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Abstract

An explicit expression is obtained for the phase matrix in the I, Q,

U, and V Stokes vector representation for a system containing a

polydispersion of spherical particles. All of the symmetry relations

derived by Hovenier (1969) using general arguments are established

explicitly. Convenient algorithms are given for the computation of the

phase matrix for a spherical polydispersion. Since this theory is so

vitally important in radiative transfer, many researchers will need to

compute these functions for realistic aerosols distributions. We have

therefore presented results for a haze L distribution so that other

researchers will have a way of checking their programs which compute these

quantities.



I. Introduction

There is now a considerable amount of interest in the polarization of

the radiation reflected from planetary atmospheres. It is certainly clear

that a wealth of information can be obtained about planetary atmospheres

if more measurements were made of the four component Stokes vector.

Recently Kemp, Wolstencroft, and Swedlund (1971) have measured a circular

component of polarization namely V/I, from most planets. Now circular

polarization as applicable to planetary atmospheres can arise either by

scattering from a rough surface (Kemp and Wolstencroft, private communica-

tion) or by atmospheric scattering. If the atmosphere is optically thick,

as it is for Venus, then if one assumes spherical particles, circular

polarization can only arise from at least a double scattering. Single

scattering of unpolarized radiation from spherical particles can not

produce a circular component. It therefore becomes mandatory to have an

accurate method to compute the Mie phase matrix if one is to do multiple

scattering calculations employing spherical particles. Virtually all

methods to date which deal with this problem use the Fourier decomposition

of this matrix to uncouple the equation of transfer.- Most methods employ

fitting techniques of one form or another to evaluate the expansion

coefficients. This method, however, has the unfortunate disadvantage that

numerical quadrature must be employed to evaluate the expansion coefficients.

This of course implies that one has to use interpolation methods on the

phase functions. This technique can have adverse effects since it may

require far more Fourier terms to fit the phase matrix than are actually

needed. The first person to show that the expansion coefficients for the



Mie phase matrix could be obtained directly from the regular Mie coefficients

was Sekera (1955). Later Dave (1970) used this decomposition in his method

to compute the intensity and polarization emerging from a plane-parallel

atmosphere. However, his calculations were only for a monodispersion of

aerosols. Dave also employed the I , I , U, V representation in his
J6 IT

calculations.

There are many symmetry relations that exist fpr the Mie phase matrix

as was demonstrated in an excellent paper by Hovenier (1969) who employed

the I, Q, U, V representation. He did not however show these explicitly.

It is the purpose of this paper to derive the coefficients of the Fourier

decomposed phase matrix in terms of the basic Mie coefficients for spherical
a

polydispersions and to show explicitly- all of the symmetry relation?derived

by Hovenier. The expressions presented will be in a form amenable to

numerical computations.



Theory

I. Phase Matrix for Mie Scattering

The well known Mie theory (van de Hulst, 1957) gives expressions for

the components of the electric field scattered from a sphere parallel and

perpendicular to the plane of scattering, denoted by E and E respectively.
J6 r

They are expressed as an infinite series involving Legendre polynomials

which are functions of the scattering angle 0. The coefficients of the

series, a and b , are complex functions of the size parameter of the
n n

sphere, x = 2ira/A and the relative index of refraction m. The components

of the electric field are given by:

Er ' kr- Sl(x>m;Q)

where

Sl(x,m;0) -̂  {an,n(cos0) + b̂ JcosG)} (2a>

S2(x,m;0) - {(cose) + aT(cos0)> (2b)

The angular functions IT and T are normally given in the form:
n n

, ^N d P (cos0)
TT (cos0) = _ n

d cos0

(cos0) = TT (cos0) cosG - sin0 ^n03 (3b)
~ —n n —
d cos0

To apply the Mie theory to radiative transfer, the electromagnetic

radiation is most easily expressed in terms of a four component Stokes



vector. Choosing the representation (I, Q, U, V) the phase matrix can be

written as (see van de Hulst, 1957, page 44):

P(cosG)

M+

M~

0

0

M~

M+

0

0

0

0

S21
D21

0

0

^21
S21

(4)

where

M

M"

s21 = h
11

s2s*)

s2s*)

- S.S*)

