The signal is transformed into the frequency

domain as a linear combination of the basis

functions, e- 2Tijk/N

-172-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



b) The quantities h(j) are transmitted to

the receiver.

c) The receiver takes the inverse discrete

transform to reconstruct the original

waveform.

The efficiency of this process is increased by a rapid

computational algorithm for calculating the transforms. This;

algorithm is known as the Fast Fourier Transform [5,6].

12-5.1 Fast Fourier Transforms

Let W= e22i/N. Consider the problem of evaluating the

complex Fourier series
N-l1

h(j) = E A(k) Wk (12.5)
k=O

where the A(k) are complex. The original paper by Cooley and

Tukey [5] presents the algorithm for N = 2 r, where r is a positive

integer. For simplicity in presentation we will choose r=3(N=8).

The integers j and k can be expressed in the form

J = 4j2 + 2jl + jO and k = 4k2 + 2kl + k0 for ji' ki' = 0, 1 and

i = 0, 1, 2. Then (12.5) can be written in the form

h(j) = h'(j 2,jlj 0 )

(4j2 +2jl+j0) (4k2+2kl+k0)

E E E A(k2 ,kl,k0 ) W
k =0 k =0 k =0 (12.6)
0 1 l

Note the following identities

8 2rri
W e =1,

(4j 2 +2jl+j0 )4k2 8(2j2 +j)k2 4j 0 k 2 4j 0 k 2 4j 0 k2

= W 2 W 2 1- W 173-W

-173-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



and

(4j2 +2jl+j 0 )2k1 8j2 k1 (2jl+j0 ) 2k
W = W W

(2jl+j0 )2k
11 · W

(2jl+j
0
) 2k

= W

Applying these identities to (6) yields

h (j2 ,jlj0 ) =

1 1
Z E

k0=0 k=00 1

1

k =02

4 0 k2
A(k2 1 kl1 k0) W

(2jl+j0 )2k1 (4j 2 +2jl+j0 )ko
W

This equation can in turn be rewritten as

A 1 (j 0oklkk 0 ) =

A 2 (jiolj,k 0 ) =

A 3 (iJO0 ,jlj2 ) =

and

1

k2=0

1

k =0
1

A(k2,kl,k 0)

Al(j0,kl,k0)

1
5 A

2
(jr0 ,jl k

0
)

k =0
0

4j0 k2
W

(2jl+jo)2kl

(4j2 +2jl+j 0)ko

h (j 2 ,J'l',J0 ) = A 3 (jOjlj2 )
(12.8)

These equations represent the Fast Fourier Transform Algorithm.

12-5.1.1 Computational Savings

Without the FFT algorithm, evaluation of h(j) would require

64 complex multiply and add operations. The FFT algorithm given

by (12.8) shows 48 operations. However, by taking advantage of the

-174-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

(12.7)



fact that 0 = -W4 W -W5 W2= -W 6 and W3 -W7 a reduction

to 12 multiplications results.

Now consider the more general case of N = 2. The FFT

alaorithm reduces the computation from N2 operations to N log2 Ii

complex multiplications, and the same number each of complex

additions and subtractions. For N = 102.4, a computational reduction

of 200 to 1 is achieved.

12-5.1.2 Hardware Implementation

To further increase computational speed Fast Fourier

Transforms have been implemented in special purpose computer hard-

ware [7,8]. Bell Telephone Laboratories has built an FFT signal

processing system [9]. The system costs 5 times less per hour

than a general purpose computer and performs the FFT algorithm 20

times faster. Thus, a 100 to 1 cost savings results.

12-5.2 Video Information

Fourier Transforms can also be applied to the transmission

of visual data. Let g(x,y) represent the amplitude of image

samples over a square array of N points. The discrete transform

h(u,v) is given by

N-1 N-1
h(u,v) = E . g(x,y) e- 2 7i (u x + v y ) /

N

x=O y=O0

and the inverse transform by

N-1 N-1 27i(ux+vy)/N
g(x,y) = E E h(u,v) e

u=O v=0

Fourier Transform image coding gives good quality image

transmission using the same number of bits in the (u,v) domain

as is needed in the (x,y) domain for an image by pulse code

modulation. Moreover, the transform method allows bandwidth

reduction and yields immunity to some channel errors.

-175-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE. MASSACHUSETTS 02138 · (617) 661-1840



In the (x,y) domain image energy is usually uniformly

distributed. When a transform is taken, the image energy tends

to be concentrated near the origin of the (u,v) domain. Thus,

higher spacial frequency components have low magnitude and need

not be transmitted. Bandwidth reduction results.

Avoiding certain channel errors is due to the averaging

process of the transform. After the transmitted image is re-

constructed, each point is a weighted sum of all points in the

(x,y) domain. Hence, the overall loss of resolution due to

channel errors in the (u,v) domain is often less serious than

defects occurring when channel errors are introduced in the (x,y)

domain.

The third attraction of using discrete Fourier transforms

for image transmission is the fast computational algorithms

existing for processing the data (as we have already seen).

12-6.0 Hadamard Matrices

Another method of information transmission uses the

Hadamard Transform [10, 11]. This method possesses the advantages

of the Fourier transform for image coding and also has a faster

computational algorithm. Hadamard matrices are used to transform

the image code into its frequency domain for transmission and

then to reconvert the received information back into the special

domain.

Before defining a Hadamard matrix let us review some basic

matrix algebra definitions and notations.

Definitions:

a) The transpose of a matrix A is that matrix AT

formed by interchanging the rows and columns

of A.

b) The identity matrix I is a square matrix such

that the elements along the principal diagonal

are all 1 and all other elements are 0.

-176-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



T
c) A matrix A is orthogonal if AA I.

T
d) A matrix A is symmetric if A = A

We will now define the Hadamard matrix and point out its

basic properties. A Hadamard matrix II is a square (n x n)
T

matrix whose elements are +1 or -1 and such that Hi = nI. Thus,

except for the factor n, the order of the matrix, a Hadamard

matrix is orthogonal. If H is also symmetric, HH = nI.

It has been proven that if a Hadamard matrix of order n exists

where n > 2, then n - 0 (mod 4). However, the converse of this

theorem has not been proven. The lowest order H is for n = 2, in

this case

Furthermore, Hadamard matrices of higher order can easily be

constructed from other Hadamard matrices. For example, if G

is a Hadamard matrix so is

H =
G ~ -G

Also, if G and It are Hadamard, then

gl - glm
$'

H = g2H1 is Hadamard.

is Hadamar.

gm1H gmm

12-6.1 Hadamard Transforms

The Hadamard Transform h(u,v) of g(x,y), an n x n point image,

is defined by

[h(u,v)] = [H(u,v)] [g(x,y)] [H(u,v)]- (12.9)

where H(u,v) is an nth order symmetric Hadamard matrix. The inverse

property also holds since

-177-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



[H(u,v) uv)[h(u,v)[H(u,v)] = [H(u,v)] [H(u,v)] [g(x,y)] [H(u,v)] [H(u,v)] =

n2 [g(x,y)] because of symmetry.

1
[g(x,y)] = 2 [H(u,v)] [h(u,v)] [H(u,v)]

n

r
For symmetric tHadamard matrices of order 2 , we may also

write (12.9) in a more useful form; namely,

n-1 n-1
h(u,v) = Z g(x,y) (-1) (12.10)

x=O y=O

r-1
where p(x,y,u,v) = (ukx

k
+ kY

k
(mod 2 ) (12.11)

k=0

The terms xk, Yk' Uk' and vk are binary representations of x, y,

u, and v. We call this representation of (12.9), given by equations

(12.10) and (12.11), natural form.

12-6.2 Sequency

By sequency we mean the number of sign changes the elements

of a row of a Hadamard matrix exhibit. It has been proved that

one can construct a Hadamard matrix of order 2 such that the

sequency values cover every integer from 0 to 2 r - 1.

The ordered representation of (12.9) uses the concept of sequency.

We now wish the sequency of each row of H to be larger than that of

the preceeding row. The series representation is again given by

(12.10), but now (12.11) is replaced by

r-l

p(x,y,u,v) = Z [dk(u)xk + dk(v)Y k]
, (12.12)

k=0

where

do (U) = Ur_
1

d l(u) = Ur_
1

+ Ur-2

-178-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



d
2

(u) = Ur_2 + Ur-3

dr-l(u) = ul + u0

A computational algorithm will now be presented for this ordered

representation of the Hadamard transform.

12-6.3 Fast Hadamard Transform

This algorithm requires expressing (12.10) as two one dimen-

sional transforms. These are

n-l
h(u,y) = E g(x,y) (-1)V (12.13)

x=O

r-l
where v = E dk(u)xk ,

k=O

and
n-1

lh(u,v) = h(u,y) (-1 )n , (12.14)
y= 0

r-l
where n = dk (V)Y

k
k=O

The FHT computes (12.13) followed by (12.14), so it suffices to

illustrate the algorithm for a one-dimensional transform. All of

the operations involved in taking the transform are done in a

selected order. Suppose 2 n data points are involved as shown in

Figure 12.1. The operations in taking the transform follow a sieving

sequence with intermediate results saved. We first compute h(O) by

computing the sum of all data points as shown in Figure 12.1. This

is the S sequence. Then we compute h(l) using the intermediate

results of level 1. To calculate h(l) we use a 1 sequence and

subtract the lower node from the upper node of a pair of nodes at

level 1 to get a result at level 0. Next we compute h(2) with

a 2 sequence using the intermediate results of level 2. At level

-179-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



n n-I

'S' sequence

level
3 2 I 0 2 1 0 I 0 number

d'' 

'2' sequence I"sequence

d

"3 sequence

Figure 12.1: Hadamard Transform Computational Sequence [10).

Icvel
nFCumber

F(0)

Figure 12.2: Computation of One Dimensional,

Third Order Hadamard Matrix [10].

-180-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



2, pairs are subtracted from one another to produce level

l's results. These are then added together. This procedure

is followed for the remaining sequences; i.e., 3, 4, ..., n.

An example of the algorithm for 2n = 8 is given in Figure 12.2.

In this example (F(0), F(1), ..., F(7)) are computed using the

sequences (S, 1, 2, 1, 3, 1, 2, 1), respectively. A total of

8 log2 8 = 24 operations are needed. This is a considerable

savings compared with the 8 = 64 operations needed by the brute

force calculation.

12-6.3.1 Computational Savings

The fast execution time of this algorithm results from a

judicious matrix decomposition and the storage of intermediate

results. The brute force computation of a one dimensional

Hadamard transform requires a total of n2 additions and subtrac-

tions. The above algorithm reduces this number to n log 2 n.

Pratt [10] gives an interesting comparison of Fourier

and Hadamard transforms. Both were programmed on a TRW-530

digital computer. The image to be transformed had n = 256. The

computation time for the Fourier transform was 20 minutes versus

3 minutes for the Hadamard transform. A reason for the difference

is that Hadamard transform only requires real adds and subtracts,

whereas the Fourier transform requires complex multiplies, adds

and subtracts.

12-7.0 Advantages and Disadvantages of Orthogonal Transforms

As we have seen, taking discrete transforms of continuous

signals introduces errors. The time interval over which the

transform is taken must be sufficiently large to allow the desired

low frequency signal components to be included. Moreover, we are

approximating a continuous signal with a finite series of ortho-

gonal functions. However, this fact can be an advantage in

eliminating noise effects as we will discuss in a moment.

-181-

INTERMETRICS INCORPORATED .701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840



Aliasing must also be avoided in using a discrete trans-

form. Aliasing refers to a situation in which high frequency

components of a time function impersonate low frequency compo-

nents when the sampling rate is too low. To completely avoid

aliasing a sampling frequency twice as high as the highest

frequency component present must be used.

Some of the factors which influence the efficiency and

performance of the transform encoding system are the quantiza-

tion scheme, the amount of bandwidth compression realized, and

the effects of channel noise.

12-7.1 Bandwidth Compression

After taking the transform of the signal, it is possible

to send the coefficients to the receiver as though they were the

original signal. However, in many applications it is known that

the high frequency components of the signal are really not impor-

tant pieces of information. This implies that one could omit the

coefficients of the high frequency contributions and send out only

the coefficients for the low frequency portions. Two advantages

are then realized. First, some bandwidth compression has been

realized since the receiver can reconstruct the essential features

of the signal on the basis of fewer bits received from the trans-

mitter. Here we are relying on the fact that the signal's low

frequency components have more power than the high frequency

components. (There is one case where transform encoding gives

no improvement; namely, when the signal has the same power at all

frequencies; i.e., when it is white noise.) The second advantage

to neglecting the high frequency components of the transform

during transmission is that one effectively filters out any high

frequency noise that had been imposed upon the signal before trans-

formation. The answer to the question of how many coefficients

should be transmitted is determined primarily by the allowable

distortion in reconstructing the signal at the receiver.

12-7.2 Quantization

There are many ways to quantize the coefficients. For

-182-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



example, one might consider the process of block quantization

[12] in which the coefficient vector is first transformed to a

set of uncorrelated random variables and then quantized. The

bits which have been allocated to transmit these coefficients

are distributed so that they minimize the mean square error in

reconstructing the coefficients at the receiver. In the original

paper by Huang and Schultheiss, a noiseless channel was assumed.

Another approach can be taken by realizing that since the

transforms are taken from a block of data T seconds long, each

coefficient in the transform now becomes a discrete random process

with samples occurring every T seconds. With the problem case

in this form one can consider all the various time domain quan-

tization techniques and optimal quantization techniques that have

previously been considered for time series along. Examples in-

clude predictive quantization and predictive-comparison data

compression [13]. (We will not discuss these topics here.)

These optimal quantizing methods and others depend on a

priori knowledge of the probability distribution of the

coefficient vector. If good information about this distribution

is not available, or if it can be expected to change drastically,

then one must consider adaptive quantization schemes to ensure

efficient operation of the transform encoding system.

12-7.3 Channel Noise

One of the advantages that has been cited for transform

coding has been that it is less susceptible to channel noise

for video data [10]. The argument is that the effect of a

coefficient error becomes spread out over the entire scene. The

human process of perceiving such a picture tends to filter out

the errors. For example, an error in the coefficient of the d.c.

level of the picture would change only the apparent brightness and

would not greatly effect the detail of the picture. However, an

error made in transmitting the coefficient for a signal waveform

can drastically change its basic characteristics. There is no

-183-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE. MASSACHUSETTS 02138 · (617) 661-1840



redundancy in the received signal which can be used to eliminate

these transmission errors. This susceptibility of bandwidth

compression techniques to channel errors has been well documented

[14]. In summary then, when considering the effect of channel

noise on orthogonal transform encoding systems one must specify

the type of signal that is being processed and the use for which

it is intended.

-184-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE 'CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840



REFERENCES

1. Shannon, C., and Weaver, W., The Mathematical Theory of
Communication, (Univ. of Illinois Press, Urbana, Ill.,
1949).

2. Filipowsky, R.F., and Muchldorf, E.I., Space Communications
Systems, (Prentice-Hall, New Jersey, 1965).

3. Harmuth, H., Transmission of Information by Orthogonal
Functions, 2nd Printing, (Springer-Verlag, New York,
1970).

4. Weinberger, H., A First Course in Partial Differential
Equations, (Blaisdell, Waltham, Mass., 1965).

5. Cooley, J.W., and Tukey, J.W., "An Algorithm for the Machine
Calculation of Complex Fourier Series", (Math. Comput.,
19,April 1965), pp. 297-301.

6. Bergland, G.D., "A Guided Tour of the Fast Fourier Transform",
(IEEE Spectrum, 6(7), July 1969), pp. 41-52.

7. Bergland, G.D., "Fast Fourier Transform Hardware Implementa-
tions - An Overview", (IEEE Trans. Audio Electroacoust.,
AU-17, June 1969), pp. 104-108.

8. Bergland, G.D. "A Parallel Implementation of the Fast Fourier
Transform Algorithm", (IEEE Trans. on Comp., C-21(14),
April 1972), pp. 366-370.

9. Klahn, R. et al., "The Time Saver: FFT Hardware", (Electronics,
June 24,-1968), pp. 92-97.

10. Pratt, W.K., et al., "Hadamard Transform Image Coding",
(Proc. IEEE, 57(1), January 1969), pp. 58-68.

11. Comsat Laboratories, Orthogonal Transform Feasibility Study,
(Clarksburg, Maryland, November 1971, prepared under
contract NAS 9-11240).

12. Huang, J.,and Schultheiss, P., "Block Quantization of Correlated
Guassian Random Variables", (IEEE Trans. Comm. System,
September 1962), pp. 289-296.

13. Curry, R.E., Estimation and Control with Quantized Measurements,
(M.I.T. Press, Cambridge, Mass., 1970).

14. Davisson, L.D. "The Theoretical Analysis of Data Compression
Systems", (Proc. IEEE, 56(2), February 1968), pp. 176-186.

-185-

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE · CAMBRIDGE. MASSACHUSETTS 02138 · (617) 661-1840



.i... ED':G PAGE BLANIK NO' FILMED

CHAPTER 13

SAMPLED DATA ANALYSIS

13-1.0 Introduction

This chapter describes some of the methods one might use
when presented with the need to use a digital computer to measure
a continuous variable, and then based on some desired end result,
to generate an output signal which is linearly related to the
measured signal. The methods described here are directly analogous
to methods commonly used in continuous signal control system
analysis.

Since the digital computer is by its nature not a contin-
uous device, the introduction of the computer will involve 1) a
sampling process, 2) discrete operations within the digital compu-
ter, and 3) the smoothing of the computer output before it' is
re-introduced into the system.

I Digital
, _ 'jgia · ..%Smoother

Computer

Figure 13-1

Components of a Digital Control Element

13-2.0 The Sampling Process

Digital computers are discrete processors in two senses.
The process of encoding data into a number system of finite word
length introduces magnitude quantization, which results in propa-
gation of errors due to round-off. The other form of disconti-
nuity involves sampling of data at discrete intervals, and working
with the sampled data as an acceptable representation of the
continuous data. We will discuss the sampling process here.

Preceding page blank
-187-

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 021.38 . (617) '661-1840',



x(t) 4 Sampling
Device

x(t)

y(t)

y(t)

I I! !_f Ir e It

Figure 13-2

Waveforms of the Input and Output of a Sampling Device

By treating a sampling device as a modulator, which multi-
plies the input signal by an infinite series of impulses, one can
analyze the effect of sampling by comparing the frequency spectrum
of the sampled signal with the spectrum of the original signal.
The simplest way to study the spectra is to assume that the original
signal contains only one frequency component, for example

x(t) = v cos(w0t + 00)

v ej
0 Ot v e - j

0 0 -jw0t
2 e + e2 2

(13-1)

(13-2)

The amplitude of the frequency spectrum of the time function
x(t) is

v/2

I F(jw) I

v/2

I
W0 (ii b

Figure 13-3

The Amplitude of the Fourier Transform of x(t)

The frequency spectrum of the time function y(t) (the sampled
version of x(t)) turns out to have the following character.

-188-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

lie
t



-2w
(s (-W -W

s

I F* (jw) I

-W0 2w
s

Figure 13-4

The Amplitude of the Fourier Transform of y(t)

where w = 27 f (The sampling frequency)
-. ; .s . .

and 1
T = -

f
s

Note that sampling frequency is in radians/sec. defined by having
one sample per cycle.

We see that spectrum analysis indicates that the sampling
introduces "complementary" spectral components at multiples of
the sampling frequency. If the spectrum of the input were contin-
uous, the spectrum of the sampled signal would look like this

spectrum of input F* (j) 

Lsignal lma
> .. < X~~~~~~~~~~~

S S

Figure 13-5

The Spectrum of a Sampled Signal

13-3.0 Reconstruction of the Unmodulated Signal

The continuous signal can be reconstructed from the samples
under certain circumstances:

-189-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

o (W WS -() s(Ws~



1-
F (t)

0

f

l I I t

Figure 13-6

A Sampled Signal

The sampled function above could be filled in by holding
the last sampled value between sample intervals, or by fitting
more complex extrapolations based on past values.

I .
t ->

Figure 13-7

A Zero'th Order Hold Reconstruction

o

\\ "K.

Figure 13-8
A First Order Hold Reconstruction

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840
-190-

.

_, i
i.___I

C-_.

I 1.

O -..... 



One can in principle at least, use all the past data and get a
pretty smooth fit:

(.

Figure 13-9

A Smooth Fit

However, there is
to the sampler wa

i ;

£ 

,I I
'i

no reason (yet) to believe that the actual input
sn't

%N

t-
I .J

Figure 13-10

Another Signal that Could Produce the Same Set of Samples

-19'1-

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

I''' fi



13-4.0 Basic Theorem of Sampling

This dilemma leads to a basic theorem which must not be
forgotten.

Theorem: If you can be certain that the
signal to be sampled contains no
frequency components greater than
one-half the sampling frequency,
then the samples are sufficient
to reconstruct the signal.

Looking back at the example that we have been following,
we can see that the sampling theorem seems to apply. It is
necessary to know a-priori that high frequency components do not
exist in order to construct the plausible sine wave of Figure 13-9.

In terms of the frequency spectrum, we can see that, if
the sampling theorem rule is violated, there is overlap of the
complementary spectrum into the desire spectrum. There is no way
that the original function can be reconstructed.

original spectrum __ , ~ resulting spectrum

'2ws -W W5 2w
s - s 2s s

Figure 13-11

Effect of Overlap on the Frequency Spectrum

13-5.0 Noise Into a Sampler

When dealing with a situation where there is both signal and
noise, it is necessary to either eliminate the high frequency noise
before sampling the signal, or to sample at a frequency at least twice
the highest frequency component of the noise.

As an example of the consequence of not observing the twice
frequency rule, figure 13-12 illustrates the consequence of passing
a signal with high frequency noise through a sampler, and then
reconstructing the original signal. Note that the high frequency

-192-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



noise has been "folded", or "aliased" into low frequency noise.
Note that a low pass filter on the reconstructed signal will do
no good.

signal + noise
signal . f reconstructed signal +

signal ir !, ·

Figure 13-12

Aliasing of High Frequency Noise

It is an important design rule to insure that high frequency
information or noise does not get sampled.

13-6.0 Analysis of Linear Sampled Data Systems

Figure 13-13 introduces elements of a computer controlled
system.

Figure 13-13

A Digitally Controlled-System

The sampler is a linear element since, if for any additive
component of input signal x(t), the sampler output is x*(t), then,
if x(t) is modified by any scale factor, A, the sampler output will

-193-

INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



contain the component Ax*(t). Therefore, introduction of a sampler
does not of itself introduce non-linearity.

13-6.1 Difference Equations, z and w Transform. Linear continuous
systems are characterized by sets of linear differential equations

n n-i n (-13anXn + an bny + b y +...+bg (13-3)

where the superscript indicates the order of differentiation of the
variables x and y.

In discrete systems, the analogous equations are linear difference
equations, since the information in the system consists of samples
at present and past sample instants. Equation 13-4 is a linear
difference equation

a x +...+ a = b ny + bn-lY(n-1) +...+ b0 (13-4)
n -n an-i -(n-i) n -n n-i

where the subscript on the variable defines the "staleness" of the
sample, in number of sample intervals. For example, X-n is the value
for x taken n intervals previous to the present sample instant.

If the coefficients of differential equations can be presumed
non-time varying, the operational mathematics of Laplace transform
theory becomes useful. The advantage obtained is that one can work
with algebraic equations in the Laplace operator s, and relatively
simpler arithmetical procedures can be substituted. (For example,
multiplication replaces convolution.) For the continuous system,
the operational equation is

(a sn + a nS +...+ a)X(s) = (bnsn +...+ b0 )Y(s) (13-5)
(an n0... . .

Presume for the moment that an equivalent operational math exists
for difference equations. Let the operator z be used instead of s.
Then, for the difference equation we write

(a z- n + a -z (n) ... a)() = (b n +...+ b0 )Y(z) (13-6)

The nth previous sample of x, which we denoted as xn, can be
related to the present value of the continuous signal by a Taylor

-194-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



series expansion, assuming differentiability, as

x = x + x' (-nT) + 1 x"(-nT) +... (13-7)
-n 2!

and its Laplace transform would be

X n(s) = (1 + (-nT)s + 1 (-nT) 2s2 +...)X(s) (13-8)

X (s) = enTs X(s)
-n

so the Laplace transform of the difference equation becomes

(a enTs + a e-(n-)Ts +...+ a)X(s) = (bneTs +...+b)Y(s )

(13-9)

Comparison of equations 13-6 and 13-9 indicate that the presumed

operator z exists and is related to the Laplace operation s by

sT
z =e (13-10)

13-6.2 Conditions for Stability of the Equations. The imaginary axis
of the complex plane defines the boundary of stability for roots of
the characteristic equation in Laplace transform theory. Equation
13-10 rewritten as

z = e"TejT (13-11)

illustrates that the unit circle Izl = 1, is the equivalent boundary
and that the left half plane in s is mapped entirely inside the unit
circle.

13-6.3 w Transforms. The z transform converts a transcendental
function in s (involving terms in esT) into polynomial functions
in z. However, the process maps the left half plane into an infi-

nitely multiple valued surface all within the area of the unit
circle. The w transform remaps a single layer of this unit circle
surface back into an entire left half plane. The w transform, or
bilinear transform, is defined by

Z 1 - w (13-12)

or

w = + (13-13)
Z+1

-195-
INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE,' MASSACHUSETTS 02138 · (617) 661-1840 

:



In this manner, a variable is created which satisfies all the
requirements of the well-known Bode analysis.

There are several design techniques which take advantage of the
similarity between the s domain and the w domain, Ref. [7,11].

13-7.0 Sampled Continuous Systems

Digital control requires analysis of combinations of
differential equations (defining the plant and its associated
elements) and difference equations (defining the computer filter).

Figure 13-14 is a rearrangement of the continuous portion
of the control system of Figure 13-13 with the (sampled) computer
output as the input signal, and the (sampled) computer input as the
response.

-- Hold lPlant Detector _' , Circuit

Figure 13-14

Continuous Portion of the System

The process of obtaining the Laplace transform of these
elements including the effects of the sampler is a matter
of extreme practical ditficulty, if the continuous elements are not
trivial. This difficulty arises because a mathematical description
of the sampler operation involves multiplication of the signal by a
series of unit impulses. The Laplace transform of a product of
signals involves complex convolution.

As a practical matter, the process involves breaking down
the algebraic expression for the Laplace transform of the continuous
system into a partial fraction expansion (parallel) form, evaluating
the z transform of each parallel term separately, and then recon-
stituting the results.

Figure 13-15 illustrates the partial fraction expansion form
of a Laplace transform function.

-196-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



V

~!' n

S + an

A0

S + a0

A 1

S +- a,

-IJ

-l

Figure 13-15

Partial Fraction Form

In this manner, one creates a complete algebraic model in the
operator z for the elements in the system, as in Figure 13-16, with
appropriate specifications for stability, speed of response and so
forth. It is the task of the designer to create the compensation
D(z) appropriate to the system characteristics and requirements.

Digital Filter Continuous Elements

Figure 13-16

Reduction to a Discrete System
-197-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840

I



13-7.1 An Example - Ref. [12]. The Pershing Missile digital autopilot
is a system which receives attitude commands from a steering loop,
and, based on measured vehicle inertial attitude, 0, computes vane
deflection commands, 6, to control the vehicle to the programmed tra-
jectory. The transfer function relating measurea vehicle
to vane deflection commands for a particular period of its ascent
trajectory can be approximated as

0 7.86(S+22+86.12j) (S+183.1) (S-186.1)
(S) = (S+3.53)(S-3.53)(S2+2(.008) (65.8)S+65.82 )(S2 +2(.0075)231.8s+231.82 )

(13-14)

This equation includes the effect of the first two bending modes
as well as the high frequency rigid body motion.

A Bode plot of this dynamical system; log (amplitude) versus
log (frequency) is included as Figure 13-17.

The block diagram of the closed loop system is shown in
Figure 13-18.

saemprler

I I
I i _ ~Digital 1 lold Is) 

' Autopilot 6

Figure 13-18

Pershing Autopilot

The z transform and w transform of the difference equation which
result from applying samplers to the continuous system (for a sampling
period of 16 x 10-3 seconds) are listed in Table 13-1.

The w plane Bode plot for the system is shown in Figure 13-19,
(w = u + jv). It will be noticed that the functions are similarly
shaped for small values of w and v. Figure 13-20 is a Nichols chart
(log amplitude versus phase) for the sampled data system with the
frequency v as the parameter.

-198-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



O
lV

U
 3]U

nlIldI.'V

I,-

-,4,r

I?cz>
!

-1
9

9
-

IN
TER

M
ETR

IC
S 

IN
C

O
R

PO
R

ATED
 

· 701 C
O

N
C

O
R

D
 AVEN

U
E 

· C
AM

BR
ID

G
E, 

M
ASSAC

H
U

SETTS 
02138 * (617) 661-1840

'

Il

C
)O

C
o1 

u)14J

.-440

Uur

I C3

C
o5-



' (z)
,l. . (P z ]-3

.e PCriod 16 x 1(0 secs (62.5/sec)

(-;.7lJN = 3.662 x 10 

i).lo:;minaltor Factors: Numerator Factors:

z - 1.058 z + .03373

z - . Z - .05375

z - .2009 z + .3371

z - .4903 + .8619j z - 16.976

z + .8203 + .5226j z + 1.180 + .6384j

z + .02098 + .08678j z - .1892 + .9657j

F (w)

Sample Period 16 x 10 3 secs. (62.5/sec)

GAIN = -1.091 x 10

Denominator Factors: Numerator Factors

w - .02818 w + 1.07

w + .02822 w + .898

w + .6654 w + 2.017

w + .00565 + .5816j w - .889

w + .1768 + 3.422 w - 1.00

w + 1.027 + .1797 w - 1.817 + 2.90j

w + .0135 + .823j

Table 13-1: F(z), F(w) at 62.5 samples/sec.

