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ABSTRACT

The laminar wave train structure of collisionless magnetic

slow shocks is investigated using two fluid hydroroagnetics with

ion cyclotron radius dispersion. For shock strengths less than

the maximally strong switch-off shock, in the shock leading edge

dispersive steepening forms a magnetic field gradient, while in

the downstream flow dispersive propagation forms a trailing wave

train; dispersion scale lengths are the ion inertial length if

$ < 1 and the ion cyclotron radius if 3 > 1 . In the switch-

off slow shock leading edge, dispersion only produces rotations

of the magnetic field direction; the gradient of the magnetic

field magnitude, and hence the shock steepening length, is deter-

mined solely by resistive diffusion. The switch-off shock

structure consists of a long trailing train of magnetic rotations

which are gradually damped by resistivity. The low-g parallel

fast switch-on shock has a similar wave train structure with the

magnitude of the field rotations gradually increasing toward the

downstream flow.
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1.0 Introduction

A curious anomaloy in the collisionless shock literature is that very

little is known theoretically about the structure of magnetic slow shocks.

Collisionless fast shocks have been extensively investigated in both the

limit that plasma dynamics are describable as a fluid [Refs. 1,2] and in

the fully turbulent dissipative limit [Refs. 3-5]. Collisionless slow shock

efforts have been confined to the parallel propagating low-3 electrostatic

ion acoustic shock in which the magnetic field is unimportant [Refs. 6-8].

Yet collisionless magnetic slow shocks, i.e., slow shocks in which the

magnetic field dominates the shock structure, are of fundamental importance

in space and cosmological plasmas. For example, Petschek's [9] theory of

magnetic field annihilation, which has been applied to solar flares, magneto-

spheric convection [10], and quasars [11], involves magnetic slow shocks

which stand upstream from the neutral sheet 'and provide most of the magnetic

field dissipation.

As an initial effort this paper investigates the fluid or laminar wave

train structure of both high- and low-$ magnetic slow shocks. Historically,

treating the plasma as a fluid has produced considerable knowledge of the

internal macroscopic shock structure. In addition, the shock fluid dynamics

have often provided insight into the collisionless microscopic turbulence
1

required to generate shock dissipation [1]. Therefore, although laminar

wave trains do not represent the final state of a collisionless shock theory,

they often form a foundation upon which a unified shock theory can be

constructed.

Before discussing collisionless slow shocks, a brief review of hydro-

magnetic slow shocks is both instructive and useful in motivating several of
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the approximations employed in the collisionless analysis. The shock

evolutionary conditions restrict the upstream slow shock flow velocity to be

less than or equal to the intermediate C, and greater than the slow CCT1 oL

hydromagnetic wave phase speeds (see Figure 1). In low-3 plasmas the

parallel and moderate to strong oblique slow shocks have supersonic upstream

flow velocities. Although across all oblique slow shocks the magnetic field

strength is reduced below the upstream value [12], for supersonic slow shocks

the magnetic field change is small compared to the change in thermal

pressure; hence the shock structure should be primarily electrostatic.

Furthermore, in hydromagnetic or collisional plasmas, Coroniti [13] has

shown that the dissipation in supersonic slow shocks is predominantly viscous.

Oblique slow shocks whose upstream flow speed is less than the sound speed

have large magnetic changes across the shock; the dissipated magnetic energy

is divided between thermal and directed flow energy. Hence the shock struc-

ture should be dominately governed by the magnetic field. These subsonic

magnetic slow shocks constitute the subject of this paper. (Note from

Figure 1 that all $ > 1 slow shocks are subsonic.) Finally, in MHD mag-

netic slow shocks resistivity alone is sufficient to provide the shock

dissipation required by the Rankine-Hugoniot relations [13]. Therefore in

the collisionless analysis, only an anomalous resistivity or turbulent

electron-ion collisions will be included to simulate shock dissipation.

Thermal conduction may contribute to the shock dissipation, but except for

very weak slow shocks, it cannot provide all of the required dissipation [13].

In the collisionless or weak dissipation limit, the fluid shock struc-

ture is described by a coherent train of laminar wave oscillations. These

wave trains consist of dispersively propagating waves on the same dispersion

branch as the shock which phase stand in either the upstream or downstream
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flow. The shock spatial scale lengths are governed by that dispersive length

which permits the wave phase speed to equal the local flow velocity. Section

2.1 argues that for low-3 oblique slow shocks, the ion inertial length should

dominate the shock structure. The large magnetic energy dissipation across

strong low-3 magnetic slow shocks, however, implies that the downstream flow

will be moderate to high-3. Here and in all high-3 slow shocks ion cyclotron

radius dispersion is competitive with or even dominates ion inertial disper-

sion, and must be included in the wave train structure.

The appropriate fluid equations for the slow shock analysis, therefore,

are Chew-Goldberger-Low hydromagnetics with first order ion cyclotron radius

corrections [14]. This fluid system, however, contains several difficulties

when applied to collisionless shocks. First, a complete set of Rankine-

Hugoniot conservation relations does not exist for oblique shocks since the

parallel and perpendicular pressures are not independently specified [15,16]

(Section 2.3). Second, the heat flow along the magnetic field is not deter-

mined by the fluid moments (Section 2.4). The resolution of both these diffi-

culties requires previous knowledge of the plasma turbulent dissipation.

Since the slow shock turbulence structure is beyond the scope of this initial

paper, two assumptions will be made to permit utilization of these fluid

equations: the pressure anisotropy and the parallel heat flow are assumed

to be small and to make negligible contribution to the shock structure.

In Section 3.0 the differential equation which describes the wave train

spatial structure is analyzed by employing the standard technique of linear-

ization about the upstream and downstream Rankine-Hugoniot stationary flows

[2]. The linearized wave train differential equation is unambiguously

applicable to weak and moderate strength slow shocks, i.e., shocks with

upstream flow velocities less than the intermediate wave speed. Maximum
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strength or switch-off slow shocks whose upstream flow velocity equals the

intermediate speed require special consideration and are analyzed in Section

4.0. The results of Section 3.0 are that ion inertial dispersion for low-{J

and ion cyclotron radius dispersion for high-3 produce wave trains which

trail in the downstream flow behind the shock leading edge.

In Section 4.0 the nonlinear wave train differential equations for

oblique low-3 switch-off slow shocks are derived; only ion inertial disper-

sion is retained. The switch-off shock is found to steepen only if the

leading edge is dissipative. The switch-off shock wave train structure is a

long trailing train of magnetic field rotations with ion inertia oscillation

length; starting at the upstream point the magnetic field magnitude is grad-

ually damped by resistivity in a scale length greatly exceeding the ion

inertia length. The linearized wave train solutions of Section 3.0 are then

reconsidered in the switch-off shock limit, and are found to be consistent

with the results from the nonlinear switch-off shock analysis. Parallel

low-B fast switch-on shocks obey the same nonlinear equations as slow

switch-off shocks, and hence have a similar wave train structure.
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2.0 The Dispersive Hydromagnetic Equations

2.1 Dispersive Scale Lengths

Since collisionless hydromagnetics contain neither a basic length or

time scale, shocks and discontinuities are infinitely thin surfaces across

which the plasma state changes discontinuously. In order to resolve the

spatial structure of the shock, hydromagnetics must be generalized to include

short scale length plasma dispersion. In two fluid hydromagnetic theory,

the finite mass of ions and electrons is reflected by the inertial scale

lengths C/u> and C/u> . (c is the light speed, u> = (47rNe2/M+)1/2

is the specie (±) plasma frequency, N is the number density, e the

electronic charge, and M+ the ion or electron mass. Gaussian units are

used throughout.) For moderate or high temperature plasmas, the finite

cyclotron radius (FCR) R+ = C+/&+ of the gyrating particles introduces
•+• I/O

further dispersive lengths. (c+ = (T /M+) is the specie thermal speed,

T~ the temperature in energy units, and ft+ = eB/M±C is the gyration

frequency in a magnetic field of strength B .) In addition charge separa-

tion between ions and electrons results in Debye length, X = C+/w

dispersion. A useful scaling relation between inertial and FCR dispersion
+ *? +

lengths is R+ ̂  ^ C/o) where &+ = 8TrNT~/B . Therefore if B~ « 1

inertial dispersion generally dominates the shock structure, whereas if

3~ > 1 FCR dispersion is important.

The selection of which dispersion lengths influence the structure of

slow shocks can be motivated from the theory of linear wave propagation. In

a collisionless plasma the limitation of shock steepening is accomplished by

the dispersive propagation of waves out of the shock front. A steady state
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is established when the compressive energy going into shock steepening is

balanced by the loss of energy from wave propagation [1]. With the addition

of dissipation, the shock structure takes the form of a leading (trailing)

wave train if dispersion increases (decreases) the linear wave phase speed.

