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SUMMARY

An analytical study of the theory of ignition and burning of a plastic

material itnnersed in an atmosphere of a space cabin which may be subjected to

gravity force changes is considered in this report. The interest is in eval-

uating the hazardous condition in a space cabin environment where the changes

of gravity may affect the combustion process. The model considered the anal-

ysis of the coupled gas and solid phases and is based on the premise that

material heating leads to the formation of pyrolysis gases from the decomposed

solid which then react with the ambient oxidizer to further the combustion

process. Moreover, free convection plays a dominant role in transporting

these hot gases to the virgin material. A time-dependent study of the coupled

gas-solid model as required for ignition processes with emphasis on the sur-

face energy interchange of the gas and solid phases has been made. Detailed

distribution of species composition and temperature patterns provide a spatial

and time map of the evolving gases from the material combustion.

The numerical method of finite differences has been applied to the analy-

sis. Results have been obtained detailing the importance of the surface

energy interchange and giving the dependence of ignition time on gravity and

the environmental factors such as pressure and atmosphere composition. The times

required for the ignition to spread along the material surfaces by gravity

effects have been obtained and are consistent with experiments.



I. INTR ODUCTION

Combustible materials exposed to heat ignite whan there is a sufficient

increase of thermal energy due to exothermic chemical reactions over the energy

losses of the system. Upon ignition, a nucleus of a flame appears accompanied

by the emission of heat, light, and hot gases. The hot combustion products

generated continue the chain reaction and the flame is propagated with finite

velocity to the unburnt material. The ignition o:C the material depends on the

environmental conditions and to a large extent on the interaction of the gas

phase reactions and their products and with the condensed phase if one is

present. The latter affect the conditions which may enhance the flame propagation

or extinguishment. It would be useful in considering the elimination of fire

hazards in space cabins to be able to predict the critical conditions of ignition

for given materials or gases in different cabin environments. These environments

are severe since there are the additional effects of acceleration of gravity from

low to high values for very oxidizing atmospheres.

1.1 Ignition of Combustible Materials

Ignition or thermal explosion of solids or of gases in a closed vessel

originated with the theory of Semenov (1959) who considers the thermal energy of

self-heating in a material undergoing exothermic chemical reactions and evaluates

it with regard to the cooling losses by conduction through the material and its

boundaries. In the case of a gas, the boundaries are the walls of its container.

The criterion for ignition is a simple one. Ignition or thermal explosion occurs

if the rate of cooling is insufficient to balance the rate of heat generated from



the chemical reaction. Thus, critical dimensions and environmental conditions

for ignition can be obtained by this means. In the simplest cases, the theory

utilizes the energy equation only but with transient effects dominant through

the process.

Further work by Hicks (1954), Adler and Enig (1964), Thomas (1961), Squire

(1963) since Semenov has added to the complexity of the model allowing, for

instance, other heat sources and reactant consumption during the pre-ignition

stage. With the accumulation of experimental data these latter works have led to

the consideration of a more realistic evaluation of material behavior. The

ignition and the burning of material are known to depend to a large extent on the

rate of heat transferred. The effects of different rates of heat transfer are

primarily in the temperature gradients established in the material and the

resulting pyrolysis products. For example, experimental data by Martin (1965)

has assisted in the delineation of these regimes for the burning of cellulosic

materials. The high heat rate regime is ablation controlled. The energy is

principally deposited near the exposed surface and its pyrolysis products are

volatile fragments which then combust in the atmosphere. For low heating rates,

the temperature is more uniform through the material but with different pyrolysis

products and more carbon remains as char. This char is easily ignited. The

diffusion-controlled regime is contained in between these two. The temperature

distribution has an appreciable gradient.in the material and pyrolysis occurs at

some point inside the material emitting flammable gases. Ignition occurs when

self-heating is sufficient to continue the increase of thermal energy.

The ignition of rocket solid propellants which are made of plastic-type

materials has been considered for some time. A large number of works and several

theories have been evolved to predict this phenomenon. A critical review of most



of the work to date has been made recently by Price (1966). Although the effects

of many parameters such as environmental pressure, temperature, and oxidizer on

ignition have been investigated, most of the theoretical predictions have been

compromised by the inadequacies of the simplifying assumptions. Three models are

now prevalent for the ignition of solid propellants. The surface ignition theory

of Hicks (1954) is a transient surface heating analysis with exothermic chemical

heating of the solid. Although this analysis might be an early event in the

sequence of ignition in an oxidizing atmosphere it was realized that the gas

phase environment effects have to be included. Note that extensions IAdler (1964)

and Thomas (1961) were made to include also the reactant consumption in solid-

phase thermal theories with chemical reactivity, but these studies also are not

adequate since temporal and spatial variations in the temperature are ignored.

The effects of gas-phase environment are included in a gas-phase model, Hermance

(1966), composed of a slab of fuel exposed to a hot oxidizing gas; chemical

reactions of the fuel vapors and oxidizer and the diffusion of these gases lead

to ignition in the gas phase. The study reported by Hermance limits itself to

one type of fuel with a number of simplifying assumptions. These assumptions

are the use of one-dimensional species equations, mass loss occurring only at the

surface, and in the early models the use of a constant wall temperature with

respect to time.

Another mechanism for the ignition of materials is that of heterogeneous

reactions at the gas-solid interface which can raise the surface temperature.

Present evaluation by Price (1966) of ignition by this means is not conclusive

since the observed ignition dependency on the gas-phase environment is not

included. However, from all indications, it appears to be one ignition mechanism

for certain types of material. The burning of TefIon.[Fenimore and Jones (1968)J



appears to indicate that both gas-phase and heterogeneous reactions at the

surface have a role in the consumption of the polymer. Part of the loss of

Teflon material was attributed to fluorine atoms attacking the Teflon directly;

the remaining loss came from the depolymerization in depth.

Despite the crudity Price (1966)1 of these theoretical models, their

results together with experimental data have delineated some of the important

parameters in the ignition of solid material when exposed to heat. Among these

parameters are the effects of environmental pressure and chemical composition of

the gas phase and the effects of the activation energy of the solid on the igni-

tion delay time. In some cases, the activation energy has been obtained by the

simple process of applying the theory to a set of experimental data [Price (1966)1

and computing which activation energy best reproduced the data.

1.2 Behavior of Burning Materials

The flamraability of materials or gas mixtures is a useful characteristic

for evaluating fire hazards. Thus, a material or gas mixture is considered

flammable if upon exposure to a heat source sufficient energy is liberated to

continue the propagation of the flame into unignited regions of the material.

Flammabilities of different fuel-oxidant mixtures have been obtained experimental-

ly JMullins and Penner (1959)1. For example, Simmons (1957) has obtained these

limiting values for a mixture of air, nitrogen and fuel. He has defined the

oxygen index as the ratio of oxygen to the mixture of air and nitrogen required

to sustain steady burning. For air the index is 0.21; the material or fuel is

more flammable for smaller values of n than this. For example, the index for

hydrogen is 0.054. This index has been studied mainly in environments of 1-g.

Its usefulness is evident since a numerical index is available to evaluate



materials which do not continue burning after being ignited. In the latter case,

the index is greater than 0.21 for air mixtures. The effect of different cabin

atmospheres can evidently be evaluated.

Fenimore and Martin (1966) have obtained the oxygen index for polymers.

Their experiments indicate that the burning of polymers proceeds through a

thermal feedback from the flame of the oxygen and pyrolysis products in the gas

phase which pyrolyzes the polymer and gives off additional pyrolysis products.

These products are usually more combustible. The index reflects the efficiency

of this thermal feedback. Thus, index values of 0.95 have been obtained for

Teflon since there is some difficulty in pyrolyzing Teflon and, moreover, the

monomer is difficult to burn. More recent evidence by Fenimore and Jones (1968,

1966) indicates that a Teflon surface may react directly with the ambient oxygen,

as discussed in the previous section. The index for polymers in oxygen and

inert gases, such as Ar, N^, and CO™, has been further correlated, and Martin

(1967) has indicated a linear variation of the index (ratio of oxygen to inert

gases with the heat capacity of the inert gas. Some results are shown in Figure t.l

as obtained by Martin (1967). Only helium indicated a higher oxygen index than

the linear relation; Martin attributes this to greater heat losses from the

reaction zone due to the additional emphasis of the higher thermal conductivity

of helium. A model utilizing an energy balance only was sufficient to correlate

predictions with the experimentally determined relation of oxygen index and heat

capacity of inert gases, but it does not explain the anomalous index values in

the helium-oxygen mixture. The success of the simple model adds reasonable hope

that a theoretical model of polymer burning can be formulated to predict the

oxygen index. All of this work had been done for a 1-g environment.



1.3 Combustion at Zero-Gravity

The principal effect in the reduction of the acceleration of gravity in

combustion is to decrease the free convection in the gas flow. Burning of poly-

meric materials may differ considerably from the 1-g or higher environment due to

this effect. Kimzey (1966, 1968) has performed experiments in burning paraffin,

Teflon and other materials at zero-gravity in an aircraft cabin. His findings

indicate what might be expected if convection loses its dominant role and

diffusion and chemical reaction mechanisms are the rate-controlling processes.