-200-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



C
Z

C
C

~U
.J

-

a
o 

~~~~~~~~~'s~~~~~~~~~~~~~ 

L
_

c:2
I~

~
~

~
P

-
a)~

~
~

r-

C
)03

I P T 7 C
 O A E C I M

 S U
1 '

61
C

,

{) O403

o~~~~~~~~~

0'30

im

·
p

,·

'
~

O
IIV

U

3
0
-
1
1
1
d
!
'
V

-2
0

1
-

IN
T

E
R

M
E

T
R

IC
S

IN

C
O

R
P

O
R

A
T

E
D

0.
1

C
O

N
C

O
R

D

A
V

E
N

U
E

'C

A
M

B
R

I
D

G
E

,
M

A
SSA

C
H

U
SE

T
T

S
0
2
1
3
8

. (617)
6611840"

101

62.5 SAtPLES/SI'COI'D 100
10-3

3x10-2

6x10-2

.57 .132

.59 .557
10-2

.611

.396
.64

3.4 '0~I .

10-3 -J
3.2 3.7

2.82 4.
1.92 1 33

2.429

LC~10 o-4

.82

10-5

i0-6-360 -270 -180 -90 0
PHIASE

Figure 13-20

Nichols Chart Discrete System

-202-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

13-7.2 Design of the Compensation. An examination of Figure 13-20

indicates various requirements for the digital filter. First the

cross over frequency must be somewhere in the range of .03<v<.132
since for frequencies lower than the frequency of the aerodynamic

divergence, the gain versus phase function collapses to a point.
Above v = .132 the first bending mode causes too rapid and unde-

pendable fluctuation to permit reliable compensation. Another

requirement involves shifting the phase of the first bending mode

loop away from the 1800 point by additional lead at high frequen-
cies. By a trial and error process, a compensation function to be

implemented in the digital autopilot is defined to be

D(w) = 2-13 (w + .03) (2 + .5)

w + 2(.5)(.225)w + .225 (13-15)

A plot of the total open loop function including the compensa-

tor is shown in Figure 13-21. The gain term, -15.41, is not
included in this figure.

The inverse bilinear transform yields the equivalent compen-

sation in the z domain.

2
(z -1.4518z + .61646)

A digital filter that implements this compensation is shown in

Figure 13-22.

13-8.0 Design Tools, Ref. [13]

We have shown how linear dynamical systems which contain sam-

pler elements and/or time delays can be analyzed using z-transform

theory. However, the numerical operations involved are tedious and

the results are often extremely sensitive to lack of numerical pre-
cision. For these reasons, Intermetrics has developed a sequence

of computer programs which support the analysis of sampled data
systems.

These programs are designed for use on a time-shared compu-

ting facility. Data resulting from one operation frequently becomes

input data for a subsequent operation. The user can either transfer

the data using certain file handling operations or he can transfer
the data by hand using the teletypewriter.

-203-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138-* (617) 661-1840

101 '

100

.527 33 10-2 o
.422

.U

-0

INTERMETRICS 3.39 INCORPORATED*701 CONCORD AVENUE * CAMBRIDGE, MASS0346 -

-10o-3

3.72

6.0
10-4

i~815 · IY.844

10-6
-360 -270 -180 -90 0

PIHASE

Figure 13-21

Nichols Chart Discrete System

-204-

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

D

%
Dl
.

0o.r

~
~

~
~

~
~

~
~

~
rl

4)aj

44
W

k~~~~~~~~~~~~~~~~~1

e
~

~
~

~
~

~
~

m
~

~
~

~
~

~
~

~

N
~

~
~

~
~

~
~

~

4,

·cn
H

~
~

~
~

~
~

~
~

~

I.

(1
4
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

L

r-4

m
~

~
~

~
~

Ha)

!~
~

~
~

~

I
.~~~~1-

IN
TER

M
ETR

IC
S

IN
C

O
R

PO
R

A
T

E
D

701

C
O

N
C

O
R

D
 A

V
EN

U
E

C
A

M
B

R
ID

G
E,

M
A

SSA
C

H
U

SE
T

T
S

02138
(617)

661-1840
-9

0
;-

As an example of the use of these programs, consider that a
user wishes to design compensation for a digital computer used in
a feedback control application. He has obtained the Laplace trans-
form of the response at the input to the computer to an impulse at
the output of the computer. Using these programs he can:

1) Calculate the z-transform of the system, accounting for
the effect of synchronized samplers at the input and
output; he can include the effects of a hold circuit at
the computer output sampler.

2) Calculate the w-transform of the system.

3) Calculate frequency response data (amplitude and phase)
versus increasing imaginary values of the complex variable
w.

4) Using Bode and Nichols techniques, synthesize. compensation
and re-analyze the resulting system.

5) Transform the compensation function from the w-plane to the
z-plane in order to determine difference equation coeffici-
ents.

6) Obtain transient response time histories of the closed loop
system.

In addition to the above described sequence, the user can
obtain partial fraction expansions, factor polynomials, multiply
polynomials, and combine factors into polynomials. These pro-
grams are designed to accomodate on the order of 50th-order poly-
nomials. Repeated roots are accommodated to an arbitrary degree.
Some of these programs are based on programs developed at the MIT
Instrumentation (Draper) Laboratory, Ref. [14].

Figure 13-23 is a diagram of the various operational processes
automated by these programs. In addition to those shown in the
diagram, a power spectral density analysis program is also part of
the package.

13-9.0 Practical Considerations in Realization of Discrete Filters.

13-9.1 Stability and Coefficient Accuracy

While the methods described in section 13-6.0 and
illustrated in section 13-7.0 provide a basis for implementing a
discrete filter, practitioners have been bothered by certain
numerical difficulties.

As an historical example, consider the development of the digi-
tal autopilot for the Apollo command and service module. The steps in

-206-
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840

I;
@

..
.{ .1

J·~ r?
u
.

I
_

I
Id

+

t :~~~~~~~~~~~~~~~~c
ILO,

>

>

r- 0
o
~

~
~

~
~

~
~

~
~

..
-

'-
~

-
,P

L9

.9 E'0
-

c
@

,lE
ot,

°
.

-
E

E

F
n

"
5
r

't,
,tv

tB n
.o

cQ

.
,. ,,

tv
C:

Lt
.

N
 N

At

tt c
O

O

:

nl
IL

rJ
C)

_
~

~
~

~

<

t
U

.
0

1
t78

g
c

-
I

-
t

C

E

cr
vz

*
n

R

C
3
~

~

(3(
c,

-tu
"

m

J
0

JC

~
+

+
o-'

.

L
X

c

cc
U

-
cc

cc
°

o
o

r i,
T

 m

II
o

o
o

o
tr

*o
_ L

v
Y

,
C

H

(r)i

(i)

Oc:
n
-.

u
.

:
~

I
1

0
w

-
III

r

V
)

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
8

c
n

+

(D

<
:~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
Q

rIilii
7
-2

-
07

Q

c~~Q
U

L
=

©

-~;N

rr~
®

O

.
·O

"
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

2
.E

x E

.S

I
I~c .-

I~~~~~~~~~~~~~~~·"1~~~~~~~~~~~~~~~~~~~.
.
c

a

,
-

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

+
 +

s
r)~

~
~

~
~

~
~

~
~

~
~

~
~

Y

a
0o

>.
o

.m

m

m

'U
m

cr--
o

~

E

o
··

'~
'~

u
.~

.

.nv
.

g
-

.
o

.t
o

C
C

~~~~~~~~~..
-2

0
0
7

~
s
o
"
 

,,J
,

®
 

v,(,uZ 
C

(O

u. 
a, 

as-207

IN
TER

M
ETR

IC
S 

IN
C

O
R

PO
R

A
TED

 
· 701 C

O
N

C
O

R
D

 A
V

EN
U

E 
· C

A
M

B
R

ID
G

E, 
M

A
SSA

C
H

U
SETTS 02138 

· (617) 661-1840



its design were as follows, Ref. [15]:

A compensation filter was designed. The design utilized the
w-plane to obtain the desired system stability and response. When
this function was implemented on the 15 bit Apollo computer,
considerable difficulty was experienced. This difficulty was only
ultimately resolved by careful attention to selection of methods of
rounding the coefficients and by selecting an insensitive form
for the sequential solution of the algorithm. This experience is
not untypical.

More recently Kaiser, Ref. [18], has been able to show in a
fairly general way that the coefficient accuracy requirements for
realization of digital filters increase proportionally to the
order n of the filter, and that increasing the sampling rate also
increases the requirements for increased word length in coefficient
storage. These results confirm the practical experience of the
author.

13-9.2 Canonical Forms

The implementation of a given digital filter can take
several forms, all equivalent under the assumption of no quanti-
zation or round-off in the implementation. The form used in
Figure 13-22 will be called the direct form, since it is directly
related to a generalized form of the linear difference equation
such as equation 13-4. However, this form can be shown to involve
a significant excess of storage elements, and further it often
exhibits poor numerical properties in the presence of finite numer-
ical accuracy, Ref. [17].

The following technique, Ref. [10], leads to a less
complex form of filter implementation. We start with the z domain
equation for the transfer function, input/output relationship.

y(z) = X(z) H(z) (13-17)

or

r
Z L.z

Y(z) = X(z) ib (13-18)
m
Z K.z

i=O 1

and define an intermediate operator W(z), such that

-208-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840



x(z)
W(z) = m

Z K.z
i=O 1

Y(z) = W(z) Z L.z-
i=O1

we derive from these the following simultaneous difference
equations

m
x(nT) = x(nT) - Z K.w(nT - iT)

i=l

r
y(nT) = z L w(nT - iT)

i=O

This yields the structure illustrated in Figure 13-24. This
form is often called the canonic form of the filter, although
many other arrangements can be constructed with the same-number
of storage elements. However, this is the minimum number of stor-
age elements.

In addition to this form, Jackson, Ref. [19] and others define
the cascade form, related to a factored version of the transfer
function, a parallel form, related to the partial fraction expan-
sion version of the transfer function, and combinations of these.

It turns out that these forms, while equivalent in an ideal-
ized analysis, have significantly different properties in the pre-
sence of quantized signals and finite coefficient accuracy.
Apollo experience bears this out.

13-9.3 Noise Analysis

Noise analysis for discrete filters is not as straight-
forward as it is for continuous systems. The sampling process
produces aliasing which means that a complex spectrum of side
bands of noise (and signal) are created by the sampler. As a
part of the Pershing Digital Autopilot design contract, Ref. [12]
a loop noise analysis including the effects of the sampler and the
autopilot difference equations was performed. The method was auto-
mated, and has become part of the design tool package described
previously. As an example of this procedure, Figure 13-25 is an
exhibit of the noise power spectral density at the Pershing vane
actuator due to quantization at the inertial measurement unit
attitude transducer.

-209-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



0 H
 

o

-
2
1
0
-

U
i-I 

H
 

B
 

I 
,

N
J 

0)

-2
1
0
-

IN
TER

M
ETR

IC
S 

IN
C

O
R

PO
R

A
T

E
D

 
· 701 C

O
N

C
O

R
D

 A
V

E
N

U
E

 
· C

A
M

B
R

ID
G

E
, 

M
A

SSA
C

H
U

SE
T

T
S 0

2
1
3
8
 · (617) 661-1840

l 11



II 
f 

T.1.I ] fiT: 

1Ti.j 
..I

'1 
J

1t i 1|111t',
:.i-f! 

1 i
] 

.

-1-1

.-- i 
I

.i:
, l i
, 

1-- 
1-

l.J 
!I

ii! 1: 1I1
i i, 1,

jiT'T 

4-i :I--I:
-. 

i._.

-It -
-: .1.ii 1.1.I

' 
i-

in I:i !
.1 ,- 

1.
J I. 

j 
r-

-. -i-l i -

:]t-I i 
1 -''-., 

4,, 
.1 i'

';i 
-!:t< j

::li--~i-I

t-t t--:(J'"l
-A 

.1 --

-i I- -
:J- 

T-·

..- 
-

1 
3 

1. 
1: 1

_._!...'t ..,j -.... 
:-. L t!-A

I, 
' I-1

 
i 7.-'.1

I-i---il- 
i 

nt 
--,-t, 

11(411_. t. 
.4 .- Th.:

-*
i-0

 
0-fg} 

i-'
t~--i:t,/l -~?:it-.-l :U:i:£ :El.!::;-

,- 1 
i 

t-f-H
-. l_-l:i. 

:
f t:!?- 

t, t1 
i t-t:M

i:M
.t,

a~~~~~~~~~
"
X

 
I

>
 

c 
O

~ --.
t- 

.... 
I.,...

' .-i-
j 

iJ ' i

.
: 

.
_ 

_
.---·

! 1:, ,-

--
,.,.

i 
.

.j

:2.I 'i-- tj'

Ii 
1 

-
1"

i;:< Iji

'ii !"i'..--i
.. 

,i

1 
-

__ 
_

_
 

_
_

 
__

i 
· 
i 

1
..

I ---

1ThI' -it
I .

.- H 
t-

i-

-
i-i-i-_

I-J-1 11

lil3Ti'3
.2.i 4

~'. I -' i 
I 11 i

ii I
i i:i

'4 
!I

vI 
j,

.! 
:1

I-j; '!1

-i-. 
I

i1-1li

I _ :_

i-i-
4i-~ :i-_1
I 4 

l. 14 
4

I-T, 1H
T

-131
11+4 I 

.

4-.l--

!_
, .t 

-' 
4
..--

4I. 
-

-
l 

t1-f-

!1 1,iH
IT1:.tl:
'- i 
-1 'i 

1.
! -I -

-'.
41k:1 

1-

I I

zIl- J. 11,1i.-i1 1 Lp- 1114
'. .- 1:

.!ii --: -
l-"~' ' I' .t:,

.
.I 

.i 
, 

.
.i

If4 
14 

1~

-| ji 
i:l_:l 

--
i4

i. _ 
.i i. .

}:ii

-1 l -
I --
I I 

i 
· 

:---1-- 
-I I i~l- -!--j-lj 

--
i 1·1 

i3-1-1

:f-Iw
 

I_1.I.1--.
~

u-ii--I

Ii' I :

Ii .i--..~
 : i

C
D

(c.

r-

0u,a)

L
roc;

C
JW

I

_14

t3

o 
>

c
z
..u

Ji.U
J

144
14: 

lIiut-:I:1

A-$i-

,,iI

-111-ihiJ4(oCD
t-H

-i-

4-,0 Ha)o L44i

O,I0r-.

l: jtI I-1-t--t

-111.1 
.tt.-t-.t1-H

 4f-f-I+
-l

o Ir

t 33S/U
\'U

/IS33U
O

30 
] 

1
'n

U
I.3

3
d
S

 U3tM
Od-2

1
1
-

IN
TER

M
ETR

IC
S 

IN
C

O
R

P
O

R
A

TE
D

 
· 701 C

O
N

C
O

R
D

 
A

VEN
U

E 
* C

A
M

B
R

ID
G

E
, 

M
A

S
S

A
C

H
U

S
E

TTS
 

02138 · (617) 661-1840

*11,' 
11 

:
t 1. 

4 1.Vi]
.i~j [4

i 
I | 

I[ | 
i'ii

ii
: i 

I 
1

;/..,,. 
.. j

i-i

J..i
t iA

I 
_ 

I.

i 
i

: 
1

i I....

i 
i 

, 

I 1 1
I 'iI-1-~,

I1
J I i'll,

-il

II

i:1I-1
ii

lil I ijli

_-1 _1.: :.!.-:_.!--:
i-i I 

:' '.t_"I:
It-~ 
~ 

-1j.'---

: -- t1 
i 

A' 
:! 

-| -
-

:
1- I

'1 -I-l, -1 I-.
ri -all

-I*i i .i:I.

,.l

1.1
IiSI
-1.4

cI 
j:r.

-; 
-

~ 
, 

I 
-

I 
: 

1 

I~
--c

- 
cl-u~- 

· 
' 

.
I 1 

1 
: 

1
: 

I 
I 

1
-"

-t 
i1 
I
I
I
 

ii 
---

I
I 

I 
I 

I 
I 

II 
I I 

" 
-1 

'1
j_ 

4+
; 

_
-.1

4
 

44,_ 
i 

: 
_ ._

; 
-U

I-_--
"

-1
911

cU
 

1 
.

I 
: 

L
. 

.I -
: 

Y
----- 

-
--

1
:: 

I 
I ' 

' 
II1

1
1

p
.L

i
%

4

i I.i.iJ.IiI:

I-
I II'II-

! 1

J

,

Iw:

-1i 
,:'- t

.,-i-

L
o16

1t: 
ia_ _.ii..

i i .;

'i

_rT1

-#lfr 
~i-1



13-10.0 Summary

This chapter has briefly described an approach to the analysis
of sampled data control problems. The method of approach might
be termed the classical approach because it is an adaptation of
the spectral analysis methods developed for continuous control
system analysis.

We have also emphasized a physical motivation for the sampling
theorem, which is fundamental to successful reconstruction of
information from discrete samples.

-212-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



REFERENCES

1. Bryson, A.E., and Yu-Chi Ho, Applied Optimal Control,

Blaisdell, Waltham, Mass., 1969.

2. Joseph, P.D., and Tou, J.T., "On Linear Control Theory",
AIEE Trans., Applications and Industry, Vol. 80,
September 1961, pp. 193-196.

3. Widnall, W.S., Applications of Optimal Control Theory to
Computer Controller Design , the M.I.T. Press, Cambridge,
Mass., 1968.

4. Luenberger, D.G., "Observing the State of a Linear System",
IEEE Trans. on Military Electronics, April 1964,
pp. 74-80.

5. Cox, K.J., "A Case Study of the Apollo Lunar Module Digital
Autopilot", IEEE Case Studies in System Control,
69-C41, AC, August 1969, Boulder, Colorado.

6. Widnall, W.S., "The Minimum Time Thrust-Vector Control Law
in the Apollo Lunar Module Autopilot", Automatica,
Vol. 6, Pergamon Press, 1970, pp. 661-672.

7. Ragazzini, John R., and Franklin, Gene F., Sampled-Data
Control Systems, McGraw-Hill, New York, 1958.

8. Tou, J.T., Digital and Sampled-Data Control Systems,
McGraw-Hill. New York, 1959.

9. Kuo, Benjamin C., Analysis Synthesis of Sampled-Data Con-
trol Systems, Prentice-Hall, Englewood Cliffs, N.J, 1970.

10. Gold, Bernard, and Rader, Digital Processing of Signals ,
McGraw-Hill. New York, 1969.

11. Kaiser, J.F., "Design Methods for Sampled Data Filters",
Proceedings, First Allerton Conference on Circuit and
System Theory, November, 1963.

12. Copps, E.M., et al., Analysis and Design of a Digital Auto-
pilot , Final Report, contract DAAH01-71-C-0056, (unclassi-
fied), Intermetrics, Inc., Cambridge, Mass., 1971.

13. Copps, E.M., et al., Users Guide to Feedback Control Programs ,
Intermetrics, Inc., Cambridge, Mass., 1971.

14. Fraser, D.C., A Sequence of Computer Programs Useful in
the Analysis of Feedback Control Systems , E-1800, C. S.
Draper Laboratory, M.I.T., Cambridge, Mass., May 1965.

-213-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



15. Wiseman, R.L., Round-off Techniques for a Digitalized System ,
T-497, C.S. Draper Laboratory, M.I.T., Cambridge,1968.

16. Whitman, C.L., The Implementation of Digital Filters in
Computers of Small Word Length, T-443, C.S. Draper Lab.,
M.I.T., Cambridge, Mass, Feb. 1966.

17. Martin, F.H., "Programming and Bench Testing of the Digital
Filter for the CSM Autopilot", SGA Memo 26-25, C.S. Draper
Lab., M.I.T., October 1965.

18. Kaiser, J.F., "Some Practical Considerations in the Realiza-
tion of Digital Filters", Bell Telephone Labs, Inc.,
Murray Hill, N.J.

19. Jackson, L.B., et al., "An Approach to the Implementation of
Digital Filters", IEEE Trans on Audio and Electracoustics,
Vol. AU-16, No. 3, September 1968.

-214-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



PART IV

SOFTWARE TECHNIQUES

-215-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



['% C1DING PAGE BLANK NOT FILMED

CHAPTER 14

DATA ORGANIZATION AND HANDLING

14-1.0 Introduction

Data handling is one of the prime purposes of a computing
system. Thus, careful consideration should be given to data
organization when designing the architecture of the system and
the sets of algorithms to be executed on it. Judicious data
organization and handling can lead to the simplification of
many computational algorithms.

The purpose of this chapter is to examine the nature
of data and data organization within a computing system. We
will survey techniques developed to handle large quantities of
data, such as table look-up techniques and sorting techniques.
We will then take a more generalized look at data set organiza-
tion by examining the data management structure of OS/360.
Finally, we will discuss higher order languages, such as SNOBOL,
developed for data handling.

14-2.0 Data Types

Data may be defined as anything that can be represented by

symbols [1,2]. To a physicist, data can be represented by
particle paths in a cloud chamber, or to a chemist by the specific
gravity of his newly synthesized compound. However, within a

computing system all data are represented by sets of bits. The
organization and meaning assigned to these bits determine the

type of data that the bits represent. This data is modified,
altered, and manipulated by the computer while it is executing
a process. The different types of data reflect the variety of

processes a computer is called upon to execute.

We will consider four categories of data, which we will call

data types. These are:

a.) String. String data are collections of concatenated
symbols. Mathematically speaking, string data are
elements of a free monoid taken over a finite alphabet.

Preceding page blank
-217-

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840 '



b.) Boolean. Boolean data are sets of "true" and
"false" values.

c.) Pointer. Pointer data consists of directed
graphs.

d.) Numeric. Numeric data are sets of numbers.

Each data type is a partial description of the data that
fall within its category. To properly interpret the bits
representing the data, a more complete description of the data
must be given (either explicitly or implicitly). Examples of
the descriptive items that must be known in processing these data
are the following:

a.) For String Data:

String length, fixed or variable
Left or right justification
Code used; e.g., EBCDIC, ASCII

b.) For Boolean Data:

The code for each truth value
Field Length

c.) For Pointer Data:

Machine address of item
Item number in table
Code for null pointer

d.) For Numeric Data:

Code; e.g., digit or radix
Sign treatment; e.g., 2's complement
Scale, fixed or floating
Rounded or truncated calculation
Numeric limits on values
Precision
Aligned or packed data

-218-



14-3.0 Data Organization

With many processes large quantities of data must be handled.
It then becomes necessary to organize the data so that data
handling techniques can be incorporated in the algorithms. The
organization decided upon for the data is a factor in determining
how efficiently these.algorithms will execute. For example,
when multiplying matrices, the organization of the columns and
rows can greatly simplify the coding of the algorithm.

The two most widely used structures for organizing data are
lists and trees [3-5]. A list is an ordered linear sequence of
zero or more elements. The order between two adjacent list
elements can be implicitly or explicitly given. In the former
case a simple linear list is merely a set of data elements in
contiguous main memory locations. Two adjacent elements are
ordered by virture of the fact that they are adjacent to each
other with the index of an element in the list either monotonically
increasing or decreasing with memory address.

An explicit ordering between list elements is found in the
case of a threaded list. Each element of a threaded list contains
two items, a piece of data and a pointer to the next list element.
An example of a threaded list is shown in Figure 14.1. In this
example the list is threaded in both directions (doubly threaded).
That is, each data element contains two pointers, one to the
previous element and one to the next element in the list.

Each of these list structures has advantages and disadvantages
which must be considered when deciding upon which structure to
use in organizing a collection of data. A simple linear list has
the advantage of fast retrieval for a particular element due to
the use of contiguous memory locations. However, expansion or
contraction of a linear list can be very time consuming. On
the other hand, a threaded list allows easy additions and deletion
of elements. These processes are often merely an exercise in
pointer manipulation. The disadvantage of a threaded list is that
to retrieve element i it is often necessary to follow the chain
of pointers for the first (i - 1) elements. For large i, this is
a costly process.

A tree is a nonlinear organization of data. Elements of a
tree consist of nodes (pieces of data) and branches (pointers to
nodes). An example of a tree structure is shown in Figure 14.2
Knuth [3] gives the following recursive definition of a tree:
"A tree T is a finite set of one or more nodes such that

a.) there is one specially designated node called the
root of the tree, root (T); and

b.) The remaining nodes (excluding the root) are
partitioned into m > 0 disjoint sets T1 , ..., Tm

-219-



Figure 14.1: Threaded List Structure

Element 1

Element 2

pointe4 to element 3

c
E

Element i

Element n

pointer to
-- element (.-l)

Iv

pointer to
element i + 1 o

_ pointer to E
element (n-l)

-220-
INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

data

null

data

data

null



Figure 14.2: Example of a Tree Structure

Level 1 A

Level 2

Level 3 

Level 4

Level 5

-221-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



and each of these sets in turn is a tree. The
trees T1, ..., Tm, are called subtrees of the
root."

Trees are a necessary form of data organization in programming
systems where a linear ordering cannot be imposed upon the data.
For example, in list processing computer languages, such as LISP 1.5
[6], functions can be recursively defined leading to nonlinear
structuring among pieces of data. The LISP Compiler will represent
data as tree structures within a LISP program.

In general , when designing algorithms to handle large quanti-
ties of data, one must pay attention to the organization imposed
upon the data elements. Each organization has advantages and dis-
advantages that will be reflected in the complexity of the algor-
ithms processing these data.

14-4.0 Data Handling

Once a structure has been imposed upon a collection of data,
a significant system design problem arises when this data must
be searched for a particular item. We saw in the last section
how the data organization chosen influences the complexity of
such a search. In this section we will investigate two search
algorithms for simple linear lists and point out the conditions
under which each manifests its advantages and disadvantages.
Then after pursuing this topic we will discuss data sorting
algorithms and see how imposing an inherent order upon the data
can speed up a search.

14-4.1 Searching

The simplest search technique for a simple linear list is a
linear search. In such a search the list is examined sequentially
from the first element until the desired element is found. Such
a search is very efficient for short lists; e.g., 20 elements,
and assumes no order among list elements other than the inherent
order of successive items. However, for longer lists a technique
more systematic than the linear search is possible. This technique,
the exponential search, presumes each data item has a key word
associated with it and that these key words are lexicographically
ordered.

The exponential search algorithm begins with a comparison
of the key word of the list's middle item with the key word of
the desired item to be found. If the key words agree, this is
the desired data item, and the search is ended. If not, either

-222-



the top or bottom half of the list is eliminated from the
search, since the keyword of the data to be found falls outside
its range of keywords. This process is repeated for the remain-
ing half of the list and continues until the desired data is
found or until the list is exhausted, in which case the data
is not in the list.

An analytic comparison of these two searching methods
shows some interesting results. Let the time for the maximum
number of probes necessary to linearly (exponentially) search a
list be given by TL (T ). Then T = A ' N, and TE = B ' log (N),
where N = the number oY items in ~he list. A and B are constants
associated with each probe of the list. Hence, we expect B
to be considerably larger than A. A plot of these two equations
is shown in Figure 14.3. From this plot of these two equations
short lists the linear search is more efficient. TIhe crossovers
point occurrs for N=50 - 100 items using a computer like the IBM
System/360 [7]. For other machines this number varies depending upon
the hardware available.

Other more complex search algorithms are described in a
recent paper by Price [8]. Knowing which algorithms to choose
depends upon the particular application, and often optimization
is achieved by a mixture of techniques. In general, algorithms
more complicated than a linear search are justified when the
programs that use them execute often and work with large lists
of data.

14-4.2 Sorting

As we have seen, ordering the elements of a long list
(e.g., lexicographically) can lead to very improved search times.
However, lists are not often generated in an ordered way. Thus,
we will investigate several methods of obtaining order in a list
by sorting its elements. A complete bibliography on sorting can
be found in a recent paper by Martin [9].

14-4.2.1 Interchange Sort

The interchange sort is by far the simplest sort to program.
It merely takes adjacent pairs of elements in the list and inter-
changes them to put them in order. This is a time consuming
sort since several passes through the list are usually necessary.
Although the algorithm can be optimized, a time roughly proportional
to N2 is necessary for the sort, where N = the number of elements
in the list.

-223-



Comparison of Search Times

Time

Exponential

N
/

-224-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Figure 14.3:



The execution time of an interchange sort decreases with
any natural order in the data, but it is constant with respect
to the distribution of magnitudes. It is interesting to note
that almost no extra working storage is necessary for this sort.

14-4.2.2 Shell Sort

The Shell sort is a type of interchange sort where the
items compared and interchanged are not adjacent but separatedN
by some distance d. On the initil+p s through the list d = ,
and on each subsequent pass d = 2 , until d = 1. Figure 1J.4
shows an example of an interchange sort.

The time required to perform a Shell sort is roughly
proportional to N-(log(N)) . Hence, it is faster than an inter-
change sort. The increased speed is due to the order that early
passes put into the list by which later passes benefit. This
sort also requires almost no extra working storage to execute.

14-4.2.3 Radix Sort

Unlike the two previous sorts the radix sort requires extra
working storage for execution but has the advantage of decreased
execution time. It examines the least significant digit of the
keyword and assigns the data element to an area of working memory
dependent only on the value of the digit. Then all items are
merged in order into a list. The process continues with the next
to least significant digit, etc., until no digits are left. An
example of this algorithm is shown in Figure 14.5.

The execution time of a radix sort is roughly proportional
to N-logr(M) where r = radix of the number system and M = keyword
size. The amount of extra working storage needed is N-r. The
distribution of the magnitudes of the data affects execution time,
but any natural order in the data does not.

14-4.2.4 Conclusions

Each of the sorts described above has inherent advantages and
disadvantages. As in the case of searching, the type of sort used
in a programming system is very dependent upon the amount and
nature of the given data that it must sort. Donovan [7] concludes
that for short lists interchange sorts seem best and for long
lists Shell sorts. However, should speed be more important than
working storage, radix sorts can replace Shell sorts.

-225-



Figure 14.4: Example of a Shell Sort

Original
Order

07

42

01

17

11

24

22

18

09

25

-226-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

After
Pass 1

d=5

07

22

01

09

11

24

42

18

17

25

After
Pass 2

d=3

07

11

01

09

18

17

25

22

24

42

After
Pass 3

d=2

01

09

07

11

18

17

24

22

25

42

After
Pass 4

d=l

01

07

09

11

17

18

22

24

25

42



k
4

-J
 

-I 
,-- 

N
 

CO 
,o--i 

r- 
r- 

o 
,- 

~o

O
 u) 

r 
ao 

o 
m

,--I 
0 

a 
N

'n
 

-
-4

 
(NI 

Nm 
( 

r) 
e 

f 
I 

D
 

N
 

C
O

 
a

k
- 

U) 
-

r- 
N

 
c 

m
 

-L 
'10 
D

 
N

-. 
cO 

a
'.

