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ASYMMETRIC HYPERSONIC FLOW

By S. H. Maslen
Research Institute for Advanced Studies
Martin Marietta Corporation

SUMMARY

A general method for the analysis of the inviscid asymmetric hypersonic .
flow fields enveloping smooth bodies of general shape is given. The method
is based on the assumption of a thin shock layer which yields an explicit
expression for pressure in generalized Mises coordinates. Numerical results
for elliptic cones at angle of attack are shown to compare well with experi-
ments and other theories. The computing logic for a blunt body is described,
and a limiting solution at the stagnation point is presented.

INTRODUCTION

The supply of solutions for the inviscid flow in a shock layer, such as
that about a blunted body moving at hypersonic speeds, is very large and it
might appear that another such method would be, to say the least, superfluous.
However the goals of this work are special. The aim is to find an efficient
and economical solution for the shock layer in a three-dimensional geometry.
An exact analysis is not sought but only a reliable one. Thus the precise
time-dependent methods or even the method of characteristics are rejected
because of the required computing time. On the other hand, Newtonian methods
are simple but do not provide the desired detail in the shock layer.

Some time ago Maslen (ref., 1) proposed a method for axisymmetric flow
based on the use of a Mises transformation coupled with a simple approximate
integral of the lateral (to the shock) momentum equations. A number of
solutions were given and the results were indeed accurate and very easy to
obtain,

The simplicity of the method led several others to apply the method to
elaborations of the original case. Jackson (ref. 2) considered viscous
effects and also used the method to solve the complete equations of notion
iteratively. Perini and Melnik (ref. 3) solved nonequilibrium flow, while
Olstad (ref. 4) applied the procedure to radiating flow and to the
massive blowing problem associated with extreme heating rates. Recently,
Grose (ref. 5) has presented detailed solutions for nonequilibrium hyper-
sonic flows for a variety of cases of interest in planetary entry.

The present analysis returns to the original inviscid equilibrium flow
case, but we consider general three-dimensional geometry. None of the
elaborations mentioned above will be examined herein. Indeed, the present
work will be discussed for a perfect gas only. We do, however, attack the



direct problem (body given) although, as will be seen, the method is inverse
and begins with a specified shock.

In addition to support of this work by NASA, grateful acknowledgement
should be made for support, for several years, of particularly, the basic
analysis, by the Mechanics Division of the Air Force Office of Scientific
Research under contract F44620-69-C-0096.

Thanks are also due to Carl Hutton who carried out much of the computer

programming.
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SYMBOLS
square root of nose radius of curvature, eq. (64)
auxiliary function, eq. (7) or eq. (67a)
auxiliary function, eq. (7) or eq. (64)
auxiliary function, eq. (7)
auxiliary function, eq. (7)
functions defined in eq. (69)
enthalpy
longitudinal shock curvature, eq. (35a)
differential operator, eq. (9)

differential operator, eq. (37b)

auxiliary angle, eq. (59a)

free stream Mach number

pressure

pressure functions, eq. (54), (55)
cylindrical radius

"entropy"

velocity components, cylindrical coordinates

velocity components, defined in eqs. (4)

V2 + W2

cylindrical coordinates, fig. 1



%9 5 ry, LA cylindrical coordinates (wind axes)
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Subscripts:
s

00

shock layer coordinate , fig. 1, and eq. (2)

angle of attack

auxiliary function, eq. (23)

ratio of specific heats

auxiliary function, eq. (7)

shock layer coordinate, fig. 1 and eq. (2)

"Mised' type coordinate, eq. (8)

coordinate used in stagnation point analysis, eq. (72)
shock layer coordinate, fig. 1 and eq. (2)

Tan~ ! (% ar/ae)s , fig. 1

Tan"l @r/y,), , fig. 1

Tan"1 (W/V)

density

"Mises" type ocerdinate, eq. ¢8)

coordinate used in stagnation point analysis, eq. (72)

Tan"l (Tan v Cos A), fig. 1

stream function, eq. (5)

stream function, eq. (5), also "Mises" type coordinate, eq. (8)

conical variable, eq. (37a)

shock value
free stream value

stagnation line shock value



partial derivative

GENERAL ANALYSIS
Differential Equations

We start with the equations of motion for steady, inviscid, isoenergetic
flow, written in cylindrical coordinates (x, r, w), with corresponding veloc-
ities uj, vy and wy. It is important to keep track of the coordinates as two
other systems will be used at various points in the analysis. One has, using
subscripts for differentiation,

