📾 https://ntrs.nasa.gov/search.jsp?R=19720025183 2020-03-11T19:54:08+00:00Z

RRA-T7206 June 1972

REPRESENTED RESEARCH ASSOCIATES

Fort Worth, Texas

CASE FIL

COPY

ANALYSIS OF RADIATION AND METEOROID SATELLITE DATA

B.J. Farmer

Final Report Contract No. NAS9–11903

Sponsored by NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

RRA-T7206 June 1972

ANALYSIS OF RADIATION AND METEOROID SATELLITE DATA

B. J. FARMER

FINAL REPORT

PREPARED FOR NATIONAL AERONAUTICS AND SPACE ADMINISTATION Manned Spacecraft Center Houston, Texas under Contract NAS9-11903

> RADIATION RESEARCH ASSOCIATES, INC. 3550 Hulen Street Fort Worth, Texas 76107

TABLE OF CONTENTS

Page

II. INTRODUCTION 1 II. SUMMARY 2 III. TRANSLATION OF RMS DATA AND EPHEMERIS TAPES 5 3.1 RMS Master Digital Data Tape (MDDT) Translation 5 3.2 Ephemeris Tape Translation 5 IV. ANALYSIS OF RADIATION DATA 16 4.1 Introduction 18 4.2. Mission Anomalies 18 4.2.1 Launch Separation Anomaly 19 4.2.2 Data Anomalies 19 4.2.2.1 Spectrometer Anomalies 20 4.2.2.2 Lonization Chamber Anomalies 32 4.2.3 Spectral Maps 46 4.3.1 Spectral Maps 46 4.3.2 Dose Maps 46 4.3.3 Dose Comparisons 82 4.4 Conclusions 100 5.1 Introduction 102 5.2.1 Determination of Experiment 102 5.2.2 Area Calculations 103 5.2.3 Time-Area Accumulation 118 5.2.4 Poisson Analysis of Counts 118 5.2.5 Flux Calculation 121 5.3 Evaluation of Sensor Reliabilities 128 5.4 Conclusions 137 <tr< th=""><th></th><th>Ŧ</th><th></th><th></th><th>N</th><th>÷.•</th></tr<>		Ŧ			N	÷.•
II. SUMMARY 2 III. TRANSLATION OF RMS DATA AND EPHEMERIS TAPES 5 3.1 RMS Master Digital Data Tape (MDDT) Translation 5 3.2 Ephemeris Tape Translation 5 IV. ANALYSIS OF RADIATION DATA 16 4.1 Introduction 18 4.2.1 Launch Separation Anomaly 19 4.2.2 Data Anomalies 19 4.2.2.1 Launch Separation Chamber Anomalies 20 4.2.2.2 Ionization Chamber Anomalies 32 4.2.3 Spectrometer Efficiency and Satellite Dynamics 42 4.3 Presentation of Data 45 4.3.1 Spectral Maps 46 4.3.2 Dose Maps 46 4.3.3 Dose Comparisons 82 4.4 Conclusions 100 V. ANALYSIS OF METEOROID DATA 102 5.1 Introduction 102 5.2.1 Determination of Experiment 102 5.2.2 Area Calculations 103 5.2.3 Time-Area Accumulation 118 5.2.4 Poisson Analysis of Counts 118 5.2.5 Flux Calculation 121 5.3 Evaluation of Sensor Reliabilities 128	•	1.	INTR	ODUCTIO	N	:1
III.TRANSLATION OF RMS DATA AND EPHEMERIS TAPES53.1RMS Master Digital Data Tape (MDDT) Translation53.2Ephemeris Tape Translation5IV.ANALYSIS OF RADIATION DATA164.1Introduction184.2Mission Anomalies184.2.1Launch Separation Anomaly194.2.2.2Data Anomalies194.2.2.1Spectrometer Anomalies204.2.2.2Ionization Chamber Anomalies324.2.3Spectrometer Efficiency and Satellite Dynamics424.3Presentation of Data454.3.1Spectral Maps464.3.2Dose Maps464.3.3Dose Comparisons824.4Conclusions100V.ANALYSIS OF METEOROID DATA1025.1Introduction1025.2.1Determination of Experiment Package Conditions1035.2.2Area Calculations1035.2.3Time-Area Accumulation1185.2.4Poisson Analysis of Counts1185.2.5Flux Calculation1215.3Evaluation of Sensor Reliabilities1285.4Conclusions1376.1Meteoroid Experiment 137137REFERENCES139		II.	SUMM	ARY		2
3.1 RMS Master Digital Data Tape (MDDT) Translation 5 3.2 Ephemeris Tape Translation 5 IV. ANALYSIS OF RADIATION DATA 16 4.1 Introduction 18 4.2 Mission Anomalies 18 4.2.1 Launch Separation Anomaly 19 4.2.2.2 Data Anomalies 19 4.2.2.1 Spectrometer Anomalies 20 4.2.2.2 Ionization Chamber Anomalies 22 4.2.3 Spectrometer Efficiency and Satellite Dynamics 42 4.3 Presentation of Data 45 4.3.1 Spectral Maps 46 4.3.2 Dose Maps 46 4.3.3 Dose Comparisons 82 4.4 Conclusions 100 V. ANALYSIS OF METEOROID DATA 102 5.1 Introduction 102 5.2.1 Determination of Experiment 102 5.2.1 Determination of Experiment 103 5.2.3 Time-Area Accumulation 118 5.2.4 Poisson Analysis of Counts 118 5.2.5 Flux Calculation 121 5.3 Evaluation of Sensor Reliabilities 128 5.4 Conclusions 137 6.1 Meteoroid Experiment 137 <		III.	TRAN	SLATION	OF RMS DATA AND EPHEMERIS TAPES	5
IV.ANALYSIS OF RADIATION DATA164.1Introduction184.2Mission Anomalies184.2.1Launch Separation Anomaly194.2.2Data Anomalies194.2.2.1Spectrometer Anomalies204.2.2.2Ionization Chamber Anomalies324.2.3Spectrometer Efficiency and Satellite Dynamics424.3Presentation of Data454.3.1Spectral Maps464.3.2Dose Maps464.3.3Dose Comparisons824.4Conclusions100V.ANALYSIS OF METEOROID DATA1025.1Introduction1025.2.1Determination of Experiment102Package Conditions1035.2.2Area Calculation1185.2.5Flux Calculation1215.3Evaluation of Sensor Reliabilities1285.4Conclusions1376.1Meteoroid Experiment1376.2Radiation Experiment1376.2Radiation Experiment137REFERENCES139			3.1 RMS Master Digital Data Tape (MDDT) Translation 3.2 Ephemeris Tape Translation			
4.1Introduction184.2Mission Anomalies184.2Mission Anomalies194.2.1Launch Separation Anomaly194.2.2Data Anomalies194.2.2.1Spectrometer Anomalies204.2.2.2Ionization Chamber Anomalies324.2.3Spectrometer Efficiency and Satellite Dynamics424.3Presentation of Data454.3.1Spectral Maps464.3.2Dose Maps464.3.3Dose Comparisons824.4Conclusions100V.ANALYSIS OF METEOROID DATA1025.1Introduction1025.2.1Determination of Experiment102Package Conditions1035.2.2Area Calculations1035.2.4Poisson Analysis of Counts1185.2.5Flux Calculation1215.3Evaluation of Sensor Reliabilities1285.4Conclusions135VI.EVALUATION OF MISSION SUCCESS1376.1Meteoroid Experiment1376.2Radiation Experiment137REFERENCES139		IV.	ANAL	YSIS OF	RADIATION DATA	16
4.2.1Launch Separation Anomaly194.2.2Data Anomalies194.2.2.2Donzation Chamber Anomalies204.2.2.3Spectrometer Efficiency and Satellite Dynamics424.3Presentation of Data454.3.1Spectral Maps464.3.2Dose Maps464.3.3Dose Comparisons824.4Conclusions100V.ANALYSIS OF METEOROID DATA1025.1Introduction1025.2Meteoroid Flux Determination1025.2.1Determination of Experiment102Package Conditions1035.2.2Area Calculations1035.2.3Time-Area Accumulation1185.2.4Poisson Analysis of Counts1185.2.5Flux Calculation1215.3Evaluation of Sensor Reliabilities1285.4Conclusions1376.1Meteoroid Experiment1376.2Radiation Experiment1376.2Radiation Experiment137REFERENCES139			4.1 Introduction 4.2 Mission Anomalies			
4.2.2.1Spectrometer Anomalies204.2.2.2Ionization Chamber Anomalies324.2.3Spectrometer Efficiency and Satellite Dynamics424.3Presentation of Data454.3.1Spectral Maps464.3.2Dose Maps464.3.3Dose Comparisons824.4Conclusions100V.ANALYSIS OF METEOROID DATA1025.1Introduction1025.2Meteoroid Flux Determination1025.2.1Determination of Experiment1025.2.1Determination s1035.2.2Area Calculations1035.2.3Time-Area Accumulation1185.2.4Poisson Analysis of Counts1185.2.5Flux Calculation1215.3Evaluation of Sensor Reliabilities1285.4Conclusions135VI.EVALUATION OF MISSION SUCCESS1376.1Meteoroid Experiment1376.2Radiation Experiment137REFERENCES139				4.2.1 4.2.2	Launch Separation Anomaly Data Anomalies	19 19
4.2.3 Spectrometer Efficiency and Satellite Dynamics424.3 Presentation of Data454.3.1 Spectral Maps464.3.2 Dose Maps464.3.3 Dose Comparisons824.4 Conclusions100V. ANALYSIS OF METEOROID DATA1025.1 Introduction1025.2 Meteoroid Flux Determination1025.2.1 Determination of Experiment102Package Conditions1035.2.2 Area Calculations1035.2.3 Time-Area Accumulation1185.2.4 Poisson Analysis of Counts1185.2.5 Flux Calculation1215.3 Evaluation of Sensor Reliabilities1285.4 Conclusions135VI. EVALUATION OF MISSION SUCCESS1376.1 Meteoroid Experiment1376.2 Radiation Experiment137REFERENCES139					4.2.2.1 Spectrometer Anomalies 4.2.2.2 Ionization Chamber Anomalies	20 32
4.3 Presentation of Data454.3.1 Spectral Maps464.3.2 Dose Maps464.3.3 Dose Comparisons824.4 Conclusions100V. ANALYSIS OF METEOROID DATA1025.1 Introduction1025.2 Meteoroid Flux Determination1025.2.1 Determination of Experiment102Package Conditions1035.2.2 Area Calculations1035.2.3 Time-Area Accumulation1185.2.4 Poisson Analysis of Counts1185.2.5 Flux Calculation1215.3 Evaluation of Sensor Reliabilities1285.4 Conclusions135VI. EVALUATION OF MISSION SUCCESS1376.1 Meteoroid Experiment1376.2 Radiation Experiment137REFERENCES139	•			4.2.3	Spectrometer Efficiency and Satellite Dynami	cs 42
4.3.1Spectral Maps464.3.2Dose Maps464.3.3Dose Comparisons824.4Conclusions100V.ANALYSIS OF METEOROID DATA1025.1Introduction1025.2Meteoroid Flux Determination1025.2.1Determination of Experiment1025.2.2Area Calculations1035.2.3Time-Area Accumulation1185.2.4Poisson Analysis of Counts1185.2.5Flux Calculation1215.3Evaluation of Sensor Reliabilities1285.4Conclusions135VI.EVALUATION OF MISSION SUCCESS1376.1Meteoroid Experiment1376.2Radiation Experiment137REFERENCES139			4.3	Presen	tation of Data	45
4.4 Conclusions100V.ANALYSIS OF METEOROID DATA1025.1 Introduction1025.2 Meteoroid Flux Determination1025.2.1 Determination of Experiment102Package Conditions1035.2.2 Area Calculations1035.2.3 Time-Area Accumulation1185.2.4 Poisson Analysis of Counts1185.2.5 Flux Calculation1215.3 Evaluation of Sensor Reliabilities1285.4 Conclusions135VI.EVALUATION OF MISSION SUCCESS1376.1 Meteoroid Experiment1376.2 Radiation Experiment137REFERENCES139	•			4.3.1 4.3.2 4.3.3	Spectral Maps Dose Maps Dose Comparisons	46 46 82
V.ANALYSIS OF METEOROID DATA1025.1Introduction1025.2Meteoroid Flux Determination1025.2.1Determination of Experiment102Package Conditions1035.2.2Area Calculations1035.2.3Time-Area Accumulation1185.2.4Poisson Analysis of Counts1185.2.5Flux Calculation1215.3Evaluation of Sensor Reliabilities1285.4Conclusions135VI.EVALUATION OF MISSION SUCCESS1376.1Meteoroid Experiment1376.2Radiation Experiment137REFERENCES139			4.4	Conclus	sions	100
5.1Introduction1025.2Meteoroid Flux Determination1025.2.1Determination of Experiment102Package Conditions1035.2.2Area Calculations1035.2.3Time-Area Accumulation1185.2.4Poisson Analysis of Counts1185.2.5Flux Calculation1215.3Evaluation of Sensor Reliabilities1285.4Conclusions135VI.EVALUATION OF MISSION SUCCESS1376.1Meteoroid Experiment1376.2Radiation Experiment137REFERENCES139		v.	ANAL	YSIS OF	METEOROID DATA	102
5.2.1Determination of Experiment Package Conditions102 Package Conditions5.2.2Area Calculations103 5.2.35.2.3Time-Area Accumulation118 5.2.45.2.4Poisson Analysis of Counts118 5.2.55.3Evaluation of Sensor Reliabilities1215.3Evaluation of Sensor Reliabilities128 5.45.4Conclusions135VI.EVALUATION OF MISSION SUCCESS137 6.16.1Meteoroid Experiment 137 6.2137 REFERENCES139			5.1 5.2	Introd Meteor	uction oid Flux Determination	102 102
5.2.2 Area Calculations1035.2.3 Time-Area Accumulation1185.2.4 Poisson Analysis of Counts1185.2.5 Flux Calculation1215.3 Evaluation of Sensor Reliabilities1285.4 Conclusions135VI. EVALUATION OF MISSION SUCCESS1376.1 Meteoroid Experiment1376.2 Radiation Experiment137REFERENCES139				5.2.1	Determination of Experiment Package Conditions	102
5.3 Evaluation of Sensor Reliabilities1285.4 Conclusions135VI. EVALUATION OF MISSION SUCCESS1376.1 Meteoroid Experiment1376.2 Radiation Experiment137REFERENCES139				5.2.2 5.2.3 5.2.4 5.2.5	Area Calculations Time-Area Accumulation Poisson Analysis of Counts Flux Calculation	103 118 118 121
VI.EVALUATION OF MISSION SUCCESS1376.1Meteoroid Experiment1376.2Radiation Experiment137REFERENCES139			5.3 5.4	Evaluat Conclus	tion of Sensor Reliabilities sions	128 135
6.1 Meteoroid Experiment1376.2 Radiation Experiment137REFERENCES139		VI.	EVAL	UATION C	OF MISSION SUCCESS	137
REFERENCES 139			6.1	Meteoro Radiati	oid Experiment ion Experiment	137 137
f.			REFE	RENCES		139

i

FIGURES

.

.

•

£ .

	·	Page
3-1.	Schematic Flow of RRA-118 Tape Translation Program	6
3-2.	Schematic Flow of RRA-119 Tape Translation Program	10
3-3.	Deviation of Command Correlated GMT from Least Squares Curve-Fit of Command GMT Versus Spacecraft Clock	15
3-4.	Schematic Flow Chart of Program to Extract B and L Coordinates from the Ephemeris Tape	17
4-1.	Electron Spectra INTEGRATED OVER RMS Orbit 52	21
4-2.	Proton Spectra Integrated over RMS Orbit 52	22
4-3.	Electron Spectra Integrated over RMS Orbit 67	23
4-4.	Proton Spectra Integrated over RMS Orbit 67	24
4-5.	RMS Electron Spectra (head 1 enabled)	26
4-5.	RMS Electron Spectra (head 3 enabled)	27
4-7.	RMS Proton Spectra (head 1 enabled)	28
4-8.	RMS Proton Spectra (head 3 enabled)	29
4-9.	Spectrometer Telescope	30
4-10.	Electron-Proton Spectrometer Calibration Curves	31
4-11.	Response of the Unshielded Ionization Chamber to Omnidirection Electrons	33
4-12.	Response of the Unshielded Ionization Chamber to Protons at Normal Incidence and Omnidirection	34
4-13.	Response of Thin-Shielded Ionization Chamber to Protons at Normal Incidence and Omnidirection	35
4-14.	Response of Thick-Shielded Ionization Chamber to Protons at Normal Incidence and Omnidirection	36
4-15.	Typical Angular Efficiencies of the Electron-Proton Spectrometer	43

FIGURES (Continued)

:

. .

1

Ρ	а	g	e
	¢,	5	÷

4-16.	Comparison of Efficiencies of Electron-Proton Telescope for Omnidirectional and Pancake Fluxes as a Function of Satellite Orientation with Respect to Magnetic Field Lines at Various Satellite Precession Angles	44
4-17.	RMS Electron Spectra Compared to Vette AE2 Projected 1968 Spectra	_ 52
4-18.	RMS Proton Spectra Compared to Vette Model AP6	57
4-19.	Radiation Data Run Sequences	98
5-1	Generalized Flow Diagram	104
5-2.	Meteoroid Counts Determined from Poisson Analysis Versus Time-Area Accumulation	129
5-3.	Correlation of Sensor Shorts and First Discharge in an Excessive Counter with Change in Satellite Motion from Spin to Tumble	134

TABLES

		Page
4-1.	Comparisons of RMS Ionization Chamber Dose Readings to Those Computed from Vette Models Using Ionization Chamber Response Functions	37
4-2.	Tabulation of RMS Electron Spectra	47
4-3.	Tabulation of RMS Proton Spectra	48
4-4.	Chann'el Energy Boundaries, Efficiencies and Spectrum- to-Dose Conversion Factors for Electron-Proton Spectrometer	50
4-5.	Ionization Chamber Dose Maps	83
4-6.	Comparison of Ionization Chamber Dose Readings to Real-Time Spectrum-to-Dose Computation and Doses Computed from Vette Models Using Ionization Chamber Response Functions	96
5-1.	Listings of RMS Memory Dumps of Meteoroid Sensor Discharges	107
5-2.	Sample Printout from First Poisson Analysis Using Only Rations N ₁ /N ₀	120
5-3.	Printouts of Time-Area Accumulations, Poisson Analyses, and Other Relevant Information as Indicated in the Table	122
5-4.	Types of Sensors on RMS Meteoroid Experiment Packages	130
5-5.	Correlations of Sensor Failures and Meteoroid Counts with Sensor Type and Location	132

ív

I. INTRODUCTION

This report is submitted in accordance with the terms of Contract NAS9-11903, Contract Schedule, Article XIII, and covered the period from 15 June 1970 through 30 June 1971. During this program, which was primarily one of computerized data analysis, the data obtained in earth orbit by the Radiation and Meteoroid Satellite (RMS) was interpreted and reduced to a form which will be usable by future space experimenters.

The RMS was launched by NASA on 9 November 1970 from Wallops Island, Virginia in conjunction with the Orbiting Frog Otolith satellite. The RMS contained two experiments: (1) a nuclear radiation experiment composed of a radiation spectrometer, a real-time pulse-height spectrumto-dose convertor and three NASA ionization chambers, and (2) a meteoroid experiment capable of measuring both flux and particle velocity. The spacecraft re-entered the Earth's atmosphere on 7 February 1971. The RMS mission is discussed in detail in Ref. 1.

The required tasks of this contract are detailed in Paragraph II of the Statement of Work. They were accomplished during this program in the manner summarized as follows: Computer programs were written which lifted the raw data and associated ephemeris data from the GFE magnetic tapes. The engineering data was then used to evaluate the performance of the spacecraft and the experiments. The radiation data was used to prepare flux, spectral, and dose maps of the South Atlantic magnetic anomaly where possible. The meteoroid data was used to determine a rough estimate of the meteoroid flux and in general evaluate the performance of the thin-film meteoroid sensors.

The degree of success of the RMS mission was evaluated in light of the separation anomaly which occurred between RMS and OFO during launch.

:1

II. SUMMARY

The initial phases of this program were dominated by the problems associated with the conversion of the raw satellite data into a form compatible with FORTRAN programming. The original RMS data tapes were in the same format as stored in the satellite memory as detailed in Ref. 2. The data were removed from the stacked words, often bit by bit, and arranged in an indexed format. In attempting to obtain an actual time correlation of data events for the radiation data analysis a serious problem was found with the frame header times which were established at the time of data transmission time from the satellite to the ground station. Errors, which were found to be from several sources, both human and electronic, were removed only after a complex and time consuming reference to the station pass summaries which were supplied by Goddard Space Flight Center.

A series of programs was written in which the data were manipulated on the magnetic tapes until a complete record of the RMS mission was contained on only two tapes, one with the meteoroid data and the other with the radiation data. In addition the radiation tape contained the position converted to B and L coordinates for each radiation dose and spectral data point. These final tapes were used to make the memory data correlations for the meteoroid analysis and radiation dose and spectral maps.

In the analysis of the radiation data many intercorrelations were made between the systems on board the satellite and, in addition, correlations were made with the NASA models of the radiation belts (Ref. 3). This resulted in sufficient information to sort the good data from that which was bad or questionable. The final data, which was presented as dose and spectral maps of the radiation in the South Atlantic magnetic anomaly, is believed to be accurate.

This work was by no means an exhaustive study of the radiation data from the satellite. The information was simply tabulated and

presented in a form for direct comparison to the models of the radiation belts, but no interpretation with respect to temporal variations, for example, were provided within the scope of the program. The tapes are available so that the presentation of the data in any form and any level of detail on any portion of the mission will be simple and efficient.

The analysis of the meteoroid data was conducted in great detail, not because of the value of the velocity and flux data, but primarily to establish the areas of usefulness of the thin-film sensors themselves. Rather striking correlations resulted between the orbital mechanics of the vehicle and the number of events which occurred in the sensors. The most important of these being that when the spinning of the satellite ceased, virtually all spurious events also ceased. The final implication being that the sensors must be used in coincidence when rapid sunlight variations occur; however, they may serve as valuable flux monitors if temperature and other stressing effects are eliminated.

A Poisson analysis was made of the meteoroid flux data. This analysis served to point out the precaution which must be taken if reliable data is to be obtained with the sensors.

A brief analysis was made to evaluate the success of the mission in light of the anomaly which occurred during the injection of the RMS/OFO package into orbit. The meteoroid experiment seemed to be unaffected by the problem (except possibly the high loss of front plane sensors); however, malfunctions occurred in the radiation experiment which were attributed to an impact between the vehicles. Even with the malfunctions, some aspects of each of the mission objectives were accomplished, yet in each case the total amount of information anticipated was not obtained. These may be outlined briefly as follows:

 (a) Real-time pulse-height spectrum to dose conversion was accomplished; however, no actual comparisons were available due to the malfunction of the unshielded ionization chamber and the error in the high energy proton data.

(b) Spectral and dose maps were obtained for electrons and protons, however, the high energy portion of the proton spectrum was lost.

It is difficult to assign a "figure of merit" to the success of the overall mission without assigning a weighting factor to each item. The concept spectrum-to-dose conversion was shown to operate in a realtime mode in the space environment, yet an accurate analysis of the accuracy of the concept was not possible. Also valuable data from the spectrometer and ionization chamber were lost, yet the data obtained is of significant value relative to the effects of the "Starfish" high altitude nuclear test. The actual figure of merit relating to the mission success must be based on the criterion established for such an evaluation. III. TRANSLATION OF RMS DATA AND EPHEMERIS TAPES

3.1 RMS Master Digital Data Tape (MDDT) Translation

Two computer programs were written to translate the seven-track RMS MDDT tapes into a single nine-track tape compatible with the data analysis procedures developed for the IBM 360 computer. These programs, designated RRA-118 and RRA-119, produced the G-1 and G-2 output tapes, respectively. The RRA-118 program performed the following functions:

- (a) read frame headers and data records from the seven-track MDDT tapes;
- (b) selected the good quality real-time data frames and the pertinent minor frames of each RMS memory dump;
- (c) converted the header information and binary data from each frame into appropriate single-word output data; and
- (d) wrote the converted data on a nine-track output tape (G-1).