U
)

P1 
r 

C
 

(N
 

c) 
L

 
U

)l 
cD

 
ao

 
O

IC
 

f 

<
 

U
} 

o 4 
H

 
CO 

tD
 

r- 
1--

N
 

O
0

E

o. 
o 

o- 
o ,- 

(- 
.

N
o
 

' 
{ 

i 
o

Cd4 
r
-4

 
C

 
-N

 4 
N

 
k N 

M

U
 

C
) 

,- 
~ 

U
)

CO4

U
 

'-4 
-

'- 

-C) 
C

 
C

)

* 
4

J : 
,-- 

' 
.

l 
X

 
' 

X
 

v 
4

.. 
<

 
x 

° 
H

 
H

 
o 

s 
>

 
c

u
) 

-
u
) 

o 
r 

a
n
 

t 
-v

 
>

 
o 



14-5.0 Data Set Organization

Another aspect of system design in the area of data organization
is the use of secondary memory devices to store large files of data.
Clearly in most large computing systems the use of secondary memory
is economically necessitated for storing the large quantities of data
that must be handled. Using devices such as tape drives to store the
data forces a sequential organization upon the data sets. However,
when random access devices, such as disks and drums, are used, there
is more latitude in the method of organizing data sets.

It is these methods of data set organization that we will now
explore. The examples we will present are taken from OS/360 [10,11].

14-5.1 Sequential Organization

The records within a sequentially organized data set are consecutive
and placed in physical, not logical sequence. Given the location of a
particular record, the location of the next record is determined by
physical position in the data set.

14-5.2 Partitioned Organization

Partitioned data sets contain independent sets of sequentially
organized data, called members. Each member is identified in the
directory of the partitioned data set along with its starting address.
In OS/360 partitioned data sets are used to store program modules and,
hence, are often called libraries. Figure 14.6 shows an example of such
a data set.

The advantages of a partitioned organization over a sequential
organization in maintaining collections of data sets are:

a.) members can be easily retrieved,

b.) members can be easily added or deleted, and

c.) deletion is merely a matter of removing the member's
name from the directory.

The main disadvantage of partitioned data sets is the increased
complexity of the operating system necessary to support partitioned
organization and directory maintenance.

14-5.3 Indexed Sequential Organization

When data sets are stored in an indexed sequential organization,
their records are arranged in a collative sequence depending upon a
keyword which is part of every record. The location of each record

-228-



Figure 14.6: Example of a Partitioned Data Set

Directory _

Members 

14 Membe

Member 2

Me

Member n

Space availabl

-229-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



depends upon the value of the keyword. The system maintains indices
of these keywords containing the location of certain recrods. These
indices enable a mixture of direct and sequential access to records.

The main advantages of indexed sequential organization are:

1.) records can be inserted without rewriting the
entire data set;

2.) retrieving a record is merely a matter of specifying
the record's keyword; and

3.) there is convenient access to any given record without
first reading the preceeding records or without
maintaining a directory.

The main disadvantage is the same as with partitioned organization,
the increased complexity of the operating system.

14-5.4 Direct Organization

Within this organization the records of a data set are read and
written directly with the storage device address specified by the
programmer. These records can be organized in any manner. No
indices or directories are maintained by the system.

14-5.5 Volume Structure

A direct access volume will normally contain several data sets of
differing organizations. OS/360 maintains a volume table of contents
which contains a list of each data set on the volume and its address.
A record of available space on the volume is also maintained.

When an executing program requests the use of a data set, the
operating system finds the data set location through the table of
contents. The programmer is relieved from the burden of remembering
the address. In addition, when a new data set is being allocated, the
operating system again helps the programmer by searching for available
space. It does so by examining the volume table of contents to see
if there is enough available space on the given volume. After the
necessary space is found, the data set is given an organization
specified by the programmer and processing can continue filling the
data set with records.

14-5.6 Conclusions

Most aerospace computing systems will not need the level of
generality allowed by OS/360 in data set handling. When the needs of
the system are evaluated, one or two data set organizations can be
settled upon. These organizations will depend upon the amount and the
nature of the data to be processed. The obvious advantage of reducing
the number of data set organizations used is in simplifying the operating
system. A less complex operating system costs less to build and maintain.

-230-



14-6.0 Special Data Handling Languages

The value of using a higher order programming language in a
computing system has been recognized [12]. In fact, special higher
order languages have been developed with capabilities for creating and
maintaining large complex data sets [13-15]. The question of whether
to implement these languages on a proposed aerospace computing system
deserves consideration. Their use can relieve programmers of the
responsibility of developing algorithms to manipulate large data files.
For example, on the space station the programs collecting data for the
stellar and solar astronomy experiments must work with millions of
bits of data per day. A language, such as SNOBOL or FILLIP, would allow
scientists to easily generate data manipulation algorithms and devote
more time to the analysis of their data.

14-6.1 SNOBOL

SNOBOL is a string manipulation language developed by the Bell
Telephone Laboratories. The basic data structure is a data string,
and the language's three basic operations are:

1.) the creation of strings,

2.) the examination of the contents of strings, and

3.) the alteration of strings depending upon their contents.

14-6.1.1 Examples of String Manipulation within SNOBOL

1.) String Formation. A string named QUOTE is formed
with the following statement: QUOTE = "IS THIS A

DAGGER I SEE BEFORE ME:".

2.) Pattern Matching. The contents of QUOTE can be examined
for a given substring. By coding QUOTE "DAGGER", the
contents of QUOTE is scanned for the substring "DAGGER".

3.) Pattern Replacement. The substring "ME" in QUOTE can be
replaced by the substring "US" by coding QUOTE "ME" = "US".

In addition to these operations, provisions for conditional string
operations also exist within the language.

These examples demonstrate that the capabilities built into SNOBOL

yield a programming system that can be very useful in a computer that
processes large files of string data.

-231-



14-6.2 FILLIP

FILLIP, developed by the MIT Draper Laboratory, is a language
capable of manipulating more complex data organizations than SNOBOL.
In fact, programmers can design the format of their own list structures
in this language. Each of these structures can hold more than eight
million bytes of data. The language consists of sets of commands
specifying list structures and manipulation operations.

The list structures are basically pointer data and, in fact, can
represent programs or data. In the former case they are structured
by an assembler and are identical in size and organization. Moreover,
programmers may treat these lists as data, enabling programs to modify
themselves during execution. In the latter case the list structures
are formatted by the programmer with each block containing up to
fourteen fields. The number of fields and the type of data in each
field is programmer defined. The ability to combine various data
types in a block or various block types in a list yields the high
flexibility of the language.

FILLIP commands can be very simple, such as combining data
elements or reading input, or they can be very complex, such as searching
a tree. In general, each command consists of an operator and one or
more operands. The combination of flexible data structures and
powerful commands makes FILLIP an interesting language to consider when
building a computing system.

14-6.3 Extensible Languages

FILLIP falls into the category of extensible programming languages;
i.e., languages containing facilities for self-extension. This category
provides a contrast to languages, such as PL/1, containing all facilities
for all users. The extensible approach has several advantages:

1.) a variety of facilities can be provided at lower overhead
in terms of compiler size and speed; and

2.) programmers can define their own data structures unconstrained
by the fixed type of data structures provided by nonextensible
languages.

Cheatham [16] provides another example of an extensible language,
BASEL. This language provides the additional ability of extending the
meaning of existing operators and defining new ones. For example, the
concatenation of string data with the square root of an integer can be
defined as an operator. This ability enables programmers to more
efficiently manipulate the wide class of data structures that they can
define.

To the best of our knowledge no aerospace compiler has yet been
developed with extensible definition facilities. When developing an
aerospace computer system, the need for such a compiler must be evaluated
in terms of the need to handle large varieties of data organizations.

Ct.5 -232-



REFERENCES

1. Chapin, N., "A Deeper Look at Data", (Proc ACM National
Conf., 1968), pp. 631-638.

2. Mealy, G., "Another Look at Data", (Proc FJCC, 1967),
pp. 525-534.

3. Knuth, D., The Art of Computer Programming, Vol. I:
Fundamental Algorithms, (Addison-Wesley, Reading, Mass.,
1968).

4. Weizenbaum, J., "Symmetric List Processor", (CACM, 6(9),
September, 1963), pp. 524-544.

5. Madnick, S., "String Processing Techniques", (CACM, 10(7),
July, 1967), pp. 420-424.

6. McCarthy, J., et al, The Lisp 1.5 Programmers Manual,
(MIT Press, Cambridge, Mass., 1963).

7. Donovan, J., "Notes for Course 6.251, Digital Computer
Programming Systems", (MIT, Dept. of Electrical Engineering,
1969).

8. Price, C.E., "Table Lookup Techniques", (Comp. Sur., 3(2),
June, 1971), pp. 49-65.

9. Martin, W.A., "Sorting", (Comp. Sur., 3(4), December, 1971),
pp. 147-174 .

10. IBM Corp. IBM System/360 Operating System Concepts and
Facilities, (#C28-6535-5, New York, July, 1969).

11. IBM Corp., IBM System/360 Operating System Supervisor and
Data Management Services, (#GC28-6646-2, New York,
November, 1968).

12. Saponaro, J., Advanced Software Techniques for Data Management
Systems, Vol I: Study of Software Aspects of the Phase B
Space Shuttle Avionics System, (Intermetrics Inc., Cambridge,
Mass., February, 1972), prepared under contract NAS 9-11778.

13. MIT Draper Laboratory, Users Guide to FILLIP, (Cambridge, Mass.,
1969).

14. Farber, D.J., et al, "SNOBOL, A String Manipulation Language",
(JACM, 11(2), January, 1964), pp. 21-30.

-233-

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



15. Sammet, J., Programming Languages: History and Fundamentals,
(Prentice-Hall, Inc., New Jersey, 1969).

16. Cheatham, T., et al, "On the Basis for ELF - An Extensible
Language Facility", (Proc FJCC, 1968), pp. 937-948.

-234-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



CHAPTER 15

THE ROLE OF HIGHER ORDER LANGUAGE
PROGRAMMING IN AEROSPACE COMPUTERS

15-1.0 Introduction

The use of a higher order programming language (HOL) is currently
increasing in the development of advanced aerospace software systems.
There are increasing recommendations for a HOL over the more typical
machine language approach because of the expected benefits of lowered
software production costs, and improved management control during long
term maintenance, which are traditional problems associated with any
large aerospace software effort. The principal criticisms of the HOL
approach that still remain are based upon the inefficiencies in code
generation with its increased memory requirements, the increased execu-
tion time introduced by the HOL compiler, and the lack of experience in
utilizing this approach in previous aerospace applications. Although
considerable interest has been demonstrated by the Air Force and other
governmental agencies in supporting the design and development of higher
order languages for programming aerospace computers, there has been, to
date, no wide spread application of them in actual practice.

We believe that a general purpose procedure oriented higher order
programming language should be used in the development of advanced flight
software. It will be a significant step toward a more orderly and
controlled software production effort, toward a useful analytical tool
for the designer, and toward a convenient straightforward technqiue for
the programmer. Furthermore, it will be an essential ingredient in
the effective production of highly reliable flight software.

The aerospace software industry as well as other governmental
agencies are devoting a great deal of attention to the development of
common higher order programming languages for use in such applications.
In the 1973 to 1980 time frame of the Space Shuttle, the use of programming
languages will most likely become commonplace for aerospace computers of
that generation just as they are with the large third generation ground
:based computer systems of today. Consequently, they should be included
in the planning of a major space project of the 70's such as the Shuttle.

-235-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



We recognize that a HOL approach may not be applicable or cost
effectively applied to all aerospace computer systems, particularly
small dedicated systems. However, the size and complexity of some
flight software posed for the future appears to be of sufficient
magnitude to effectively apply the use of a HOL.

In this chapter we will determine the role that higher level
compiler languages should have in programming the flight computers for
future space missions. This chapter discusses those features of the
language compiler which will aid in structuring and verifying soft-
ware. Those areas traditionally difficult to code in a HOL, such as
system programming, are discussed, as well as the role and interaction
of other special languages; e.g., the crew language and the checkout
language.

15-2.0 Languages Needed for Advanced Space Flights

A distinction must be made between the classes of languages
needed. For purposes of this chapter, only those languages utilized
within the onboard data management computer system are considered.
There are, of course, others which will be used in conjunction with
other facilities involved with the space flight; e.g., those for test
and ground checkout operations, simulation facilities, and other computer
operations. An aim of this study was to distinguish between those
languages used to control and operate the computer system onboard the
vehicle, and those used to develop the software for the onboard computer
system. Both are referred to as languages but will be distinguished
as the crew languages and the software development language.

15-2.1 Role of the Crew Language

Pilots or other crew members will require a language to communicate
with the computer system. They must be able to insert information,
control the flow of processing, and receive information from the computer.
This language will be referred to as the crew language (CL). The CL
will depend to a great extent on the capabilities of the display and
control software system. A CRT type display system with an alphanumeric
keyboard input is most likely for the avionics system. The
syntactic structure of the CL can range from simple numeric function
control, as was used in Apollo, to English language statement commands
entered through the alpha keyboard. Alphanumeric and graphical outputs
will be used for communication from the computer to the crew.

The Apollo Guidance Computer display and control system transmitted
commands and requests with a limited vocabulary of 99 nouns and 99 verbs.
To command the computer the astronaut depressed the verb (operator) key
followed by two decimal digits, and then the noun (operand) key also
followed by two decimal digits. Then when the function key was depressed
the computer began to take action on the request. For example, verb 16
noun 20 meant display and monitor spacecraft attitude. Verb 16 meant

-236-
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840



"display and monitor" (continuously update), and noun 20 identified
what to display; in this case, spacecraft attitude. Moreover, major
mission programs were selected by verb 37 with a program number iden-
tified by the noun.

This type of crew language has a disadvantage in that the operator
must learn the coded list of nouns and verbs and the operational pro-
cedures associated with using them. However, once learned, it is very
efficient.

English language commands for a CL would consist of a finite set
of keywords and elements defined with syntactic properties which would
be entered by the crew. They would be decoded and translated by
display and control software in the flight computer. For example, an
on-line control language is defined as part of the breadboard fault
tolerant data management systen at NASA, Houston. It is used'in con-
junction with a checkout and data management language and allows the
systems operator to exercise manualcontrol over the system while it
is operating. It includes English language text entered through a
keyboard which enables it to initiate, control and display information
while the software is executing. Typical commands are DISPLAY, LOAD,
and CALL.

Other general purpose languages of this type have been designed
for the control and operation of software: a) executive job control
languages such as the OS 360 operator language and CRBE; b) information
retrieval languages such as ADAM and AESOP; and c) test editing languages
such as DATATEXT. Although these languages have been tailored for specific
needs they contain some basic features needed in a CL such as the ability
to retrieve and manipulate data and displays. These languages are of
course more flexible, but they are slower to use, and rapid crew inter-
action with the computer during critical flight phases is needed.

15-2.2 Crew Language Requirements

A summary of typical requirements for a command language is
presented below. The ultimate structure capabilities in the on-line
command language is a significant factor in the design of the total
system and is only presented here to indicate the type of capabilities
that are expected.

For the purpose of most avionics systems, pilot commands should
be entered from a display and control device, and then decoded and
executed on-line. The language should not be compiled by the computer
system but rather interpreted as on-line commands before the appropriate
action is taken. When the English language statements or numeric coded
functions are used, the language should provide the following functional
capabilities. It must provide the crew with capability to:

a) select and control software functions for all phases
of the mission;

b) control and configure avionics equipment;

-237-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



c) request display of pertinent mission and trajectory
information;

d) enter data pertinent to the mission programs;

e) control system priorities and options;

f) initiate and control checkout of subsystems.

15-2.3 Role of the Software Development Language

As previously stated, it is recommended that a general purpose,
procedure oriented, higher order programming language be used in
developing the flight computer software. The role of this language will
be primarily for the preparation of code for all software in the flight
computer. It is also expected that the language can be used for
developing other related non-flight software, particularly in the areas
of mission planning and design analysis. This fact will facilitate
standardization and communication among organizations working on the
project.

Associated with the HOL will be a compiler with a machine indepen-
dent syntax analyzer and machine dependent code generators for several
computers including the flight computer, development computer and others
as applicable. The requirements for such a programming language have
been derived and are documented [1]. The language should be capable
of supporting the programming of all flight software applications:
navigation, guidance, control, data management, onboard checkout systems
monitoring, communications, displays and controls.

3.0 Justification for Using a Higher Order Programming Language

In the past, manned space flight computers have been special
purpose machines performing tasks, principally for guidance and control.
The computer was provided with a restricted instruction set, small
working memories, no secondary storage capability, and established inter-
faces to a limited number of output devices. For the most part, pro-
gramming was accomplished in basic machine language.

The architecture of aerospace computers is now maturing to a close
functional similarity to ground based computers. General registers,
modular word lengths, and larger memories are already in evidence. Years
of initial programming and making programming changes are becoming more
important as these computers assume multipurpose use. The use of higher
order programming languages which had practically no utilization in
the aerospace community in the past, can now be reasonably considered.
The lowering of costs associated with memory and hardware in the aero-
space computers has changed tradeoff factors. In addition, the increased
computational tasks required in the manned space environment have
required use of larger, more general purpose computer systems and corres-
ponding software to support them.

-238-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



Flight computer software developments will certainly continue
to suffer schedule pressures. In spite of careful planning, the soft-
ware effort will often be disrupted by additional requirements to
perform functions that were inadequately specified at the outset.

Programming languages have been effectively used in large scale
ground based military systems. There are a number of standard argu-
ments in favor of using a higher order language approach.

a) Ease of Communication with the program

1) The program becomes self-documenting, and
therefore reduces the cost of and need for
separate documentation at different levels of
management (e.g., mission definition, analysis,
program specification).

2) In any large project, the problems of maintain-
ability are aggravated by the inevitable turnover
of personnel. Not only must different people be
able to maintain the program, but they must also
be able to easily modify, add, and redesign sections
of the software.

b) The HOL is chosen because it is oriented to the problem
being solved and uses languages more natural to the programmer.
The concise formulation of the problem is therefore enabled.
This leads to:

1) fewer errors due to conceptual difficulties and
different ways of stating a problem;

2) shortened program design and development time.

c) The programmers need be less concerned with the following
traditional machine features and problems:

1) scaling and precision problems,

2) base register allocations,

3) general register considerations,

4) initialization problems, particularly in loops,

5) data protection.

d) The HOL aids program transferability from one machine to
another. It eases debugging and reduces checkout problems
due to problem oriented modularity and separation from
hardware.

-239-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



e) Carey and Sturm [2] present some interesting facts
concerning the costs of existing space software and
the projected cost savings of a compiler for aero-
space programming. In particular they are concerned
with the compiler. The following information is
extracted from the above reference to indicate the
software cost for aerospace missions.

1) The cost of software for manned space missions
is two to four times the hardware cost.

2) The Apollo Saturn V's Instrument Unit software
was produced at a rate of 2.5 instructions per
man-day.

3) As much as 1-2 months was needed to make a 500-1000
instruction change in the Titan III computer.

4) Software checkout is very expensive and not
perfect. A single error in a 2000 instruction
space program might require 50-100 validation
runs on a simulated ground-based machine. Extrap-
olation to a 25,000 insturction program indicates
1000 to 1200 runs.

5) Typically 100 instructions in new unvalidated
machine code written by a senior programmer may
contain 3-8 errors. Carey and Sturm estimate up
to 70% of these errors can be avoided by the use
of a compiler.

6) By hand, machine code typically is produced at a
rate of 270-350 instructions per man-month. With
a compiler, 500-540 instructions per man-month
are possible.

7) Writing a JOVIAL compiler for an IBM 4 Pi computer
would cost between $300,000 and $500,000.

15-3.1 Higher Order Programming Language Experience

In the past several years there has been an effort to develop
higher order procedure oriented programming languages for use in
spaceborne software development efforts. Among those specifically
aimed at spaceborne programming are SPL (Space Programming Language)
[3] developed by the Air Force under the sponsorship of the Space and
Missile Systems Organization (SAMSO); CLASP (Computer Language for
Aeronautics and Space Programming ) [4] developed under contract to
NASA Electronics Research Center, Cambridge, and the HAL language
developed by Intermetrics, Inc. under contract to NASA MSC, Houston [5].

-240-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



Other military agencies have similar efforts to develop such
programming languages. The Army has funded a survey to determine
the most appropriate procedure oriented language for its TAC-FIRE
system and selected a subset of PL/1 designated as TACPOL for the
job [6]. The Navy utilizes a programming language termed CMS/2 for
the development of software for shipboard and airborne applications.
In addition, the Navy is pursuing development of an advanced pro-
gramming language based on CMS/2 for the advanced avionics digital
computer system. This language, designated CMS/3, will be a problem
oriented language which will express avionic missions and requirements
in terms which are pertinent to a commanding officer.

CLASP and SPL MK2 are primarily directed at small fixed point
aerospace computers. Heavy emphasis is placed on code optimization,
scaling operations, and limited data manipulation. SPL MK4 and HAL
encompass more general purpose features applicable to the wide
variety of aerospace programming tasks.

15-4.0 Single Compiler Approach

We believe that a single compiler should be used for generating
code for the flight computer. To assist in software verification all
code generated for the flight computer should be subjected to standard-
ized automatic checking within the compiler. The system specification,
design, documentation, and verification are all built around the
unified idea: the HOL.

It is reasonable to assume that the statements provided within
applicable programming languages do provide most of the capabilities
necessary for the flight application. If, however, a separate special
purpose language is necessary, the proposed solution is to express
source language statements in the general purpose higher order language.
For example, a checkout language becomes a special application which is
"grafted" onto the general language at a higher level. It appears as
a collection of procedures and subroutines to the compiler.

This approach, however, does not necessarily bar the use of other
languages. Rather, it forces others to link at either a high level,
by producing outputs which are the source languages for general purpose
programming languages, or at a low level, by accepting the standardized
operating procedures and conventions established for the general purpose
programming language. Moreover, it recognizes that there may be a need
for programs to be prepared using statements tailored to a specific
application. At a high level such applications are subsystem checkout
or hardware interfacing; at a low level, systems programming. However,
each set of statements is directed into the single compiler system to
facilitate standardization and commonality of checks which are performed
on the software during compilation. This standardization, not unlike
that experienced by other industries, will help to produce a higher
quality, more reliable software product.

-241-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840.



Other options are also available to extend the general purpose
programming language to meet these needs. For example, through macros
the language can be extended to incorporate special features for
certain problem applications.

15-4.1 Systems Programming

Generally there is a small section of coding which is difficult
to accomplish in the higher order language. This involves machine
dependent coding, such as I/O, address constants, machine registers.
Usually, the basic machine language is used for these functions, but
more recently system implementation languages have come into usage
[7,8]. The justification for the special treatment is based upon:

a) the need for efficiency, and

b) the need to get at special registers, I/O
channels, and absolute memory locations.

While the efficiency question is often nothing but a hollow fear, there
is no doubt that at some point the coding must come to grips with the
actual machine that it will run on. However, the number of places where
an I/O channel needs to be directly addressed is normally minimal. I/O
requests should generally be funnelled through well-defined localized
areas in controlled subroutines. In any case, the need to do system
programming and machine dependent operations is recognized.

On the other hand, the need for a system language could be
minimized or totally eliminated if the computer were designed to go
with the language and to execute its constructs directly and efficiently.
It is then unnecessary to operate in a "lower level" language since
there are no machine dependent features outside the scope of the language.
Additionally, all application programs written in the higher language
are executed far more efficiently both in terms of the speed and
especially the core size they require. Burroughs has been structuring
its computers to higher order languages for many years. When a machine
is constructed in this fashion, it is easy to efficiently accomplish
system programming tasks. Burroughs writes its operating system (ESP),
its scheduler, and all its compilers in extended ALGOL, the language
its computer is designed around. In fact, the computer does not have an
assembly language. Since the computer is designed around a higher order
language, there are no addressable special registers to be dealt with
by the programmers. There are special registers, of course, but they
are automatically updated by the hardware using higher order language
instructions. In addition, the computer is stack oriented, which makes
it easier for a higher order language compiler to generate efficiently
executed code for it.

-242-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



15-4.1.1 Approach to Systems Programming

If a currently off-the-shelf computer is selected for flight
application, then some degree of machine dependent coding will be
required. There are two ways that this might be accomplished. The
first approach is to extend the scope of the higher order language to
include more low level features even though they might be machine
specific. However, the ultimate in direct, hands-on, programmer control
is the capability to switch from compiler code into direct or in-line
machine language. There are several drawbacks to this approach.

1) This kind of capability jeopardizes program integrity. Once
address constants, pointers, and register manipulations are
available to the programmer, the possibilities for creating
errors is significant. The entire structure that was so care-
fully contrived within the compiler to ensure program standard-
ization and reliability can easily be circumvented. The intro-
duction of such hazardous programming practices can hardly enhance
program reliability.

2) Readability and understandability goals can be jeopardized when
obscure machine dependent code appears with the listing. In-line
basic assembly language code is particularly unfathomable and
obfuscates the meaning of entire sections. These are fundamental
reasons for using higher order languages.

Neither of the above two drawbacks would be of so much concern if their
use could be confined to areas where it was essential. However, even if
sensible groundrules for their use and control were established, it is
a virtual certainty that nearly every programmer will advance persuasive
arguments as to why his task is special and needs to use machine language
coding to produce highly tuned efficient code.

Another approach is to keep all low level language capability,
such as options for direct machine code, out of the general purpose
language. When the need arises for a task or procedure to be programmed
that cannot be accomplished in the regular language, it is assigned to
a special implementation group that programs it in another language,
usually the assembly language for the specific flight computer. These
experts tailor the code so that it is compatible with the higher order
language environment that exists in the running computer, and conforms
to the accepted standards and conventions, while meeting its functional
specifications. Thus, the usage of this powerful but hazardous capability
is isolated and controlled. Applications programmers must either
accomplish coding in the higher order language, or else it is developed
by a special group after interfaces and specifications have been
negotiated and defined. This seems superficially to be attractive but
has two drawbacks, besides the obvious one of dependence on "experts".

1) It isolates the low level activity to machine language sub-
routines which are not readily visible or easily understood
even when located.

-243-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



2) It is still quite possible for the programmer to engage in a
great deal of "trickery". He can, for example, call an assembly
language subroutine that returns a variable purported to an
integer but which is actually a memory address value computed
in the subroutine. It is then arithmetically manipulated and
used as an index in fetching other data. The achieved effect is
a program that superficially accomplishes one thing, but when
examined closely, is doing something entirely different. This
sort of "trickery" is commonplace in Fortran usage of assembly
language coding.

The proposed solution is basically to define a selected subset
of the programming language with added features to improve its de-
ficiencies. The proposal is that there be established a special language
to accomplish low level and machine dependent tasks. But rather than use
the completely separate assembly language, it is proposed that this low
level language be incorporated and integrated into the main language
compiler as a restricted subset of the language. That is, those given
access rights to the "lower level" language can use the special state-
ments and data types, and also freely intermix these with the higher
level language statements. All are compiled together so that standard
interfacing and data type checking is performed by the compiler. This
effectively prohibits the "trickery" of (2) above. In addition, it is
possible to intermingle both types of language statement when it is
natural to do so. This removes the restriction of the forced and some-
times artificial dichotomy objected to in (1).

This approach should yield a program listing that is more readable
and understandable even when computer specific. Applications pro-
grammers are in general, prohibited by the compiler from using these
low level, relatively unsafe statements. Their use is granted to a
select few who have the authority of the project manager. For the
purpose of ease in use, it is recommended that these lower level language
routines be available not only as callable procedures and subroutines
but also as in-line parameterized macros, or the equivalent. This
provides a convenient method for using commonly required low level
functions in a carefully controlled manner.

The intent of this somewhat cumbersome and laborious process should
be made perfectly clear. It is not the intent to put obstacles in the
paths of applications programmers or to thwart their efforts to get the
job done. It is proposed only as an additional technique to assist in
the production and maintenance of quality flight software of high integ-
rity and high reliability. This goal is accomplished by insisting on
conformance to a highly structured and controlled environment. These
constraints are not meant to hamper the programming effort but to place
sensible limitations and bounds so that the overall result is of uniform
high quality.

-244-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



15-5.0 Advantages of the HOL and Compiler to Software Modularity

The benefits derived from modularizing the static software structure
and the automatic checking features offered by the compiler will be a
significant contribution to high quality software. This section discusses
some of the advantages which result from using the HOL and compiler.

15-5.1 Apollo Experience

In a sense, the primary Apollo computational facility was
concentrated in a centralized data management system - the Apollo
Guidance Computer (AGC). This single computer was responsible for
guidance (i.e., steering), automatic control, navigation, I/O processing,
(e.g., radar, IMU, optics, engines, keyboard, etc.), hardware compensa-
tion (e.g., for gyro and accelerometer inaccuracies), and a set of
miscellaneous tasks including self-check, system test (onboard and pre-
flight), crew communications, status monitoring, and up- and down-link
telemetry.

15-5.2 Software Modularity

Future aerospace data management tasks promise to be more ex-
tensive and complex than that of Apollo. In addition, the reconfigura-
tion logic associated with high reliability systems presents software
challenges not previously encountered. In order to accommodate all
programs in a single computer, or substantial portions in distributed
computers, it is imperative that systems be introduced which effectively
isolate programs from one another except at controlled and visible
interfaces. This isolation should prevent the unrestricted access of
common data and the arbitrary transfer of control to any location in the
instruction logic.

Software techniques now exist which allow many programs, designed
to do various related and unrelated functions, to be written and incor-
porated in a single computer without conflict. The apprenhension that
the future flight DMS might be a bigger and more complicated Apollo-
type effort with even more erasable conflicts and control interferences
is relieved by the introduction of effective software modularity through
language and compiler. The following features have been incorporated in
the HAL compiler and provide significant capabilities toward handling a
large, complex, cooperative programming effort.

15-5..2.1 Independent Compilation and the Compool

Figure 15.1 illustrates a suggested program organization. The
individual numbered programs represent independently compilable units.
Thus, for example, Program #1 might be rendezvous navigation, Program #2-
autopilots, Program #3 - environmental system monitoring. Independent
compilation permits divergent groups to contribute to the whole and
yet progress at varied paces with measures of local management control.

-245-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



The communication between programs is provided through a common
data pool (compool). The compool is a centrally defined and centrally
maintained group of definitions. Variable names and location labels
in the compool are potentially known to all programs and, in fact,
provide the only means of communication between programs.