The shock "thickness" or structure is essentially determined by the wave

dispersion scale length.

In the linear two fluid theory, which does not include FCR corrections,

the dispersion relation for the slow wave propagating at a large angle to the DC

magnetic field is approximately [17,18]

0)
2 2k C

U)p.
(2.1)

,1/2C, = C. cos6 is the intermediate hydromagnetic speed, C. = B/(4TrNM+)'
1/2is the Alfven speed, 6 is the angle between 1C and B^ , Cg = (YP/P)

is the sound speed with Y the ratio of specific heats, P the pressure,

and p the mass density. The hydromagnetic fast Cp and slow C~. speeds

are defined as

C 2 * C 2 )2

- c 2 c 2ci cs

1/2

(2.2)

and > CgL , ionIn (2.1), kC/o) < 1 was assumed. Since Cg > Cg,

inertia reduces the slow wave phase velocity below the hydromagnetic speed.

If B+* > 1 , Coroniti and Kennel [19] found that ion cyclotron radius (ICR)

dispersion also decreases the slow wave phase speed.

For propagation parallel to the magnetic field and 6± < 1 the slow

wave is the ion acoustic mode with the dispersion relation [17]
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2 C

- ' — - '2'3>

Here the slow wave is electrostatic and remains non-dispersive until kX.. * 1

The ion acoustic electrostatic shock has received considerable study using

both fluid equations [6,8] and the Vlasov equation [7]. Therefore this

paper will restrict consideration to magnetic slow shocks, i.e., shock

propgation at large angles to the magnetic field for both high- and low-3

and near parallel propagation for 3 > 1 so that GS > U . (Note that

for 6 a 0 and 3 > 1 the intermediate and slow wave speeds are equal;

therefore from the shock evolutionary conditions [12] the slow shock is of

zero strength.) For 3 » 1 and 6 « 1 , the slow wave dispersion relation

with ICR corrections for kR+ < 1 is [20]

u)2
 C2

~3 = CSLk
i k2 n 2 p/p

* c 2 - c2
L LI LSL J

(2.4)

Hence for near-parallel propagation ICR dispersion reduces the slow wave

speed.

For kC/u) » 1 the slow wave goes to a resonance at to = ft cos6
P+ *

[21] and no additional dispersive scale lengths affect the wave. Therefore

the spatial structure of magnetic slow shocks should be dominated by ion

inertia and ICR dispersion lengths.

2.2 FCR - CGL Fluid Equations

The system of equations which will be employed to investigate the

shock structure are the Chew-Goldberger-Low (CGL) hydromagnetic equations

with first order ICR corrections as derived by MacMahon [14] from the moments
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of the Vlasov equation. The ICR-CGL equations describe the plasma fluid

behavior on scale lengths long compared to R+ . The shock structure is

assumed time independent in the co-moving shock frame and the planar shock

is taken to propagate in the positive x-direction. The upstream (and down-

stream by the co-planarity theorem) magnetic field is assumed to be in the

x-z plane, and all plasma quantities vary only in the x-direction.

With the above assumption there are three integrals of the motion which

express conservation laws. The continuity of mass flow is given by

PU = pjUj (2.5)

where U is the x-component of the fluid velocity and subscript (1) denotes

upstream flow conditions. The three components of the vector momentum

equation are
B 2

 + B 2 - B2

ni en z y zi
PU(U-U.) + ?i;J - P^} + - ± = 0 (2.6)i xx xxx g7T

B B
PUVy + P - --* 0 (2.7)

(11 (11
+ PUJ - PUJ

B (B -B )
X Z Z

pUV + P - P -- =- = 0 (2.8)z xz x2

V and V are the y and z components of the fluid velocity, respectively.

P^ , P^, and P^ are components of the pressure tensor Pl ' , and

the superscript (1) in the notation of MacMahon [14] denotes the retention

of first order ICR corrections . B , the normal component of JB , is , of

course, constant. Note that V = V = B = 0 .
yl Zl yl

Conservation of total energy is expressed by
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PU
v 2 + v 2

y z

•* v P<"z xz
1 XX1

y xy

4rf

= 0 (2.9)

along x and (qt
*

q )

PA and PU are the perpendicular and parallel to £ components of

the pressure tensor, (q,^ + qfc ) • x is the zeroth order heat flow

ic is the first order ICR heat flow along
AM} «(1)x . Complete expressions for the pressure tensor, q^ and q can

* v**

be found in MacMahon [14].
4irAfter substitution of Ampere's law, V*B = 7— £ , the two components

of Ohm's law which describe the coupling between the fluid and the magnetic

field become

C2 U
T~ IT
0) 1
P.

d
dx

ud-T *7-
P_

Uj dx

C
U) U.

^
J - V B
z. z x

(2.10)

U d
- u

dB
u u I iirr- -T— U

w" 1
P.

dx

C CIU dBz± _i_ _JLdx

VU
U. dx

UB - V By y

,V2where Cj = B /(4Trp.)i/4' and w = (4TTN.e /M±)

(2.11)

The second order
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derivative term represents electron inert!al dispersion and has been

retained for completeness. The terms multiplied by C/co represent ion
P+

inertial dispersion, and these terms couple B and B . v represents
7 Z

an ion-electron collision frequency, i.e., resistivity, and introduces

irreversibility into the above equations; v may arise from either weak

Coulomb collisions or from anomalous turbulent dissipation.

The program for obtaining a differential equation which describes the

shock spatial structure is to eliminate all of the plasma variables in terms

of the magnetic field BZ and B . The above equations, however, are not

in closed form. There is no equation which uniquely determines P,, •* and

P\ ' , and the zeroth order heat flow is not specified. Furthermore, from

the general equations of MacMahon [14], P^ ' , P.J ' , q, , and q t t (

depend on higher order than third moments of the Vlasov equation. In order

to truncate the moment hierarchy, some approximations are needed and will

be discussed in the following sections.

2.3 The Rankine-Hugoniot Relations

Some of the above difficulties could be removed if an adequate number

of conservation relations were available. Before proceeding to the FLR-CGL

equations, however, the significance of the Rankine-Hugoniot relations is

best appreciated by reviewing hydromagnetic shocks. The hydromagnetic

equations are a closed set of nonlinear hyperbolic partial differential

equations; the Cauchy problem is, therefore, well posed, and the solution

is obtainable by the method of characteristics [12]. The time independent

hydromagnetic equations can be written in the form V»^_ = 0 where j_ is

the mass, momentum, or energy flux. Hence there exist three integrals of

the motion which are the Rankine-Hugoniot conservation laws. The time
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independent equations permit discontinuous changes in the characteristics

with the final state determined from the initial one by the conservation

laws. The significance for shocks is that no information about the internal

structure and dissipation processes is required in order to specify the

downstream state.

Now consider CGL hydromagnetics without ICR corrections. Assume that

the characteristics of these equations are real; i.e., the conditions for

the firehose or mirror instabilities are not satisfied, so that the shock

flow can be assumed time independent. There are eight variables, p , V ,

BZ , B , P*- ' , and P£ ' but only seven equations which are in the

form of conservation laws [15,16].

It might be thought that this difficulty could be resolved by writing

separate equations for the parallel and perpendicular energies. Within the

CGL system the following two energy equations are obtained.

f ui2 PL 1 Bx (^ x B)
^\r I * . * I _ IT _r» - """ """" *"""

(2.12)

(2.13)

where d/dt is the convective derivative. IJ,, and U. are the velocity

components parallel and perpendicular to J5 , respectively.

Except for perpendicular fast shocks in which dB/dt = 0 , the parallel

and perpendicular energies are coupled. (For perpendicular shocks U(| = 0

and (2.13) yields P,,/p = T(| = constant. Although (2.12) also yields

P. /pB = constant, Goldberg [22] has shown that P, /pB is not conserved to
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first order in R+ . Hence TH = constant is the appropriate conservation

law.) The coupling for oblique shocks arises from the centripedal

acceleration of the plasma along the magnetic field due to variations in the

field direction. Since the Vlasov equation always conserves total energy,

changes in parallel energy must come, in part, at the expense of the perpen-

dicular energy and vice versa. In hydromagnetics this coupling never occurs

since the assumption of pressure isotropy implies that any gain in parallel

energy is transferred back to perpendicular energy by collisions.

