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ABSTRACT

An "area-navigation" method for automatic control of aircraft arriving in
a random fashion from the en-route centers to the near terminal area is
proposed. Control is exercised by a ground computer that sequences and
schedules the aircraft. Altitude segregation is used to separate aircraft
in velocity classes. Merging of all aircraft occurs near the outer marker.
The merging region is designed so that no near misses will occur if the
aircraft follow the assigned trajectories.
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1. INTRODUCTION

The rate of growth of the volume of air traffic operations has

been, for the last decade, larger than anticipated. As a result the

existing ATC system is often unable to effectively cope with the demand

for landings and take-offs.

The ways that can improve air transportation efficiency and

capacity are:

(1) Improve the ATC system presently available.

(2) Provide more runways at every airport.

(3) Build more airports.

The difficulties of implementing the latter two suggestions are very large

due to the small availability of extra land to existing airports, and vigorous

protests of political and environmental groups. However, research, e .g . ,

[1] -[4]-, has shown that increased efficiency of the ATC system can delay

the need to build more airports for at least two decades. It is to this

problem that this paper is addressed.

The present ATC system, both en route and terminal, is manual.

Experienced controllers, aided by radar, monitor the aircraft and guide

them via voice commands, out of the airport's near terminal area (NTA),

through the various sectors the national airspace is divided in, and

finally to the runway of the destination airport. This system works

efficiently when the airspace is not congested. However, when there are

many aircraft demanding simultaneous service, it breaks down. The

results have made national headlines in the form of long delays in take-

offs and landings.

Automation is the educated answer to congestion. ARTS III, a

semiautomated terminal ATC system, is at the developmental stage [5] .

This system will automate many routine and time consuming functions of

the controller, nevertheless, will keep the controller as the main decision

element. '.

Complete automation with a computer as the main decision maker

has been thought of in [ 3] as the ultimate ATC system. However, little

research in this area has been carried out. Some contributions toward

complete automation have been recently reported utilizing modern control
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theoretic concepts. The schemes of Porter [6], and Athans and Porter

[7] employ the theory of optimal control of linear systems with quadratic

criteria, to dictate precise aircraft trajectories along pre specified routes.

The methods of Telson [8] and Erzberger and Lee [9] and Pecsvaradi [10]

dictate minimum time trajectories to the outer marker for all aircraft.

The main simplification of the above methods is that they assume that

all aircraft have the same speed inside the IXfTA. In this report we

present a related scheme for terminal air traffic control that lifts this

assumption.

Any proposed "paper design" of a large scale system involves

a host of assumptions and simplifications. Needless to say this is the

approach taken in this paper. The assumptions and simplifications made

were the result of attempting to preserve some sort of freedom of choice

for the pilot, as long as safety was not compromised. , Also, many of the

assumptions can only be justified by considering the numerical values for

certain key parameters; the ones selected were consistent with the current

ATC system and current aircraft characteristics.

A full discussion of the interplay between assumptions, model

specifications, design philosophy, mathematical development cannot be

presented here; the interested reader can consult the S. M. thesis [12]

of the first author. We shall only present an outline of the ideas involved

so as to explain the major contribution of this paper, namely the digital

computer ATC algorithm summarized in Figs. 18-20. Also, we shall

explain the interplay between the adopted ATC philosophy and the design

of the airspace in the near terminal area.

It should be stressed that this is an "open-loop" type determi-

nistic design. It provides for a gross subdivision of the airspace and the

determination of trajectory profiles as a function of the intanteneous

demand. The stochastic aspects of the problem, e.g., errors in position

and velocity, wind disturbances, pilot errors, etc., are not considered.

These are more appropriate handled by an on-line stochastic feedback

control system designed especially so that the statistical fluctuations of

the underlying random and unpredictable quantities are taken into account.
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However, state-of-the out limitations preclude the design of such a

system right from the start. Hence, a deterministic ATC control concept

of the type presented is this paper would serve as the one that determines

on-line the nominal trajectories and speed profiles, while the stochastic

feedback system would null deviations from the nominal quantities.