The shape of the flame at zero-gravity tends to a spherical one surrounding the

fuel mass and Kimzey indicates a much larger reaction-zone thickness with

additional accumulation of products and intermediates. Thus, it appears that

chemical mechanisms and reactions may change due to the presence of the inter-

mediates. In this way, the burning processes are affected by the absence of

gravity. Moreover, the processes prior to ignition may be changed due to the

accumulation of the vapors generated by self-heating. In the transition from

zero-gravity conditions to 1-g, the burning may be abrupt, since accumulated

volatile gases which surround the material will instantaneously burst into flames

as convection begins to add oxygen. Therefore, the flame in a zero-gravity

environment is diffusion limited and tightly coupled to the chemical reactions,

and steady state conditions are not achieved for a long time.

Experimental data have been recently obtained by Cochran and Masica (1970)

for the laminar jet diffusion flame (methane-air) in a changing gravity environ-

ment. A principal result from this study is that a decrease of normal gravity to

zero reduces the height of the flame with a subsequent expansion of the flame and

the appearance of extinguishment. The authors attribute this to the lack of



buoyancy at zero gravity and to the accumulation of combustion products sur-

rounding the flame.

1.4 Free Convection of Heat Under Low Gravity

The reduced gravity environment affects a number of heat transfer phenom-

ena. Siegel (1967) has reviewed some of these. Among them, free convection

(which is characterized by the Rayleigh number) is controlled by the magnitude of

gravity. At the lower gravity level, the Rayleigh number is small and free con-

vection layers forming over solid surfaces are not thin boundary layers as would

be expected at one g. Siegel has suggested that boundary layer theory can be

4
applied for values of the Rayleigh number greater than 10 .

A second and more important effect of reduced gravity is the longer

transient time required for re-establishment of the steady state when any changes

of thermal boundary conditions occur. Siegel indicates values of transient time

inversely proportional to the square root of the acceleration due to gravity, g,

for a change in surface temperature of a vertical plate; these are very long for

low values of the gravity. This transient time :i.s useful in practical situations,

since it delineates the region of usefulness of the steady state heat transfer

coefficients. Thus, as noted before, the flame at zero gravity does not tend to

steady state conditions.



II. MODEL FOR IGNITION AND BURNING

An analytical study of the theory of ignition and the subsequent burning

of a combustible material immersed in a gas (stagnant or flowing) .in which the

entire system may be subjected to changes in gravity forces ranging from zero to

normal atmospheric values is considered in this report. The study is based on

experimental results J_Hermance, et al (1966)1 which demonstrate that polymeric

(or for that matter, cellulosic type) material exposed suddenly to a heat source

vaporizes and ignition occurs in the gas phase immediately adjacent to the

material. Additional experimental data by Fenimore and Jones (1966) indicate

that most polymers burn through the pyrolysis products which oxidize in the flame

and do not react chemically with the gas surrounding them. The model considered

is composed of both the condensed and gas phase and the interaction between them.

Ignition processes are, in general, transient by nature and time appears as one

of the principal independent variables. In addition, two spatial coordinates are

used. Thus, the sets of equations are functions of time and space which interact

with each other at their common boundary. Finite rate chemistry for both con-

densed and gas phase reactions is considered as is diffusion which is dominant at

reduced gravity.

The analysis considers ignition of the material with reactant consumption

at low temperatures, which subsequently leads to diffusion-limited ignition in the

gas phase at the higher gas temperatures. Some consideration is also given to

heterogeneous reactions at the gas-solid interface. The burning phase in which

a diffusion flame exists in the gas phase appears as the last stage of this

analysis. The formulation of the model follows.

The phenomena leading from ignition to the spread of fire involves the gas



phase in the dominant role of providing a heat flux to spread the fire. The

model attempts to follow this sequence of events to the time of consumption of

the entire material. A solid material exposed to a heat source is vaporized and

the chemical reactions of the atmosphere with the fuel (material vapor) leads to

a flame. The flame is sustained if there is sufficient fuel and spreads to other

parts of the material by free convection with forward radiation and forward heat

conduction also playing a role. Vaporization of the unburnt material again leads

to gas phase ignition and the fire has been spread. Experimental results

substantiate this phenomenological model. Thus the presence of free convection

due to gravity plays a major role in the fire spread.



III. EQUATIONS OF MOTION FOR THE GAS PHASE

3. 1 Nonequilibrium Unsteady Boundary Layer Equations

For the gas phase, the boundary layer equations are utilized with finite

rate chemistry. The flow is time- dependent with the two spatial coordinates x

and y along and perpendicular to the material, respectively. Figure 3.1 shows

the typical situation. Pyrolysis gases are transferred from the solid material

upon exposure to heat and react with the ambient gas, which may be the cabin

atmosphere (e.g., a combination of oxygen and inert gases). A temperature pro-

file prior to ignition of the gas phase and a typical concentration of oxygen

and fuel species are known. At ignition in the gas phase, the temperature peaks

as shown in Figure 3.1, in the gas layer. The orientation of the gravity vector

is also shown. Coupling of the condensed and gas phases occur at their boundary

where a unique wall temperature and wall mass transfer are obtained from the

solution. The equations are given in a surface coordinate system. The equations

include the convection terms due to a nonzero mass flux at the material surface

and natural convection due to the density changes, although the velocities are

generally small. The orientation of the surface material with respect to the

direction of the gravity vector determines the velocity field. The equations for

momentum and mass balance of a compressible, viscous, heat-conductivity gas are:

Mass Conservation:

- P + -- (pur)^ ~ ( p vrJ) = 0
-t Ax ' b dv b

Momentum in x-direction:

D u - 1 d p i d / d u \ „ (3 .2)
Dt p
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Momentum in y-direction:

(3-3)

where p is the mass density, and u and v are the velocity components along x and

y respectively, r, (x) is the radius of the material specimen, j = 0 or 1 for the

two-dimensional or three-dimensional case, p is excess pressure over the static

pressure, fl is the coefficient of viscosity, and Fx and F are the components of

body force due to gravity. These equations define the velocity field and are

coupled with the temperature field through the density and coefficient of

viscosity.

In Equations (3.2) and (3.3) the pressure force is defined as the value

above that required to statically balance the body force. Thus, the body force

F (F , Fy) due to gravity has the components

. _„ <P-A,> cos

and

Fy = -8 °° sintf ,

where a is the angle of the gravity vector to the x coordinate and the subscript

* denotes the value of density of the static fluid. It is seen that a nonzero

pressure gradient normal to the boundary layer is created. For the ignition and

burning problems, the case of a vertical surface ( Of = 0) and the case for zero

gravity would clearly evaluate the effect of gravity. The flow for the value of

0! = 1T /2 may have adverse pressure gradient. It is noted that most flame

studies of droplets cf- Williams (1965), Isoda and Kumagi (1954) 1 and

theoretical models have been formulated fairly close to that expected at zero

11



gravity Kirazey (1966, 1968) . It is expected that free convection will play a

large part in ignition since hot gases are then brought into contact with virgin

material .

The energy equation for the temperature is coupled in a highly nonlinear

way to the species equation through the chemical reaction terms. These equations

are :

0 c DT _
Dt

NI
Z CD ji ?

1=1 Pi X *,

cLE +

O X

NI
*T -S

i=l

-B-- (k *T ) -
fi y n y

h w + u / a u
^ ^v

2

)
(3.4)

DC. -,

y

where T is the temperature, c,- is the mass fraction of species, c is the specific
P

heat at constant pressure, k is the thermal conductivity, c is the specific heat

at constant pressure for the i species, j. is the diffusion flux of i. species,

and w^ is the chemical production of the species i, and NI is the number of

species. The operator D/Dt is defined by 5 + u a + v a •

fit Ox By

The mass flux j. is defined by Pick's Law here. This is sufficient in

this study because of the species considered herein. The flux j. is

J- = - u . L dci (3.6)
6

where the Prandtl number P = u c /k, the Lewis number is defined by PD c /k,

and D. is the diffusion coefficient. In addition, the equation of state is

12



P = e (3.7)
NI c.

RT E —ET-
i-1 Mi

where M^ is the molecular weight of i species and R the universal gas constant.

This equation assumes that the gas consists of a mixture of chemically reacting

perfect gases.

These equations are for a heat conducting chemically reacting gas flowing

over an arbitrary surface with the body force due to gravity. It is noted that

the density has been considered to be variable in the entire field and therefore

in all terms including the body force terms. The flow considers effects due to

free convection,force convection,and convection due to mass transferred from the

material surface. In any case, the flow velocities are expected to be small

since application is to the interior of a space cabin. There is no restriction

on the magnitude, however.

In these equations the pressure, p, is the excess over the static pressure

at hydrostatic equilibrium. The pressure pe in Equation (3.7) is the total

pressure. The principal term for heat generation in the energy equation is that

due to exothermic chemical reaction since viscous dissipation is negligible.

This term is directly proportional to the heat of combustion of the reaction

considered.

As given above the independent variables are the spatial distances x and

y and the time t. There are two useful subsets of these equations which have

been studied. These are for steady flow where any change with respect to time

is zero and for the case of one spatial dimension (normal to the material surface)

13



and time t (with no change in the lengthwise distance x). The flow is assumed

to originate at the beginning of the plate (x = 0). Thus if the body is hotter

than the ambient atmosphere the direction of the flow presumed implies that the

x-component of the gravity force is in the negative x-direction.

The governing parameter of the field is the Grashof number which is large

here.

3.2 Transformation of the Equations

In the above set of equations there are three independent variables x, y,

and t; moreover, the gas is considered compressible. It is more convenient to

work with boundary layer transformed coordinates £ and h defined by

J ,?
(3.8)

(P u) r2j u£ dx (3.9)

In these equations r denotes the distance of the material surface to the axis of

the body and j = 0 for a two-dimensional slab and j = 1 for an axially-symmetric

body, ( P/l) is a constant reference value of the product of density and co-
r

efficient of vissocity, and ue is a reference velocity which is a function of x

(in most cases, ug is a constant).