Since the parallel and perpendicular energies are coupled for oblique

shocks in the lowest order CGL theory, the retention of first order FCR

corrections cannot remove the coupling. In fact since FCR terms couple the

various degrees of freedom, P. and P,, only become more entwined in the

first order theory. Therefore neither CGL nor FCR-CGL hydromagnetics possesses

a closed set of Rankine-Hugoniot relations for oblique shocks. Hence the

downstream state is not uniquely determined by the upstream flow conditions

but depends on the detailed dissipation processes within the shock front [15,16],

In a collisionless shock the pressure moments of the particles' kinetic

equation, including the plasma turbulent "collision" operator which provides

anomalous dissipation, would yield a relation between P and P. through
" »

the shock front. Since the kinetic theory of the plasma turbulence appropri-

ate for slow shocks is far beyond the scope of this initial paper, the

simplest approximation that completes the FCR-CGL equations will be made,

i.e., the parallel and perpendicular pressures are assumed equal in the lowest

and first order equations. In effect, the pressure anisotropy is taken to be

of higher order in the ICR expansion than the ICR dispersive contributions.
2

As shown in Section 3.0, ICR dispersion enters as (R+/L) where L is

typical scale length for the shock; therefore the pressure anisotropy P̂  -t̂  /Pw
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is assumed to be of order (R+/L) . A word of caution is advisable, however.

Anisotropy driven wave turbulence could constitute an important part of the

slow shock structure, as it does for fast Alfven shocks [5] and is possible

for finite-6 whistler fast shocks [23]. In these fully turbulent shock flows,

both the resonant and non-resonant anisotropy instabilities must be treated

directly by the Vlasov-Maxwell equations, and such shocks, therefore, are

inherently not amenable to investigation by fluid equations.

2.4 Heat Flow

Closure of the FCR-CGL hydromagnetic equations requires truncation of

the moment hierarchy derived from the Vlasov equation. The zeroth order

parallel heat flow, which arises from the third order moment, however, is not

determined by the fluid moments [14]. The parallel heat flow depends on the

detailed shape of the particles' distribution functions, and can only be

specified for collisionless shocks when the kinetic turbulent "collision"

operator is known. The usual argument used in CGL is that only a few

collisions are needed to suppress the parallel heat flow. Since collisionless

shocks must involve turbulent dissipation which replaces ordinary Coulomb

collisions, the parallel heat flow will probably be suppressed within the

shock layer. Every line of force must pass through the turbulent region in

the shock layer so that if the heat flow is negligible there, it can also be

neglected in the upstream and downstream flow. Furthermore, in the context

of hydromagnetic shocks, Coroniti [13] has shown that heat flow dissipation

acting alone can provide the required dissipation only for very weak fast

and slow shocks. Hence for most shocks other types of dissipation such as

resistivity and/or viscosity are necessary for a complete shock transition.
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With the lack of a turbulent "collision" operator, for the purposes of

this paper the effect of parallel heat flow on the structure of slow shocks

will be neglected, thus closing the fluid equations. In addition fourth

and higher order moments will also be neglected. Formally, this neglect is

equivalent to assuming that the parallel heat flow, (q\^ + q, ) • x
•'* •

and higher moments are of order (R+/L) . Again, a word of caution is

advisable. Oblique shocks do have temperature gradients along the magnetic

field, and there could exist a large heat flow directed upstream from the

shock front which could greatly broaden the shock or might, in certain circum-

stances, render the whole concept of a shock transition meaningless.

Section 5.0 comments further on the importance of parallel heat flow in

magnetic slow shocks.

•v

2.5 Summary

From the linear wave theory the spatial structure of magnetic slow

shocks should be at the ion inertia length for 3 < 1 and the ICR length

for g > 1 . The FCR-CGL hydromagnetic equations, which are appropriate

for describing the shock fluid structure, contain two difficulties: a

complete set of conservation laws which relate P(| and P. and uniquely

specify the downstream state does not exist for oblique shocks; the zeroth

order parallel heat flow is not determined by the fluid moments so that the

equations are not closed. The resolution of both difficulties requires a

knowledge of the plasma turbulent dissipation in the shock. In order to

continue with the investigation of the shock fluid structure without first

solving the turbulent dissipation problem, two assumptions will be made: the

parallel and perpendicular pressures are assumed equal to order (R+/L) ; the

parallel heat flow and higher order moments are taken to be of order (R+/L) ,

and hence neglected.
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3.0 Fluid Dispersive Structure of Magnetic Slow Shocks

3.1 Introduction

With the above assumptions the ICR-CGL equations could be reduced to a

coupled system of second order nonlinear differential equations which would

describe the spatial variation of the magnetic field from the upstream to

downstream state. Although of interest for numerical methods, the nonlinear

wave train differential equations are usually too complex for solution by

analytic methods. As with many nonlinear differential equations, however,

the nature of the wave train solutions is obtainable by linearizing the

differential equations about their stationary points. For shock wave trains,

the stationary points are given by the spatially uniform asymptotic flow

states which satisfy the Rankine-Hugoniot relations. A shock transition

requires that the upstream (downstream) state be unstable (stable) to small

linear perturbations. Although the linearization technique does not realize

the nonlinear structure of the shock center, whenever numerical wave train

solutions have been obtained, the results have confirmed the qualitative

predictions based on linearization [2,24]. Therefore in this paper the

structure of magnetic slow shocks will be investigated from the linearized

wave train differential equations.

In Section 3.2 the linearized differential equations are derived and

approximations applicable to magnetic slow shocks are developed. The low-$

oblique slow shock is analyzed in Section 3.3 and is found to have a

trailing ion inertia length wave train. Section 3.4 considers high-8 slow

shocks. Both oblique and at near-parallel propagating shocks have trailing

ICR length wave trains.
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3.2 Linearized Wave Train Differential Equations

At a Rankine-Hugoniot stationary point the plasma is spatially uniform

so that all x-derivatives vanish; furthermore V = B = 0 . The linearized

differential equation is obtained by perturbing equations (2.6) - (2.11)

about the stationary point and retaining only lowest order terms in the

perturbed variables. The coefficients of all perturbed quantities are then

to be evaluated at either the upstream or downstream stationary points.

After elimination of 6PĴ  = 6P(1) + 67^ (see Appendix A. 2), 6V ,

and 6V , the linearized form of (2.6) - (2.9) can be reduced to the

following equation for 6u

UB 6B
6U -1

2 2
z z

4ir (3.1)

2 5 P
The sound speed is now defined as GS = •=• —~— . In deriving (3.1)

pressure isotropy and neglect of zeroth order parallel heat flow are

assumed. In addition, the relation U.B = UB - [B 2(B -B )/4TTpU] ,
1 Z. Z X Z Z*

which follows from (2.8), (2.10), and (A.2.7) evaluated at a stationary

point, was used to eliminate 11,8 from the energy equation. 6T and
•I Z * XX

6(q^ ' + q^ ) ' x are given by (A.2.6) and (A.2.9), respectively.

The coupled wave train differential equations are obtained from the

linearized form of the Ohms law (2.10) and (2.11). After elimination of

6U by (3.1), 6V by (2.7), 6Vz by (2.8), and substitution of the

relations (A.2.5) - (A.2.9) which are derived in Appendix A.2, equations

(2.10) and (2.11) become

d26B d6B CT d6B
D ^ - + r -r-i.-L. jr-F-r-^ = A 6B (3.2), 2 m d X ( i ) U d x z zdx p+
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d26B

where

d5B d6B

(U2-Cp
2)(U2-C2 )

- 2 2 2

VB (3-3)

(3'4)

Ay - 1 - (Cj2/U2)

B2R

D- V*
03
P.

U (U-Cg )

4U2cA 2[2b 2(l-2b 2) + Is x

-b x
2 ) ( l + bx

2)

- Cs
4bx

4(l-3bx
2)2}

(.3.5)

(3.6)

F » 1 +
2 p U ( U - C s )

•) •) j
b Xf (l-3b/)]

A O X
(3.7)

G =

B 2 R 2

ft)
2 2 2 2Z Z Z Z

p_

» 2 Cl+b_ 2 ) ] - C A 2(l-3b 2)2} (3.8)x _x z b x

P_

is the zeroth order ion pressure and R+ = ( P / 2 p J i + )1'2 is the

ion gyro-radius based on the effective thermal speed (Pl ^*/2p) ' ;

b = B /B and b = B /B are the direction cosines of the magnetic field.
X X Z Z

Electron inertia dispersion, C/oi , has been retained for completeness.

