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Introduction

This report is concerned with the six-month period from 16 December

1970 to 15 June 1971. The research was under supplements to Research Grant

NsG 70-60 begun on I April 1960 and now listed as Research Grant NGR 21-

002-003.

This report is intended to give a brief summary of the studies under

way during the period as well as the final details of experiments which

have resulted in two papers submitted for publication for which support under

NSR-21-002-003 has been acknowledged.

Personnel

Name Title

Dr. R. W. Krauss Director and Professor

Dr. C. Sorokin Research Professor

Dr. R. A. Galloway Professor

Dr. G. W. Patterson Associate Professor

Technical Assistants:

A. Osretkar Research Assistant

0. Owens Research Assistant

Part-time and Student Labor:

S. Nishino Undergraduate Assistant

Daniel Cacchlone Undergraduate Assistant

Appointment

4/1/60 - present

4/1/60 - present

4/1/60 - present

7/1/65 - present

4/5/64 - present

6/15/70 - present

2/24/69 - present

9/21/70 - present

l
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Research Summaries

The primary overall objective of the research in this laboratory is

to obtain fundamental data concerning the growth and metabolism of the

unicellular green algae. These organisms are the most likely to provide

a source of biological oxygen for man venturing for long periods in space.

They absorb CO2 and release 02 at the optimal rate when they are growing

at their maximum rate. The food value of the algal product Is also po-

tentially ideal for human consumption. They currently form a major part

of the life support system on Earth so that research directed at the under-

standing of their metabolism is of value for terrestrial life as well.

The research currently under way can be summarized under three cate-

gories biochemical conversions, chemical composition, and cell growth and

division.

Bliochemical Conversions

During studies employing the Recyclostat, a device built to provide

continuous culture of the green alga Chlorella, It became clear that nutri-

ent balances were not maintainable with the levels of nitrogen we had ex-

pected to be sufficient for growth. The algae appeared to consume larger

amounts of nitrogen than could be accounted for in analyses of the cells or

the medium in which they were grown. The observations of this phenomenon

has been given In previous NASA reports, but during the last report period

the problem has been solved. The major mechanism for nitrogen loss is now

known.

The procedure for this study can be summarized as follows. Cultures

of Chlorella sorokiniana Shihira and Krauss grown in a continuous culture

device, called a Recyclostat, consumed more nitrogen than required for
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growth. Analyses of cells and media grown on nitrate and urea demonstrated

significant losses of nitrogen. Average losses, as determined by a micro-

Kjeldahl method and confirmed by the modified micro-Dumas method, were 26.9%/

for cultures supplied nitrate and 28.7% for those supplied urea. Cultures

grown in test tubes on fixed amounts of nitrogen showed average nitrogen

losses of 21.7% from nitrate cultures and 25.0%/ from urea cultures. At high

levels of urea, nitrogen losses were less than at low levels. These cultures

had a continuous supply of C02-in-air. To remove the avenue for loss of

volatile nitrogenous substances in the gas stream, cultures were grown in

sealed flasks, autotrophically and heterotrophically, with both nitrate and

urea as nitrogen sources. Nitrogen losses were similar to those In which

there was a gas supply.

Analyses of metabolic intermediates of cultures grown on nitrate re-

vealed the presence of nitrite. Nitrite accumulation was positively corre-

lated with growth rate of the culture. Traces of hydroxylamine were also

found in cultures grown In the Recyclostat. However, quantities of both

nitrite and hydroxylamine were too small to account for the missing nitrogen,

Cultures, grown in sealed flasks, were analyzed for gaseous compounds.

Analyses involved gas-liquid chromatography, mass spectrometry, and Raman

spectroscopy. Nitrous oxide between 1.2 and 2.4 mg per 100 ml of medium were

observed when analyzed by gas-liquid chromatography. Stass spectroscopy in-

dicated an average of 7.1 mg nitrous oxide per 100 ml for urea cultures end

7.6 mg for nitrate cultures. Quantitative calculations from Raman spectro-

scopy indicated 6.0 mg nitrous oxide per 100 ml of medium In both cases.

Some nitrogen was unaccounted for. This fraction may represent undetected

compounds or the discrepancy may be the sum of sampling and analytical errors.

Nevertheless, the presence of nitrous oxide as shown by several procedures,
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indicates the ability of Chlorella to convert fixed nitrogen to nitrous

oxi de.

This discovery is a major break-through in our understanding of algal

metabolism and Its significance cannot be underestimated. For the first

time it identifies a nitrogen lesion from cells which was not formerly

known in nature. It identifies a biological source of nitrous oxide found

in the earth's atmosphere and appears a logical explanation for the ability

of natural waters to rapidly purify themselves of nitrogenous pollutants.

Furthermore, it identifies a problem in dealing with photosynthetic gas

exchangers--that of accounting for the extra nitrogen consumed by the alga.

This is not expected to pose a major design problem nor is the disposal of

N20 in the effluent gas stream likely to present difficulty. However,

engineering design for biological life support systems must take this Into

account. Full details of several years of experiments on this topic are

included in the manuscript at the end of this report.

Chemical Ccmposltlon

Studies in this laboratory have concentrated on the organism components

of algal cells other than fats, proteins and carbohydrates. Of special con-

cern have been the sterols and hydrocarbons. These compounds, many similar

to powerful human hormones, have been under investigation because of their

possible impact on man should Chlorella cells become components of his diet,

Implicit in all of these studies has been the need to establish the biosyn-

thetic pathway for sterols. Inasmuch as any temporary unexpected blocks to

normal growth and metabolism might produce large amounts of an otherwise

undetected sterol. It is essential to know the intermediates. For this

purpose, intermediates are identified by the insertions of biochemical blocks.
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One of these is the hypocholesterolemic drug AY-9944 (trans-1,4-bis-(2 chlo-

robenzylamino-methyl) cyclohexane dihydrochloride). From experiments with

this drug, compounds have been isolated which have been identified as key

intermediates in the synthesis of normal algal sterols. Of the sixteen

identified, several are new to nature and provide clues to the mechanism of

sterol synthesis. Details are given in the manuscript included in this re-

port.

Cell Growth and Division

High-temperature algae.

The experience of the past twenty years indicates that the hereditary

nature of the organism, together with the optimal environmental conditions,

are among the most Important factors contributing to a highly productive

algal culture. Our high-temperature organism Chlorella sorokiniana, strain

7-11-05, is a well-known and highly productive green alga. A newly developed

strain, Chlorella 1-9-30, may even surpass Chlorella 7-11-05 in its growth

rate and other metabolic characteristics. High temperature algae may be

particularly useful in the following areas:

1. As organisms used in basic research (extended temperature and light

intensity ranges, high-performance, relatively short life cycle, etc.).

2. In mass culture for the purpose of production of food, fodder and oxygen

(as gas exchangers) or as components of biological systems used in sew-

age treatment plants.

3. As members of phytoplanktonic populations In areas of thermal pollution

(Atomic power plants).
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The effects of cell secretions on algal growth.

Preliminary observations indicate that substances produced by' algal

cells may strongly affect the performance of the same organism and of other

strains brought into contact with the blotically active substances. These

substances may be released within the cells and thus affect the cell growth

internally, or they may be released into the medium and then act on the same

and other cells externally. The effects of substances produced by algal

cells may be inhibitory in nature or they may be stimulatory. Studies of

the inhibitions produced by algal cells and the attempts to control and to

eliminate the inhibiting action would improve the conditions for algal

growth and increase the growth rate, yield and duration of algal culture.

Growth factors capable of improving the efficiency of algae open even more

exciting perspectives in regard to the possible performance and metabolic

activity of algae in mass culture used as photosynthetic gas exchangers

or as the sources of food or fodder.