Equations (3.1)to (3.5) transform to the following set of equations by

noting that time is a third independent variable. Thus these equations are:

14



Mass Conservation:

(3.10)
oTJ

Momentum Equation :

24 f afj. + 2 | af + v ̂ = (3.ii)

P1

Energy Equation :

^ ~- + 2£ f afl + V
PC T

p e

(3.12)

NI
+ I, E c L.CP ^ ) v^T i-i pi '

NI 2
2£ E h.w. /p + H e

4 u T c i=1 " " % Te^x e e p r

Species Equations(i = 1, NI)

T^— ^i + V s— + 2£ f "wl = ^ I & L °c \ C3 11^
^ U ^- »•• ' -B-_ I L-! _Lt I t'.-5'1-3^

15



2_
uc

In these equations the reference velocity ue and temperature T have been

taken to be a constant. This is more convenient in free convection flow. Thus

the velocity ratio is denoted by f' = u/ue and the temperature ratio by 9 = T/Te

The case for the time-dependent flow at a fixed position is obtained by

setting the derivative with respect to x to zero and at zero gravity these equa-

tions involve only normal velocity due to the mass transfer from the material.

3.3 Boundary Conditions and Initial Conditions

The boundary and initial conditions have been formulated with consideration

of the combustion of solid material in a space cabin atmosphere. The initial

conditions are that at time zero only the cabin atmosphere gases or any other

prescribed gases are present. That is, for t = 0,

c± = c. (x, y, 0)
INIT

At the temperature

T = T1N1T (x, y, 0) > (3.14)

and pressure of

p - PINIT <*. y. °)

16



The initial flow distribution u = UTWTT(X, y, 0) is prescribed.

At the edge of the boundary layer the fuel (material) species concentra-

tion gradually becomes zero as one moves away from the solid material surface

and the principal gas components remaining are those of the initial cabin

atmosphere gases. This implies that for the species, temperature, pressure, and

velocity respectively, c^ = c^ (x, y , t)
e

T = Te

P = pe (3.15)

and
u = u

e

The boundary condition at the material surface requires some special

consideration. This condition is matched with the behavior of the solid material

which is losing mass due to the heat transferred from the gas phase. At this

surface the tangential velocity is zero, that is,

u (x, 0, t) = 0 (3.16)

where mass from the solid material is transferred into the gas phase the net mass

flux of this species is given by

V = V c - L Bc (3.17)

where the total mass flux transferred to gas phase is denoted by (Pv), This

condition (3.17) together with a material and energy balance at the gas-solid

interface uniquely determines the mass loss from the solid and the temperature of

this interface and the gas species concentration at the interface. This will be

considered in a separate section.

17



3.4 Radiation Effects

Radiation from flames provides additional energy terms to change the

temperature distribution and also provides a mechanism for the forward propaga-

tion of the flame to non-burning virgin material. The radiation energy is

principally due to the species carbon dioxide and water vapor for non-luminous

flames. Luminous flames, on the other hand, are the source of more intense

radiation and this is derived from hot soot particles. In this section a

formulation of the radiative energy terms and the additional radiative flux at

the gas-solid interface is given for gaseous radiation; experimental data can

be used to modify the emissivity values to account for the effect of particle

radiation.

The radiative source term in the gas proper is given by the term

(-9qr/C?y) which is added to the right side of Equation (3.4). The use of

this term neglects radiation in the X direction within the gas volume (effect

of X variation at the surface is possible in the wall boundary condition)

appropriate for the boundary layer approximation. The term qr is the radiation

flux per volume in the y direction normal to the surface. Consider now that the

gas is optically thin which is a reasonable assumption for small flames at

low temperature, then the radiant heat source per unit volume is given by

- ̂  = 2a a T/ [«W(0W
4 - 1) + 2 (1 -0 V] (3.18)

where a is the absorption coefficient (a function of pressure and temperature),

« the surface emissivity, O the Stefan-Boltzmann constant. The subscript w
w

denotes values at the surface. Thus a non-black surface is considered.

The radiative heat flux at the surface is due to contributions from the

18



free stream edge (ambient conditions), the gas layers immediately above it,

and the loss from the surface. Effectively, this net sum is given by

*w Te J ° <*4-Jo
- 2<76M TA | (0 - 1) dt (3.19)

L
where TQ is the optical thickness given by TQ = $ a dy and L is the thickness

of the gas layer at that point along the surface.

In these equations the absorption coefficient of the gas mixture is

required as a function of temperature and pressure. This coefficient is also a

function of the species concentration. Cess (1964) has derived the absorption

coefficient of carbon dioxide and water vapor from the emissivity data of

Hottel (1954) for these gases. Thus the absorption coefficient can be obtained

from experimental data gas mixture by the combination rules as suggested by

Hottel (1954).

In this study it was found appropriate to use the condition that the

ratio of the absorption coefficient to the gas density is a constant. This

assumption appears reasonable from a selected evaluation of the absorption

coefficient in accordance with the previous discussion.

Equation (3.19) forms part of the boundary condition given in Section 4.

19



IV. EQUATIONS FOR THE SOLID FUEL/CONDENSED PHASE EQUATIONS

In this study consideration is given to the ignition and burning of a

solid material which occurs primarily in the gas phase layer directly above the

solid. This mechanism for combustion of solid fuel is initiated by some external

heating which raises the temperature of the solid such that degradation of the

material (polymeric in this instance) occurs and pyrolysis gases leave the

solid and enter the gas phase. Ignition occurs then in the gas phase or at the

surface if heterogeneous reactions are dominant. Then a continuous consumption

of the solid occurs, and the additional heat transferred from the gas phase

combustion carries this physical process through to burning until the solid is

entirely gone. Consider for our purpose a non-charring burning solid such as Teflon

or polymethymethacrylate (Plexiglass) then the energy balance defines the temper-

ature through heat conduction changes and energy loss due to a change in density

of the solid. (If a charring solid is considered addition terms containing

energy changes through fluid convection through the char must be added and offers

no additional complexity to the method of solution). This energy equation for

the solid is

3T

~ s +q"W)

where the subscript s denotes the solid and the coordinate y is as given ins

Figure 4.1 and fixed relative to the gas phase coordinates. Here Pg , c , kg,

q are the mass density, specific heat, coefficient of thermal conductivity, and

the heat of depolymerization. The temperature Ts and the density Pg are

functions of time t and the distance ys, whereas ks, c , and q are functions of

the local temperature. During the solid degradation process the density changes
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in accordance to an Arrhenius rate of the form

-E/RT
m • s

w (p T ) = -k p C (4.2
S S S

as suggested by Madorsky (1964). In this equation k is the frequency

factor, E the activation energy for pyrolysis of the polymeric material and m is

a constant obtained from experimental data.

The mass flux of solid converted to gas is obtained from summing the

integral components of each slice of solid, that is,

r

J
•̂  *-*

)
s max

dps dy (4.3)
at

These three equations completely determine the solid material temperature

and density when the solid-gas interface temperature and mass flux are known.

In the study herein, the gas phase equations as described in the previous section

are coupled to the solid equations and their simultaneous solution leads to the

interface quantities.

As suggested by Figure 3.1 the gas and solid coordinates are measured

from the phase interface. Since solid material is lost during combustion the

solid surface recedes with time and a transformation is needed to meet this

requirement of keeping the gas phase coordinates directly next to the solid sur-

face. The transformation of coordinates required is to (f , t) coordinates such

that

ys -
 a

s(t)-a
(4.4)
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where a is the thickness of the virgin solid and s(t) is the thickness of the

solid material lost. Thus the burning surface occurs at £ = 1 and the

for virgin material is at s = 0. In terms of (£ , t) Equations (4.1) and (4.2)

become respectively

~ -t J _ !5> = 1 1 2 L. (k ̂s) (4.5)
S (s-a) ? S

_ w ( p , T)
TT P
PS S

, T) (4.6)
(s-a)

These equations in this form are utilized in this study.

These equations are highly nonlinear. The receding surface indicated

by s leads to the additional terms on the left hand side. This quantity is

given by a balance of mass through the entire specimen. Thus

s = (s /:-a) I w (Ps, Ts)d£ (4.7)

where the subscript w indicate quantities evaluated at the surface.

The boundary conditions for the solid equations involve energy balances

and mass balances with the gas phase. At time zero if a virgin piece of material

is considered then the temperature and density are respectively

Ts(ys,0) = Tso(ys) (4>8]

,0) = ^on = constant
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The initial temperature may be a function of y if some initial heating has been

applied but not sufficient to cause any change in solid density. Consideration

is given to a burning surface on one side of a two-dimensional plane slab of

material or to an axially symmetric piece. Thus for these cases the surface

ys = a is at either a prescribed heat flux or temperature. For the latter case,

for example,
Ts(a, 0) = Tsl (4.9)

Ps(a, 0) =

Other conditions can, of course, be used in their place.