The structure of the paper is as follows. Section 2 discusses

the assumptions, the ranges of certain key variables (e. g. , speeds, decel-

eration constraints) and the general structure of the NTA airspace. In

Section 3 we present the aircraft trajectory computations and the times

required to accomplish certain trajectories and delay maneuvers. In

Section 4 we discuss the determination of geometrical constants, e .g . ,

altitude levels, length of the various NTA regions etc. Section 5 sum-

marizes the overall system algorithm, the sequence of events that take

place, and the key calculations that must be executed by the digital com-

puter. The paper concludes with a discussion of the results.

2. THE PROPOSED ATC SYSTEM

The problem that is tackled is the following. Given random

arrivals of aircraft to the boundary of the NTA find a way to guide the

pilots to the outer marker (OM).

(1) Safely

(2) Efficiently (Faster aircraft have priority over slower ones).

(3) Decision making is carried out mainly by a control
tower based computer.

The method of approach used here is,

(1) Define geometry in the NTA airspace such that

(a) Aircraft trajectories are simple enough to fly,
and for computer on-line implementation.

(b) Safe separation between merging aircraft is ensured.

(2) Choose trajectories and types of delay maneuvers
of the aircraft in the NTA.
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(3) Devise algorithms for sequencing, scheduling and
delay assignment.

(4) Base design on a worst case approach.

A. Assumptions

1. The identify of each aircraft is known.

2. The true position and velocity of each aircraft is known.

3. Every aircraft has a minimum turn radius (not the same for
all aircraft).

4. Only jets are considered.

5. The landing speed of any landing aircraft is in the range
[100,150] knots (see Appendix A).

6. Only one runway is considered.

7. No other airport's airspace interferes with the NTA at hand.

8. Aircraft enter the NTA with speeds in the range [200, 300]
knots.

9. Aircraft inside the NTA must be longitudinally separated by
at least d . . For numerical evaluations here d . =mm mm
2. 5 n. miles.

10. When an aircraft descends or turns, the groundspeed is
kept constant. .

11. The maximum permissible descent rate is X. Here
\ = 1000 ft/min.

12. The maximum permissible deceleration is B. Here
B = 1 knot/sec.

13. At any instant of time at most one of three tasks, descending,
turning or decelerating will be executed.

14. Wind speed is zero. No variation of speed occurs with
changes in altitude and temperature (i .e. , groundspeed =
airspeed). ,

B. The Geometry

The NTA will be divided in three main regions description of

which is shown in Figs. 1 and 2. Automatic control will start as soon

as an aircraft enters the buffer zone.



While the aircraft is in the buffer zone (BZ), the ground com-

puter sequences it, schedules it, and assigns to it a delay, if necessary.

The middle region called the outer merging space (OMS) will be the

delaying area, while the inner most region called inner merging space

(IMS) will be the critical zone •where aircraft descend toward the OM and

decelerate to the landing speed.

While in the BZ and OMS the aircraft will be constrained to fly

on a discrete number of altitude levels. On each altitude level traffic of

only one speed will be allowed; for noise (and other) considerations higher

levels will carry traffic of higher speeds. At each altitude level the OMS

intersects the IMS in a circular boundary, whose radius projected on the

x, y plane does not have to be the same for all levels (see Fig. 2).

The problem of merging aircraft of diverse landing speeds in

the IMS will be solved by the following convention. No matter from what

altitude level an aircraft enters the IMS, and no matter what its landing

speed is, it will have to traverse the IMS in a time interval T , which is

the same for all aircraft.

Traffic will enter the NTA from fixed points distributed along

the NTA boundaries for each altitude level. These will be called traffic

source points. The distance, along the NTA circular boundary, between

traffic source points will be chosen so that aircraft centering from two

adjacent points will not interfere during their flight through the BZ and

OMS. Beyond the NTA, air routes are fixed. Inside the NTA, however,

the aircraft will perform trajectories dictated by a computer.