The RRA-119 program performed the following functions:

- (a) read the nine-track output tape;
- (b) printed a descriptive listing of the total record of header and frame data for each frame stored on the G-1 tape; and
- (c) wrote the G-2 output tape.

Generalized flow diagrams for these programs are given in Figs. 3-1 and 3-2.

Some difficulties were encountered in translating the RMS stacked data tapes into the G-1 tape file which were due to the imperfect nature of the raw data stacked on the seven-track tapes and the presence of nonsystematic errors in the header information supplied for each of the data frames.

These included errors noted in the header information for some of the data frames which were associated with the assignment of orbit numbers and the computation of the GMT which establishes the spacecraft transmission time. In several cases, the orbit number for an entire run of data did not agree with the GMT presented in the GFSC header or the spacecraft clock

Fig. 3-1. (CONTINUED)

Fig. 3-2. SCHEMATIC FLOW OF RRA-119 TAPE TRANSLATION PROGRAM WHICH SELECTED GOOD QUALITY DATA FROM THE RMS MDDT, TRANSLATED THE DATA INTO SINGLE WORD OUTPUT FORMAT, AND WROTE THE RESULTS IN A NINE-TRACK FORMAT ON TAPE G-1.

Fig. 3-2. (CONTINUED)

Fig. 3-2. (CONTINUED)

.

transmission time in the data frame. In addition, the raw data collection for the MDDT tapes included numerous runs of bad quality data. These bad frames occurred at the beginning of each data transmission from the satellite before lock on the signal had been established at the station. In other cases, the data from a given station-pass was accidentally repeated two or more times on the MDDT.

The most time-consuming of the problems encountered in this program was associated with the correlation of the spacecraft clock with the GMT. The correlations made by Goddard Space Flight Center were in error in nearly all cases: There were three major sources of error found:

- (a) correlation with time of transmission from the receiving station to GSFC instead of time of transmission to station from satellite;
- (b) locking of minute and .1 second integers in GMT clock;
- (c) miscorrelation of time with data frames (probably occurring in digital transmission from station to GSFC.)

Many attempts to remove the systematic errors by the computer proved unsuccessful and in order to obtain correlation it was found necessary to use the time when the command was sent to the satellite from the station which were obtained from the pass summaries. This data was entered into the computer on cards and the final correlation to the exact frame was made by the computer by adding the time per frame times the frame number to the command time, plus 4.75 seconds which is the delay from the time the command button was pressed by the station operator until the satellite began transmitting the zeroth frame.

To apply the corrections and demonstrate the accuracy of the final correlations, a least-square-fit was made of the command time GMTs to the spacecraft clock. The resulting curve is given in Fig. 3-3. This curve shows that the spacecraft clock oscillator was running at one average rate during the first part of the satellite's lifetime and a slower rate during the latter part. Change in rate correlates with the change in the satellite's motion from a spin to an end-over-end tumble. At this time, the average temperature of the satellite control unit decreased, since

DEVIATION OF COMMAND CORRELATED GMT FROM LEAST SQUARES CURVE FIT OF COMMAND GMT VERSUS SPACECRAFT CLOCK Fig. 3-3.

LEAST SQUARES DEVIATION (SECS.)

15

SPACECRAFT CLOCK (x10⁶ COUNTS, QUARTER SECONDS)

that unit was facing away from the sun. The correlation of the GMTs obtained from the command times is seen to follow the curve with only slight deviations. In contrast, the GSFC-provided GMTs, shown as "+" on the curve, are seen to scatter wildly. The numbers with the arrows indicate the large deviation in some times. The systematically low values of most of the points result from the shifting of data frames with respect to the time.

After the analysis, it is believed that the resulting error in time, within a one sigma limit, is of the order of \pm 3 seconds, which corresponds to a position uncertainty of approximately 15 nautical miles. This is well within the accuracy required for the correlation of the data to the B and L coordinates. Because of these errors, considerable time was required in reviewing the printouts of the headers from the MDDT files and comparing them with the station-pass summaries. This review did, however, make it possible to establish a complete history of the RMS mission.

3.2 Ephemeris Tape Translation

The RMS ephemeris tape which was supplied by Goddard Space Flight Center was in the ORB-3A format. The information contained on the tapes included the spacecraft's position in two coordinate systems as a function of GMT and other data such as the time of terminator crossing. The most important information on the tapes, relative to this program, was the position in the B and L geomagnetic coordinate system. This information was given as a function of GMT at one minute intervals during the RMS mission lifetime.

The data was first translated from the seven-track to nine-track tapes which were compatible with the IBM 360 computer series. A program was then written (shown schematically in Figure 3-4) which extracted the B and L values from the tape and produced a tape in which the data could be merged with the RMS data using the FORTRAN computer language.

- 16

Fig. 3-4. Schematic Flow Chart of Program to Extract B and L Coordinates from the Ephemeris Tape

IV. ANALYSIS OF RADIATION DATA

4.1 Introduction

The radiation experiment aboard RMS consisted of three basic systems:

- (a) a proton-electron spectrometer,
- (b) a pulse-height spectrum-to-dose conversion system, and
- (c) a triad of standard Manned Spacecraft Center ionization chambers.

The primary objective of this experiment was to demonstrate the feasibility and accuracy of the spectrum-to-dose conversion concept (as discussed in Ref. 4) and instrumentation in a real-time mode and in the actual space radiation environment. This objective was met in general, as discussed in Ref. 1; however, in the fullest sense, valuable data was lost due to instrument malfunctions which prevented a detailed analysis of the accuracy of the system for both electrons and protons. The loss of this data in no way reflects on the pulse-height spectrumto-dose conversion system on board the satellite, since this system did actually convert to dose, in real-time, the information it received from the spectrometer.

The secondary objective of the radiation experiment was to provide data to develop dose and spectral maps in the South Atlantic magnetic anomaly.

In line with the original objectives of the radiation experiment the current data analysis program consisted of two basic tasks:

- (a) the evaluation of the success of the RMS mission in light of the OFO/RMS separation problems at insertion into orbit and
- (b) the computation of electron and proton doses and the preparation of orbital and spectral dose maps.

4.2 Mission Anomalies

Before any of the radiation data obtained by the satellite could

be accepted as being accurate, it was necessary to review the overall mission in light of the launch anomaly and the instrument malfunctions. Cross comparisons of the information from the various instruments and comparisons of these data to the models of the radiation bells have led to confidence in the spectral and dose maps presented in paragraph 4.3.

4.2.1 Launch Separation Anomaly

From data obtained from the OFO beacon signal modulations it was determined that the spin rates of the vehicle were not as predicted for the launch sequence. Also, the OFO accelerometers indicated a rather large impact at the time of separation. The detailed sequence of events as well as could be established, is discussed in Refs. 1 and 5. In brief the Scout fourth-stage sequence timer apparently ran at twice its normal speed. Because of the timing error it is believed that the two satellites impacted at separation and in some way damaged the radiation experiment. Preflight tests indicated that the instruments were working properly just prior to launch; however, the first orbital data contained dose readings from the spectrometer which were higher than those obtained by the ionization chambers. These and other data anomalies are discussed in the following paragraphs.

4.2.2 Data Anomalies

To accomplish the objectives of the radiation experiment, onboard comparisons between the doses measured by the NASA ionization chambers and those computed from the spectrometer measurements were to be made in real time, the supposition being that if the readings from both instruments matched, then one could have confidence in the pulse-height spectrum to-dose-conversion system, which potentially has a far wider range of applications than the ionization chamber system.

Unfortunately a malfunction occured in the spectrometer which first became apparent when the proton doses from the spectrum-to-dose conversion system were found to be much higher than those measured by

the ionization chambers. The comparisons were available immediately after a data dump from the GSFC "quick look" printouts.

4.2.2.1 Spectrometer Anomalies

In an attempt to understand the problem, spectra were taken with each of these spectrometer heads independently and it was found that head 2 recorded no proton spectra, indicating that the signal from the main detector stack was not reaching the total energy summing amplifier. The spectra obtained from heads 1 and 3 were found to be distorted, having an excess of counts at high energies. To allow early comparisons to the Vette models two runs were made by Mr. Tim White at NASA/MSC in which spectra were obtained from the models for two actual RMS orbits. The Vette spectra for both electrons and protons were computed with the GSFC updated RMS orbital locations. Latitude, longitude, and height above the surface of the earth were supplied to MSC at one-minute intervals covering the data collection time of the radiation experiment for that particular orbit. The results of a comparison for orbit 52 for spectrometer head 1 are shown in Figs. 4-1 and 4-2. The electron spectra match quite nicely, which gives a high degree of confidence in the spectrometer. The overall view of the comparisons of the proton spectra is not as good. This is partly due to the fact that the Vette spectrum is composed of three separate models: the AP1, between 30 and 50 MeV; AP6, below 30 MeV; and AP7, above 50 MeV. The discontinuities of the composite spectrum at the boundary of each model make comparisons difficult. It is obvious, however, that the RMS data is too high above 50 MeV. The spectra obtained with spectrometer head 3 (Figs. 4-3 and 4-4) show the same basic characteristics as those of head 1. A closer examination of the head 3 spectra revealed additional differences between the data and the Vette model. There was an excess in high energy electron counts and in the high energy portion of the Proton I proton spectrum (that part below 42 MeV). When data were available from the B and L maps of the radiation belts these spectral distortions were even more obvious.

Fig. 4-1. Electron Spectra Integrated over RMS Orbit 52

Fig. 4-3. Electron Spectra Integrated over RMS Orbit 67

Fig. 4-4. Proton Spectra Integrated over RMS Orbit 67

Examples of the data for heads 1 and 3 at the same B and L locations are given in Figures 4-5 and 4-6 for electrons and 4-7 and 4-8 for protons. In the last four figures the data are compared to the Vette models and normalized over the region of the RMS data. These curves show conclusively the more subtle distortions in the electron and low energy proton spectra (Proton I) of head 3.

An explanation of the malfunctions can be most easily understood by referring to the drawing of the spectrometer telescope in Fig. 4-9 and the calibration curves in Fig. 4-10, both of which were taken from Ref. 1. The problem of excessive counts in the Proton II portion of the spectra, which is common to both head 1 and head 3 is believed to be due to an instrument grounding problem. The most plausible explanation for the excessive counting is that the instrument was sensitive to particles which penetrated the walls of the telescope and lost energy in <u>both</u> the total energy stack and the back penetration detector. It appears that the level detector circuit from the penetration detector activated the coincidence circuit between the first two detectors and produced a false logic signal which deposited the count in the Proton II channels. Such malfunctions had been observed in the laboratory when grounding leads were disconnected.

The more subtle spectral distortions in head 3 are believed result from protons which penetrated the walls of the telescope and deposited energy in both the second detector of the telescope and the stack but not the back detector. The signal resulting from the stack apparently activated the detector 1 and 2 coincidence circuit and caused the accumulation of false counts.

Attempts were made to model the failures and restore the data, however, the uncertainties involved in the penetrations of the particles through the telescope walls and satellite structure increased the errors in the spectra to an unacceptable level, rendering them useless. The work did show, however, that the number of particles, which would be expected to penetrate the walls, was in the order of the spectral distortions observed.

25

N(E) (ELECTRONS/MEV)

27

FIG. 4-6.

RMS'ELECTRON SPECTRA

....

.

۰,

4.2.2.2 Ionization Chamber Anomalies

It was thought until the last phases of this program that the ionization chamber readings were reliable. It was not until the correlations were made in the B and L coordinate system that it was possible to make accurate comparisons between the dose readings and those doses computed from the Vette models with the ionization chamber response functions. To make these comparisons the overlap integrals of the response functions (Figs. 4-11 through 4-14) and the Vette distributions were computed. These are presented in Table 4-1 with the average of the RMS ionization chamber readings for the corresponding grid locations. The values for the thin and thick shields are not unreasonably divergent. In general the computed doses are of the order of 80% higher than the measured values. The situation for the unshielded chamber is quite different. The calculations are from 5 to 10 times higher than the readings. This prompted a careful examination of the ionization chamber calibration and final checkout data of the satellite.

The gamma-ray calibrations were studied and it was found that the latest available data taken during the final acceptance test (Ref. 6) of the satellite was consistent with the original calibrations of dose rate as a function of voltage output (Ref. 1). This indicated that over this period the three chambers gave reliable readings.

The only explanation is that the sensitivity of the bare chamber changed during or after launch. Several attempts were made to determine the nature of the change and, thus, obtain a new calibration relative to the other chambers. This was unsuccessful, since the ratio of the readings to the computations was neither constant with reading nor with spectrum shape. This implied that the sensitivity change occurred in the nonlinear portion of the logarithmic amplifiers.

Further investigations did show that the ratio of the readings of the unshielded chamber to those of the shielded chambers did remain constant at the same B and L locations for different orbits, indicating

FIGURE 4-13. RESPONSE OF THIN-SHIELDED IONIZATION CHAMBER TO PROTONS AT NORMAL INCIDENCE AND OMNIDIRECTION

TABLE 4-1.COMPARISONS OF RMS IONIZATION CHAMBER DOSEREADINGS TO THOSE COMPUTED FROM VETTE MODELSUSING IONIZATION CHAMBER RESPONSE FUNCTIONS

** L = 1.20 **

ŝ

B .	DATA	DC	DSE (RAD/HR)	
(GAUSS)	TYPE	NO SHIELD	THIN SHIELD	THICK SHIELD
0.196	ELECTRON	3.702E-01		
	PROTON	1.813E 00	4.311E-01	3.349E-01
	TOTAL	2.183E 00	4.311E-01	3.349E-01
	RMS DATA	3.025E-01	3.070E-01	2.154E-01
0.198	ELECTRON	2.741E-01	· · ·	
	PROTON	1.477E 00	3.687E-01	2.843E-01
	TOTAL	1.751E 00	3.687E-01	2.843E-01
2 · · · ·	RMS DATA	3.740E-01	3.276E-01	2.510E-01
0.200	ELECTRON	2.048E-01		and a second
	PROTON	1.182E 00	3.172E-01	2.443E-01
	TOTAL	1.387E 00	3.172E-01	2.443E-01
	RMS DATA	2.562E-01	2.135E-01	1.654E-01
0.202	ELECTRON	1.465E-01		
· ·	PROTON	9.284E-01	2.667E-01	2.010E-01
	TOTAL	1.075E 00	2.667E-01	2.010E-01
	RMS DATA	1.877E-01	1.568E-01	1.194E-01
0.204	ELECTRON	1.040E-01	•	
	PROTON	7.154E-01	2.178E-01	1.604E-01
1	TOTAL	8.194E-01	2.178E-01	1.604E-01
	RMS DATA	1.393E-01	1.283E-01	9.226E-02
0.206	ELECTRUN	7.247E-02		
	PRUTUN	5.3395-01	1.7435-01	1.235E-01
		0.004E-01	1.743E-01	1.2356-01
0 20 9	KMS DATA	1.0896-01	9.803E-UZ	6.380E-02
0.208	ELECTRON	4.903E-UZ	1 20/5 01	7 0525 02
	PRUTUN	5.008E-01	1.2065-01	7.9525-02
. •		4.504C-01 7.660C-02		/ 757E-02
0 210	ELECTION	2 2975-02	1.0000-02	4.1715-02
0.210		2.7305-01	0 3065-02	5 4075-07
	TOTAL	- 3.060F=01	9.306E+02	5 6925-02
	RMS DATA	4.305E-02	4.543E-02	3.165E-02
0.212	ELECTRON	2.3005-02	TOTAL VE	
~~ L I L	PROTON	1-827E-01	6-267E-02	3.283E-02
	TOTAL	2.057E-01	6-267E-02	3.283E-02
	RMS DATA	< .01	2.822F-02	< .01
0.214	FLECTRON	1.544F-02		
	PROTON	1.196F-01	3.776E-02	1.699F-02
	TOTAL	1.350E-01	3.776E-02	1.699E-02
	RMS DATA	< •01	2.241E-02	< .01
0.216	ELECTRON	1.016E-02		• • • • •
	PROTON	7.622E-02	2.579E-02	1.067E-02
	TOTAL	8.638E-02	2.579E-02	1.067E-02
	RMS DATA	< .01	1.459E-02	< .01
		•		

TABLE 4-1 (CONT.) COMPARISONS OF RMS IONIZATION CHAMBER DOSE READINGS TO THOSE COMPUTED FROM VETTE MODELS USING IONIZATION CHAMBER RESPONSE FUNCTIONS

****** L = 1.30 ******

~~ R		 D0	SE (RAD/HR)	
(GAUSS)	TYPE	NO SHIELD	THIN SHIELD	THICK SHIELD
0.200	ELECTRON	1.558E 00		· · · ·
	PROTON	3.527E 00	8.699E-01	6.849E-01
	TOTAL	5.085E 00	8.699E-01	6.849E-01
•••	RMSDATA	6.233E-01	4.747E-01	3.830E-01
0.205	ELECTRON	9.157E-01		
	PROTON	2.356E 00	6.215E-01	4.878E-01
	TOTAL	3.272E 00	6.215E-01	4.878E-01
	RMS DATA	4.967E-01	3.977E-01	3.032E-01
0.210	ELECTRON	5.068E-01		
	PROTON	1.374E 00	4.115E-01	3.178E-01
	TOTAL	1.881E 00	4.115E-01	3.178E-01
	RMS DATA	3.184E-01	2.593E-01	1.882E-01
0.212	ELECTRON	3.916E-01	· *	
	PROTON	1.100E 00	3.405E-01	2.603E-01
	TOTAL	1.492E 00	3.405E-01	2.603E-01
	RMS DATA	2.477E-01	1.867E-01	1.381E-01
0.214	ELECTRON	2.966E-01		
• • •	PROTON	8.432E-01	2.862E-01	2.136E-01
	TOTAL	1.140E 00	2.862E-01	2.136E-01
	RMS DATA	1.901E-01	1.472E-01	1.034E-01
0.216	ELECTRON	2.246E-01		
	PROTON	6.510E-01	2.179E-01	1.585E-01
	TOTAL	8.756E-01	2.1796-01	1.585E-01
	RMS DATA	1.097E-01	9.110E-02	6.228E-02
0.218	ELECTRON	1.670E-01		· · · · ·
	PROTON	5.102E-01	1.819E-01	1.238E-01
· .	TOTAL	6.773E-01	1.819E-01	1.238E-01
	RMS DATA	7.710E-02	6.623E-02	4.312E-02
0.220	ELECTRON	1.264E-01		
	PROTON	3.914E-01	1.447E-01	8.915E-02
	TOTAL	5.178E-01	1.447E-01	8.915E-02
	RMS DATA	<.01	4.649E-02	< .01
0.222	ELECTRON	9.042E-02	÷.	
	PROTON	2.869E-01	9.941E-02	5.374E-02
	TOTAL	3.773E-01	9.941E-02	5.374E-02
	RMS DATA	< .01	2.8506-02	< .01
	•			*

. . .

TABLE 4-1. (CONT.) COMPARISONS OF RMS IONIZATION CHAMBER DOSE READINGS TO THOSE COMPUTED FROM VETTE MODELS USING IONIZATION CHAMBER RESPONSE FUNCTIONS .

L = 1.40 ** **

B	DATA	D(DSE (RAD/HR)	• • • •
(GAUSS)	TYPE	NO SHIELD	THIN SHIELD	THICK SHIELD
.0.210	ELECTRON	2.600E 00		· · · · · · · · · · · · · · · · · · ·
	PROTON	2.879E 00	7.310E-01	5.616F-01
• •	TOTAL	5.479E 00	7.310E-01	5.616E-01
	RMS DATA	6.843E-01	4.438E-01	3.337E-01
0.215	ELECTRON	1.731E 00	,	• • •
	PROTON	1.908E 00	5.363E-01	4.017E-01
· ·	TOTAL	3.639E 00	5.363E-01	4.017E-01
2	RMS DATA	4.545E-01	3.246E-01	2.244E-01
0.220	ELECTRON	1.083E 00		
	PROTON	1.209E 00	3.697E-01	2.580E-01
	TOTAL	2.293E 00	3.697E-01	2.580E-01
· +	RMS DATA	2.220E-01	1.570E-01	9.898E-02
0.225	ELECTRON	6.234E-01		
•	PROTON	6.657E-01	2.299E-01	1.465E-01
:	TOTAL	1.289E 00	2.299E-01	1.465E-01
	RMS DATA	1.426E-01	9.926E-02	5.695E-02
0.230	ELECTRON	3.274E-01		
	PROTON	3.307E-01	8.911E-02	5.131E-02
	TOTAL	6.580E-01	8.911E-02	5.131E-02
	RMS DATA	3.779E-02	3.762E-02	1.726E-02
0.232	ELECTRON	2.624E-01	•	
	PROTON	2.462E-01	6.361E-02	3.612E-02
	TOTAL	5.086E-01	6.361E-02	3.612E-02
	RMS DATA	< .01	1.478E-02	< .01
	· · · · ·			

TABLE 4-1. (CONT.) COMPARISONS OF RMS IONIZATION CHAMBER DOSE READINGS TO THOSE COMPUTED FROM VETTE MODELS USING IONIZATION CHAMBER RESPONSE FUNCTIONS

** L = 1.50 **

B	DATA	D	DSE (RAD/HR)	
(GAUSS)	TYPE	NO SHIELD	THIN SHIELD	THICK SHIELD
0.210	ELECTRON	3.487E 00		
	PROTON	4.554E 00	7.002E-01	5.186E-01
•	TOTAL	8.041E 00	7.002E-01	5.186E-01
	RMS DATA:	6.180E-01	3.586E-01	2.519E-01
0.220	ELECTRON	1.847E 00		
1 e	PROTON	2.364E 00	4.020E-01	2.748E-01
. *	TOTAL	4.211E 00	4.020E-01	2.748E-01
	RMS DATA	4.057E-01	2.590E-01	1.632E-01
0.225	ELECTRON	1.244E 00		
	PROTON	1.555E 00	3.021E-01	1.908E-01
	TOTAL	2.799E 00	3.021E-01	1.908E-01
	RMS DATA	2.558E-01	1.505E-01	8.730E-02
0.230	ELECTRON	7.841E-01	. *	· · ·
	PROTON	9.582E-01	2.020E-01	1.1826-01
	TOTAL	1.742E 00	2.020E-01	1.182E-01
•	RMS DATA	1.393E-01	8.892E-02	4.5958-02
0.235	ELECTRON	4.712E-01		
•	PROTON	5.508E-01	1.213E-01	6.884E-02
	TOTAL	1.022E 00	1.213E-01	6.884E-02
	RMS DATA	< .01	5.116E-02	<.01

** L = 1.60 **

		•	,	
 В	DATA	D(DSE (RAD/HR)	
(GAUSS)	TYPE	NO SHIELD	THIN SHIELD	THICK SHIELD
0.220	ELECTRON	4.026E-01		
	PROTON	3.354E 00	3.101E-01	1.908E-01
	TOTAL	3.757E 00	3.101E-01	1.908E-01
	RMS DATA	3.410E-01	1.876E-01	1.090E-01
0.230	ELECTRON	2.193E-01		
	PROTON	1.737E 00	1.782E-01	9.998E-02
	TOTAL	1.957E 00	1.782E-01	9.998E-02
	RMS DATA	2.320E-01	1.255E-01	6.276E-02
0.240	ELECTRON	1.104E-01	•	
	PROTON	7.267E-01	8.503E-02	4.742E-02
:	TOTAL	8.371E-01	8.503E-02	4.742E-02
	RMS DATA	9.766E-02	5.895E-02	< .01
			· · ·	

TABLE 4-1. (CONT.) COMPARISONS OF RMS IONIZATION CHAMBER DOSE READINGS TO THOSE COMPUTED FROM VETTE MODELS USING IONIZATION CHAMBER RESPONSE FUNCTIONS

** L'= 1.70 **

B	DATA	DC	DSE (RAD/HR)	
(GAUSS)	TYPE	NO SHIELD	THIN SHIELD	THICKSSHIELD
0.240	FLECTRON	3-130F-02	· • • • • • • • • • • • • • • • • • • •	
	PROTON	1.279E 00	7.5716-02	3. 04 8E-02
i e e	TOTAL	1.310E 00	7.571E-02	3.9685-02
	RMS DATA	9.757F-02	5-211E-02	
•			Jeciii Ve	•••1
		** L =	1.80 **	
В	DATA	DC	SE (RAD/HR)	
(GAUSS)	TYPE	NO SHIELD	THIN SHIELD	THICK SHIELD
0.240	ELECTRON	1_436F-02		
	PROTON	1.664F.00	5-044E-02	2-323E-02
	ΤΠΤΔΙ	1.679E 00	5-044E-02	2.323E-02
	RMS DATA	1-043E-01	4-629E-02	< .01
0-250	FLECTRON	1-037E-02		
	PROTON	8-781E-01	3-025E-02	1-415E-02
• • • •	TOTAL	8-885F-01	3-025E-02	1.415E-02
· · ·	RMS DATA	7.984E-02	3.7978-02	< .01
	· · ·	مرد المناد مسترد بالأين المراقي . • محمد م	· · · · · · · · · · · · · · · · · · ·	
		** L =	1.90 **	
		 D(SF (RAD/HR)	
(GAUSS)	TYPE	NO SHIELD	THIN SHIELD	THICK SHIELD
0.250	ELECTRON	8.051E-03		
	PROTON	1.134E 00	2.123E-02	7.883E-03
	TOTAL	1.142E 00	2.123E-02	7.883E-03
	RMS DATA	5.974E-02	2.425E-02	< .01
	and the second sec	······································	2.00 **	
В	DATA	DC	DSE (RAD/HR)	
(GAUSS)	TYPE	NO SHIELD	THIN SHIELD	THICK SHIELD
0.250	ELECTRON	6.371E-03		__
	PROTON	1.321E 00	1.619E-02	3.933E-03
	TOTAL	1.328E 00	1.619E-02	3.933E-03
	RMS DATA	4.754E-02	1.674E-02	< .01

**

that the change in sensitivity did remain constant for the life of the experiment. A detailed examination of the NASA/MSC data logs, if these are still available, should provide the necessary information to salvage the data; however, at this point the readings of the bare chamber must be considered to be in error. This in no way reflects on the validity of the data from the shielded chambers. The ratio in the readings of these chambers to the computations is simply the adjustment required in the flux values of the Vette models if the spectra are assumed to be even reasonably accurate.