(5a)

(5b)

(5c)

(5d)

The phase matrix could be computed using Eqs. (2), (3), and (5). Sekera

(1952, 1955) expressed the elements of the phase matrix in terms of an

infinite Legendre series. Defining the following functions:

T (x,m;0) = (1-cos

T2(x,m;0) = (1-cos

2 _

2 -1

(6a)

(6b)

and

R (x,m;0) = T2T*)

R (x,m;0) =

R3(x,m;0;

4
R (x,m;

Re(T2T*)

Im(T2T*)

(7a)

(7b)

(7c)

(7d)



it can be shown that

M+ = (1 + cos20) R1 + 2 cosGR3 (8a)

M~ - (cos2G-l) R2 (8b)

S21 = (1 + cos20) R3 + 2 cosGR1 (8c)
D2i = (1~cos20) R4 (8d)

The definitions of S, and S0 and IT and T are inserted into Eq. (6) yielding:
1 *• n n

Tl =nll ffnTI)- tan
[Pn(cos6) + cos0 P» (cose)] - ^ P£ (cos0)} (9)

T0 is obtained from Eq. (9) by interchanging a and b . Recurrence relations
f. n . n

are used to express the derivatives of the Legendre polynominals in terms

of a finite Legendre series. The resulting series is manipulated to

isolate Legendre polynomials of like order. Using the orthogonality of

the Legendre polynomials the expressions for T.. and T- are:

Tl =n!() Cr/X>m^ Pn(
cos0> <10a)

T. = IL D (x,m) P (cos0) (10b)
z n=0 n n

where

C (x,m) = (2n
n

~ (4j+2n+5) (3+1) (2J+2n+3) b2i+n+2> (ID
(2j+n+2)(2j+n+3)

D is obtained from Eq. (11) by interchanging a and b . To obtain theu n n

expressions for RJ in Eqs. (7), the products of two infinite Legendre series



must be evaluated. Sekera (1952) showed that the product of two infinite

Legendre series could be expressed in a relatively simple form as an

infinite Legendre series. Dave (1970 a,b) has recently used this

technique in obtaining the phase matrix elements in the d ,1 , U, V)

Stokes vector representation as Legendre series. Applying this technique

to Eqs. (7) it can easily be shown that:

R±(x,m;0) =rfQ L*(x,m) P^cosG) i = 1,2,3,4 (12)

The L (x,m) are obtained as infinite series, the coefficients of which

are defined by recurrence relations, i.e.,

Lr ' (r >̂nlk ̂  JO ̂  Re {CqCJ + Vp}/Ai (13a)

* *, .
(13b)

k = 2 r even

Jk ^ JO ̂ ^ Re {DqCp + °P
Cq}/Ai (13d)

where

(13e)

r odd

(2, i = 0
Ai-[i. ±>o . (13f)

q = n-i , (13g)

p = n+i4<$ , (13h)

f • r Q r even6 = {
1 r odd



The recurrence relations for a and B^ are given by Dave (1970a) .

The R defined in Eq. (12) are not normalized. The normalization

is obtained by redefining the coefficients in Eq. (12). That is:

(x,m) P^cosG) i = 1,2,3,4 (14)

where

A±(x,m) = I/(x,m)/(TrQ (x,m)x2) (15)
T t S

Q (x,m) is the efficiency factor for scattering (van de Hulst, 1957). Withs

the R (x,m; 9) defined as in Eq. (14), it can be shown that

/ M+ (cosG) dfl - 1 (16)

II. Mie Scattering Phase Matrix with Rotations

For multiple scattering it is convenient to define the Stokes parameters

of the incident and scattered beams using their respective meridian planes

as a plane of reference (Chandrasekhar, 1960). The phase matrix defined in

Eq. (4) requires that the incident and scattered Stokes vectors be defined

with respect to the plane of scattering. It is therefore necessary to

perform rotations on the Stokes vectors to use Eq. (4).