(pupy + 26m) . + L(owy), = 0 (1a)
pluguyy *+ viugy + Luguy)) = -2 (1b)
w2
1 1, .

plugvig + vivye + 1V - =) = B (le)
. P

plugwyy + vpwy, + Lo + 117y = - (1d)
r r r

(u1ax Ve T T aw) (s) =0 (1le)

S = S(P, p) (lf)

where S is related to the entropy and where one of the momentum equations can
be replaced conveniently by the isoenergetic condition,

2

2
h + (ul + \£

+ wi)/Z = constant (lg)
Now consider a second set of coordinates related to the flow geometry

(Fig. 1). We base them on the shock and define z, T|, 6 where z, © are the

axial and azimuthal coordinates of a point on the shock while 7} is the

(normal) distance from shock to field point (x, r, w). The two coordinate

systems are related by



x=2z+T Sin T
2 = rz + 12 Cos? 7 - ans Cos T Cos A (2)
r Sin (p-8) =T Cos 7 Sin A

where ry =

H

5(2,0) is the equation of the shock

Tan v = (3rg/d2z)

1 (3)
Tan A = =(@r_/d6)
r S
Tan T = Tan vy Cos A
Note that from eqs. (3) we have
Cos2 7
LI oA _ .\ oI5 %% T
) Sin t Cos 1 Tan X 30 1 Cos 1 a2 (3a)

Now introduce three mutually perpendicular velocity components, U, V, W where
U is normal to the shock and V, W are otherwise arbitrarily chosen. Then

U=u; SinT - vy Cos T Cos (w-6+\) + wy Cos T Sin (w-6+1)

V=u; Cost +vy SinT Cos (p-6+r) - wy Sin T Sin (w-8+) %)
W= - vy Sin (w-9+\) - wy Cos (w-o+)

Equation (la) can be solved by the introduction of a pair of stream functions,
¥ and ¢, such that

p-fI’ = {7'1{1 X9 (5)
or
prU = (¥ 05 - ¥40,)/a

p(DV + EW) = ¢ (6).

'n('pz - cp»n'q"z
p(AV + BW) =2 (4% - ¥r%g)

where A, B, D, E and A are geometric factors given by



A= [rs + 1 Cos 7 Cos A (Ag-1)]/r Cos A

B = n Te

r
D =Tant Tan A + T])\z Cos 1 @)
E=(1+ Mr, Cosrt )/Cos 1

A

AE - BD

Now introduce a final coordinate system., This is a sort of Mises transforma-
tion in which we interchange { and T as dependent and independent variables.
The specific use will clearly depend on the way in which § and ¢ (eq. (5))
are subsequently chosen. Let the new independent variables be ¢, {, o

where =z
c=8 (8
1{4’ = \lx("ﬂ, Z, 8)

Further, define the operator L by

= (DV_+ EW) 3 d

= DV FEW 94 v+ )

VL = 35 ( BW) e 9
where \-/'2 = V2 + W2 (9a)
Then equations (6) yield, noting (7)

L(p) =0 (10)
VL() = Ua (11)
- s _ %
pﬂ\p " T(AV + BW) DV + EW (12)
The energy equation (la) becomes

L(S) =0 (13)

while the isoenergetic condition (1f) is
h + %(U'2 + v+ WZO = eonstant (14)



The momentum equations, only two of which are required, become

P -
- 'ﬁi = oV [L(U) - VL(T) + W Cos T L(A-8)] (15)
|
- - -2 -
EA(PC B, e/ - 2 (B 2, Mo /M) ]
(16)
= oV [L(V) + UL(T) - W SinT L(1-6)]
[B(Pg P¢ TIC/TNJ) po (PO' Pw T\Gm‘l')]
(17)
= oV [L(W) + (VSinT - U Cos T) L(r-6)]
These last three equations can be combined to give the Bernoulli relatiom
L(P) = % Lw? + v +w? =0 (18)

The equations to be solved then consist of (10), (11), (12), (13), (14), any
two of (15)-(18) and a state relation. The dependent variables are the
three velocity components (U, V, W), the thermodynamic variables (P, p, S,
h), one physical coordinate (1)), and one stream function (p).