At the burning surface the energy balance between the solid and gas phase

lead to the net heat flux which enters the surface. This flux is

q = - ks
(s-a w (4.10)

and is related to the gas phase by

'NI
£ t
i = 1

i
o y / w , gas i H.. 11 ;

"qrad +

and

m = (Pv)w w
(4.12)

The energy is partitioned at the wall into several parts. These are the heat

of depolymerization, the contribution from the conductive portion of the gas
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phase, the lo^s or gain due to radiation, and finally the energy due to hetero-

geneous reactions at the surface. In Equation (4.11) the symbol B conveniently

contains the surface species for arbitrary order reaction, EW is the activation

energy for H. i/i reaction; in addition, FR is an impressed heat load which is

required to initiate the burning of a cooled specimen and can be prescribed as a

function of Lime and distance along the specimen.
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V. MATERIAL PROPERTIES

5.1 Solid Material Characteristics

Material properties for two typical polymeric material are given in this

section. These materials, Teflon and polyrnethylmethacrylateCPlexiglass) are

polymeric type that can be considered by this model. The properties required

for the analysis are the thermal conductivity, specific heat and the enthalpy

as a function of the temperature. These characteristics have been compiled from

a number of sources. These sources are JANAF TABLE (1966), Jellinek (1955),

Madorsky (1964), Ham (1967), Griskey, et al (1966, 1967), Brandrup et al (1966)

and Fenimore and Jones (1969). The solid enthalpy distributions with temperature

were constructed from specific heat values; these distributions compare well with

the values from Wagner & Grisky (1967). The distribution of the solid heat

conductivity, enthalpy, and specific heat are given on Table V-l.

5.2 Chemical Model

In this study two representative solid materials have been considered to

be burning in an oxygen-nitrogen mixture. These are the thermoplastic resins

polytetrafluoroethylene(Teflon) and polymethylmethacrylate (Plexiglass) and are

representative of those in usage. These plastics depolymerize. under a heat

loading and form a monomer at the surface. The plastic polymethylmethacrylate

may form a liquid monomer which flashes instantaneously into the gaseous phase.

Thus the concern of this section is to formulate the chemical model for the

gaseous monomer and its reaction with an oxygen-nitrogen mixture.
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5.2.1 Teflon

Teflon burns in oxygen and forms a number of products in an oxygen- nitrogen

mixture. The number of species formed are many but only a relatively few major

ones together with their global reactions are sufficient for the ignition and

burning processes being considered here. Madorsky (1964) indicates that the

degradation products from the vacuum pyrolysis of Teflon solid are mostly (̂ 95%)

the monomer. The burning of Teflon in oxygen was considered by Fenimore and

Jones (1968) and these experiments indicate the monomer C2F^ rapidly decays away

from the burning surface. The gas composition along the axis of the Teflon rods

burnt were COF2> CO, CC^, CF^ and, of course, the monomer C2F, at 1 atmosphere

pressure. Temperatures increase from about 950 K at the surface to about 1500°K

Results from diffusion and premixed flame measurement indicate the similar

products (Fenimore - 1968) and in addition, that CF/ increases over COF~ with an

increase of pressure for diffusion flames. The premixed flame results of Fenimore

(1968) show that the CF^/COF2 ratio decreases sharply with increasing 02/

C2F, mixtures. The gas phase pyrolysis of C^F, has been studied by Bauer, et al

(196?) in shock tubes and the lower temperature range covered in these experi-

ments are of interest in the fire problem. The major products obtained from

shocking a mixture of C2F^ gas, 02 and the inert gas Argon are COF2, CO, CF, .

The major oxidation products are COF2 and CO. One notes that Fenimore (1968)

gives evidence from his study that elemental fluorine is present from the burning

Teflon rods although this species was not directly measured. Indeed, if equili-

brium conditions prevail at the flame the products would include an amount of

fluorine atoms which peaks at the mixture ratio of (moles 02/moles C2F,) 1.5

with a flame temperature of 2159 K (at atmosphere pressure) (1965). (See also

Fenimore - 1968). Fenimore suggests also that heterogeneous burning occurs
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for Teflon and that surface reactions of the F atoms account for some of the

burning of Teflon.

The interest in the fire study is to first consider the ignition and

burning of material with consideration of the species and chemical reactions

which have the major influence on the ignition time and burning velocity.

\
For this purpose the monomer gas C F, can be assumed to react with the

ambient oxygen-nitrogen mixture to form the species of CF2> 0, F2CO, CO, CC^, and

F from 0 and C F,. N2 is considered inert at this temperature. The global

kinetic scheme to form these species has been suggested by Browne and Carabetta

(1970).

1)

2)

3)

4)

5)

6)

C2F4 + Ml ~

CF2 H- 02 ___

C2F4 + 0

COF. + M, —
2 1

CO + 0 —
2

CO + 0 + M9 —

V 2CF2 + Mj_

^ COF2 + 0

> COF2 + CF2

-^ CO + 2F + M,
1

-> CO + 02

->- C09 + M9

(5.1)

Other species such as CF^ can be added to the group later but would

unnecessarily complicate the study. The mechanism for CF, has been suggested

by Fenimore (1968) through several production reactions involving the addi-

tional CFo radical. The detailed reactions as given above are useful for

determining the detailed species profile over the burning material. For the

initial determination of igntion criteria and burning times it is only

necessary to select those reactions which give the largest contribution to

the exothermic heat of reaction.
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For part of the study a one step global reaction suffices for the deter-

mination of ignition times and characteristics which do not depend on individual

detailed species distributions. A one step global reaction can be partially justi-

fied from the system of kinetics as described above by assuming that CF2 and 0

radicals are in steady state (cf.Bauer et al - 1969). If this assumption is made,

then reactions (1) to (3) can be put into the form:

2 COF2 (5.2)

with the production of COF? given by the rate (1 = COF )

1/2

kf
M 0 2 / \ M C 2 F 4

5.2.2 Po1ymethyImethacrylate

Polymethylmethacrylate rods have been burned in argon-oxygen mixture by

Fenimore and Jones (1966). The concentrations of C02, CO, H2 and C^ were observed

with the latter two species about an order of magnitude lower in value than the

first pair. Vacuum pyrolysis of polymethyImethacrylate by Madorsky (1964) shows

mostly the monomer at 500°C and 800°C (from about 95% to 80%, weight percent of

total volatiles). At 1200°C the monomer decomposes with the principal components

being CO and C02 and the monomer (about 30% CO, 10% C02, and 9-16% monomer).

A single step global reaction for the decomposition of the monomer and its

reaction with oxygen-nitrogen mixture is suggested by these products. Martin

(1967) has considered reactions for the conversion of solid polymer to the gase-

ous component which are useful for this study. The gaseous monomer reacts with
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oxygen to form CO, C02, and HO. That is,

C5H8°2 + 6 °2 —•>• 5C02 + 4 H2°

or

4C5H8°2 + 19 °2 - ^ 10 C0 + 10 C02 + 16 H2° (5<5)

As in the Teflon case more detailed distributions of species can be obtained by

resorting to a more elaborate kinetic scheme. Either Equation (5.4) or (5.5)

is sufficient for the purpose of energy balance. A typical set has been

suggested in the table. The rate constants for this global reaction are con-

sidered parametized by values typical of air -hydrocarbon reactions. That is,

the pre-exponential factors and the activation energy are part of non-dimensional

quantities of which typical values are utilized in the study.

5.3 Thermodynamic and Transport Properties

The thermodynamic properties of the oxygen-nitrogen gaseous monomer,

and their reaction products are complicated by the presence of many species. The

enthalpy for a multi-species flow is given by

Nl
h = £ cihi (5.6)

i = 1

where c^ is the mass fraction of species and h^ the individual species enthalpy.

The individual species values have been tabulated at G. E. by Browne (I960, 1964,

1965). The thermodynamic properties for the diatomic molecules were obtained by

utilizing the second virial coefficient approach utilizing the Morse potential.

In addition, at the lower temperature, the diatomic species were considered as

rigid rotator harmonic oscillators with corrections for rotational stretching

and vibrational anharmonicity. These individual species for Teflon gas
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and oxygen-nitrogen mixture are given by Browne (1965). Similar data are

available for hydrocarbon species. The mixture of specific heat is given

similarly as Equation (5.6) in the form

NI
c = L c. c . (5.7)
P 1=1 X Pi

The transport properties of the mixture are functions of the individual

species and temperature and can be obtained from a combination of these values.

The individual species viscosity and heat conductivity are given by the rela-

tions

M = 26.693x!0"6 * /9 ,.
* i \ > /

i

and (5.8)

M.R r M. -].
:.= -i— c -i* 1.25
i M. L p. R J

*

where the dimensions of [i. is in units of poises and k^ is in units of g-cal

per (cm-sec°K). The collision integrals required here were evaluated from a

number of sources in the literature and numerical evaluation. With these pure

species properties the Wilke's mixture rules then give the mixture viscosity and

conductivity in the form

(5.9a)

where X. - c. M/M.

30



and

k =.
X.k.

i i
N
E X 0

J=l ' '

1 +
u. vM.
J_1_L

ij

(5.9b)

(5.9c)

J
M.

1+

In some instances the Prandtl number has been assumed constant and a value

assigned to it.

The diffusion coefficient is also required and the Lewis number is assumed

to be a constant with a different value assigned for each species. Multi-

component diffusion is not expected to detract from the validity of the ignition

times utilizing this assumption.
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VI. METHOD OF SOLUTION - FINITE DIFFERENCES

The method utilized for the solution for these coupled equations for

the gas phase and the condensed phase to be given in the next section is that

of finite differences, in particular, the implicit finite difference method.

The essential point of importance in the choice of a method is the computer

time requirement; it has been found that the computing time utilizing the

implicit method is almost proportional to the number of species, as in the

explicit scheme.