Because of the choice of the representation of the Stokes vectors,

the matrix for rotation of the Stokes vector axis, through an angle a

regarded as positive if clockwise when looking into the beam, has the

simple form:



L (a) =

1 0 0

0 cos 2a sin 2a

0 -sin 2a cos 2a

0 0 0

0

0

0

1 (17)

The incident direction is defined by y = cos 9', <J>', the scattered direction
2 1/2

is defined by y = cos 9, $, and the scattering angle cos 0 = yy1 + (1-y)

»2 1/2
(1-y ) cos (<J>'-<j>) (see Fig. 1). The scattered wave Stokes vector

i
S (y,4>), is given in terms of the incident wave Stokes vector I (y,<t>') by:

S(y,(f>) = (18)

where

I I

M ( y , < f > ; y , < j > ) = L(TT- i ) P(cos0] (19)

The elements of M are easily obtained by matrix multiplication in

terms of 9, i., and i-. Spherical trigonometry could then be used to
i

evaluate i.., i_, and 0 in terms of y, y, and A<{> = 4>'-<(>. This is a very

tedious task and it is easier to use certain trigonometric results which are

also needed for the Rayleigh phase matrix (Chandrasekhar, 1960, page 41).

After performing this straightforward but still tedious manipulation the

elements of the phase matrix are obtained in the following form:

= [(l-fcy2)(l+y2)/2 + Y
2] R1 + 2y y R3

i i 3
+ 2y [yy R + R ] cos A<j>

+ %y2 R1 cos2A<}> (20a)

M12
1 2+ 2y y^ R cos A<j>

+ Js(y2-l)(y2+l) R2 (20b)
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= 2 R yy sin A<j>

+ y (y2-!) R2 sin2A4> (20c)

1 2
+ 2u y Y R cos Acj>

M22

(20d)

-l) R2 cos2A<J> (20e)

1 1 3
4- 2y (y y R -I- R } cos A*

+ h [ (y2+l) (y2+l) R1 + 4y y R3] cos2A<j> (20f)

M23 = 2y (y R1 + y R3) sin Acj>

+ [y(u2+D R1 4- y(y2+l) R3] sin2A<$> (20g)

» 4
M2, = 2 y Y R sin A<j>

'2 4
- y (1-y ) R sin2A4> . (20h)

1 2
M _ = -2y y R sin A$

+ y (1-y2) R2 sin2A(j) (20i)

M32 = ~2y ^ R + ^ R) sin &<f>
'2 i « 2 o

- [y <y 4-1) R-1 4- y(y 4-1) RJ] sin2A<{) (20 j)

M33 - 3y2 R3/2

4- 2y (R1 4- y y R3) cos A4>

4- % [ (y24-l) (y24-l) R3 4- 4y y R1] cos2A<}. (20k)

M34 = h [2y2 4- (y2-l)(y24-l)] R4

1 4
4- 2y y R cos A<fi

2-!) R4



11

M
4i " ° (20m)

A
M,- = 2yy R sin A<j>

+ y(y2-!) R4 sln2A*. (20n)

M. = -h(2y2 + (y2+l)(y2-l)] R4.,
' 4

- 2y y Y R cos A<|>

+D R4 cos2A<j> (20o)

= [(l+y2)(l+y2)/2 + Y
2) R3 + 2 y y R1]

t O 1

+ 2Y [yy R + R ] cos A(|>

+ h Y2 R3 cos2A<J> (20p)

2 % '2 h
where Y = <

1-y > (1~y ^

In Eqs. (20) the R are still explicit functions of cos 0. The addition

theorem for spherical harmonics was applied to Eq, (14) resulting in a more

convenient form for the R , namely:

Ri(x,m; y,<{,; y , < } > ' ) = A ( x , m ) ( 2 - 5 ) Y ( y ) Y ( y ) cos* A<{. (21)

where Y (y) = [ ] P (y) . Eqs. (20) and (21) give an exact

analytical expression for the phase matrix for Mie scattering in terms of
i

y, y, and A<J>. Eq. (20) may be shown to be equivalent to a similar expression

obtained by Dave (1970b) in another Stokes vector representation.

III. Symmetry Relationships of the Phase Matrix

Symmetry has been used to determine properties of the phase matrix

for particles with and without a plane of symmetry (van de Hulst, 1957).
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Recently Hovienier (1969) expressed seven symmetry relationships of the

phase matrix based on symmetry alone. These relations were derived for

particles with a plane of symmetry. For clarity the relationships are

reproduced using the notation of this paper.