The physiology and biochemistry of the division cycle.

Cell developmental studies conducted by using the synchronization tech-

nique during the past 17 years indicate that in the course of their development

cells undergo remarkable changes in many of their physiological and biochem-

ical characteristics. This knowledge opens wide opportunities for the studies

of the metabolic mechanisms and the effects of conditions controlling the

growth of algal cells. One of the most exciting theoretical problems is the

mechanism and factors which turn an old metabolically sluggish cell after

it divides into an active vigorously growing cell. Practical applications

of these studies may be in application of synchronized culture for mass cul-

ture. If used only during most active period during their growth period,



these cultures far out-perform nonsynchronized cultures.

Dark Fixation of C0
2
.

Studies during this period have continued on the ability of algae to

fix C0
2

in the dark. Many intermediate steps have been identified and the

mechanism in Chlorella is being elucidated to provide a comparison to the

process in higher plants. The intermediates are being catalogued and Im-

plications for the system are being assembled in a manuscript to be included

in the next report.
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ABSTRACT

Cultures of Chlorella sorokiniana Shihira and Krauss grown in a continu-

ous culture device, called a Recyclostat, consumed more nitrogen than required

for growth. Analyses of cells and media grown on nitrate and urea demonstrated

significant losses of nitrogen. Average losses, as determined by a micro-KJeldahl

method and confirmed by the modified micro-Dumas method, were 26.9% for cultures

supplied nitrate and 23.7% for those supplied urea. Cultures grown in test

tubes on fixed amounts of nitrogen showied ave-age nitrogen losses of 21.7% fror

nitrate cultures and 25.0% from urea cultures. At high levels of urea, nitrogen

losses were less than at low levels, Thase cultures had a continuous supply of

C02-in-air. To remove the avenue for loss of volatile nitrogenous substance::

in the gas stream, cultures were grown in sealed falsks, autotrophically and

heterotrophically, with both nitrate and urea as nitrogen sources. Nitrogen

losses were similar to those in which there was a gas supply.

Analyses of metabolic intermediates of cultures grown on nitrate revealec

the presence of nitrite. Nitrite accumulation was positively correlated wit".

growth rate of the culture. Traces of hydroxylamine were also found in cu' :e

grown in the Recyclostat. However, quantities of both nitrite and hydroxvy : in

were too small to account for the missing nitrogen.

Cultures, grown in sealed flasks, were analyzed for gaseous compounds.

Analyses involved gas-liquid chromatography, mass spectrometry, and Raman spec-

troscopy. Nitrous oxide between 1.2 and 2.4 mg per 100 ml of medium were ob-

served when analyzed by gas-liquid chromatography. Mass spectroscopy indicated

an average of 7.1 mg nitrous oxide per 100 ml for urea cultures and 7.6 mg for

nitrate cultures. Quantitative calculations from Raran spectroscopy indicated

('( (



6.0 mg nitrous 6xide per 100 ml of medium in both cases. Some nitrogen was

unaccounted for. This fraction may represent undetected compounds or the dis-

crepancy may be the sum of sampling and analytical errors. Nevertheless, the

presence of nitrous oxide as shown by several procedures, indicates the ability

of Chlorella to convert fixed nitrogen to nitrous oxide.

(V



INTRODUCTIOM

The process of denitrification has long been involved to explain loss of

gaseous N from soils or culture solutions. In this process, nitrate serves

as a hydrogen acceptor--substituting for oxygen. Gas losses occur primarily

as N and/or N 20. This contrasts with assimilatory reduction of nitrate and

nitrite to ammonia. However, dissimilatory reduction of nitrate does not al-

ways result in production of gas. There may be a reduction to ammonia in quan-

tities greater than that required to meet organic nitrogen requirements. Pe-

nitrification has been observed almost exclusively in bacteria and is thought

to be exclusively anaerobic.

There have been some reports of I losses fro4 asutotrophic organisms. As

early as 1886, Atwater and Rockwoo I!), reported app-reciable N losses from

cowpeas during germination and early growth of seedlings. Some years late.!r

in 1906, TWilfarth et al. (35), reported losses of N from barley, spring whi .

peas and mustard, but the nature of the loss was not determined. Irving and

Hankinson (12) immersed Elodea in solutions of nitrate and asparagine, and rc

ported the production of gaseous N. Davidson (6), apparently repeating sore-

of the earlier work on cowpeas, grew both wheat and cowpea seedlings in

Kjeldahl flasks under sterile and non-sterile conditions. Fis results cc :

dicted the evidence for gaseous N loss. In 1937, Pearsall and Rellimor '-

in experiments with Chlorella and Narcissus leaves, reported N losses an; ki- n

to as much as 65%. With glucose-supplemented Chlorella, N loss was high in the

dark on NaNO3, and less in light. There was little or no loss with NM4NO
3
where

NH4 was utilized preferentially. In Narcissus leaves, losses occurred only when

the inorganic N source, NH4N03, was supplied. There was no loss from media

containing urea, asparagine, or alanine. They hypothesized the followine reactions:

I
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HN03'O , 02, I'60:- N19 3

HNO 2 + R-CH-HN 2 COOR ---- N2 + H2 0 + R-CH-OH-COOH

Combined with the data of Irving and Hankinson, this suggests:

IHO
3

,HNO I-31 -H Amide N

N
2
< Amino-IK-==Protein N

Eggleton (7) suspected a N loss on grass plots supplied (}E 4)2 S04, NaN03O3

or NaNO2. Using Chlorella, Allison, et al. (2) reported average losses of only

5% with one exceptionally high figure of 14%. Losses occurred with FTH 4N03
as

the N source. There was no loss with KNO3, urea, alanine, WH4SO4 or asparagine.

The test organisms were Chlorella vulgaris and Chlorella pyrenoidosa, grown

in light up to 18 days, and in darkness for as long as 102 days. Bongers (5),

using N-deficient algae, reported no N losses. Thus there is conflicting evi-

dence for the existence of N losses attributable to both higher plants and algae.

Previous work in this laboratory, using controlled nutrient supplies to

continuous cultures, revealed that more N was required to sustain growth than

could be subsequently accounted for in either the algae or the media. There was

also a constant tendency for pH to rise, even though balance sheets showed that

it should have remained constant because of the addition of a nutrient solution -i

with HN0
3

as the N source (19). It seemed that cells were absorbing, but not

incorporating all of the N into cellular constituents.

The investigations reported in this paper were designed to examine the de-

tails of this phenomenon, and to quantify, as far as possible, the fate of N

compounds supplied as nutrients to algal cultures.
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M4ATERIALS AND MET.ODS

CULTURE METHODS

Cultures of Chlorella sorokiniana Shihira and Krauss (29), were grown in

the liquid media shown in Table 1. The N source was modified in different ex-

periments by changing the concentration of KNO3 or by substituting urea at

different levels. Media and vessels were autoclaved at 20 lbs. for 15 minutes

prior to inoculation.

Test tube cultures employed tubes measuring 25 x 200 mm which were closed

with cotton-plugged bubbler tubes to provide cultures with a 1% C02 -in-air

mixture. The test tubes were maintained in Lucite water baths at 39 C + 0.5C.

Illumination was provided by two banks of fluorescent lights consisting of

four, cool-white, "Power-Groove", General Electric, fluorescent tubes per bank.

Changes in illuminance were effected by wire screen filters. A Weston Illumina-

tion Meter, placed inside the bath, measured illuminances given in the tables.

Cultures were kept at maximal growth rates by daily transfers. A Bausch and Lomb

Spectronic 20 Colorimeter at 550 nm measured optical density.