For later use, we will need the values of P¢ at the shock. After some

labor
E - - U dSin B pU_c¢” dSin B
—4& = Cos T Cos A [TVL(r) - WWCos r L(A-6)] 00 o0
PTly 1 - v2/e?
U2
- T, Cos T - 92§_L_§2§_L(1_X6) _ Sin T Sin A Tg 1 - poo/p
Poo r T 1 - U2/c

(19)

where ¢ is the speed of sound behind the shock. Note that all the derivatives
on the right side lie along the shock since, clearly, { and ¢ in the operator
L as used here can be replaced by z, 9.



Boundary Conditions

Consider that the free stream is a uniform flow (p,,, U,,, etc.) at
an angle of attack (Fig. 1) with respect to the x (or z) axis. If (xl,
ry, u)l) are cylindrical coordinates in the wind system,

x1=xCosa+rSinw Sin ¢

r, Cos w; = r Cos w (20)
ry Sinw1= r Sinw Cos o - X Sin ¢

Then, in the free stream, we can set

-1 }r SinwCos ¢ - x Sin ¢
= =T
@ wl an [ r Cosw ] (21)
PrUps T PR
§ = °°2°°1= o;m[(rCosw)z-f-(r Sin w Cosoz-xSinoz)z]

(22)

2
- pooUoo r Cos w
- 2 Cos o

Equations (21) and (22) are consistent with eq. (5) in the uniform free
stream and, for axial symmetry, { is simply the usual Stokes stream function.
The shock is taken to be Rankine-Hugoniot. The quantities pU, V, W, ¢, §
and pT  are continuous across it. Thus, immediately behind the shock

pU/%oUoo =8inT Cos o - Cos T Sin o Sin (B8-1) = Sin B (23)
V/Uoo =Cos T Cos o + Sin T Sin ¢ Sin (6-1) (24)
W/U00 = - 8in o Cos (6-)\) (25)



1% Sin 6 Cosay - z Sin ¢

¢ = Tan (26)

r Cos 6
s

/m, = PUo, {z(8inT - Cos @ Sin B) - r (Cos T Cos A + Sin 6 Sin ¢ Sin g)}

'} 27)

where Sin g is defined by eq. (23). Clearly, (7/2-p) is the angle between
the wind direction and the normal to the shock so that the Mach number
normal to the shock is M , Sin p. The Rankine Hugoniot relations yield

P/P, =1+ yM§°Sin2 B (1 - poo/p) (shock) (28)
where, for a perfect gas
+ 1 . 2 - 1 2
o/ = 345—— (M Sin g)” / [1 + X—E—f (M, Sin B) ] (shock) (29)

At the body surface, we would like to have § = 0. This requires (see
egs. (22) and (20)) that the origin of coordinates be chosen so that r; =0

occur on the stagnation streamline. If this selection can be made, there is
no further worry about body surface conditions.

Special Cases

For convenience, the special limiting cases of axial symmetry and
general conical flow will be recorded.

Axial Symmetry

For this case W=wy; =) = 3/ =d3/ow =3/6c =0 and g =0, T=v.
Then, successively, from eqs. (13), (12), (11), (14) and (15), there follows

S = S(y) (30)

M = - 1/xpV (31)
i

U = —E— (32)



h + LU A const.
U, -vr
P =& 2
'} rE

where, from eqs. (7) and (2)
E=(1L+MCost 7,)/CosT

r = rs(z) -7 Cos T
Note that the shock curvature, K(z) is given by
K(z) = - Tz Cos T

The boundary conditions at the shock (see eqs. (22)-(29)) become

pU/pooUoo = Sin T

V/Uo = Cos T
1/'1'1‘1r = - pU_r Cos T
Pool 2
y = Posleo

and, in eqs, (28) and (29), we replace B with T (or v).
Conical flow

For this case, rg

physical quantities (plus 7/z) depend only on g. Define
- 2
v =4/C

and the operator L by

10

(33)

(34)

(35)

(35a)

(36)

= z Tan v () so that A, = T, = 0. Further, all the

(37a)



VL = - YL = OV EW) 3 4 2f(av + BW) g%

Tan v fole}

Then eqs. (12), (11), (13), (10), (14) become

) d(N/z) _ 9o
o Tan v (AV + BW)
or
¥s )
N/z = Cos )\f Pody
T
o ¢ [V+nzg:1_—rsl_;r\')'cos A (g -1) (V-WSin T Tan A)]
and
VL (1/z) = -Ua - 2 (AV + BW)
i(s) = o
Lp) =0

h + % (U2 + 62) = constant

(37b)

(38)

(38a)

(39)

(40)

(41)

(42)

And in eqs. (15), (16) and (17) we replace L, PW’ Pg, ﬂ¢, ﬂc and ﬂg as follows

L—OI-..