M (y,* ; y,<|>) = Q M (y,<|>; y, <j>) Q

M (-y,$ ; -y,<|>) = P M T (y,<f>; u,<fr') P
i t i i

M (-y,<f> ; -y,<J>) = M (p,i|); y,<j> )

M (y,4> ; y,<j>) = P Q M (y,<|>; y,<}> ) Q P

TM (y,$; y,<j) ) = P M

M <-y,4>; -y,<|> ) = Q M (y,<|>; y,<j> ) Q

M (-11,$; -y,<}> ) = P Q M (y,<(>; y,<J. ) Q P

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

(22g)

where

1

0

0

0

0

1

0

0

0

0

-1

0

0

0

0

1

and Q =

1

0

0

0

0

1

0

0

0

0

1

0

<f
0

0

-1

Of these relationships, Eqs. (22b), (22c), and (22d) are singled out for

special treatment for two reasons: (1) (22b) , (22c), and (22d) have simple

explanations in terms of space and time symmetries, and (2) from these the

other four relationships can be derived. Simple matrix multiplication

yields the following results from Eq. (22b) :

t i t i

i t i t
M (-y»<f> ; -y,<J>) = M.. (y,4>; y,<j> ) ij = 12, 14, 24 (23b) .

Mi. ,* ) ij = 13, 23, 34 (23c)
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Similarly from (23c) .

My (-V,* ; -y,*) = My (y,*; y , < f > ) (24)

and from (23d)

f t I I
M f 11 . (D i 11 • d) / — M t u . c D t i i d } ] 125s. i

J J \ r *JT > ** » T / * * j J \ r * J Y 5 r * J T / V fc -^ ** /

My (y,**; y,*) = My (y,*; u\<i' ) ij = 12,21,34,43 (25b)

My (y,*'; y,<f>) = -My(y,<j>; y,<f>') ij = 13,14,23,24,31,32,41,42 (25c)

The matrix elements in Eqs. (20) are easily shown to satisfy Eqs. (23),

i ' ' i ' '
(24), and (25), noting that R (x,m; y, 4>, y, <f> ) = R (x,m; y, $ ; y, <{.).

It is also easily verified that all of Eqs. (20) satisfy the relations of

Eqs. (22).

It is easy to see that Eqs. (22) require that M , M ,, M , M ,,

M , M „, M , M be odd functions of A<j>, and that all other elements be

even functions of A<j>. This has been pointed out by Hovenier and is easily

verified by Eqs. (20).

IV. Computation

In practice there will only be a finite number of the A n computed.

Thus Eqs. (21) can be written:

4 I I N .. I

R (x,m; y,<J>; y,<)> ) = E F (x,m; y, y) cos &A<j> i = 1,2,3,4 (26)
£=0 Z

where

F̂ (x,m; y, y) = (2-5, ) E A^ (x,m) Ŷ (y) Ŷ (y) i = 1,2,3,4 (27)
* *° n=0 n n n
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i aN being the number of A (x,m) computed. The Y (y) are computed by

recurrence relations (Dave and Armstrong, 1970). In Eq. (20) there is

need for R cos A<J>, R cos 2A<f>, R sin A<f> and R sin 2A<}>. Using

trigonometric relations, one can show that

i N i 'R cos qA<f> = E F (x,m; y, y, qc) cos £A<J> q = 1,2

and

i N i 'R sin qAiji = Z F (x,m; y, y, qs) sin £A(j> q = 1,2
A=0 *

i * i i ' iThe F£(x,m; y, y, qc) = F£(qc) and F̂ (x,m; y, y, qs) = F£(qs) are

given by Dave (1970b) . Using Eqs. (28) and (29) we now have the phase
ft

matrix elements in a form that is decomposed into a Fourier series in

A<f>. That is

^ = Z {[(l+y2)(l+y2)/2 + Y23 F^ + 2yy F^ + 2Yyy F̂ (lc)

+(Y2/2) F̂ (2c)} cos

M22 = ̂  {3Y2pJ/2 Fl + 2Yyy Fj(lc) + 2Y F̂ (lc) + ((y2+l)(

+ 2yy F?(2c)} cos
X*

M,. = Z {3Y
2F̂ /2 + 2Yyi F?(lc) + 2Y F̂ (lc) + ((y2+l) (y2+l) /2

3J £=0 * * £ ,
+ 2yy F̂ (2c)} cos

JO

M., = Z' {[(l+y2)(l+y2)/2 + Y
2] F + 2yy F + 2yvi F(lc) + 2Y.,

44 9 q
CY /2) F^(2c)} cos £A<j.