Continuous cultures were grown in an apparatus, conceived and built in

this laboratory, which has been named the Recyclostat (18). The system oper-

ates as follows: the algal culture is maintained in a glass chamber illuminated

by a high intensity "Quartzline' iodine vapor lamp mounted within the culture

chamber. The lamp is cooled by a continuous flow of cold water. A temperature

probe, connected to a temperature regulator, regulates the flow of water to a

coolant jacket inside the culture Jacket. A 1% CO2-in-air mixture is bubbled

through the culture medium. Optical density is recorded by photodiodes mounted

on either side of a small bulge at the bottom of the chamber. The culture is

agitated by a magnetic stirrer. When the population density reaches a pre-set

level, the photodiode signals for introduction of an aliquot of culture medium
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TABLE I

Inorganic Medium for the Autotrophic Culture of

Chlorella sorokiniana Shihira & Krauss

Salts Grams of salt
per liter

KNO
3

2.00

MgSO 
4
' 720 0.25

KH2PO4 O 8

K21P04 0.2

EDTA NaFe 0.0385

" Na
2
Mn 0.0071

" Na2Ca 0.0077

" Na2Co 0.0093

" Na2 Cu 0.0077

" Na2 Zn 0.0067

MSO
3

0.0015

EDTA = Ethylenediaminetetraacetate
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which is pumped through a peristaltic pump from a heated reservoir and pasteurized

as a precaution to maintain the sterility of the medium. TThen the Proper amount

of fresh medium has been introduced to dilute the culture to a Dre-set level, an

equivalent amount of culture is forced out of the exhaust port by the small, but

constant, C0
2
-in-air pressure maintained in the culture chamber. Effluent cells

and medium may be collected at once in a sterile flask for analysis, or they may

be passed through an air trap and filtered through a bacteriological ?'illinore fil-

ter which provides for continuous harvest. The medium can then he passed througlh

another microbiological filter, and back into the reservoir from which it can be

recycled to the culture. Increments of fresh or recycled medium are recorded on a

strip chart recorder which establishes the time of addition. Cells and medium

within the culture chamber can be sampled independently by introducing a sterile

hypodermic needle through a rubber, self-sealing serum stopper, mounted in a samp-

ling port. Illuminance regulated by a '?ariac ranges to 10,OOn ft-c.

For studies involving growth of cultures in sealed vessels, two kinds of cul-

ture vessels and techniques were employed. The first was a 200 ml long, sinPle-

necked flask with a 29/42 standard-taper outer Joint. This was fitted with a close

standard-taper inner joint which was, in turn, fitted with two lengths of glass

tubing. One length of tubing was centered in the joint and extended bela7 the leve

of medium in the flask--approximately 10 mm above the joint. The second piece of

tubing was attached to one side of the joint and extended 10 mm from an opening at

the surface. One hundred ml of medium was added to each of the flasks, a teflon-

coated stirring bar was placed in the bottom and cotton was fitted into the ends

of the glass tubing. Flasks were steam-sterilized. After sterilization and inocu-

lation, argon was bubbled through the long glass tube and medium, and exhausted

from the second tube. Bubbling continued for at least 30 minutes to remove atmos-

pheric gas from the flask. Afterward, the exhaust stopcock was closed, and a mix-

ture of 92% A, 6% 02, and 2% CO2 was bubbled into the flask. A gauge pressure of lr

psi was reached. A rubber self-sealing, serum stopper was fitted to the end of thb



exhaust tube to allow sampling by means of a sterile syringe. The flask was

placed into a thermostated, Lucite, water-bath mounted on magnetic stirrers.

The flasks were positioned directly orer the stirrers. Light intensity was 1000

ft-c as measured by a Weston Illumination Meter.

The second type of sealed culture vessel was a 500-ml Erlenmeyer flask with

a 29/42 standard-taper joint similar to the first type, except that the stop-

cocks were replaced with screw clamps. Cultures were grown on a shaker, agita-

ted at 69 R.P.M. with an amplitude of 66 mm, and housed in a New Brunswick

Psychrotherm Controlled Environment incubator. Temperature was maintained at

39 C ± 0.5 C at an illuminance of 780 ft-c. Cultures grown heterotrophically

were handled in a similar fashion but double-wrapped with aluminum foil to ex-

clude light.

ANALYSES

Nitrite. Samples were prepared for analysis by centrifuging at 3500x G

for 15 minutes to remove cell and cell wall fragments from. the supernatant.

The procedures of Snell and Snell (30), A.O.A.C. Methods of Analysis (3), and

a modification of those of Novack and Wilson (23) were used to determine nitrite

by colorimetrically measuring the red azo dye formed in the presence of sulfa-

nilic acid.

Hydroxylamine. Samples were prepared as described above and analyzed

utilizing the methods of Novack and Wilson (23), which involve oxidation of

hydroxylamine to nitrous acid that is determined colorimetrically. The method

of Frear and Burrell (9) was also employed. In this method, hydroxylamine

reacts quantitatively with an excess of 8 -quinolinol to form the stable 5,

8-quinolinequinone-5-(8-hydroxy-5 quinolylimide) which can be measured colori-

metrically.



7

Total Nitrogen. Samples were prepared by centrifuging aliquots of the

culture, at 3500x G for 15 minutes, to separate cells from the medium. These

were then frozen and dried in a Thermovac Model FD-Port freeze drier. Dry

weights were obtained, and then dried cells and supernatant were transferred

to micro-Kjeldahl flasks. A semi-micro adaptation of the Ranker (26) method for

total-N was employed using the Kemmerer-Hallett (14) distillation unit. This

method also measures nitrate N by retaining nitrate with salicylic acid until

it is reduced by the Na
2
S2035H220. A catalyst mixture of Na2SO4

, CuSO4, and Se

insures inclusion of amino, amide, and ammonia N. However, NO
2
and NH20H are

excluded. For verification of the Kjeldahl method, each set of samples was

checked against those determined by a Perkin-Elmer 240 Elemental Analyzer. For

some samples, analyses were conducted on an Aminco C-H Analyzer to establish

C/H/N ratios.

Ammonia. The method is applicable to dissolved ammonia. Samples were

prepared as described above. Aliquots of 15 to 20 ml of supernatant were trans-

ferred to a steam-distillation unit to which 20 ml of 40% NaOH was added. The

mixture was steam-distilled into 10 ml of 2% H
3
B03 with 5 drops of bromcresol-

green methyl-red indicator. The H3BO3 solution was titrated with H2 S04 and

the ammonia calculated as N (3).

GAS CHROMATOGRAPHY

Nitrogen analyses. Gas samples were obtained by growing cultures, at

39 C and 1000 ft-c, in test tubes fitted with neoprene stoppers. The neoprene

stoppers were fitted with inlet and outlet glass tubing, so that six tubes were

connected in a series with gas flow in one direction. A 2% C02-6% 02--92% A gas

mixture was bubbled through the cultures at a pressure of 10 psi. The outlet

port of the last tube in the series was led to a test tube suspended in liquid

N in a Dewar flask. All gasses were liquified with the exception of N. Any

N2 was collected from above the liquified gases and transferred to vacuum flasks

fitted with rubber, self-sealing, serum-stoppers. Samples were drawn through
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serum-stoppers by means of a gas-tight syringe and injected into a Fisher

Model 29 Gas Partitioner at room temperature. The columns consisted of Porapak

S in the first position, and Molecular Sieve 13-X in the second position.

The detector was a thermal conductivity cell; the carrier gas was He.

Cultures grown in sealed flasks were analyzed for gaseous N, Samples were

injected into a Glowall Chromalab Gas Liquid Chromatograph. Columns consisted

of a 6' x 1/8" glass column packed with Molecular Sieve 13X, 60 to 80 mesh,

connected to a second 6' x 1/8" glass column packed alternately with Porapak

Q, 50 to 80 mesh, or Porapak R, 50 to 80 mesh. Columns were maintained at 30 C

with the flash-heater off. Carrier gas was A ionized at 125 C at a detector

voltage of 900 V.