Pq“—bP‘I’
P, - -24P-
€ \ ¥
ﬂw - (ﬂ/z)@
ﬂc - (ﬂ/z)c

N~ -24(/2); - (V/2)

(43)

11



The boundary conditions at the shock (egs. (22)-(29)) are unchanged except
that the left side of eqs. (27) becomes

Z/('T]/Z)‘It

while, at the shock eq. (22) is replaced by
PaqU er 2
= _ Foo-oo 0s @
v 2 z Cos @) (44)

APPROXIMATIONS

The system described thus far is complete and can be solved if one works
hard enough. However, the object is to provide a reasonably accurate method
of solution which is at the same time simple. We will depend on the shock
layer geometry to provide that simplification. It is clear that, except very
near the stagnation point, the velocity normal to the shock (U) will be much
less than that parallel to it (V or V, W). Also, as discussed in reference 1,
the pressure gradient normal to the shock (or P ) is well approximated by
using, throughout the shock layer, its value at the shock, again neglecting U.
This last approximation is most valid for blunt body geometry (as opposed to
conical; more on that later) where the majority of the mass flow tends to be
thrown toward the shock with low density near the body.

The system which results is illustrated most conveniently for the

axial symmetry case. One has, successively, from eqs. (34), (30), (33),
(31), using (35) (the subscript s refers to conditions at the shock)

VTg KV
P“’ = - ?El =(—r— (45)
\ s s

or P(y,0) = 2,(0) + (gr) (\1:-1;5 @ (46)
]
and
S = s(y) CY))
h = h(P,S),p=p (P,S) (state) (48)

12



62 = a(const - h) (49)

My =~ 2V (50)
¥s (©)
r2 = r2@) - 2vsf s % s;h‘lt, (51)
¥

For a given shock, the equations can be solved successively in a
straightforward manner. Because the procedure is so simple, the direct (body
given) problem is readily solved by iteration. Excellent results are illus-
trated in ref. (1) for this axisymmetric case. It should be noted (see
Jackson (ref. 2)) that this solution forms a basis for an iterative solution
of the complete system although such is not intended here.

As is shown in ref. (1), for the stagnation point and for the surface
of a circular cone, eq. (46) indicates that the pressure is the same as that
at the shock. Iteration of the equations by using the results of this simple
solution to evaluate the omitted terms in the exact equations corrects this
result very nicely. It would be desirable to incorporate in the original
solution a form allowing such corrections for these cases. Such a result
is found by starting with the form given in eq. (19). However,we set the
terms in curly brackets equal to unity. Then, using eq. (27),

2
P =1Cos T (Vz'l') L CosT T _C_°§._T_. I S
¥ 2 Py z r UogorCos T
2 2
ono s rmew r z s

If we assume that the second term should actually be proportional to §
(i.e., multiplied by {/§ ) we get
s

K\ G - ¢.(0) UTan T cos T\] % - $2¢c)
= 13 - S
o) = 7,0 +( : )S NG [“’ = (K T E )]; 23)

(52)

13



At the stagnation point, taking limiting values, we find

P(y,0)  Pg(0) 27
q”gz =3 5 + Poo 1- j—z‘] (523)
Pol¥os  Poolod 2p ts
For a cone (K = 0) we get
P(y,0) Pg Poo 2 ¢2
5 = 5 + Sin“ T [i - — (52b)
pooch) pooUoo bp Vg

These are accurate solutions for the pressure, particularly the surface pres-
sure, for the two cases.

This rather tortuous path to an expression for the pressure has been
followed to provide some rationale for the final form to be used in the
general case. It is clear that the justification for more complexity than
the simple expression in eq. (46) lies largely in experience with its appli-
cation. However one can observe the following. The second term in eq. (19)
is very largely pUU /Pﬂ¢ and represents the recompression tendency across
the shock layer due to curvature of the streamlines from their direction at
the shock to lie along the body. This effect is largest at the shock and
falls toward the body; the simplest assumption is that it is proportional to
y. Such a variation is consistent with eqs. (52).