The computers many tasks can be apportioned into programs which
are managerially or functionally convenient. Information interfaces
among programs then become visible at the compool level and can be
monitored with respect to definition and usage by a central authority.

Note that, except for the necessity of communication among
programs, the complete separation (or isolation) of programs within a
single computer is commonplace today in a time-sharing environment.
That is, to each programmer the machine appears to be a dedicated
facility, and the probability of his conflicting with another user is
remote.

15-5.2.2 Blocks Structure (Name Scope)

Figure 15.2 defines the nested structure of name scope. For the
purposes here, tasks, procedures, and functions may be considered as
subroutines (or blocks). Thus, names defined in the compool are
potentially known in every program. Names defined at the program-
level are potentially known within all included ( or nested) sub-
routines and so on. For the region in which a name is known any
particular name can be declared again in an inner block. Then its
scope becomes all the nested blocks within this block. An
example may help to illustrate these principles (see Figure 15.3).

Two desirable effects of the scope rules are:

1) Common data must be declared only once at the highest level. This
contributes to more direct management control and better visibility.

2) Local variables may be defined within inner blocks and remain
unaffected by outisde definitions. For example, a programmer
declaring X in procedure CHARLIE (Figure 15.3) need not fear that
any other program will overwrite his quantity. That is, this
particular X is not addressable from outside this block. In fact,
the X in GRAB (Figure 15.3) must refer to different memory cells.

A name scope or block-oriented language means that many programs
and subsections of programs (i.e., subroutines) can "live" in the same
computer, isolated, and unaware of each other. They are incapable of
writing-over or otherwise interfering with variables or locations that
are not mutually defined.

-246-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



E

1
~

~
~

~
~

~
~

.H

co

L
)L

.~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

.-N

QLu 
l 

0 

I"I 
.$4J

C
T

)-' 
I 

N

0 
0

_ 
_ 

_ 
_ 

_ 
_ 

_ 
_
E

 
P

c
o
~

~
~

~
~

~
~

~
~

~
~

~
(

cu
°

.
E

 
~.

8'~~~~~~~~~~~(
C

.. 
___ 
_

_
_

_
_

~
~

~
~

~
~

~
~

I:~
.

°~~~~~

~~~~~ 
-~~~~~~4
--4a)

.E
¢o

C
]

I
~~~~~~~~~~~~~~~~~r-

0~

-2
4
7
-



doj-CD,

a,,.1CIJ
.
)

O

C
_

L
-=
3

u-

(
Do,

0) 
z 

i
.
.

C-) 
L

 
u

0 
C

r

co

EL
O

C
LT.oEo-
)

-2
4
8

-

a,a, I

aC)
C.,oE L

..

oG
,)

E I.)

oC
:

I._4-C
l'

a, C
DCL.

C
)

a0OL)

-CNoC
D

e
~(
)

I.a,C
u

coC
-

oC
-

c
-

Ot
)

U
)

z00)

n W
o

LC
t)

o
J

*u_

U
 

.Q

a,

o 
o

C
) 

=
c

0.)

L
. 

-
r 

'C)
c
- 

c-

a
L
 ..

-~ 
r
-

L
4

r-i

-IrX
4



-
-

't-U
,)

U
)4

J

o -H
4-,G) 

O

m
) 

U
)

U
 -H

U
,

O
 

Q
 

r( 

3 
U

)

-
4

Uh 
I)

U
 

-,rl *4

m
[ 

x

*K
_ 

_
. 

_
a. 

-

/ 
'

~, ,,, 
,,,, 

,,.v
n
 

*...
, 

, 
.

:"Xz '.. 
.

-,'
H

 ~ 
~ 

~ 
\

z ~ 
~

,^ ,- 
n 

r s c-z

·~~~ '~ ' 
." 
~'

U
 

U
 

"
, 

,,
z , 

a .a
 

/
I-- I 

/
,'' 

,,/

.~ 
'/ 

t H
,

C
J ~ ~~,,' ,

rJ4 
.

rc 
.

a 
-

,C
C~l 

rj.
/

-2
4

9
-

.I, 
.H

'. 
C

.

.-
n

.. 
*;'

LnU
)

0-ia,0c,

mC
:

U
) -

01
4JU

 
10 O

 O
· 

atJ
U
'U

)

KQ 
X

-

I
a)040UU

)

4-4r0xr4

ULAo

U
 

U
)

.
In

 

.tW
 

-
:

U
 

I
I
 

-
-

-
H

~

o 
.w

.s 
X

 ~ 
~ 

~ 
E

7
/'

L/
"
 
z
,
 

//

//' 
//

" /'

/

/. '°t 
,//'

/ 
/' 

·

r 
-

<
/ 

_
.

/.
o 

U
 / 

n

, 
H

 1.- 7h-z 

" &
 

C
�' I .

.

,
.
 

I
~

W

.: 
I

pq

'. ,/ 



15-5.2.3 Control of Shared Data

The erasable memory conflict, along with restart and scaling
problems, provided most of the Apollo software anomalies. To illustrate
the problems, in a general way, that can arise because of sharing data,
consider the examples shown in Figure 15.4.

In both examples TASK B interrupts TASK A during the execution
of a statement. The interruption may be caused by a hardware or soft-
ware interrupt or by a "job swap" based on priority. In either case,
the interruption of TASK A causes a conflict in common data usage.

The approach taken, in HAL, towards solving these problems is
to confine the read and write accesses of shared variables to identified
update blocks. The compiler assigns a locking control variable to each
shared variable. The value of "lock" is examined at run-time and only
consistent (i.e., safe) accesses are permitted. (See Figure 15.5).

The use of an update block is not a simple solution to the data
sharing problem and presumes a sophisticated compiler; and yet the goal
is worth the effort. The problem of sharing common data in a real-
time flight environment always exists. The Apollo solution was to
attempt to arrange memory so that conflicts did not occur. This proved
to be a time-consuming process at best, requiring extensive verification
with inconclusive results.

For future space flights data sharing will be a necessity re-
gardless of avionics configuration. A unified approach through a
compiler, as outlined above, will permit safe operation in multiprogram
and even multiprocessor environments.

15-5.2.4 Access Rights

The sharing of compool variables among several programs may be
restricted and controlled by the issuance of access rights. These rights
are attached to the data declarations within the compool. Each program
is identified by number and permitted to access only those variables
which have been declared with corresponding identification numbers. An
illegal reference to a compool variable will prevent successful compila-
tion of the program. For example, access rights might be employed to
allow only those programs comprising guidance and control to address
compool variables associated with main and reaction control jet engine
performance.

15-5.2.5 Automatic Checking

Besides being expressive and enforcing programmer conventions,
additional major advantages of a compiler language are the ability to
perform extensive checking at compile time and the opportunity to
structure and modularize programs. Compile time checking can verify
that subroutines are called with proper data; that dimensions (i.e.,
the units) of variables and constants are consistent; and that array

-250-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138- (617) 661-1840



PROBLEM IS T-IE CONFLICT OVER UTILIZATION
OF COMMON D/ATA ELEMENTS BY EXECUTIING TASKS.

EXAM)', PLE .1:

EXAMPLE 2:

REK.D AND 'IR ITE CONFLICTS

; K; B: T:
+ CON I ROL ·
+P: > N=

UPDATE CONFLICTS

NOTES 

1. B "IN'TERRUF'PTS" A IN BOTH CASES

2. #1 TASK*A RESUMES USING OLD AND NEW VALUES
FOR N

3. #2 TASK A RESUMES "CLOBBERING" THE VALUE FOR
Y SET BY TASK B

Figure 15.4: Background in Problems of Controlled
Shared Data

-251-.

A1: TA

CLOSE

FASI<;

X Y;
SE e;CLO'A;



02 CL
o

,, 
U

LJ-L..LJ-
C

) 
O

c 
-J 
O

 

<
: 

<

L
U

L
U

 
LU

<

L
L

I 
L

L
J 

L
.

O
 

O

U
-)

-- 
O

- 
C

CD 
Z

 
Z

_n 
_ 

_

LL] 
9 

I 
'C

2 
' 

] 
U

)n
 

_ 
X

 

LLIJ

Q
: C
.

L
L

 
-

L
U

 
LL

--J 
OI 

a

UCt 
_
.
-

LU
0

-

C
D

 
--

n 
(jU

)

__J-
-
 

Z
 

0

-
J
 

_ 
I 

L
.

-
<

0
J 

LLl

"-- 
Z
0

L
U

 
L

 
LU

-. 
-
J
 

-2
5
2
-

zi- 
I 

>><
· -

< 
I>< 

L;j
Y

1
 

t: 
O

 
C0J

C
o
 

k-d

/\

U
)

4-)u4-I

-o4) O.4U0'-4r-I0U
)

* 
C

-

L
II 

+

L
 -

1' 
C

) 
*-

Q
< 

D
 

i 
ZE 

O
 

-)

a)h.,lPr4



variables (vectors, matrices, etc.) are not referenced out of range.
In addition, the compiler can perform other static cross-checks on
the intent of the programmer.

15-5.3 Additional Advantages of the HOL Approach

15-5.3.1 Management

The technical management of the software development faces
problems of visibility and control. Design changes, short production
times, and pressing operational schedules would demand flexibility in
software design-and organization. Clearly, an overall management and
control plan is required which will define the procedures for develop-
ing software design requirements, interface specifications, documen-
tation requirements, testing requirements, change procedures and
organizational responsibility. Presumably, a higher order language
should provide features which support the software production environ-
ment in general. It would be self-documenting to a maximum extent,
provide ease in program modification, and provide mechanisms for
enforcement of management rules and programmer conventions.

15-5.3.2 An Improvement in Communications

In this context communications are meant to include require-
ments, specifications, descriptions, all forms of documentation,
methods of configuration and change control, management visibility
and technical exchanges (written and oral) that must occur among
engineers, analysts and programmers. Traditionally, the engineer
designs and expresses his algorithms using conventional mathematics,
or perhaps Fortran-like statements, and the programmer translates
these into his language, usually a basic assembly language appropriate
to the particular computer. The programmer must then explain his efforts
by using other media, e.g., detailed functional charts, user-guides,
or other apparently helpful devices. Unfortunately, in many projects
the coding language has isolated the programmers from everyone else
associated with the effort. The programmer becomes too busy to learn
the physics and objectives of the mission and is too busy to explain
to others how the code works. He, therefore, is forced to assume an
increasing share of the total responsibility. Small indispensable
groups of experts direct and shape the code and become the overworked
"authorities".

A properly designed higher order language could be a useful
analytical tool for the designer and a convenient, straightforward
technique for the programmer. The specific format of the language should
promote the ability to read, write, and understand the language quickly
and easily, and to document results in a clear and unambiguous manner.

-- 253-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



15-5.3.3 Prevention of Errors by Readability of Code

A higher order language can be instrumental in preventing
errors. The truth of this assertion can be seen simply by comparing
the probability of error when using assembler versus compiler coding
techniques. A programmer using a higher order compiler language can
express his problem in a problem-oriented manner. For example:

W =MV

indicates that the product of the matrix M and the vector V be
assigned to the vector W. The programmer does not have to express
how he wants the machine to handle his statement; e.g., where the
variables are in memory, what base or index registers to use, what
basic machine instructions to employ, or how to set up and call an
assembly language subroutine. The single statement above will generate
many assembly language instructions automatically. If these had to
be hand-coded, the probability of programmer error would greatly
increase. It also is an aid to visual inspection or "eyeballing" of
the code for correctness. The HOL enforces standard code and dis-
courages a "handcrafting" that invariably leads to subtle errors.

15-5.4 Summary

In considering methods of implementing aerospace software, hard-
ware and software techniques are available to insure program modularity.
For a centralized avionics configuration this means that effective
isolation can be insured among programs performing different functions
and that the interferences and potential memory conflicts of Apollo
need not occur. For a decentralized system the enforced hardware
separation of the several functional computers adds a measure of safety
in that, assuredly, a program operating in one cannot cause a memory
conflict with a program operating in another. However, even in this
case, the computational load in a single computer; e.g., guidance and
control, can be sizable (perhaps 40% of the total) and modular pro-
gramming techniques and aids should be utilized. Once these techniques
and aids have been provided, it makes little difference from a
programming point of view whether the total software is centralized or
decentralized.

15-6.0 Checkout Languages

Several higher level languages have recently been developed for
purposes of system checkout. Examples of these are GOAL and ATLAS.
These languages have, however, been primarily directed at integrated
ground checkout and subsystem test operations.

It is reasonable to assume that checkout software for the
flight computer can be developed using the general purpose HOL. It
can be operated and controlled interactively by the crew using the
crew language as any other flight software. The crew language may
require a special subset to accommodate all memory options and

-254-
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



control functions required to perform checkout and maintenance. The
capability to select diagnostic and subsystem checkout programs and
to control their options must be provided.

In most aerospace software environments software will be assembled
and loaded prior to the flight. No on-line compiling of software and
program generation is assumed. Accordingly checkout software must be
constructed to allow modes or crew options for accommodating the
variety of fault isolation and diagnostic requests.

In the event that the general purpose HOL cannot be extended to
satisfy the needs of this type of software, the single compiler approach
discussed in Section 15-4.0 would be very useful.

15-7.0 HOL Compiler Implementation

15-7.1 Compiler' Problem

The chief complaint about higher order languages has been that
HOL compilers are inefficient generators of machine language code, in
terms of both quantity of code and execution time. Secondary factors
are that compiler design is a very significant effort if it has to be
considered in line with the operational software task and that the in-
direct and unclear relationship between a program written in the HOL
and the resulting machine code impedes the correction of program errors
discovered at the machine language level. The reason for the compiled
code's stigma of inefficiency is that compiler systems have not evolved
with the conservation of machine resources as a primary design criterion
but have concentrated on isolating the programmer from having to worry
about the machine characteristics. Since it is difficult, perhaps even
impossible, to serve both the programmer and the machine interfaces

equally well within the mechanism of a single translation, the tendency
has always been to incur object code inefficiencies rather than
decrease the programming effectiveness.

It should be noted, however, that with the continual decrease

in hardware costs and corresponding increases in cost for software,

the conservation of memory may no longer be the prime objection to a
HOL and compiler. 'Certainly, if the software is sized with higher order
language considerations initially, and if a secondary memory system is

used for loading mission phase programs to lessen the impact of operating
memory size, the software cost savings of the HOL approach may well
exceed the increased hardware costs.

The penalty of an increased memory capacity, however, will always

be considered when the use of a HOL is contemplated.. A completely
written compiler can be almost as efficient as an average programmer.

The M.I.T. experience with PL/1 on MULTICS has demonstrated this [8].
But compared to the highly efficient machine code customarily produced
(at considerable cost) for military aerospace computers, a compiler may
be less economical.

-255-

INTERMETRICS INCORPORATED " 701- CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



Since compiler efficiency is still an important consideration,
the purpose of this section is to describe some possible approaches
to improve compiler efficiency. Higher order language machines,
interpreters, microprogramming, and high speed memories are all
approaches that aid in achieving more efficient code generation if it
is required.

15-7.2 Approaches to Efficient Code Generation

An approach that circumvents the drawbacks of compilers is the
construction of special higher order language machines that decode and
execute the HOL operations directly within the logic of the hardware.
Although a number of these has been reported in the literature [9-12],
it is not a widely applied principle.

There is another approach that appears to solve a number of the
previously identified problems and whose drawbacks show promise of being
eventually diminished by current trends in computer hardware design. It
involves the establishment of the program in a coded form intermediate
between the HOL and machine language. The translation from the HOL to
the intermediate form is accomplished off-line in an operation that can
be made much simpler, faster, and cheaper than the traditional compil-
ation of machine code from the HOL. The translation of the intermediate
form into machine operations is done at execution time in an interpretive
fashion. This concept appears to offer the following benefits.

1) For a given application the computer memory requirements can be
made less by up to a factor of two compared with the direct trans-
lation compiler approach.

2) It allows the choice of HOL to be uncoupled to a great extent from
the problem of satisfying the machine characteristics, and it is
unaffected by consideration of machine to machine transferability.

3) The intermediate form of code provides a very convenient, visible
"stepping stone" between the machine and the HOL, which would
greatly assist the problems of debugging.

4) Current trends of computer design offer the possibilities of higher
performance using this approach than can be obtained by hand-
crafted assembly language programming and offer a reduction in the
amount of machine-dependent coding that is required whenever a
new computer is being considered.

15-7.2.1 The Concept of an Intermediate Language

It is feasible to formulate a medium which lies intermediate
between the problem and the machine, which enables a concise enough
description of the problem's characteristics, and yet accommodates
sufficiently to be limited word format and instruction repertoire of
the computer. Such a medium would possess a high information content

-256-
INTERMETRICS INCORPORATED -701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840



and would be storable in the computer's memory. The basic concept,
however, is the translation of the operational program (expressed in a
language highly appropriate to the problem it seeks to solve), into a
compact intermediate form (or language) which, when stored in the
computer memory, maximizes the density of the information.

For the condensed information of the intermediate language to
perform any operation, its basic instructions must be decoded and
executed by some mechanism within the computer. This process involves
a number of logical operations which will consume a certain amount of
time. For an individual instruction, it need not be changed (unless,
of course, the instruction is modified).

15-7.2.2 Characteristics of Compact Form

The structure and notation of the compact form of the program
must be defined in a formal code or language. A basic set of more
elementary instructions can always be derived to mechanize all the basic
HOL statements [9]. The proposed intermediate language (IML) will be
based on this set of elementary instructions. The processing of the
HOL into the IML becomes a more direct, less complicated, faster oper-
ation than compilation into machine code. This is attributable in part
to the fact that a good deal of the decoding task is done at execution
time, relieving the translator of some of the burden. Furthermore, since
the translation is less difficult, it becomes natural to contemplate.
fairly sophisticated and universal HOLs like HAL, SPL, or PL/1 for the
application programming.

15-7.3 Implementation Factors

An important constraint in the design of the IML is the method
of decoding and execution by the machine. The more concise and compac-
ted the language, the higher becomes the potential economy in memory.
However, the full impact of its advantages will be realized when the
current trends in microprogramming achieve operational status. The
IML design must remain cognizant of this trend. Experience with and
acceptance of the language today will then constitute a firm foundation
which will provide continuity into future programming.

15-7.3.1 Software Interpreter

The majority of today's aerospace computers possess a fixed
internal logic which defines their basic operating modes. The IML
program would exist in memory in encoded form produced by the machine
section of the HOL-to-IML translator. The decoding and execution of
the individual instructions of the IML program.must be performed by the
standard instruction set of the computer under the direction of an
interpreting routine written in the assembly language of the machine.
Instruction by instruction software interpreters have been used in
aerospace applications for the purpose of storage efficiency [13],

-257-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840.



but they are more usually employed in commercial applications where
their ability to decode and execute individual statements can be used
to advantage in on-line programming and debugging.

The usual complaint against a software interpreter, which is
well earned, is that because it repetitively performs the redundant
operations of decoding and dispatching for each statement, it is
considerably slower than the object code of a compiler, which is analyzed
and translated prior to execution. However, the example of interpre-
tive programming in the case of the Apollo Guidance Computer demonstrates
that the penalty is quite acceptable. An equivalent instruction, for
example a double precision add, was 20-30 times slower in the inter-
pretive mode than in the machine language. Although the computer with
its 12 is cycle time was ten times slower than a typical small machine
of today, interpretive routines were used to implement guidance and
control loops with periods of less than 1 second. The use of the
interpreter enabled 50% more interpretive programs to be accommodated in
the memory than if a pure assembly language approach had been taken.

With the higher performance computers available today, it should
be possible to do at least as well; and with a more sophisticated
interpretive language than was used for Apollo, a much higher ration of
IML to assembly language programming should be achievable. With this
level of performance less than half as much memory is needed to contain
a HOL program translated into the interpretively executed IML than one
in machine code generated by a regular 25% inefficient compiler. The
cost savings come with all the advantages of comprehensive HOL programming.

15-7.3.2 Hardware Implementation and Use of Microprogramming

The use of special logic circuitry within a computer to assist
the interpretation of a higher order problem-oriented language has
been reported in the literature. Some of these attempts have mechanized
subsets of Fortran directly with specially designed logical hardware
[9,11]. Other more promising approaches have applied the concepts of
microprogramming. A very relevant example is reported by Weber [10],
in which a machine independent interpretive language is decoded by
microprogramming on a modified IBM 360/30. The original programming
is done in a higher order language, and a relatively short compiler
generates an intermediate text or middle language for storage in the
machine. The string language interpreter reduces storage, and the micro-
programming feature allows special instructions which actually improve
the run time over standard assembly language techniques.

It is true that microprogramming brings with it its own problems
of language and design. However, a microprogram instruction is
generally more powerful than a basic machine instruction. The micro-
programmer is given greater scope to optimize the sequence of operations
required to decode and execute an IML statement. Once it is set up,
the microprogram storage resides in a read-only memory, which is generally
capable of higher speeds than main read-write memory. We do not suggest
that the technique of microprogramming is without characteristic
problems of its own, but for the short fixed logical sequences associated

-258-
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



with decoding a set of IML instructions, it offers a higher efficiency
than the software approach and is far more flexible than advanced logic.

15-7.3.3 An Interesting Example

Although the following description of an aerospace programming
application is not an example of HOL usage, its significance lies in
its conscious attempt to economize on memory requirements. Since this
is the central objective of the concept described in this section, and
because of the relationship of the techniques, the application will be
briefly considered here.

The example in question is the software interpreter [1-3] used in
the Apollo command and lunar module computers: the CMC and LGC. The
computer is a 36,000 word 16-bit machine with a 12 microsecond memory
cycle time. The requirements placed upon the onboard computer grew
with the development of the total program. For the lunar landing
mission, Apollo 11, each computer had less than a hundred or so unused
memory registers. The coded interpreter implemented 127 double precision
arithmetic, vector and matrix operations, and many trigonometric functions.
Yet it took less than 1600 16-bit registers of computer memory. The
command module program used approximately 16,000 interpretive instruction
registers.

If this effort had been done in basic assembly language, it may
be presumed that instead of all in-line coding, a number of.subroutines
would have been written to conserve storage. Some 75% of the inter-
preter would have to remain as basic language subroutines; i.e., 1200
words. This represents a saving of 400 words. Of the 16,000 words
about one/half are instructions and one/half are addresses. The
assembly language approach would retain the addresses and would require,
on the average, about two instructions for every one interpretive
instruction. The net result is that without an interpreter the Apollo
computer would have required approximately 8,000 additional words of
memory to accomplish the job. This represents a saving of 33% over
efficient assembly code.

-259-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



REFERENCES

1. Intermetrics, Inc., Requirements Analysis for a Manned Spacecraft
Programming Language and Compiler, MSC 01845, April 1970.

2. Carey, L., and Sturm, A.A., "Space Software: At the Crossroads",
Space/Aeronautics, December 1968.

3. Preliminary Functional Design of the SPLM as Developed and
Procured by the Air Force, RFQ F04 701-71-A-0145.

4. Lickly, D.J., Clasp Critique, (Intermetrics, Inc., Cambridge,
Mass., April, 1970).

5. Intermetrics, Inc.,The Programming Language - HAL, June 1971,
MSC - 01846, Cambridge, Mass.

6. Hess, H., and Martin, C., "TACPOL - A Tactical C&C Subset of
PL/1", Datamation, 16(4), April 1970, pp. 151-157.

7. Graham, R.M., "Use of High Level Languages for Systems Programming",
MIT Project MAC Tech. Memo 13, September 1970.

8. Corbato, F.J., "PL/1 As a Tool for System Programming", MIT
Project MAC Memo M378, July 1968.

9. Kerner, H., and Gellman, L., "Memory Reduction Through Higher
Level Language Hardware", AIAA Paper No. 69-693, Aerospace
Computer Systems Conference, Los Angeles, California, September
8-10, 1969.

10. Weber, H., "A Microprogrammed Implementation of EULER on the IBM
System 360 Model 30", CACM, 10(9), September 1967,
pp. 549-58.

11. Baskow, T.K., Sasson, A., and Kronfeld, A., "System Design of a
FORTRAN Machine", IEEE Trans. Elec. Comp., ED-16(4), August 1967,
pp. 485-99.

12. Melbourne, A.H., and Pugmire, J.M., "A Small Computer for the
Direct Processing of FORTRAN Statements", Computer Journal, 8(1),
April 1965, pp. 24-27.

13. Muntz, C., "Users Guide to the Block II AGC/LGC Interpreter",
R-489, MIT Draper Laboratory, Cambridge, Mass., April 1965.

-260-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



CHAPTER 16

THE DESIGN OF AN ADVANCED AEROSPACE
EXECUTIVE SYSTEM

16-1.0 Introduction

As aerospace computers play an ever increasing role in
space exploration, an understanding of software systems becomes
more and more important for the system designer. At the heart
of an aerospace software system is the executive program which
controls the execution of the application software on the flight
computer.

Describing the architecture of an executive system consists
of more than an explanation of how the various parts of the execu-
tive software work. It also consists of an explanation of how
these parts dynamically interact with each other to extend the power
of the host machine. Furthermore, the hardware structure of this
machine plays an additional role in executive system design since
particular hardware features, such as I/O channel structure, influ-
ence the software design. In a sense we may consider the machine
together with its executive software to be the full executive
system that enables application programs to be. executed.

The executive system is responsible for the control of all
computing tasks in the real time software environment. Thus, the
fundamental features of an aerospace executive system must be based
on the requirements of its environment and the application software
it controls. Ideally, it should be efficiently tailored to meet the
design objectives and operating environment of the total system. In
particular it must manage the allocation and utilization of all
resources of the system including processor, memory, data bus system,
secondary memory, timers, and all other devices connected to the com-
puter. The executive system must be organized such that it simply
and efficiently allocates system resources to the computing tasks
and provides sufficient general services to application programs to
enable them to achieve mission requirements.

-261-

INTERMETRICS INCORPORATED ·701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



In order to make the system flexible, it must be structured
such that the executive modules are either self-contained or
utilize a standardized set of subroutines. It must be possible to
make alterations to these modules without jeopardizing the rest of
the executive functions.

In order to make the system simple, it is necessary to prevent
application programs, regardless of their complexity, from directly
performing system control functions. This fact limits the number of
checks and balances necessary in order to assure full system relia-
bility. This does not mean that application programs are denied
use of hardware facilities, but rather that the control of such
facilities is restricted to one responsible module.

Since the system must support applications which will have
real-time inputs and outputs, it will have to be oriented toward
being able to guarantee response within some predictable time con-
straints and yet not be performing supervisory tasks so frequently
as to constrict throughput rates, a problem encountered in many
highly interactive systems.

This chapter presents a description of the architecture of an
aerospace executive system designed for an advanced space mission.
It is assumed that the computer on which the executive is executed
is a simplex (single processor) system with a multiprogrammed task
stream. We will place particular emphasis here upon the design
issues which must be resolved when designing an executive system
(e.g., how to allocate dynamic memory) and upon identifying the
fundamental parts of the executive. A more complete functional
description (to the flowchart level) of an executive system designed
for Space Shuttle application may be found in [1].

16-2.0 Design Criteria

We may now ask ourselves what overall criteria should we adopt
in designing an aerospace executive system. The primary objective
or goal usually adopted by most executive system designers is the
achievement of an "efficient" executive where efficiency is some
measure of throughput. Efficiency may be defined by either the
fraction of executive overhead time spent doing nonproductive work
or in terms of response time. However, efficiency becomes less
important a factor when it leads to a complex design resulting in
complex testing and verification of software. Ideally, flight soft-
ware should not only be tailored to meet operational mission require-
ments but should be structured to enhance software verification and
flexibility to adjust to changing needs. Therefore, the following
design criteria are important in evaluating structure. The designer
must be able

a) To provide an executive system which will control
and allocate resources of the system to satisfy

-262-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



operational mission requirements (i.e., one that
does the job).

b) To establish an executive organization which
facilitates verification of application software
and reliability of code.

c) To structure an executive enabling flexibility
and modularity in incorporation of application soft-
ware changes over long term maintenance periods.

d) To define simple and well defined application
program interfaces to the executive system. It
should be structured as a virtual machine to the
applications programmer.

e) To develop an executive structure which is both
simple and efficient but consistent with other
objectives.

16-3.0 General Description of the Executive System

Most aerospace software systems are driven by a real time
interrupt around which the software is organized. Similarly we assume
our executive is driven by a minor cycle real time interrupt every n
msec (where we leave n unspecified). A fixed number of minor cycles
constitute a major cycle. Upon occurrence of a minor cycle interrupt
the cyclic sequencer is executed.

The cyclic sequencer is an executive task which performs all
functions that are characterized by precise timing specifications.
It commands all I/O operations done on a periodic basis, supervises
execution of all computations to be run on a periodic basis, updates
core memory with input received in the last minor cycle, and monitors
the status of avionics subsystems. Upon termination of the cyclic
sequencer, the dispatcher is called to select a non-cyclic (background)
task for execution.

The dispatcher is at the heart of the executive system. It is
this executive function that selects tasks for execution on a priority
basis. When a task terminates, it returns to the dispatcher, which
calls a terminator routine to insure the release of- all system resources
held by the task.

While an application task is executing, it may request another
task to be scheduled for execution by calling the scheduler. Scheduling
can be done unconditionally,or on a time basis, or on the occurrence
of an event. A function of the scheduler is to put this new task in a
state ready for execution. It does so by calling the resource allocator
to give the task any resources it may need. Should a resource be
unavailable, the task must wait for scheduling until this resource is
freed. At this time, the resource can then be assigned to the task,
and the task is then ready for execution. It competes for CPU time on

-263-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-.1840



a priority basis with all other tasks in a similar ready state.
The dispatcher will choose the highest priority task that is ready
for execution and assign the CPU to this task. A task will con-
tinue executing until it ends, or until it voluntarily releases
the CPU, or until a system event occurs necessitating the CPU
being assigned to another task.

At any time during its execution, a task may request I/O
operations to be done and may request its own execution be halted
until these I/O operations are completed. It is one of the functions
of the executive to supervise and schedule all I/O operations. In
addition, the executive must supervise error recovery functions.
Should a hardware or software error occur, the executive must provide
the capability of running a specific recovery routine depending upon
the type of error. A system reconfiguration routine might then have
to be executed if a piece of hardware is judged faulty. The faulty
equipment will then be switched out, and the system will continue
operation using standby equipment.