Nitrous Oxide. Free gas samples were withdrawn from sealed flasks and

injected into the GLC. Columns were Porapak Q, 50 to 80 mesh, and Porapak R.,

50 to 80 mesh. The method was essentially that described by TJhilwhite and Hollis

(34). The method described for gaseous N also gave a measure of N in sealed

flask samples.

Those cultures suspected of containing dissolved N
2
0 were centrifuged to

separate cells from supernatant. An aliquot of supernatant was then injected

into a GLC as described above. The flashheater at 150 C vaporized the sample.

The column was Porapak R, 50 to 80 mesh, hald at 100 C. The detector was held

at 135 C at 900 V. Immediately prior to appearance of the water peak, the

column was disconnected from the detector for..20 to 30 minutes to prevent col-

lection of water vapor on the detector. An alternative for drying, which was

equally satisfactory, was to pass the vaporized supernatant through a U tube

suspended in a Dewar flask containing dry ice and acetone at 20 C and thence

into the column.
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A further modification was to fit a 50 ml Erlenmeyer flask with a neoprene

stopper and equipped with a U tube. The supernatant was placed in the flask,

and the other open end of the inverted U tube was immersed in absolute ethyl

alcohol in a second flask. The supernatant was heated to nearly boiling to

drive off dissolved gasses and concentrate them in alcohol. The alcohol solution

was injected into the flash-heater and vaporized.

Mass Spectrometry. All samples were prepared by centrifugation as des-

cribed previously. Spectra were obtained on an LKB, type 9000, Gas Chromatograph-

Mass Spectrometer. The separator temperature was 280 C; filament trap current

was 60 V amps.; and, electron energy was 70 volts. Where GLC was employed, the

procedure was that given earlier. For direct insert, the sample was injected

directly into the 300 C vaporization chamber. Masses of 2 to 100 were recorded

on light-sensitive strip chart paper, except where they were examined to mass

300 to scan for any other compounds which may have been present.

Raman Spectroscopy. The instrument was a Spex 1401 Double Spectrometer

using a laser beam at 4880 A. Samples were prepared as described above and

placed in 10 x 10 mm quartz cuvettes. They were placed in the light beam, and

scattering was measured at an absorption of 1287 cm
-
l and at a very weak band

occurring at 2214 cmi.
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PRSULTS A11D DISCUSSION

In view of the apparently high rate of N uptake observed in preliminary

experiments, it was obvious that balance sheets should be prepared to describe

the fate of all nutrient N. Therefore, N analyses were made of cells and super-

natants from the Recyclostat, culture tubes, and sealed flasks. Determinations

were also made of M supplied to the medium. These data indicated that signifi-

cant amounts of N were lost from cultures during growth of the algae. Table II

gives the balance sheet from two cultures grown in the Recyclostat, and harvested

directly. These are representative of numerous experiments with cultures grown o

KNO3 and urea as N sources. The average loss of M, which was unaccounted for by

the micro-Kjeldahl method, was 26.9% for the cultures supplied KNO3 and 28.7%

for those supplied urea. Variation was encountered within subsequent experiments

However, the average losses, considering 22 analyses from 6 experiments with

cultures grown in the Recyclostat, showed a lower figure for those supplied urea

rather than XOCN 3 . Averages for all experiments were 32.7% loss for NO3 and

20.2% for urea. Total N analyses by the semimicro-Kjeldahl method were repro-

ducible within an accuracy of 2%. Total N concentration of cells remained well

within the 10% of dry weight maximum observed by many researchers. This was

also true for other experiments involving N balance sheets--including cultures

grown in 4.0 and 8.0 g KNO3/1 as the M source. N increments were supplied throuF

addition of fresh nutrients calculated to match N removed by cell growth and

harvest.

T.Tith KNO3-supplied cultures, pH was controlled by direct injection of nitric

acid solution. This was comprised of 64.3 ml of 70% 1M0 3, 0.18 gm KH2PO4, 0.9

gm MgSO4.7H2
0, and 0.006 gm MgO per liter. It was included in the calculations

as an additional N source.
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To measure the effect of any N loss from fixed amounts of nutrient N

(in contrast to the steady state resupply system of the Recyclostat), cultures

were grown in test tubes supplied with either KN03 or urea. Results of these

experiments are shown in Table IV. Average N losses were 21.66% for KNO
3
cul-

tures and 25.03% for urea cultures. These data confirm a level of apparent

N loss quantitatively similar to those of the Recyclostat cultures. To deter-

mine if there was a correlation between N losses and N concentrations, cultures

were grown in test tubes at three concentrations cf urea--70, 90, and 117 mg.

Results, indicated less N loss with increasing amounts of N in the medium.

Though unexpected, this observation had also been made on preliminary Recyclo-

stat cultures when excessive amounts of N were provided. The experiments des-

cribed above were performed with a continuous supply of 2% C02-in-air bubbled

through cultures. If the N source were converted to a volatile substance, it

could have been carried off in the gas stream. To obviate this possibility,

numerous cultures were grown with KI0 3 and urea as N sources both autotrophicall7

and heterotrophically in sealed flasks at varying N levels. Cultures were

sacrificed for analyses after from 3 to 17 days. Growth rates were expectedly

less than those for comparable cultures gassed with CO2 -in-air. However,

similar quantities of N were unaccounted for. .Losses ranged from 3.0% in the

young cultures to as high as 47?' of the initial nutrient N in the older cultures

Apparently a similar system, operating under a variety of conditions, is re-

sponsible for conversion of N to a form which is not detectable by standard

methods.

Fypotheses to account for the balance sheet discrepancies arise from a

consideration of pathways of N reduction or oxidation by cells. Urease has not

been detected in Chlorella (10,33). Apparently urea is assimilated without
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preliminary breakdown to ammonia. Therefore, consideration of N loss through

metabolic intermediates will be confined to those cells grown on TO 03.

It is generally assumed that, before assimilation, nitrate-M is reduced

to ammonia-N in four states--each of which require two electrons (15).

3 HNO37--_HNO 2 H2N202-- NH2 OH---- NH3

The presence of N0- in culture media is well established (10,31,32).

It has been reported that NO2 can be utilized at or below 0.001 M, but that

higher concentrations are inhibitory (8,24,36). NO; is not usually detected

by the micro-Kjeldahl methods. In view of this, analyses were performed on

cultures, grown in the Recyclostat, to determine whether MO- excretion could

be responsible for the apparent N loss in KNO 3-grown cultures. Typical analyses

are given in Table IV. The amounts are in agreement with those reported

earlier (5). N02 accumulation was closely correlated with the condition and

vigor of the culture--a healthy viable culture producing a maximum amount of

N0O. This was so reliable an index as to serve as a measure of vigor of a

given culture. NO0 analyses of cultures grown in test tubes showed a maximum

NO
2
level of 1.8 mg 1L at an illuminance of 3,000 ft-c. Bongers (5) reported

that increasing illuminance decreases N02 production. In the cultures studied

here, NO0 production is proportional to cell growth. Greater amounts of N02

accumulate as the cell population increases during normal growth.

Although NH OH is an intermediate of N03 reduction (21), it is too toxic
2 3

to be expected as a by-product in culture media. Concentrations of 3 x 10-5 M

were reported to be toxic to species of Chlorella and Scenedesmus (5,11,16).