With these preliminaries, we can now describe the procedure to be
followed in general. We treat eqs. (19) and (27) as before and write

2 2
¥
P(¥,0,0) = Pg(C,0) + Pr(C,0) (¥ - ¥g) - P2<g,c>( 2y s) (53)
]

where

P = Cos T Cos A [§VL(T) - VWCos T LA ~ 8)] 2
1 oUso [2(Sin T - Cos o Sin g) - r(Cos T Cos A + Sin 6 Sin ¢ Sin B)] S

(54)
and

2
pU [Cos T Tz - Cos T Cos X (1-Ag)/r - Sin T Sin A Tg/r]
P =
2 Poo Uol 2(Sin T - Cos o Sin B) - r(Cos T Cos A + Sin § Sin ¢ Sin g)] .

(55)
14



Before leaving the subject of the pressure distribution, it is worth
remarking that the exact form of eq. (53) has no effect on the logic of the
program provided only that the relation is an explicit one when the shock
is known. The particular form used in ref. (1) (eq. (46)) is equivalent to
setting P, equal to zero in eq. (53). That or the complete form given in
eq. (53) %or, for that matter, other alternatives) are really to be evalu-
ated in the light of experience with the computer programs for the general
problem; which programs are not yet operational.

Finally, eq. (14) becomes
h + ¥ = constant (56)

while equations (9), (10) and (13) are applied, but setting T = O in A,
B, D, E. Thus we have

A = 1/Cos A
B=20
(57)
D =Tan 7T Tan A
E = 1/Cos 1
Finally we define an angle E by
V = VCos g
W = VSin €
Then neglecting u and 1|, the two momentum equations (16) and (17) can be
combined to yield
- P
pV2 fL(e) + Sint L(\ - 8)] = A Sin € PQ + (E Cos £-D Sin £) —% (58)

Equations (53), (56), (9), (10), (13) and (58) plus a state equation are a
system of six equations for P, p, h, S, ¢, V and €. The only differential
operator appearing is L (eq. (9)) which is the ordinary derivative along a
streamline.

For conical flow, a convenient alternate to eq. (58) is found by observ-
ing that (exactly) ng + ﬂPn = 0, so that eqgs. (16) and (17) yield, neglecting
N and U,

15



=2 .2
- V' C S +
L[V Cos € +m] = o:o: leos(i 2 (59

(conical)

where Tan m = Sin 1t Tan )

(59a)

After the system is solved, the solution is completed by returning to
the physical (z, ©, T) space via eq. (12). Experience in the axisymmetric
case has shown that it is preferable to evaluate eq. (12) exactly without
making the small 7 approximation of eqs. (57).

Finally, from eq. (9), the equation for the streamlines is

dg _ -(DV + EW) (60)
dc  r(AV + BW)

while along the streamlines, eq. (58) becomes

d Sin E - 1 . _Tan71_Sin A Cos B Cos )
= Slnng ——-————Pc + Po

dg 9.V r r CosT (61)
4 TanT (Ap- c Tan T
+Sine os A TanT (Ap-1)| Cos € Cos A TanT
5 r r Cos T ®

We proceed by assuming a shock. The pressure is then explicitly given
by eq. (53). We then find the position of each streamline. On each, ¢ and
the entropy, S, are constant. Thus for a given point in the §, {, o space
the pressure is_known and if the point lies on a specified streamline, then

S, ¥, h, p and V are known. Equations (60) and (61) can be solved for g
and the streamline shape. '

For conical flow, equations (60), (61) are written €using eqs. (37a)
(59) and (57))

- do (DV + EW) Cos ) Sin (E + m)
W —= = = - (62)
dy Tan v (AV + BW) Sin v Cos £
Conical

16



(63)

% d [V Sin (§ + m)] ~ -V2Cos v Sin? (€ +m

dy Cos 1 Cos A
STAGNATION LINE

It is clear that the approximations employed to permit a convenient
solution are not really valid in the stagnation region, However, as shown
in ref. (1) for the axially symmetric case, the model yields a good shock
standoff value. In the present case where an unsymmetric stagnation region
is contemplated, the requirement is more severe. Not only do we need a
reasonable standoff value, but it should turn out not to depend on the
direction from which the stagnation line is approached. We examine this
point next.