The coupled, nonlinear, partial differential equations for both gas

and solid phase are quasi- linear with second order derivatives in the y

directions only. These equations are parabolic in nature. Moreover, the gas

phase equation remains parabolic in the steady state since there exist only

second derivatives in the y direction. Thus it appears that the Crank-

Nicolson (1947) implicit scheme can be generalized to include the time dependence.

Since only second order derivatives in y are present, the finite difference

equations following the Crank-Nicolson scheme averages these derivatives in

such a way that algebraic equations are tri- diagonal and a simple algorithm

can be utilized for their solution. Consider Figure 3.2 and evaluate the

finite differences centered on ( k + -j, m + -x, n) corresponding respectively

to the point (t = kdt, £m = m 4£, T?n = nA»1) . Let the representative

second order equation of either velocity, temperature, or species concentra-

tion be given by

where 0 is any of the dependent variables. The finite difference representa-
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tions are then

+ 0 +0 + 0
4 T) V c + 1 > m » n > k+1» M*"!. n k ,m,n, ^

t) =

0 = 1 / 0 +0 +0 +0
• k+l,m,n k+l,mfl,n k ,m,n k, nri-l,n

-0 -0
k+l,m,n lc,m,n k+l,nri-l,n

<6 = 1 (0 +0 - <ft +0 )
t 2£t Vk+1«m+1»n k+l,m,n *k,nrfl,n k , m } n / '

where by definition

0. - 20 _ + 0r.
*• JL _ ^» m,n m,n K >m,n - l

«A - - = 0k 'm 'n

These are applied to each equation in both the gas and condensed

phase. In this formulation, the equation of continuity gives directly the

transformed vertical velocity. In fact the equation is evaluated at the

point (k + -j, m + ̂ , n - -j) and the vertical velocity at the line (k + 1) is

obtained following the solution of the other equations.

This finite difference scheme leads to a tri-diagonal system of

algebraic equations of the form:
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B
n
wn + Cnwn-l = V (6.3)

The solution of this system of equations is obtained by the simple algorithm of

wn

where

= -(B2 + C2H)" (A2 + C2F)

e2 = (B2 + C2H)"
1

en = Bn + CnEn-l Dn - V^ ,

for 3 = n = N-l. The boundary conditions are given in the form of

Wn = HWp + FWo + h ,

WN = g ,

where F, H, h, g are given functions. The equations are solved in sequence

proceeding from the velocity, temperature, to the species equations of the

gas phase and then to the two equations for the condensed phase.

In formulating the difference equations, the concept of quasi- lineariza-

tion is used wherever necessary. For example, the chemical production terms

in the species equation and energy equation are linearized in this manner.

This has been found to be of considerable assistance in obtaining stable solu-

tions for fairly large step sizes.

34



VII. IGNITION DELAY RESULTS

7.1 Ignition of Gas Mixture with Uniform Composition of Fuel and Oxidizer

Ignition is studied first for the gas phase with uniform composition and

fixed wall conditions. That is, a combustible gas mixture is heated by a hot

wall until it ignites. The surface temperature and gas composition are given

quantities. This example will give an understanding of the gaseous exothermic

reactions causing ignition. In this situation the energy equation for a given

mixture of fuel and oxidizer (as discussed in the previous sections) of fixed

composition is sufficient to determine its combustion characteristics. The

problem is posed as follows. A cool stationary gas mixture typical of zero

gravity condition is supposed to be in contact with the hot surface which is

to remain at a given temperature. Fuel is injected from the surface of the

body so that a normal mass flux of fuel gas exists at the body surface; this

mass flux is prescribed (its magnitude is suggested by the coupled gas-solid

analysis to be considered later). A time dependent gas model with one spatial

dimension normal to the surface is considered in this section. Due to the hot

surface a thermal wave travels outward from the surface into the gas and raises

its temperature. The increase of gas temperature with time releases heat energy

from the exothermic reaction in the gas and leads to a sharp temperature rise

and a subsequent ignition. The governing equation for the thermal energy

balance of a compressible gas under these conditions is obtained from Equation

(3.12). This equation is

cp
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where Q is the temperature ratio T/Te, t and 7) are the time and transformed

normal coordinate respectively, Cp the coefficient of specific heat at constant

pressure, P the Prandtl number, and £ the ratio of the product of density and

viscosity coefficient, h^ the enthalpy specific heat, p the mass density, W.

the rate of production per volume of mass from the chemical reaction, Te the

ambient gas temperature, and the summation is over all the species.

In this section the boundary conditions for Equation (7.1) are explicitly

given in terms of the surface and ambient temperature. Thus these conditions

are:

* = l ' (7.2)

77 = 0 : 0 = 0W

An additional relation is required for the V function. This relation can be

supplied by the conservation of mass. For a nonsteady compressible flow and

one normal spatial coordinate the mass conservation equation is given by V =

constant along this coordinate where V is defined by

cy
v = pv + £. / Pdy (7-3)

Ot Jo

Since V is constant along the normal coordinate it can be evaluated at the sur-

face y = 0. At the surface fuel can be injected with a prescribed mass flux

of (Pv) . Thus one has that:

V = (Pv) (7.4)
w

In place of the physical coordinate y it is convenient to use a trans-
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formed coordinate 17 as suggested by Equation (7.3). For this problem the co-

ordinate f\ is proportional to the stream function at constant time. Thus T] is

given by

(±r rp-(»<j j. >,^ ~ ' - ' ' T~ ay (7.5)

where [i is the viscosity coefficient and the subscript r denotes a constant

reference value.

To recapitulate, the system of equations from (7.1) to (7.5) is valid for

a one spatial dimensional nonsteady compressible heat conducting gas flow with

non-zero mass flux prescribed at the surface (y = 0) with a distributed internal

energy source due to exothermic chemical reactions. The problem to be studied

here is the thermal ignition of combustible gas mixtures when the energy flux

for heating is provided by the hot wall. The study of the thermal ignition of

gases posed in this manner is not a new one. This problem has been studied for

constant density assumption and for zero mass flux at the surface. A summary

of these investigations has been made recently by Merzhanov (1971) for the hot

wall-cool gas case. Some of the older studies are discussed in the text by

Frank-Karoenetskii (1969). As pointed out in the Introduction the situation

of the gas phase ignition for a hot gas-cool wall condition: which exists in a

rocket motor or in the shock-reflected regions of a shock tube has been con-

sidered by Hermance, et al (1966) and Hermance, et al (1967-1971). In the

latter works assumptions such as equal molecular weight, constant Prandtl

number, and sometimes a constant gas density are made in addition to the ones

quoted above.
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For the particular consideration of any gas mixture the chemical energy

term on the right side of Equation (7.1) must be formulated. A gas mixture

characteristic of that discussed in Section (5.2) is utilized in this portion

of the study. A further reduction is made of those reactions to that of a fuel,

oxidizer, and inert diluent mixture. The chemical reaction following Section

(5.2) can be symbolized by

F + nOx ->- (n + 1) P (7.6)

where the symbols F, 0 , and P denote the fuel, oxidizer, and product respectively.
X

This reaction occurs between active species which are immersed in an inert gas

bath. The chemical energy in Equation (7.1) can be written for the reaction

(7,5) in the simple form of

h

'P
Cpp C M M_ / fr

where Q is the heat release per unit mass for fuel , Cp and CQX are the fuel

and oxidizer concentrations in units of mass fraction, Mgy is the molecular

weight of the oxidizer, and kc is the rate of reaction of the combustion pro-

cess. In this form, the power (n + 1) is the order of the reaction. The rate

of reaction is a function of temperature only and has the form of

kfr = a Tc exp/:i|̂  (7.8)

where the symbol E is the activation energy of the reaction, a and c are con-

stants, and R is the universal gas constant. Usually the pre- exponential factor

is a constant. In Equation (7.7) the mass density appears explicitly so that

Equation (7.1) is not entirely independent of density despite the transformation
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of coordinates.

Thus an additional equation is required to close the system and this is

the equation of state given by

where p is the pressure, M the mixture molecular weight, and T the ambient

temperature.

The system of equations is now complete for the determination of0 (Tl ,t).

The solution of this system is obtained by using a fully implicit finite differ-

ence scheme.

Characteristic Time

In the constant density case Equation (7.1) can be written in a non-

dimensional form such that the system is dependent on two characteristic para-

meters. One of these dimensionless parameters is the ratio of activation energy

to the wall temperature and the second is a characteristic time tQ. This

characteristic time is useful here and is defined for a second order reaction

by

-- _ (7.10)
RTw

The parameter t characterizes the behavior of the thermal ignition times of gas
o

mixture in terms of its physical parameters. Thus it is inversely proportional

to the heat release of combustion, the product of mass density of the mixture

and pre- exponential factor of the rate constant, and the product of the fuel

-1 E / - E \
and oxidizer mixture. Moreover, (t ) is proportional to -^- exp j -^- I

w \ w /
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which has a maximum at ̂ S- = 1 so that t0 decreases with -„£- for E < 1 andKiw Ki
w RT̂ , ̂

increases with increasing -JL- for ̂- > 1. This parameter tn is a useful meansR4-w **-iw

of extrapolation to unknown gas mixture from a given condition. Comparison with

an actual solution is shown on Figure 7.1.