Equations (3.2) and (3.3) are to be solved subject to the boundary conditions

that 6 B , 6 B -»• 0 as x •*• ± °° ; i.e., the upstream and downstream states

are uniform.
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In their present form (3.2) and (3.3) are valid for both fast and slow

shocks and could be analyzed directly. In order to focus on the wave trains

for slow shocks, however, it is convenient to develop approximate forms of

(3.2) and (3.3) in various limiting cases. The range of upstream slow shock

flow velocities is given by the shock evolutionary conditions [12] as

Cj > _ U . > Cg. . In addition, the restriction to magnetic slow shocks and

the neglect of Debye length dispersion requires U « Cg . For 3 « 1 ,

CSL = CSbx ' hence cs >:> U > CSL imPlies b <<: 1 or that low-& magnetic

slow shocks propagate at large angles to the magnetic field. If 6 » 1

1/2
and bx « 1 , CgL ~ Cj/(l + 2/3) ' ; therefore the near equality of CgL

and CL combined with Cj >^ U > Cg, imply that high-6 slow shocks are very

weak. Note that for 6 » 1 , Cg » Cj so that U « Cg is automatically

satisfied. Recall that for exact parallel propagation, Cj = Cg, , and the

slow shock is of zero strength.

The maximum strength slow shock occurs for U. = CT and has been

termed the slow switch-off shock since the Rankine-Hugoniot relations require

that the upstream magnetic field component in the shock plane be switched-off

or reduced to zero across the shock [12]. Serious questions as to the

hydromagnetic stability and existence of slow switch-off shocks have been

raised by several authors [see Refs. 25-29]. In the present analysis, a

premonition of difficulty with switch-off shocks is that for U. = Cj ,

A = 0 . The vanishing of A in (3.3) requires that the inertial and ICR

dispersion terms be balanced by the dissipative term, which is a worrisome

conclusion since the collisionless shock wave train equations were derived

in the limit of very weak dissipation. The problem of slow switch-off shocks

will be discussed in Section 4.0 where it is shown from the full nonlinear

differential equations in the low-3 limit that dissipation is indeed crucial
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for the steepening of the switch-off shock. The results obtained in this

section will avoid the switch-off shock limit.

Proceeding now to approximate (3.2) and (3.3) for magnetic slow shocks,

the discussion of Section 2.1 indicated that electron inertial dispersion

does not contribute to the shock spatial structure, and hence C/w can be

neglected in D and G . For $ « 1 , C/u » R+ , and the ICR dispersion
P+

terms D and G can be neglected in the analysis of low- 3 oblique slow

shocks. For @ » 1 slow shocks, a convenient approximation is to expand

D and G in the oblique shock limits b « 1 and the near parallel shock

limit b, « 1 . With U2 « b 2CC
2 the results are

Z X O

a. b « 1
A

,
D = G = -- •£ - — R = - ER * (3.10)

2PU4 *

b. bz « 1

2P(0)+ f 2
1 2 2

D = G = j—— R = - E1 R L . (3.11)
PIT

Similarly for 3 » 1 , F can be approximated as

c. bx « 1

p(0) + b 2
F ~ —JL. (3.12)

2pU^

d. b. « 1

F s +- . (3.13)
PIT
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The following analyses will be restricted to the limits bx « 1 and

3.3 Low-6 Oblique Slow Shocks

After dropping electron inertial and ICR dispersion, (3.2) and (3.3)

for the low-6 oblique shock become

- _
o> U

P+

d6B

dx ' Az6Bz (3.14)

d6B CT d6B

iT F -XT VB (3.15)

If 6B and 6B are taken to vary as exp(XX) , the solutions of the

quadratic equation in X obtained from (3.14) and (3.15) are

X =

I _ i -

y*

j j r

v<VV Vz V
D

c2 ci2 V
7" 7" -n —

?~ .
i/*

(3.16)

In the limit of weak resistive dissipation, r « C/w . If At 0 ,

i.e., the shock is far from the switch-off limit, (3.16) becomes approxi-

mately

X =
_ _ | F |

V u ' '

(3.17)
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a. Upstream Solution
2 2 2About the upstream Rankine-Hugoniot conditions with U « Cg , Cp ,

AZ = (Cp2/Cs
2)/[(M2

L-l)/M2
L] , where MgL = U/CSL is the slow shock Mach

number. Since U < Cj by the shock evolutionary conditions, A < 0 ; the

positive root solution of (3.17) then yields an exponentially growing pertur-

bation with increasing distance into the shock. Note that the negative root

violates the upstream boundary condition 6B , 6B -»• 0 as X •*• - °° .z y

Therefore in the low- 6 oblique slow shock wave train the upstream magnetic

field undergoes an exponential decrease with a characteristic scale length

given by

Cc CT

c IT MSL
(3.18)

All parameters in (3.18) are to be evaluated about the upstream flow
2

conditions. For moderately strong slow shocks, M.-l » 1 , but still far

from the switch-off limit, Cj/U > 1 , the scale length (3.18) becomes

L ̂  J$~ (C/w ) « C/w if 3. « 1 ; hence the leading edge can be
P+ P+

sharper than C/w .

b. Downstream Solution

Downstream both A < 0 and A < 0 , (3.17) then describes a trailingz y

oscillatory wave train with an oscillation length given by (3.18) evaluated

about the downstream flow. As x ->• + °° the wave train is exponentially

damped to the uniform downstream state with a characteristic damping length

* [2(C2/o>2 )(Cj2/U2)F2]/(A +Az)rm . Note that Ay is always non-zero

downstream, and therefore the above solution also applies to downstream

switch-off shocks, if the term Cg/Cp in (3.18) is replaced by unity.



-24-

This solution is valid only if the downstream B is small. The

obliquity restriction, b « 1 , is somewhat relaxed, however, since the

downstream flow speed is much less than the sound speed. Since the oblique

slow shock converts magnetic energy into flow and thermal energy, even

moderate strength slow shocks will produce a moderate to high-$ downstream

state, thus necessitating the consideration of ICR dispersion.

3.4 High-3 ICR Slow Shocks

In the high-$ limit the approximate equality of C, and GS, and the

restriction of the upstream flow velocity to lie between CL > U > CgL

2
implies that the slow shock is weak, i.e., Mg - 1 « 1 . Consequently the

density jump across the shock is also small and the slow shock becomes almost

incompressible [12]. Furthermore, most oblique slow shocks differ only

slightly from complete switch-off shocks. Again the switch-off limit will be

avoided in this section by taking A t 0 upstream, but will be discussed

in Section 4.0.

For 3 » 1 , all terms in (3.2) and (3.3) contribute to the wave train

structure. In order to simplify calculational details, only the very oblique,

b « 1 , and near parallel, b « 1 , propagation limits will be considered
X Z

so that the approximation expressions (3.10) - (3.13) for D, G, and F can

be used. Again taking 6Bz and 6B to vary as exp(Xx) , (3.2) and (3.3)

reduce to the following fourth order algebraic equation for X

E2 R 4 X4 - 2r E R 2 X3 + X+ m +

- rm(VAz)X

F * E » * « V *U '
P+
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E takes on the value E if b « 1 and E1 if b « 1 . Noting that
X Z

2 2 2 2C / o > = C . / n , substituting (3.12) for F when b << 1 , and (3.13)
P+ A * X

""
when b « 1 , and using

(3.20) can be rewritten as

2
when b « 1 , and using the definition of E and A in the X term,

- 2r E R 2 X3 + X2 [E R 2(1+A ) + r 2]m + L + v z m

i = 0 (3.21)

To gain some insight into the solutions of (3.21), consider the dissi-

pation less limit where r = 0 . The solutions of the resulting quadratic
Tu

2
in X are

X
2

*»*2 .

,1/21

-V* (3.22)

Since AZ z (CF
2/CS

2)[(M2
L-1)/M2

L] « 1 (note Cp = Cg if 3 » 1 ) , the

square root in (3.22) can be expanded to obtain the following two approximate

solutions

- -A A
-
E R/(1+AZ)

(3.23)

2 l * A
z^ = - = - J (3.24)

E V

Upstream A < 0 , A > 0 and (3.23) describes exponentially growing

2
solutions; downstream A < 0 , and the solutions are oscillatory. X_ is

t» *™

always negative, and hence yields oscillatory solutions both upstream and

downstream.

Upon reexamination of (3.21) with rm = 0 , the X+ solution (3.23)

is given by setting the last two terms equal to zero and the X_ solution
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(3.24) arises by equating the first two terms to zero. Therefore, a

reasonable approximation to the solutions of (3.21) with r / 0 is to

take the last three terms and the first three terms separately equal to zero.

a. Solution of Last Three Terms

The solution for the quadratic in X given by the last three terms

of (3.21) is

± - AyAzER+
2(l+A2)]

1/2

If A j« 0 and rm « R+ in the weak dissipation limit, (3.25) can be

approximated as

r (A +A )~ nr y ^' / -A A

2E

Since upstream A < 0 , the positive root solution of (3.26), which

satisfies the x •*• - °° boundary condition, yields growing perturbations.