4.2.3 Spectrometer Efficiency and Satellite Dynamics

A brief analysis was made to determine the effect of the "pancake" trajectories of particles incident on the spectrometer telescope. Since the radiations encountered by the satellite were very low in the radiation trapping zone, the particles were very near their mirror points and the pitch angles of the particles (both electrons and protons) were nearly 90° with respect to the magnetic field lines. Because of the small acceptance angle of the telescope, the number of particles counted could be from zero to several times that obtained in an omnidirectional flux, depending on the orientation of the telescope with respect to the field line. This was further complicated by the complex motion of the satellite which consisted of a spin with precession in the most general case. Using the measured angular response functions of the satellite which are given in Fig. 4-15, computations of the effective efficiency of the spectrometer were made for various precession angles as a function of the orientation of the total angular momentum vector of the satellite with respect to the magnetic field. These curves are presented in Fig. 4-16. The calculations were made for both head 1 at 35° with respect to the spin axis of the satellite and head 3 at 66°. These curves have several interesting features. The efficiency for either head is seen to vary greatly, especially at low precession angles. However, in most cases for precession angles 30° or greater, the average of the outputs from the two heads is very

FIGURE 4-15. TYPICAL ANGULAR EFFICIENCIES OF THE ELECTRON PROTON SPECTROMETER

FIGURE 4-16. COMPARISON OF EFFICIENCIES OF ELECTRON-PROTON TELESCOPE FOR OMNIDIRECTIONAL AND PANCAKE FLUXES AS A FUNCTION OF SATELLITE ORIENTATION WITH RESPECT TO MAGNETIC FIELD LINES AT VARIOUS SATELLITE PRECESSION ANGLES

7ċ

nearly equal to the omnidirectional efficiency. The implication is that if the two heads had functioned properly, the error in the absolute value of the flux measurements would have been increased only slightly.

Considerable time was spent in an attempt to determine the dynamics of the satellite in order to assign an accurate efficiency to the spectral measurements. Automatic gain control (AGC) recordings from the station receivers were made of the RMS beacon and telemetering transmitters. In addition plots of the satellite solar panel current were made as a function of time and rather unsuccessful attempts were made to correlate these data. The solar panel data indicated the changing angle of the cylindrical solar panel array with respect to the sun. Thus, it was possible to measure the precession period and the period of tumble after spin stopped. (These periods should be constant and equal, theoretically). Such measurements made throughout the lifetime of the satellite showed this to be essentially true. Precession periods of the order of 36 seconds were observed. This was not corroborated by the AGC data, however. The relatively simple pattern which was received after spin stopped indicated a tumble period of 6.7 seconds. The complex patterns before spin stopped could not be reliably correlated at all. Since spin stopped relatively fast (about orbit 169), the evidence strongly suggests that the precession angle was large, certainly greater than 30°, during the time the radiation data were taken. Thus, an uncertainty can be placed on the data from an examination of Fig. 4-16. An error of the order of \pm 20% for one standard deviation appears reasonable. This dictates the highest precision which could be obtained in making spectrum-to-dose comparisons. Such comparisons are made and discussed in Section 4.3.3.

4.3 Presentation of Data

1 1 1 1

As described in the preceding paragraphs, two forms of useful data were obtained by the RMS radiation experiment:

- (a) Spectral maps obtained by the spectrometer telescope and
- (b) Dose maps obtained by the NASA ionization chambers.

Both of these types of data were obtained in the South Atlantic magnetic anomaly and are presented in the B and L coordinate system.

4.3.1 Spectral Maps

The spectral maps were obtained from the G-II tape on which had been written the correlated B and L coordinates. The coordinates were taken as the point at the center of the 8 second data period. The resulting tabulations and plots were taken from the entire RMS mission for spectrometer head 1. The B and L grid used is identical to that used in the Vette model. Data were placed in a particular grid location according to the simple criteria of one half the distance between B or L values. The resulting data for electrons and protons are presented in tabular form in Tables 4-2 and 4-3 respectively. Plots are presented in Figs. 4-17 and 4-18. The channel boundaries of the spectrometer and mean efficiences over the boundaries are taken from Ref. (1) and presented in Table 4-4. The regions of poor statistics are indicated in both the tables and the figures. The data are normalized as indicated in the table and figure captions. This is the form for presentation of the data which is most useful, since it offers the best comparison to the Vette models.

4.3.2 Dose Maps

The dose maps were obtained from the outputs of the three NASA ionization chambers. The chambers are described in detail in Ref. (1) and are shielded in a manner to provide proton thresholds of approximately 11 MeV for the chamber with no shield, 40 MeV for the thin shield and 80 MeV for the thick shield. As discussed in Section 4.2.2.2, Ionization Chamber Anomalies, the data from the unshielded ionization chamber did not agree with the computations from the spectrometer data or the Vette models. The no shield data is included here only for reference. The calibration curves for the chambers were presented earlier in Fig. 4-11 through 4-14.

TABLE 4-2. TABULATION OF RMS ELECTRON SPECTRA.

(HEAD 1 ENABLED)

ENERGY GROUP (MEV)	L = 1.10	L = 1.20	L = 1.30	L = 1.40	L = 1.50	L = 1.70	L = 2.00	L = 2.50
C. 50-0.65 C. 65-0.65 C. 65-0.79			5.699E 00 1.762E-01	6.119E 00 4.411F-01	6.084E 00 4.560F-01	5.294F-01	5.986F 00 4.714F-01	6.243E 00 2.090F-01
C.74-C.93	3.947E-03	7.614E-02	9.093E-02	8.896F-02	1.082E-01	1.481E-01	1.328E-01	1.167E-01
	1.342F-02	5.184E-01	3.901F-02	2.982E-02	3.902E-02	7.161E-02	7.101E-02	0.0
1.(5-1.20	5.519E-04	5.217E-03	1.794E-03	6.399E-03	1.006E-02	2.018E-02	1.880F-02	0 0
1.20-1.35	3.038E 00	1.786E-02	2.264E-01	4.014E-03	3.073E-03	2.454E-03	-7.048E-03	0 0
1.35-1.62	5.434F-05	1.644E-03	1.332E-01	1.078E-03	1.108E-03	1.208E-03	1.388E-03	
1.62-1.91	C.0	7.750E-04	4.691E-04	1.152E-03	4.669E-04	5.316E-04	0.0	
L.91-2.20	1.259E 00	5.812E-04	3.776E04	7.725E-04	3.557E-04	6.076E-04	1.309F-03	6.210E-02
2.20-2.53	0.0	6.527F-04	2.413E-04	5.598E-04	3.321E-04	C.0	0.0	
2.53-3.10	5.342E-02	1.594E-03	2.833E-04	7.102E-04	2.941E-04	2.318E-04	3.995E-03	0.0
3.16-3.65	4.377E-03	4.938F-04	2.715E-04	5.145E-04	3.634E-04	2.403E-04	0.0	
3.65-4.20	2.702E-05	3 • 548E-02	2.976E-04	4.359E-04	3.400E-04	2.002E-94	2.070E-03	ः
4.20-5.20	0.0	4 • 495È-04	3.178E-02	5.777E-04	2.708E-04	4.405E-95		• • • •
							;	
•		*INDICATES P	OOR STATISTI	CS			• •	-
•			·			•		
	. *					•	•	• •

47

1

•

۰.

.

.

TABLE 4-3. TABULATION OF RMS PROTON SPECTRA.

(HEAD 1 ENABLED) ** L = 1.10 ** 1., ...

в		ENE	RGY GROUP	(MEV)	 -	
(GAUSS)	11.0-12.7	12.7-15.5	15.5-19.0	19.0-27.0	27.0-35.0	35.0-42.0
*0.200	0.0	0.0	0.0	0.0	0.0	0.0
*0.205	0.0	0.0	0.0	4.1678-02	8.333E-02	0.0
*0.210	1.681E-01	5.102E-02	5.102E-02	2.232E-02	1.339E-02	1.531E-02
*0.215	5.602E-02	1.701E-02	2.177E-01	5.952E-03	5.952E-03	0.0

** L = 1.20 **

в	*********	ENEF	KGY GROUP	(MEV)		· ,
(GAUSS)	11.0-12.7	12.7-15.5	15.5-19.0	19.0-27.0	27.0-35.0	35.0-42.0
*0.196	0.0	0.0	0.0	0.0	0.0	0.0
*0.198	1.665E-01	9.466E-02	2.926E-02	2.2595-02	1.506E-02	6.885E-03
*0.200	1.631E-01	8.604E-02	3.714E-02	1.906E-02	1.408E-02	1.238E-02
0.202	1.350E-01	6.238E-02	4.207E-02	2.654E-02	1.841E-02	1.272E-02
0.204	1.420E-01	6.158E-02	4.269E-02	2.874E-02	1.580E-02	1.149E-02
*0.206	1.681E-01	8.291E-02	5.102E-03	2.455E-02	2.902E-02	5.102E-03
*0.208	1.563E-01	4.464E-02	3.571E-02	2.148E-02	1.953E-02	2.232E-02
*0.210	1.858E-01	7.519E-02	3.008E-02	2.303E-02	1.316E-02	1.128E-02
*0.212	3.885E-02	3.032E-02	8.086E-03	1.415E-02	1.061E-02	8.8955-02
*0.214	1.420E-01	8.621E-02	2.956E-02	2.1558-02	1.724E-02	1.478E-02

** L = 1.30 **

				<u>.</u>		
B		ENEF	RGY GROUP	(MEV)		
(GAUSS)	11.0-12.7	12.7-15.5	15.5-19.0	19.0-27.0	27.0-35.0	35.0-42.0
0.200	1.288E-01	7.071E-02	3.932E-02	2.778E-02	1.915E-02	9.994E-03
0.205	1.396E-01	6.498E-02	3.899E-02	2.790E-02	1.7245-02	1.188E-02
0.210	1.292E-01	7.114E-02	4.405E-02	2.643E-02	1.671E-02	1.169E-02
0.212	1.388F-01	7.424E-02	3.531E-02	2.1426-02	1.791E-02	1.685E-02
0.214	1.353E-01	7.857E-02	3.000E-02	2.500E-02	1.812E-02	1.429E-02
*0.216	1.101E-01	5.069E-02	6:083E-02	2.742E-02	1.774F-02	1.382E-02
*0.218	1.894E-01	4.843E-02	2.663E-02	2.860E-02	1.801E-02	1.090E-02
*0.227	1.264E-01	6.008E-02	4.005E-02	2.6878-02	2.220E-02	1.202E-02
*0.222	2.124E-01	2.976E-02	3.968E-02	1.736E-02	2.0835-02	1.587E-02
*() • 224	1.307E-01	5.952E-02	6.349E-02	2.778E-02	1.389E-02	7.9376-03

* INDICATES POOR STATISTICS

* 1

TABLE 4-3. RMS PROTON SPECTRA TABULATIONS (CONT.)

(HEAD 1 ENABLED)

	1 ·	**	L = 1.40	**		
8		ENER	RGY GROUP	(MEV)		
(GAUSS)	11.0-12.7	12.7-15.5	15.5-19.0	19.0-27.0	27.0-35.0	35.0-42.0
*0.200	0.0	0.0	0.0	0.0	0.0	0.0
*0.205	0.0	0.0	0.0	0.0	0.0	0.0
0.210	1.124E+01	6.508F-02	4.042E-02	3.1676-02	1.954E-02	1.079E-02
0.215	1.159E-01	6.253E-02	3.9446-02	2.904E-02	2.210E-02	1.154E-02
0.220	8.489F-02	6.787E-02	4.210E-02	3.163E-02	2.096E-02	1.394E-02
0.225	9.7276-02	5.343E-02	3.975E-02	3.248E-02	2.100E-02	1.687E-02
*0.230	1.730E-01	2.101F-02	5.042E-02	3.676E-02	1.471E-02	8.403E-03
*0.232	1.681E-01	5.102E-02	4.082E-02	1.786E-02	1.786E-02	2.041E-02

** L = 1.50 **

 B		ENER	RGY GROUP	(MEV)		
(GAUSS)	11.0-12.7	12.7-15.5	15.5-19.0	19.0-27.0	27.0-35.0	35.0-42.0
*0.200	0.0	0.0	0.0	0.0	0.0	0.0
*0.205	0.0	0.0	0.0	0.0	0.0	0.0
*0.210	0.0	0.0	0.0	0.0	0.0	0.0
0.215	8.218E-02	5.252F-02	4.202E-02	3.493E-02	2.022E-02	1.786E-02
0.220	8.739E-02	4.490E-02	4.082E-02	3.857E-02	2.429E-02	1.143E-02
0.225	8.403E-02	5.7776-02	3.3405-02	3.335E-02	2.627E-02	1.450E-02
0.230	7.7916-02	4.376E-02	4.447E-02	3.642E-02	2.442E-02	1.466E-02
*0 • 2 3 2	5.530E-02	3.663E-02	4.884E-02	3.632E-02	3.098E-02	1.343E-02
*^• . 234	1.094E-01	2.492E-02	4,319E-02	2.4716-02	3.488E-02	1.661E-02

** L = 1.60 **

					· · · · · · · · · · · · · · · · · · ·	
8.		ENER	RGY GROUP	(MEV)		
(GAUSS)	11.0-12.7	12.7-15.5	15.5-19.0	19.0-27.0	27.0-35.0	35.0-42.0
*0.200	0.0	0.0	0.0	0.0	0.0	0.0
*0.205	0.0	0.0	0.0	0.0	0.0	0.0
*0.210	0.0	0.0	0.0	0.0	0.0	0.0
*)•215	0.0	0.0	0.0	0.0	0.0	0.0
*0.220	0.0	0.0	0. 0	0.0	0.0	0.0
* 0 • 225 -	0.0	0.0	0.0	0.0	0.0	0.0
* 0•230	2.558E-02	6.211E-02	6.211E-02	3.804E-02	2.174E-02	1.242E-02
* 0•235	6.146E-02	6.219E-02	3.269E-02	3.7946-02	2.4258-02	1.564E-02
★0.24 0	3.728E-02	4.779E-02	3.421E-02	3.873E-02	3.345E-02	1.509E-02
0.245	1.038E-01	6.3U3E-02	5.042E-02	2.941E-02	2.206E-02	8.403E-03

•

TABLE 4-4. Channel Energy Boundaries, Efficiences and Spectrum-to-Dose Conversion Factors for Electron-Proton Spectrometer

1

ELECTRONS						
Channel Number	Energy Band (MeV)	Efficiency (counts/electrons)	S-to-D Factors Unshielded Chamber (rad/count)			
1	Not Used	_	-			
2	Not Used	-	-			
3 .	0.50 - 0.65	6.0 (-5)	0.0			
4	0.65 - 0.79	4.8 (-4)	1.23 (-6)			
5	0.79 - 0.93	8.6 (-4)	4.16 (-6)			
6	0.93 - 1.06	9.3 (-4)	6.60 (-6)			
7	1.06 - 1.20	9.0 (-4)	9.35 (-6)			
8	1.20 - 1.35	8.4 (-4)	1.34 (-5)			
9	1.35 - 1.62	7.9 (-4)	2.04 (-5)			
10	1.62 - 1.91	7.8 (-4)	2.95 (-5)			
11	1.91 - 2.20	7.8 (-4)	3.00 (-5)			
12	2.20 - 2.53	7.8 (-4)	3.20 (-5)			
13	2.53 - 3.10	7.8 (-4)	3.20 (-5)			
14	3.10 - 3.65	7.8 (-4)	3.20 (-5)			
15	3.65 - 4.20	7.8 (-4)	3.20 (-5)			
16	4.20 - 5.20	7.8 (-4)	3.20 (-5)			

. .

.

51 (* 1997) 1997 - Standard Market, 1997 1997 - Standard Market, 1997 1997 - Standard Market, 1997

TABLE 4-4. (Continued)

PROTONS

.

S-to-D	Fastare
3-10-0	ractors

£.

Chann	Energy	Efficiency	J=C0-D Tactors			
Numbe	er (MeV)	(counts/protons)	No Shield (rad/count)	Thin Shield (rad/count)	Thick Shield (rad/count)	
PI 1	Not Used	-		`_`	- -	
2	11.0-12.7,	5.0(-3)	1.15(-4)	0.0	0.0	
3	12.7-15.5	5.0(-3)	1.10(-4)	0.0	0.0	
4	15.5-19.0	5.0(-3)	1.05(-4)	0.0	0.0	
5	19.0-27.0	5.0(-3)	8.80(-5)	0.0	0.0	
6	27.0-35.0	5.0(-3)	6.80(-5)	0.0	0.0	
7	35.0-42.0	5.0(-3)	5.50(-5)	3.00(-6)	0.0	
8	Not Used	· _	-	-	-	
PII 1	620–∞	1.0(-2)	1.20(-5)	1.10(-5)	1.03(-5)	
2	167-620	1.0(-2)	1.20(-5)	1.10(-5)	1.03(-5)	
3	100-167	5.0(-3)	2.10(-5)	2.10(-5)	2.30(-5)	
4	75-100	5.0(-3)	2.00(-5)	2.80(-5)	3.00(-5)	
5	54-75	5.0(-3)	2.80(-5)	3.60(-5)	5.00(-7)	
6	46-54	5.0(-3)	3.80(-5)	3.20(-5)	0.0	
7	42-54	5.0(-3)	4.40(-5)	1.30(-5)	0.0	
8	Not Used	<u> </u>	-		-	

F

55

ELECTRON ENERGY (MEV)

. .

6

ELECTRON ENERGY (MEV)

3

↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓

•00

+ 2

--v

.+1 19

100

-1 1()

10²

-3 1(* -

-4 10

105

+ 0

N(E) (ELECTRONS/MEV)

PMS DATA VETTE MODEL

56 FIG. 4-17. RMS ELECTRON SPECTRA

PROTON ENERGY (MEV)

N(E) (PROTONS/MEV)

The dose maps, as presented in Table 4-5 were taken from the G-II tape with the B and L coordinates correlated. The table includes those entries taken only in November 1970. The B and L grid is that of the Vette AE2 projected 68 electron maps. The Vette electron flux values are presented for reference only. The data is the average of all readings taken within the grid spaces and the number of entries included in each location is shown in the last column. The standard deviation is that computed in the normal way These and results primarily from the time variations in the data. time variations were taken from separate printouts of each pass through the anomaly. A detailed analysis of the data in this manner was beyond the scope of this program; however, a brief review of the data indicated a standard deviation of about 20% would be expected. This is consistent with the dose tables. Entries shown as 0.0 refer to readings below 0.01 REM/HR, the lower limits of calibration of the ionization chambers.

4.3.3 Dose Comparisons

In order to establish the most accurate comparisons between the doses as computed from the spectrometer readings to those measured with the ionization chambers, the readings from a single pass through the anomaly were compared directly, as though in real-time. The data from the pass through the South Atlantic magnetic anomaly for RMS orbit 52 (dumped during orbit 53) were used. These are presented in Table 4-6. The run number refers to the data acquisition periods for a particular radiation sequence. These could be programmed by ground command to be one of the four sequences shown in Fig. 4-19. The one used for the data sequence presented here was the 25% duty cycle with an 8 second spectrum data period. For these comparisons the B and L coordinates were correlated at the center of each of the 8-second runs and the dose readings are averaged for a comparison, whereas for the dose maps, each of the ionization chamber dose readings at each end of the 8 second period were correlated and included in the maps independently.