Numerical Results

The results for this special case considered in this section are summarized

in Figures 7.1-7.6 compiled from a large number of numerical solutions of

Equation (7.1) and its boundary conditions. The gas mixture is considered to be

initially at room temperature and typical of the polymethylmethacrylate gas in

Section 5.2. Furthermore, most of the results are for a pressure of 1/8 of an

1 ^
atmosphere. The pre-exponential factor a was taken to be equal to 10 cm /

mole sec and the exponent C is zero. Other data utilized in this section are

given on the figures. The subscripts for the wall and ambient temperature T are

w and e respectively. The -t function and the Prandtl number have been set to

unity for this set of numerical results.

In the first two figures, Figures 7.1 and 7.2, the concentration of fuel

has been kept constant and the inert and oxidizer concentrations have been

varied. The results for the hot wall-cold gas are given on Figure 7.1 and the

reverse case on Figure 7.2. Both figures show the ignition times as a function

of the ambient concentration of oxidizer. It is remembered that ignition times

can be defined in several ways. Two of the more useful definitions are

utilized here. One definition is the time of occurrence of the first maximum

in the gas temperature which gives a wall heat flux close to that of an adiabatic

wall where no heat is transferred between the wall and the gas. A second

definition is the time required for the peak gas temperature (after the
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temperature has peaked within the gas) to achieve a prescribed ratio to the

wall temperature. Results for both definitions are shown on Figures 7.1 and

7.2. The results show that as physically expected the ignition times vary

inversely with the oxidizer concentration. In fact, this variation is given

by the relation

'IG ~
C0x

A least squares fit of the results indicate that n varies between 1.079 to 1.27

for the second order kinetics considered in this example. Equation (7.10) show

that to, the characteristic time, varies inversely with the oxidizer concentra-

tion to the first power of n. The variation of tQ for the same conditions is

also shown on these figures. The ratio of the ignition time to the characteristic

time is almost a constant except for a slight variation due to the variable

density and the V function. The quantitative effects of non-zero values of V are

relatively small for the two values of V utilized in the computation. In the

latter part of this report it will be seen that V can have an appreciable effect

at other conditions. Thus the term in Equation (7.1) containing V has only a

small effect for the results on Figures 7.1 and 7.2. A study of the magnitude of

each term as time progresses indicate that initially the chemical energy

production is small so that the initial solution is governed by the usual heat

conduction equation and then increases to values comparable to the other terms

as the temperature peaks. For very long times a steady state may develop whereby

the chemical energy production is more or less in equilibrium with the heat

conducted away from the source. The temperature does not run away to a large

value due primarily to the decrease of density when the temperature rises. This

can be seen from Equation (7.7) where the multiplicative density factor damps
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any increase of the entire term with increasing temperature. In many of the

variable density results this steady state has occurred for time of the order

of 100 sec.

Figure 7.3 shows the variation of the ignition time with fuel concentra-

tion for a fixed oxidizer concentration. As expected, the ignition time is also

inversely proportional to the fuel concentration. This variation of ignition

time can also be represented by the relation

tIG - ^5 (7.12)
F

where n is approximately 0.9. This value is close to the variation of tQ with

the fuel concentration.

These results together with the proper values of tQ can be utilized in

estimating the ignition times of gas mixtures at other conditions at fixed wall

temperatures.

For contrast some results for a constant density assumptions are given

in the next two figures. For constant density the equation can be scaled to

contain only two parameters as given in Figure 7.4. The behaviors of the

temperature with time and within the gas are given on the next two figures,

Figures 7.4 and 7.5, for the hot wall-cold gas case. Figure 7.4 shows the

development of the peak values with time. Since the gas is initially cold with

respect to the wall an increment of time and energy flux from the wall is

required to heat the gas to the point when the chemical energy generated starts

to increase the temperature. The temperature peaks by this mean and starts to

run away and tends to approach very large values for the constant density case

42



shown here. As mentioned before the effect of a variable density is to tend

to level the peak temperature with time so that a steady state is developed.

The effect of increasing the wall temperature is shown on Figure 7.4 resulting

in an increase of the temperature in the gas layer. A typical set of temperature

profiles is given on Figure 7.5 indicating the development of the peak tempera-

ture with time. This figure is characteristic of all the temperature behavior

across the gas and with time. The normal coordinate across the layer has been

scaled with respect to the square root of the time coordinate; thus there is a

movement of the peak temperature away from the wall with increasing time. A

correlation of ignition time results for constant density is given on Figure 7.6.

The curve is valid for a constant value of the parameter (E/RTW). This variation

is typical for a constant density gas. Since the parameter (E/RTW) is constant

this curve can be interpreted as the effect of wall temperature on the ignition

time. One notes that the ordinate 00 is bounded above by the value of E/RTW

for very large wall temperature ratio. The two principal parameters for the

constant density case are the activation energy of the reaction in the gas phase

and the wall temperature ratio.

7.2 Ignition of Gas Mixture for Non-Uniform Mixture of Fuel and Oxidizer With
Full Consumption and Diffusion

A fuel-oxidizer gas mixture with chemical reaction does not remain uniform

with increasing time. Fuel consumption will change the concentration at each

point of the mixture. Moreover, diffusion of each of the gas species will

destroy the uniformity of the mixture. These effects are considered in this

section for a stationary mixture for given wall conditions. The system of

equations valid for this case has been given already. The energy equation was

given in the last section as Equation (7.1) with the boundary conditions (7.2).
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The species concentration equations for the three species of fuel, oxidizer,

and reaction product are given by Equation (3.13). The corresponding boundary

conditions are prescribed species concentration since V is set to zero for

this section. The general case of V ̂  0 is treated in the following chapter

where coupling of the gas and solid are accounted for. Thus the species

boundary conditions are:

77 = ' CF = ° > COX = COXoo (7

77 = °: °F = CFW>
 COX = COXW

As before, an inert species is contained in the formulation. The species

equation from Equation (3.13) is simply written in the form:

en (7.

One notes that V is set to zero. As in the previous section the numerical

results are obtained for constant values of the I, Pr, and Lg functions.

Appropriate values are 1 for L and Pr and 1.4 for Le. The chemical rate of

production of mass from chemical reactions has already been given in the

previous section. There are now sufficient equations and boundary conditions

to consider the problem posed at the beginning of this section. This problem

has been solved by the use of an implicit finite difference scheme. The solu-

tion involves the coupling of the temperature and species equation together

with the subsidiary relations from chemical reactions. A sufficient number

of cases has been solved to obtain expressions for the variation of ignition

time with oxidizer concentration.

44



Numerical Results

Numerical results are again obtained for an ambient gas at room tempera-

ture at a pressure of 1/8 of an atmosphere. Chemical parameters are typical

of the gas considered in the last section. Consider the cool gas with a hot

wall first. The ignition times as defined before vary inversely with the

oxidizer concentration as before. These variations with oxidizer concentration

is shown on Figure 7.7. These curves bear some similarity to those on Figure

7.1. In fact, for the combination of activation energy of the gas reaction

and fuel concentration the curves for TW/T = 1.5 are almost the same. The

variation of ignition times with oxidizer concentration can be represented

approximately with a least square fit by the relation

One notes that the ambient value of oxidizer concentation is used. The first

peak variation shown on the same figure is almost the same as that given by

Equation (7.15). The exponent in Equation (7.15) is about the same as that

obtained for a uniform mixture. A hot gas- cold wall case is also given on

Figure 7.7 for a gas only slightly hotter than the wall. As expected, ignition

can occur more rapidly when the gas has a higher average temperature.

The development of the concentration profiles and the temperature pro-

files across the layer is given on Figure 7.9 for the hot wall- cold gas example.

The growth of the peak temperature with time until ignition occurs shows a

movement of the peak location away from the wall. The heat pulse will eventu-

ally pass through the entire layer. The peak temperature with fuel consumption

and variable gas density does not appear to run away as time increases. For the
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cases calculated a steady state is almost approached (but has not quite been

attained - Figure 7.8). However, this aspect will be considered in detail in

the next chapter when the solid is coupled with the gas phase activity.

7.3 Ignition of Gas Mixture of Uniform Composition of Fuel and Oxidizer
Coupled With Pyrolyzing Solid

A gas mixture under the influence of fixed wall conditions has been

considered in the last section. It was seen from the results that indications

of ignition are that the temperature tends to run away as time progresses; a

tendency for the temperature to approach a horizontal asymptote occur when fuel

consumption is allowed. Thus it is expected that the behavior of gas mixtures

with other heat loss mechanisms may be quite different. That is, the peak

temperature may approach an asymptote so that sustained combustion occurs.

In this section the next step in the complexity of this ignition and burning

of solid material is taken. The gas mixture is assumed to be of a uniform

composition and interacts with a combustible solid (typical plastic as dis-

cussed in the previous section) which is heated until it pyrolyzes and injects

fuel into the ambient atmosphere of the gas mixture. The fuel reacts chemically

with the oxidizer and releases heat back to the solid. Ignition is assumed to

occur at some defined point; this can be considered as the point when a sus-

tained and equilibrated peak gas temperature occurs for the interacting gas-

solid system. Steady burning occurs when sufficient heat energy is generated

to maintain the solid.decomposition.

The energy equation for the temperature of the gas mixture of uniform

composition has been given in Section 7.1 with the addition of the energy

exchanges due to radiation as discussed in Section 3. It remains to consider
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the equations involving the solid and its interaction with the gas.