Furthermore, Syrett (32) reports that neither 2N20
2

nor NH2OIH have been

reported to accumulate in algal cultures. Nason, et al. (22) showed the

presence of NH2OH in Neurospora cultures. Escherichia coli utilizes H2 N 202

or NH
2
OH as N sources (21). In this study only, trace amounts of NH

2
OH were
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TABLE IV

NO in the supernatant of cultures of Chlorella sorokiniana grown

in the Recyclostat supplied 2.0 g./L. N as KT03 at increasing

levels of illuminance and optical density

Illuminance, Optical Days after ' NO , Total N as NO
2
,

ft-c. Density Inoculation g.L mg.

800 4.1 2 8.25 2.5

1200 5.1 3 8.20 2.5

1600 5.3 4 8.00 2.9

2000 8.0 5 7.00 2.1

2300 7.9 6 7.50 2.3

1" 8.4 7 3.20 1.0

2800 9.0 8 4.50 1.9

8.2 9 4.00 1.2

7.9 10 2.15 0.6

8.0 11 3,20 1.0

7.8 13 0.00 0.0
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occasionally found in media from both test tube and Recyclostat cultures.

Although significant quantities of NO2 were identified, and traces of

HH20H were occasionally found, the small amounts detected cannot account for the

unexplained losses from nitrate-grown cultures. Whether N loss involves any of

the intermediates of NO3 reduction is not certain, but intermediates have been

detected in some organisms where N loss has been observed (13,27).

The next approach was to analyze for gaseous N losses. Denitrification

occurs in certain bacteria. One scheme for the denitrification pathway is that

proposed by Kluyver and Verhoeven (17):

HNO 1 N202H203 12 2 2

RHNO(NOH) 2 H2N=N 22 20 

+

2 N2

Other pathways have been suggested. They differ as to whether N 20 is (17,27)

or is not (1,28) a normal intermediate. Nevertheless, these hypotheses sug-

gested logical gaseous compounds as possible avenues for N loss.

Cultures in culture tubes were bubbled with a 2% CO2 , 6% 02, 92% A

gas-mixture. After 18 to 22 hours from inoculation, samples were collected

from the gas stream which had passed through the culture. Control samples were

collected just before entering the cultures. Samples were then examined in a

gas partitioner. In cultures grown with urea as the N source, there appeared a

slight peak with the retention time of N2. This peak appeared in several samples.

It occurred in cultures supplied urea rather than in those grown on ICNO 3. How-

ever, concern about possible contamination from atmospheric N
2

led to other

methods of analysis.

To eliminate either loss, or contamination, cultures were grown in sealed

flasks. Gas samples were removed from the flasks and injected directly into
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a GLC. This was done daily using cultures gorwn with YlO03 or urea as N sources,

and maintained in light or in darkness on glucose for various periods of time.

Good separation was obtained, but no N2 and only traces of N2 0 were detected.

One exception occurred in a culture groom autotrophically on urea. A significant

peak for N20 occurred five days after inoculation, and remained for two days

before gradually disappearing.

In view of its solubility in water (56.7 cm3 /100 ml at 25 C), if all missing

N were in the form of N2 0 most could have been dissolved in the medium. N20 can

PV
be treated essentially as an ideal gas with T= 0.9931.

The problem was either to measure gas in the medium or to remove it from the

medium first. Several methods were employed. One of these involved injection of

a sample directly into the chromatograph. The mediuim was then vaporized, passed

through a cold trap, and passed through the column for separation. For standardi-

zation, seven equal-sized samples of a saturated N20-in-water solution were in-

jected. Areas of the peaks were measured and an average obtained. Peplicate

samples of medium, in which cultures had grown, were then injected and average

peak heights for these were determined. The data indicate amounts of 1.2 to 2.4

mg N20 per 100 ml of medium. Later data indicated that vaporization was not total,

and that these figures were probably too low. For cultures grown in sealed flasks

with K10
3

as the N source, this amount would account for a significant portion

of the missing N.

Increased analytical efficiency was achieved by heating the medium and

driving the gas into a smaller volume of absolute alcohol which was then injected

into the chromatograph. Alcohol had a lower boiling point and consequently was

easier to vaporize. It also had a longer retention time on the column before the

solvent front passed through.



Gas-liquid chromatogram peaks of samples injected into a

column which was attached to a mass spectrometer. The

samples were vaporized and then passed through the column

for separation. The numbers over the peaks identify each

peak with reference to mass spectra. Sample A was that

of a nitrous oxide-in-water solution, while Sample P was

that of the culture medium in which Chlorella had been

grown.

Figure 1.
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In the course of early ecperiments, when N analyses were confounded by

atmospheric N, cultures were supplied with N1 5 . Gas over the cultures was then

injected directly into a mass spectrometer and the ratios of M1 4 to N1 5 measured.

While the resulting data did not reveal the presence of increased N, an additional

method of analysis was devised for correlation of the data obtained from GLC.

Columns were removed from the GLC and attached to the gas-liquid chromato-

graph-mass spectrometer. The sample was then injected using the previous proce-

dure. Results are obtained graphically as GLC peaks. An example is shown in

Figure 1 in which the sample was injected as a liquid. The numbers over the peaks

identify each peak with reference to the mass spectra. The mass number for each

peak can be determined as the sample passes through the coltmn. Retention time

can then be correlated with the mass of the group or groups contained within that

peak.

Using these techniques, analyses were made for N
2
0. N20 (mass 44) fraction-

ates in the MS to NO (mass 30) and N (mass 14), but only a small amount does so.

To estimate the amount for this instrument, a number of samples of N 20 of known

concentration were injected, and the percent of mass 30 to mass 44 was determined.

This mass characteristic then served as a guide for any mass 44/mass 30 combina-

tions which might arise. Only those with the correct characteristics were con-

sidered.

Figure 2 shows three spectra representing three of the GLC peaks shown in

Figure 3. The peak heights of the spectra represent relative amounts of each mass

present. These compare the N20 standard (peak 1) with two peaks (peaks 4 and 5)

from the sample cultured autotrophically with urea as the M source. Peak number

4 has an Rf identical to the standard, and also has masses 30 and 44 present.

While the relative heights are less, they do occur in the correct ratio. Peak

number 5 is a later peak and represents an air peak--completely lacking mass 30.



Mass spectra representing the materials from cultures of

Chlorella located under each of the three peaks presented

in Figure 1. The nitrous oxide standard spectrum - peak

1 - shows relatively large peaks for masses 44, 30, and

14. The light-grown urea culture - peak 4 - shows small-

er, but definite peaks for those masses. Peak 5, which

represents an air peak from the urea culture has a small-

er mass 44 peak (C02 ), and no mass 30 peak.

7n

Figure 2.
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Figure 3 compares a dark-gromn urea culture with a light-grown NO3 cul-

ture using an N2 0 spectrum for reference. These were injected as liquid samples

and again demonstrate a similar pattern. Figure 4 compares gas from over a cul-

ture with a sample of gas from a flask of medium without cells. The control gas

has the spectrum of the flushing gases--C02; 02 and A.

The instrument was also used for direct inserts--bypassing the GLC column.

The sample was injected into a chamber held at 300 C where it was vaiorized;

passed directly to the separator, and one spectrum was obtained for the entire

sample. Figure 5 compares a I0O3 medium without cells with a medium which had

grown cells.

It was suggested earlier that incomplete vaporization occurred in vaporizing

liquid samples for GLC determinations. This was observed during several analyses

of liquid samples when mass spectra were run continuously through to the water

front as it came off the column. when a saturated N20 solution ,,as measured, the

largest amount of the gas came off as expected, but decreasing amounts continued

to come into the water front--indicating that some was still dissolved in water

vapor. When culture samples were analyzed, the same was found to be true. No

precise determination can be made, but it appears most is vaporized and found in

the major peak.