M19 = Z' {[Y
2 + (y2+l)(y2-l)/2J F2 + 2yyY F2(lc) + (Cy2-l) (y2+D/2)

1Z £=0 & £ o
cos
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I I
(y, y) = M^ (y, y) (30f)

*L_ = Z {2yY F2(ls) + y(y-l) F2(2s)} sin £A<j> (30g)
ij £.=0 * , *

i t
M31 (y, y) = -M13(y,y) (30h)

M.- = Z {2^ F*(ls) + 2yy F^(ls) + y(y2+l)Fj(2s) + y(y2+l) F^(2s)} sin £A<j> (30i)
^ 1=0 x * * *

• i
M32 (y,y) = -M23(y,y)

N . i 4 ' 2 4
M , = Z {2yY F (Is) + y(y -1) F^(2s)} sin AAcf)

** SL=Q *

i t
MA9 < W , y ) = M _ , ( y , y ) (30JI)

= Z {[Y
2 +(y2-D(y2-l)/2] Fj + 2yyy F^(lc) +

2.=0 X X ,
* cos £A<f> (30m)

(y,y) = -M34(y,y) (30n)

With the phase matrix elements in this form Chandrasekhar showed that the

<f> dependence can be decoupled in the equation of transfer.

The value of N is of considerable importance. The amount of

computation required will be proportional to N. Downward recurrence is

used to compute the Mie coefficients, a and b , of Eqs. (2) (Kattawar

and Plass , 1967). A limit has been placed on this series, terminating it when

|a | / max |a | < 10 . This determines the value of N, as can be seen

in Eq. (11). Thus no significant error could arise from terminating the

series.
t

The phase matrix elements are computed for (y, y) = Cy.> y.),

i,j = 1, N where the y. and y. are abscissas for a N point Lobatto
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quadrature. Full advantage is taken of the symmetry relations expressed

in Eqs. (22) to prevent duplicate computation and storage. Lobatto quadrature

was chosen so as to include the forward and backscattering points (cosG = ±1).

To conserve flux, it is important that M-_ = M be properly normalized.

That is from Eq. (16):

f2J f^- Mr dy d<|> = i (31)

We see from Eq. (30) that only the first term of the Fourier series will

contribute. That is:

2ir /_J; M^ dp = 1 (32)

Since M ° is computed for Lobatto abscissas, the integral in Eq. (32) is

replaced by a sum

N
2u Z iC M ° (u ,y )}-! = 5 , j = 1, N (33)

i=-L J- J.J. -L j j y

where the C are the Lobatto quadrature weights. Because of roundoff error,

the 6. in Eq. (33) will not be zero. They are used to compute a correction

matrix which is made symmetric to preserve symmetry.- The number of Lobatto

abscissas chosen is large enough to insure that the corrections applied are

small. This method will in general require fewer Lobatto points to achieve

the same normalization than conventional methods of fitting the phase function.

V. Results

A program has been written to compute the phase matrix for a single

particle and for a spherical polydispersion. The phase matrix elements were

computed for a particle size in the Rayleigh limit. The computed phase
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matrix elements agreed with the Rayleigh phase matrix elements computed

from the power series expansion given by van de Hulst (1957). A set of

A computed by this program is given in Table I. This set of A was

computed for a haze L distribution (Diemendjian, 1969). The index of —

refraction was real, m = 1.55, and the wavelength X = 0.7y. The

integration over the size distribution was performed using a 25 point

Gauss Legendre quadrature, with initial and final size parameters given

by 0.05 and 26 respectively.
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Conclusion

We have explicitly shown all of the symmetry relations which exist

for the phase matrix of a system containing a polydispersion of spherical

particles. These symmetry relations are highly essential if one is to

perform multiple scattering calculations. These relations can be used to

significantly reduce the amount of core storage and increase the

efficiency of the computer program. Convenient and stable numerical

algorithms have been presented so that computations involving a spherical

polydispersion can be performed. The method has been thoroughly tested

and yields highly accurate results which are essential if one is to

perform radiative transfer calculations including polarization.