Consider the case corresponding to the first approximation (eq. (46))
for the pressure distribution. Without loss, set o = 0. Near the stagna-
tion line, the equation of the shock must be of the form

2 = 2a2(6)z (64a)

where the radius of curvature is given by (normalizing everything with
respect to the radius of curvature at 6 = 7/2)

a2(8) = (1 + B Cos2p) ! (64b)

After some labor it follows that in the limit as z - 0, eq. (54) gives

2
Uy, Tan A (a“Cos x)e
S Y [} * 2 (65)
(a*Cos A ) a“Cos )
where a2Cos A = (1 + 2B Cos2p + BZCosze)'1 (66)
also ug = ug Sin T
vy = M,, Cos T

JEZY(a Cos )\)

Q
o
[V}
-
]

17



and for a perfect gas

P (2,6) 2 y -1 2 Cos? 1
PooU50 VL oyl + DM v+ 1
(67a)
=A - %’[CoszT = 2z/@2 Cos?\)]
Then
P (y,0) = A -2 2t 2‘
2 | PooUpola (@) Cos 1 (9))" |
so that
P(z,6) B P N
d 5= A - - Cos? T + 1L LA a2z (67b)
Pooloo 2 oo | PooYo
Meanwhile, for a perfect gas
h=_Y P/
¥ - P
=2 =2
7% = 7 (9,9) + 2(hg - B)
2
RSN PN S PP L
= zG(®)a“ + - 68
Po poo Yoo i Vo (68)
P P
< - W) 5.2,6(9)Tan 2
PooYo0  Pooloo

Py

7= - azG(G)
U
Poo* o0

18



where

P, (8)
6(e) = 217 4 B/(a’Cos 0>
poUOO
Hp) = [po/p,q- B1/(a%Cos 1) (69)

and
po/p,, is the normal shock density ratio

The streamline equations (60) and (61) reduce to

dg _ _ Cos ) Sin (§ + A)
dg 2z GCos § (70)
2z d Sin £ _ . .
CosZ % dr = (g = 1) Sing - a Cos E Cos A Ty
N2z
(71)
+ |Cos (E + 1) CosxP£+SingP]—__;2E——
22 g pVZ COSZ)\,
J
Now change independent variables from g, { to o, é where
G =0
e (72)
- 2 )
€ =\ ¥/p0oY00? € =:J¢/¢s
Then equations (70) and (71) become
£ 99 = Tan (¢ + )
dg
(73)

ARV G5(5) - £2P15(5) + 26(5) Tan (£ + 1)

- + Tan (£ + 1)
dac 2 [G(3) - 22(21(5) - H(p))] o

19



subject to the initial values
=01, E= 1 at =1 (74)

Remember that o, and hence H(@) is constant along each streamline. Equations
(73), subject to (74), can be solved for the streamline shapes and local
values of £. The transformation back to physical space uses eq. (12). In
the o, £ system this becomes

3  4s Cos A uy

dC ) pa qi; V Cos E

But
¢ = 9o - Tan A Co
Also
C Sin (g + 2)
L(cp)=0$COS (p _ g QPG=O
Cos \ G r Cos T Cos A
or _
¢; Sin (E+1) + Cos (£ + K)@é =0
so that _
am tes
— = N (75)
of \Ipo/ Cos (E+X) | ___Po ¥
Poo 2 7
2a poOUOO
where
O = G(S) + { |Hle) -
2a"2p 5o Ug Uoo

and where | = 0 at ¢ = 1.
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Although this has not been proved analytically, the following
appears true. The solutions of eqs. (73) subject to (74), yield a result
which, on insertion into (75), gives N(s, (). At least at { = 0, this
should be a constant. Unfortunately this does not appear to be strictly
true. Because of the analytic uncertainty, a computer program has been
written to analyze the question numerically. Some results are shown in
Tahle I, Because of the symmetries (eq. (64)) we need consider only
one quadrant. The numerical results show a variation of about 12% for
the cases solved. A quasi-analytic solution is also given. This was
found as follows. Two limiting solutions can be found.

lim -y _ Poo 1n (1 + B)
n(0,5) = =2 = (76)
P00 Po
lim - o
1€0,5) = 20 e ) 7
B~0 po/ |, 4 |X 52 Poo
\\y +1 po
Arbitrarily combining these
o 1n(1 + B)
0.5) =
1(0,c) 3
- (78)
1+ d Y ot
iy +1 po

which agrees quite well with the numerical results (see Table I).
METHOD OF SOLUTION

The problem to be solved now consists of integrating eqs. (60), (61)
and (12) subject to eq. (53) for the pressure and the associated state,
entropy and isoenergy conditions. For conical flow, eqs. (62), (63) and
(38) replace (60), (61), and (12).