Hence the upstream wave train structure is an exponential decrease of the

magnetic field with a scale length

2 2

1 +
MSL •

22 M

1/2

R

(3.25)

(3.26)

(3.27)

S SL
with all quantities evaluated about the upstream flow conditions. Since

M^L-1 < 1 and |l - Cj2 /U2 | < 1 for 3 » 1 , L » R+ , thus justifying

the use of the small ICR expanded FCR-CGL fluid equations to describe the

shock structure.
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Downstream A < 0 , A < 0 , and the shock structure is a damped os-

cillatory trailing wave train with wave length given by (3.27) evaluated

for downstream conditions. The exponential damping length is

~ [2ER+ U+AZ)]/[ |Ay
+A

zl r
m] and A +A

Z
 < ° assures satisfaction of the

x •*• + °° boundary conditions. Again note that the downstream solutions are
2 2

also valid for slow switch-off shocks, provided that the terms C /Cc in
r o

(3.27) are replaced by unity.

b. Solution of First Three Terms

Setting the first three terms of (3.21) to zero, the r ^ 0 solutionm
corresponding (3.23) for r = 0 is

Although (3.28) yields damped oscillations as x-*• - °° , the oscillations

grow exponentially as x •*• + °° , thus violating the downstream boundary

conditions. Hence solution (3.28) must be rejected; the correct high-6

slow shock wave train solution is, therefore, (3.25) or (3.26).

3.5 Summary

The structure of the slow shock nonlinear wave train differential

equation has been examined by linearizing about the Rankine-Hugoniot stationary

points. The low-8 oblique slow shock wave train trails in the downstream

flow and has an oscillation scale length of order C/ui . For 3 » 1 ,

the shock structure for both oblique and near-parallel propgation is also a

trailing wave train with a scale length of order R+ . Recall from Section

2.1 that both C/w and R+ dispersion decreased the linear slow wave
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phase speed. Since wave trains are formed by waves on the same dispersion

branch as the shock which phase stand in the shock flow, the downstream

trailing nature of slow shock wave trains could have been anticipated from

the linear dispersion relation. Although difficulty was encountered at the

upstream point for slow switch-off shocks, the downstream trailing wave

trains are valid even in the switch-off limit.
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4.0 Slow Switch-Off Shocks

4.1 Introduction

Slow switch-off shocks, being the strongest slow shock, propagate at

the maximum flow speed permitted by the shock evolutionary conditions, the

intermediate wave speed ahead; the tangential magnetic field component is

switched-off across the shock. An analogous shock flow occurs for parallel

propagating low-3 fast shocks. Here the Rankine-Hugoniot relations require

a tangential component of the magnetic field to be switched-on across the

shock; the downstream flow speed of fast switch-on shocks must equal the

downstream intermediate wave speed [12].

Anderson [25] investigated the reflection and transmission of inter-

mediate waves incident on plane fast and slow shocks using linear ideal or

dissipationless hydromagnetic wave theory. He found that when the upstream

slow shock and downstream fast shock flow velocities equaled the intermediate

speed, the intermediate wave amplitude became infinite. Physically, because

of the confluence of the intermediate wave and shock flow speeds, intermediate

waves are resonately generated and accumulate in the shock front. Anderson

concluded from the breakdown of the small disturbance linear theory that the

slow switch-off and fast switch-on shock fronts are unstable and would dis-

integrate. Slow (fast) shocks which are slightly weaker than switch-off

(switch-on) shocks, however, are stable.

An alternative argument for the existence of stable switch-on and switch-

off shocks has been advanced by Kantrowitz and Petschek [12]. They consider

the well-posed shock piston problem in which the driving piston moving parallel

to a strong magnetic field (low-0) is accelerated to a speed less than the

intermediate wave speed. For parallel shocks such a downstream flow speed
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could be obtained from the gas dynamic Rankine-Hugoniot relations in which

the parallel magnetic field does not enter. In the hydromagnetic shock theory,

however, this flow corresponds to an extraneous and thus disallowed shock

solution. Kantrowitz and Petschek argue that the resolution of this piston

problem is that a fast switch-on shock first reduces the flow velocity to the

intermediate speed and then is immediately followed by a slow switch-off

shock which further reduces the flow speed below the intermediate speed and

annihilates the switched-on tangential magnetic field component. Here the

two shocks simply propagate together. Furthermore, if the boundary conditions

at the piston also require a rotation of the magnetic field and the annihila-

tion of the tangential component, Kantrowitz and Petschek, and Petschek and

Thome [30], have argued that the rotation is first accomplished by the inter-

mediate wave without change of field magnitude, and then the slow switch-off

shock reduces the field magnetic without further rotation. Here the inter-

mediate wave and slow switch-off shock simply propagate together.

Chu and Taussig [28] numerically investigated fast switch-on shocks

using the nonlinear hydromagnetic equations with an effective numerical dissi-

pation. After the switch-on shock was launched by a piston, the shock

encountered an upstream transverse magnetic perturbation. The shock structure

repolarized in order to adjust to the new magnetic field orientation, and an

intermediate wave was produced downstream which then rotated the magnetic

field so that the piston magnetic boundary conditions were satisfied. For

the slow switch-off shock the intermediate wave rotates the magnetic field

ahead of the shock so that the piston boundary conditions are satisfied. Chu

and Taussig concluded that fast switch-on and slow switch-off shocks were

stable to intermediate wave perturbations.
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The significance of the Kantrowitz and Petschek existence arguments and

the analysis of Chu and Taussig is that they are based on the causality of

the piston problem, and hence include not only the nonlinear shock and inter-

mediate wave properties but also dissipation. Anderson's [25] non-existence

argument, on the other hand, was based on linear, dissipationless hydromagnetic

theory; thus an infinite amplitude resonance, a not surprising phenomenon in

dissipationless theory, was found. Recall from Section 3.2 that in the

switch-off shock limit A = 0 , the dispersion terms in the linearized wave

train differential equation (3.3) had to be balanced by the resistive dissipa-

tion term. This conclusion and the Kantrowitz and Petschek existence

arguments suggest that the structure of switchroff and switch-on shocks depends

critically on the presence of dissipation.

In Section 4.2 the full nonlinear dissipative wave train differential

equations for a low-6 oblique slow switch-off shock is derived. For simplicity,

only ion inertial dispersion is included. The analysis of these equations

reveals the importance of dissipation in the shock structure. In Section 4.3

the linearized wave train analysis of Section 3.0 is re-examined in the

switch-off limit for both low and high-g slow shocks. Section 4.4 presents

a further discussion of the switch-off shock problem.

4.2 Low-3 Oblique Slow Switch-off Shock Wave Train

The derivation of the switch-off shock wave train differential equation

commences from the nonlinear system of equations (2.5) - (2.11). For $ « 1

the ICR dispersion terms can be dropped; again assuming pressure isotropy

then yields P£} = P , P^} = 0 , PJ£> = 0 , and (<£(1) + c£(1)) • x » 0 .

As before, zero order parallel heat flow will be neglected. In addition

only ion inertial dispersion is retained in Ohm's Law (2.10) and (2.11). The
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calculation proceeds as in Section 3.0 for the linearized differential

equations. In (2.6) - (2.9), P, V , and Vg are eliminated, and U is

determined in terms of B and Bz y Then U, V , and V are eliminatedy z

from Ohm's Law (2.10) and (2.11) to yield the following two differential

equations

dB
«

m dT M.

dB
X

dr (4.1)

m dt M. ar s (4.2)

where

f(Bz,By) 1
Y+l

Y(Bz
2+By

2-l)

2 M 2

Y(Bz
2+By

2-l)

2M 2 - (Y -
By2 * (BZ-D2

M 2

- (Y+l)

-11/2

M
(4.3)

In (4.1) - (4.3), B and B have been normalized to B . B =0z y i ^i
was assumed, although there would be no change in following analysis and

1/2conclusions if B j* 0 . M = [U. (4irp ) ' ]/B is the upstream Alfveny . A i l z ,
1/2Mach number and Mg = U /(yPj/p.) ' is the corresponding sonic Mach number;

the ratio of specific heats y = 5/3. cot<|> = B /B . r ' = (v/Q_) (1/M.)x z • in ~ •*

where Ii = eB/M c . The pseudo-time variable dr = dxU.w /U(x)c where

(0 (4irN1e2/M+)l/2 . Note that the right-hand-sides (RHS) of (4.1) and (4.2)
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are independent of derivatives and contain only hydromagnetic quantities.

Setting the RHS to zero, i.e., spatially uniform conditions, yields the

Rankine-Hugoniot relations for B and B .

1/2For the slow switch-off shock, U. = Cj = B /(4Trp.) ' or M. = cot<|> .