The executive software to perform all the above functions will

be organized in modular fashion. We will now identify the necessary
modules.

16-3.1 Identification of Executive Program Modules

a) Cyclic sequencer: performs all services done on a
minor cycle basis.

b) Scheduler: puts previously inactive task or waiting
task in a status ready for execution.

c) Dispatcher: assigns CPU to a task ready for execution.

d) Resource allocator: assigns system resources to tasks.

e) I/O supervisor: dispatches all I/O requests to channels.

f) Machine check supervisor: diagnostic routines executed
when hardware error is detected.

g) Reconfiguration routines: brings up standby equipment
when active unit is judged faulty.

h) Timer routine: sets hardware timer and signals events
based upon elapsed times.

i) Program check supervisor: provides recovery from
detectable software errors, such as division by zero.

j) Supervisor service routines: provide supervisor services
for application programs; e.g., enable a task to await an
event or to free an assigned resource.

-264-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840



16-3.2 Executive Operating Environment

In most aerospace applications the executive is not presented
with a random stream of tasks queued upon secondary storage as is
OS/360. Instead there is a fixed set of tasks organized on a
mission phase basis. Within a particular phase, task throughput is
maximized.

In extended and complex missions requiring a large amount of
software a mass memory unit (MMU) such as a drum can be used to
store program modules until they are needed. Then if core memory
must be overlaid with new program modules, they are loaded from
secondary storage at the beginning of a new mission phase in order
to minimize the use of the mass memory unit. Moreover, since the
modules loaded will be known preflight, their loading addressed and
relocation constants will be determined at compile time. In other
words, fully dynamic loading and binding of program modules need
not be supported by the executive. This minimal use of the MMU
presents a fixed program environment for the executive system.

16-4.0 Definitions

We must now define some of the terminology which we will use
for the remainder of this chapter. So far we have used the word
"task" relying for understanding upon our intuitive sense of what
a software task is. We will now formally define a task as an
executive unit of work which competes for system resources. A task
is created dynamically upon execution of the executive's scheduling
function. A task is identified and defined by a unique task control
block. A task control block (TCB) is a table containing all per-
tinent control information for a task used by the executive for task
management. The TCB is created by the scheduler when it attempts to
bring a currently unscheduled program module into the system.' Each
TCB contains a pointer to a program module into the which the task
executes.

A program module is code executable by the system. Program
modules are started by the executive and return control to the
executive END function upon completion. A program module may be
associated with more than one task.

A task may be in one of four task states at any time.

a) Active: The task has been allocated the CPU and is executing.

b) Ready: The task has been assigned all its resources and is
ready for execution. It only awaits the CPU.

c) Wait: The task is awaiting the occurrence of some event or
events in the system. Such an event may be the release of a
resource, an elapsed time, or an I/O interruption.

-265-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840



d) Inactive: The task is not presently known to the scheduler.
However, its program module is present in core storage or on
a mass memory unit. (Strictly speaking, an inactive task is
merely a program module and not a task. A program module is
made a task at schedule time, when its TCB is created.)

Our concept of the states of a task is analogous to the MULTICS
concept of the states of a process [2,3]. A state transition diagram
is shown in Figure 16.1.

16-4.1 Executive Queues

The executive queues are lists used by the executive to
associate and control tasks of a similar condition. Task control
blocks are linked into lists corresponding to a particular executive
queue. A task can only exist in one queue at any instant of time.
One possible executive system organization allows four major execu-
tive queues:

a) Ready queue: The ready queue is a threaded list whose elements
are the TCBs of the tasks ready for execution. These TCBs are
organized on a priority basis with the TCBs corresponding to
the highest priority tasks occurring at the beginning of the
list. An entry is established by the scheduler in the ready
queue when a task is brought to the ready state.

b) Wait queue: The wait queue is a threaded list whose elements
are the TCBs of the task waiting for the occurrence of some
event or events. When all these events or some allowable
combination of them have been completed, the task can be put
on the ready queue.

c) Time queue: The time queue is a subqueue of the wait queue.
The tasks on the time queue are awaiting the occurrence of a
timed event. At some multiple of a minor cycle time interval,
the executive examines the tasks on this queue to determine
if they can be made ready at the present time. If so, those
that can are placed on the ready queue.

d) I/O queue: The I/O queue is a subqueue of the wait queue.
The tasks on the I/O queue are awaiting the completion of some
I/O operation. When the I/O operation completes, a task
awaiting it in this queue can now be placed on the ready queue.

16-4.2 Common Data Pool

The COMPOOL is an area of operating memory permanently assigned
to data variables shared by tasks. All communication between tasks
is done through the compool. Data assigned in the compool remains in

-266-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840



e oprogrammed WAIT] ACTIVE

I , a a
ra

I U
Xcr I -c

v) L)

.4, 4

.- / '.1D~_ ~-

INACTIVE
1~. 

READY IL schedu ler I
IREADY I(on occurrence' L

T of an event)

schedule command

Figure 16.1: Task State Transition Diagram

-267-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

abort

WAIT
r-

I

I

1

end of task



the system subsequent to a task completion. It is statically
assigned as opposed to the dynamic memory assigned to a task
for working storage. The compool can be organized in two parts:
a mission compool and a phase related compool. The data assigned
in the mission portion of the compool is permanently resident.
Data assigned to the phase dependent portion of the compool exists
only during that phase of the mission. It is overlaid with other
phase data during subsequent mission phases. When a mission phase
is initiated, the phase is loaded from the secondary memory, and
the phase dependent compool is initialized. Data which is to be
retained subsequent to a task completion must be included in the
compool. All accesses to data in the compool must be coordinated
for the application task by the executive system. The execu-
tive prevents conflicts in the use of this data by tasks.
The SECURE, RELEASE and COPY executive functions can be provided
for compool interaction and are discussed in [1].

16-4.3 I/O Request Block

The I/O request block (IORB) is a table of all pertinent
control information for the I/O channel to execute an I/O operation.

16-5.0 General Discussion of Executive Design Issues

Now having presented a general description of how the executive
operates and having defined some fundamental concepts, we can begin
discussion of several executive design issues. These are problems
that most designers must face when designing an advanced aerospace
executive system. In fact, they are fundamental in nature to most
multiprogrammed systems.

16-5.1 Interrupt Handling and Task Dispatching

The interruption of a running program in response to an
external signal was introduced into the computer technology to
serve two purposes:

a) to provide rapid response time to asynchronous
events; and

b) to eliminate the necessity of polling (and its overhead)
to discover whether an awaited event has yet occurred.

In single-processor systems, particularly dedicated systems where
most or all of the computation is devoted to a single application,
the introduction of interrupt-mode computation raises the hazards
associated with multiprocessing. At arbitrary times, an interruption
can introduce what appears to be a parallel task which is at least
conceivably capable of disrupting the progress of the interrupted

-268-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840



task by altering its variables. Thus, methods for masking or
inhibiting interruptions were added, and the nature of the functions
allowed in interrupt-mode was restricted. Properly and thoroughly
applied, these fixes allowed programs to perform properly, although
no truly thorough method has been found of proving that the system
was actually properly programmed.

There exist therefore, two relevant negative aspects of
interruptions: timing response uncertainties, and potential data
disruption and conflict. Both can be minimized by causing
interrupts to schedule tasks whenever possible, as opposed to
performing them. This provision reduces the multiplicity of
possible timing situations, since job swapping occurs only at
specified intervals.

Accordingly, it is considered desirable to utilize hardware
interrupts such that tasks are scheduled and the interrupted task
is rapidly resumed. The primary consideration becomes when to
dispatch a higher priority task resulting from an interrupt, such
that respond time requirements can be satisfied.

When an active task is dispatched into the wait state,
another higher priority task is dispatched (made active) from the
ready queue. When else does the executive dispatch? The following
summarizes various approaches considered.

a) If the executive dispatches at no other time, system
response time to high priority tasks cannot be guaranteed
since long duration tasks would execute to their end. This
appears unacceptable in most missions having task priority
levels unless all lengthy tasks were broken down into
separate, sufficiently short, independent tasks.

b) The executive can dispatch whenever a task of higher priority
than the active task is scheduled. In this case, interruption
of the active task will occur at a random point in the coding
and a higher priority task given the CPU. This uncertainty
can lead to a program verification problem due to its random
nature and non-repeatability.

c) Alternatively, a programmer can inhibit dispatching at
dangerous points in his program. Tasks of higher priority would
be dispatched when permitted. However, this method does not
completely solve the verification problem or prevent a higher
priority task being delayed from execution for an unacceptable
amount of time. By introducing an onboard "watchdog" timer,
it is possible to guarantee a maximum time in which dispatching
is inhibited. If a programmer exceeds this maximum time in
inhibiting dispatching, the CPU is taken from his program.
However, the dispatch will now occur at a random point.

-269-

INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS'02138. (617) 661-1840



d) Another approach is to require the application task to be
organized into short segments in which the dispatcher is
requested at the end of each segment. If these segments
were fixed at short intervals,it would enable system response
time to be maintained.

Furthermore, the segment organization of a lengthy program provides
visible and controllable evidence to the programmer of the possible
points that alternate control paths can occur. Conversely, he is
assured that once the segment begins it is non-interruptable until
it ends other than by the executive servicing of an interrupt of the
task placing itself into a wait state. Similar arguments could be
used for the previous approach.

An attractive method involves a modification to approach (d).
First, high priority cyclic tasks, operating in a synchronous mode
in the foreground, will always be dispatched at the occurrence of
the clock interrupt. All other tasks will only be dispatched at the
segment points. This will guarantee response time where it is needed
and loosen the requirement for segment operating limits.

Secondly, the establishment of segments for lengthy programs
can be aided by an assembler or compiler. Given that a procedure
oriented higher order language is used for application programming,
it can often suggest segment points and make them visible to the
programmer. Tentative examples of compiler based segment points are:

a) on all forward GO TO statements;

b) entry or exit from a block;

c) maximum time allowed in a segment exceeded.

The programmer must have a compiler override capability.

16-5.2 Resource Allocation

A resource may be defined as a facility of a computing system
that can be temporarily assigned to tasks to enable them to perform
their computations. Examples of resources pertinent to aerospace
software are core storage, shared data, and data sets on mass memory
units. Resource allocation is that function of a computer's operating
system that assigns resources, when possible, to the tasks requesting
them. In a multiprogrammed system, several tasks can request the
exclusive use of a single resource. Since only one task at a given
time can be granted its request, the others must wait until these
resources are freed. Care must be exercised in resource allocation
to minimize the number of transitions of a task from the active to
the wait state and to avoid allocation conflicts.

-270-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840



To be specific, several conflicts can result from inefficient
resource allocation. These are:

a) deadlock,

b) memory fragmentation,

c) priority conflict.

We will define each of these conditions in the following
paragraphs.

16-5.2.1 Deadlock

Deadlock is a condition in which two (or more) tasks are each
waiting for a resource held by the other before either can proceed.
Neither task can release the resource it holds, so neither can be
taken out of the wait state. For example, suppose task A holds
resource R1 and needs R2, but task B. holds R2 and needs R1., Since
neither task can release its resource, neither can proceed and
deadlock results.

Deadlock detection algorithms can be included in an operating
system to enable the task performing resource allocation to recognize
potentially hazardous situations, and hence, to avoid them. This
topic has been discussed extensively by several authors [4-8].
However, such an algorithm can cost a high overhead in execution
time. The aerospace executive should have an alternate way of
avoiding deadlock.

Deadlock is the result of incremental resource allocation.
That is, it is the result of tasks requesting resources sequentially
during execution. By avoiding incremental allocation we can avoid
deadlock without costly detection algorithms.

16-5.2.2 Memory Fragmentation

Memory fragmentation is a condition in which a task cannot.
be granted its request for a large block of contiguous core because
all available core for dynamic allocation is in small noncontiguous
blocks.

When this situation arises in a large ground based computing
system having a large secondary memory, part of the contents, of core
are rolled out temporarily to create a large enough contiguous area
of main memory to satisfy dynamic allocation requests. However, in
the flight computer we seek to minimize the use of any MMU because
of its inherent complexity. Thus, most data will be maintained in
main memory so that programs can operate at maximum speed. Programs
and data are only reloaded into the operating memory at low frequency
during the mission, such as at the start of a new mission phase.

-271-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE 'CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-.1840



16-5.2.3 Priority Conflict

Finally, an allocation conflict can arise when a low pri-
ority task holds a resource that a high priority task requests.
Often the resource cannot be released by the former task as in the
case of temporary work areas of core storage. Unfortunately,
the high priority task must now be placed in the wait state until
the low priority task can safely release the resource. The result
of this situation is a degradation in the system's response time
for high priority computations. For a sufficiently large degradation
the effects upon the overall mission can be very serious.

Each of these hazardous situations must be avoided in
designing resource allocation algorithms for the flight computer.
The following section will present methods of avoiding these
problems.

16-5.3 Allocation of Specific Resources

In our discussion we will consider three categories of
resources for which provisions must be made. These are:

a) dynamic memory allocation,

b) common data sharing, and

c) data set management

16-5.3.1 Dynamic Memory Allocation

Dynamic memory allocation occurs when the executive temporarily
assigns blocks of core storage to a task requesting this resource.
This core is returned to the dynamic core pool either by the task
during its execution or by the executive at the end of the task. To
avoid deadlock we require that all core requests of a task be
satisfied when the task is placed in the ready state. That is, to
avoid incremental allocation a task makes all core requests known
to the executive via its TCB at schedule time. If the request can
be satisfied, the task can be placed in the ready state provided it
is not awaiting the allocation of any other resource. If not, the
task is placed in the wait state, awaiting the release of a sufficient
amount of dynamic core to satisfy its needs. When this core becomes
available, the task can be placed in the ready state. Eventually
when the task becomes active, it has all the core it will ever need
and will not have to be placed back in the wait state during execution
for lack of this resource. Hence, deadlock cannot occur because of
a conflict in dynamic core allocation.

Although we have avoided deadlock fairly easily, the problem
of memory fragmentation is not as readily solved. The reason for

-272-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840



this increased difficulty is that several alternative methods
of avoiding this problem are available to us, and the specific
method chosen depends upon the computational requirements of the
mission application programs. So far these requirements are not
known in any detail. Hence, we will examine four methods of .

memory allocation and determine which is optimal with respect to
our present knowledge of the program requirements.

16-5.3.1.1 Fully Static This method would avoid dynamic storage
allocation by permanently assigning to each task all the core
storage it needs for the duration of the mission. Memory conflicts
are obviously avoided..

If the total amount of core so assigned is small; e.g., 1K
bytes, then avoiding the problems of dynamic storage allocation is
advantageous since the executive design will be simpler. However,
the amount of core needed is likely to be higher than our 1K
example above, so that the extra cost in the amount of: memory needed
for static allocation becomes uneconomical.

This is not to say that no task should have its work areas
permanently assigned. For example, a computation executed every
minor cycle will utilize its work area for a large percentage
of every major cycle. In this case it could be economical to
statically assign this task's work area to it. However, for the
large amount of tasks run on a less frequent basis the percentage
of a major cycle that they utilize their work area is small. Hence,
static storage allocation cannot be the only method of storage
allocation considered.

Note that any task having a static work area allocation is
by its very nature non-reentrant.

16-5.3.1.2 Fully Dynamic A frequently used method of dynamic storage
allocation in large scale computing systems is to allow all tasks to
compete with each other for all available core. A task can request
a block of any size provided it does not exceed the amount of core
available. If this block is available, it will be allocated to the
task [9].

This disadvantage of fully dynamic allocation is that it
does not solve the problem of memory fragmentation.

16-5.3.1.3 Semi-dynamic Let dynamic core be divided into blocks
of several specific sizes; e.g., 50 bytes, 100 bytes, .5K bytes
and 1K bytes. Tasks which request core must be structured so that
their request conforms to one of these sizes. Although this method
imposes a restriction upon the tasks, the problem of memory frag-
mentation is now solved.

-273-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 -. (61.7) 661-:1840



There still remains the problem of low priority tasks
holding core and preventing high priority tasks from executing.
The problem can be partially solved by allowing several blocks
of each size in dynamic core. This will reduce the probability
of all blocks of a given size being simultaneously allocated.
However, the number of blocks of each size cannot be too large
since this would be as uneconomical as static memory allocation.
Program requirements will of course determine how many blocks
and what sizes to allow.

16-5.3.1.4 Priority Subpool Allocation Dynamic core will be divided
into sections called subpools, one corresponding to each possible
task priority level. A task requesting core will then receive its
allocation only from the subpool corresponding to its priority
level. Within a subpool core can be allocated on a fully dynamic
or semi-dynamic basis.

If the fully dynamic method were used, fragmentation would
occur within each subpool. To avoid this problem we will use
semi-dynamic memory allocation (as explained above) within subpools.
Each subpool will have several blocks of core of several different
sizes. A task is then allocated a block of its requested size
when it is placed on the ready queue.

Should a task request a block of core that is unavailable
within its subpool because of existing allocations, a block from
a lower priority level can be used for allocation. This will prevent
a high priority task from having to wait for the release of core
while low priority tasks can be scheduled. In addition, tasks of
the highest priority will not have to share their subpool with any
other tasks. These tasks will have the least interference from
other tasks in competing for core.

The sizes of the blocks and the number of each size are
determined by the number of tasks and their requirements at the
given priority level. Once this algorithm has been implemented
size and quantity parameters can be varied for optimization. This
method of dynamic core allocation seems to be the most advantageous.

16-5.3.2 Common Data Sharing

In any multiprogramming system a resource allocation problem
arises when data in core memory can be simultaneously used by two
(or more) tasks. If two tasks only want to read the data, no
conflict exists. However, if one of the tasks wants to update before
the other has finished reading, a conflict arises.

To illustrate this, consider the examples shown in Figure 16.2.
In both examples TASK B interrupts TASK A during the execution of a
statement. In Example 1, presume that the interruption occurred

-274-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



while the matrix N was being read. When TASK A resumes, the
computation of A will continue using some "old" A data and the
"new" A data assigned in TASK B. In order to prevent this
conflict, initiation of TASK B would have to be stalled until the
reading of n in TASK A is completed.

In Example 2, presume that the interruption occurs just
after the current value of Y is loaded into the. accumulator. When
TASK A resumes, the "old" value of Y (i.e., not reflecting the
update of Y in TASK B) is restored into the accumulator, X is sub-
tracted and the result-assigned to Y. In order to prevent this
conflict, the initiation of TASK B would have to be stalled until
the value of Y is updated in TASK A.

These examples illustrate.the fact that accesses to shared
data must be controlled to.prevent conflicts. One possible way of
doing this is by preventing task dispatching at critical times.
This method is too restrictive however, especially for high
priority tasks needing fast system response. We will investigate
alternative approaches to this problem.

a) OS/360 uses the ENQ and DEQ macros to grant tasks access
rights to shared data. ENQ will grant a- task access rights
as long as no other task is using the data. In the latter
case, the task requesting access rights is put in the wait
state, awaiting the release of this data (DEQ). Upon this
release, the next task enqueued for access rights is taken
out of the wait state and allowed to proceed. For- two
tasks that only want to read shared data, this method imposes
a needless wait for one while the other has the data enqueued.

b) A second approach to avoid common data sharing conflicts is to
use UPDATE blocks as is done in the HAL compiler [10,11]. An
UPDATE block is a group of statements within a program providing
a controlled environment for the reading and writing of shared
data variables. Upon entry into the UPDATE block, read or
write locks are established around parts of the compool contain-
ing the variables to be referenced. There need not be an
individual lock for each variable nor should there be only one
lock around the entire compool. How the compool is organized
can be decided at a later time depending upon the programs to
be executed and their requirements.

Should a part of the compool needed by a task be unavailable
for locking, the task is placed in the wait state. Any other
parts of the compool it has locked are now unlocked so that
they can be used by nonwaiting tasks. The requesting task can
be placed in the ready state when the scheduler determines that
all parts of the compool requested now can be allocated to this
task. At this time read or write locks are established around
these parts of the compool.

-275-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138.- (617) 661-1840



Three types of locks can be established: read, write,
and writing. We say that unlocked data is in state 0 and
locked data can be in states 1-3 corresponding to the three
types of locks respectively.

A read lock will enable another task that also wishes to
read lock this data to do so. If a write lock is established
around a piece of data, a copy of the data is made for the
updating task. Upon closing the UPDATE block, the compool is
updated as long as no other locks exist around the data to be
updated. No writing locks can be put on a given part of the
compool, until any read locks already there are removed by
all tasks reading this data. If the locks exist, the updating
task must wait until the locks are removed.

Consider the first example above and suppose that the state-
ments in question (in TASKS A and B) were enclosed within*
UPDATE blocks. In TASK A a read-lock is established for N,
because it will be read gnly. After the interruption, a write-
lock is established for Nsand TASK B proceeds toward completion
using copy-data for A rather than active data. At the end of the
update block in TASK B, the process stalls because of the read-
lock imposed in TASK A. As a r sult, TASK A is allowed to
continue with consistent "old" data. After completion of
TASK A, a copy-cycle is effected in TASK B,and N is updated.
All conflicts are eliminated. A table of compool state
transitions follows.

Present
State

Desired Read Write Writing
State Free Locked Locked Locked

Free O.K. O.K. not O.K.
applic-
able

Read Locked O.K. O.K. O.K. Wait

Write Locked O.K. O.K. Wait Wait

Writing Locked not Wait O.K. not
applic- applic-
able able

-276-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



eL
..

_1

I--

r\

LI..
, L¢¢ /C(

.J0

L
U

L

m

L
A

>
- 

cK
 

,)

,LL

_ 
>

-LU

L.(J 
-J Z

 
L

I

<
U

T

I-.-
0 

Z

: 
--

J

_
- 

( 
L

L
J

I,

L3 J

D
 

L
U

J 
2 

Y

' 
O

u

I-l~
t

0; 
m

L
-

V
)>

- 
L

L
-- 

--I

X
 

I
,,

m
 

*
Z

 
U

'A

L
U

(,._

-J00 CO

4-Crd

C-I

0 laro

4J 0cU

H
.I 

!

II >
m

 
>

t

C
u

r-qa,)

trl
.1

LU-1

Q
_

U
,

L
L

0LU3JI-LUJ
-JXW

J

LaL
n

0/

L
(,

UoLU-

0UC
L

-JL
U

ui

._
 

*
L

 
._-

L+ 
-

+

I<
 

*
;z

 
U

C
C

,,E
 

t)

ILL
* 

>-· 
c- 

<.. 
v 

.
t:

>
,,

-2
7
7
-

r



To prevent any task from locking a part of the compool any
longer than necessary, no I/O statements and no programmed
WAIT statements will be allowed in an UPDATE block. This
requirement will prevent a high priority task from having
to wait for long time intervals while a lower priority task
has data locked.

To economize on the amount of core needed for the compool,
part of the compool can be overlaid on transitions to
different mission phases. If two tasks that are only executed
during a particular mission phase use part of the compool, it
is needless to keep this part of the compool in core as long
as no other task in another phase will ever again use the data.
In this case as new program modules are read into core during
a mission phase transition, this part of the compool can be
overlaid.

16-5.3.3 Data Set Management

Data set management is heavily dependent upon the type of
mass storage unit used. If a tape drive is used, very little data
management capability will be necessary. However, if a random
access unit is used, more extensive data management facilities
will be necessary.

In this chapter we will assume a random access unit; e.g.,
a disk drive. The data management system need not be as general
purpose as in the System/360, for example. However, it must be
designed to meet the needs of the aerospace mission. One of the
criteria used in designing this part of the executive is the
desirability of minimizing use of the random access unit during
the mission. The major anticipated uses of the storage unit are to
record flight data, to update the programs in core memory on a per
mission phase basis, and to retrieve display skeletons for the visual
display application programs. More frequent use of the mass storage
unit is probably necessary.

There will be two classes of data sets on the random access
storage unit, read only and read/write. The former category may
be read at any time by any number of tasks without conflict. The
latter category, however, can cause access conflicts, and hence,
some protection mechanism is necessary.

A directory of each data set on the storage unit and its
characteristics will be maintained in core memory. The data set
directory entry for a read/write data set will identify only one
program module with writing access rights. This program module
must not be reentrant. Whenever a task requests to write upon a
data set, the I/O supervisor will check to see if the data set
is indeed read/write, and if the requesting task has access rights.
Since only one task can update a given read/write data set, no write

-278-

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840



conflicts are possible.

A task may also request to read a read/write data set.
For example, data recorded in a former mission phase may be
important to an executing task. In this case, the I/O supervisor

will honor the read request. However, the software must be structured

so that the requesting task is not reading part: of the data that is

presently being updated. The I/O supervisor can check for this fact;
or each task that wishes to read a read/write data set can be made

responsible for knowing the integrity of the data' it receives.

16-6.0 Features of the Executive System

We now turn our attention to specific features needed by

an aerospace software system and in particular the executive. These

features are aimed toward a complex mission such as the Space Shuttle

or manned planetary exploration. In less complex missions some of

these features might not be needed. However, we will present as

many as are relevant for our discussion here.

16-6.1 Directories

Several directories are usually necessary to enable the

executive to efficiently manage the system!s resources and manage

task execution. Consistent with our view of minimizing the use of

the MMU, we assume these directories are in main memory. Three

typical directories are the following.

16-6.1.1 The Program Module Directory

The program module directory (PMD) is a list of all program

modules known to the system; i.e., all program modules both in

operating memory and secondary storage. Each entry consists of three

full words and has the format shown in Figure 16.3a.. It contains the

following information:

a) program module identification,

b) where the module is resident,

c) address of module,

d) module characteristics, such as reentrant,

e) dynamic core needs.

-279-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-:1840



1. Program Module Directory (PMD)

(a)

2. Data Set Directory (DSD)

data set ID

access record address
type length

program module ID for update access

(b)

3. Dynamic Core Directory (DCD)

(c)

Figure 16.3: System Directory Elements

-280-



This directory is updated when the contents of core change or new
program modules are added to the system.preflight. Its major
purpose is to enable the scheduler to locate a program module and
to provide enough information to construct a TCB.

16-6.1.2 The Data Set Directory

The data set directory (DSD) is a list of all data sets
residing on the MMU. A data set may be an executable program
module or a collection of flight data. An entry in this directory
is three full words containing a data set identification word, MMU
starting address, logical record length, and data set character-
istics (i.e., read only or'read/write). In addition, if this data
set can be updated, the program module with update rights will be
identified in the DSD entry. This information is illustrated in
Figure 16.3b.

The DSD enables the I/O supervisor to locate data sets on the
MMU for I/O operations.

16-6.1.3 The Dynamic Core Directory

The dynamic core directory (DCD) is a list of all blocks
of core that can be dynamically assigned to a task. Each entry is
two full words containing the address of the block, its byte length,
its subpool number, and an assignment bit. The format is given in
Figure 16.3c. The DCD enables the executive to dynamically assign
core to tasks at schedule time.

16-6.2 Subroutine Linkage

In order to standardize the way program modules are structured
and to avoid conflicts in parameter passing, register usage, and
register saving, a method of program module initialization and link-
age must be developed. The particular method chosen depends heavily
upon the hardware features of the flight computer. However, some
generalizations are applicable. Usually upon entering a program
module the contents of the general registers must be saved so that
they can be restored upon task termination. These registers can be
stored in an area of core called the save area. The task is now free
to perform its computation. Then upon completion of its computation,
a task terminates by restoring the content of the general registers
it had saved upon entry and branching to a return address.

16-6.3 Common Subroutines

In addition to a task being able to schedule another' task, a
task may execute a common subroutine. A subroutine is a piece of

-281-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



coding which may be used by several tasks without itself becoming
a task. A common subroutine must be reentrant or serially reusable.
In the former case the calling task supplies working memory for the
subroutine. In the latter case, the subroutine must supply control
for preventing multiple simultaneous executions. A software
generated event can be used by the subroutine as a semaphore to
insure only one user at a time [12]. Examples of common subroutines
are square root, trigonometric functions, and vector/matrix functions.

The calling task may pass parameters to a common subroutine
by providing a pointer. This pointer will contain the address of a
list of pointers, each pointing to one of the parameters, as illus-
trated below.

address of address of
parameter list 1 parameter 1

address of
parameter 2

i I
address of
parameter n

The subroutine may now read each of the passed parameters and return
a computed value in one of them. The general registers can be used
to pass the parameter pointer and dynamic core pointer to the common
subroutine.

16-6.4 Task Priority Levels

In the flight computer there will usually be several task
priority levels. Let us here assume there are six priority levels,
0-5, with 0 being the highest priority. Priorities 3,4, and 5 are
used by application tasks.

Priority 2 is reserved for any application task while it is
executing an UPDATE block. That is, if a task of priority 3,4, or
5 is executing an UPDATE block, the task's priority is raised to 2
until the updating of common memory is completed. It then returns

-282-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



to its previous value. Thus in effect, we are limiting'dispatch-
ing of priority 3-5 tasks while another task executes an UPDATE
block. By the'nature of the system there will be at most one
task at priority 2 at any given time. This places restrictions
on the use of an update block in that a task cannot enter the
wait state voluntarily under any conditions. It must enter the
block, complete the updating of common memory, and exit the
block. The high priority cyclic sequencer is allowed to interrupt
an update block.

Priority 1 is only used by'the cyclic sequencer. It is
given priority over any application task because of the time
dependent nature of its execution. Should the cyclic'sequencer
be unable to lock part of the compool, the task at priority 2
is executed until it closes its UPDATE block. Now the cyclic
sequencer can lock its required data without interference. The
use of priority 2 is specifically designed to enable the cyclic
sequencer to execute with the lease possible wait due to shared
data unavailability.

If a response time equal to a minor cycle is insufficient
to handle critical mission functions, a special priority level
could be included in the executive system. Priority 0 can be
reserved for acyclic tasks that must immediately be executed
for the safety of the mission. These tasks are time constrained
and must execute in less than 0.5 msec.. This rule is enforced
by a timer in the hardware. Moreover, priority 0 tasks 'may not
use dynamic core or use the compool since by their very nature
no wait in their execution can be tolerated.

Examples of priority 0 tasks are computations that must
be done during a critical maneuver, engine burn or cutoff, etc.
Should one of these tasks require more than 0.5 msec to execute,
it may change its priority to 3 or lower during its execution.
Should there be no higher priority task scheduled, it will
continue execution at this lower priority. Otherwise, it must
wait for the CPU. In this way critical functions can immediately
be given 0.5 msec of CPU time without seriously interfering with
the executive's cyclic functions that must be performed every
minor cycle.