The solid equations have been given by Equations (4.1) and (4.2). These

two equations describe the temperature distribution of the decomposing plastic

and the degradation rate. The interaction of the solid and gas is made at their

common interface and the condition has been given by Equation (4.11). In this

section only homogeneous gas phase chemical reactions are considered so that

B = 0 in Equation (4.11). Thus there are two equations for the gas temperature

and solid temperature which are related by the interface energy exchange. The

method of solution utilized is the implicit finite difference one for both

equations; the solutions are matched at each point along their interface to

satisfy the condition (4.11).

In summary, the gas equation involves the two dimensions of time and the

normal distance away from the solid surface and the solid equation is dependent

on the time coordinate and the normal distance within the solid. This system of

coordinates is depicted in Figure 3.1.

Numerical results have been obtained for one set of material constraints.

The characteristics of the gas mixture have been assumed to be that in the last

section so as to afford some basis for comparison. Results have been obtained

for both solid materials in Table VI - only those for the Teflon solid are

shown. Initially, the gas and solid are at the uniform temperature of 90 F.

An external heating is imposed on the solid and the solid temperature (and the

gas layer temperature next to the solid) starts to rise. Appropriate initial

conditions for this situation before decomposition of the solid begins are

derived in closed form for the finite difference method utilized for subsequent
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times. With the progress of Lime the surface temperature of the solid rises

to cause decomposition of the solid material. At this point fuel is injected

into the ambient gas atmosphere and reacts with the oxygen there. Gas phase

reaction rates increase with temperature and heat is released to cause a

temperature peak within the gas layer. The creation of a gas temperature greater

than the solid imposes an additional heat load on the solid. Subsequently, when

this additional heat flux is sufficient to maintain the chemical reaction in the

absence of the external heating the process is then in sustained combustion.

An example of the development with time of the profiles of the gas and solid

temperatures is shown on Figure 7.10. At early times the wall temperature is

higher than any gas values and the gas mixture is being heated by the hot wall.

Later, the release of chemical energy in the gas phase maximizes the distribution

of the gas temperature as can be seen from the Figure. It is noted in most solid

and gas combinations the transfer of heat is more rapid in the gas than in the

solid. This can be seen also from the Figure.

Results of the history of peak gas temperature are shown on Figure 7.11

and 7.12 for different values of the atmosphere pressure and two compositions of

the gas mixture. One notes the S shape of all these results; that is, a flat

initial rise at early times with an occurrence of an inflection point and then

an approach to a constant asymptote with increasing time. Thus it is seen that

the heat transfer to the solid indeed limits the growth of the peak gas tempera-

ture with time. In two cases on Figure 7.12 the external heating was set to

zero and the solution continues for a time duration of about 10 sec in one case

and 25 sec for another. A constant peak temperature was maintained for this

time indicating a possible sustained burning. The behavior of the wall
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temperature with time follows that of the peak gas temperature except for a

slight dip at the heat shutdown point to a second asymptote (cf Figure 7.13).

Figure 7.14 shows the same behavior except that the wall temperature has not

quite reached its second level for the time duration considered. It is

interesting to note the behavior of the heat flux of gas mixture at the wall.

This flux is shown on Figure 7.14 increasing with external heating and main-

taining its value when external heat is shut down.

The effect of pressure on the ignition time has been obtained by deter-

mining the time of occurrence of a temperature ratio of 1.5 or by obtaining the

first time the peak temperature has achieved a constant value. Both of these

definitions are shown on Figure 7.15 together with the behavior of the peak

temperature at the asymptote condition with pressure. The ignition time at

the asymptotic temperature can be represented by the equation

-.9994
tIG = 1.3 p (7.16)

where t is in sec and p in atmospheres. That is, t , is inversely related to
Id

pressure by (-1) power. The ignition time obtained from the intersection of

the asymptote with the rising temperature slope yields almost the same constants.

Similarly, the peak temperature can be represented by

.265
(T/Te>PEAK -

 12'7" (

It is remembered that the constants are a function of the other parameters of

the system.

For a given value of external heating and fuel-oxidizer composition the

96S
peak value of the temperature varies as p' . These two relations give
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useful scaling factors for other conditions.
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VIII. IGNITION AND BURNING OF MATERIAL WITH FUEL CONSUMPTION AND GAS PHASE
DIFFUSION

In this section the results are given for the ignition and burning of

one material typical of that of polymethylmethacrylate. The set of equations

to be considered is given in Sections 3, 4, 5, and 6. As in the previous

cases the material is heated from a low temperature to the point where ignition

can occur and burning is initiated. The principal mechanisms for the propaga-

tion of heat to the virgin material that have been considered may be convection,

heterogeneous reactions, internal heat conduction, and forward propagation of

radiative flux from the flame. The two latter effects are not important when

small elements of material are considered. Numerical results for the example

of one mechanism of propagation, free convection, is used as an illustration.

The difference in the magnitude of gravity from zero causes free con-

vection flow to be established along the material surface which sweeps the

pyrolyzed products away and also convects heat energy downstream to be trans-

ferred into the solid.

8.1 Time Variation Without Spatial Changes

Consider first the development of the phenomenon at a given point on a

piece of material at conditions for which there is no streamwise variation in

any quantity. This case corresponds to that given in the last section but with

the presence of free convection flow. The development of the surface and the

gas peak temperatures (greater than the wall value) with time is given on
2

Figure 8.1. The solid is being heated with a flux of 8.76 watts/cm . Both

material and gas are at room temperature.
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In the case shown on Figure 8.1 the atmosphere is oxygen gas with gas

phase reaction constant such that E/RTe = 6.55. As seen from the Figure the

solid temperature rises and decomposition of the solid is gradually initiated.

The difference in gravity does not effect the wall temperature at these times

to any great extent. The gas temperature rises due to the exothermic gas

phase reaction and the principal effect of the presence of free convection or

gravity is to sweep the hot gases away resulting in a lower peak temperature

than the zero gravity case (there is no streamwise variation). One notes that

there is mass transfer from the surface material in all cases when any pyrolysis

of the material occurs. The times at which the local peak temperature achieves

the arbitrary defined ignition of 1.5 the wall temperatures are indicated on

the Figure. They have the values of 18 and 26 sec for the zero gravity and nor-

mal gravity respectively. One notes from this Figure also that the rise in the

peak temperature is more rapid at zero gravity than the normal gravity case

and that an indication of a sustained burning is beginning to form. The effect

of pressure with free convection flow is given on Figure 8.2. The gas phase

reaction is increased by the larger pressure and therefore a larger peak value

of the gas phase temperature is obtained. At atmospheric pressure the peak

temperature ratio approaches a value of 9 and the corresponding value at a

pressure of 1/8 atmosphere is only 5 at the time of 40 sec. The mass flux of

the decomposed solid is about the same for this variation in presure. The

variation of mass flux from the solid surface is shown next on Figure 8.3.

In the cases which have been continued for a longer time all characteristics

approaches an asymptote with time and a steady state is obtained. Indications

of this is given by the leveling off of the peak temperature, the mass flux,

and the surface values of the species concentration with time for the zero
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gravity case.

The behavior of the species concentration at the surface of the material

is given on Figure 8.4. As time progresses the oxygen concentration disappears

at the surface and is replaced by the solid material pyrolysis products. The

typical trend for all conditions is shown on this Figure. In the one case

(one gravity, one atmosphere) where an approach to an asymptote is indicated

the oxygen concentration forms an S-shaped figure. The layer of gas next to

the surface is mostly fuel although diffusion has permitted oxygen to penetrate

near to the material surface. A typical distribution of concentration profiles

is shown on Figure 8.5. Thus fuel and products of chemical reactions dominates

the region next to the material surface but drops off rapidly within a small

distance from the surface. The corresponding temperature profiles in both the

gas and solid are given on Figure 8.6 together with the corresponding velocity

profile. The surface of the material is at the zero point as indicated on the

Figure. The peak values of both the free convection velocity and the tempera-

ture are noted to occur at about the same location together with the peak in

the concentration of reaction products. One notes that only a small layer of
«

the plastic near the surface is affected by the decomposition at any given

instant of time as evidenced from this Figure. It is remembered that the solid

coordinate is non-dimensionalized by the virgin material thickness.

A number of cases were obtained for these conditions and these solutions

appear to give a variation of ignition time with pressure as shown on Figure 8.7.

Ignition time was defined by the gas peak temperature achieving a value of 1.5

of the wall temperature; thus ignition time as defined is a decreasing function

of pressure and is least squares fitted by
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-.11p

with the constant of proportionality for the one gravity case of 47.3.

8.2 Spatial and Time Variation

The general case of the ignition and burning of a piece of material with

spatial variations along the material surface in addition to the normal varia-

tion to the surface in both the gas and solid and with time variation in both

the gas and solid phases is now considered. The solid material is oriented as

described in the first section in such a way that the free convection gas flow

proceeds upward along the surface for the gravity pointing down. The origin of

coordinates is at the lower edge of the material. The region near X = 0 is

heated externally and as the solid temperature rises a free convection flow

is generated which flows in the positive X direction in the opposite direction

of gravity. Thus any pyrolysis products in the gaseous form which react

chemically with the ambient oxidizer are convected to the virgin material by

this arrangement. A recapitulation of the method of analysis is made here.