TABLE 4-5. IONIZATION CHAMBER DOSE NOVEMBER 1970

= 1.15 **

MAPS

ENTRIES NO. OF 5 50 σ 23 5 21 25 22 6 33 0 4 S 0 m 9 4 1.175E-02 8.5156-03 7.082E-03 6.964E-03 DEVIATION STANDARD (RAD/HR) SHIELD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 • 0.0 0.0 6.684E-02 2.760E-02 .989E-02 4.150E-02 9.333E-02 AVERAGE THICK (RAD/HR) DOSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.748E-03 3.587E-03 DEVIATION 4.486E-03 3.077E-03 1.195E-02 8.980E-03 1.117E-02 STANDARD (RAD/HR) THIN SHIELD 0.0 0.0 0.0 0°0 0.0 0.0 0.0 0.0 0°0 0.0 0.0 0.0 9.584E-02 6.664E-02 4.886E-02 .897E-02 2.807E-02 2.0695-02 1.668E-02 1.210E-01 AVERAGE (RAD/HR) **00SE** 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0°0 0.0 0.0 0.0 1.682E-C2 DEVIATION 1.181E-C2. 1.434E-02 L.086E-02 STANDARD (RAD/HR) SHIFLD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0°0 0.0 0.0 9.834E-02 6.574E-02 4.545E-02 •232E-02 1.236F-01 AV FRAGE 0N* (CM-2*SEC-1)(RAD/HR) 00 S E 0.0 0°0 0.0 0°0 0.0 0.0 0 0 0.0 0.0 0.0 0 -ං ් 0.0 03 60 03 60 63 ĉ 00 20 0 00 20 20 02 02 000 00 5 2 000 5 AE2-68 VETTE FLUX 7.800E 2.760E 1.580E • 400E 6.840E 3.200F 5.200F 2.080E ..200E 9.200F 4.920E 2.080E 1.340E 8.280E 4.840E 2.330E 4.72GE 1.000F 1.000E .000E (GAUSS) 0.204 0.205 0.206 0.214 0.220 0.224 0.235 0.245 0.196 0.198 0.200 0.202 0.208 G.210 0.212 0.216 0.218 0.222 0.230 0.24C œ

FOR REFERENCE ONLY IN ERROR AND IS INCLUDED HERE NO SHIELD DATA IS *THE

83 -

(CONT.) TABLE 4-5. [JNIZATION CHAMBER DOSE MAPS NOVEMBER 1970 ** L = 1.18 **

	ND. DF ENTRIES		° 7	-	13	9	-	نہ 	4	6	6	e	9	6	2	4	2	œ	m	9	-	2	.	
	HIFLD STANDARD DEVLATION (RAD/HR)			2.347E-02	1.7556-02	1.146E-02	1.117E-02	4.013E-03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	
	THICK S AVERAGE DOSE (RAD/HR)		1.2335-01	1.077E-01	8.786E-02	5.812E-02	3.382E-02	1 • 648E-02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ILELD STANDARD DEVIATION (RAD/HR)	3 5325.00		2.9185-02	2.616E-02	1.72CE-02	1.475E-02	8.3696-03	1.428E-02	5.176E-03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0°0	0.0	0.0	0.0	· · · · · · · · · · · · · · · · · · ·
	THIN SH AVERAGE DDSE (RAD/HR)		1.609F=01	1.393E-01	1.188E-01	7.943E-02	6.054E-02	3.653E-02	2.956E-02	1.776E-02	0 ° 0	0.0	0.0	0.0	0.0	0.0	0•0	0.0	0.0	0 • 0	0 • 0	0.0	0.0	•
	ITELO Stanjard Deviation (Rad/HR)	3.3685-02	3.120F-02	3.457E-02	3.107E-02	1.7075-02	1.660E-02	6.973E-03	1.499E-02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C •0	0.0	C. O	0.0	0.0	
5 6 6 7 9 9 9	* NO SH AVERAGE DOSE (RAD/HR)		1.852E-01	1.642E-01	1.2.85E-01	8.243E-02.	5.681E-02	3.125E-02	2.412E-02	C•O	0.0	0.0	0°C	0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0°0	0.0	0°0	
 	VETTE) AE2-68 FLUX 2*SEC-1)	2 - 400F - 04	1.760E 04	1.250E C4	8.900E_03	6.200F 03	4.200E 03	2.800F 03	1.940E 03	1.370E C3	9.600F C2	6.400E C2	4.100F C2.	2.73CE.02	1.800E C2	1.10CF 02	6.800E 01	4.000E 01	2.280E 01	4.60GE (C	1.CCCE 00	1.0COE 0.0	1.000E 00	و به به ب
	1 GAUSS	0,195	G. 198	c.200	0.202	0.204 (9.206	0.208	0.210	C . 2:12	0.214	0.216	0.218	0.220	0.222	C.224	0.226	0.228	0.230	r.235	9.240	0.245	6.250	·

*THE NO SHIELD DATA IS IN ERROR AND IS INCLUDED HERE FOR REFERENCE ONLY

TABLE 4-5. IONIZATION CHAMBER DOSE MAPS (CONT. NOVEMBER 1970

= 1.20 **

_ **

ENTRIES NO. OF DEVIATION 2.033E-02 1.914E-02 . 772E-02 5.286E-03 1.040E-02 1.949E-02 4.023E-02 STANDARD (RAD/HR) SHIELD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.154E-01 9.226E-02 3.165E-02 2.510E-01 •654E-01 •194E-01 6.380E-02 4.757E-02 THICK AVERAGE (RAD/HR) DOSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 •851E-02 DEVIATION .641E-03 3.156E-02 .202E-02 •442E-02 3.699E-03 4.821E-02 •282E-02 9.211E-03 ·-255E-03 (RAD/HR) STANDARD THIN SHIFLD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.543E-02 2.822E-02 2.241E-02 1.459E-02 7.668E-02 3.070E-01 9.863E-02 3.276E-01 2.135E-01 I.568E-01 283E-01 (RAD/HR) AVERAGE DOSE 0.0 0.0 0°0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0°C 3.153E-02 3.577E-02 3.508E-02 1.480E-02 • 96.4E-02 8.266E-02 DEVIATION 1.518E-02 (RAD/HR) STANDARD *NU SHIELD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 • 393E-01 • 648E-02 • 305E-02 562E-01 .877E-01 •089E-01 3.025E-01 3.740E-01 AVERAGE (CM+2*SEC-1) (RAD/HR) DO SE 0.0 • 0.0 0.0 0.0 0.0 0.0 0.0 0.0 С • 0.0 0.0 \circ • • 04 40 4 40 40 40 40 80 03 03 02 60 3 03 02 20 00 2 5 AE2-68 VETTE FLUX 6.960E ..580E I.920F 9.400F 5.200E 3.72CE 2.640E 1.840E L. 260E 8.600E 5.840E 3.920É • 700E ..120E 7.120E 4.720E 3.030E 1.200E - 20CE 2.360E • 6 0 C E 1.000E (GAUSS) 0.206 0.226 0.196 0.198 0.200 0.202 0.204 0.208 0.214 0.220 0.222 0.224 0.228 0.230 0.232 P.235 0.250 0.210 0.216 0.218 0.240 0.212 c.

REFERENCE ONLY AND IS INCLUDED HERE FOR IN ERROR SHIELD DATA IS 0 Z THE

TABLE 4-5. IONIZATION CHAMBER DUSE MAPS (CONT. NOVEMBER 1970 ** L = 1.25 **

ENTRIES NO. OF DEVIATION 8.331E-02 6.238E-02 5.696E-02 4.225E-02 3.140E-02 1.703E-02 6.810E-03 I. 344E-02 **STANDARD** (RAD/HR) SHIELD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 5.978E-02 3.557E-02 2.515E-02 3.365F-01 .192E-01 •343E-01 2.070E-01 •095E-01 THICK AVERAGE (RAD/HR) DOSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.528E-02 DEVIATION 7.404E-02 2.292E-03 .292E-02 .496E-02 8.684E-02 8.024E-02 4.492E-02 .710E-02 .012E-02 6.973E-03 STANDARD (RAD/HR) THIN SHIFLD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 2.867E-01 1.896E-01 9.009E-02 5.775E-02 4.694E-02 3.158E-02 2.109E-02 2.404E-02 1.533E-01 2.945E-01 4.221E-01 AVERAGE (RAD/HR) DOSE 0.0 0.0 0.0 0.0 0.0 0.0 С. 0 0.0 0°0 0.0 0.0 5.365E-02 2.660E-02 E-03 DEVIATION 6.547E-02 1.525E-01 9.646E-02 .910E-02 .810E-02 (RAD/HR) STANDARD 5.117 *NO SHIFLD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0°0 0.0 2.405E-02 4.332E-02 5.401E-01 3.305E-01 2.178E-01 3.453F-01 [.9] 3F-01 6.770E-02 1.031E-01 AVERAGE (CM-2*SEC-1) (RAD/HR) UO S E 0•0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 2 2 50 40 05 SO 40 40 40 60 00 40 4 ĉ 6 60 60 AF2-68 VETTF FLUX 2.330E 1.720E 9.500F 3.10CF 1.27CE 4.860E 1.41CE 5.700E 2.100E 6.8.70E 3.340E 2.200E 9.000E 3.480E 1:260E 7.540E 4.86CE I.560E 8.400E 4.110E 1.000E 1.0C0F 2.810E (GAUSS) 0.202 0.204 0.206 0.208 0.2.10 0.214 0.216 0.218 0.220 0.222 0.224 0.226 0.228 0.230 0.232 0.234 0.236 0.238 0.240 0.250 0.255 0.200 0.212 Ć

SHIELD DATA IS IN ERROR AND IS INCLUDED HERE FOR REFERENCE ONLY

0 N

*THE

TABLE 4-5. IONIZATION CHAMBER DOSE MAPS (CONT.) NOVEMBER 1970

** L = 1.3C **

ENTRIES NO. OF O ထ 6.188E-02 DEVIATION 4.227E-02 3.269E-02 3.193E-02 1.699E-02 9.336E-02 •996E-02 STANDARD (RAD/HR) SHIELD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.830E-01 6.228E-02 4.312E-02 3.032E-01 1.882E-01 1.381E-01 1.034E-01 THICK AVERAGE (RAD/HR) DOSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0°0 0.0 DEVIATION .891E-02 3.952E-02 2.718E-02 •488E-02 8.146E-03 .474E-02 4.766E-02 .335E-02 .037E-01 STANDARD (RAD/HR) THIN SHIELD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ē 4.649E-02 2.850E-02 4.747E-01 9.110E-02 6.623E-02 3.977E-01 2.593E-01 .867E-01 .472E-01 AVERAGE (RAD/HR) DOSE 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 DEVIATION 3.619E-02 1.8196-01 5.774E-02 4.499E-02 5.384E-02 1.131E-01 2.451E-02 STANDARD (RAD/HR) * NO SHIELD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .710E-02 6.233E-01 .967E-01 .184E-01 .477E-01 .901E-01 .097E-01 **AVERAGE** (CM-2*SEC-1)(RAD/HR) DOSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 • 50 02 40 0 20 S 40 40 603 40 40 40 603 603 60 02 02 02 02 0 00 00 AE 2-68 VETTE FLUX 3.020E 9.600E 3.130E • 820E 5,410E .760E .360E •030E . 800E 4.390E 3.140E 2.160E . 370E 8.500E 5.020E • 730E 5.490E •020E 5.020E 3.180E . 800E 8.900E • 000E 1.000E (GAUSS) 0.232 0.234 0:224 0.226 0.246 0.214 0.220 0.236 0.240 0.242 0.244 0.200 0.205 0.210 0.222 0.228 0.230 0.238 0.260 0.265 0.216 0.250 θ 1 •

IN ERROR AND IS INCLUDED HERE FOR REFERENCE ONLY

SI

DATA

SHIELD

0 N

*THE

	ND. DF ENTRIES	0 4 ∞ 4 0 1 4 4 4 0 N H N M N N M H O M H O N H O N H N M N N N M H O M H O N H N N N N N N M H O N H N N N N N N N N N N N N N N N N	t
	HLELD STANDARD DEVLATION (RAD/HR)	 2000000000000000000000000000000000000	.
os (cont.)	THICK AVERAGE DOSE (RAD/HR)	2.0 3.71 3.71 2.584 2.584 1.3684 1.3684 1.3684 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.
ER DUSE MAI 1970 35 **	HIELD STANDARD DEVIATION (RAD/HR)	С С С С С С С С С С С С С С	•
TION CHAMBINOVEMBER NOVEMBER ** L = 1.	THIN SI AVERAGE DOSE (RAD/HR)	С С С С С С С С С С С С С С	0
•5• I JN I 2A	HIELD STANDARD DEVIATION (RAD/HR)	0 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1	•••
TABLE 4-	AVERAGE D0.SE D0.SE D0.SE	0 0	•
	VETTF VETTF AE2-68 A-2*SEC-11	 4 0 4 0 5 4 0 6 4 0 7 4 0 7 4 0 8 4 0 8 4 0 9 4 0 	
	(GAUSS	00000000000000000000000000000000000000	

* THE NO SHIELD DATA IS IN ERROR AND IS INCLUDED HERE FOR REFERENCE ONLY

	(CONT	
	MAPS	
	DOSE	970
•	CHAMBER	MBER 19
	IONIZATION	NOVE
	4-5.	
	ш	

TABL

= 1.40 ******

ENTRIES NO: 0F 20 23 62 25 O O DEVIATION 3.848E-02 2.773E-02 4.293E-03 4.205E-02 •093E-02 **STANDARD** (RAD/HR) SHIELD 000 0.0 0.0 0.0 0 • 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 . 9.898E-02 3.337E-01 2.244E-01 5.695E-02 1.726E-02 **THICK** AVERAGE (RAD/HR) DOSE 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 DEVIATION 4.394E-02 5.514E-02 3.742E-02 2.881E-02 8.848E-03 2.704E-04 STANDARD (RAD/HR) THIN SHIELD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.926E-02 •478E-02 4.438E-01 3.762E-02 3.246E-01 1.570E-01 AVERAGE (RAD/HR) 00SE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 . . DEVIATION 4.986E-02 5.972E-02 1.006E-01 1.154E-01 1.140E-02 STANDARD RAD/HR) * NO SHIFLD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ං • 0 0.0 0°0 0.0 0.0 0.0 0.0 3.779E-02 6.843E-01 4.545E-01 2.220E-01 1.426E-01 AVERAGE (CM-2*SFC-1)(RAD/HR) 00 S E . 0 0 0.0 0.0 0°0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0°0 0.0 0.0 90 05 0 م 50 00 ĉ ĉ 000 C C AE2-68 VETTE FLUX 2.090E 6.380F I • 530E 1.080E • 190E • 500E -090E 5.25CE 3.660E 2.470E ..630E •050E 2.340E L.330E 3.63CE 1.56CE 6.250E 6.56CE 1.000E • 5 90E • 360E .440E : 970E 7.060E 1.00CF (GAUSS) 0.205 0.230 0.244 0.246 0.248 0,210 0.232 0,240 0.215 0.242 0.220 0.225 0.234 Ú.236 0.239 0.250 0.252 0.254 0.258 0.200 0.256 0.270 0.260 0.265 0.275 T

89

SHIELD DATA IS IN ERROR AND IS INCLUDED HERE FOR REFERENCE ONLY

g

* THE

	NO. OF ENTRIES		73
	SHIFLD STANDARD DEVIATION (RAD/HR)	С С С С С С С С С С С С С С С С С С С	C. 0
PS (CONT.)	THICK AVERAGE DOSE (RAD/HR)	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 • 0
ЕК DUSF чА 1970 50 **	HIELD STANDARD DEVLATION (RAD/HR)	С. 0 2 . 2 84 5 . 2 84 2 . 5 9 84 7 . 5 9 84 7 . 6 9 8 7 . 6 9 0	0•0
TION CHAMB NOVEMBER ** L = 1.	THIN S AVERAGE DDSE (RAD/HR)	2.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5	0 • 0
-5. LJN [2A	HIELD STANDARD DEVLATION (RAD/HR)	2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0
TABLE 4	*NJ SH AVERAGE DDSE (RAD/HR)	0.0 0.0 0.0 0.1307 1.3557 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0
	VETTE S) AF2-68 FLUX CM-2*SEC-1		1. JOOE 00
· ·	B GAUS	00000000000000000000000000000000000000	0.285

IS IN ERROR AND IS INCLUDED HERE FOR REFERENCE ONLY *THE NO SHIELD DATA

TABLE 4-5. IONIZATION CHAMBER DOSE MAPS (CONT.) NOVEMBER 1970

ENTRIES NO. OF DEVIATION 6.000E-03 2.098E-02 **STANDARD** (RAD/HR) SHIFLD . 0 • 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 . • • 6.276E-02 1.090E-01 THICK AVERAGE (RAD/HR) DOSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.175E-02 DEVIATION 2.938E-02 1.503E-02 STANDARU (RAD/HR) = 1.60 ** THIN SHIFLD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 . 1.876E-01 1.255E-01 5.895E-02 AVERAGE (RAD/HR) 1111 DOSE ר * * * 0.0 0.0 0:0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.849E-02 5.541E-02 DEVIATION 2.670E-02 (RAD/HR) STANDARD *NO SHIELD 0°0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.410E-01 2.320E-01 9.766E-02 AVERAGE (CM-2*SFC-1) (RAD/HR) DOSE 0.0 0.0 0.0 0°0 0.0 0 2 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 ŝ 60 с С 05 <u>т</u> 20 00 50 20 60 0 10 AE2-68 VETTE FLUX 4.930E 5.840E .670F .310F 2.310F 1.000E 2.130E ..160E 7.330E 4.25ÅF 2.040E 3.440E 2.71CE - 790E ..150E 5.880E .240E (GAUSS) 0.220 0.230 0.250 0.255 0.274 0.280 0.290 0.240 0.260 0.265 0.270 0.272 0.276 0.278 0.285 0.200 0.210

IS IN ERROR AND IS INCLUDED HERE FOR REFERENCE ONLY NO SHIELD DATA *THE

TABLE 4-5. IONIZATION CHAMBER DOSE MAPS (CONT.) NOVEMBER 1970

NO. OF ENTRIES C) O Ċ 0 42 37 0 DEVIATION STANDARD (RAD/HR) SHIELD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 С Û Ò C 0 O 0 0 0 0 00 0 ð .0 0 THICK AVERAGE RAD/HR DOSE 00 00 0.0 0.C 0 0 00.0 0.0 00 0.0 DEVIATION (RAD/HR) STANDARD tt i 1.04 THIN SHIELD = 1.7(** 0.0 0°0 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 ں ت 0.0 0.0 0:0 C • 0 0.0 0.0 0 20 1 (RAD/HR) AVERAGE DOSE __ * * 0.0 0.0 5.2 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 Ó 0.0 0.0 0.00 0.0 0.0 0 0 0 0.0 0.0 . DEVIATION (RAD/HR) STANDARD 2.32 *NO SHIELD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 С • С 0.0 0.0 0.0 C. 0 0.0 0.0 0.0 C) C. 5 (CM-2*SEC-1) (RAD/HR) **AVERAGE** DOSE 9.757 0.0 0.0 0.0 0.0 0.0 0.0 0°0 0 • 0 0.0 0 . . 0.0 C \circ 0°0 0 . ਼ੋ 0 40 60 e S 40 ŝ 40 с О ĉ 20 02 00 00 00 2 5 5 AE2-68 VETJF FLUX •120E 5.95CE 2.780E • 590F • **38**CE 6.380E .120F -740E 1.060E 3.230Ê .760E . 230E 3.19CE .40CE -490E u. 6.380Ē • 01 CE 4.210E 080. 000.1 ര (GAUSS) 0.282 0.250 0.274 2.286 0.288 0.200 0.210 0.220 0 • 23G 9.24C **C.2**6Ü C. 270 C.272 0.276 0.278 2.280 0.284 0.290 0.295 C.300 c

92[.]

ONLY

REFERENCE

FOR

ERROR AND IS INCLUDED HERE

Z

SHIELD DATA IS

g

* THE

TABLE 4-5.	IONIZATION	CHAMBER	DOSE	MAPS	(CONT

I ZATTUN CHAMBER DUSE MAPS (CONT.) November 1970 ** L = 1.80 **

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	VETTE VE2-68 FLUX ?*SEC+1	*NO S AVERAGE DOSE L)(RAD/HR)	HIELD STANDARD DEVIATION (RAD/HR)	THIN SH AVERAGE DUSE (RAD/HR)	HIELD STANDARD DEVIATION (RAD/HR)	THICK AVERAGE DOSE (RAD/HR)	SHIELD STANDARD DEVIATION (RAD/HR)	NO. OF ENTRIES
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ίð	0.0	0.0	0.0	0-0	0-0	0-0	
	ò	0.0	0.0	0.0	0.0	0.0	0.0	C
04 0.0 0.0 0.0 0.0 03 1.0437-01 1.6745-02 3.7975-02 5.7506-03 0.0 03 7.9947-02 1.5255-02 3.7976-03 0.0 0.0 03 7.9947-02 1.5255-02 3.7976-03 0.0 0.0 03 0.0 0.0 0.0 0.0 0.0 03 0.0 0.0 0.0 0.0 26 03 0.0 0.0 0.0 0.0 26 03 0.0 0.0 0.0 0.0 26 03 0.0 0.0 0.0 0.0 0.0 26 03 0.0 0.0 0.0 0.0 0.0 26 03 0.0 0.0 0.0 0.0 0.0 26 02 0.0 0.0 0.0 0.0 0.0 26 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 02 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3	••0•0	0.0	0.0	0.0	0.0	0.0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	õ	• 0•C	0.0	0.0	0.0	0.0	0.0	0
03 7.93 F-02 3.79 76-02 5.20 79 03 0.0 0.0 0.0 0.0 0.0 0.0 03 0.0 0.0 0.0 0.0 0.0 0.0 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 03 0.0<	0	3 1.043E-01	1.674E-02	4.629E-02	5.750E-03	0.0	0.0	7
	C	3 - 7 • 9 3 4 E - 0 2	1.525E-02	3.797E-02	6.204E-03	0.0	0.0	- 24
	ö	3 0.0	0.0	0.0	0.0	0.0	0.0	26
	Ö	3 C•O	0.0	. 0.0	0.0	0.0	0.0	9
	С Ш	3 0.0	۰ 0	0.0	. 0.0	0.0	0.0	9
	С ш	0°0	0.0	. 0.0	0.0	0.0	0.0	-
	С ц	3 0.0	C.O.	0.0	0.0	0.0	0.0	0
	с ш	3 0.0	0.0	0.0	0.0	0.0	0.0	2
	Е 0 Ш	0.0	0.0	0.0	0.0	0.0	0.0	m
	с Ш	0.0	0.0	0.0	0.0	0.0	0.0	2
	с ш	0.0	0.0	0.0	0.0	0.0	0.0	
# 01 0.0 0.0 0.0 0.0 # 01 0.0 0.0 0.0 0.0 # 01 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 <td>ю Ш</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1</td>	ю Ш	0.0	0.0	0.0	0.0	0.0	0.0	1
	Б Ш	1 0.C	Ŭ•Ŭ	0.0	0.0	0.0	0.0	1
	ю ш	0.0	0.0	0.0	0.0	0.0	0.0	2
	õ	0.0	Ū•O	0°C	0.0	0.0	0 : 0	0
	0	0.0	0.0	0.0	0°0	0.0	0.0	c
	ŏ	0.0	0.0	0.0	0.0	0.0	0.0	. 2

93

• • • •

•

AFHE NO SHIELD DATA IS IN ERROR AND IS INCLUDED HERE FOR REFERENCE ONLY

. ,

IDNIZATION CHAMBER DOSE MAPS (CONT. NOVEMBER 1970 TABLE 4-5.