Including priority 0 in this executive system would require
hardware interfaces to the computer. There would have to be a
method of generating an immediate external interrupt in the CPU
from the subsystem or device sending the interrupt condition.

16-6.5 Assignment of Core Memory

Operating memory can be organized as follows: the lower
core addresses are assigned to the executive, as shown in
Figure 16.4. The first locations contain system,registers, such

-283-

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE - CAMBRIDGE, "MASSACHUSETTS 02138 -(617) 661-1840



as the timer. The next block of core contains the executive's
program modules, followed by the executive work area. Within
this latter area the executive's queues, directories and tables
are resident.

There are several types of queues present in this area, such
as TCB queues and IORB queues. Since each type of control block
is a fixed size, the executive can maintain threaded lists of
unused blocks of core storage, each element of which contains
enough core for allocation as one of the types of control blocks,
respectively. Thus, when a task requires a control block, the
executive can remove an element from the appropriate queue of
unused blocks and assign this block to the task to be formatted
into a control block. Similarly, when the executive determines
a task is finished with a control block, that core that the control
block occupied is then returned to the appropriate queue of
unused blocks for later allocation.

Sufficient space must be allowed this part of core to
hold the maximum number of control blocks that will ever be
needed by application tasks at any given time. Should space be
unavailable, this is an error condition since more tasks are in
the system than its resources can accommodate.

Figure 16.4: Structure of Operating Memory

-284-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

System Registers

Executive Coding

Executive Work Area

Mission Compool

Phase Compool

Mission Resident
Application Software

Phase Application
Software

Dynamic Memory Pool



The compool will immediately follow the executive work
area and be divided into a mission portion, which is resident
in main memory throughout the flight, and a phase portion, which
is overlaid when a mission phase transition occurs. A similar
feature exists with the application software which follows next
in memory. The mission resident part comes first, followed by
the phase dependent part. Finally, there is the dynamic memory
pool.

16-6.6 Events

An event' is an occurrence of significance to the system.
There are a fixed number of events established for the system
identified in an event directory. There are several categories
of events recognized by the executive. These are for example
time events, I/O completion events, release of shared data, and
release of dynamic memory. If other external interrupts are
used in the system they may also be categorized as an event.
The final category of events include those which are controlled
via application software and used for task synchronization.

There are two types of events within this last category:
latched and unlatched. A latched event has associated with it
a binary state either on or off. Latched events may be signalled
on (posted) or signalled off (deposted) under application software
control via the executive. A latched event maintains its current
state until changed via signal command.. An important use of
latched events is to record the occurrence of an event within
the system so that if a task later wishes to use the occurrence
of the event as a criterion for performing a function, it can do
so without having lost all record of the events occurrence. An
unlatched event is only signalled on. It is signalled off
immediately after processing by the executive. In a sense an
unlatched event is a pulsed event analogous to a hardware interrupt.

An event control block (ECB) contains the current status of
an event. It is dynamically created by the executive when a
task is placed in the wait state. All events have system scope.
When the anticipated event occurs, bit 0 of the ECB is set to 1
to record the event for the executive. See Figure 16.5 for the
format of an ECB. The ECB contains a bit to denote if the task
is awaiting the event, a bit to denote if the event is completed,
and two threaded list pointers.

16-6.6.1 Event Handling

Within this software system there is a close relationship

-285-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 .'(617) 661.-1840



Format of Event Control Block

latched on exclusive

bits: 0 1 2 3

Figure 16.7: - Format of Event Descriptor Byte

-286-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

7

Figure 16.5: -



between task management and event handling. Tasks that are
placed in the wait'state remain there until the anticipated
events that they are awaiting occur. Then the event handling
facilities of the executive call upon the scheduler to place
these tasks in the ready state.

Tasks can be placed in the wait state in two ways.. First,
a task can voluntarily request the executive to place its TCB
on the wait queue until some anticipated event or events occur.
Second, when the scheduler attempts to place a task in the ready
state, the unavailability of a resource on the nonoccurrence of
some event(s) causes the task to wait until the resource is
freed or the event(s) occurs.

A TCB in the wait queue is associated with a threaded
list of ECBs, each corresponding to an event whose occurrence
the task awaits. In addition, each event has an associated event
list which contains pointers to all ECBs of tasks awaiting the
occurrence of the event. Thus, when an event occurs, each ECB
pointed to by the event list can be posted; i.e., record the
fact that the event occurred. An illustration of this control
structure is given in Figure 16.6.

After the event occurs, the scheduler is called. Its
function is to determine if any task awaiting this-event can
be placed on the ready queue. The criterion for this decision
is whether or not all (or some acceptable combination) of the
events a task is awaiting have occurred. If so,:the task is
placed in the ready state by having its TCB moved-to the ready
queue and.having its ECBs deleted. In addition, the scheduler
can now delete the event list associated with the event. Tasks
can perform a function based upon the occurrence of a single
event or upon the occurrence of some combination of several events.

Each task awaiting a non-software controlled event in one
of the first four categories can only await this one event and
not some combination of events. However, software controlled
events contain a predefined number of distinct events which may
be used individually or in combinations by tasks. Events are not
dynamically created by the system. Hence, software generated
signals must correspond to events defined at system generation
time. Each software generated event contains an event descriptor
byte, containing the characteristics and state of the event.
Figure 16.7 shows the format of the byte. Bit 0 describes the
event as latched or unlatched; bit 1 records whether the event is
on or off; and bit 2 describes the event as exclusive or non-
exclusive, a distinction we will presently explain. 

Within the class of unlatched events we will choose a
subset to be exclusive events. An important use-of exclusive

-287-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGEj, MASSACHUSETTS 02138 . (61'7). 661-1840.



-0i

a)

e 

a)a
) 

__

.
_

4-

.4
-c 

C

2

-2
8
8
-

-/

eL)

u
J~

to.r-I
te,1 140r-



events is to exclude tasks from use of some serially reusable
resource. When an exclusive event is signalled on, only the
highest priority task awaiting the event is placed in the
ready state. All other tasks awaiting the event- remain'on the
wait queue. When the highest priority task is made ready, the
event is then signalled off by the scheduler to be'sure no other
application task can interfere with'the exclusion process. This
use of exclusive events is analogous to Dijkstra's concept of
semaphores [12]. 

Note: it is the duty of the programmer to know if the
events he is using in his tasks are being used by any other

tasks. Without being sure of this fact, tasks can unintendedly
interfere with each other's execution and destroy the integrity

of their computations.

Also note: in the actual implementation of this executive
system, some categories of events will be immediately serviced
by the executive upon occurrence of the event, and hence, a
record of the event's occurrence will be unnecessary. These

events will therefore not need ECBs in their functional implemen-
tation. These events include release of dynamic memory and unlock-
ing parts of the compool.

16-6.7 I/O Scheduling

If we assume a data bus system, the hardware should be

mechanized in a way which allows bus operations to 'continue
independently of the CPU once an I/O command is issued to the

bus control unit. This means that the processor is only allocated
to the I/O function during an I/O channel command and should be

reallocated to the computation job stream upon completion of the

command. The design question for the software I/O control will
be how to schedule the I/O operation: should it be decoupled

from the executive program control and maintain its own'separate

I/O queue, or should it be inserted as an integral part of a

fixed sequence? For example, if I/O were operated each minor

cycle it would output data from the previous cycle, and input

data which is to be processed during the following cycle. With

this concept, however, the I/O must be predetermined and fixed, with

constraints similar to those for fixed scheduling of computational
jobs. Input and output then occurs each cycle, whether it is needed

or not. This approach will cause excess data to be put on the bus,

reducing its effective bandwidth and its capability for expanded
performance. On the other hand, scheduling I/O as a priority queue

based on demand, has many features in common with scheduling jobs
(e.g., priority, timing, conflicts',' etc.). An effect of the I/O

queue on the system is that several jobs may be
t
in a suspended state

awaiting I/O completions. Methods are available to avoid such delays,

for example, buffering for data in and out and issuing commands

only via a queue. The I/O algorithms used must combine the best

-289-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138,- (617) 661-1840



features of synchronous and asynchronous control.

16-6.8 Configuration Management

The topic of configuration management is very extensive,
covering many aspects of computer and system design. An adequate
discussion of this topic in relation to a space mission must treat
the areas of power on initialization, mission phase initialization,
error recovery, swtiching between simplex and redundant modes of
operation, and system synchronization. Such a discussion goes beyond
the intended introductory yet comprehensive nature of this chapter.
The interested reader is referred to [1].

-290-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



REFERENCES

1. Pepe, J., Advanced Software Techniques for Data Management
Systems, Vol. II: Space Shuttle Flight Executive System -
Functional Design, (Intermetrics, Inc., Cambridge, Mass.,
February, 1972, prepared under contract NAS 9-11778.)

2. Denning, P., "Resources Allocation in Multiprocess Computer

Systems", Ph.D. Thesis, M.I.T., May 1968.

3. Vyssotsky, V., et al,, "Structure of the MULTICS Supervisor",
Proc. FJCC, 1965, pp. 203-212.

4. Coffman, E., et al, "System Deadlocks", Comp. Surveys, 3(2),
June 1971, pp. 67-78.

5. Habermann, A.N., "Prevention of System Deadlocks", CACM,
12(7), July 1969, pp. 373-377.

6. Holt, R.C., "Comments on Prevention of System Deadlocks",
CACM, 14(1), January 1971, pp. 36-38.

7. Murphy, J.E., "Resource Allocation with Interlock Detection
in a Multi-task System", Proc. FJCC, 1968, pp. 1169-1176.

8. Coffman, E., et al., "Deadlock Problems in Computer Systems",
Proc. Conf. sponsored by Software World, U. Sheffield,
April 1970, pp. 41-48.

9. IBM Corporation, "OS/360 Supervisor and Data Management
Services", IBM No. GC28-6646.

10. Intermetrics, Inc., Development of an MSC Language and Compiler,
Cambridge, Mass., June 1971, prepared under Contract
NAS 9-10542.

11. Intermetrics, Inc., The Programming Language HAL - A
Specification, Cambridge, Mass., June, 1971, prepared under
Contract NAS 9-10542, MSC Document # MSC-01846.

12. Dijkstra, E., "Structure of THE Multiprogramming System",
CACM,11(5), May 1968, pp. 341-346.

INTERMETR'CS INCORTE·7'OCRAVN-291-

INTERMETRICS INCORPORATED * 701'CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617)`661-1840



itCmEDING PAGE BLANK NOT FILM]

CHAPTER 17

MICROSIMULATION IN SYSTEM DESIGN

17-1.0 Introduction

One of the more important techniques that the system designer
should be able to use in his work is simulation. Simulation has
proved to be an indispensible aid in designing digital computers
and their associated software. In particular in the aerospace
industry the experience of Intermetrics personnel with the Apollo
and Poseidon guidance computers has shown this statement to be true.
However, the proper use of simulation requires the system designer
to understand the different forms simulation can take,'their capa-
bilities and advantages. On the other hand, he must also know when
the simulator is being overused; i.'e., when easier design verifica-
tion would result from the use of different techniques.

Simulation of a system on a high (macro) level provides a
heuristic model of system performance. A common heuristic is, to
use statistical estimates of events occurring within the system.
For example, simulating the performance of an executive system could
include statistical estimates of the job stream, including job
execution times, arrival rates and the use of system resources.
These estimates then allow the simulator to'calculate performance
figures on the operation of the executive. We have already dealt
with macrosimulation in Chapter 6. We are now primarily concerned
with microsimulation; i.e., the bit by bit interpretive simulation
of a digital. computer's operation.

We will develop the topic of microsimulation by discussing
desirable simulator organizations and features. This discussion
will be augmented with Apollo examples. We will then see how the
simulator can be integrated into the total system design effort and
how it can aid the development and verification of the system soft-
ware. Simulation can also be an optimization aid in microprogram
design, a topic we will also treat. Finally, we will list the
advantages of using microsimulation in designing a system and look
at some specific systems, such as Apollo and Poseidon.

Preceding page blank |
-293-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS02138 '(617)'661"1'840:.



17-2.0 Features of the Microsimulator

Microsimulation of a digital computer, which we will call the

object computer, takes a program written for this computer and executes
every instruction and control function as the object computer would
in an interpretive fashion. The simulation is usually not carried down
to the logic gate level but only to the level at which information is
visible in the object computer. This usually means to the special
register level, e.g., program instruction counter, timers, accumulators,
index registers, etc. This bit by bit simulation is at the heart of
microsimulation. However, simulation is also a tool in system design.
Hence, most simulators contain diagnostic software aids for debugging
object computer programs. For aerospace applications environmental
models of the vehicle are also included enabling full flight, closed
loop mission simulations. We will now investiate some of these features
more deeply.

17-2.1 User Options

Simulators usually provide several categories of options that
the user can invoke during a run. These options can be divided into
initialization requests and diagnostic aids. They are provided to
help the user set up his simulation and to help him debug his programs
conveniently. Each option that is requested will usually require
extra simulator overhead in terms of execution time and the output
generated. Hence, they should be used judiciously.

The Apollo simulator [1] provides an excellent example of the
options a simulator should provide for its users. There are three
classes of special requests. The first two are primarily initiali-
zation and the third, diagnostic.

A. The first class exercises control on the simulation
from beginning to end. It includes specification of
the program to be simulated, starting location,
initial time and time limit for simulation, action to
be performed upon entering a single-instruction end-
less loop, whether to allow execution of instructions
in data memory, and descriptions of event types whose
occurrence is to be noted in the simulation output
listing.

B. Class 2 includes those requests that initialize or
modify the content of specific locations in the
simulated program or data areas. These changes are
done prior to the beginning of simulation. Thus, a
program need not be reassembled for it to be simulated
several times each with different initial conditions.

-294-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



C. Class 3 requests are triggered when a specified
location is accessed as an' instruction or data
during simulation or when a specified simulation
time is reached. These requests may also be
specified under combinations of conditions which
must be satisfied before the request can be execu--
ted. Examples of Class 3 requests are stopping 
simulation normally or in abort mode, listing
the current value of the simulator clock, listing
the content of memory, and turning,the execution
trace on or off. When an environment is part of the
simulation, this class of requests can include
environment action or printout requests.

Beyond what was included in the Apollo simulator,. other simula-
tor diagnostics, which we will now describe, can be very useful to
the system designer.

17-2.1.1 Stress Testing

The stress testing special request can be provided in a simula-
tor to help determine if combinations of application programs will
exceed their combined time budgets under the executed conditions of -
operation. This request reduces the speed of the object computer. If
a group of application programs is run in a simulation with a computer
whose speed is, say, 75% of the real computer capability, successful
operation may be interpreted to mean that no more than three-fourths
of the computer capacity has been absorbed. This special request
can thus be used to "diminish" the capability.of the computer until
a point is reached where timing requirements are not satisfied.
This level then is a guide to the amount of computer capability still
available for other software.

17-2.1.2 The Coroner Request

A "coroner" special request can be implemented in a simulator
for post-mortem diagnosis. The request causes storage of information
from each simulated instruction in a circular buffer of size n. If
the run abnormally terminates, a list of the last n instructions
simulated is produced. This list is a valuable aid in determining
the reason for the abnormal termination. However, the overhead
associated with this request requires it only be used when its cost
is outweighed by the enhancement of debugging efficiency.

17-2.1.3 An Alternative Approach to Diagnostics

The Deep Submergence System (DSS)'cqomputer was simulated at
the MIT Instrumentation Lab using a-different approach to diagnostic
aids. The triggering of a diagnostic was the same as in Apollo,
namely, by accessing a given location, etc. The difference is in how

-295-

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS,02138. (617) 661'-1840O



the diagnostics were implemented. In Apollo they were part of the
simulator coding, whereas in the DSS system triggering a diagnostic
transferred control to a user specified routine which was then
executed. The interface was achieved through a special language
allowing users to specify actions to be taken or to call routines of
other languages. This user-simulator interaction provided a type
of extensible simulator system.

As with all powerful systems the extensibility incurred
increased costs. One of these costs was the design and implementation
of an interface language. Another was the additional computer time
needed to assemble and link-edit diagnostic routines prior to simula-
tor runs.

17-2.2 The Environment

In simulating aerospace computers the simulated software must
often interact with the spacecraft and its environment. For
example, navigation programs must receive accelerometer input before
they can correctly update vehicle position and velocity. To enable
simulation of these programs an environmental model must be provided
for the simulator. A high degree of similarity must be maintained
between the real and modeled environments so that the simulated
computer can be subjected to computational loads and dynamic situations
closely approximating the conditions of the actual mission.

The environment for Apollo consisted of modeling spacecraft
dynamics, engines, optics, astronaut interactions, atmospheric and
gravity effect, motions of celestial bodies, etc. See Figure 17.1.
When, during simulation, the computer simulator encountered I/O
instructions, a program, called the communicator, would be invoked
to determine whether immediate interaction with the environment was
necessary. If calling the environment was necessary, all interaction
between the computer simulator and environment was through the communi-
cator. The communicator effectively decoupled the computer simulator
and environment and and reduced the frequency of environment updates.

In using the Apollo simulator the programmer was provided with
environment options. These include:

a) selection of environment programs and files
required to simulate the specific test flight
condition;

b) initialization of the environment to desired
conditions; and

c) specification of relavent interaction between
Apollo software and environment to be recorded.

To help set up initial conditions for Apollo simulations, a special
program was provided. Users normally ran this program with a convenient
reference system to specify the initial position and velocity of the

-296-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



SPECIAL
SIMSETUP 1 REQUESTS AGC INSTRUCTION SIMULATOR

IENV DATA CARDS

INPUT PROGRAMM COMMUNICATOR DISCONTINUITY IASTRONAU
INPUT PROGRAM

Figure 17.1: The Apollo Digital Simulator

-297-

INTERMETRICS INCORPORiTED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

I----- - AGCEDIT



vehicle and obtained from it an input deck of cards for the
simulator. Setup of simulations thus became less burdensome.

17-2.3 Rollback

A useful feature to be used in microsimulation is rollback [2].
Long missions such as Apollo require simulation time on the order of
hours. Should the host computer (on which the simulation is being
executed) malfunction, the simulation will abnormally terminate.
Upon restart one does not want to go back and duplicate the execution
of this simulation from the beginning of flight. By establishing
rollback points in the simulation this problem is avoided. At roll-
back times complete core and register dumps are taken, and this
information is put on a secondary storage device. Then upon system
failure the simulation can be restarted at the last rollback point
by loading memory with this stored information. The overhead
associated with rollback is well justified with long simulations,
such as Apollo. However, to prevent this overhead from becoming
too high the system designer must decide upon a judicious criterion
for establishing rollback points. That is, he must tradeoff the cost
of frequently storing rollback information with the savings in not
having to resimulate a large part of the flight.

17-2.4 Supporting Software [3,4]

The simulation facility usually needs other software besides the
microsimulator. Assemblers and linkage editors make up part of this
support software. The assembler allows programs to be written for
the object computer in a symbolic language. It translates these
source modules into machine language for execution. The output of
the assembler is the translated object module along with the symbol
table, relocating dictionary (RLD), and external symbol dictionary
(ESD) that are required by the simulator and linkage editor. The
assembler provides several capabilities:

a) the symbolic expression of source programs;

b) pseudo-operations for storage allocation,
instruction counter control, listing control, etc.;

c) macro and conditional assembly features; and

d) organization of source programs into modules.

These capabilities, such as the macro facility, can be made as
sophisticated as necessary for the particular application. However,
increased capability requires a larger implementation effort. For
example, the ability to separately assemble source modules requires
a linkage editor to organize the respective object modules into a
single load module ready for execution. The linkage editor performs
the following functions:

a) allocate storage in the object computer's memory for
each object module and load these modules into place;

-298-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840



b) resolve the object modules' external symbol references
using the ESDs;

c) resolve any relocatable addresses using the RLDs; and

d) selection of members from a library of standard object
modules specified to be included in the linkage.

When the linkage editor has performed all these functions, the resulting
load module is ready for simulation.

17-3.0 Design Issues and Structure of the Microsimulator

We have already raised one design issue in the last section by
showing two alternative approaches to implementing diagnostic-aids.
Other design issues are the use of higher order languages (HOL) in
implementing the simulator and the modular organization of the
simulator. Before getting into these topics which relate to physical
organization let us briefly look at how the simulation process can
be logically organized.

17-3.1 Logical Structure

The simulation process can be organized into four factors as
shown in Figure 17.2 . These are:

a) the user (USER),

b) the simulator itself (SIMULATOR),

c) the computer being simulated (COMPUTER), and

d) the simulation output (OUTPUT).

It is the logical interaction among these factors that we wish to
explore.

The USER is primarily interested in the COMPUTER. His interest
in the SIMULATOR appears only because it helps him control and examine
the COMPUTER. Figure 17.3 shows the paths of logical interaction between
the four factors as they appear to the USER. (The actual physical flow
of interaction is shown in Figure 17.4).

The control path labeled A in the two figures provides the USER
with the capability of specifying the load module to be simulated,
start-location and initial SIMULATOR clock setting, the maximum
allowable SIMULATOR clock setting ( to assure run termination), the
configuration of the COMPUTER (levels of redundancy, numbers of
spares, initial fault states, etc.), information relative to auto-
matic reconfiguration, illegal instruction detection, execution of
instructions in read/write memory, etc.

-299-

INTERMETRICS INCORPORATED 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840'



I -

SIMULATOR

COMPUTER

Computer being
simulated

L -_ ___

OUTPUT

Listing output from
simulation run

Figure 17.2: Basic Simulator: Input, Simulator, Output

-300-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

USER

User-provided information
which controls simulation
run I



/

a/
/

/

Figure 17.3: Simulator Logical Partitions

-301-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840



Figure 17.4: Simulator Physical Control Flow

-302-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



The primary control which the USER specifies follows path B.
By this path, and the return path C, the USER will be capable of
ordering entry to routines which he provides, upon the occurrence
of events or situations he specifies. The trigger-directives can
include time conditions, location reference (instruction or operand
access), and state changes (I/O, interrupt, hardware error detection
signals, etc.). Once his routines have been entered as a consequence
of a trigger directive, the USER is capable of accessing all locations,
registers, states, and conditions in the COMPUTER, and modifying
them as he sees fit. Through an interface language the USER may
implement actions based upon conditions of almost arbitrary
complexity, by simply programming the testing of these conditions
in his routines.

Control paths D and D' provide information for OUTPUT, such
as trace, flow-trace (output produced by branches only), interrupt-
occurrences, faults, or output directly from the USER.

Information is not required on path a since the USER only
interacts with the COMPUTER once the run starts and needs no
interaction with the SIMULATOR. The fact that the SIMULATOR is
actually doing all the work, including that of disguising the
COMPUTER's physical absence, is only important to the designer, not
the USER. Figure 4 shows that the COMPUTER is actually implemented
within the SIMULATOR, and that the control paths to it actually
interact via the SIMULATOR.

Path E of Figure 4 represents the closed-loop dynamic flow
capability which the USER can exercise within his interface-language
routines. These routines may in turn call routines prepared in
other languages to perform further processing. Using external
routines via this path allows the convenient addition of a data-
recording capability to the system to allow post-run processing
and the addition of almost any conceivable environmental model.
The means by which this is achieved simply consists of providing
library decks which specify the appropriate triggers and responses,
and which perform calls to the associated environment in accordance
with the environment interface. The kernel of the simulator needs
no modification when a new or modified environment is attached.
Thus, the required maintenance of the simulator is greatly reduced
in scope.

17-3.2 Coding in a Higher Order Language

As we previously mentioned one of the questions that the system

designer must face is whether to use a higher order language to code
the simulator. Coding the simulator in a HOL offers advantages and
disadvantages. It is especially advantageous in aiding the trans-
ferability of the simulator from one host computer to another. Should

-303-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



an application require the simulator to be implemented on two
different host computers, using a HOL minimizes the amount of
recoding that must be done when transferring to the second machine.

A second advantage is the efficiency in producing the simulator
coding that using a HOL can offer. MULTICS [5] experience has shown
that a HOL can be very efficient in coding a large system. However,
with a simulator as with most large systems there will be parts not
well suited for coding in a HOL. Normally these are pieces of coding
that must be executed very often. Any inefficient code here would
lead to a needless waste in execution time. For example, coding the
instruction execution parts of the simulator in assembly language
would result in large execution time improvements over HOL coding.
When the Apollo Block II simulator was coded for the Honeywell 1800,
an AGC instruction, such as add, included the following steps:

a) AGC instruction fetch

b) Increment AGC instruction counter

c) Check for need to service an interrupt

d) Check for presence of diagnostic request

e) Interpret the op-code (which had variable length)

f) Interpret the operand address, checking for
possible reference to AGC registers having
special characteristics

g) Fetch the operand

h) Perform the AGC add (ones-complement, with end-
around carry and overflow signal)

i) Increment the simulator clock

j) Check whether the next time-specified event
was now due for processing.

Careful design and assembly language coding enabled this sequence
to normally be executed in ten H1800 instructions. However, when
using assembly language, the designer must remember that it leads
to a more complex transferability problem. Thus, we see the HOL
approach can offer advantages and disadvantages depending upon the
part of the simulator in question.

17-3.3 Modularity

The use of modularity is another design issue that can be resolved
to good advantage in building the simulator. By organizing the digital
computer simulator and environmental model in different program modules,
the former can interface with several models of varying complexity.
Very often a programmer does not need a sophisticated environment in
testing parts of his programs. Using a simple environment whenever
possible reduces the high execution times a complex model would incur.

-304-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



This reduction in turn, leads to a less expensive software production
cost. Then when verification demands a full environment, modularity
allows a complex model to be interfaced with the computer simulator
as easily as a simple model. The additional advantages of modularity
are:

a) It is easier to use existing modules in the
simulator without having to duplicate coding. For
example, system output writers can be interfaced
with the simulator.

b) It is easier to expand the simulator. Building a
more complex environment or computer simulator can
be done independently of the other modules.

c) It allows utilization of structured programming
techniques. A topic we will discuss later.

17-4.0 The Software Design Process

The microsimulator is an important system design aid. By
properly integrating it into the system design effort it can aid the
development and verification of the software system. We may divide
the system design into four phases [6] as shown in Figure 17.5.

A. The software requirements are generated in Phase 1.
These requirements include analytic formulations,
interface specifications, and expected system perfor-
mance results. An environmental model of the sub-
systems, vehicle characteristics, etc., can demonstrate
the analytic concepts and generate the results to be
expected.

B. During Phase 2 the systems and application programs are
designed, coded, and tested. These programs are locally
tested using the environmental simulator.

C. The purpose of Phase 3 is to show the software meets the
performance criteria of the software requirements generated
in Phase 1. This is done by interpretive microsimulation
of the airborne computer with an environmental model.
Phase 3 is a feedback verification process in that any
poor software performance with respect to the environment
can lead to a modification of the Phase 1 and Phase 2
performance. Unsatisfactory performance can be due to a
faulty original design, misinterpreted software requirements,
and errors in coding. When Phase 3 is satisfactorily
completed, the software requirements will have been met,
the design concepts validated, and confidence established
in the software implementation.

-305-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



uJ

L
U

C
O

rnPc4c)r.0a, a1

ci)

U
)

rd4Jk.L
l

L
U

C
-

-3
0
6
-

IN
TE

R
M

E
TR

IC
S

 
IN

C
O

R
P

O
R

A
TE

D
 

· 701 
C

O
N

C
O

R
D

 A
V

E
N

U
E

 
· C

A
M

B
R

ID
G

E
, 

M
A

S
S

A
C

H
U

S
E

TTS
 

02138 · (617) 661-1840



D. Phase 4 is a hardware verification phase. During this
phase any hardware interface problems are corrected,
and the performance of the entire system is demonstrated.
We use real not simulated equipment, including flight
computer, subsystems and interfaces. The software is
taken from the realm of simulation to the realm of real
equipment where design flaws can no longer be masked
by model presumptions and inaccuracies.

This phase helps establish the hardware/software integrity
of the entire system and its ability to perform the
real mission.

17-4.1 Overuse of Simulation

A word of caution at this point is in order. The software design
process uses microsimulation for verification, but only as part of a
well structured process. Before simulation is used, the analytical
concepts are generated, and the software structured and coded. The
proper emphasis on Phases 1 and 2 can prevent excessive use of the
simulator. For example, Dijkstra [7] has taken a constructive approach
to program correctness. Programs can be described in successive
stages (top down structuring). At first a program can be specified in
its most abstract form. Then successively more concepts used at one
level can be refined in going to a lower level of design. The last
level (the program module) leaves only the machine interface to be
explained.

Such a systematic constructive approach to structuring software
in Phase 2 can lead to a manifest reduction in what needs to be
verified by microsimulation in Phase 3. In short, the system designer
should not rely on microsimulation as his sole means of s.ystem
verification.

17-5.0 Factors Influencing Simulation Speed

The speed of the microsimulator is an important concern of those
defining system verification procedures. This speed is influenced by
several factors.

A. We have already seen that the complexity of the environment
is an important factor determinating simulator speed.
During lunar landing simulations 75% of the Apollo simula-
tion time was consumed in updating the environment.

B. The number of instructions executed on the host computer
for each flight computer instruction is another factor.
This figure often depends upon the architectural differences
between the two computers in terms of instruction set,
word length, etc. The average is 10-25 instructions [6].

-307-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



C. The speed of the host computer and flight computer
also influence simulator speed. However, this ratio
of speeds is only important during a duty cycle when
the simulator is executing flight compter instructions.
During idle periods of the flight computer, the simu-
lation can be advanced through these periods to improve
overall speed. This capability of advancing simulation
is an important feature that should be part of the
simulator.

D. The number of diagnostic aids that the user requests
has a heavy effect upon simulation speed. Full
instruction traces, for example, can cause an order
of magnitude increase in simulation time.

17-6.0 Simulation and Microprogramming

Traditionally, digital computers have been designed with
fixed instruction sets regardless of their intended use. The
recent use of microprogramming [8,9] in digital computer design
now enables building machines whose instruction sets can be tailored
to a specific application. The instructions chosen can be optimized
in terms of economic coding and quick execution of the intended
algorithms.