The delaying procedure will be different than the conventional

stacking. Aircraft will perform delay maneuvers on the same altitude

level they enter the NTA. Delays will be performed in region called

delay slots and illustrated in Fig. 3. Each delay slot will be large enough

to accomodate safely the maximum delay maneuver necessary.

The choice of the magnitudes of the various geometrical

constants will be discussed in the sequel. .
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G. The Control Process

The functional description of the control algorithm is illustrated

in Fig. 4. The blocks indicate the functions that are performed by the

computer while the aircraft is in the NTA. The last checkpoint is the

point where the aircraft enters the IMS — which is on the circular

IMS boundary but is different for every aircraft* If the aircraft has

arrived too early or too late at the IMS boundary a correction is possible,

in the form of a new descent and deceleration profile in the IMS. Auto-

matic control stops at this point.

3. AIRCRAFT TRAJECTORIES

Before we discuss the specification of the system geometry it is

essential that we understand the trajectories that aircraft will follow inside

the NTA. :

A. Trajectories in the BZ and the QMS

It seems reasonable to design the system so that if no other

traffic interferes with an aircraft, this should reach the IMS boundary in

the shortest possible time. In the BZ and QMS regions the flight is on a

plane and with constant speed. The problem which is illustrated in Figs.

7 and 8 thus becomes.

Given the state equations for one aircraft.

x(t) = vcos<t>(t) (1)

y(t) = vsin<t>(t) (2)

g[tane(t)]. A u(t)

= RN>

with initial conditions

[x(0),y(0).*(0)]. = [x

final conditions

x2(T) +y 2 (T) = (5)



-7-

tano(T) = y(T)/x(T) (6)

Find the control Ur0 „, such that |u(t)| <_ A and such that the cost

functional

f T
/ dt

*

J = dt . - (7)
0

is minimized.

The maximum value of the control is determined by the maximum

allowable bank angle e(t) which currently is 30°. Thus ,

A •= g t a n - = g/ 3 (8)

where g is the acceleration of gravity.

The solution to the above problem was found by application of the

minimum principle of Pontryagin [11] . A simplifying assumption was

that the difference R^-L is larger than 2R where R is the minimum turn

radius, and L is the IMS radius. This assumption holds in the proposed

system because we are dealing mainly with jets. The problem becomes

much more complicated if the assumption does not hold, as the case

might be with STOL. traffic, and can only be solved numerically.

The detailed solution can be found in [11] . Here we only present

the final answers.

(1) If the aircraft's bearing (azimuth) with respect to the OM

at time t = 0 is zero, then the optimal control law is u = 0. The air-

craft flies in a. straight line until it reaches the IMS boundary in time

(9)

(2) If the aircraft, at time t = 0, has a counterclockwise bearing

with respect to the OM, then the optimal control law is u° = [-A, 0]. The

aircraft turns "hard right" for time t given by:
S . -•

'. a.X

(10)
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Then it continues on a straight line until it reaches the IMS boundary.

The value of the minimum time is:

? 2 i / *?
[x (t ) + y (t )] - L

min ~ v

where:
-> •>

°(t\ ^ 4. J!

o / iV A v

(3) If the aircraft at time t = 0 has a clockwise bearing with

respect to the OM, then the optimal control law is u - [A, 0] . The

aircraft turns "hard left" for time t1 given by:s

t1 -

2v

-<t>_ +tan [ -=— I - sin

Y j__ i / I f\r -t- '-j~'~ —A ' '"•- ' " ^**A ^- A oj.*iw /• M. Vy i
O J^. O O

(14)

Then it continues on a straight line until it reaches the boundary of the IMS.

The value of the minimum time is:

T - - .
min v

whe re :
A 2 2 A

x°(t) = XQ - ^sin*o + xsin(<t>o + vt}

2 2
. Y°(t) = yo + ^cos<t>o-^-cos(<t,o+A t )

B. Delay Maneuvers

The delay maneuvers adopted are with minor variations the same

as the ones described in [6] - [8] . We state them here for completeness.
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Let D = —-— be the time required by the aircraft to complete a

full circle. Let tD be the time by which the aircraft must be delayed,

then:

(1) If tv^ < D, the delay is affected by an oscillation or 9

maneuver (see Fig. 7). The magnitude of 9 is calculated by

*D = -V-O
(2) If t_ = D, then the maneuver is a full circle of radius R

(see Fig. 8a).