Therefore in the switch-off limit (4.1) and (4.2) simplify to

z y Bz (4'4)

rm' By + Bz " fW By

where dot (•) denotes d/dT . From (4.3) f is now a function only of

2 2 1/2
r = (B + B ) ' ; note that f(r=l) = 0 so that f(r) vanishes atz y

upstream Rankine-Hugoniot conditions. The RHS of (4.4) and (4.5) can be

interpreted as a pseduo-force which yields a stationary point of the

differential equations at r = 1 . The stability of the corresponding

pseudo-potential about r = 1 is determined by taking the appropriate

derivatives of the RHS of (4.4) and (4.5) and evaluating them at B =0
yl

and B = 1 to obtain
21

[f(r)ByJvl>By=0 = 0 . (4.7)

Since U. « Cf, for oblique magnetic slow shocks, (4.6) implies that at
1 Sl

the upstream point r = 1 the pseudo-potential has an unstable maximum with-

respect-to (wrt) B and is neutrally stable wrt B . Hence r = 1 is a

saddle or inflection point of the pseudo-potential. Furthermore since the
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pseudo-potential is obtained in the usual way by integrating (4.4) wrt Bz
and (4.5) wrt B , equating and normalizing, the pseudo-potential is only a

function of r , and hence is symmetric in B and B .

Equations (4.4) and (4.5) can be expressed in an alternate and more

transparent form. Multiplication of (4.4) by B and (4.5) by B and

then subtraction of the results yield

ByV BzB*z + V (Vz- BzV = ° (4'8)

If the cylindrical coordinates B = r cos 6 and B = r sine arez y

introduced, (4.8) becomes

r/r = - rm' e . (4.9)

With the upstream T -»• - °° boundary conditions r = 1 , 8 = 0 , (4.9) can

be immediately integrated to obtain

r(T) = exp[-r ' e(r)] . . (4.10)

Similarly, multiplying (4.4) by B and (4.5) by B and subtracting yields

r2/r2 + 62 = - f(r) 6 . (4.11)

After elimination of 6 in (4.11) by substitution from (4.9), (4.11)

reduces to

= 0 . (4.12)

-. *•
Thus the slow switch-off wave train differential equation factors into two

solutions.

First consider the r = 0 solution in which the magnetic field magnitude
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is constant. If rm' t 0 , r = 0 in (4.9) requires 6 = 0 , and the

magnetic field direction is unchaged. If there is no dissipation r ' = 0 ,

• *from (4.11) the r = 0 solution yields 8 = -f(r ) which can be integrated

to obtain

8(T) = - f(ro) T . (4.13)

If r J* 1 so that f(r ) t 0 and the flow does not satisfy the upstream

Rankine-Hugoniot relations, (4.13) describes the rotation of a constant ampli-

tude magnetic field, and therefore represents the intermediate wave. At the

upstream point rQ = 1 , (4.13) yields 6(r) = 0 , and no rotation of the
•magnetic field occurs. In conclusion, the r = 0 solution does not permit

a dissipative intermediate wave, which would change the plasma state, and if

the upstream flow satisfies the Rankine-Hugoniot relations, no intermediate

wave is required. If the boundary conditions of a piston problem involving

a switch-off shock did require an upstream intermediate wave, however, the

upstream flow would not be in the Rankine-Hugoniot configuration given by

f(r) until after the passage of the intermediate wave. Hence, in concurrence

with the results of Kantrowitz and Petschek [12] and of Chu and Taussig [28]

an intermediate wave and switch-off shock could exist together with each

satisying separate boundary conditions.

Now consider the second solution of (4.12). In the dissipationless

limit r ' = 0 , the second solution requires that r = 0 and f(r) = 0

or r = 1 ; without dissipation no transition from the upstream state occurs.

For r ' / 0 , (4.12) yields the immediate quadrature

d r , , . 1>IA(4.14)
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The nature of this solution can be examined by linearizing about the upstream

point r = 1 . For r = 1 + 6r , 6 = 66 , and f(l+5r) = A6r where A > 0

is given by (4.6), the linearized solution of (4.14) becomes

6r a exp

m
Lm

(4.15)

From (4.9) 66 is given by

66 « ^L- 6r . (4.16)
m

Hence 6r •+ 0 and 66 -»• 0 as T -»• - °° , thus satisfying the upstream

boundary conditions. As T increases positively toward downstream, 6r

and therefore r leave the upstream state exponentially, and the magnetic

field direction begins to rotate. Since the second solution yields a trans-

ition from the upstream Rankine-Hugoniot state, (4.14) represents the slow

switch-off shock. Therefore the switch-off shock transition from the

upstream state occurs only in the presence of dissipation.

In the weak dissipation limit rm' « 1 , from (4.15) and (4.16) the

magnitude of the upstream magnetic field changes slowly compared to the change

in field direction. Therefore since f(r) will be slowly varying, an

approximate or adiabatic solution for 6(T) can be obtained by substituting

(4.9) into (4.11) and integrating the result with f(r) held constant to

obtain

8(T) 2 ££1* T (4.17)
1 * V

Recall that dr = dxU.cu /CU(x) ; it can easily be shown from (2.6) - (2.9)

that
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U(x)
f Or) (4.18)

Hence with f(r) slowly varying, (4.17) becomes

8(x) = -f(r) x (4.19)

u> 1 +

From (4.10) and (4.19) an approximate solution for the upstream magnetic

field then becomes

B.(x) = exp

By(x) = exp

cos 6(x)

sin 9(x) (4.20)

Note that for r < 1 , f(r) < 0 and 6(x) > 0 ; hence from (4.18) U(x) < I

and from (4.20) B (x) and B (x) decrease in magnitude as x increases.z y

The spatial structure of collisionless slow switch-off shocks is now

apparent. The magnetic field magnitude inside the shock gradually decreases

2 2from the upstream value with an exponential scale length L *\» c /u r »

c/u> . The magnetic field direction rotates rapidly with an oscillation
* 2 2wavelength ^ c/u> . Since f(r) varies on the c /w r scale length,

the flow velocity from (4.18) and hence the density decrease gradually so

that the shock leading edge is nearly incompressible. From Section 3.0 the

downstream wave train structure is also a rotating magnetic field with wave-

length c/w or R+ which slowly damps to B =B = 0 . The complete

switch-off shock structure will then consist of a long trailing wave train
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of magnetic field rotations which are gradually damped by resistivity to a

uniform downstream state. A sketch of the wave train is given in Figure 2.

The above discussion can easily be reformulated for the fast switch-on

shock. If all plasma parameters are normalized to the downstream flow

conditions, (4.4) and (4.5) are recovered, and the analysis proceeds as for

the slow switch-off shock. Therefore the fast switch-on shock structure is a

long train of magnetic rotations starting from B = B = 0 . The magnetic

field magnitude gradually increases through the shock until the downstream

state is reached. A sketch of the fast switch-on shock wave train can be

obtained from Figure 2 by interchanging the upstream and downstream states

for the magnetic field. A similar spatial structure for the fast switch-on

shock has been observed in shock experiments at Novosibirsk (R. Z. Sagdeev,

private communication).

4.3 Switch-off Shocks from the Linearized Wave Train Equations

The previous section established that dissipation determines the leading

edge switch-off shock wave train structure. Returning to the linearized

analysis of Section 3.0, the switch-off limit A = 0 can now be taken with

confidence. About the upstream point of low-0 oblique slow shocks, (3.16)

with A = 0 yields one root A = 0 which corresponds to the r = 0

solution, and the second root which describes the exponential decrease of

the magnetic field with scale length
(~ n 2 „ ~t

L-v , t (4.21)
Cc Met'1F SL

r 2 M2 m
cs "SL

(4.21) corresponds to the solutions (4.15) and (4.16).
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The range of flow velocities for which (4.21) rather than (3.18) applies

can be roughly estimated by equating the two terras under the radical in

(3.16). Noting that for 3 « 1 , M2 -1 r M2 if U ̂  CT , and 3 ^ C 2/C '
o L i O L f 1 O r

the two terms are comparable when |u2-Cj2|/U2 s (1/43)(v2/«_2)(B2/B 2) .

Hence if v/fl_ « 1 and 3 and B /B are only moderately small, the flow

velocity must nearly equal the intermediate speed in order for the switch-off

shock solution to apply.

For high-3 switch-off shocks the solution (3.25) with A = 0 describes

the ICR dispersive structure. One solution of (3.25) is A = 0 ; the second

solution yields the upstream magnetic field decreasing exponentially with a

scale height ~ 7
C * NC,-1

ER 2 SI
cs- - __^ - ZZ - (4.22)

V "SI1

rC
2 2

S
MMSL

Since for 3 » 1 all but the very -weakest slow shocks are near the

switch-off limit, (4.22) should describe the leading edge structure of most

high-3 slow shocks. Since r « R for weak dissipation, (4.18) predicts

a very thick L » R+ leading edge structure. Note that the solution (3.28)

is unchanged when A = 0 and is still disallowed by the boundary conditions.