** 0.6 • i 1Ì # #

С С

N0. ENTRI	0	C	0	0	0		20	12	0	2	ŝ	2	-	2		0
SHIELD STANDARD DEVIATION (RAD/HR)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0°C	0.0	0.0	0.0	0.0	0.0	0°0
THICK AVERAGF DDSE (RAD/HR)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HIELD STANDARD DEVLATION (RAD/HR)	0.0	0.0	0.0	0.0	0.0	3.890F-03	0.0	0.0	0.0	0°C	0.0	0.0	0.0	0.0	0.0	0.0
THIN SH AVERAGE DOSE (RAD/HR)	0.0	0.0	0.0	0.0	0.0	2.425E-02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HIELD STANDARD DEVIATION (RAD/HR)	0.0	0.0	0.0	0.0	C•0	1.2185-02	0.0	0.0	0.0	0.0	0.0	0.0	c•0	0.0	0.0	0.0
AVERAGE AVERAGE DDSE (RAD/HR)	0.0	0.0	0.0	0.0	0.0	5.974E-02	0•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VETTE 5) AF2-68 FLUX CM-2*SEC-1)	1.790E 04	1.410F 04	1.070E 04	7.820E 03	5.640E 03	3.930E 03	2.690E 03	1.530E 03	1.030E 03	6.490E 02	3.58CE 02	1.640E.02	2.40CE 01	2.840E 00	1.000E.0C	1.000E CO
B (GAUS:	0.200	0.210	C.220	0.230	0.240	0.250	0.260	0.270	0.275	0.2.80	0.285	0.290	0.295	0.300	0.305	0.310

*THE NO SHIELD DATA IS IN ERROR AND IS INCLUDED HERE FOR REFERENCE ONLY

	(CONT.)		
•	MAPS		
	00 5 E	010	* *
•	CHAMBER	MBER 10	. = 2.00
	I UN I ZATI UN	BAGN	-]
	4-5.		
	TABLE		

NO. OF ENTRIES	000000000000000	
SHIELD STANDARD DEVIATION (RAD/HR)	<pre>coccoccoccococococococococococococococ</pre>	•
THICK AVERAGE DOSE (RAD/HR)	000000000000000000000000000000000000000	•
ITELD STANDARD DEVTATION (RAD/HR)	0.0 0.0 0.0 0.0 0.0 2.168 6 6 0.0 0.0 0.0 0.0 0.0 0.0	
THIN SH AVERAGE DUSE (RAD/HR)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
II ELD STANDARD DEVIATION (RAD/HR)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
*ND SH AVERAGE DDSE (RAD/HR)	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
VETTE VETTE S) AE2-68 FLUX CM-2*SEC-1)	1.290F 04 7.490F 03 7.490F 03 5.660F 03 5.110F 03 3.110F 03 2.110F 03 3.110F 03 1.430F 03 1.450F 03 1.450F 01 1.000F 00	
B (GAUS		

*THE NO SHIELD DATA IS IN ERROR AND IS INCLUDED.HERE FOR REFERENCE ONLY

		MODEL	PROTON AP1 AP6 AP7	7 TO 60 TO 6T TO		7.2	2.5	1.2	1.5	1.8	2.3	2.4	2.7	2.9	3.1	3.1	2.9	3.1	2.8	2.8	2.8	2.6	2.3	2.2	2.1	1.7	1.6	1.3	1.0	8.4(-1)	6.0(-1)	3.7(-1)	2.5(-1)	1.4(-1)	7.2(-2)	UM-TO-DOSE	FUNCTIONS, AND
()		VETTE	ELECTRON AF7-68	00-2710		3.7(-1)	5.0(-1)	8.5(-1)	. 1.0	1.4	2.1	2.3	2.4	2.6	2.7	2.7	2.6	2.7	2.4	2.4	2.3	2.1	1.9	1.8	1.7	1.3	1.3	1.1	9.2(-1)	8.0(-1)	6.4(-1)	5.0(-1)	2.6(-1)	3.0(-2)	1.2(-2)	LEAL-TIME SPECTE	JK HIGH ENEKGY I CHAMBER RESPONSF
ER DOSES (RAD/HR		PROTON	RMS E 42 <mev< td=""><td>· · · · · · ·</td><td>,</td><td>1.1</td><td>2.1</td><td>2.3</td><td>3.7</td><td>3.7</td><td>5.1</td><td>6.3</td><td>5.4</td><td>5.4</td><td>6.8</td><td>6.0</td><td>6.8</td><td>5.9</td><td>5.6</td><td>5.6</td><td>4.8</td><td>3.4</td><td>2.8</td><td>3.4</td><td>2.9</td><td>3.0</td><td>2.0</td><td>1.2</td><td>1.3</td><td>1.0</td><td>2.9(-1)</td><td>3.7(-1)</td><td>1.1(-1)</td><td></td><td></td><td>EADINGS TO THE F</td><td>VG VETTE MODEL F(SING IONIZATION (</td></mev<>	· · · · · · ·	,	1.1	2.1	2.3	3.7	3.7	5.1	6.3	5.4	5.4	6.8	6.0	6.8	5.9	5.6	5.6	4.8	3.4	2.8	3.4	2.9	3.0	2.0	1.2	1.3	1.0	2.9(-1)	3.7(-1)	1.1(-1)			EADINGS TO THE F	VG VETTE MODEL F(SING IONIZATION (
NSHIELDED CHAMB	PECTRUM-TO-DOSE	PROTON	RMS SPFCTROMFTFR	1 10 10 10 10 10 10		2.2	3.6	5.6	7.2	8.1	9.4	1.1(1)	1.1(1)	1.1(1)	1.3(1)	1.2(1)	-1.4(1)	1.2(1)	1.1(1)	1.0(1)	9.4	6.7	4.9	5.7	5.6	4.9	3.7	2.3	2.2	1.5	6.6(-1)	4.4(-1)	2.6(-1)	2.7(-2)	2.9(-2)	CHAMBER DOSE R	VETTE MODEL US
In	SI	ELECTRON	RMS SPECTROMETER	VITTINIOUTOT IC		2.6(-1)	4.2(-1)	6.5(-1)	6.7(-1)	8.2(-1)	1.1	1.2	1.1	1.1	1.3	1.3	1.3	1.1	1.1	1.1	1.0	1.0	7.9(-1)	6.7(-1)	5.3(-1)	5.5(-1)	4.5(-1)	2.9(-1)	2.7(-1)	1.1(-1)	8.5(-2)	3.0(-2)	1.8(-2)	2.5(-2)	1.6(-2)	OF IONIZATION	COMPUTED FROM MS ORBIT 52
		IONIZATION	CHAMBER AVERAGE			1.1(-1)	1.7(-1)	2.9(-1)	4.0(-1)	4.9(-1)	5.0(-1)	6.0(-1)	7.4(-1)	8.0(-1)	7.8(-1)	7.2(-1)	7.1(-1)	8.0(-1)	7.2(-1)	7.2(-1)	5.8(-1)	5.6(-1)	5.1(-1)	4.4(-1)	3.3(-1)	2.8(-1)	2.4(-1)	2.0(-1)	1.5(-1)	8.6(-1)	5.0(-2)	2.4(-2)	7.0(-3)	3.0(-3)	2.5(-3)	COMPARISONS	VALUES, IHE DOSE VALUES DATA FROM R
	Ļ	<u>-</u>	L (F.R.)			L. 34	1.34	1.35	1.37	1.37	1.38	1.39	1.40	1.41	1.41	1.42	1.43	1.43	1.44	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.44	1.43	1.42	1.41	1.40	1.38	1.37	ABLE 4-6	
			B (GAIISS)	100000		.219	.217	.215	.214	.213	.211	.211	.210	.210	.210	.210	.211	.211	.212	.213	.214	.215	.216	.217	.218	.220	.221	.223	. 225	.226	.228	.230	.232	.234	.236	T,	
			RUN.				5	ო	4	<u>ک</u>	9	~	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		

,

ì

:

)/HR)	VETTE MODEL AP7	1,5(-1)	2.1(-1)	2.7(-1)	3.4(-1)	3.9(-1)	4.4(-1)	4.6(-1)	5.2(-1)	5.6(-1)	5.6(-1)	5.6(-1)	5.2(-1)	5.1(-1)	4.8(-1)	3.1(-1)	3.1(-1)	2.2(-1)	3.6(-1)	3.4(-1)	3.1(-1)	2.6(-1)	2.4(-1)	2.0(-1)	1.6(-1)	1.4(-1)	1.0(-1)	5.8(-1)	3.6(-2)	1.8(-2)	1.3(-2)
SHIELD DOSES (RAI	S-TO-DOSE PROTONS	7.4(-1)	1.3	1.9	2.4	3.0	3.6	3.8	4.1	3.9	4.8	4.4	4.7	4.3	4.4	3.9	3.9	3.2	2.2	2.2	2.4	2.1	1.6	1.2	1.0	6.1(-1)	3.2(-1)	2.3(-1)	8.7(-2)	3.7(-2)	5.0(-4)
THICK	IONIZATION CHAMBER	5.8(-2)	9,2(-2)	1.3(-1)	1.9(-1)	2.5(-1)	2.8(-1)	3.0(-1)	3.6(-1)	3.8(-1)	3.8(-1)	3.7(-1)	3.6(-1)	3.5(-1)	3.3(-1)	3.0(-1)	2.6(-1)	2.5(-1)	2.2(-1)	2.0(-1)	1.6(-1)	1.4(-1)	1.2(-1)	9.3(-2)	6.4(-2)	3.8(-2)	2.2(-2)	1.4(-2)	5.4(-3)		
/HR)	VETTE MODEL AP1,AP7	0.4(-1)	2,7(-1)	3.8(-1)	4.8(-1)	5.5(-1)	6.2(-1)	6.4(-1)	6.7(-1)	7.3(-1)	7.3(-1)	7.3(-1)	6.9(-1)	6.9(-1)	6.5(-1)	6.4(-1)	5.9(-1)	5.4(-1)	5.1(-1)	4.8(-1)	4.5(-1)	3.9(-1)	3.7(-1)	3.1(-1)	2.6(-1)	2.2(-1)	1.6(-1)	1.0(-1)	6.4(-2)	2.5(-2)	1.4(-2)
SHIELD DOSES (RAD,	S-TO-DOSE PROTONS	9.4(-1)	1.6	2.7	3.1	4.1	4.6	5.4	5.7	5.3	6.5	e•0	7.0	5.8	6.1	5.3	5.3	4.2	2.7	3.0	3.2	2.8	2.2	1.7	1.3	9.4(-1)	3.8(-1)	2.6(-1)	7.4(-2)	3.1(-2)	3.1(-2)
; NIHI	IONIZATION CHAMBER	1.0(-1)	1.4(-1)	1.9(-1)	2.8(-1)	3.5(-1)	4.0(-1)	4.1(-1)	4.5(-1)	4.9(-1)	5.1(-1)	4.9(-1)	4.7(-1)	4.6(-1)	4.5(-1)	4.4(-1)	3.8(-1)	3.4(-1)	3.3(-1)	3.1(-1)	2.6(-1)	2.0(-1)	1.7(-1)	1.3(-1)	1.0(-1)	7.0(-2)	4.4(-2)	2.6(-2)	1.5(-2)	8.9(-3)	4.9(-3)
	RUN NO.		5	e	4	S	9	~	00	6	10	11	12	13	14	15	10 1	17	18	16 1	20	17	77	23	24	25	26	27	28	29	

TABLE 4-6. (Continued)

,

The correlated B and L coordinates are shown so that comparisons can be made directly to other data. Four types of information are given for the three chambers, where possible. First the ionization chamber readings given are the average of the readings taken before and after each spectral measurement. Second the dose is shown as computed on RMS from the spectrum-to-dose conversion. Next the dose is computed for the RMS data, where possible, and filled in with the Vette models in the regions where the RMS data is known to be bad (protons > 42 MeV). Finally the last entry is the dose computed from the overlap integral of the ionization chamber response functions and the Vette model. The comparisons show several features which should be discussed briefly.

In all cases the non-shielded ionization chamber readings are significantly lower than the computations from the RMS spectra or the Vette model. This problem was discussed in Section 4.3.3 and is believed to result from a loss of sensitivity of the bare ionization chamber. The second feature of importance is that the realtime dose computations corresponding to the shielded chambers are significantly higher than the chamber readings. These should be compared, also, to the doses as computed with the Vette models. The latter comparison shows the effect of the high energy spectral distortion of the spectrometer data as discussed in Section 4.2.2.1.

The real-time dose computations which are believed to be accurate are those corresponding to the electron dose in the bare chamber. These data are verified by computations directly from the spectrum. Unfortunately the ionization chamber data is in error and, thus, not available for direct comparison.

With the exception of the electron pulse-height spectrum-to-dose values, which were corrected by a factor of four error found in the original calibration, these data were as computed in real time and indicate that the system did accurately convert the information which it received from the spectrometer.

99

έ,

4.4 Conclusions

In spite of the fact that several disappointing malfunctions occurred, the radiation experiment did demonstrate the relative degree of simplicity by which the spectrum-to-dose conversion system could be applied and it did provide valuable data for the low-energy proton spectra and, with respect to the electrons, it has provided valuable information on the decay of the electron belts produced by the Starfish high-altitude nuclear test.

The application of pulse-height spectrum-to-dose conversion was demonstrated with a relatively simple system which employed both analog and digital techniques, and it was shown that such a system could be made to function in a remote location. Such a system is not required for current space programs such as Apollo and Skylab, since almost continuous contact is maintained between the vehicle monitoring systems and large ground-based computing facilities. The system could, however, be employed, with a large savings in computational requirements, in permanent lunar base operations and in the future, long-duration space voyages throughout the solar system.

The data actually obtained by the radiation instruments are a valuable addition to the models of the radiation environments in the South Atlantic anomaly zone. The RMS proton spectra between 11 and 42 MeV are in almost perfect agreement with the power law of the AP7 model, as seen in Fig. 4-18. Subtle differences may be noted, especially at low energies, which indicate that the power laws are not an adequate representation. However, the vast increase in the entries necessary to incorporate these divergencies into the model is not warranted in most applications. Where theories are being studied, these differences can be of great importance and the data should prove useful.

Also, in the case of the electron data, new information was obtained with respect to the remanent electrons injected into the geomagnetic field by the Starfish high-altitude nuclear detonation in 1962. The RMS data clearly shows that the spectra above 2 MeV are still dominated by the effects of the test.

We see that, although much desired information was lost, the RMS radiation experiment did provide a significant amount of valuable information.

V. ANALYSIS OF METEOROID DATA

5.1 Introduction

The objectives of the meteoroid experiment on RMS were two-fold, the primary one being of an engineering nature, to evaluate the thin-film type meteoroid sensor for future large areas, long duration meteoroid experiments. The secondary objective was of a basic nature, in which an attempt was to be made to measure meteoroid flux and velocity, realizing that the total time-area product of the experiment would be low. The analysis conducted in this program then logically fell into two parts:

- (a) meteoroid flux determination
- (b) evaluation of sensor reliabilities

5.2 Meteoroid Flux Determination

The interpretation of the meteoroid flux data was accomplished in a series of steps, each of which involved a sequence of identical calculations on each real-time data frame or series of data frames terminating with a satellite memory dump. In each step the results of the calculations were stored on a data tape with the original meteoroid data contained on the G-2 tape.

5.2.1 Determination of Experiment Package Conditions

In order to determine the accumulated time-area product, it was necessary to know the time when each meteoroid box and the memory were turned on and off. The "status" of each of these packages is given in each real-time frame; however, it was necessary to know some information about the previous or subsequent real-time run to determine the "condition" of each package. We define our terminology in this way: "Status" refers to that which is given in the command status word of the real-time run and tells simply that at the time of the run the particular packages was on or off. "Condition" refers to one of four states: off, being turned on, on, or being turned off. To determine the condition from the information on the tape it was necessary to determine whether a particular
real-time routine was run before or after the sending of commands which could change the status of any meteoroid related package. This was done by referring to the pass summaries and assigning a notation by hand to each real-time run. If a run was prior to commands or there were no commands it was called "A" in place of "RT" in the frame leader. If it followed commands it was called "B". With this information and the status from the command status word it was possible to determine the appropriate condition for each package. The procedure may be followed by reference to the generalized flow diagram in Figure 5-1. The results were stored on a new tape in the data portions of the relevant real-time frames.

5.2.2 Area Calculations

The areas for meteoroid detection actually refer to an area-solid angle product. The resulting units are cm^2 or m^2 and actually refer to the equivalent cross-sectional area of a sphere in an omnidirectional flux of particles. For each real-time frame a set of six areas (defined in the above manner) was calculated. These were areas for velocity, top plane, and bottom plane fluxes on each meteoroid package calculated individually for "good" sensors.

The term "good" refers to those sensors which are believed to be capable of sensing the passage of a particle. The determination of "good" sensors is not absolute and the uncertainties give one of the largest errors involved in the measurements. All the information available was used to make the assessment "good" or "bad". This information included the shorts as measured from the column leakage currents and those sensors showing excessive counts in the memory. Four counts or greater in a particular sensor was selected as being excessive, since a preliminary Poisson analysis indicated that a trivial number of sensors with four counts or above should be observed.

The determination of the location of a shorted sensor was made in the following rather complex manner. First all sensors which had four

Fig. 5-1. Generalized Flow Diagram of Meteoroid Data Analysis

Fig. 5-1. Continued

or more discharges for the entire life of the experiment were marked at the beginning of the analyses by adding the number 100,000 to each Sensors so marked were considered to be "bad" and their timecount. area product was not accumulated. The number of shorted sensors in each column was calculated from the leakage current of that column. The shorts were then assigned to those sensors which had excessive counts, the assumption being that these were likely broken sensors which periodically pulsed due to movement of the film caused by solar heating. If there were more shorts on a given column than sensors with excessive counts, a random selection routine was used to assign the short to a sensor with zero counts. The assumption here is that a sensor could have been broken; and shorted at launch and, thus, would never have counted. These are termed "zero shorts" and were marked on the printout by replacing the zero with the number 1000. For the case of less shorts than those with excessive counts, the excessive counts were still called "bad". The computer printouts showing this information for most of the RMS data dumps are given in Table 5-1. In going through the entries in the table one may observe the accumulation of data and the increase in the number of bad sensors as a function of orbit number or time (GMT). A summary of the information is given at the bottom of each page of the table. The term "hard shorts" refers to the number of shorts obtained for the leakage currents and "fast shorts" refers to the number of excessive counters which are considered to be shorted as described in paragraph 5.1.2 above.

With the definitions of "good" and "bad" sensors as given above we can describe the three types of areas which were calculated:

(a) Velocity Area - This refers to the total area-solid angle (as defined above) which was available at the time of any real-time data dump to accept velocity words. Since the four standby storage words were used, this area was available for a reading any time a meteoroid package was on. The area was calculated individually for each "good" top plane sensor and each "good" bottom plane sensor except for those paths which were subtended by the wind shields at the TABLE 5-1. LISTINGS OF RMS MEMORY DUMPS OF METEOROID SENSOR DISCHARGES

						·• :	e to se		
ORBIT N		15, STAT	ION FTMYR	S, TYPE	B, GMT =	314 5	11 23 (8467837 CE	NTISECONDS)
ROW		0	1	2	3	4	5	5	7
				FLUX CUUNI	5, BUX 11	PLANE I			•
COLUMN	0	100000	0	100003	100000	· 0	0	100000	. 0
COLUMN	1	0	0	0	100000	. 0	100000	. 0	100000
COLUMN	2	100000	-0	0	100000	100000	100000	100000	. 0
COLUMN	3	0	100000	0	0	100000	. 0	0	100000
	4 5	100000	0	100000	100000	100009	100000	10000	0
	5	100000	100000	100000	100000	100003	100000	100000	0
COLUMN	7	ŏ	0	100000	0	100000	100000	ő	100000
				FLUX COUNT	S, BOX 1,	PLANE 2			
COLUMN	0	0	100000	0	0	0	0	0	100001
COLUMN	1	0	0	100000	0	100000	0	100000	0
	2	U	100000	100000	0	0	0	. 0	0
COLUMN	4	0	100000	0	0	0	0	0	innnn
COLUMN	5	ő	Ő	0		0	0	. 0	1000.0
COLUMN	6	ŏ	Ő	ŏ	ő	ő	ő	· õ	ő
COLUMN	7	0	0	0	0	0	0	0	100000
				FLUX COUNT	S, BOX 2	PLANE 1		. •	1 - A
	~		100000						
CULUMN	() 1	100000	100000	100000	0	0	0	100000	100000
	, ว	100001	100000	0	0	100000	100000	0	100000
	2	100000	100000	100000	0	100000	100000	0	100000
COLUMN	4	100000	2	100000	100000	100000	ñ	0	100516
COLUMN	5	ò	0	100000	100000	1000.00	0 0	ő	100000
COLUMN	6	0	Ō	1000	100000	0	1000	0	0
COLUMN	7	100007	100002	0	0	10,7325	0	0	100000
				FLUX COUNT	S, 30X 2	PLANE 2			
	0	0	0		0	0	n	0	2
COLUMN	i i	0	· 0	ñ	0	0	0	·	
COLUMN	2	Ö	100000	ŏ	0	0	0	Ő	Ň
COLUMN	3	õ	0	õ	õ	ő	· 0	ő	ŏ
COLUMN	4	100000	0	Ó	. 0	0	. 0	Ō	100000
COLUMN 1	5	0	0	0	0	100009	0	0	0
COLUMN	6	0	C	0	0	0	0	0	0
COLUMN	7	. 0	· 1	0	0	0	; 0	0	0
					· .		BOX 1		30X 2
			80X 1 80	X 2			PLANE 1 PL	ANE 2 PLANE	1 PLANE 2
STATUS			1	1 ND.	OF HARD	SHORTS	7	2 15	0
CONDITIO	DN		2	2 NO.	OF ZERO	SHORTS	0	0 2	0
MEMORY-	впх	CONDITION	i 1	1 NO.	OF FAST	SHORTS	2ª	8 26	4
VEL ARE	4(10	-3 CM+2)	7751 6	760 FLU	X AREA(10)-3 CM+2)	31960	6567 .278	01 5250
MEMORY	STAT	05 = 0,	MEMORY CON	IDITION =	1				

NOTES: ZERO SHORTS ARE MARKED BY 1000. EXCESSIVE COUNTERS ARE MARKED BY HAVING 100000 ADDED TO THE COUNTS.

|--|

ORSIT NO.	88, STAT	ION ORORAL	, TYPE	A, GMT =	31.3 22	41 47 (49330229 CI	ENTISECONDS)
ROW	0	1	2	3	4	5	6	7
		f	LUX COUNT	S, BOX 1,	PLANE 1			
COLUMN 0	100000	1000	100215	100001	0		100000	- 1
COLUMN 1	<u></u>	ź	Ó	100003	. 0	100009	0	100000
COLUMN 2	100038	0	<u>n</u>	100004	100004	100310	100000	0
COLUMN 3	Ņ	100000	0	0	100001	· C) 0	100004
COLUMN 4	1	0	100023	0	0	C	1	0
COLUMN 5	100074	0	100004	100000	100150	100008	100055	. 0
COLUMN 6	1	100000	0	100003	0	c	0	0
COLUMN 7	0	0	100004	1	100008	100005	0	100000
		F	LUX COUNT	S, BOX 1,	PLANE 2			
COLUMN O	0	100031	1	0	0	Q	0	100007
COLUMN 1	2	0	0	2	100006	Q	100004	1
COLUMN 2	0	1	100000	1	0	0	0	1
COLUMN 3	0	100001	Q	0	0	. 0	0	0
COLUMN 4	0	0	0	0	Ó	0	. 0	100001
COLUMN 5	0	2	0	1	0	a	0	0
COLUMN 6	0	0	0	0	0	· 0	0	0
COLUMN 7	0	1	0	0	0	0	0	100000
		F	LUX COUNT	S, BOX 2,	PLANE 1			
COLUMN O	100000	100000	100001	0	0	o	100007	0
COLUMN 1	100008	100001	0	О	0	1	0	100069
CULAWN 5	0	100000	0	c .	100004	100000	0	0
COLUMN 3	100000	. 2	100000	Û	100000	2	· 0	100000
COLUMN 4	2	1	100000	100000	100000	. 0	0	100432
COLUMN 5	0	Q	100000	100000	1	ŋ). <u> </u>	100000
COLUMN 6	0	0	0	100001	0	0	0	0
COLUMN 7	100018	100017	0	0	134684	0	0	100000
		F	LUX COUNT	S, BOX 2,	PLANE 2			
COLUMN O	0	0	2	0	0	0	0	2
COLUMN 1	0	ò	0	0	0	. 0	0	0
COLUMN 2	0	100000	0	0	0	0	0	0
COLUMN 3	0	Ģ	0	0	. 0	a	0	. 0
COLUMN 4	100000	0	0	0	0	0	0	1.00000
COLUMN 5	0	0	Э	9	100009	n	0	. 0
COLUMN 6	0	0	0	0	0	0	0	0
COLUMN 7	0	1	0	0	• 0	0	0	0
						BOX 1		BOX 2
		BOX 1 BOX	(Z			PLANE 1 PL	ANE 2 PLANE	1 PLANE 2
STATUS		1 () <u>NO</u> .	DE HARD	SHURTS	19	2. (0
CUNDITION	COND	5 1	NO.	UF ZERO	SHURTS	· 1	0 0	0
MEMURY-BUX	CONDITION	3 .]	NO.	UE FAST	SHORTS	28	8 26	4
MEMORY STAT	-3 CM+2	MEMORY COND	U FLU DITION =	AREATIC 3	1-3 UM+2≯	31157	0680	U 0

NOTES: ZERO SHORTS ARE MARKED BY 1000. EXCESSIVE COUNTERS ARE MARKED BY HAVING 100000 ADDED TO THE COUNTS.