Acknowledgments

The support of the National Aeronautic and Space Administration under

Grant No. NGR44-001-117 has made this work possible.



19

References

Chandrasekhar, S., 1960: Radiative Transfer. New York, Dover Publ.,
393 pp.

Dave, J. V., 1970: Coefficients of the Legendre and Fourier series for the
scattering functions of spherical particles. Appl. Opt., j^, 1888-1896.

, 1970: Intensity and polarization of the radiation emerging
from a plane-parallel atmosphere containing monodispersed aerosols.
Appl. Opt. £, 2673-2684.

, and Armstrong, B. H., 1970: Computations of high order
associated Legendre polynomials. J. Quant. Spectros. Radiat. Transfer.
10, 557-562.

Diermendjian, D., 1969: Electromagnetic Scattering on Spherical
Polydispersions. New York, American Elsevier Publishing Co., Inc. pp 78.

Hovenier, J. W., 1969: Symmetry relationships for scattering of polarized
light in a slab of randomly oriented particles. J. Atom. Sci., 26, 488-499.

Kattawar, G. W., and Plass, G. N., 1967: Electromagnetic Scattering From
Absorbing Spheres. Appl. Opt. 6^, 1377-1382.

Kemp, J. C., Wolstencroft, R. D., and Swedlund, J. B., 1971: Circular
Polarization: Jupiter and Other Planets. Nature, 232, 165-168.

Sekera, Z., 1952: Legendre series of the scattering functions for spherical
particles, Rep. No. 5, Cont. No. AF 191(122)-239, Dept. of Meteorology,
University of California, Los Angeles, Calif.

, 1955: Investigation of polarization of skylight, final report,
Contract No. AF 12(122)-239, Dept. of Meteorology, University of California,
Los Angeles, Calif.

van de Hulst, H. C., 1957: Light Scattering by Small Particles. New York,
Wiley, 470 pp.



Table I. A computed for a haze L distribution.

n

i
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

5.871980-01
-1.21721D 00
2.493660 00

-2.428850 00
3.513200 00

-2.952770 00
3.761710 00

-2.915410 CO
3.546530 00

-2.584690 00
3.134870 00

-2.17654D 00
2.67786D 00

-1.7837CO 00
2.224490 00

-1.432520 00
1.814050 00

-1. 129330 00
1.448840 00

-8.741860-01
1.129130 00

-6. 598760-01
8. 544160-01

-4.837940-01
6.247610-01

-3.408160-01
4. 398810-01

-2.279750-01
2.97623D-01

-1.43541D-C1
1.912630-01

•8.4775 40-02
1.158250-01

-4.719210-02
6.650800-02

•2. 515720-02
3.678260-02

•1. 300960-02

1.999200-02
-3.426030-02
6.412090-02
-6.568300-02
5,270100-02
-8.051960-02
1.577310-02
-8.858320-02
-3.861540-03
-7.125390-02
-9.752740-03
-5.131860-02
-1.758910-02
-3.184620-02
-5.044340-03
-2.291760-02
-4.369900-03
-1.398600-02
5.881210-04

- 1.224720-02
-7.227530-04
-8.757850-03
-1. 294120-03
-7.744720-03
-2.579380-03
-5.486960-03
-3.104030-03
-3.798400-03
-3.415560-03
-2.616130-03
-3.244230-03
-1.812070-03
-2.659860-03
•1.206270-03
-1.781210-03
-6. 162320-04
•9.059210-04
•5.175820-04