To determine qualitatively the amount of N2 0 present in the samples, four

analyses were selected randomly. The relative peak heights of the standards

with known concentrations of N 20 were determined and compared with the samples.

Calculations were made which indicated an average of 7.1 mg N 20 / 1l0 ml for urea

cultures and 7.6 mg for KETO3 cultures. These values are toughly two thirds more

than was shown with GLC data.

As an additional verification, several samples were analyzed by Raman

Spectroscopy. As before, culture samples were compared with medium saturated

with N20. The first sample, a urea sample grown autotrophically, gave a positive
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Figure 3. Mass spectra comparing a dark-grovn urea culture of

Chlorella with a light-grown nitrate culture. A nitrous

oxide spectrum is given as a reference. All are similar

with respect to the presence of masses 44, 30, and 14,

although relative peak height differ.
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Mass spectra comparing gas taken from over a sealed

culture of Chlorella with gas taken from a flask of

medium without cells. The control spectrum indicates

the presence of large quantities of flushing gases--

argon, C0
2
, and oxygen. These ratios are progressive-

ly altered in the culture medium as cells gorw due to

photosynthesis.

Figure 4.
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Mass spectra comparing a nitrate-supplied medium from

cultures of Chlorella with the medium without cells.

Data were obtained by direct insert into a mass spec-

trometer. Peaks 44 and 30 are absent on the control,

but are obvious in the medium which had supported cell

growth.

24

Figure 5.
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indication of N20. The second sample was a light-grown KNO3 culture from which

the gases had been driven into alcohol to concentrate the gas to provide a clear

background for the instrument. This second sample also gave a positive response

at the correct wavelength, but the peak was smaller than that of the previous

sample. Inasmuch as alcohol has absorption bands near this region, the data

are not clear enough to assure the presence of N2 0. The final sample was a

dark-grown urea sample which also indicated a peak for absorption. This culture

was part of the experiment which produced the first sample, so that the gas would

be expected to be present. Semiquantitave calculations on these samples indicate

6.0 mg N20 / 100 ml--a figure close to those results from MTS data.

Hattori (10) reports no trace of ammonia in cells or medium of N-starved

cultures of Chlorella ellipsoidea with either I'TO
3

or urea as the N source.

Stiller (31) demonstrated that Chlorella sorokiniana produced ammonia when Frown

on KNO3, when C02
was absent or limiting, and Little and Mah (20) report ammonia

production in cultures of Chlorella ellipsoidea in medium containing excess urea

and limiting amounts of glucose. Studies were therefore included to determine if

ammonia were present. In related experiments, gas effluents were trapped in

H3B03 solutions, but n6 significant amounts of NH3 were detected. For urea

cultures in sealed flasks, gas was bubbled through sterilized urea medium--oH 7.5.

The effluent gas was passed through a 2% H3 B03 solution. After 30 minutes, there

was no detectable MH 3. Twenty ml of a 40% NaOH solution was added and bubbled

for an additional 30 minutes. The resultlwas only 0.7 mgm N / 100 ml. It would

seem then that little if any NH 3 is produced in sterilization and/or lost in

flushing the chamber in the sealed flask cultures.

Some NH
3

is undoubtedly produced in the urea cultures, either by the cells

or by the sterilization process, but the amounts appear to be small. Little and

Mah (20) reported a maximum of 34 Ug TH3 -N, and Stiller reported 4.52 to 5.42

pmoles produced by the algae.
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A summary of all data is shownm in Figures 6 and 7. Figure 6 represents

cultures grown on urea. Figure 7 gives the data for KNO
3
grown algae. Some N

still remains unaccounted for. The remaining N is either in a form undetected

by the analytical procedures available of may represent the sum of sampling and

analytical errors in the procedures which were difficult.; and complicated.

However, major gaseous loss has been confirmed by three distinct analytical

procedures and there is no doubt that Chlorella is capable of significantly re-

ducing the N levels of the media on which it grows by conversion of a significant

amount of N to N20.
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Figure 6. A summary of the data, comparing nitrogen supplied to the

medium with that accounted for, in cultures of Chlorella

sorokiniana, grown on urea.
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Figure 7. A summary of the data, comparing nitrogen supplied to the

medium with that accounted for, in cultures of Chlorella

sorokiniana, grown on KNO .
3
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ABSTRACT

When Chlorella ellipsoidea was grown in the presence of 4 ppm AY-9944,

complete inhibition of L5-sterol biosynthesis was achieved. However, total

sterol production remained unaltered. As a result, a number of sterols

accumulated which appear to be intermediates in sterol biosynthesis. These

sterols were described and identified as (24S)-5a-ergost-8(9)-en-3P-ol,

(24S)-5a-stigmast-8(9)-en-3B-ol, 4a-methyl-(24S)-5a-ergosta-8, 14-dien-30-

ol, 4a-methyl-(24S)-5a-stigmasta-8,14-den-3- 4a-methyl-(24S)-5a-ergost-

8(9)-en-3P-ol and (24S)-4a-methyl-5a-stlgmast-8(9)-en-30-ol. The occurrence

of these sterols in Chlorella ellipsoidea is the first time they have been

noted in biological material. The accumulation of these sterols in treated

cultures indicates that AY-9944 is an extremely effective inhibitor of the

-8 . 7 isomerase and the a reductase of these plants. The occurrence

of small amounts of other sterols in treated cultures has led to a proposed

pathway for the blosynthesis of stcrols in Chlorella ellipsoidea.
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INTRODUCTION

It has been pointed out that the hypocholesterolemic drug, AY-9944,

(trans-1,4-bis-(2-chlorobenzylaminomethyl) cyclohexane dihydrochloride),

inhibits the biosynthesis of chole.st:rol in animals by preventing the

reduction of 7-dehydrocholesterol to cholesterol (1-5). Since AY-9944 has

been regarded as a quite specific A7-reductase inhibitor in animals, and

the effect of AY-9944 on plant sterol biosynthesis was unknown, It was

of interest to determine the effect of AY-9944 on the biosynthesis of A5-

sterols in a unicellular green alga, Chlorella ellipsoidea. Assuming that

AY-9944 acts similarly in algae and animals, and assuming algal A5-sterols

to be synthesized via the pathway expected for higher plants, we expected

that AY-9944 treatment would alter sterol composition in favor of the A5,7

and A7-sterol intermediates. However, from our earlier data (6,7,8), and

from the work described here, It seems certain that rather than being a

A7-reductase inhibitor, AY-9944 inhibits the reduction of the A14-bond of

A8 '14_sterol intermediates in tHe biosynthesis of sterols in C. ellipsoidea.

In earlier reports (6,7) we identified two novel sterols, (24S)-5a-ergosta-

8,14-dien-3P-ol and (24S)-5a-stigmasta-8, 14-dien-3B-ol from AY-9944-

treated cells of Chlorella ellipsoidea. In this paper we identify a total

of sixteen sterols from AY-9944-treated cultures--several of which have

not been previously found in nature. A quantitative analysis of all sterols

found in control and treated cells of C. ellipsoidea is reported and a pro-

posed scheme of sterol biosynthesis is this organism if presented.

EXPERIMENTAL PROCEDURES

Chlorella ellipsoidea Gerneck, Indiana Culture Collection No. 247

was grown heterotrophically in 15-1 carboys on basal inorganic medium plus
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0.5 percent glucose. A constant air flow from an oil-free compressor pro-

vided oxygen and kept the cells in suspension. Unpon inoculation, 4 ppm

(8.6ipM) AY-9944 was added to treated cultures. Sterols were extracted

from freeze-dried cells with cholcroform:methanol, (2:1), and partially

purified by digitonin precipitation as described by Doyle, et al. (9).