ORBIT NO	• 88 STAT	TON ORORA	L, TYPE	B. GMT = 3	18 22 4	4 42 (4	93477,05 CE	NTÍSECONDS)
ROW	0	1	2	3	4	5	; 6	7	
			FLUX COUNT	S, BOX 1,	PLANE 1				• .
COLUMN 0	100000	Ō	100216	100001	1000	ŋ	100000	1	
COLUMN 1	U	2	0	100003	0	100009	. 0	· · 100000	
COLUMN 2	100038	Ó	0	100004	10,0004	100310	100000	0	
COLUMN 3	Q	100000	0	1	100001	0	: 0	100005	· · · ,
COLUMN 4	1	<u>o</u>	100029	0	0_0	0	-io 1	0	• •
COLUMN 5	100074	Q	100004	100000	100171	100008	100055	0	
COLUMN 6	1	100000	0	100006	0	0	Q	, O	·
COLUMN 7	0	0	100004	1	100008	100003	· 0	100000	• •
			FLUX COUNT	S, BOX 1,	PLANE 2				2
COLUMN O	Q	100031	1	0	0	0.	0	100007	
COLUMN 1	2	õ	Ö	2	100006	Q.	100004	1	
COLUMN 2	0	1	100000	1	0	0	0	1	
COLUMN 3	0	100001	0	0	0	0	0	0	
COLUMN 4	Ò	Ņ	Ö	Ò	0	0	0	100001	
COLUMN 5	Õ	?	0	1	0	0	0	. 0	
COLUMN 6	0	0	0	0	0	0	0	. 0	
COLUMN 7	ç	1	.0	0	0	0	0	100000	•
			FLUX COUNT	S, BOX 2,	PLANE 1			,	
COLUMN 0	100000	100033	100015	0	0	0	100032	. 0	
COLUMN 1	100020	100001	0	0	0	2	0	100104	
COLUMN 2	0	100003	<u>`</u> 0	Ò	100004	100011	1	0	
COLUMN 3	100000	2	100000	0	100000	2	0	100005	
COLUMN 4	2	1	100000	100002	100001	o	0	101109	
COLUMN 5)	0	100006	100000	1	0	1	100004	
COLUMN 6	1000	0	1,000	100003	0	1	0	1000	
COLUMN /	100041	100017	0	0	134989	• 0	0	100033	
			FLUX COUNT	S, BOX 2,	PLANE 2				
COLUMN O	0	o	.0	o	0	0	0	3	
COLUMN 1	0	"Q	Ņ	0	0	1000	0	0	
COLUMN 2	0	100000	0	.0	0	0	0	0	
COLUMN 3	0	0	Ō	0	0	0	0	. 0	
COLUMN 4	100000	0	Ò	2	0	0	2	100009	
COLUMN 5	0	0	0	0	100009	0	0	. 0	
COLUMN 6	0	0	0	0	0	0	0	. 0	
COLUMN 7	0	2	0	0	0	1	0	· <u>0</u>	
						BOX 1	1	80X 2,	
		80X 1 80	X 2		P	IANE 1 PLA	NE 2 PLANE	1 PLANE 2	
STATUS		1	NO.	OF HARD S	HORTS	19	2 24	1	
CONDITIO	4	3	Z ND.	OF ZERO S	HORTS	1	0 3	1	
MEMORY-BO	JX CONDITION	3	Z NQ.	DF FAST S	HORTS	28	8 25	4	
VEL AREA MEMORY S	110-3 CM+2) FATUS = 1;	7516 6 MEMORY CON	492 FLU. DITION =	X ARFA(10- 3	3 CM+2)	31003	6302 268	08 5282	

NOTES: ZERO SHORTS ARE MARKED BY 1000. EXCESSIVE COUNTERS ARE MARKED BY HAVING 100000 ADDED TO THE COUNTS.

~

.

,

TABLE 2-7. (CONTINCED)	5-1. (CONTINUED)
------------------------	------------------

ORBIT N	0.	97. STAT	ION SNTAG	O, TYPE	,8, G,MT =	319 12,	35 3 (54329800	CENTISECONDS)
ROW		0	1	2	3	4	5	6	7
				FLUX ÇQUN	TS, BOX 1	, PLANE 1			
COLUMN	0	100000	1000	100216	100001	0	C	10000	0 1
COLUMN.	3	0	2	. 0	100003	0	10000	•	0 100000
COLUMN	2	100895	1000	1000	100004	100004	-100310	10000	0 1000
COLUMN	3	0	100000	0	1	100001	()	0 100007
COLUMN	4	.1	1000	100030	.0	1000	()	1 0
COLUMN	5	10,0074	0	100004	100000	100199	10000	<u>10005</u>	5 0
COLUMN	6	1	100000	0	100005	0	()	0 0
COLUMN	7	Q	0	100004	. 1	100008	100003	3	0 100000
				FLUX COUN	TS, BOX L	PLANE 2			
COLUMN	0	٥	100031	L	Q	٥	c) .	0 100007
COLUMN	1	2	0	0	• 2	100006	. (0 10000	4 1
COLUMN	2	Ó	1	100000	1	.0	()	0 1
COLUMN	3	0	100001	Q	ι	0	()	0. 0
COLUMN	4	0	Ò	0	0	0	. ()	0 100001
COLUMN	5	0	2	.0	1	0)	Q Q
COLUMN	5	0	0	0	0	0	()	0 0
COLUMN	7	0	1	0	э	0	()	0 100000
				FLUX COUN	TS. BUX 2	PLANE I			
COLUMN	0	100000	100034	100015	0	0	. (10003	2 0
COLUMN	ι	100020	100001	Ó	0	0	i	2	0 100104
CÜLUMN	2	0	100003	0	0	100004	100011	L	1 0
COLUMN	3	100000	2	100000	0	100000	ĩ	2	0 100005
COLUMN	4	2	1	100000	100002	100001	()	0 101109
COLUMN	5	1	U	100006	100000	1	()	1 100004
COLUMN	6	1000	1000	Q	100003	1000	1	L	0 0
COLUMN	7	100041	100017	0	0	134989	()	0 100033
				FLUX COUN	T,S + 80X -2	PLANE 2			
COLUMN	0	0	0	0	о	0	()	0
COLUMN	1	0	Q	0	0	0	0)	C 1000
COLUMN	2	0	100000	0	U	0	C)	0 0
COLUMN	3	0	0	0	0	.0	(1	Ç. O
COLUMN	4	100000	0	.0	2	0	C) '	2 100009
COLUMN	5	0	0	. 0	0	100009	C)	0 0.
COLUMN	6	0	0	0	0	0	0)	0 0
COLUMN	7	0	2	0	0	0	۱		0 0
							BOX		80X 2
			BOX 1 - 80	х ?			PLANE I PL	ANE 2 PLA	NE 1 PLANE 2
STATUS			1	о _. мп	• OF HARD	SHORTS	27	2	2/ 1
CONDITI	ΩN		3) NO	• OF ZERO	SHORTS	8	0	3 1
MEMORY-	BOX	CONDITION	2	t NO	 OF FAST 	SHORTS	28	8	26 4
VEL ARE MEMORY	A(10 STAT)-3 CM+2) 'US = 1, M	6561 . MEMORY CON	0 FL DITION =	UX AREA(10 2)-3 CM+2)	<u>26793</u>	7757	0 0
		•							

NOTES: ZERO SHORTS ARE MARKED BY 1000. EXCESSIVE COUNTERS ARE MARKED BY HAVING 100000 ADDED TO THE COUNTS.

.

.=

DRBIT NO.	, 206, STAT	ION SNTAG	D, TYPE	A. GMT =	325 13 .53	1 - 36 (10	066290.77 CE	NTISECONDS)
ROW	0	1	2	· 3	. 4	5	5	7
		ş	LUX COUNT	S, BOX 1,	PLANE 1			
COLUMN 0	100005	1000	100216	. 100053	1000	0	100450	1
COLUMN 1	0	2	0	100003	3	100010	0	100004
COLUMN 2	101045	.1	0	100023	100256	100354	100032	. 0
COLUMN 3	1000	100046	0.	1	100004	. 0	.0	100010
COLUMN 4	1	1	100043	0	1000	1000	, 1	2
COLUMN 5	100074	0	100006	100009	100392	100008	.100055	0
COLUMN 6	1	100030	Q	100018	0	0	0	2
COLUMN 7	0	, Q.	100007	. 3	100009	100007	0	100196
		1	FLUX COUNT	S, BOX 1,	PLANE 2			
COLUMN O	0	100031	.1	0	ა	· 0	0	100011
COLUMN 1	3.	0	0	2	100007	0	100005	· 1
COLUMN 2	0	3	100000	1	, O	0	. 0	· 1
COLUMN 3	0	100004	0	1	. 0	0	Ú	0
COLUMN 4	0	0	0	0	<u>э</u>	0	· 0	100006
COLUMN 5	. 0	3	· 0	1	0	0	0	0
COLUMN 6	0	0	0	1	ე	0	0	0
COLUMN 7	0	1	0	0	. 0	0	. 0	100008
		1	FLUX COUNT	S. BOX 2.	PLANE, 1			
COLUMN O	100036	100052	100870	0	0	0	100072	· 0
COLUMN 1	100035	100010	0	1000	õ	ž.	100012	100158
COLUMN 2	1000000	100013	õ	1000	100020	้ากกลาา		100190
COLUMN 3	100296	200013.	100010	1000	1000020	100511	0	100008
COLUMN 4	3	ī	100011	100004	100001	õ	ů	101519
COLUMN 5	2	ō	100051	100019	100001	ő	1	100013
COLUMN 6	1000	1000	200021	100004	0	2	1	100015
COLUMN 7	100400	100017	. 0	. 0	144377	õ	0	100073
		. 1	LUX. COUNT	S, BOX 2,	PLANE 2			
	0	1000	0	0	0	0	0	-
	1	1000	1000	ŏ	0	0	0	.)
COLUMN 2	1	100000	1000	0	0	0	0	
COLUMN 3	0	100000	1000	ő	0	0	2	1
COLUMN A	100003	1	1000	2	0	0	2	100010
COLUMN 5	100000	ŏ		. 2	100000	. 0	3	100010
	0	0	0	0	100004	0	1000	
COLUMN 7	0	2	0	1	2	· U	1000	. 0
COLUMN 7		2	0	ľ	2	2	J.	0
		30X 1 803	(2		D I	30X 1	NE 2 DI ANE	BOX 2
STAFUS		1	ΝΩ.	OF HARD	SHORTS	25	2 29	
CONDITION		3	3 NO.	OF ZERO	SHORTS	5	0 5	
MEMORY-BO	CONDITION	ī	L NO.	DE EAST	SHORTS	2.9	Q 26	4
VEL AREAL	10-3 CM+21	6668 5	. ∷.u 789 €tu	X AREALIO	-3 CM+21	27611	7650 255	9.2 5467
MENTRY ST	$\Delta T U S = 0 c^{-1}$	MEMORY CON	NTION =	1	- VIII 21			
				*				*
		•						

NDTES: ZERD SHORTS ARE MARKED BY 1000. EXCESSIVE COUNTERS ARE MARKED BY HAVING 100000 ADDED TO THE COUNTS.

ORBIT NO.	332, STAT	ION ORORA	L, TYPE	B, GMT =	334 14	53 1 (1)	84757610 CEN	TISECONDSI
ROW	0	.1	2	3	4	5	6	7
			FLUX COUNT	S, BOX 1,	PLANE 1			
COLUMN O	100005	0	100216	100054	0	1000	100450	.1
COLUMN 1	0	· 2	0	100025	3	100010	0	100004
COLUMN 2	101045	Ł	1	100023	100257	100354	100032	0
COLUMN 3	0	100046	0	1	100004	· 0	0	100010
COLUMN 4	1	1	100043	0	1000	1000	1	. 2
COLUMN 5	100074	0	100006	100009	100392	100008	.100055	0
COLUMN 6	2	100030	0	100018	0.	0	1000	2
COLUMN 7	ō	0	100007	. 3	100009	100007	0	100196
		:	FLUX COUNT	S, BUX L	PLANE 2			
COLUMN O	0	100031	1	0	0	` o	.0	100011
COLUMN 1	3	0	0	3	100007	0	100006	. 1
COLUMN 2	0	3	100038	1	0	0	0	1
COLUMN 3	0	100004	0	1	0	0	0	0
COLUMN 4	0	0	0	0	0	0	0	100006
COLUMN 5	ò	3	0.	1	0	0	0	0
COLUMN 6	0	0	.0	1	0	0	0	0
COLUMN 7	0	1	0	0	ŋ	<u>c</u>	0	100008
			FLUX COUNT		PLANE 1.			
COLUMN O	100036	100052	100870	о	0	0	100072	. 0
COLUMN 1	100035	100010	1000	1	0	. 2	0	100158
COLUMN.2	0	100013	· 0	0	100020	100011	2	0
COLUMN 3	100296	2	100010	0	100047	2	0	100008
COLUMN 4	3	1	100014	1.00004	101120	0	.0	101519
CULUMN 5	2	0	100051	100019	1	0.	1	100013
COLUMN 6	0	0	·0	100004	1000	2.	1000	0
COLUMN 7	100405	100017	0	0	144417	0	0	100073
			FLUX COUNT	rs, Box 2,	PLANE 2			
COLUMN 0	0	1000	0	0	0	0	0	3
COLUMN 1	1	0	0	1000	0	0	1000	0
COLUMN 2	0 ·	100024	0	0	0	0	0	1
COLUMN 3	0	1	0	0	0	0	2	10.00
COLUMN 4	100006	0	· 1	2	0	0	3	100010
COLUMN 5	0	0	0	0	100009	0	0	0.
COLUMN 6	0	0	. D	1000	0	0	0	. 0
COLUMN 7	1000	2	0	1	2	3	0	0
						BOX 1	8	OX 2
		BOX 1 BO	X 2		f	PLANE 1 PLA	ANE 2 PLANE	1 PLANE_2.
STATUS		1	1 NO.	OF HARD	SHORTS	26	2 26	6
CONDITION		3	3 ND.	OF ZERO	SHORTS	4	0 3	6
MEMORY-BOX	CONDITION	2	2 ND.	OF FAST	SHORTS	28	8 26	4.
.VEL AREA(1 MEMORY STA	0-3 CM+2) TUS = 1,	6604 .6 MEMORY CON	003 FLU DITION =	JX AREA(10 2)-3 CM+2)	23080	7714 2738	7 4885

NOTES: ZERO SHORTS ARE MARKED BY 1000. EXCESSIVE COUNTERS ARE MARKED BY HAVING 100000 ADDED TO THE COUNTS.

ORBIT NO.	617, STAT	ION SNTAG	1. TYPE	A, CMI =	352 20	21 28 (3	42248259 CF	NTISECONDSI
RJW	0	1	2	3	4	5	6	7
			LOX COUNT	s, 30x 1,	PLANÉ 1			
COLUMN O	100005	1000	100215	100054	1000	1000	100450	· · 1
COLUMN 1	0	2	0	100026	.3	100010	0	100004
COLUMN 2	101045	1	1	100023	100257	100354	100032	: 0
COLUMN 3	0	100046	0	1	100004	3	1)	100010
COLUMN 4	1	1	100043	0	1000	1000	1	2
CULUMN 5	1000/4	100030	100006	100009	100345	100008	100055	
COLUMN 5 COLUMN 7	2	100030	100007	100013	100009	100007	0	100196
		5	LUX COUNT	S. 30X 1.	PLANS 2			
							0	
COLUMN O	0	100031	1	0	0	. 0	0	100011
COLUMN I	3	0	()	3	100007	3	109005	1
COLUMN 2	1000	3	100038	1	1000	0	0	. 1
COLOMN 3	0	100004	0	. 1	U O	0	0	100006
CULUMN 4	. 0	0	0	0	0	. 0	0	100006
COLUMN 5	0	2	0	1	0	0	0	
CALUMN 7	0	I	3	່ ເ ເ	0	0	0 0	100008
		1	LUX COUNT	S, 80X 2,	PLANE 1			
C 21 (1911) 0	100034	100053	100270	0		0	100077	
CULUMN 0	100035	10/052	100870	0	0	0	100072	100150
CULUMN I	100035	100010	0	1	0	120211	1000	.100155
CULUMN 2	100004	100015	100010	:)	100020	100011	2	100008
	100295	2	100010	1:00004	100047	6	0	101516
COLUMN 5	3	1	100011	100004	. 191121	0	. 1	100013
	1000	1000	100051	100014	1	2		100010
COLUMN 7	100405	100017	0	100004 100004	144417	0	<u>,0</u>	100073
		1	-LUX COUNT	's, BOX 2,	PLANE 2			
								~
COLUMN O	1600	1000	() ()	Ú.	· ()	0	1000	6
COLUMN 1	1	1000	, 0	3	0	0	. 0	1000
CULUMN 2	0	100024	0	0	0	10/10	0	1
CULUMN 3	0	I	0	U.	0	1000	·	100010
COLUMN 4	100005	0	1		100000	0		100010
CULUMN 5	0	()	1000	.,	100009	0	0	U .
COLUMN 5 COLUMN 7	0	2	1000	1	2	U 3	1000	0
0/20/11/1		-		·	- -	5	1000	Ū.
		8081 00	x 2			80X 1		BOX 2
STATUS		1 100	יי ז איז	DE HARD	SHORTS	29	4 74	
CUNDITION			, 10. I NO	0E 7520	SHORTS	5	2 7	, , , ,
PENDEALEN	CONDITION	4	1 100-	DF FAST	SHORTS	29	9 24	4
VEL AREALT	0-3 54+21	6274	0 510	IX AREA(10	-3 CM+21	27304	7447	່ວ່ຳ
MEMORY STA	TUS = 0.	MENDRY CON) TICN =	4				. ,

NOTES: ZERO SHORTS ARE MARKED BY 1000. EXCESSIVE COUNTERS ARE MARKED BY HAVING 100000 ADDED TO THE COUNTS.

CABIT NO.	770, STAT	ION MADGAR	R, TYPE	A, GMT =	362 14 3	30 32 (42	26542690 CE	NTISECONDSI
BOW	0	1 ,	2	3	4	5	6	7
		f	LUX COUNT	S, BOX 1	, PLANE 1			
COLUMN 0	100005	1000	1.00216	100054	1000	1000	100450	۱
COLUMN 1	1000	. 2	0	100026	3	100010	0	100004
COLUMN 2	101045	j	1	100023	100257	100354	100032	1000
COLUMN 3	0	100046	0	1	100004	0	0	100010
COLUMN 4	1	1	100043	1000	1000	1000	1	2.
COLUMN 5	100074	Q	1.00006	100009	100392	100008	100055	0
COLUMN 6	2	100030	0	100013	0	1000	1000	2
COLUMN 7	0	ç	100007	3	100009	100007	0	100196
		F	LUX COUNT	S. BOX. 1	PLANE 2			
COLUMN O	0	100031	1	0	0	0	. 0	100011
COLUMN 1	3	0	C	3	100007	0	100006	1
COLUMN 2	0	.3	L00038	1	1000	0	- 1000	1
COLUMN 3	0	100004	.0	1	0	0	0	1000
COLUMN 4	0	0	0	0	0	. 0	0	100006
COLUMN 5	0	3	0	1	0	0	0	0
COLUMN 6	0	Ō	0	1	0	1000	0	0
COLUMN 7	2	1	Q	0	0	0	0	100008
		F	LUX COUNT	S, 80X 2	, PLANE 1			
COLUMN 0	100036	100052	100870	0	0	. 0	100072	0
COLUMN 1	100035	100010	1000	1	0	2	0	100158
COLUMN 2	0	100013	0	0	100020	100011	2	0
COLUMN 3	100296	2	100010	0.	100047	2	0	100008
COLUMN 4	3	1	100011	100004	101121	0	0	101519
COLUMN 5	2	0	100051	100019	1.	0	1	100013
COLUMN 6	0	1000.	0	100004	1000	2	0	0
COLUMN 7	100405	100017	0	0	144417	0	0	100073
		F	LUX COUNT	S, BOX 2	PLANE 2			
COLUMN O	0	0	0	1000	1000	1000	0	3
COLUMN 1	1	1000	1000	0	0	0	0	0
COLUMN 2.	0	100024	0	0	0	0	0	1
COLUMN 3	0	1	0	0	0	0	2	1000
COLUMN 4	100006	0	1	2	О	0	3	100010
COLUMN 5	0	0	0	0	109009	0	0	0
COLUMN 6	· 0	0	0	0	1000	0	0	0
COLUMN 7	1000	2	0	1	2	3	0	0
				a.		30X 1		BOX. 2
		80X 1 80)	(2)		р	LANE 1 PLA	NE 2 PLANE	1 PLANE 2
STATUS		1 () NO.	OF HARD	SHORTS	38	6 24	9
CONDITION		3 1	NO.	OF ZERU	SHORTS	11	4 3	9
MEMORY-BOX	CONDITION	1 1	L. NO.	DF FAST	SHORTS	28	8 26	4
VEL AREA(1)	0-3 CM+2)	5014	O FLU	IX AREA(10	D-3 CM+2)	22759	9263	0 0
MEMORY STA	TUS = 0,	MEMORY CONC	ITION =	1				

NOTES: ZERD SHORTS ARE MARKED BY 1000. EXCESSIVE COUNTERS ARE MARKED BY HAVING 100000 ADDED TO THE COUNTS.

.

ORBIT NO.	1001, STAT	LON MADGAI	R; TYPE	Λ , GMT =	12 6	8 42 (55	53131664 CE	NTISECONDS)
ROW	0	1	2	3.	4	.5	6	7
		1	FLUX, COUNT		PLANE 1			
COLUMN O	_100006	1000	100215	100054	1000	1000	100450.	1
COLUMN 1	0	2	1000	100041	3	100.010	.0	100004
COLUMN 2	101045	ī	1	100023	100257	100354	100032	1000
COLUMN 3	0	100046	0	1	100004	0	0	100010
COLUMN 4		1	100043	1000	1000	1000	ĩ	2000.20
COLUMN 5	100074	0	100006	100009	100392	100008	100058	ō
COLUMN 6	2000	100040	1000	100019	0	1000	100,000	· 2
COLUMN 7	0.	1.	100.007	3	1,00009	100007	0	100196
		!	ELUX LOUNI	r.s.,	PLANE 2		· 1	
COLUMN D.	.0	100035	.1	.0.	.0	0	0	100012
COLUMN 1	3.	0	. 0	3	100010	0	100005	· 1 ·
COLUMN 2	1000	3	100038	i	. 0	1000	0	• • 1
COLUMN 3	0	100004	0	· ī	Ő	0	ō	1000
COLUMN 4	0	1000	0	1000	1000	1000	1000	100006
COLUMN 5	0	3	0	1	0	0	· 0	0
COLUMN 6	1000	0	0	1	0	ō	0	Ō
COLUMN 7	0.	.1	ō	.0	0.	. <u>0</u> .	0.	100008
		1	ELUX COUNT	rs, Box 2.	PLANE 1			
COLUMN 0	100036	100052	100870	0	0	0	100072	0
COLUMN 1	100035	100010	0	ī	1000	2		100158
COLUMN 2	0	100013	õ	•	100020	100011	· 2	100150
COLUMN 3	100296	20001.5	100010	0	100047		<u> </u>	100008
COLUMN 4	3	ī	100011	100004	101121	0	0	101519
COLUMN 5	2	ō	100051	100019	101111	ů.	1	100013
COLUMN 6	õ	ň	1.00.001	100004	1000	2	1	1000
COLUMN 7	100405	100017	0.	1000004 D	1.44417	0	.0.	100073
		1	FLUX COUNT	(S. 30X.2)	PLANE 2			
CULUMNO.	. 0	.0	1000	0	0	1000	1000	3
COLUMN, 1	1	.0.	1000	1.009	0	0	.0	0
CULUMN 2	0	100024	.0	.0	0.	, O .	.0	1
COLUMN 3	0.	1	1.000	.0	C	.0	2	0
COLUMN 4	100.00.6	0	1.	2	C	0	3	100010
CQLUMN 5	.0	0	.Q .	.0	.10.00.0.9	0	0.	0
COLUMN, 6	. 0	. 0	.0	0	0	1000	0	0.
COLUMN 7	0	.2	1000	1	2	3	0	0
						BOX 1		BOX. 2
		BOX 1 BO	X 2			PLANE 1 PLA	NE 2 PLANE	1 PLANE 2
STATUS		0 0	D NO.	OF HARD	SHORTS	.3.7	12 .24	. <u>9</u> ,
CONDITION		1	L NO.	OF ZERO.	SHORTS	10	93	8
MEMORY-BO)	CONDITION	1	1. N.D.	DE.FAST.	SHORTS	28	.8. 2.6	. 4
VEL AREA(I	0-3 CM+2)	. 0	U. FLL	X. AREA(10	-3 CM+21	0	0	0 0
MEMORY ST	TUS = 0	MEMORY CONT	DITION. =	l .				

NOTES: ZERD SHORTS ARE MARKED BY 1000. EXCESSIVE COUNTERS ARE MARKED BY HAVING 100000 ADDED TO THE COUNTS.

.