(3) If D < tn < 2D, the maneuver is a fly-around one

(see Fig. 8b). For this maneuver

CtD-D)v
&.: = S + 2R = —^2 + 2R (18)

The maximum jg occurs/when t._ = 2D

+ 2R = ( u + 2 ) R (19)
• .

(4) If 2D < t : ^_ 3D, the maneuver will be a circle followed

by a fly-around one as described in (3).

(5) If 3D < tD then tD = k- 2D + tj (k = 1,2, * . .) where

D < t, £ 3D. The delay maneuver is then k fly-around

maneuvers of the "maximum racetrack" type, described

in (2) followed by a maneuver as described in part (4).

Notice that none of the delay maneuvers on a particular altitude

level requires length more than £ . The delay maneuvers will be

initiated only when the aircraft is flying on the straight portion of its

minimum time trajectory. :

C. Trajectories Inside the IMS

While inside the IMS each aircraft must accomplish the following

two objectives in time T .o • - ; . .

(1) Decelerate from its entrance speed to the NTA v
to its desired landing speed v- .
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(2) Descend from its altitude level in the OMS
to the level of the OM.

Each aircraft enters the IMS with heading toward the OM. We

shall assume for simplicity that the flight continues along this heading,

until the OM. Ideally the aircraft should reach the OM with heading

along the x-axis, i.e., toward the runway. For the distances involved

(to be found shortly) the error incurred by assuming the above heading

is small, but the analysis greatly simplified.

Let the IMS radius be L(v) for the particular altitude level that

carries speed v (From now on we shall denote by IMS radius, the radius

of the circular projection on the (x, y) plane of the IMS boundary, e .g . ,

A-OM in Fig. 2). The velocity profile in the IMS will be of the type shown

in Fig. 9, i .e. , only one deceleration at the maximum permissible rate.

During the remaining time T - (v - v, )/B the aircraft must

descend to the OM. Given that TQ - (v-v , )/B > (H /\), where H is the

elevation above the OM of the altitude level at hand, and \ is the maximum

descent rate, there is an infinite range of possible descent profiles. We

shall not specify a precise descent profile (although we could). Instead

we shall communicate to the pilot the latest time he can start descending,

so that if he descends from then on at the maximum rate he will arrive

at the OM in time T . This time, t , ., is trivially found as
o descent

•'descent = To ' ~ ~ < 2 °>

Thus a typical trajectory of an approaching aircraft would look

as in Fig. 10.
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4. GEOMETRY SPECIFICATION

The geometrical constants that have to be specified to define

the geometry are:

(1) To = Common time available to all aircraft
at all altitude levels, to cross the IMS ,

(2) L(v) .= Radius of the circular projection to the
(x, y) plane of the IMS boundary at the altitude
level H

(3) Hv = Altitude, above the level of the OM, of the
altitude level carrying speed v

(4) Length of a Delay Slot

(5) Length of QMS at each altitude level

(6) Length of Buffer Zone

(7) Distance between Traffic Source Points

(8) Radius of the NT A, the same for all altitude levels.

We shall try to determine the minimum allowable magnitudes

for these quantities, because we want to keep the NTA region as small

as possible so as to avoid simultaneous control of too many aircraft.

A. Choice of Tn

T is common for all aircraft. For each pair of entering and

landing speeds (v, VT ) it must be true that

v-v ,

Since higher altitude levels carry higher speed traffic the maximum value

of t0(v,vL) for ve[Vj,V2] and v^e[VL1> VL2] knots, where Vj , V2> VLI ,

VT , = 200, 300, 100, 150 knots respectively, occurs at v = V, ,vT = VT ,
-L*£ \ , t* J_j lj 1

Thus if

H V 2 , ' V2-VL1
To .•> T^ + - B - = t
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then we are assured that no matter from what altitude level an aircraft

is entering the IMS, and no matter what its landing speed is, it can

accomplish the descent and deceleration objectives.