Further puirification and separation was accomplished using alumina, AgNO
3
=

impregnated silica gel G, and Anasil B column Chromatography (7). This

routine resulted in separation of the sterols as seen in Figure 1. Quali-

tative and quantitative gas-liquid chromatographic (GLC) analyses, GLC-MS

analyses, and physical data were also obtained as previously described (7).

RESULTS AND DISCUSSION

Sterols were extracted from C. ellipsoidea control cultures and from

those grown in the presence of 4 ppm AY-9944. Gas-liquid chromatography

(GLC) of the digitonin-precipated sterols from the inhibited cultures re-

vealed two major peaks and two minor peaks with relative retention times

(RRT) on four GC systems completely unlike those of control and unlike any

available authentic standards. Alumina column chromatography, followed by

AgNO
3
- silica gel chromatography of the sterol acetates resulted in a

separation of the sterols into six fractions (Fig. 1). In several cases

pairs of sterols were found which were C-28 and C-29 homologs. Although

the sterols of each pair could not be further separated by thin-layer or

column chromatography, the compounds were well resolved by GLC and thus

amenable to identification by GLC (four systems) and GC-MS.

Identification of 4a,14al-Dimenthyl Sterols and 24-Methylene Cycloartanol

Fraction one from alumina column chromatography contained very small

amounts of 24-methylenecycloartanol although no cycloartenol was detected.

Fraction two contained the two sterols, 4a,l/4a-dimenthyl-(24S)-5A-ergost-



Figure 1 - Separation of Chlorella ellipsoidea sterols using alumina

and AgNO
3
-silica gel chromatography.
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8(9)-en-3O-ol (dihydroobtusifoliol) and 4a,14aL-dimenthyl-(24S)-5a-stigmast-

8(9)-en-3B-ol. Identification of these sterols was achieved principally

on the basis of relative retention data from four GC systems which showed

observed values to be indistinguishable from those reported by Doyle et al.

(10). Evidence for a C-4 methyl substituent is provided by the behavior of

the sterols on alumina chromatography and differences in behavior of the

free sterols and sterol acetates on SE-30(11). GC-MS analyses of these

sterols also confirmed the above identifications.

Identification of 4a-Methyl a8(9)- Sterols

Identification of the sterols in fraction three as 4a-methyl-(24S)-

5a-ergost-8(9)-en-3f-ol and /4ca-methyl-(24S)-5a-stigmast-8(9)-en-3B-ol Is

based on their movement on the alumina and AgnO3- silica gel columns, as well

as the very close correlation of the observed and calculated RRTs in the four

GC systems (Table 1). The presence of a methyl at C-4 is demonstrated by the

free sterol having a higher RRT on SE-30 than the corresponding sterol

acetate (11).

To our knowledge, this is the first reported occurrence of the identi-

fication of these two sterols from natural sources, although Anding, et al.

(12) have recently isolated an "undefined methyl sterol" which they feel

may have the structure, 4a-methyl-ergost-8(9)-en-3f-ol.

Identification of 4a-Methyl Dienols

The GC-MS of the two sterols of fraction four provided evidence for a

methyl at C-4. The spectra are identical below m/e 285, and differ only by

14 mass units above m/e 285 indicating the presence of homologs containing

a methyl and an ethyl, respectively at C-24 (Figures 2,3). The parent ion

peaks were at m/e 412 and 426: both have strong fragmentations at m/e 285,

indicating loss of a saturated side chain from a diunsaturated nucleus con-
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TABLE I

Relative retention times of sterols isolated from control
or AY-9944-inhibited cultures of Chlorella ellipsoidea

a
Relative retention times on 4 GC systems

Sterol Acetates : SE-30 SE-30b f QF-l Hi-Eff-8BP PMPEe

brassicasterol 1.12h 1.12 1.09 ----

5-ergostenol * 1.29 1.29 1.29 1.32 1.29

poriferasterol 1.42 1.42 1.32 1.34 1.31

clionasterol' 1.63 1.63 1.56 ---- ----

cholesterol 1.00 1.00 1.00 ---- ----

a8' 4-ergostadienol 1.32 1.32 1.24 1.44 1.38
8 14

24S-A'14-stigmastadienol 1.66 1.66 1.48 1.74 1.65

8(9)-ergostenol 1.35 1.35 1.29 1.33 1.38

24S-A( -()stigmastenol 1.69 1.69 1.56 1.59 1.65

4c-methyl A 1 4-ergostadienol 1.50 1.54 1.38 1.'54 1.42
4 8,14

4a-methyl 24S- -A '-stigma- 1.87 1.93. 1.67 1.87 1.69
stadienol

4a-methyl A 8 (9)-ergostenol 1.55 1.59 1.46 1.44 1.40

4a-methyl A 8(9)-stigmastenol 1.92 1.97 1.74 1.69 1.66

24-dihydroobtusifoliol 1.51 1.54 1.55 1.28 1.21

4ca,l4a-dimethyl 24S-A- 1.87 1.93 1.85 1.53 1.44
stigmastenol

24-methylene cycloartanol 2.02 2.12 2.22 ---- ----

aRelative to cholesterol a'cetate.

bColumn 1.8m x 3.4mm I.D., 3% SE-30 on 100-120 mesh Gas Chrom Q, 20 p.s.i., 244 C.

CColumn 1.8m x 3.4 mm I.D., 1% QF-1 on 100-120 mesh Gas Chrom Q, 25 p.s.i., 231 C.
dColumn 1.8m x 3.4mm l.D., 3% Hi-Eff-8BP on 100-120 mesh Gas Chrom Q, 25 p.s.i., 238 C.

eColumn 1.8m x 3.4mm I.D., 2% PMPE on 100-120 mesh Gas Chrom Q, 20 p.s.i., 250 C.

fRRT is expressed as free sterol relative to free cholesterol.

9 Data not obtained due to unresolved mixture on these columns.

hln all cases, actual relative retention times, as given, are essentially identi-
cal to calculated relative retention times.

·:.·.



Figure 2 - MS of 4X-methyl-5a ergosta-8(9), 14-dien-30-ol.
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Figure 3 - MS of 4a-methyl (24S)-5C-stigmasta-8(9),14-dien-3IP-ol.
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taining an additional methyl. A strong peak is seen at m/e 252, which

apparently corresponds to loss of the side chain and part of ring D, since

this fragmentation is also seen at m/e 238 in A8,14-cholestadienol, A8,14_

ergostadienol and (24S)A8,14-stigmastadlenol and appears to be a characteris-

tic of sterols with this double bond system. The saturated nature of the

sterol side chain, the methyl at C-4, and the placement of the double bonds

at the 8 and 14 positions were verified by GLC (Table 1). A decrease in RRT

of the acetate compared to the free sterol is evidence of a methyl group at

C-4. Actual RRT values were identical to those calculated by the method of

Clayton (14), thus confirming the MS analyses and identifying the sterols of

fraction four as 4a-methyl-(24S)-5cX-ergosta-8,14-dien-3B-ol and 4/-methyl-

(24S)-5a-stigmasta-8,14-dien-30-ol. An ultraviolet absorption spectrum of

a mixture of these sterols gave the expected absorption maximum at 251 nm.