4.619500-01
-1.55376D 00
1.994000 00

-3.C25560 00
2.849930 00
-3.644070 00
3.050420 00
-3.638960 00
2.808520 00
-3.322440 00
2.404510 00

-2.883130 00
1.997960 00

-2.431310 00
1.611880 00

-2.003410 00
1.284360 00

-1.617740 00
1.001220 00

-1.279000 00
7.660910-01

-9.825480-01
5.699680-01

-7.318230-01
4.103390-01
-5.250160-01
2.82034D-C1
-3.627860-01
1.831560-01

-2.395100-01
1.118750-01

-1.494530-01
6.399330-02

-8.791690-02
3.497230-02

-4.931510-02
1.834860-02

-2.696840-02

1
4
7
4
9
8
8
-3
5

-3
4

-1
3

-2
2

-8
1

-7
1

-3
9

-3
8

-3
6
-4
4

-4,
3

-2
2

-1
2
-8
1

-3
1
1,

751020-02
678790-02
411320-02
766630-02
233600-02
903940-03
707450-02
558190-02
995630-02
818400-02
892020-02
96974D-02
367720-02
10512D-02
601110-02
12539D-03
694170-02
823080-03
371310-02
409700-03
949770-03
422130-03
550980-03
41 1070-03
15310C-03
196430-03
248770-03
084180-03
140300-03
870510-03
689460-03
849330-03
256580-03
801250-04
605240-03
678520-04

1.236400-03
1.499570-04



Table I. (continued)

n

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

1
-6
1

-2
5

-1
2

-2
9

-2
3
1
1
6
3
6
4

-2
5

-6
2

-1
1

-1,
-5
-3
2

-1
1

-8,
6
3
4,
6
2,
2,
2
1

1.988920-02
6. 299800-03
1.050960-02

799410-03
196990-03
05?66D-03
309460-03

2.733410-04
269120-04
162280-05
507660-04
280780-05
153890-04

6.936990-06
3.026530-C5
6. 118590-07

332660-06
194520-07
120910-07
699670-08
973520-08
160680-08
048830-09
238380-09
112260-12
823350-11
939310-11
14262D-12
836950-12
322120-14
578360-15
038980-16
056770-17
430260- 18
811480-18
165150-19
028990-20

1. 564460-21

-5.791260-04
-3.056630-04
-1.886600-04
-1.936170-04
-1.338920-04
-7.596320-05
-3.508060-05
•1.458720-05
-2.983030-06
-5.835530-06
1.583910-05

-3.676740-06
3.538370-06
5.027450-07

-4.221050-06
3.479420-07

-2.027210-06
-5.659780-08
8.702230-08

-1.831920-09
2.121480-08

-2.490740-09
•1.627130-09
-8.774160-11
1.579820-11

•I.116440-11
-7.027850-12
3.477680-13

•7.244100-13
•8.406500-15
1.467480-14
1.291240-15
1.440510-16
1.415140-17
2.836330-19

•5.908040-20
•8.496790-21
-7.901260-22

"n-l

9.276710-0.3
-1.439850-02
4.301470-03

-7.426230-03
1.825900-03

-3.464810-03
5.981640-04

-1.463690-03
1.135930-04

-5.618540-04
-1.813930-06
-2.033720-04
-9.663790-06
-5.990670-05
-2.067960-06
-1.247250-05
-9.229470-08
-1.098980-06
1.614780-07

-1.567670-07
1.897760-08

-2.667900-09
4.775660-09
3.376650-10
2.993290-10

-7.705590-11
7.34807D-12

-7.310430-12
3.155610-13

•2. 104040-13
-1.602040-15
2.424020-16
7.693510-17
1.310780-17
3.5082CD-18
2.189310-19
1.873910-20
1.357290-21

8.71619U-04
1. 213930-04
6.011650-04
1. 13256D-04
3.298510-04
2.60925D-C5
1.596530-04
2.863450-05
9.440950-05
2. 123850-05
4.640820-05
8.02355D-C6
1.446630-05
1.427300-06
2.068780-06

-1.211660-07
2. 143900-C7

-2.873220-08
1.573040-08

-1.004980-08
2.940210-09

-6.818390-10
-1. 196320-10
-7.710710-12
-8.905750-12
-1.632400-13

5.668310-14
7.493690-15
1.566590-15
1.633350-17

-6.237460-13
-5.938700-19
-5.76496D-2C
-3.290410-21

1.334700-22
1.733710-25
1.000510-27
2.989130-30



FIGURE CAPTIONS

Figure 1. Illustration showing the rotation angles i.. and i? needed

to refer the final Stokes vector to the proper meridian plane.