4.4 Wave Train Structure of Slow Shocks

Upon comparing the results of Sections 3.0 and 4.0, the thickness of

the slow shock leading edge exhibits a curious behavior with increasing shock

strength. As the Mach number increases, (3.18) for 3 « 1 and (3.27) for

3 » 1 , predicts that the shock thickness initially decreases. However, as
*y *y -I j *j

the switch-off limit is approached, the l/|l-Cj /U | ' term in (3.18) or
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(3.27) causes the shock thickness to increase until the limiting scale length

set by resistivity, (4.21) or (4.22) is reached (see Figure 3). (If the

shock is strongly dissipative, r > c/u or R+ , and the shock thickness

is always given by r .)

In order to understand the increase of shock thickness with Mach number

and the resistive structure of switch-off shocks, consider the steepening of

a pulse emitted by a piston which has been accelerated to the downstream flow

conditions of a switch-off shock. Pulse steepening proceeds by the nonlinear

excitation of waves with frequencies and wave numbers at harmonic multiples

of the fundamental wave from which the pulse started. As steepening continues,

the plasma conditions inside the pulse approach the downstream shock conditions;

hence the fluid velocity inside the pulse is less than the phase speed of the

emitted harmonic waves. These waves then propagate upstream against the

fluid flow toward the pulse front and pile up, thus resulting in further

steepening and acceleration of the pulse.

In a collision dominated plasma, steepening limitation arises when the

wavelengths of the emitted harmonic waves become comparable to dissipation

scale lengths such as r . Dissipation slows the phase speed of the emitted

waves to below the fluid velocity inside pulse so that all waves are blown

downstream by the fluid and steepening ceases. In a collisionless plasma,

dispersion at short wavelengths reduces the wave phase speed below the fluid

velocity and thus limits pulse steepening.

Now consider the plasma state inside the pulse which is steepening into

a magnetic switch-off shock. The downstream $. for the switch-off shock

obtained from the Rankine-Hugoniot relations is given by
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(4.23)

Since for low-B magnetic slow shocks B /B » 1 ,
Z X

- is always exceeds
&

unity. Hence as the pulse speed approaches the upstream intermediate speed,

inside the pulse 3 becomes greater than unity. Furthermore the magnetic

field in the pulse center approaches B = B = 0 .

The slow harmonic waves emitted by the steepening process, therefore,

propagate almost parallel to the local magnetic field inside the pulse and,

since 3 > 1 , their phase velocity is almost the intermediate speed. Hence

the harmonic slow waves are almost completely rotational and nearly incompres-

sible. Although still propgating faster than the local fluid velocity, the

incompressible rotational harmonic waves cannot contribute to shock steepening.

In addition, as demonstrated in Section 4.2, for flow velocities near the

intermediate speed, ion inertia only produces rotations of the magnetic field

so that dispersion cannot limit shock steepening. Therefore steepening up

to the intermediate speed ahead and steepening limitation can only be

accomplished by dissipation. The switch-off shock steepening length or the

thickness of the leading edge increases until it is finally stopped by

resistivity. Hence the leading edge structure is controlled by magnetic

resistive diffusion with dispersion producing only rotations of the magnetic

field direction.
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5.0 Discussion

5.1 Summary of Magnetic Slow Shock Results

The wave train structure of magnetic slow shocks, i.e., slow shocks

whose upstream flow velocity is much less than the sound speed, was investi-

gated using the fluid equations of FCR-CGL hydromagnetics. These fluid

equations contain two difficulties which limit their applicability to shock

studies. A sufficient number of conservation relations does not exist to

uniquely determine the downstream state independent of the shock dissipation.

In order to pursue a fluid analysis of slow shocks without first solving

for the collisionless turbulent dissipation, the pressure anisotropy was

assumed to be of lower order in the expansion parameter (R+/L) then the ICR

dispersion terms, thus providing a closed set of conservation relations. An

additional difficulty inherent in fluid moment hierarchies is that the third

order moment or zeroth order parallel heat flow is not determined by the

fluid equations, but depends on the form of the kinetic distribution functions

and the collisionless turbulence. To truncate the hierarchy, heat flow and

higher order moments were assumed to be of order (R+/L) , and hence could

be neglected in comparison with ICR dispersion.

The slow shock wave train differential equations were examined by

linearizing about the asymptotic Rankine-Hugoniot stationary points, thus

enabling determination of the shock structure at the leading and trailing

edges. Low-3 switch-off shocks were studied from the nonlinear wave train

equations. The results are:

a. Low-B Oblique Slow Shock

For shock strengths weaker than the switch-off limit, the upstream

magnetic field decreases exponentially with the thickness scaling as c/w
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A weakly damped wave train trails in the downstream flow with oscillation

wavelengths of order c/w provided 3 < 1 downstream. For low-$ oblique
P+

shocks of moderate strength, the large magnetic energy dissipation is likely

to produce a 3 > 1 downstream flow, so that the trailing wave train should

have R+ oscillation lengths. Hence these shocks should possess multiply

dispersive wave train structure.

b. High-3 Slow Shocks

For very weak oblique and near-parallel 3 » 1 slow shocks, the wave

train trails in the downstream flow with wavelengths of order R+ .

c. Slow Switch-off Shocks

In the leading edge of switch-off shocks the magnetic field magnitude

resistively diffuses from the upstream state with a scale length
2 2 2L 'v c /u> r or R /r . Without dissipation no shock transition occurs,p m + m

and only intermediate wave solutions are allowed provided the flow does not

satisfy the Rankine-Hugoniot relations. The switch-off shock spatial struc-

ture is a long train of rotational oscillations which start upstream and are

gradually resistively damped to a uniform downstream state. The oscillation

scale length will locally be c/u> if B < 1 or R+ if B > 1 .
P+

In previous collisionless shock investigations the dissipationless wave

train differential equations describe a symmetrical solitary wave across

which the plasma state remains unchanged [1], In the pseudo-potential analogy,

the solitary wave corresponds to a particle which leaves the upstream unstable

maximum and executes one oscillation in the pseudo-potential well before

returning to the original state. These shock-like solitons are formed by

balancing pulse steepening against dispersive wave propagation, and with the

addition of dissipation are converted into shock wave trains. Since the

switch-off shock wave train differential equations without dissipation admit
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no solutions which leave the upstream state, there is no solitary wave corre-

sponding to the switch-off shock. In the switch-off limit, dispersion alone

cannot balance shock steepening to form a soliton, and the only permitted

steady state flow requires magnetic resistive diffusion to limit steepening.

d. Fast Switch-on Shocks

The wave train equations for the low-3 parallel fast switch-on shock

are formally identical to those for the oblique low-3 switch-off shock.

Therefore the switch-on shock structure is a long train of c/o) wavelength

magnetic rotations with slowly growing amplitude. Resistivity is required

to reduce the downstream flow speed to the intermediate speed.

5.2 High-3 Oblique Fast Shocks

The linearized wave train differential equations (3.2) and (3.3) con-

tain both fast and slow shocks. Since low-3 fast shocks have been examined

by various authors (see Refs. 1, 2), only 3 » 1 fast shocks will be

mentioned here. Furthermore, since the parallel high-3 fast shock is pri-

marily electrostatic, only very oblique magnetic fast shocks will be con-

sidered. The analysis proceeds exactly as for slow shocks. At the leading

edge of the fast shock wave train, the magnetic field undergoes an exponential

rise with scale length

J/2 R+ ,_ .
2 — 2 ~ 2

24TT P^CJ/V-CS )

Downstream the wave train trails with an oscillation length given in (5.1)

evaluated about the downstream flow. A trailing ICR wave train for perpen-

dicular fast shocks has been derived by Kinsinger and Auer [31].
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The above solution is valid for a very small parameter range, however.

In particular, for resistivity alone to provide the shock dissipation, the

downstream flow speed must exceed the sound speed, thus restricting the solu-

tion to very weak shocks. Viscous dissipation or an ion acoustic subshock

[24] is needed to go below the sound speed. In addition for the perpendicular

ICR fast shock, the scale length in (5.1) becomes less than R+ for Mach

numbers less than about two; Coroniti [32] has shown that for stronger fast

shocks ICR dispersion no longer contributes to the wave train structure, and

the perpendicular shock structure becomes an electron inertial length trailing

wave train. For strong oblique fast shocks, a leading c/w length wave
P+

train could occur.