Identification of Desmethyl Sterols

The two sterols of fraction five, comprising 19 percent of the total

sterols (Table II), are identified as (24S)-5a-ergost-8(9)-en-3P-ol and

(24S)-5a-stigmast-8(9)-en-3P-ol. The mass spectra show molecular weights

of 400 (C28H4 80) and 414 (C2 9H5 00), respectively. As seen in Figure 4, the

C-28 homolog has a fragmentation peak at m/e 273--suggesting a saturated side

chain. The placement of the double bond at the A8 (9)-position is done on

the basis of the IR spectrum, mass spectrum and GLC retention data obtained

from a mixture of these two sterols. The IR spectrum lacked bands charac-

teristic of disubstituted and trisubstituted double bonds. The only points

on a sterol structure where a tetrasubstituted double bond could occur are

at the 8(9), 8(14) and 24(25) positions (providing an alkyl substituent is

present at C-24). These are easily distinguishable on the four GLC columns

used in this research. The optical rotation (free sterol [a] 23 + 39; acetate,D
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TABLE II

A quantitative comparison of sterols from control

and AY-9944-treated cultures of Chlorella ellipsoidea

Control AY-9944-treated

Sterols % of sample 9g/g DW % of sample pg/g DW
:~ ~~~~~~~~% fsml ggD

brassicasterol

5
5-ergostenol

poriferasterol

clionasterol

cholesterol

A '14-ergostadienol

24S-A8' 4-stigmastadienol

A8(9)_ergostenol

24S-A8(9) -stigmastenol

4a-methyl A84-ergostadienol

4a-methyl 24S A8 '14
stigmastadienol

4a-methyl A8(9)-ergostenol

8(9)
4c-methyl 24S- A8 ( 9 )

stigmastenol

24-dihydroobtusifoliol

4a,14a-dimethyl 24S- 8 ( 9 ) -

stigmastenol

24-methylene cycloartanol

Total'

5.7

21.9

65.6

6.8

\0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

t**

100.0

181

695

2065.

216

0

. 0

0

0

0

0

0

0

0

0.

0

t

3157

0.0

0.4

1.0

0.1

0.1I

26.4

43.2

6.1

13.2

4.0

3.1

0.4

0.3

0.5

1.0

0.1

99.9

DW = Dry Weight

t = trace; indicates less than 1. ig/9 DW.

0

13

30

3

2

831

1371

193

415

126

97

13

10

17

30

2

3153

. . .
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Figure 4 - MS of 5CQ-ergost-8(9)-en-33-ol.
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[a]D23+ 28) data of this mixture are also within the expected range for

A8 (9)-sterols (13). Except for an increase in 14 mass units, the spectrum

(Figure 5) of the stigmastenol compound of fraction five is identical to that

of its C-28 homolog. In addition to MS, direct evidence for the proposed

structures comes from a comparison of calculated to actual RRT values on the

four GC systems. On all systems the calculated values are within 1% of the

actual values. These data allow identification of the sterols of fraction

five as A8 (9)-sterols and collectively exclude all other possibilities.

Two of the sterols of fraction six have been previously identified as

(24S)-5a-ergosta-8,14-dien-3P-ol and (24S)-5a-stigmasta-8,14-dien-3f-ol (7).

These two compounds comprised 69 percent of the total sterols isolated from

the treated cultures (Table II).

Extremely small amounts (Table II) of A5-ergostenol, poriferasterol and

clionasterol--the predominant sterols of control cultures of C. ellipsoidea

(15)--were detected in AY-9944-grown cultures. All had relative retention

times on GC which matched authentic standards. GC/MS analysis of poriferaster-

ol and A5-ergostenol confirmed the identification of these sterols. All

sterols identified in this work are assumed to have one 24S configuration

since the "normal" sterols of this organism have been established to have the

24S configuration (15,16).

Mass spectrographic analysis and GC retention data confirmed the pre-

sence of small amounts of cholesterol and brassicasterol In the AY-9944 in-

hibited cultures. This Is the first reported isolation of cholesterol from

Chlorella, although its occurrence in Oocystis (17), Ulva, and Chaetomorpha

(18) has been reported.

As seen in the quantitative comparison of sterols from control and AY-

9944-treated cultures (Table 1), AY-9944 has a drastic effect on sterol



Figure 5 - MS of (24S)-5a-stigmast-8(9)-en-3t3-ol.
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composition which apparently having no influence on sterol production (3.2

mg/g DW In control and inhibited cultures). AY-9944 is virtually a 100

percent-effective inhibitor of L5 -sterol biosynthesis In C. ellipsoidea.

The total of 5 mg of A5 -sterols in treated cultures is calculated to approxi-

mate the amount of these sterols which were present in the untreated inoculum

used to start the treated cultures.

Instead of the predicted accumulation of the immediate precursors to

A5 sterols (i.e., A5,7 and A7 sterols), AY-9944 brought about an almost

exclusive accumulation of A8(9) and A8 ,14 sterols. An inhibition of the re-

duction of the A14 double bond, and an inhibition in the A8 +A7 isomerase is

clearly suggested. It is certainly possible to state with confidence that

AY-9944 must be more than a A7-reductase inhibitor in plants. It is also

clear that any speculation concerning sites of AY-9944 inhibition must be

accompanied by a postulated pathway involving the sterols which have accumu-

lated. Accordingly, the sterols described above are included in a proposed

scheme for A5 -ergostenol and clionasterol biosynthesis, although other

reactions are possible (Figure 6). Although no cycloartenol and cyclolau-

denol were detected in C. ellipsoidea, Inclusion of these sterols in the

scheme reflects the current thought on sterol biosynthesis in plants. All

other sterols in this scheme were found in C. ellipsoidea.

Strong support for such a sequence Is taken from the substantial recent

literature concerning the occurrence of A8 ,14-sterol d ienes in biological

material, and their suspected roles as intermediates In sterol biosynthesis.

Frost and Ward (19) isolated 5c-stigmasta-8,14 24(28)-trien-3p-ol from

Vernonia seed oil. Canonica, et al. (20) Akhtar, et al. (21) and Watkinson,

et al. (22) have shown conclusively that cholesta-8,14-dlen-3P-ol is con-

verted to cholesterol in rat liver homogenate enzyme syster. Akhtar, et al.



Figure 6 - A proposed pathway of sterol biosynthesis in

Chlorella ellipsoidea.
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(23) and Canonica, et al. (24) have shown that the loss of a methyl at C-14

is accompanied by a simultaneous oxidation at C-15.

Assuming such a pathway exists in plants (Chlorella in particular),

then the two suggested sites of inhibition just mentioned, the inhibition of

the Al4-reductase step, and interruption of the A8.n7-lsomerase step, should

again be considered. A choice of the former as the primary site of inhibi-

tion Is preferable when one considers that 77 percent of the accumulated

sterols are A8,14-sterols and that a reduction of the 14(15) double bond is

likely to require NADPH and be similar in other respects to the A7-reductase

system reported in animals. An accumulation of a A8, 14 -sterol has also

recently been observed as a result of AY-9944 treatment in an animal system

(25).

However, the accumulation of the A8(9)-sterol monoenes (21 percent of

accumulated sterols), which appear after the sterol dienes in the postulated

sequence, indicates an additional inhibition at the A8-a7ilsomerase step by

AY-9944. Alternatively, If AY-9944 inhibits only the isomerase reaction,

then the equilibrium of the previous reaction (reduction of the C-14 double

bond) must be strongly in favor of the sterol diene.

From Table II it is observed that the inhibited cultures produced

practically no A2 2-sterols, while 77 percent of the total sterol of control

cultures had a 22(23) double bond. Either AY-9944 has a secondary effect in

preventing Insertion of this double bond, or the introduction of the 22,23

double bond may not normally occur until later in the pathway.

Dealkylation of the methyl groups on the sterol nucleus in C. ellipsoldea

appears to proceed as in higher plants, i.e., the t4a-methyl Is the last group

to be removed. However, in C. emersonil (sterols are A7), Doyle, et al. (9)

found that the 14A-methyl was removed last. Thus, sterol composition and the
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pathway of biosynthesis of sterols in Chlorella ellipsoidea is much more

similar to those of higher plants than is the case with Chlorella emersonli.
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