Consider conical flow first. We begin by generating an initial
estimate of the shock shape by a crude estimate based on the given body
shape, angle of attack and free stream conditions. To date, the programs
have thus far assumed that lateral symmetry exists although this is not
necessary. This distribution is then smoothed (by repeated use of a 5-point
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least squares fit) so it can be twice differentiated. Then a number of
auxiliary functions can be computed and saved for later use (for example, T,
A (eq. (3)), P1 (eq. (54)), Py (eq. (55), o, etc.).

Then, for a specified streamline, the entropy is known and the pressure
can be found from eq. (53), using (54) and (55). Then the density and
enthalpy follow from the state equation, while the local speed (V) is
obtained from the isocenergetic condition (eq. (53), neglecting U as dis-
cussed). Using these relations, the two differential equations (62) and (63)
can be integrated to find the streamline shape and the flow direction (§).
Repeated use of this procedure leads to a field of streamlines and values of
the associated physical variables along them.

Next an interpolation routine is used to find appropriate quantities
along lines of constant sigma (c). These are required to perform the indi-
cated integration in eq. (38a) to return to physical space.

At this point, we have found, for the specified shock, the associated
flow field and (integrating to ¢ = 0 in eq. (38a)) the shape of the asso-
ciated body (using eqs. (2) and (8)). Call the T's thus found nBC(c). For
the same ¢ using the desired body radius and the assumed shock radius, we
can find from eq. (2), the associated geometric T's; call them Tps(c). Com-
pare them. If the error is small enough, we are home free. If not, the
error is used as a basis to find a new estimate of the shock radius. For
simplicity, the estimate has been taken as

Tnew = Told T SCAL (Mg - Tpc) (79)

where SCAL is a (constant) scale factor whose value has been typically 30.
Larger values tend to overshoot the required corrections, lesser ones lead
to slow convergence. More sophisticated iteration procedures could be used
but do not appear to be necessary. The new shock radius is smoothed as
before and the process repeated until convergence is satisfactory.

Finally after convergence is obtained, the flow variables along the
surface streamline are found. The procedure is as described above except
that, since § = 0 here, we integrate the single differential equation
formed by dividing eq. (63) by (62).

For nonconical flow, the procedure is essentially the same. We solve
the problem at successively increasing values of z (Figure 1). On each
z = const. surface the process is exactly as for the conical case. A shock
is assumed (by extrapolation from smaller z), the streamlines are found by
integrating eqs. (60) and (61) one step in z (or ). Then the results are
interpolated to constant ¢ and the transformation back to physical space
found. The solution is iterated and when convergence is obtained the shock
is interpolated to a new z and the process repeated.
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For nonconical flow, one must of course have a starting procedure.
For a pointed body the conical solution can be used for that purpose. For
a blunted body a special starting procedure is needed,

In such a case,we still use the same equation system as before. How-
ever the procedure in the neighborhood of (though not exactly at) the stag-
nation point must be somewhat modified. The shock must initially have the
form given in eq. (64); which we write here as

¥2 = 20z/(1 + B Cos? 8) (80)

Using this form, we proceed as before. Find the auxiliary functions at the
shock, integrate the differential equation (60) and (61) (being careful
about z = 0 limits), interpolate to g = constant and return to physical
space. Now the results are to be compared with the desired body. There are
only three parameters at our disposal. Two are the assumed values of A and
B which describe the shock (eq. (80)). The third is the stagnation point
standoff distance.

At this point there is a difficulty. If the limiting stagnation line
procedure discussed previously had yielded a result (on integrating eq.
(75)) which did not depend on ¢ at all, then all would be consistent. An
iteration based on improving the values of A and B would produce the desired
body shape and would yield the stagnation point standoff distance. Indeed
the latter could be found separately by the method described before. Com-
parison of the calculated and geometric values of T(Tyg,M pg) at two o-
stations would suffice to test the values of A and B. Unfortunately, as
presently formulated, the stagnation line result is not quite constant
(Figure 2) and the variation appears to be too large for comfort in the
subsequent calculations. Hence an alternate procedure has been written
into the computer program. Using the assumed shock (eq. (80)), the
solution at two z-stations is found. The resulting body is tested in
an average way to find both the values of A and B and the stagnation
standoff distance. At the time of writing this report, it is too early
to tell whether the procedure is acceptable,

NUMERICAL RESULIS

Limiting solutions along the stagnation line have been found by
integrating eqs. (72) and then (75). Typical results for the standoff
distance are shown in Table I. The r.m.s. value of the standoff dis-
tance is given for each case gogether with r.m.s. deviation from that
value. The results are gratifying in that they are relatively uniform and
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TABLE I