5.3 Heat Flow and Magnetic Slow Shocks

The most uncertain aspect of the slow shock wave train analysis is the

neglect of heat flow along the magnetic field. Although resistivity alone

provides sufficient dissipation for magnetic slow shocks [13], thermal con-

duction dissipation could modify the shock structure. For example, assume

that an anomalous heat conduction term is included in the energy equation and

that the thermal conduction scale length is much longer than the resistive

diffusion length. Heat conduction would then form a thick leading edge to the

shock. The flow velocity is gradually reduced until it locally equals the

linear slow wave speed defined as in (2.2) except that the sound speed is

replaced by the isothermal or y = 1 sound speed, P/p . At this point in

the shock an isothermal discontinuity occurs which decouples the temperature

and density so that downstream of the discontinuity the flow is isothermal.

The additional dissipation required to further reduce the flow velocity to the

downstream Rankine-Hugoniot value is accomplished by a resistive subshock.
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In a collisionless slow shock heat conduction need not be restricted

to anomalous thermal conduction. Oblique low-3 and all high-3 slow shocks

have flow speeds which are small compared to the downstream ion thermal speed.

Therefore the containment of hot ions behind the shock presents a formidable

difficulty; electrons, because of their small inertia, can usually be dragged

through the shock by a small electric field. In low-3 near switch-off shocks,

hot ions flowing back upstream would encounter a strong mirror field and be

reflected. Some hot ions, however, would always be in the loss cone and would

penetrate upstream; the loss cone flux might be maintained by downstream ion

pitch-angle scattering. In high-3 slow shocks, mirror field containment

would be relatively ineffective. Hence in collisionless slow shocks the

suppression of hot ion heat flow upstream probably requires an ion heat flow

instability analogous to the electron heat flow instabilities analyzed by

Forslund [33] for the solar wind.
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APPENDIX

A.I Pressure Tensor P and ICR Heat Flow

In deriving the FCR-CGL equations, MacMahon [14] employed a coordinate

system oriented about the magnetic field direction. The basis vectors are

e, = B , e. is in the direction of the principal normal, and §_ = S_ x 6

After assuming pressure isotropy through first order, and neglecting the

zeroth order parallel heat flow and higher order moments, the first order

pressure tensor P becomes the sum of the following tensors

(P(1) : I) I = P(1)I (A. 1.1)

fl) P(0) +

m P (O)+= : v

+

+ + ^^'^ J

where Ig = SjBj - e2e2 , I = e1e2 + e^ , and I is the unit tensor.

P is the zeroth order ion pressure, and P is the first order

pressure. V is the ion velocity which, to lowest order, is just the

fluid velocity V^ .

The first order ICR perpendicular heat flows are
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(O)+
8 3 X

Note that although q* and q± ^ are formally first order in (R+/L) ,

V'P ( 1 ) . enters in (A.1.6) and (A. 1.7) rather than V'P(0) . It is easily

shown that e, x V « P ^ ^ a 0 . V-P*- •* is retained since in the energy
O a z

equation (2.9) the ICR terms enter to the order (R+/L)
2. MacMahon

[34] has shown that the ICR contributions from V'P^ ' in

q^ and q^ ' actually provide the dominant ICR dispersion for the

linear perpendicular fast wave and for perpendicular fast shocks.

Planar shocks, however, are basically Cartesian so that it is necessary

to transform (A. 1.1) - (A. 1.7) into the Cartesian basis x, y, z. From (2.6)

- (2.9) only the components P^, P^ , P^} , and (qi(1) + q«(1)) • xXA *^y AS ^ji ^^fc

are needed. Skipping the trivial coordinate transformation, the needed

components are

A. P} = PC1) + T (A. 1.8)

T

dV dV

xx d « 3T

(0)*

T«x

dV
B. p(D . T* $UTZ -x± (A.I.12)

xy xy dx xy dx
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C.

xy

xy

XX

(0)+

xz dx xz dx

x 5 P
T = - - -

xz 2

(0)

(A.1.13)

(A.1.14)

(A.1.15)

(A.1.16)

= - Txz xy (A.1.17)

where b = B /B , b = B /B , and b = B /B
A A y y Z Z

D. b -.SL.
z dx

Note that V * * U ', V * = V , and V * = V, have been used.x y y z z

(A.1.18)

A.2 Determination of 6P ' and (6q̂  ^ + fiq^ )*x at the Stationary Points

• x are needed in terms of 6B and SB . To lowesty z

In order to determine the shock wave train properties about the Rankine-

Hugoniot stationary points, the perturbed quantities 6Pl * and

+ 6q
•

order in the perturbed variables, the coefficients of the derivatives in

(A.1.8) - (A.1.18) can be taken as constant, and are to be evaluated about

either the upstream or downstream flow conditions. In order to eliminate

6V and 6Vz , the perturbed form of the momentum equations (2.7) and (2.8)

can be substituted
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d6V

dx

B d6B
A

4irpU

dP CD
. i_ _JSL-

pU dx (A.2.1)

d6V B d6B
X ~"Z _ 1

4rrpU dx " pU

dP CD
xznr~ (A.2.2)

Since ^ ' is a functional of the velocity derivatives and they in

turn depend on t to obtain correct to order (R+/L) ,

equations (A. 1.8) - (A. 1.18) must be expanded, and terms of order (R+/L)

dropped. The calculation will be performed for 6P^ ' and the results for

6P^/ and 5P^ simply stated. Recall that B =0 at a stationaryxy xz y

point; hence coefficients of derivations which are proportional to B

vanish .

Substitution of (A. 2.1) and (A. 2. 2) into (A. 1.9) yields

6T
XX XX

Jx. ^4irpU dx

d6P

pU dx (A. 2.3)

where B = 0 was used. Now substituting for

and using (A.2.2) to eliminate 6V , (A.2.3) becomes

from (A.1.12)

6Txx

Ty
xx

4irpU

d6B
X

dx

Ty Tx
xx xy d 6U

pU

2

dx

xx xy
pU

B
x

4TTpU

xz

dx dx
(A.2.4)

Since
XZ

contains first order derivatives, the last term in (A. 2. 4) is

of order (R./L) and can be dropped, Hence
*

becomes
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xx

Ty B
XX X

41TPU

d6B Ty Tx
xx xy

pU

d26u

dx'

ry Tz
xx xy >x "H

4irp2u2 dx
(A.2.5)

In order to eliminate 6U in terms of 6B , equation (3.1) after substitu-

tion of (A.2.4) for 6T , can be substituted into (A.2.5), and the result
JvA

2
expanded to order (R+/L) to find

6P (D
xx

Ty B d6B
xx x y

dx4irpU

Ty TX B Ty TZ Bxx xy z xx xy :

4Trp2(U2-Cs
2) 4irp2U2

d26B2

"d?"
(A.2.6)

Similar calculations for and yield

6P (1)
xy

rTZ

xy x
4irpU

TX UB
xy z

dT

T T7 B
xy xx x
2,.,2 ^ 2%

TZ Ty B
xy xz x d26B

(A. 2.7)

(1)
xz

T7 B
XZ X
4irpU

doB

^/ +
" TX Ty B

xy xz z

_4TTP
2(U2-C 2)

V 7 "1
Ty T B

xz xy x

4irp2U2

d26B.

dx2
(A. 2. 8)

The ICR heat flow to order (R+/L) is

,(0)- TX UB
xy i

TZ B

4TTp(U2-Cg2) 4irpU

d26B

dx
(A.2.9)
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FIGURE CAPTIONS

Figure 1. A sketch of a quarter quadrant of a Friedrich's diagram showing the

three hydromagnetic modes for 3 < 1 and 3 > 1 . Slow shocks in

which the magnetic field dominates the shock structure have upstream

flow velocities less than the sound speed Cg ; in MHD resistivity

alone provides the required dissipation. Slow shocks with upstream

flow velocities exceeding Co should in a collisionless plasma be

primarily electrostatic; in MHD viscous dissipation is needed for a

shock transition. NE = non-evolutionary range of flow velocities for

slow shocks.

Figure 2. In the upper half of the figure the spatial wave train structure of

the tangential magnetic field for a low-6 magnetic slow switch-off

shock is sketched against distance through the shock. The magnetic

field undergoes rotations in direction with a wavelength *• c/w
P+

while the magnetic field magnitude decreases slowly with a scale
2 2length ^ c /w r . An "end-on" view of the magnetic rotational

structure is included. The magnetic rotations are almost incompressible

so that the density variation through the shock is very gradual.

Figure 3. The scale length of the leading edge magnetic field gradient for

low-3 magnetic slow shocks is sketched against the slow shock Mach

nunfcer. The scale length initially decreases with increase M~. .

However, as the switch-off shock limit is approached, the scale length

increases until the steepening length is limited by magnetic resistive

diffusion.
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