It will be seen that the upper limit Hy will be left to be specified
* 2

by the designer. For HV = 6000 ft t is about 10 minutes.
.

B. Choice of L(v)

Instead of providing lengthy motivation (can see [12] for this),

we present the result and then explain it.

Proposition; Suppose there is only one altitude level, carrying traffic
* •

at speed v. Let T be'fixed (e. g. , =t ). Then if

( v - V )2 „
L(v) > TQV -= ^i = L (v) (23)

there is no chance for a near miss in the IMS, between aircraft entering

the IMS from this particular altitude level H .

Proof; Since all aircraft must traverse the IMS in time TQ, they must

enter the IMS separated in time by their scheduled temporal separation

T over the OM. For mixed landing speeds traffic the minimum T is

1 minute (see [2] for a detailed discussion).

The range of speed profiles in the IMS, dictated by L*(v), is

shown in Fig. 11. It is noticeable that the deceleration is delayed very

close to the end of the interval T for all choices of VT . Consider now twoo L,
cases of two successive aircraft entering the IMS within one minute of

each other.

(1) First aircraft-has lower landing speed than the second, i.e.,

v . < v -,. Their speed profiles are shown in Fig. 12. Neglecting
Ju *• jo £• ' . " ' .

the fact that the aircraft might have entered the IMS fropn different

points in the circular boundary, we consider their longitudinal separation

as if they entered from the same point (clearly this is the worst case).

Their initial separation is ABCD. Their smallest separation occurs

over the OM and is (ABCD) - (EFGHJ), which is a desirable situation.
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(2) First aircraft has higher landing speed than the second, i.e.,

v , > v _. The respective speed profiles are shown in Fig. 13. Again

the minimum longitudinal separation occurs over the OM,

Thus for all possible cases the minimum longitudinal separation

in the IMS between successive aircraft occurs over the QM. Had we
J { e • • . . ' ' . .

chosen L(v) smaller than L (v) the minimum would occur at same point

inside the IMS. This minimum, however could be much smaller than

d . (see Fig. 14).mm .
For the speed ranges considered and T =10 min. typical

values of L. (v) are from 32 to 45 nm.

C. Choice of Hv

The rule by which the minimum altitude separation between

successive levels should be chosen by the designer is .

(1) Choose the speed v of the highest level and H ,
• - o

the altitude of this level

(2) Choose VT, the speed of traffic flying on the level
immediately below H

o :

(3) Choose the IMS radii for the two levels by Eq. 23
(i .e. , L(v6).= L*(v0))

(4) Consider the "worst" situation, i.e., an aircraft
entering the IMS from the top level followed closely
(~ 1 min) by an aircraft entering the IMS from the
level below. Assume the aircraft are on the same
vertical plane.

(5) Find d(0), the longitudinal separation at the time
the second aircraft enters.

(6) If d(0) •> d . = 2 . 5 n. miles then choose— mm

HV- - H = AH, = minimum FAA :

(S Vj i .

vertical separation standard (~100Q ft) (24)

(7) "If d(0) < d. then set
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where

** = -^ - •: P6)

and t = minimum allowable temporal runway separation (~ 1 min).s
The above rule ensures that there is no interference in the

IMS between traffic of two altitude levels. Typical descent profiles are

illustrated in Fig. 15.

D. Length of a Delay Slot

We will choose the length'of a delay slot Lrjg, so as to ac-

comodate with safety margin the largest possible delay maneuver.

Lrve = t + d . = (ir + 2)R(v) + d . (27)DS max mm mm v '

It is true that the length of a delay slot is different for different

altitude levels. Typically L,_0 ~ 10 nm.Do

E. QMS Length

The length of the OMS now can be chosen for each altitude level,

as an integral number of delay slots. Thus

LOMS(v) = n(v>LDS(v) < 2 8>

The number n(v) will typically be the same for all altitude levels.