IABLE 5~1. (CUNIINUED)	TABLE	5-1.	(CONTINUED)
------------------------	-------	------	-------------

ORBIT NO.	1042, STATI	ION ARORAI	, TYPE	B, GMT =	14 20	7 46 (5	75446085 CEN	TISECONDSI
ROW	0	1	.2	3	4	5	6	7
		5	LUX COUNT	S, 80X 1,	PLANE 1			
COLUMN O	100006	0	100215	100054	1000	c	100450	·. 1
COLUMN I	0	2	0	100041	3	100010	0	100004
COLUMN 2	101045	1	1	100023	100257	100354	100032	0
COLUMN .3	0	100046	0.	1	100004	0	0.	100010
COLUMN 4	1	1	100043	1000	0	1000	1	2
COLUMN 5	100074	0	100006	100009	100392	100008	100058	0
COLUMN 6	2	100040	0	100013	1000	0	0.	2
COLUMN 7	0	1	100007	3	10000.9	100007	U	100195
		F	LUX COUNT	S, BOX 1,	PLANE 2			
COLUMN 0	0	100035	1	0	0	0	0	10.0012
COLUMN I	3	0	0	3	100010	0	1000.06.	1
COLUMN 2	0	3	100038	1	0	1000	.0	1
COLUMN 3	0	10,000,4	0	1	0	0	0	0
CULUMN 4	0.	0	0	0	0	0	0	10.0006
COLUMN. 5	0	3	0	1	0	0	0	0
COLUMN 6	0	1.000	0	1	0	0	0	0
CULUMN 7	0	I	0	0	0	0	0	1000.0.8
		F	LUX.COUNT	S, BOX 2,	PLANE 1			
COLUMN O	100036	100052	100870	0	0	0	100072	0
COLUMN 1	100035	100010	0	· 1	0	2	0	100158
COLUMN 2	0	100013	0	0	100020	100011	2	0
COLUMN 3	100296	2	100010	0	100047	2	0	100008
COLUMN 4	3	1	100011	100004	101121	.0	.0	1.0151.9
COLUMN 5	2	0	100051	100019	1	.0	1.	100013
COLUMN 6	0	0	0	1000.04	1000	2	0	1000
COLUMN 7	100405	10001.7	;)	U	144417	U	0.	100073
		ſ	LUX COUNT	s, BOX 2,	PLANE 2			
COLUMN O	0	0	1000	0	о	1000	0	3
COLUMN 1	1	0	0	1000	1000	9	0	0
COLUMN 2	0	100024	0	C	0	.0	0	.1
COLUMN 3	0	1	0	n	0	0	2	1000
COLUMN 4	100006	0	1	2	.0	0	3	100010
COLUMN 5	0	0	0	С	100009	Q .	0.	.0
COLUMN 6	С	0	0	0	0	0	1000	0
COLUMN 7	0	2	0	1	2	3	О	0
						BOX 1.	. B	2XC
		BOX 1 30)	(2)		ţ	LANE. 1 PL	ANE 2 PLANE	L.PLANE .2
STATUS		1 1	NO.	OF HARD.	SHORTS	25	5 19	9
CONDITION		2 2	2 NO.	OF ZERO	SHORTS	4	2 2	6
MEMORY-BOX	CONDITION	1 1	L CIN	OF FAST.	SHORTS	23	8 26	4
VEL AREA(1 MEMORY STA	0-3 CM+2) TUS = 0, M	6345 51 IEMORY CONS	125 FLU NITION =	X AREA(10 1	-3.C <u>M+2</u>)	28175	.7440 2793	1 4582

NOTES: ZERO SHORTS ARE MARKED BY 1000. EXCESSIVE COUNTERS ARE MARKED BY HAVING 100000 ADDED TO THE COUNTS.

end of each meteoroid box. The area formula used was

 $A_v = \frac{a^2 \cos^2 \theta}{4\pi d^2}$ where a is the individual sensor area, θ the angle between the normal to the sensors and the ray through the centers of the sensors and d is the distance between the centers. The individual areas A_v were then summed for each box and

at each real-time run the boxes were on.

 $A_t = a/4$

(b) Top Plane Area - This refers to the total area-solid angle viewed by each "good" sensor on the top planes of the meteoroid packages. The area A_t for each sensor individually is

less that area subtended by the wind shields. These were calculated and summed over all "good" sensors on each top plane at each real-time run only when the boxes and the memory were on together, since the counts were stored in memory.

(c) Bottom Plane Area - This area-solid angle was calculated for the combination of a "good" sensor on the bottom plane and a "bad" sensor on the top plane. This criterion was used, since the passage of a particle through a "good" top sensor would have resulted in a velocity word. The formula for the individual area A_b is the same as that used for velocity area, i.e.

$$A_{\rm b} = \frac{a^2 \cos^2 \theta}{4\pi d^2}$$

where the top sensor used is "bad" and the bottom one is "good".

After the areas were calculated they were used to generate a new tape in which the area values were stored in the data portion of each real-time frame.

5.2.3 Time-Area Accumulation

For the final analysis the last tape was processed using the previously determined conditions and the areas. The result was a running accumulation of "on" times for the individual meteoroid packages and the combination box-memory "on" time. For each "on" period the average area over that period was multiplied by the time and summed at each real-time run. This information was used in conjunction with the count information to determine the flux at each memory dump.

5.2.4 Poisson Analysis of Counts

A very superficial examination of the count data, which was accumulated in the memory, showed that most of the counts resulted from spurious breakdowns in the sensors. These most probably occurred in sensors which had been damaged at launch and were periodically shorting out, due to thermal stresses. A Binomial analysis would have been exact for this problem but for simplicity a Poisson analysis was used which introduced only a trivial uncertainty. The expression for the probability P_x of a sensor's receiving x counts is

$$P_{x} = \frac{m^{x}}{x!} e^{-m}$$
(1)

where m is the mean number of counts per sensor. For our situation m is equal to the total number of counts divided by the number of "good" sensors (as defined above). A simple analysis was first made using the ratio of P_1 to P_0 . One sees from Eq. (1) that

$$\frac{P_1}{P_0} = m^2$$

$$\frac{P_1}{P_0} = \frac{C}{N_g}$$

or

Since the number of sensors N_x with x counts is given by

 $N_x = P_x N_g$

we have

 $\frac{N_1}{N_0} = \frac{C}{N_g}$

 $C = \frac{N_1 N_g}{N_0}$

Using Eqs. (1) and (2) the values of N_x and C were calculated and the effective fluxes were determined. An output of the form shown in Table 5-2 was obtained. The top portion of the table shows the time and time-area accumulation for the real-time dumps and the bottom portion gives a summary which was made at each memory dump. The ease with which each data segment could be studied made it possible to locate the remaining anomalies in the data. First, four bad data accumulation periods were found. These all registered a large number of counts in the first observation period immediately after a particular box was turned on. This phenomenon is not unexpected and may result from a "shock" of the capacitors when the voltage was first applied or may actually be the "burn-out" resulting from meteoroids which struck the capacitor while the voltage was off. The time-area was not accumulated during these four periods and the counts were deleted.

The second type of anomaly became evident when the Poisson distribution was compared to the count distribution. This may be seen in Table 5-2. It is seen in all but one instance that the number of sensors with 2 and 3 counts is significantly greater than the number

(2)

or

 N_1/N_0 . The data in this table is superseded by table 5-3, but it indicates the number of excessive counts which were eliminated FROM FIRST POISSON ANALYSIS USING ONLY RATIO THE TEXT. AS DISCUSSED IN PRINTOUT SAMPLE

5-2.

TABLE

08 08 08 08 07 07 03 07 08 01 08 20 03 07 07 08 07 07 08 07 (CM+2 SEC) 0.9465E-06 0.7649E-06 0.3463E-05 0.2672E-05 0.4481E-05 0.1991E-05 0.3024E-04 0.1519E-04 CM+2 SEC) VELOCITY (COUNTS/ 0.2997E 0.2997E 0.9720E 0.2997E 0.9720E 0.3000F 0.9744E 0.3000E 0.3000E 0.3000E 0.9720E 0.2997E 0.9720E 0.9744E 0.3000E 0.9744E 0.3000E 0.9744E 0.9744E 0.9744E FLUX 90 06 07 05 05 07 06 07 07 06 07 06 07 06 07 06 (CM+2 SEC) 07 0.7 06 222 17.8 20 15.4 15.4 20 10.0 COUNTS PLANE 2 NO. 0.6614E 0.5775E 0.6614E 0.6614E 0.5775E 0.6614E 0.5775E 0.6614E 0.5775E 0.5775E 0.6614E 0.5775E 0.6614E 0.5775E 0.6614E 0.5775E 0.5775E 0.6614E 0.5775E 0.6614E 0.0 0.0 0.0 0.1 **N**0. X•S 8 26 28 08 080 080 0307 08 08 08 07 08 01 08 07 08 Ó7 07 20 (CM+2 SEC) 3°S. 0.0 0.0 2 0.5 0.2 PLANE 1 4 m 0.3348E 0.3348E 0.3348E 0.2324E 0.2324E 0.3348E 0.2324E 0.3348E 0.2324E 0.3348E 0.2324E 0.3348E 0.2324E 0.3348E 0.2324E 0.2324E 0.•.2324E 0.2324E 0.3348E 0.3348F 2. S. T 0.5 2.8 1.7 ω 0 0 ÷ 4 m 18 8 18•410•2 42 8 N0. 5.5 40.611.6 m un co 4 TIME ON 798235 125164 798235 198235 98235 125164 198.235 125164 98235 198235 125164 98235 125164 798235 125164 125164 125164 125164 25164 98235 ND. 29.9 44.8 TOTAL 27 43 POISSON POISSON DATA POI SSON DATA DATA DATA POISSI09 COND. M-8 OFF 0FF 0FF OFF OFF OFF OFF OFF OFF 0 1 1 OFF θFF 0FF 1 1 0 OFF OFF 0 F F OFF 0FF OFF 0.556 0.286 0.185 0.186 RATIO 15/05 4831823 TIME ON 4831823 1698173 1693173 4831823 4831823 4835852 1698173 1698173 835852 1702202 4835852 1702202 1702202 4835852 1702202 4835852 1702202 483,5852 1702202 TOTAL 0009 SENS 32 54 36 54 ~ COND. PLANE BOX OFF ΟFF θFE ΟFF 0FF SWON OFF 0FF 0 F F 0FF 0FF OFF OFF SWON SWOF SWOF OFF J F F OFF OFF \sim -- \sim 80X 80X 2 N -NO. (.01 SEC) TYPE CRD CRD CR D TYPE ŝ Ω ⊲ \mathbf{c} 4 4 4 РВ ND. (.01 SEC) 559303959 567464934 575426565 ഗ 575849062 1047.577979616 610578662 575983684 591977062 619298301 57544608 59780259 GMT - GMT **ORB**. 0RB. 1123 1042 1107 1073 1013 1043 1048 1028 1042 1083

the Poisson analysis predicted. In other words the probability of a second and third discharge in a sensor is much larger than would be expected from real meteoroid events. The impliciation is that the sensor is damaged by a meteoroid and the probability is high that the sensor will spontaneously breakdown at a later time. To eliminate the error caused by these discharges it was necessary to use a slightly different relationship which is based on the following supposition: the total number of sensors with one, two, and three counts is known accurately; however, the distribution of counts in these sensors has been modified by the spurious breakdowns. We may obtain an expression using this information from Eq. (1) by summing the probabilities of obtaining one, two, and three counts and dividing by the probability of obtaining zero counts. The results are as follows:

$$\frac{P_1 + P_2 + P_3}{P_0} = m + \frac{m^2}{2} + \frac{m^3}{6}$$

Since

then

$$\frac{N_1 + N_2 + N_3}{N_0} = m + \frac{m^2}{2} + \frac{m^3}{6}$$

Using the solution for a cubic equation m was determined for each memory dump and the solution was found for C and the Poisson distribution was calculated and compared with the count data. The results of this analysis are given at various points in the mission in Table 5-3. This table gives a nearly complete history of the timearea and data accumulation during the entire RMS mission.

5.2.5 Flux Calculation

The last calculation made was to compute the flux at the time of

TABLE 5-3.PRINTOUTS OF TIME-AREA ACCUMULATIONS, POISSON ANALYSES,
AND OTHER RELEVANT INFORMATION AS INDICATED IN THE TABLE

,

•

							.'.'	,		•	• •		. •	•			: . :	۰° د.	
ORB. NO.	DAY	GMT HR	MN	TYPE	вох	BOX COND.	TO TIMI	TAL E ON	M-B COND.	т Т1	OTAL Me On	PLA: {CM+2	NE 1 Seci	PL ICM	ANE 2 +2 SEC)	VELOCIT (CM+2 S	Y ZE Éc) p	RQ S	SHORTS P2
3	313	11	37	. , A	1	OFF		0	OFF		· J	:0.0		0.0		0.0	• •	0 - '	0
					2	OFF		Ü	OFF		0	0.0		0.0		0.0		0	0
12	314	1	19	<u></u> 8	1	· OFF		0	OFF		0	0.0		0.0		0.0	1.1	0	0
					2	OFF		0	OFF		Ó.	0.0		0.0	-	0.0		0	0
13	314	1	54	٠A	1	OFÉ		J.	OFF -		.: 0	0.0.		0.0		'0.0 ·		0	0
					2	OFF		0	0 F F		υ	0.0		0.0		0.0	•	0	0
14	314	3	34	, Α	1	OFF		0	OFF		0	0.0 .		0.0		0.0		0	0
					2	OFF		0	OFF		0	0.0		0.0		0.0	•	0	0
15	314	5	11	В	. 1	SWON		0	OFF		. 0	0.0		0.0	· .	0.0		0	0
					2	SWON		0 '	OFF		0	0.0		0.0	-	0.0		2	0
17	314	8	26	Α	1	0N	1	1727	OFF		0	0.0		0.0		0.9090E	05	0	0
					2	0 N	1	1727	OFF		0	0.0		0.0		0.7318E	05 [.]	3	1
18	314	10	- 5	Α	1	ON	1	7669	OFF		0	0.0		0.0	•	0.1370E	06	0	0
					2	0N	1	7669	OFF		. 0	0.0		0.0		0.1096E	06	3	l
		•	:	· •			6000	RATI	n		NO.	NO.	NO.	'ND.	ND.	NO.	- FI	ux	
					вох	PLANE	SENS	1235/	05		0 * S	1'S	2'5	315	X*S	COUNTS	(COU CM+2	NTS SE	/ C)
23	314	16	48	PB	1	1	36	0.0		DATA	36	0	0	0	28	0	0.0		
			•	۰.					POI	SSON	36.00	-0.00	0.00	-0.00	-0.00	0.0	0.0		
			•		1	2	56	0.0		DATA	56	0	0	0	9	0	0.0		
									PDI	SSON	56.00	-0.00	0.00	-0.00	-0.00	0.0	0.0		
					2	1	35	0.0		DATA	35	0	0	0	26	0	0.0		
									109	SSON	35.00	-0.00	0.00	-0.00	-0.00	0.0	0.0		
					2	2	59	0.0		DATA	59	0	0	0	4	0	0.0		
									P01	SSON	59.00	-0.00	0.00	-0.00	-0.00	0.0	0.0		
					,														

ORB	•	GMT				BOX	• TO 1	TAL	м-в	TUTAL	PLA?	NE 1	PL	ANE 2	VELOCITY	Y ZERO	SHORTS
NO.	DAY	HR	MN	TYPE	80X	COND.	TIME	E ON	COND. T	IME ON	(CM+2	SEC)	(CM	+2 SEC)	ICM+2 SI	EC) P.1	·P2
88	318	22	41	۵	1	ON	408	8598	ON	333276	0.1040	DE UR	0.2	244E 07	0.3107E	07 1	0
					2	OFF	9	5315	OFE	19993	0.5030	DE 06	0.1	067E 06	0.5826E	06 0	0
							600D	RATI	0	NO.	NO.	ND.	ND.	NO.	NO.	FLU)	(
					90X	PLANE	SENS	1235/	05	0"5	1 • S	2•5	3'S	X • S	COUNTS	(COUNT	
88	318	22	43	PB	1	1	35	0.20	7 DAT	A 29	5	1	0	28	7	0.67328	-06
						_	.		POISSO	N 29.00	5.45	0.51	0.03	0.00	6.58	0.63318	-06
					1	2	56	9.21	PUISSU	A 46 N 46.00	9.05	3 0.89	0 0.06	8 0.00	13	0.57936	-05
					2	1	38	0.08	6 DAT	A 35	3	0	0	26	3	0.59648	-05
									POISSU	N 35.00	2.88	0.12	0.00	0.00	3.13	0.62138	-05
					2	2	60	0.0	DAT	a 60	0	0	0	4	0	0.0	
									POISSO	N 60.00	-0.00	0.00	-0.00	-0.00	0.0	0.0	

		•	
	•	•	

ORB. GMT BOX TOTAL M-B TOTAL PLANE 1 PLANE 2 VELOCITY ZERO S NO. DAY HR MN TYPE BOX COND. TIME ON COND. TIME ON COND. TIME ON COMD. TIME ON COMD. TIME ON COMD. CM+2 SEC) P1 88 318 22 44 A 1 ON 408772 ON 333450 0.1040E 08 0.2245E 07 0.3109E 07 1 90 319 0 57 A 1 ON 416755 ON 341433 0.1064E 08 0.2301E 07 0.6310E 06 3 90 319 0 57 A 1 ON 416755 ON 341433 0.1064E 08 0.2301E 07 0.6310E 06 0.6310E <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									•									
NO. DAY HR MN TYPE BOX COND. TIME ON COND. <td< th=""><th>ORB.</th><th></th><th>GMT</th><th></th><th></th><th></th><th>30X</th><th>T01</th><th>14L</th><th>M-B T</th><th>OTAL</th><th>PL 4!</th><th>NE 1</th><th>PL</th><th>ANE 2</th><th>VELOCIT</th><th>Y ZERO</th><th>SHORTS</th></td<>	ORB.		GMT				30X	T 01	14L	M-B T	OTAL	PL 4!	NE 1	PL	ANE 2	VELOCIT	Y ZERO	SHORTS
88 318 22 44 8 1 0N 408772 0N 333450 0.1040E 08 0.2245E 07 0.3109E 07 1 90 319 0 57 A 1 0N 416755 0N 341433 0.1064E 08 0.2245E 07 0.5826E 06 3 90 319 0 57 A 1 0N 416755 0N 341433 0.1064E 08 0.2301E 07 0.3167E 07 3 0.6310E 06 1 0.28 8 0.7515E 0.7535E 0.7535E 0.7535E 0.7535E 0.7537E 0.7394E 1 0.2 0.65050E 0.905 0.89 0.0	N0.	DAY	HR	MN	TYPE	BOX	COND.	TIME	E-ON -C	OND. TI	HE ON	(CM+2	SEC)	€.ÇM	+2 SEC)	ICM+2 S	EC) P1	P2
2 SWON 95315 OFF 19993 0.5030E 06 0.1067E 06 0.5826E 06 3 90 319 0.57 A 1 ON 416755 ON 341433 0.1064E 08 0.2301E 07 0.3167E 07 3 2 DN 103298 OFF 19993 0.5030F 06 0.1067E 06 0.6310E 06 3 30 103298 OFF 19993 0.5030F 06 0.1067E 06 0.6310E 06 3 80X PLANF SFNS 123S/0S 0*S 1*S 2*S 3*S X*S COUNTS COUNTS CMUNTS 91 319 2 35 PB 1 33 0.269 DATA 26 6 1 0 28 8 0.7515E- 91 319 2 35 PB 1 33 0.269 DATA 26 0 </td <td>88</td> <td>318</td> <td>22</td> <td>44</td> <td>в</td> <td>1</td> <td>ΩN</td> <td>401</td> <td>3772 . ,</td> <td>ON 3</td> <td>33450</td> <td>0.1040</td> <td>0E 08</td> <td>0.2</td> <td>245E 07</td> <td>0.3109E</td> <td>07 1</td> <td>0</td>	88	318	22	44	в	1	ΩN	401	3772 . ,	ON 3	33450	0.1040	0E 08	0.2	245E 07	0.3109E	07 1	0
90 319 0 57 A 1 0N 2 00 000 0000000000000000000000000						2	SWON	90	5315 👘	OFF	19993	0.5030	0E 06	0.1	067E 06	0.5826E	06 3	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	319	0	57	А	1	ON	416	5755	ON 3	41433	0.106	4E 08	0.2	301E_07	0.3167E	07 3	0
GOUD RATIO NO. NO. <t< td=""><td></td><td></td><td></td><td></td><td>·</td><td>2</td><td>ЪN</td><td>103</td><td>3298 - 1</td><td>OFF</td><td>19993</td><td>0.503</td><td>0F 06</td><td>0.1</td><td>067E 06</td><td>0.6310E</td><td>06 3</td><td>1</td></t<>					·	2	ЪN	103	3298 - 1	OFF	19993	0.503	0F 06	0.1	067E 06	0.6310E	06 3	1
BOX PLANF SFNS 1235/OS 91 319 2 35 PB 1 1 33 0.269 DATA 26 6 1 0 28 8 0.7515E- POISSON 25.00 6.20 0.74 0.06 0.00 7.87 0.7394E- 1 2. 56 0.217 DATA 46 7 3 0 8 13 0.5650E- POISSON 46.00 9.25 0.89 0.06 0.00 11.02 0.4788E- 2 1 35 0.094 DATA 32 3 0 26 3 0.5964E- POISSON 32.00 2.87 0.13 0.00 0.00 3.14 0.6236E- 2 2 59 0.0 DATA 59 0 0 0 4 0 0.0 POISSON 59.00 -0.00 0.00-0.00 -0.00 0.0								6000-	RATIO	1 e	NO	NO.	NO.	NO.	NO.	NO.	FLU	x
91 319 2 35 PB 1 1 33 0.269 DATA 26 6 1 0 28 8 0.7515E POISSON 26.00 6.20 0.74 0.06 0.00 7.87 0.7394E 1 2. 56 0.217 DATA 46 7 3 0 8 13 0.5650E POISSON 46.00 9.05 0.89 0.06 0.00 11.02 0.4788E 2 1 35 0.094 DATA 32 3 0 26 3 0.5964E POISSON 32.00 2.87 0.13 0.00 0.00 3.14 0.6236E 2 2 59 0.0 DATA 59 0 0 0 4 0 0.0 POISSON 59.09 -0.00 0.00-0.00 -0.00 0.0						80 X	PLANE	SENS	123570	S	0 • 5	145	2 ' S	3'5	X ' S	COUNTS	(COUN	
POISSON 26.00 6.20 0.74 0.06 0.00 7.87 0.7394E- 1 2 56 0.217 04TA 46 7 3 0 8 13 0.5650E- POISSON 46.00 9.05 0.89 0.06 0.00 11.02 0.4788E- 2 1 35 0.094 DATA 32 3 0 26 3 0.5964E- POISSON 32.00 2.87 0.13 0.00 3.14 0.6236E- 2 2 59 0.0 DATA 59 0 0 4 0 0.0 POISSON 32.00 2.900 -0.00 0.00-0.00 -0.00 0.0 0.0	91	319	2	35	PB	1	1	33	0.269	DATA	26	6	1	0	28	8	0.7515	E-06
1 22 56 0.217 0.4TA 46 7 3 0 8 13 0.5650E- P0ISS0N 46.00 9.05 0.89 0.06 0.00 11.02 0.4788E- 2 1 35 0.094 DATA 32 3 0 26 3 0.5964E- P0ISS0N 32.00 2.87 0.13 0.00 3.14 0.6236E- 2 2 59 0.0 0.4TA 59 0 0 4 0 0.0 P0ISS0N 59.00 -0.00 0.00-0.00 -0.00 0.00 0.0 0.0										POISSON	25.00	6.20	0.74	0.06	0.00	7.87	0.7394	E-06
POISSON 46.00 9.05 0.89 0.06 0.00 11.02 0.4788E- 2 1 35 0.094 DATA 32 3 0 26 3 0.5964E- POISSON 32.00 2.87 0.13 0.00 3.14 0.6236E- 2 2 5.9 0.0 DATA 5.9 0 0 4 0 0.0 2 2 5.9 0.0 DATA 5.9 0.00 0.00 -0.00 0.00 0.0						1	2:.	56	0.217	DATA	46	7	3	0	8	13	0.5650	E-05
2 1 35 0.094 DATA 32 3 0 0 26 3 0.5964E- POISSON 32.00 2.37 0.13 0.00 0.00 3.14 0.6236E- 2 2 59 0.0 DATA 59 0 0 0 4 0 0.0 POISSON 59.00 -0.00 0.00-0.00 -0.00 0.0							•			POISSON	46.0Ŭ	9.05	0.89	0.06	0.00	11.02	0.4788	E-05
POISSON 32.00 2.37 0.13 0.00 0.00 3.14 0.6236E- 2 2 59 0.0 DATA 59 0 0 0 4 0 0.0 POISSON 59.00 -0.00 0.00-0.00 0.00 0.0						2	1	35	0.094	DATA	32	3	0	0	26	3	0.5964	E-05
2 2 59 0.0 DATA 59 0 0 0 4 0 0.0 POISSON 59.00 -0.00 0.00-0.00 -0.00 0.0 0.0										POISSON	32.00	2.87	0.13	0.00	0.00	3.14	0.6236	E-05
POISSON 59.00 -0.00 0.00-0.00 -0.00 0.0 0.0						2	2	59	0.0	DATA	59	0	0	0	4	0	0.0	
						-	-			POISSON	59.00	-0.00	0.00	-0.00	-0.00	0.0	0.0	

.