STAGNATION POINT CASES

Po’poo B (eq. (64))  T(0,0) (eq. (78))  M0,0)pys  pyg(0,0)
(Approx.) (Calculated)

6 1 .06931 .06669 .001169
20 1 .02539 .02462 .0003280
50 1 .01126 .01098 .0001195

200 1 .003107 .003046 .00002968

6 0 .01000 .009985 .0000

6 1 .06931 .06669 .001169

6 2 .05493 .05008 .001610

6 4 . 04021 .03349 .001963

Note: For all calculations v = 1.4, but the normal shock density ratio is
assumed to be separatily varied as shown.

close to the approximate result from eq. (78). They are disappointing
mainly in that they are not exactly uniform as they must of course be
physically.

For conical flow, a number of cases have been run (Table II). The
cases chosen were ones for which other detailed calculations were available
in the literature. The program provides the details of the flow variables
and physical coordinates in the field on ¢ = const lines at equal intervals
in §, as well as at the body surface. It also computes the streamline
shapes and records the final shock shape. For the first two cases in the
table, the computed values of surface pressure and shock angle agreed with
the values given in ref. (6) to about 1%. Figures 2 through 6 show the
surface pressures and, for some cases, the shock shape and streamlines for
the remaining cases listed in Table II. It should be noted that in some
of the figures, the ordinate scale does not begin at zero. Also for those
cases where the broken lines disappear, they fall on the corresponding
solid lines.
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00’

4.25
10.00
4.25

3.53

5.8
5.8
5.8
5.8

5.8

TABLE IX

CONICAL FLOW CASES

angle of
attack (deg.)

0
0
8.24

10

L%
8%
Lk

6%k

% along major axis
*% along minor axis

Note (for all cases):

with the results of Jones (ref. 7).

v (ratio of specific heats)

step size (in &)
step size (in )
SCAL (eq. (79))

cone

12%° half angle,
12%° half angle,
12%° half angle,

20° half angle,c

21.3° x 12.9° half angle, elliptic

11.8° x 6° half
11.8° x 6° half
11.8° x 6° half
6° x 11.8° half

6° x 11.8° half

1.4
10°

non

.30

shape

circular
circular
circular

ircular

angle, elliptic
angle, elliptic
angle, elliptic
angle, elliptic

angle, elliptic

.05 of its wvalue at shock

For the circular cone cases shown in Figure 2, comparison is made

The pressures are also in good agree-

ment (not shown) with Rainbird's experiments (ref. 8).
Figure 3,.the experimental pressures of Holt and Blackie (ref. 9) agree

well with the analytic curves presented.
and Ndefo (ref. 10) also agree well. In the case of the ellipse in Figure 4,

For the cone of

The theoretical results of Holt
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Ferri's results (ref. 11) generally agree, although not as well as in the
previous figures. Finally for the conme in Figures 5 and 6, the results of
Chapkis (ref. 12) are in excellent agreement with the theoretical curves,
falling generally closer to the results by the method of lines (ref. 13).
In general the agreement of the surface pressures is quite satisfactory.

For the cases shown, the shock shapes (Figs. 2, 3, 4, 6) and stream-
lines (Figs. 2-4) are in very good agreement with other calculations.

Finally, the total running time on a UNIVAC 1108 for the ten cases
listed in Table II was about 80 seconds. The number of iterations re-
quired for convergence of a solution was typically four or five.

CONCLUDING REMARKS

The analysis presented depends for its utility on the quality of the
approximate pressure relation obtained from the lateral momentum equation,
and on the convergence rate from the initial estimated shock shape to the
final one. Earlier results (refs. 1, 2) for axisymmetric flow showed good
pressure predictions as do the present conical flow cases. The main reason
for pursuing the conical program was to resolve the second question,
namely the ability to get rapid convergence. This has in fact worked out
well. For example, for the 2:1 ellipse shown in Figures 5 and 6, the
number of iterations required varied between 3 and 5 for the various angles
of attack.

The theoretical results presented for conical flow are especially
gratifying in that they represent an application where the thin shock layer
assumption is somewhat strained. The stream Mach number is low enough
and the cone slender enough that the shock layer thickness is greater than
the cone thickness in some cases.

Experience with the conical program together with some preliminary

results (not shown) with a program for the general blunt body give confi-
dence that an efficient, accurate, general method can be developed.
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