F. Buffer Zone Length and NTA Radius

For the top level the smallest BZ length is chosen so that all

aircraft will enter the OMS while they are flying on the straight portion

of their minimum time trajectory. The limiting case is shown in Fig. 16.

In this case

L*z(v) = (AD) = R + (BD) = R -f (BO) - (DO) = R + (BO) - (CO)
so

LBZ(v) = R + [R2
 + (LOMS + Lv)

2] 1 /2 - LOMS - Lv (29)
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The minimum NTA radius now is completely specified via

The BZ length for the lower levels is specified by

L, (-v ) - R - L f-v \ - n(v )L (v ) > L (v ) HH
R7* ]<-' 1M " i r " * lr' T")S» lr' — R7* lr' »- 'Ij^j • K IN K .IX 1*10 K. ±j£j K.

Typically, for 2 delay slots, we find that for v = 230 knots, R = 55.4 nm
A ~ '' ' ' ' ' ' &

with Ln^. = 1.4 nm, for v = 270 knots, RN = 65.1-- .nm, Ln7. = 2.1 nm,

values which are reasonable.

G. Distance Between Traffic Source Points

Referring to Fig. 17, we would like to choose the minimum

distance between two traffic source points so that in the "worst" situation

illustrated in Fig. 17, the distance GH is safe i.e.,

GH > 3.4R + d . (32)

where 3.4 R refers to the maximum oscillation maneuver (see Fig. 7b).

The equations applicable then are:

(AB) ' = 2RNsin(*+co) (33)

sin* = R (34)
RN R

3.4R + d .mm ,_ c .
(35)2L

A typical value for RT.T = ' 7 0 nm, v = 250 knots, d . = 2 . 5 nm,'r j\j • mm
L = 39 nm is (AB) % 17 nm. :

We can see now the delay capabilities of the proposed system.

t
At each level there can be at most N

arc (AB.)
traffic source points.

For R-- ~ 70 nrh, we can have about 25 source pbints ;at each level.

[ ] denotes the largest integer function.
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If the OMS length is 2 delay slots, then each level can delay simultaneously

50 aircraft.

5. THE SYSTEM ALGORITHM

Now we are ready to describe the automatic nature of the system.

Figure 18 indicates the functions that are to be performed by the pilot and

the computer during the landing phase.

As soon as the pilot enters the NTA be radioes to ground, air-

craft identification, position, heading, time of entrance, speed v (com-

mensurate with altitude level), and desired landing speed VT .
LJ

The first task of the computer is to calculate the minimum time

trajectory and hence the expected time of arrival (ETA) of the aircraft.

This is done by calling the subroutine ETA-MT.T, which essentially does

the calculations described in the section on aircraft trajectories in the

BZ and OMS.

The next task is to sequence and schedule the aircraft. This is

done by calling the subroutine SEQ-SCHED (see Fig. 19). This subroutine

considers the ETA's of all the aircraft that are still in the BZ. It com-

pares the ETA of the newly arrived aircraft to the rest of the ETA's.

The rule that is adopted for landing order is that the only time a later

arriving aircraft will supercede an earlier one, is when the former by

so doing does not oblige the latter to delay. Specifically only if

ETA(m) < ETA(m-k) - At(m, m-k) (36)

will aircraft m be scheduled to land before m-k. Here At(m, m-k) is the

minimum allowable temporal separation over the OM between the two

aircraft (typically 1 min).

Next the algorith assigns a delay slot to the aircraft where a

delay maneuver will be performed if necessary. .This is done by calling

the delay assignment subroutine DAA (see Fig. 20). This subroutine

first calls on DELAY-TYPE to calculate the type of maneuver to be per-

formed, via the rules previously established. Then it scans all the slots

for the particular source point of the new aircraft and sees which ones
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are "filled up" and which ones are not. It then assigns a slot and dictates

to the pilot the exact time T(Q) where he should leave the straight flight

and start performing the maneuvers. The block labeled "Aircraft ID(Q)

should not enter OMS" is entered when all the slots are already occupied.

The resolution of this dead end conflict, lies in appropriate metering so

that e. g. , not move than 4-5 aircraft per hour enter the NTA from a

particular source point.