As mentioned in the first sections an implicit finite difference scheme is

utilized for the time-dependent free convection gas flow and for the solid

decomposition and temperature change. A matching at the gas-solid interface

accounts for the various energy fluxes from mass transfer and chemical reactions

to give a unique temperature there. As pointed out before the procedure

involving the solution of the set of difference equations with the three

independent variables is to sweep along the physical coordinates X and up and

down the y coordinate for an increment of time t.
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The numerical example selected for discussion is as considered in

Section 8.1. A piece of solid material of length 7.63 cm and thickness of

2.54 cm typical of those selected for laboratory experimental investigations

2
is considered. A uniform heat loading of 29.2 watts/cm is imposed over half

of the material surface starting from X = 0. Thus the latter half of the

material surface, X > 3.81 cm, is not heated externally. The gas is at the

ambient room temperature at the initial time, whereas the solid has been heated

uniformly to 850°R. With this heat loading at the front end of the material

and the difference in gas-solid temperature, a free convection flow is immedi-

ately generated. This initial phase involves heating of the cool gas layer by

the solid and a slow decomposition of the solid (mostly at the surface); sub-

sequently, there is a mass transferred of combustible pyrolysis products to

the gas phase. Chemical reaction of these products with the oxidizer lead to

additional gas temperature rises. Free convection plays an important role in

convecting the hot gases downstream to heat the virgin material. The develop-

ment of the surface temperature with time is shown on Figure 8.8 at several loca-

tions of the surface. As is to be expected, the temperature is highest at the

front end of the material where the imposed heat flux is located and lowest

toward the back end. The back end is heated primarily by the exothermic

reaction of the fuel and oxidizer gases. For the length of time considered in

the example this generated heat flux is only a fraction of the imposed value

and this is reflected in the different rates of surface temperature rise at

the various spatial locations.

With continuous chemical reactions between the fuel and oxidizer the gas

temperature begins to rise and overshoots the material temperature. One notes
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that the gas temperature is affected not only by the local conditions at the

material surface but also by the heat energy convected from upstream. The

peak temperature in the gas is shown on Figure 8.9 for the spatial locations

indicated; its value is a number of time higher than the surface temperature.

The point where the peak gas temperature is 1.5 times the local wall tempera-

ture is indicated by the cross. The heat flux causing the temperature rise

toward the back end of the material is shown on Figure 8.10 as a fraction of

the imposed heat flux. It is seen that the gas is receiving heat energy from

the heated solid at the early time and subsequently returns energy to the solid

with increasing time and distance. The amount of material loss due to depoly-

merization of the solid is given by Figures 8.11 and 8.12. The values of the

mass flux are within the usual boundary layer limits. Figure 8.12 shows the

linear rate of loss of material with the inverse of surface temperature. This

is a useful quantity indicative of the burning rate of the material normal to

its surface. Due to the heat transfer characteristics and the activation energy

of the decomposition process of the plastic,only a relatively thin layer of

the solid near the surface is heated. Thus its mass density changes mostly at

the surface. Some idea of this change is given on Figure 8.13.

The variation of species concentrations at the surface of the material

is shown on Figure 8.14. It shows the same form as in the previous section.

Oxygen rapidly disappears with increasing time as more pyrolysis product enter

the boundary layer. Since the mass flux of material transferred is relatively

small a thin layer of material species and their products formed from reaction

with the ambient oxidizer is contained in the immediate region of the surface.

The peak convection velocity is given on Figure 8.15 and increases with
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time with the changes in surface temperature. The local free convection

velocity is established by the difference of the local and the ambient tempera-

tures and by its upstream value. Since the front portion of the material is at

a higher temperature relative to the back part a free convection flow is esta-

blished there and driven forward.

An idea of the flame spreading rate is a useful criterion for the

comparison of the burning characteristics of different materials. Flame spread

rate depends on the sum of the individual processes such as thermal response of

the system, chemical reactions, etc., occurring in the coupled gas-solid system.

However, it is controlled by the slowest process, that is, the one which

requires the longest time. As mentioned in the last section the flame spreading

mechanism of prime importance is the heating of the material surface ahead of

the flame Tarifa et al (1967) . For small flames in the environment considered

herein the dominant process of flame spread is due to convection and can be

given by the condition that a characteristic such as the surface temperature or

peak gas phase temperature reaches a pre-defined value at a given location when

the flame has spread to that point [larifa et al (1967,1969), McAlevy (1969)1 .

Experimentally, the spread rate is determined in most cases by visual observa-

tion of the speed of travel of the flame, e.g., the flame's light emission.

In the time and spatial analysis as considered herein the combustion phenomenon

is a continuous one and one useful definition for the measure of the flame

spread rate is that corresponding to the observation of the gas phase ignition

occurrence at a given location. With this criterion the flame spread rate for

this case is found to be 12.2 in/sec remembering that the material is burning

upward in the opposite direction to the gravity vector. Experimental data
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by Kuchta (1967) reports a difference in the flame spread rate in burning up-

ward or burning downward; burning upward flame spread is about a factor of 40

higher than the burning downward rate. If consideration is given to this fact

then the value as calculated is of the same order of the experimental values
•

determined by McAlevy (1969).

It is remembered that flame spread rate is usually observed as a steady

state condition when the system has approached a sustained combustion. The

ignition times as defined by the latter condition would decrease the spread

rate slightly. Results for a value of acceleration of gravity 3 times the

o
normal value of 32.2 ft/sec shows that the ignition times occurs at an earlier

X and at an earlier time but only slightly.
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IX. CONCLUDING REMARKS

An analytical model of the ignition and burning of plastic material for

the coupled gas and solid phases subjected to free convection currents and in

an environment of a space cabin atmosphere has been formulated and reduced to

a form susceptible to numerical treatment. Combustion in the gas phase together

with pyrolysis of the solid material is considered in the model with finite rate

chemical reactions dominating the behavior of the phenomena considered. A time-

dependent problem with two spatial coordinates is treated. The solution to the

problem is obtained by the implicit finite difference method. Energy transfer

between the gas and solid at the interface govern the behavior of the time

dependent problem; in particular, radiation of the gas phase is included.

The principal premise of this study is that ignition and burning of

plastic material is due to the exothermic energy release in the gas phase

coupled with its interaction with a pyrolyzing solid. This energy release is

governed by the heat conducting diffusing oxidizer and fuel species character-

istics including that of convection currents due to temperature differences.

Results from the study confirm the important role of the coupled interaction

of the gas and solid in establishing the ignition of the system and the sub-

sequent development to a steady burning process. By defining the ignition

time as that required for the peak gas phase temperature to achieve a multiple

of the material surface temperature the combustible quality of a gas-solid

system becomes determinable. It is shown by this study that the ignition

times are much longer (correctly) when the early time gas-solid interaction is

accounted for.

The effect of free convection on the ignition and burning has been
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shown. Free convection currents due to gas density differences is an effective

means of moving hot gases to and away from the vicinity of the virgin material.

Thus the parameter of importance in determining the ignition of material at a

given location is the ratio of the flow time to the chemical time. A number of

cases with no streamwise variation along the surface of the material have been

studied in detail. Physical consideration imply that these cases correspond

to the behavior of the gas-solid system in which each point along the surface

remains identical to any other one. These results show that under this condi-

tion the ignition times increase with increasing values of the ratio of actual

acceleration to normal gravity. Relations between the ignition times and

environmental parameters such as pressure and gas composition have been obtained.

These results are a function of the important material parameters such as the

activation energy of the gas phase reaction and the activation energy of the

solid depolymerization process. Secondary influences are the thermodynamic

properties of the gas and solid and the transport characteristics of the gas.

The continuance of these solutions with time have uncovered an interesting

feature. The development has led to a steady state condition whereby a sustained

burning persists without assistance from external heating. Comparison of the

times of this occurrence with ignition times shows a close relationship and

behavior with environmental parameters. Thus a unique ignition time can be

defined as that corresponding to the point of sustained buring at steady state

conditions. These new times are much longer.

For the general case in which streamwise variations along the surface

coordinates are permissible,results show the effectiveness of the flow due

to buoyancy in convecting the hot gases downstream and pre-heating the virgin

60



material. That is, these hot gases ignite downstream and subsequently heat

the solid there; the time for the gas to ignite downstream has been obtained.

The times for the occurrence of each phenomenon, as such mass transfer and heat

penetration are obtained and can be used for the determination of an overall

flame spread rate. In addition the distributions of species concentration

show the extent of the motion of the combustion products away from the material

surface. The study is capable of mapping and quantifying other species con-

centration which may be of importance for other uses, for example, the distri-

bution of toxic gases.
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TABLE V-l.

TEFLON POLYMETHYMETHA CRYLATE

Mol. Wt. 100.022 100.11

Density 2.162 g/cnT 1.185 g/cm~

monomer gas -154.179 (JANAF) kcal/mole - 82.2 (HAM) kcal/mole

An , solid -193.5 (JANAF) kcal/mole -103.6 (HAM) kcal/mole

Degradation Rate

Order
Frequency
Activation
Energy

1 20 -1
3.24 x 10 sec
80.5 kcal/mole

(MADORSKY)
1 9 -1

2.82 x 10 sec
31. kcal/mole

(JELL1NEK)
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TABLE V-2.

TEFLON SOLID PROPERTIES (GRISKEY, GE, WAGNER)

Heat Conductivity, k, ft.lb/ft.sec R

Heat Capacity, Cp ft.lb/lb°R, and

Enthalpy, h, ft.lb/slug

400

600

800

1000

1200

1400

1600

1800

2000

.032

.0358

.0420

.0506

.0587

.0666

.077

.0831

.0885

140

186.5

204

218

249

272

292

311

334

-9 x 10

-8.87 x 10'

-8.75 x 107

-8.62 x 107

-8.45 x 10?

-8.28 x 107

-8.08 x 107

-7.88 x 10

-7.68 x 107
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