The system designer can use microsimulation as an aid in this
optimization process. To do this the computer simulation must be
carried down to the microinstruction level. Combinations of micro-
instructions can then be simulated to indicate to the designers
which instruction organizations will be the most powerful. Kleir
and Ramamoorthy [10] have recently presented a survey of optimiza-
tion strategies.

One possible approach is to optimize by designing an instruction
set for the direct execution of a higher order language. Foster [11]
indicates that a 30% reduction in memory and a 25% reduction in
execution time is possible with this approach as opposed to conven-
tional design. However, an increase in needed circuitry is also likely.

17-7.0 Advantages of Microsimulation

One may reasonably ask the advantages of using a microsimulator
for software development rather than using an actual object computer.
There are several advantages to the former approach.

a) Code for the object computer need not be altered
with debugging software. The simulator provides

-308-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



diagnostics which can be invoked by the unmodified
flight code.

b) By coding the simulator in a reentrant fashion it
can support multiple, simultaneous users. This
fact increases the simulation facility's throughput.

c) It allows simultaneous hardware/software implemen-
tation of a specified system design.

d) The microsimulator allows stress testing for
software evaluation. Reducing the speed of the
object computer or the size of its memory can
easily be done in a microsimulator.

e) Diagnosing software is easier with a simulator.
Functions such as the coroner and interpretive
traces reduce the debugging time needed by a
programmer.

17-8.0 The Poseidon System

The Poseidon Guidance Computer serves as an example of a system
whose overall design was aided by microsimulation [12]. Once the
computer design and mission algorithms were specified, a microsimu-
lator was built concurrent with hardware implementation of the
computer and programming of the algorithms. Frequent contact and
cooperation among the hardware and software designers enabled
optimization of the overall design. On several occasions programmers
discovered ways of implementing the Poseidon algorithms that enabled
hardware savings in terms of not needing special registers which
otherwise would have been included in the computer. These improved
algorithms were then simulated to check their validity. On the
other hand, hardware designers could help programmers by specially
tailoring Poseidon instructions to their needs since this was a
microprogrammed machine.

Once the algorithms were completely coded they were tested
with closed loop mission simulations complete with environment.
See Figures 17.6 and 17.7. The simulations presented a wide range of
flight conditions so that the formulation or tne algorithms and their
coding was shown to be highly reliable. Tne success of this approach
to system design is demonstrated.by the accurate and efficient
performance of the Poseidon Guidance System.

-309-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



.,A 

oH
 

o 
H

*d 
*d

 
)- 

44 
o
1
 

.4 
0 

.rl 
0

. 
i 

0

4. 
o:i 

;> 

H
 

*,14 
0*d 

P 

0) 
Z

H
 

1
.4

0
 

01l c

0HV
)U

)
U

)

E
n

4

4.)0 ,'1.)04.)r.414 w
r

o)

IN
TER

M
ETR

IC
S INCO

RPO
RATED 

* 701 C
O

N
C

O
R

D
 AVENUE

-3
1

0
-

* C
A

M
B

R
ID

G
E, 

M
ASSACHUSETTS 

02138 · (617) 661-1840

U
)

4) a) t)4,.)V
)

0.,4(,I

C
)

.e U4J

r-IO
~

P, $4E
n

10U
)

0toU
)

0 .r4

kDH$-4rqr:4



G
-

'-44 
a 
t0

0 
o

IO
 

o

0 
4
-4

 
0

4 
0
 

4
) 

4o
(d

 
p4 

r. o

d 
0 

00 -
*d

. 
1.4 
P

U
)

43 
U

-r, 4

.
-.4 

O
 

0
H

 E
P

 
() 

44

I

r-m(P
140to

H
O

.

r4

.
'
 

.o 
o

·-4 
~
4

t) 
>

.£LI)
1 0)

--re1404)[(/,-4

41-4

-,4
rl a 

L
I

0l

4.304

4.i

lol

0

4I
0 

)

m
 

i
w4 

If

0
tr.U
UN 

0)

V
 

.0
(4

 
P4

la
.o

o
0om
 

14

9 
ok

II 3

I0 
tl' 

tJ

I 
-t-4 

4J

.0

I 
.

I
.0

I I 
) I I

04-1-
,0 try

.cl 0 O(I 0.5

-3
1

1
-

IN
TER

M
ETR

IC
S IN

C
O

R
PO

R
ATED

 
· 701 

C
O

N
C

O
R

D
 AVEN

U
E 

· C
AM

BR
ID

G
E, M

ASSAC
H

U
SETTS 

02138 · (617) 661-1840

I

iI _7
I



REFERENCES

1. Mimno, P., Digital Simulation Manual,(M.I.T. Draper Lab.,
Cambridge, Massachusetts, R-599, January 1968).

2. Chandy, K.M., and Ramamoorthy, C. V., "Rollback and Recovery
Strategies for Computer Programs", (IEEE Trans. on Comp.,
C-21(6), June 1972) pp. 546-555.

3. Barron, D.W., Assemblers and Loaders, (American Elsevier,
Inc., New York, 1969).

4. Donovan, J., System Programming, (Prentice Hall, New Jersey,
1972).

5. Graham, R.M.,"Use of High Level Languages for Systems
Programming", (M.I.T. Project MAC Technical Memorandum 13,
September 1970, AD-711-965).

6. Saponaro, J., Advanced Software Techniques for Data Management
Systems, Vol. I: Study of Software Aspects of the Phase B
Space Shuttle Avionics System, Ontermetrics, Inc.,
Cambridge, Mass., February 1972, Technical Report #12-72,
prepared under Contract NAS 9-11778).

7. Dijkstra, E.W., "Structured Programming", in Software
Engineering Techniques,(NATO Science Committee, Rome, Italy,
October 1969 ) pp. 84-88.

8. Husson, S.S., Microprogramming: Principles and Practices,
(Prentice Hall, New Jersey, 1971).

9. Davies, P.M., "Readings in Microprogramming", (IBM Sys. J.,
11(1), 1972), pp. 16-40.

10. Kleir, R. L., and Ramamoorthy, C.V., "Optimization Strategies
for Microprograms", aEEE Trans, on Comp., C-20(7),
July 1971), pp. 783-794.

11. Foster, J.R., "Development of a Higher Order Language
Architecture", (NAECON '71 Record), pp. 201-205.

12. Pepe, J., The Structure of the PGC Simulator Program, (M.I.T
Draper Lab., E-2435, August 1969).

-312-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



CHAPTER 18

BENCHMARK PROGRAMS AS AN AID

TO COMPUTER PERFORMANCE EVALUATION

18-1.0 Introduction

Several methods and techniques have been used by the
computer industry to evaluate and measure the performance of
computer systems. Among these methods are: cycle time instruc-
tion mixes, kernal problems, benchmarks, synthetic programs,
simulation and performance monitoring. No computer evaluation
technique devised to date can guarantee selection of the one
computer system which best represents the particular applica-
tion requirements. There are some techniques that can be use-
ful as part of the candidate system selection process.

Certainly, factors other than performance are of prime
importance and usually dominate the selection procedure. These in-

clude credibility of the manufacture, experience with the com-
puter in similar applications, off-the-shelf availability,
undesirable features, space qualification costs, general
technology and costs. All of these factors are part of the
total selection process. The usual approach is to evaluate
each of these factors, including performance for all candidate
machines, and then to weigh each of the factors as to importance
to the application and select the computer based on total
evaluation. Computer performance therefore is only one of the
factors and usually turns out to be between 5% - 15% of the
total selection algorithm with factors of cost and credibility
of the manufacture dominating the selection.

It is the purpose of this chapter to present a review
of the methods used to evaluate system performance in select-
ing a computer and to discuss their advantages and limitations.
Since aerospace computers and their environments are different
than commercial installations, a higher language benchmark
approach is described which may have use in comparing performance
for large data management system applications such as the space
shuttle or space station program.

-313-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



I 
I

1 
I 

N
 

CN 
7n 

f

I 
I 

I 
rN

 
n 

I 
I 

H
i 

H
 

(N
 

N
 

m
 

(N

H
 

-4 
N

 
(N

I 
I

0
') 

0
') 

0
') 

(N

H
 

H
 

(N
 

(N
 

C)n 
m

 
c') 

N0)

03
0 

r

(8 
Ca 

~ 
4- 

4 
4

H
. 

.
C.) 

0. 
q
-

,y
 

U
 

-
rd

 
0

E
 

rn
 

(1) 
rl 

, 
3

a) 
r 

a) 
) 

4S 
@

 
r* W

$4 
O

 
r- 

9 
r-

H
 so1 

S 
0 

C) 
1 

L
a8

E-4 
z 

Ef) 
U

) 
zm

 
u)

-3
1
4
-

IN
TER

M
ETR

IC
S 

IN
C

O
R

PO
R

ATED
 

· 701 C
O

N
C

O
R

D
 AVEN

U
E 

· C
AM

BR
ID

G
E, 

M
ASSAC

H
U

SETTS 
02138 · (617) 661-1840

a) 

Cc e C
)

U
O

(n

k)C
)

~r~

C
)C

)

o e
a
0
ak

3 O
U

d

C
)U

)
a rnr0) 

a
0 

4'

3 4

Z
 

Wo
4)0U

)

3C
(L)

Z
 

10C
4

00-44-i
(13Hrx'4-4 co

W0a)C
a

0p.'

0

C
O

0 
0

-) 
a)

Z
-)

0
>

1
0
4

C
)

0
,

C,1

04

O
w

C
>

4
O

)

.3
Wa)

C
4

4.) 
>

U
)C

a _d

c)u4 Jo 00.)3C
u

0 r 0-4 oO
uC
)

00 a., o7fl

-.4C
a

-4

o 
cl

H
 

-o

' 
Q

 
u

C
a

J
 

>
.
 

-
) 

04

E-4 
.

U
)

I 
H

)n

HU0 WIc)U0E
~

HHHUc)

E 18H
-

C
)

a,.p)cl0-4:j

I
II

I



18-2.0 Review of Computer Performance Evaluation Techniques

This section presents a review of the techniques which
have been used in the past for measuring performance. Lucas [1]
has categorized the various performance evaluation techniques
as presented in Table 1 as to their applicability for evaluation
of both existing and non-existing systems and for both software
and hardware. This chart is based on a wide application of the
systems, primarily commercial as opposed to special aerospace
data management systems, and provides some general guidance
for the usefulness of the various techniques. The rest of this
section presents a description and discussion of these techniques
with some illustrative examples.

18-2.1 Cycle and Add Time Comparisons

The simplest and earliest used computer performance
evaluation technique was based on a comparison of cycle time and/
or add time. The shorter the memory access time, cycle time,
and add time, the higher performance rating for the computer.

This technique is still used very often as a gross measure
of computer performance particularly in the military and aerospace
computer industry. However, it is obviously not sufficient as
a fine comparison of performance for several reasons:

a) the organization of the machine is ignored;
(e.g.,byte vs. word); varying word sizes are
ignored;

b) special features, such as asynchronous
properties of the architecture are ignored
(e.g., instruction look-ahead);

c) it ignores differences in the address structure
of the machine (e.g., single or double addresses).

For a modern machine no one instruction can be considered
as an adequate evaluation of the hardware, and consequently
any use of this approach should be limited to only "gross" level
comparisons.

18-2.2 Instruction Mixes

A more refined application of add time comparison technique
is the instruction mix. This is a selected frequency distribution
of instruction classes on types which best represent the system
applications or job stream. The performance P of a computer is
then taken as

v
P = N t

r=l
-315-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



TABLE II - The Gibson III Mix

INSTRUCTIONS UNIT WEIGHT

Move one word from main memory to the
accumulator. Fixed Point

Floating Point
Store Accumulator
Move 500 words located contiguously in main
memory to 500 other contiguous main memory
locations. Average of.
Move 500 words located randomly in main
memory to 500 contiguous main memory
locations. Average of.
Conditional Branch Result Zero

Result Negative
Compare two words and set Indicator
Fixed
Floating

Unconditional Branch
Fixed Point Mulitply(word) A x Be-C.
all in memory
Fixed Point Divide(word) A/B+C.
all in memory
Fixed Point Add(word) A + B- C.
all in memory
Shift one character(6 bits)
Logical AND or OR
Address Modification-Indexing
Address Modification-Indexing and Indirect
Addressing
Address Modification-Indirect Addressing
Floating Point Add(word) A + BSC.
all in memory
Floating Point Subtract(word) A - B+ C.
all in memory
Floating Point Multiply(word) A x B- C.
all im memory
Floating Point Divide(word) A/B +C.
all in memory

7
7
7
3

2

6.5
6.5

3
3
1
6

2

7

4.6
1.7
15.0
4.0

19.0
5.1

5.1

5.1

3.2

135.1

TABLE III - A Commercial Mix

Compare 1 character
2 characters
3 characters
6 characters

10 characters
12 characters

More 1 character
10 characters
60 characters

Branch Taken
not taken

9

5
7
1

1

3
1
1

2

15

13
Add 3 characters 1
Indexing -316-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



where tr is the time taken to perform instruction type r)and
Nr is the number of type r instructions to be performed.

Perhaps one of the best known of mixes is the Gibson
mix; the origin of which is not known. There are at least three
different types of Gibson mixes which have been readily used by
equipment manufacturers for computer performance evaluation. The
Gibson III mix illustrated in Table II has 24 categories or
instruction types and represents a comprehensive list. Most
mixes have only six to eight types of instruction requiring
instructions to be averaged to obtain tr .

Other instruction mixes available have been reported by
Knight [2,3] and Arbuckle [4]; and a typical Commercial Mix is
illustrated in Table III.

As a final instruction mix example, Table IV defines
a real time radar tracking and missile control system. Table V
provides a comparison of several aerospace computers using this
instruction mix.

TABLE IV - REAL TIME RADAR TRACKING & MISSILE CONTROL MIX

INSTRUCTION TYPE PERCENTAGE WEIGHT

1. Load acc with contects of memory 25%
location

2. Store content of acc in memory 14%
location

3. Shift 8%

4. a) Transfer unconditionally 10%
b) Transfer negative 1%
c) Transfer acc zero 1%

5. Exclusive OR operation Register 7%
to Register

6. Move Register to Memory under control of 5%
bit mach

7. Add 8%

8. Subtract 1%

9. Other 20%

-317-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



TABLE V - COMPARISON OF AEROSPACE COMPUTER AVERAGE MIX TABLE3

*Single CPU

-318-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

INSTRUCTION ESTIMATED EST. MAX*

COMPUTER EXECUTION TIMES WORD SPEED ON MIX PROCESSING

SYSTEM (ADD/MULTIPLY/DIVIDE) LENGTH TABLE 3 KIPS SPEED

1. Hughes 4400 1.4/6.0/10.8 32 410-417 5-600

2. Litton 3070 2/8/8 32 587 4-500

3. CDC Alpha-l 2/9.7/17 32 447 350-450

4. RCA-215 3.3/7/16.5 32 305 2-300

5. Singer 4.1/8.5/8.5 32 168
SKC-2000 (2.5 us memory) 200



The instruction mix represents some improvement over a
pure cycle time or add time comparison since it considers
more instructions of the computer. However, there are several
difficulties:

a) There is no simple means of determining
weights or percentage of instructions in
each class, which is representative of the
application.

b) Generally mixes ignore any I/O or interrupts.

c) The full power of the instruction repertoire
of a computer may be ignored by not being
included in the mix.

d) There can be difficulties in using manufacturer
specified instruction executiom times,
particularly when instruction time is variable.

e) Some of the same factors ignored in the cycle/
add time comparison are also applicable to
mixes. (e.g., word length, size ignored, etc.).

18-2.3 Benchmarks

As a general definition, a benchmark is a representative
section of code executed or timed to give a measure of machine
performance. For purposes of this report, three categories of
Benchmarks are identified and termed: Kernel problems,
Existing Programs, and Synthetic Programs.

18-2.3.1 Kernel Problems

A kernel problem is an algorithm which is coded for the
machine and is timed. The timing is generally based on manufac-
turer specified execution time. Kernel problems are generally
simple algorithms which are representative or typical of the
application and differ from the other benchmarks in that they do
not include general I/O or executive interfaces.

Some examples of kernel problems which have been used
are polynomial evaluations, matrix inversion routines, table
lookup, evaluation of special formulas, etc. Auerbach Corp.
has developed a series of kernel problems which have been used
to illustrate computer performance. These include sort problems,
matrix inversion and others. Table VI is included to illustrate
the result of an Auerbach matrix inversion kernel problem as
operated on a Honeywell 632 computer.

-319-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1'840



HONEYWELL H632

hlIAT'IUX INVElI.SION

Stl, Idard I'VoblhAln Estimates

I1asic parameters: . . . gcneral, non-symmetric
matrices, using floating-
point to 6. 2 decimal-
digit precision.

Timing basis: ......... . using estimating
procedure
outlined in
Users' Guide
5.200. 312.

Time in Minutes
for Complete
Inversion

0.01

L .- -u - ' - 100 2 '4 1,000

Size of MatrLx
(Roman numerals denote standard System Configurations.)

TABLE VI - AUERBACH KERNEL PROBLEM BENCHMARK

-320-

INTERMETRICS INCORPORATED .701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

b~4U:lU0I ~LU



This type of benchmark has an advantage over mixes in
that, although it is machine independent, it utilizes more
instructions of the machine and can employ special features
of the machine, usually ignored in a mix, to solve the problem.
However, it does not generally include I/O or executive
interfaces or multiprogramming considerations. Also,
architectural factors in word size, etc., may still be ignored.
Finally, it is not completely representative of the actual job
stream. Although kernels can be combined to reflect the job
stream, they are generally useful only as a relative measure
of computer performance.

18-2.3.2 Existing Programs

This type of benchmark uses programs which exist
(usually coded in a higher order language, such as COBOL,
FORTRAN, etc.), and which can be compiled, executed and timed on
the machine under evaluation. Since compilers for these
languages exist for many computer systemsjit is an approach
often used in commercial computer acquisitions. The approach,
however, contains both a measure of compiler and computer
efficiency. This presents the difficulty that the performance
measure for the power of the machine is potentially influenced
by the performance of the compiler. (I.e., a machine with an
efficient FORTRAN compiler can stand out). However, an approach
to assess this difference is to code some of the routines in
machine language and compare these to the compiled output of the
same routine. Also, assessments of the multiprogramming aspects
of the operating systems can be made by operating the benchmark
programs first in series and then under the full multiprogramming
features of the operating system for the computer.

18-2.3.3 Synthetic Benchmark Programs

A synthetic program is a type of benchmark in which an
application program is coded for execution in the environment
of the machine. It is coded with I/O and interfaces to the
operating or executive system environment. It can be coded in
either a higher level language or in machine language. In this
sense it combines the features of both kernel problems and-
benchmarks.

The advantage of this type of benchmark is that the program
can be prepared to reflect the actual application or to
achieve measures of performance. Its major disadvantages are the
costs associated with development of the benchmark and with its
execution.

-321-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



An additional disadvantage is that in aerospace
computers the operating environment and executive system are
not usually known beforehand and consequently assumptions
must be made about these interfaces. If necessary, these
may even be partially added to a part of the benchmark
for execution.

18-2.4 Simulation

The most powerful technique for evaluation of computer
system performance is through simulation. Simulation can
be used at varying levels in evaluation of computer system
performance. It is flexible and enables both microscopic and
macroscopic evaluation of computer performance as discussed in
previous chapters of this report.

The major drawback of simulation can be its cost. A
relatively high development cost can be encountered depending
on the scale of the simulation development and availability of
existing tools.

Since Simulation has already been discussed in Chapters 6 and 17,
it will not be discussed in detail in this chapter.

18-2.5 Performance Monitoring

This technique is used to collect information on the
operation of a system for purposes of performance evaluation via
hardware or software. It is generally used in conjunction with
an existing system to determine bottlenecks in throughput or to
evaluate change in hardware or software. Since this approach
is discussed in Chapter 10 of this report, it will not be discussed
in detail in this chapter. In addition, it is probably not an
acceptable technique for aerospace computer selection since it
requires the execution of the system.

18-3.0 Review of the Problems of Evaluation Techniques

Ideally the comparison of two candidate machines could
be accomplished after the fact by proceeding to do the job
on both, and then determining which one would perform better with
respect to cost and execution time. Of course this is not
practical. At the other extreme, people try to evaluate the
instruction set of a machine by postulating some mix of instruction
types and then evaluate the machine's execution time and memory

-322-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



needs based on these instruction types. Memory tends to
be the major cost in the hardware of a computer and hence memory
size often becomes the measure of system cost. Unfortunately,
every machine has a different architecture and a single postu-
lated job mix becomes meaningless. What is really desired is
to know how the machine performs when doing useful work and how
well it does it relative to other machines.

18-3.1 Benchmark Programs and Problems

Often benchmark programs have been devised for compara-
tive analysis, but they are seldom representative. They usually
consist of a relatively simple set of routines that do some
well-defined tasks such as matrix multiply, sort, etc., but these
ignore the real characteristics of a job's execution and are
inadequate. It is more important to know how the machine executes
programs in the application environment. Subroutine calling and
exiting, saving of special index registers, linking conventions,
and addressing are of interest, but they are important only to
the degree that they are utilized in the execution of actual
programs.

The approach of using benchmarks is often followed in
selecting a computing system by a general purpose commercial
computer facility. This is aided by the widespread use of
higher order languages. If Cobol or Fortran programs exist that
are "representative of the daily workload", they are compiled on
the other machine'and relative comparisons made. The software
(i.e., the compiler) as well as the hardware is tested in this
fashion. It is only the success of the combinations of both
that can produce good results and merits the ranking. It can
be argued therefore that fair and reasonable overall conclusions
may be obtained.

This approach, however, does not seem to be applicable
in the case of aerospace data management computers. One of the
primary reasons is a lack of compilers for aerospace computers.
However, this does not rule out the possibility of a comparison
of computers with respect to their performance in a compiler
generated environment.

18-3.2 Cost of Determining Performance Evaluation

Another significant aspect of the performance measurement
problem is the cost associated with determining computer perfor-
mance. That is the time of programmers to devise and code kernel
problems or benchmark programs and to collect and present the
performance measurement results can be expensive. However, the
costs must be evaluated in terms of the total acquisition costs.
That is, if a single $40k computer for a single application is
being purchased, then spending $100k in evaluating candidate

-323-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



systems performance is not reasonable. If, on the other hand
50-100 computers each $150-300k are being purchased over a five-
year period with $25 million of operational software, it
definitely is appropriate to spend a reasonable amount of dollars
in evaluating various candidate computer systems.

18-4.0 Higher Order Language Benchmarks for Aerospace Data
Management Systems

Two higher order language benchmarks techniques are
suggested as approaches to evaluating performance of several
candidate computers for a particular aerospace Data Management
System. By utilizing a higher order language more representative
code of the application can be generated at lower cost and in a
machine independent fashion. In other words, a more comprehensive
benchmark can be obtained.

Both approaches utilize a hand translation of statements
into the various candidate machines to obtain run time and memory
useage for each machine. In addition, both approaches obtain
benchmark statistics by execution of the benchmark in a general
puspose machine for which there is a compiler. Both static distri-
bution of statements (i.e., the number of times a statement
exists in the program) and dynamic distribution of statements
(i.e., the number of times statements are executed), are collected
on the general purpose machine. The difference in these approaches
is in the use of these statistics as described below.

18-4.1 Hand Compiled HOL Benchmarks

One approach to obtaining computer benchmarks involves
creation of a pseudo-compiler for each machine, doing a hand
compilation on representative programs, and then examining the
efficiency in terms of memory and timing of the resultant code.
This method also eliminates one source of discrepancy, the
bagaries of the individual compiler writers and their chosen
techniques. Since the same people and the same techniques would
be used on all of the compilers, it can be argued that the
results would be a fair measure of each machine's capabilities.

This approach could be as follows:

a) Data Management application software (guidance,
navigation, checkout, etc.) that seems representative,
will be coded in a HOL. Besides these real examples,
other coding will be generated that is weighted by
the statistics such as have been gathered by

-324-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840



Wichmann [5] and Knuth [6] in their surveys
of existing source code.

b) The code will be compiled and executed on a
commercial machine for which the HOL exists in
order to authenticate this code.

c) A run time environment will be postulated for
each candidate computer system with
enough detail to define the working environ-
ment. For instance, if the machine has a
"general register" set, then some registers
will be accumulators, some will
be base registers, and at least one will be a
pointer.

d) A mechanical translation policy will be developed
to transform the "intermediate code" of the
HOL into equivalent assembly language statements
for each computer. This need be done only for
the various HOL constructs that are used in the
benchmark programs and not for all the possible
coded statements.

e) A manual translation of the actual intermediate
language will be performed.

f) Statistics will be obtained from the translated
code. Size data can be gathered by direct
examination of the resultant code. Speed infor-
mation can be inferred by counting instructions
as they would be executed and by using the
manufacturer's supplied data regarding machine
instruction times.

g) Summary tables and conclusions will be drawn
concerning the experiments. In addition to the
data produced, both the good and the weak points
of the individual computers uncovered during
the translation process, including subjective
evaluations concerning the suitability of the
various computers, should be analyzed.

18-4.1.1 Sample FORTRAN Benchmark

The following is a simple example of a 3-line FORTRAN
benchmark. For purposes of illustration, the statement
of the example has been kept small since more complicated
or realistic examples should include sequences of functions,
subroutine calls, I/O, etc.

-325-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



The only unusual aspect to the sample is the frequency
of usage of formal parameters or dummy arguments as they are
called in FORTRAN. However, they were intentionally chosen to
emphasize the importance of efficient subroutine linkages and
parameter handling. FORTRAN was chosen as the higher order
language only because it was then possible to hand compile the
statements on several computers. In fact, the model of the run time
environment that was assumed was more dynamic than is customery
for FORTRAN. The assumption was made that a base register or
index register was required in order to access even local variables
as well as formal parameter pointers.

The example is a FORTRAN subroutine named BLA:

SUBROUTINE BLA(A,B,C)...
DIMENSION A(6),X(6).....
l=I+l ...................
A(I)=A(I+3)-X(I+4)......
B=C-2.0*A(5)+3.0........
RETURN
END

The benchmark was compiled or hand coded for nine
computers. It was compiled on both the IBM 360 and PDP-10
computers using the Fortran G Compiler and hand coded for
several Flight computers:

IBM 4Pi AP
UNIVAC 1832
SINGER SKC-2000
Autonetics D-216
Control Data CDC ALPHA

Two other non-flight computers were also hand coded:
the PDP-11 which is a modern minicomputer with an interesting
architecture and the Burroughs 6700 which is a stack oriented
machine designed to execute a higher order language.

Since the benchmark is very small, no comprehensive state-
ments on performance can easily be made. However, the following
comments should be made:

1) Since the calculations were simple, no use was
made of multiple accumulators and consequently
those computers have not had their full
computational power expressed in the result.

2) A dynamic addressive environment was assumed
in the benchmark as expected in a real time
aerospace environment. Consequently the
availability of both base registers and either
indexing or indirect addressing features were
favored.

-326-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



3) It is worth noting that the Burrough 6700 with a
polish stream and stack oriented instructions was
coded rapidly and without optimization and concern
for index registers and accumulator assignments.

TABLE VII - RESULTS OF FORTRAN BENCHMARK

EST.

# OF # OF # OF TOTAL EXECUTION
COMPUTER INSTRUCTIONS 16-BIT WORDS CONSTANTS MEMORY TIME

IBM 360 16 31 8 39 16.06

DEC PDP-10 14 28* 0 28* 80.28

IBM AP-1 14 21 0 21 34.36

CONTROL DATA 18 33 4 37 51.66
ALPHA

UNIVAC 1832 13 23 4 27 54.75

AUTONETICS D216 20 22 4 26 53.75

KEARFOTT SKC2000 16 20 4 24 62.38

DEC PDP-11 15 27 0 27 36.80

BURROUGHS 6700 30 22.5 0 22.5

*18 bits is the word quantum in this case

18-4.2 Statistical Approach to HOL Benchmark

Since it can be very expensive to fully translate bench-
mark programs into several candidate machines on a large enough
scale to obtain a "representative" sample of machine code, an
approach is suggested in applying statistics of statement
static and dynamic frequency as derived from a general
purpose computer. With the dynamic frequency of
occurrence of HOL "operations" for the particular
application, it is then possible to obtain a relative
measure of execution time for each machine.

-327-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



This approach to evaluation is made by extending
a method presented by B.A. Wichmann[9]. Briefly, his method
consists of defining a representative set of statements of the
HOL,(in his case Algol) and making a set of time measurements,
Tij, for each representative HOL statement i (i=l to n) on
machine j (j=l to m).

He then models these measurements as:

T.ij = F Sj R..j 1 < i < n
i i i :1 < j < -m

l<j<m

where Fi is a measure of statement complexity, & is a measure
of machine performance, and Rii is a factor related to the
machine's relative performance for a particular statement.

The assumption is that the execution time of a statement
is somehow directly proportional to the "complexity" of the
statement and to the "performance" of the particular machine.
The Rij is then a measure of how much the particular Tij measure-
ment varies from the ideal.

After obtaining the T:. measurements, the next step is to
use these mn values and to de{ermine the m + n values for the
Fi and Sj. This is a valuable approach if the postulated measure-
ments Ti. are the only ones obtainable. However, the results
are les' than satisfying since the relative frequency of dynamic
occurrence of the statements of the actual application is not
taken into account. An extension of this approach is proposed
as a more satisfying view of the problem of determination of
statement complexity and machine performance.

Suppose a larger sample of the specific DMS application
software were coded in the HOL. If these programs were executed
on a commercial machine, under instrumentation which can observe
the relative frequency of dynamic occurrence of each statement
type w i then a more meaningful measure of machine performance
(inthis case, slowness: Pj) is given by

n
w.T..i = P. 1 < j < m

i=l 1 1] I

The P-values are analogous to Wichmann's S-values, but are re-
named to avoid confusion. These P-values are computed from the
measured statement execution times on the j machines as defined
by the matrix Tij adjusted by the statement execution frequency
estimation for the Shuttle application software.

-328-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



In an analogous manner the relative measure of the memory
utilization can be obtained. Let Mij be the amount of memory
needed to represent the HOL statement i, and the machine j. The
static distribution of HOL statements can be obtained for the
benchmark by counting the HOL constructs in the code. Define
ai as the static distribution. Then a relative measure of memory
efficiency can be obtained by

n
a.i M.. =A.

i=l 1 J

The A. values are relative measures of the memory sufficient for
each uachine.