Finally the algorithm calls on the IMS-NOMinal trajectory sub-

routine which simply calculates the time the pilot should start decel-

erating (TDECEL), and the latest time the pilot can start descending

(TDESCENT).

If there is an error in arrival time the IMS-NOM subroutine is

called again to update TDESCENT and TDECEL. Flow charts for the

less important subroutines can be found in [12] .

6. CONCLUSIONS

We saw that it is possible, by appropriate definition of the air-

space geometry in the NTA, to design a deterministic terminal control

system. The system proposed here is an open loop automatic control

system that dictates, for each aircraft, nominal trajectories in the NTA.

The main advantage of such a system is that it frees the controller

from routine decision making. He can now act as an ultimate decision

maker, correcting for errors that might occur, and taking charge in case

of an emergency. In other words the controller would be the element in

the feedback loop of the closed loop control system.

This type of a system offers possibilities for solutions to the

problem of automatic control with multiple runways, and overlapping

airspaces. The idea would be to assign some altitude levels to traffic

landing to one runway (or airport), and other levels to traffic utilizing

a different runway (or airport).

Scheduling take-offs is not a problem because.as soon as there

is a demand for a take-off the system algorithm could schedule it in a



-18-

"gap" between two scheduled landings. The details of this procedure

have been considered in [12] .

Routing of take-offs through the NTA is another problem that

should be considered. This one could be tackled by changing some

traffic source points to traffic "exit" points, thus opening corridors

for departing aircraft. It should be noted that the subset of the NTA

assigned to takeoff trajectories can be incorporated as a state variable

constraint in the minimum time problem described in Section 2, so that

the aircraft reaches the boundary of the IMS in minimum time without

entering any forbidden airspace. Regions of severe torbulence that

should be avoided can be handled in an analogous manner. Since the

basic computations to be carried out are simple, frequent updating (as

weather conditions change, landing and takeoff demands vary) is possible.

Additional research and simulation studies are necessary to examine

whether or not rapid updating is feasible to correct for stochastic errors

that will arise.
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APPENDIX A

Approach Airspeed in Knots

Jet Type

737-100

737-200

DC-9-30

DC-9-40

727-100

727-200

707-120

707-120B

720

707-320

707-320B

DC-8-61

DC -8- 62

DC -8- 63

DC-10-10

DC-10-20

747

Operating
Empty Weight

100 Knots

103 "

105 "

106 "

95 "

102 "

118 "

115 n

102 "

117 "

103 "

118 "

108 "

115 "

112 "

117 "

115 "

60% Load
Factor

130 Knots

125 "

125 "

125 "

122 "

122 "

142 "

135 "

123 "

140 "

122 "

137 "

135 "

137 "

133 "

135 "

140 "

Maximum
Loading Weight

138 Knots

133 "

128 "

128 "

130 "

133 "

146 "

140 "

128 "

143 "

. 127 "

143 "

140 "

141 "

137 "

140 "

144 "

we would like to thank Prof. A. Odoni of M.I.T. for this table.
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Fig. 9 Velocity Profile of an Aircraft in the IMS
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[En tcr at Time t

I
J

^SUBROUTINE DAA (SOURCE-PT. v. DELAY) ]
. - - • , : • . • •

CALL DELAY-TYPE (DELAY, v)

Q = Number of Aircraft in QMS, at Time t",
That Have Entered NTA from SOURCE-PT

±
CALL ORDER-SETA

[ Q = Q + 1 j
~^

•M = Number of Delay Slots at QMS of Level H

j S = Length of C3MS J

k = Number of Delay Slot Aircraft ID(Q-l) is Assigned

T > T(Q-l) + DELAY (ID(Q-l))

\
Assign J
to 1D(Q)

no

r

Slot ffk-H

Ttoj • ' • ; . l siot 'T(Q) - t 1 .. . v .

_,^« ™- min
T«Q) = Ta - Zv ' 'l

KF.TUHN

Flg.20 Flow Chart for the Subroutine DAA-