Since the P. have been determined, the statement complexi-
ties C

i
in the Wickmann equation can be written as:

T.. = Ci Pj Qi.j 1 < i < n (18.1)

1< j <m

where the Qij and C
i
are related to the Rij and F i of the

Wichmann equation. This is mn equations in n(m+l) unknowns. To
obtain a "best fit", we chose to minimize the variation of the

Qij relative to the Ci, therefore define:

E = E (LQij) = E (LC
i

+ LPj - LTij)2
ij ij

where the prefix L on a variable indicates the logarithm of that
variable. This leads to

1
LC= - (LT.. - LP.)
i m j ij J

and the Qij may then be computed from (18.1).

The interpretation to be placed upon the Qij values is
that they reflect the inefficiency of machine j executing state-
ment-type i, relative to how that machine executes other statement-
types, independent of the statement-complexity and frequency of
execution.

-329-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



The values Qij then allow for an understanding of the
structure of the machine with respect to the HOL. This would
allow insight as to the ability of the machine to carry out
particular functions not specifically considered in the
weighting of the HOL statements.

Winchmann [5] used over forty different statements to
compare each compiler. The statement classes used for compari-
son should be generated from two different considerations:

1) the different functions of the HOL: scalar
operations, array operators, flow control
within a program, modularization, input/
output; and

2) those features which tend to differ in
each machine architecture: integer operations
versus floating point operations, the use of
literals, both short and long, and of different
precisions, etc.

Once these classes of representative operations have been
obtained, only their implementation on the various machines need
be considered. If a HOL compiler exists, then by actually
executing the "translation" of the aerospace computer's implemen-
tation of the HOL statements, a time measurement can be made for
each operation; similarly a memory space measurement can be made
by examining the instructions. Since a compiler may not exist,
a manual translation, as in the first method, can be performed.

The dynamic and static frequency of occurrence of these
"HOL statements" for the benchmark are determined once and can
be accomplished via execution on a machine which has a HOL compiler.

This method has the great advantage of being able to vary
the postulated HOL statement mixes to determine how the relative
merit of the machines changes.

18-4.3 Problems with the HOL Benchmark Approach

While these methods can obtain both an execution time
measurement and a memory size measurement, it does not give the
"complete picture".

1) The measurements used to obtain the execution time of the
HOL statements on a given machine introduce several
inaccuracies.

-330-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



a) There is an assumption about the method by which
the HOL translates into the machine language. This
may not be accurate, particularly in the context of
more complex statements than the representative HOL
statement. Or conversely, perhaps the computer cannot
generate as compact code as the assumed translation.

b) The execution time of the translated HOL statement
is very difficult to obtain. If a HOL compiler
was used, time must be "measured" on the object
machine itself and usually the machine's timing
mechanism has very large granularity, if the measure-
ment is possible at all. Otherwise, some external
clock would have to be used.

c) The last point indicates that one method to obtain
more accurate measurements would be to embed the
desired statement in a DO LOOP for a
million executions. This has the bad side effect
of creating a static environment for the given HOL
statement. Even though it is being executed one
million times, this is not necessarily equivalent
to the presence of the statement one million times
in a real dynamic environment where each occurrence
would be from other, and different HOL statements.
This criticism is equally valid of the manual trans-
lation approach.

2) The HOL statements cannot sufficiently take into consideration
input/output. The interrelation of asynchronous computations
in a multiplexed environment depends highly on the physical
hardware characteristics, how they are interconnected, and
upon the executive systems.

These "real time" problems which are characteristics of
aerospace data management applications can be evaluated utilizing
queueing theory approaches or other modeling and macrosimulation
techniques [7] for evaluating throughput as discussed in
Chapters 5 and 6.

-331-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



REFERENCES

1. Lucas, H.C., "Performance Evaluation and Monitoring",
(Computing Surveys, 3(3), Sept. 1971), pp. 79-91.

2. Knight, K.E., "Changes in Computer Performance",
(Datamation, Sept. 1966), pp. 40-54.

3. Knight, K.E., "Evolving Computer Performance 1963-
1967", (Datamation, Jan. 1968), pp.31-35.

4. Arbuckle, R.A., "Computer Analysis and Throughput
Evaluation", (Computers and Automation, Jan. 1966).

5. Wichmann, B.A., A Comparison of ALGOL 60 Execution
Speeds , (CCU Report #3, National Physical Laboratory,
Tedington Middlesex Englang).

6. Knuth, D.E., An Empiracal Study of FORTRAN Programs
(Computer Science Dept., Report CS-186, Stanford Univ.,
Stanford, California, AD-715-513).

7. Stimler, S., and Brons, K.A., "A Methodology for Calculating
and Optimizing Real Time System Performance", (CACM
11(7), July 1968), pp.509-516.

8. Bailey, W.O., "The Processor Figure of Merit", (Honeywell
Computer Journal 5(4), 1971), pp. 201-204.

9. Smith, J.M., "A Review and Comparison of Certain Methods
of Computer Performance Evaluation", (The Computer
Bulletin, May 1968), pp. 13-18.

10. Ashley, D.W., A Methodology for Large Systems Performance
Predictions , (IBM Report TR 00-1173, Sept. 1968).

11. Staudhanmer, J., Combs, C.A., and Wilkinsen, G., "Analysis
of Computer Peripheral Interference Proceedings",
(ACM National Meeting, 1967).

-332-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



PART V

FACILITIES

-333-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



PRECEDING PAGE BLANK NOT FTLM E
'

)

CHAPTER 19

FACILITIES NEEDED FOR SYSTEM ANALYSIS

19-1.0 Introduction

We will now identify the facilities needed by a system
analysis group to perform their job of designing, implementing,
and testing the hardware and software of an aerospace data manage-
ment system. Previously, in Chapter 17 we saw software system
development divided into four phases. We will now expand these
phases to a more general description of the development of system
hardware and software. From an analysis of these development
phases we will see the facilities that the designers need to aid
them in their task.

19-2.0 System Design Phases

There are at least seven phases in the development of an
aerospace data management system. These are:

1. Mission Requirements Phase: In this phase the
overall goals and objectives of the mission are
defined.

2. System Requirements Phase: In this phase the
mission requirements are analyzed to determine
the type of systems necessary to support the
mission. An important part of this phase is
reliability analysis to determine the type of
redundancy necessary to enable successful system
operation for the duration of the mission. In
addition, software algorithms are also generated
in this phase to help estimate the complexity of
the needed systems.

3. System Analysis Phase: System problems are
further studied in this phase with design aids
such as macrosimulation, Markov analysis,
Queueing theory, and running benchmark programs.
The resulting data then enable design questions
such as size of core memory, single processor
vs. multiprocessor, hardware/software tradeoffs
to be answered.

Preceding page blank
-335-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



4. System Specification Phase: With all these
design questions and tradeoffs answered, the
system needed can be specified. That is, a
detailed design can now be generated.

5. Implementation Phase: In this phase the system
is built. Hardware is constructed, and software
coded.

6. Test Phase: The system must now be tested for
proper operation. Aids such as digital
simulators, hybrid simulators and performance
evaluation monitoring hardware are all useful in this
very important phase of system design. Thorough
testing of the system is necessary to insure the
success of the mission and the safety of any crew-
members.

7. Operation Phase: The system is now ready to be
used in mission operations.

19-3.0 Needed Facilities

The design phases we discussed above show that at least
three facilities are necessary for the system designer. These are
the digital computer, the hybrid laboratory, and a microprogrammable
computer. We will now discuss these facilities in more detail and
give some interesting Apollo development examples.

19-3.1 The Digital Computer Facility

In this volume we have discussed many system design techniques
that require the use of a digital computer for their application.
For example, macrosimulation, Markov analysis, and reliability analysis
all involve tedious computations that are best done by a digital
computer. Thus, the system designer should have access to a computer
either directly or by means of a remote terminal. The size of the
needed computer depends heavily upon the complexity of the system being
designed and the software tool being executed. For example, Apollo
digital simulations were run on an IBM System/360, model 75, and re-
quired hours of execution time even on this powerful machine. However,
less complex systems could of course be analyzed and simulated on
smaller computers. Poseidon digital simulations required much less
execution time on the 360, model 75, than Apollo and, hence, could
have been conveniently run on a smaller machine, such as a 360, model
50. In any case, we recognize the fact that the digital computer is
an essential system design facility.

19-3.2 The Hybrid Computer Facility

A facility that has been almost indispensible to system

-336-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



designers in aerospace applications is the hybrid computer. The
hybrid computer allows a mixed digital/analog (hybrid) simulation
of a space mission so that the design of the overall system can be
tested. An all digital simulation is sometimes not as efficient as
a combined analog/digital approach because certain problems are
more readily solved with analog hardware. For example, in simulating
the performance of a space vehicle, such as the Apollo Command
Module, the rotational dynamics equations of the vehicle require high
speed solutions, but extremely high precision is unnecessary. This
portion of the simulation is best handled by analog circuitry. On
the other hand, the vehicle's trajectory calculations require high
precision but are run at a lower rate. Thus, digital simulation is
appropriate here. Communication between the two portions of the
simulation can be performed with control lines, interrupt lines,
A to D and D to A converter channels. Such a linkage between the
analog and the digital simulations allows a hybrid simulation of the
space vehicle's performance.

19-3.2.1 Types of Hybrid Computers

There are many types of hybrid computers; perhaps as many
as there are applications. However, if the hybrid computer is
classified by the way in which it combines the digital and analog
hardware, we arrive at the following four categories [1, 2]:

a) an analog computer with added digital logic,

b) a digital computer with added analog components,

c) a digital computer and an analog computer linked
with A to D and D to A channels, and

d) a hybrid computer in which neither the digital
nor the analog portions are intended for indepen-
dent use.

The hybrid simulation facilities for the Apollo mission
are a variation of category (c). We will describe this facility
as an example of the type of facility that the system designer can
use to properly test his system's performance.

19-3.2.2 Apollo Hybrid Simulations

The Apollo hybrid simulation facility at the M.I.T. Draper
Laboratory consisted of an analog computer representation of the
spacecraft linked with certain flight hardware including the Apollo
Guidance Computer (AGC) [3, 4]. Its purpose was to verify the AGC
programs in a real-time simulation using flight hardware. Figure 19.1
shows a typical configuration, the Apollo 204 Command Module Entry
Simulator.

-337-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840



Although flight software was primarily verified on an all
digital simulator facility, the hybrid facility offered certain
advantages. They are:

a) real-time operation,

b) manual access to the AGC during simulation, and

c) on-line monitoring of the simulation.

The major disadvantage is the difficulty in tracing an AGC program's
execution.

The hybrid facility was essential in developing programs
for the man-machine interface. That is, programs that accept keyboard
input from the astronaut and output displays of requested data. The
hybrid simulator has also been used as a training device for the
Apollo GNC system. In fact, many astronauts received training on
this facility.

19-3.2.3 An Additional Feature of the Hybrid Facility

The hybrid laboratory, in which an actual flight computer
is included in a hybrid simulation, provides an excellent environment
to monitor the computer system's performance. Since the system is
running in real-time, additional hardware can be interfaced with the
flight computer to measure the efficiency of its performance under
approximate operating conditions. The collected data can then be used
to optimize the design of the flight computer's hardware/software
systems, as discussed in Chapter 10.

19-3.3 The Use of a Microprogrammable Computer

Another useful design aid is a microprogrammable computer.
Such a machine can be microprogrammed to reflect various computer
architectures, such as a HOL organization. The advantage of this
fact is that several candidate flight computers can be evaluated
merely by changing the microprogram of this computer. Running
benchmark programs is a very useful aid in this evaluation.

When an architecture is finally chosen, this flight computer
can be emulated on the microprogrammable computer. A digital simu-
lator is then unnecessary because the microprogram will not only
reflect the given instruction set, but it can contain diagnostic features
for the debugging of flight software. Traces, traps, a coroner
function, etc., can conveniently be provided in this microprogram.
Thus, the testing of flight software can proceed without the extra
burden of programming a digital simulator.

-338-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



zHE
-

U
)

HT
o

E
)

H'40Z0Uc::

zOHH0 CE-
UHZ

.

0oN..0a.

1(HE
t

-3
3

9
-

IN
TE

R
M

E
TR

IC
S

 
IN

C
O

R
P

O
R

A
TE

D
 

· 701 C
O

N
C

O
R

D
 

A
V

E
N

U
E

 
.C

A
M

B
R

ID
G

E
, 

M
A

S
S

A
C

H
U

S
E

TTS
 

02138 · (617) 661-1840



REFERENCES

1. Korn, G.A., and Korn, T.M., Electronic Analog and Hybrid
Computers, (McGraw-Hill, New York, 1964).

2. Hagan, T.G., "Hybrid Computation", (Datamation, Oct. 1965),
pp. 24-28.

3. Felleman, P.G., Hybrid Simulation of the Apollo Guidance
Navigation and Control System, (M.I.T. Draper Lab,
E-2066, Dec. 1966).

4. O'Conner, J.T., Hybrid Simulation of Apollo Missions for the
Verification of Flight Software Crew Procedures, (M.I.T.
Draper Lab., E-2531, Aug. 1970).

-340-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



PART VI

APPENDICES

-341-

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



PRp'"CM)ING PAGE BLANK NOT FPrMIJ

APPENDIX A

MATHEMATICAL BIBLIOGRAPHY

In developing a systems analysis group, one of the most important
assets that the systems engineers and programmers should possess is
a strong mathematical background. Many system design problems are
very mathematical in nature, and those working on these problems
should feel at ease with the mathematics. Presentations of purely
mathematical topics to enhance the skills of a system analysis group
are outside the scope of this contract. However, with a good bibli-
ography an engineer or programmer can concentrate on those areas in
which he feels he should increase his knowledge.

This appendix lists several fields of mathematics pertinent
to systems engineering and programming, and within each
field several references are given. It is by no means an
exhaustive list, but is meant to direct an engineer or
programmer to some of the standard references in the field.

Preceding page blank

-343-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



A. General References in Applied Mathematics

These texts are encyclopedic in nature and contain sections on
most of the more specific areas we will list below.

1. Courant, R., and Hilbert, D., Methods of Mathematical
Physics, 2 Volumes, (John Wiley and Sons, New York,
1953).

2. Morse, P.M., and Feshbach, H., Methods of Theoretical
Physics, 2 Volumes, (McGraw-Hill, New York, 1953).

3. Jeffreys, H.S., and Jeffreys, B.S., Methods of Math-
ematical Physics, 2nd Edition, (Cambridge University
Press, 1950).

4. Pipes, L., and Harvill, L., Applied Mathematics for
Engineers and Physicists, 3rd Edition, (McGraw-Hill,
New York, 1970).

B. References in More Specific Mathematical Fields

1. Linear Algebra

a. Hoffman, K., and Kunze, R., Linear Algebra, 2nd
Edition, (Prentice Hall, New Jersey, 1971).

b. Faddeeva, V.N., Computational Methods of Linear
Algebra, (Dover, New York, 1959).

c. Gel'fand, I.M., Lectures on Linear Algebra,
(Interscience, New York, 1961).

d. Jacobson, N., Lectures in Abstract Algebra,
Volume II, Linear Algebra, (Van Nostrand,
Princeton, New Jersey, 1960).

e. Noble, B., Applied Linear Algebra,
(Prentice-Hall, New Jersey, 1969).

2. Advanced Calculus

a. Hildebrand, F., Advanced Calculus for Applications,
(Prentice Hall, New Jersey, 1962)

b. Franklin, P., Methods of Advanced Calculus,
(McGraw-Hill, New York, 1944).

c. Apostol, T., Mathematical Analysis, (Addison-
Wesley, Reading, Mass., 1958).

d. Buck, R.C., Advanced Calculus, 2nd Edition,
(McGraw-Hill, New York, 1968).

e. Rudin, W., Principles of Mathematical Analysis,
2nd Edition, (McGraw-Hill, New York, 1968).

INTERMETRICS INCORPORATED . 701 CONCORD AVE3NE * CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840
4m



3. Complex Analysis

a. Dettman, J.W., Applied Complex Variables,

(MacMillan Co., New York, 1965).

b. Ahlfors, L., Complex Analysis, (McGraw-Hill,

New York, 1953).

c. Carrier, G., et al., Functions of a Complex
Variable, (McGraw-Hill, New York, 1966).

d. Churchill, R.V., Complex Variables and

Applications, 2nd Edition, (McGraw-Hill,

New York, 1960)

4. Linear Programming

a. Garvin, W.W., Introduction to Linear Programming,

(McGraw-Hill, New York, 1960)

b. IIadley, G., Linear Programming, (Addison-Wesley,

Reading, Mass., 1962).

c. IBM Corporation, An Introduction to Linear

Programming, (New York, 1964).

5. Probability and Statistics

a. Feller, W., An Introduction to Probability and

Its Applications, 2 Volumes, (John Wiley and

Sons, New York, 1960).

b. Fraser, D., Statistics-An Introduction, (John

Wiley and Sons, New York, 1958).

c. Barlow, R., and Proschan, F., Mathematical
Theory of Reliability, (John Wiley and Sons,

New York, 1965).

d. Parzen, E., Modern Probability Theory and Its

Applications, (John Wiley and Sons, New York,

1960).

e. Wadsworth, G., and Bryan, J., Introduction
to Probability and Random Variables,
(McGraw-Hill, New York, 1960).

6. Differential Equations

a. Birkhoff, G., and Rota, G., Ordinary Differential

Equations, 2nd Edition, (Ginn and Co., Boston,
1969).

b. Martin, W., and Reissner, E., Elementary Differen-

tial Equations, .2nd Edition, (Addison-Wesley,
Reading, Mass., 1961).

-345-

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-18 3:;0



c. Kaplan, W., Ordinary Differential Equations,
(Addison-Wesley, Reading, Mass., 1958)

d. Garabedian, P.R., Partial Differential Equations,
(John Wiley and Sons, New York, 1964).

e. Sneddon, I.N., Elements of Partial Differential
Equations, (McGraw-Hill, New York, 1957).

f. Carrier, G., et al., Ordinary Differential
Equations, (Blaisdell, Waltham, Mass., 1968).

7. Approximation Methods

a. Arden, B., and Astill, K., Numerical Algorithms:
Origins and Applications, (Addison-Wesley,
Reading, Mass., 1970).

b. Hildebrand, F., Introduction to Numerical
Analysis, (McGraw-Hill, New York, 1956).

c. Cole, J.D., Perturbation Methods in Applied
Mathematics, (Blaisdell, Waltham, Mass.,
1968).

d. Bellman, R., Perturbation Techniques in Math-
ematics, Physics, and Engineering, (Holt,
Rinehart and Winston, New York, 1964).

8. Fourier Analysis and Transform Methods

a. Sneddon, I.N., Fourier Transforms, (McGraw-
Hill, New York, 1951).

b. Franklin, P., An Introduction to Fourier
Methods and the LaPlace Transformation,
(Dover, New York, 1949).

9. Algebra

a. Peterson, W.W., Error-Correcting Codes, (MIT
Press, Cambridge, Mass., 1961).

b. Lin, S., An Introduction to Error-Correcting
Codes, (Prentice-Hall, New Jersey, 1970).

c. Hall, M., The Theory of Groups, (MacMillan,
New York, 1959).

d. Jacobson, N., Lectures in Abstract Algebra,
3 Volumes, (Van Nostrand, Princeton, New
Jersey, 1960).

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



e. Herstein, I.N., Topics in Algebra, (Blaisdell,
Waltham, Mass., 1964).

10. Queueing Theory

a. Morse, P.M., Queues, Inventories and Maintenance,
(John Wiley and-Sons, New York, 1958).

b. Saaty, T., Elements of Queueing Theory, (McGraw-
Hill, New York, 1961).

c. Lee, A.M., Applied Queueing Theory, (MacMillan,
London, 1966).

d. IBM Corp., Analysis of Some Queueing Models in
Real-Time Systems, 2nd Edition, (New York, 1969).

11. Information Theory

a. Shannon, C., and Weaver, W., The Mathematical
Theory of Communication, (University of Illinois
Press, 1964).

b. Khinchin, A.I., Mathematical Foundation of Infor-
mation Theory, (Dover, New York, 1957).

c. Lee, Y.W., Statistical Theory of Communication,
(John Wiley and Sons, New York, 1960).

d. Raisbeck, G., Information Theory, (MIT Press,
Cambridge, Mass., 1964).

e. Fano, R.M., Transmission of Information, (MIT
Press, Cambridge, Mass., 1961).

f. Wiener, N., Cybernetics, 2nd Edition, (MIT Press,
Cambridge, Mass., 1961).

12. Computability Theory

a. Minsky, M., Computation: Finite and Infinite
Machines, (Prentice-Hall, New Jersey, 1967).

b. Rogers, H., Recursive Functions and Effective
Computability, (McGraw-Hill, New York, 1967).

c. Brafford, P., and Hershberg, D., (eds.) Computer Pro-
gramming and Formal Systems, (North Holland,
Amsterdam, 1963).

-347-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138; '(617) 661-1840:. :'.



13. Automata Theory and Mathematical Linguistics

a. Hartmanis, J., and Stearns, R., Algebraic Structure
Theory of Sequential Machines, (Prentice Hall,
New Jersey, 1966)

b. Ginsburg, S., Mathematical Theory of Context Free
Languages, (McGraw-Hill, New York, 1966).

c. Hopcroft, J., and Ullman, J., Formal Languages and
their Relation to Automata, (Addison-Wesley, Reading,
Mass., 1969).

d. Chomsky, N., "Formal Properties of Grammers", in
Handbook of Mathematical Psychology, Volume II.,
Luce et al. (eds.), (John Wiley and Sons, New
York, 1963), pp. 323-418.

e. Cocke, J., and Schwartz, J., Programming Languages
and their Compilers, 2nd Edition, (Courant Institute
for the Mathematical Sciences, New York University,
1970).

f. Hennie, F., Finite State Models for Logical Machines,
(John Wiley and Sons, New York, 1968).

g. Ginzburg, A., Algebraic Theory of Automata, (Academic
Press, New York, 1968).

h. Minsky, M., loc. cit.

-348-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



APPENDIX B

DIGITAL COMPUTER BIBLIOGRAPHY

A digital system designer should be very familiar with
both hardware and software aspects of computer design. The
following bibliography is a list of some standard works in
computer systems design that should be familiar to all working
in the field. Also included is a list of most of the pertinent
journals.

Although not listed in this bibliography, previous journal
articles provide an excellent source of information in this
field.

-349-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



A. Compiler Design

1. Gries, D., Compiler Construction for Digital Computers,
(John Wiley and Sons, New York, 1971).

2. McKeeman, W.M., et al., A Compiler Generator, (Prentice-
Hall, New Jersey, 1970).

3. Ginsburg, S., The Mathematical Theory of Context Free
Languages, (McGraw-Hill, New York, 1966).

4. Donovan, J., System Programming, (Prentice-Hall,
New Jersey, 1972).

5. Cheatham, T., "Notes for Course AM295: Theory and
Construction of Compilers",(Harvard University
Applied Mathematics Dept., 1968).

6. Schwartz, J., and Cocke, J., Programming Languages and
Their Compilers, 2nd Edition, (Courant Institute for
the Mathematical Sciences, New York University, 1970).

7. "Proceeding of a Symposium on Compiler Optimization",
(ACM Sigplan Notices, 5(7), July, 1970).

8. Randall, B., and Russell, L., Algol 60 Implementation,
(Academic Press, New York, 1964).

9. Hopgood, F., Compiling Techniques, (American Elsevier,
Inc., New York, 1969).

B. Programming Languages

1. Sammet, J., Programming Languages: History and Fundamentals,
(Prentice-Hall, New Jersey, 1969).

2. Wegner, P., Programming Languages, Information Structures
and Machine Organization, (McGraw-Hill, New York, 1968).

3. Iverson, K., A Programming Language, (John Wiley & Sons,
New York, 1962)

4. "Proceedings of a Symposium on Data Structures in Programming
Languages", (ACM SIGPLAN Notices, 6(2), Feb., 1971).

5. "Proceedings of a Symposium on Languages for Systems
Implementation", (ACM SIGPLAN Notices, 6(9), Oct., 1971).

6. Neuhold, E.J., "The Formal Description of Programming
Languages", (IBM Systems Journal, 10(2), 1971), pp. 86-112.

-350-
INTERMETRICS INCORPORATED .701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840



7. Genuys, F., (ed.), Programming Languages, (Academic
Press, New York, 1968).

8. Rosen, S., Programming Languages and Systems, (McGraw-
Hill, New York, 1967).

9. Intermetrics, Inc., The Programming Language HAL-A
Specification, (Cambridge, Mass., 1971 - Prepared
under Contract NAS 9-10542, MSC Document #MSC-01846).

10. Higman, B., A Comparative Study of Programming Languages,
(American Elsevier, Inc., New York, 1967).

C. Operating Systems

1. Cuttle, G., and Rolinson, P.B., (eds.), Executive Programs
and Operating Systems, (American Elsevier, Inc., New
York, 1970).

2. Colin, A.J.T., Introduction to Operating Systems, (American
Elsevier, Inc., New York, 1971).

3. Proceedings of a Symposium on Comparative Operating Systems,
(Auerbach, Princeton, New Jersey, 1969).

4. Organick, E., Guide to Multics for Subsystem Writers, (M.I.T.
Press, Cambridge, Mass., 1972).

5. Denning, P., Resource Allocation in Multiprocessor Computer
Systems, (Ph. D. Thesis, Electrical Engineering Dept.,
M.I.T., Cambridge, Mass., 1968).

6. IBM Corp., "IBM System/360 Concepts and Facilities", (New
York, 1969, IBM #C28-6535-5).

7. IBM Corp., "IBM System/360 Supervisor and Data Management
Services", (New York, 1968, IBM #C28-6646-2).

8. Sayers, A.P., (ed.), Operating Systems Survey, (Comptre
Corp., Auerbach Publishers, Princeton, New Jersey,
1971).

9. Roos, D., ICES System Design, 2nd Edition, (M.I.T. Press,
Cambridge, Mass., 1967).

10. Iliffe, J.K., Basic Machine Principles, (American Elsevier,
Inc., New York, 1968).

11. ACM, "Proceedings of the National Symposia on Operating
Systems Principles", (New York, 1967, 1969, 1971).

12. Saltzer, J., Traffic Control in a Multiplexed computer
System, Ph.D. Thesis, Electrical Engineering Dept.,
M.I.T., Cambridge, Mass., 1966).

-351-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



D. Computational Algorithms

1. Knuth, D., The Art Of Computer Programming, (7 volumes,
2 published so far), (Addison-Wesley, Reading, Mass.,
1967).

2. Flores, I., Computer Sorting, (Prentice-Hall, New Jersey,
1969).

3. Flores, I., Computer Software, (Prentice-Hall, New Jersey,
1965).

4. Arden, B., and Astill, K., Numerical Algorithms: Origins
and Applications, (Addison-Wesley, Reading, Mass.,
1970).

5. Barron, D.W., Recursive Techniques in Programming, (American
Elsevier, Inc., New York, 1967).

6. Foster, J.M., List Processing, (American Elsevier, Inc.,
New York, 1967).

E. Computer Architecture and Hardware Design

1. Flores, I., Computer Organization, (Prentice-Hall, New
Jersey, 1969).

2. Flores, I., The Logic of Computer Arithmetic, (Prentice-Hall,
New Jersey, 1963).

3. Lorin, H., Parallelism in Hardware and Software: Real and
Apparent Concurrency, (Prentice-Hall, New Jersey, 1972).

4. Bell, C.G., and Newell, A., Computer Structures: Readings
and Examples, (McGraw-Hill, New York, 1971).

5. Husson, S.S., Microprogramming: Principles and Practices,
(Prentice-Hall, New Jersey, 1971).

6. Hobbs, L.C., et al., (eds.), Parallel Processor Systems,
Technologies, and Applications, (Spartan, New York,
1970).

7. Miller, J.S., et al., Multiprocessor Computer System Study,
(Intermetrics, Inc., Cambridge, Mass., 1970, under
Contract NAS 9-9763).

8. Buchholz, W., (ed.), Planning a Computer System, (McGraw-
Hill, New York, 1962).

9. McCloskey, E., Introduction to the Theory of Switching
Circuits, (McGraw-Hill, New York, 1965).

-352-

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE ' CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840



F. Real Time Systems

1. Martin, J., Design of Real-Time Computer Systems, (Prentice-
Hall, New Jersey, 1967).

2. Martin, J., Programming Real-Time Computing Systems,
(Prentice-Hall, New Jersey, 1968).

3. Martin, J., Systems Analysis for Data Transmission,(Prentice-
Hall, New Jersey, 1972).

4. Wilkes, M.V., Time-Sharing Computer Systems, (American
Elsevier, Inc., New York, 1968).

5. Organick, E., loc. cit.

G. Aerospace Computer Systems

1. Saponaro, J., Pepe, J., et al., Advanced Software
Techniques for Data Management systems, J volumes,
(Intermetrics, Inc., Cambridge, Mass., 1972, prepared
under Contract NAS 9-11778).

2. Kosmala, A., et al., Engineering Study for a Mass Memory
System for Advanced Spacecrafts, (Intermetrics, Inc.,
Cambridge, Mass., 1970, prepared under Contract
NAS 9-9763).

3. Kosmala, A., et al., Standard Interface Definition for
Avionics Data Bus Systems, (Intermetrics, Inc.,
Cambridge, Mass., 1971, prepared under Contract
NAS 9-11477).

4. Intermetrics, Inc., Development of an MSC Language and
and Compiler, (Cambridge, Mass., 1971, prepared under
Contract NAS 9-10542).

5. Kosmala, A., et al., Central Processor Operational Analysis,
(Intermetrics, Inc., Cambridge, Mass., 1971).

6. Kosmala, A., et al., Central Processor Memory Organization
and Internal Bus Design, (Intermetrics, Inc., Cambridge,
Mass., 1972).

-353-

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840



H. Journals

Journal of the Association for Computing Machinery

Communications of the Association for Computing Machinery

Computing Reviews

Computing Surveys (back issues especially important)

IBM Systems Journal

IEEE Transactions on Electronic Computers

Computer Design

Modern Data

IBM Journal of Research and Development

The Computer Journal

Proceedings of Spring and Fall Joint Computer Conferences

Proceeding of ACM National Conferences

Computer Decisions

Datamation

The Computer Bulletin

-354-

NTERMETRICS INCORPORATED .701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840