NRB.	(GMT				вох	тот	۵L	м-в	Т	IT AL	PLAN	NE 1	PL /	ANE 2	VELOCITY	ZERO	SHORTS
NU.	DAY	ня	MN	TANE	ROX	CUND.	TIME	UN	- OND	• •	4E ON	(CM+2	SEC)	(CM)	+2 SECI	[CM+2 SI	C) PI	P2
93	319	5	51	4	1	ON	434	381	ON	3	59059	0.1119	5E 08	0.24	431E 07	0.3290E	07 [\] 5	. 0
					2	OFF	.109	327	OFF		9993	0.5030	DE 06	0.10	067E 06	0.6675E	06 3	<u>1</u>
94	319	7	32	В	1	ON	440	408	SWOF	30	5086	0.1131	1E 08	0.24	477E 07	0.3329E	07 6	. 0
					2	0FF	109	327	OFF		19993	0.5030	DE 06	0.10	067E 06	0.6675E	06 3	1
97	319	12	35	В	1	ON	458	589	SWON	30	55086	0.113	1E 08	0.24	477E 07	0.3448E	07 6	0
					2	OFF	109	327	OFF		19993	0.5030	DE 06	0.10	067E 06	0.6675E	06 3	l
							GOOD	RATI	D		NO.	NO.	NO.	NO.	NO.	NO.	FLUX	(
					80 x	PLANE	SENS	1235/	D S		0*5	1*5	2, " S	3'5	X • S	COUNTS	(COUNI	
97	319	12	36	PB	1	1	30	0.30	4	DATA	23	6	1	0	28	8	0.7072	-06
									P0	ISSON	23.00	6.11	0.81	0.07	0.01	7.98	0.70518	-06
					1	2	56	0.24	4	DATA	45	8	3	0	8	14	0.5651	- 05
									PO	ISSON	45.00	9.84	1.08	0.08	0.00	12.25	0.49458	-05
					2	1	35	0.09	4	DATA	32	3	0	0	26	3	0.59648	-05
									PO	ISSON	32.00	2.87	0.13	0.00	0.00	3.14	0.62368	-05
					2	2	59	0.0	•	DATA	59	0	0	0	4	0	0.0	
									P0	ISSON	59.00	-0.00	0.00	-0.00	-0.00	0.0	0.0	

OKB.	. 1	GMT				BOX	TOT	AL	M-8 T	OTAL	PLA	NF 1	PL.	ANE 2	VELOCITY	4	ZERO	SHORTS
NO.	DAY	HR	MN	TYPE	BOX	COND.	TIME	ON C	OND. TI	ME ON	(CM+2	SEC)	(C.M	+2 SEC) (CM+2 SE	EC)	₽1	P2
145	322	14	54	В	1	ŪN	726	118 S	WOF 6	32615	0.190	8E 08	0.4	445E 0	7 0.5310E	07	4	0
					2	SWUN	133	003	OFF	19993	0.503	0E 06	0.10	067E 0	6 0.8129E	06	3	1
160	323	13	59	. A	1	ON	809	257	OFF 6	32615	0.190	8F 09	0.4	445E 0	7 0.5874E	07	4	0
					2	ON	215	142	OFF	19993	0.503	0E 06	0.1	067E 0	6 0.1304E	07	4	2
168	324	1	30	Δ.	L	ON	850	730	OFF 6	32615	0.190	8E 08	0.4	445E O	7 0.6151E	07	5	1
					2	ON	257	615	OFF	19993	0.503	0E 06	0.1	067E 0	6 0.1542E	07	4	2
168	324	1	31	9	1	ON	850	786 S	WON 6	32615	0.190	8E 08	0.4	445E 0	7 0.6151E	07	5	0
					2	ON	257	671 S	WON	19993	0.503	0F 06	0.1	067E 0	6 0.1542E	07	4	2
175	324	13	- 8	8	1	ON	892	604 S	WOF 6	74433	0.202	3E 08	0.4	767E O	7 0.6428E	07	5	0
					2	ON	299	439 S	WOF	61811	0.152	9E 07	0.3	369E O	6 0.1783E	07	4	2
206	325	13	51	A	1	0N	981	568	OFF 6	74433	0.202	3E 08	0.4	767E 0	7 0.7021E	07	5	0
					z	ON	388	453	OFF	61811	0.152	9E 07	0.3	369E 0	6 0.2283E	07	5	4
226	327	18	40	4	1	ON	1171	711	OFF 6	74433	0.202	3E 08	0.4	767E O	7 0.8308E	07	.3	0
					2	0N	578	596	OFF	61811	0.152	9E 07	0.3	369E 0	6 0.3322E	07	5	5
230	328	1	10	Α	1	0N	1195	111	OFF 6	74433	0.202	3E 08	0.4	767E O	7 0.8468E	07	4	0
					2	0N	601	996	OFF	61811	0.152	9E 07	0.3	369E O	6 0.3449E	07	6	5
230	328	1	13	В	1	SWOF	1195	278	OFF 6	74433	0.202	3E 08	0.4	767E O	7 0.8469E	07	4	0
					2	SWOF	602	163	OFF	61811	0.152	9F 07	0.3	369E 0	6 0.3450E	07	6	5
231	328	2	49	Δ	1	OFF	1195	278	OFF 6	74433	0.202	3E 08	0.4	767E 0	7 0.8469E	07	4	0
					2	OFF	602	163	OFF	51811	0.152	9E 07	0.3	369E 0	6 0.3450E	07	6	5
							6000	RATIO		NO.	NO.	NO.	NO.	NØ.	NO.		FLUX	
					80 X	PLANE	SENS	1235/0	S	0.5	1.5	2'5	3+5	x•s	COUNTS	(C	OUNTS	57
		_									_			_		CM	+2 SE	C)
231	328	2	52	РВ	1	1,	32	0.600	DATA	20	7	3	2	28	19	0.9	393E-	•06
									POISSON	19.97	9.42	2.22	0.35	0.05	15.09	0.7	4588-	-06
					1	2	56	0.273	0 4 7 4 0	44	3	1	3	8	19	0.3	986E-	-05
•									POISSUN	: 43.99	10.61	1.28	0.10	0.01	13.51	0.2	834E-	-05
					2	l	32	0.143	DATA (23	4	0	0	26	4	0.2	617E-	•05
									POISSON	i 29.00	3.74	0.25	0.01	0.00	4.27	0.2	796E-	•05
	、				Z	2	55	0.019	DATA	54	0	1	0	4	2	0.5	937E-	-05
									PULSSON	54.00	0.99	0.01	0.00	0.00	1.01	0.2	995E-	05

ORB NO.	DAY	GM T HR	MN	TYPE	вох	BOX COND.	TOT JIME	AL ON	M-B COND.	т Т I	DTAL MF ON	PLA (CM+2	NE 1 SFC)	PL/ LCM-	ANE 2 +2 SEC)	VELOCIT (CM+2 S	Y ZERC EC) P1	SHORTS
279	331	5	31	Α	1	0N	1297	795	OFF	6	74433	0.202	3E 09	0.4	767E 07	0.9146E	07 4	. 0
					2	0N	704	696	OFF		51827	0.1525	9F 07	0.3	369E 06	0.4021E	07 4	6
305	331	- 5	32	Α	1	ON	1297	837	OFF	6	74433	0.202	3F 03	0.4	767E 07	0.9146E	07 4	. 0
					2	ON	704	733	OFF		61827	0.1524	96 07	0.3	369E 06	0.4022E	07 · 4	· 6
308	332	20	34	Α	1	ON	1438	359	OFF	6	74433	0.2023	3E 08	0.4	767E 07	0.1009E	08 3	1
					2	ON	845	260	OFF	l l	51827	0.1529	9E 07	0.33	369E 06	0.4734E	07 6	. 6 .
332	334	14	51	Α	1	ON	1590	587	OFF	6	74433	0.2023	3E 08	0.4	767E 07	0.1110E	08 4	0
					2	ON	997	488	OFF	(51827	0.1529	9E 07	0.3	369E 06	0.5529E	07 3	6
332	334	14	53	8	1	ON	1590	664	SWON	6	74433	0.2023	3F 08	0.4	767E 07	0.1110E	08 4	0
					2	ÐN	997	565	SWON	e	51827	0.1529	9E U7	0.3	369E 06	0.5529E	07 3	6
							6800	RAT	10		NO.	NO.	NO.	NO.	NO.	NO.	FLU	x
					вох	PLANE	SENS	1235	/05		0 * S	1 * 5	2 ' S	3'S	X'S	COUNTS	(COUN	
337	334	21	58	P 8	1	1	32	0.6	00	DATA	20	7	3	2	28	19	0.9393	5EC) E-06
									204	SSUN	19.97	9.42	2.22	0.35	0.05	15.09	0.7458	E-06
		· .			1	2	56	0.2	73	θΑΤΑ	44	8	1	3	8	19	0.3986	E-05
									POL	SSON	43.99	10.61	1.28	0.10	0.01	13.51	0.2834	5-05
					2	1	35	0.1	29	DATA	31	4	0	0	26	4	0.2616	E-05
						•			P01	SSON	31.00	3.76	0.23	0.01	0.00	4.25	0.2778	E-05
					2	2	54	0.0	19	DATA	53	0	1	0	4	2	0.5936	E-05
	2			· *					P01	SSON	53.00	0.99	0.01	0.00	0.00	1.01	0.2995	E-05

· · · · · ·

NRB.	DAY	GM T HR	MN	TYPE	вох	BOX Cond.	TG T TIME	AL E UN C	M-B COND.	TOTAL TIME ON	PLAI {CM+2	NE 1 SEC)	PL.	ANE 2 +2 SE	C)	VELUCITY	(.: EC)	ZERO Pl	SHORTS P2
227	334	72	٥	в	1	ΩN	1616	313 0	WOR	700082	0 200	55 08	0.41	065F		0 11275	0.8		,
551	334	22	Ŭ	U	2	DN	1022	214 9	SWOE	87476	0.207	9E 00	· 0 4	503E	06	0.5674E	07	7	6
339	335	1	18	Δ	ĩ		1628	200	OFF	700082	0.209	5F 09	0.49	965E	07	0.1135E	08	4	õ
		-			2	0N	1035	101	OFF	87476	0.218	8F 07	- 0.4	623E	06	0.57418	07	3.	ě ·
351	335	19	23	A	ī	ON	1693	313	OFF	700082	0.209	5E 08	0.4	965E	07	0.1178E	08	4	ĩ
		-			2	ON	1100	214	OFF	87476	0.218	8E 07	0.4	623E	06	0.6114E	07	3	7
359	336	8	37	Α	1	ON	1740	1020	OFF	700082	0.209	5E 08	0.4	965E	07	0.1209E	08	4	1
					2	υŃ	1147	302 ,	OFF	87476	0.218	8E 07	0.4	623E	06	0.6380E	07	3	7
362	336	12	59	Α	ʻl	SWOF	1756	622	OFF	700082	0.209	5E 08	0.4	965E	07	0.1220E	08	2	1
					2	ON	1163	523	OFF	87476	0.218	8E 07	0.40	523E	06	0.6469E	07	3	5,
381	337	17	29	Α	1	SWON	1756	622	OFF	700082	0.209	5E 08	0.4	965E	07	0.1220E	08	. 2	- 1
					2	ON	1266	163	OFF	87475	Q.218	8E 07	0.4	623E	06	0.6856E	07	18	33 .
396	338	16	33	Α	1	ON	1839	620	OFF	700082	0.209	5E 08	0.4	965E	07	0.1276E	08	4	1
			25		2	ON	1349	9161	OFF	37476	0.218	8E 07	0.4	623E	06	0.7164E	07	3	7.
411	339	15	35	A	1	UN	1922	2339	0FF	700082	0.209	5E 08	0.4	965E	07	0.1330E	08	4	1
					2	UN	1432	080	UFF	37475	0.218	8E 07	0.4	623E	06	0.7644E	07	3	(.·
429	340	14	30	А	1	10N ON	2023	5052		700082	0.209	5E 08	0.4	965E	07	0.13965	08	<u>و</u> :	l
	2/1	. 7	25		. 2		1532	242		8/4/5	0.218	3E 07	0.4	0235	00	0.82155	07	<u> </u>	0: 1
443	341	11	23	4	2		2101	147		100082	0.209	2E 08	0.4	497E 497E	07	0.14510	08		ļ
460	343	17	20	a	2 ·	ÚN: ÚN	21011	430		700092	0.200	05 U1 55 A0	0.40	0455	00	0.15105	01	5	0 ·
437	342	1,	27	.,	2	SHUE	1409	173	066	97476	0.209	96 00	0.4	50JE	06	0.15100	00	2.	1
477	343	23	29	٨	1	3 NOT	2230	177	NEE	700082	0.210	SE 09	0.4	065E	00	0.15765	01	2	2
477	545	21	2,	-	2	0.EE	1698	173	0FF	87476	0.218	8F 07	0.4	623E	06	0.91136	07	4	8
489	344	15	31	Δ	ī	- ON	2354	337	OFF	700082	0.209	5E 08	0.4	9656	07	0.1619E	0.8	í.	ĩ
107	214				2	OFF	1698	173	OFF	97476	0.218	8F 07	0.4	623E	06	0.9113E	07	4	Å
506	345	17	45	Α	ĩ	ON	2448	738	OFF	700082	0.209	5F 08	0.4	965F	07	0.1680E	08	4	2
		•			2	OFF	1698	173	OFF	37476	0.218	8F 07	0.4	623E	06	0.9113E	07	3	8
524	346	22	9	Δ	1	ON	2550	975	OFF	700082	0.209	5E 08	0.4	965E	07	0.1746E	08	4	2
					2	OFF	1698	173	OFF	87476	0.218	8F 07	0.4	623E	06	0.9113E	07	3	8
531	347	8	35	4	1	ÛN	2588	578	OFF	700082	0.209	5E 08	0.4	965E	07	0.1771E	08	4	Ż
					2	OFF	1698	173	OFF	87476	0.218	8E 07	0.40	523E	06	0.9113E	07	3	8
555	348	21	42	A	1	0 N	2722	195	OFF	700082	0.209	5E 08	0.44	965E	07	0.1857E	80	4	2
					2	UFF	1698	173	OFF	87476	0.218	9E 07	0.4	623E	06	0.9113E	07	3	8
569	349	19	2	. 4	1	ON	2798	980	OFF	700082	0.209	5E 08	0.4	965E	07	0.1906E	08	4	2
					2	OFF	1698	173	OFF	87475	0.218	8E 07	0.4	523E	06	0.9113E	07	3	8
587	350	20	49	4	1	ON	2891	806	OFF	700082	0.209	5E 08	0.4	965E	07	0.1966E	08	5	2
					2	OFF	1698	173	OFF	87476	0.218	8E 07	0.4	623E	06	0.9113E	07	3	8
601	351	18	31	4	1		2970	289		700082	0.209	5E 08	0.4	965E	07	0.2015E	80	5	2
	750	• •	F		2	11-1-1	1698	1/3		87476	0.218	81: 07 55 00	0.40	523E	06	0.9113E	07	3	8
911	352	IA	2	A	1		3058	1300	OFF	700082	0.209	5E U8	0.4	107E	07	0.2071E	08	5	2
617	250	10	6	•	1	0.0	2053	434 C		8/4/0	0.200	55 UT	0.40	5235	05	0.91136	07	5	8
211	352	19	0	ь	2		1400	9424 3 9172		97474	0.209	512 U5 95 07	0.4	407E	04	0.20/11	08	2	2
					2	UFF	1990	1175	066	51410	0.218	ne 01	0.40	5235	00	0.91135	07	3	,a
							Guna	RATIO	1	NO.	พ.ศ.	MO .	NO	NO.		MO			
					вах	PLANE	SENS	1235/0	,)S	0.5	115	215	3+5	X+5		COUNTS			
					00.		02.00			03				~ 1		000113	C.M.	12 SE	,,
617	352	20	19	PB	1	· 1	31	0.632	DAT	FA 19	7	3	2	28		19	0.9	070F-	-06
									POISS	IN 18.97	9.32	2.29	0.37	0.0	5	15.23	0.7	269E-	-06
					1	2	54	0.286	DA	14 42	3	1	3	8		19	0.3	327E-	05
									PDISS	DN 41.99	10.56	1.33	0.11	0.0	1	13.58	0.2	735E-	05
					2	1	35	0.129	DAT	ra 31	4	0	0	26		4	0.1	329E-	05
									PO1550	31.00	3.76	0.23	0.01	0.0	0	4.25	0.1	942E-	05
					2	2	52	0.020	DA1	FA 51	0 .	.1	0	4		2	0.4	327E-	05
									POISS	DN 51.00	7.99	0.01	0.00	0.0	0	1.01	0.2	L84E-	05

.

ORB. NO.	DAY	GMT (HR	MN	TYPE	вох	BOX COND.	TOTAL TIME O	м-в Кокор и	TOTAL TIME ON	PLANE 1 (CM+2 SEC	L PLAN C) (CM+2	E 2 SEC)	VELOCIT ICM+2 S	Y EC)	ZERO P1	SHORTS P2
617	352	20	21	В	1	٥N	306291	9 S⊮OF	704567	0.2107E	0.499	SE 07	0.2074E	.05	5	2
					2	OFF	169817	3 OFF	87475	0.2188F	0.462	3E 06	0.91135	07	3	8
634	353	20	52	A	ī	0N	315113	3 0FF	704567	0.2107E 0	0.499	8E 07	0.2129E	08	5	2
					2	OFF	169817	3 ()FF	87475	0.21988 (0.462	3E 06	0.9113E	07	3	8
647	354	17	1	A	1	ΟN	322372	3 OFF	704567	0.21075 0	0.499	BE 07	0.2174E	08	6	2
					2	OFF	169817	3 OFF	37475	0.2183F (0.462	3F 06	0.9113E	07	3	8
664	355	18	42.	4	1	ON	331619	3. OFF	704567	0.2107F (0.499	BE 07	0.2231E	08	6	2
					2	OFF	169817	3 OFF	87476	0.21885 0	0.462	3E 06	0.9113E	07	3	8
680	356	19	10	B	1	ON	340428	3 OFF	704567	0.2107E C	0.499	BE 07	0.2284E	08 [.]	6	2
					2	OFF	169817	3 OFF	87475	0.2188E 0	0.462	3F. 06	0.9113E	07	3	8
694	357	18	5	4	1	ON	348672	8 OFF	704567	0.21078 0	0.499	3E 07	0.2334E	08	6	3
					2	OFF	169817	3 OFF	87476	0.21885 0	0.452	3E 06	0.9113F	07	3	8
710	358	18	34	4	1	ON	357490	6 OFF	704567	0.2107E (0.499	BE 07	0.2382E	08	10	3
	_				2	OFF	169817	3 OFF	87476	0.2188E Q	0.462	3E 06	0.9113E	07	3	8
725	359	17	27	4	1	ON	365727	B OFF	704567	0.2107E C	0:499	3E 07	0.2422E	08	10	4
					2,	DFF	169817.	3 OFF	87476	0.2188F (0.462	3E 06	0.9113E	07	3	8
736	360	9	42	4	1	ON	371577	5 OFF	704567	0.2107E C	0.499	BE 07	0.2450E	08	10	4
					2	OFF	169817	3 OFF	87475	0.2188E C	0.462	3E 06	0.9113E	07	3	8
756	361	16	48	. 4	1	ON	382775	5 OFF	704567	0.2107E C	0.499	BE 07	0.2505E	08	10	4
				· ·	2	OFF	169817	B OFF	37476	0.2188E C	0.462	3E 06	0.9113E	07	3	. 8
770	362	14	30	4	1	ON	390585	B OFF	704567	0.21078 0	0.4998	BE 07	0.2544E	08	10	4
					2	OFF	169817	3 OFF	87476	0.2188E C	0.462	3E 06	0.9113E	07	3	8
112	302	14	17	<u>CKD</u>	1	UN	391589	L SWON	704567	0.21076 0	0.499	BE 07	0.2551E	08	0	0
					2	UFF	169817.	S UFF	87475	0.2138E C	0.462	SE 06	0.9113E	07	3	8
							GOOD R	AT I O	NO.	NG. NO.	NO.	10.	NO.		FLUX	
					вох	PLANE	SENS 12	35/05	0 • S	1'5 2'5	315)	(• 5	COUNTS	()	OUNTS	/
772	362	1.9	53	00	,	,	34 0	5.00	DATA 24	7 3	2 2		10	- UM	72 30	
115	102	10	,,	r 1)	1	L	,50 U.	1000	0ATA 24 CC00 22 09	07610	2 21	נ ר ו	19	0.9	04 25-	06
					,	2	56 0	272	DATA 44	9 1 1 1 9	3 0.21	5.05	14.05	0.0	9015-	06
					1	2	10 0.	275	SCUN 74 94	10 61 1 2	8010 0	, ,,	12 51	0.3	7025-	05
					2	۱	35 0.	129	DATA 31	4 N	0 24		4	0.2	8205-	05
					2	*		pni	SSON 31-00	3.76 0.2	3 0 01 20	,	4.25	0.1	9425-	05
					2	2	52 0	.020	DATA 51	0 1	0 4		7.23	0.4	3275-	05
					6 -	•		P01	SSON 51.00	0.99 0.0	1 0.00	.00	1.01	0.2	184E-	05

-

0.00 0.00

TABLE 5-3. (CONTINUED) . ,

							1	·:• ·						
٩٩N		сит				вох	τητλι	M-Ĥ	. INTAL	PLANE	PLANE 2	VELOCITY	7 6 8 0	CHUBIC
NO.	DAÝ	HR	MN	TYPE	вох	COND.	TIME ON	COND.	TIME ON	(C*+2 SEC)	(CM+2 SFC)	ICM+2 SE	C) P1	P2
										,				
773	362	18	55	8	1	ON	3921743	SWOF	710429	0.21265 08	0.5037E 07	0.2555E	08 10	4
· .	3/3				2		1693173		37475	0.21835 07	0.45/35 05	0.91135	07 3	8
180	363	4	40	А	2	DEE	1402173	0FF DEE	87.476	0.21205 05	0.5037E 07	0.91136	05 10	4 8
796	364	5	7	Δ	<u>~1</u>		4044880	DEE	710429	0.2126F 03	0.5037E 07	0.2614E	08 10	4
1.70	50.	-			2	OFF	1699173	OFF	37476	0.21835 07	0.4623E 06	0.9113E	07 3	8
812	365	5	35	Α.	1	0N	4132962	OFF	710429	0.2126F 03	0.5037E 07	0.2657E	08 10	4
					2	OFF	1693173	OFF	87476	0.2183E 07	0.4623E 06	0.9113E	07 3	8
812	365	5	36	8	1	ÛN	4132997	SWÜN	710429	0.21265 03	0.5037E 07	0.2657E	08 10	4
		_			2	0 F F	1696173	OFF	87475	0.21888 07	0.4623F 06	0.9113E	07 3	8
813	365	1	10	А	1		4138650		715088	0.21398 08	0.50848 07	0.01125	08 10	4
010	266	17	1	٨	2	0FF EIM	4174083		751515	0.21032 07	0.5391E 07	0.26775	08 10	4
019	507		1	~	2	OFF	1693173	OFE	37476	0.21985 07	0.4523F 06	0.9113E	07 3	8
828	1	5	59	Α	ī	SWOF	4220903	SWOF	798235	0.2324E 08	0.5775E 07	0.2699E	08 10	4
~					2	OFF	1698173	OFF	87476	0.21988 07	0.4523E 06	0.9113E	07 3	8
843	2	4	50	4	1	OFF	4220803	OFF	798235	0.2324E 08	0.5775E 07	0.2699E	0.8 1.0	4
•					2	OFF	1698173	OFF	37470	0.21838 07	0.4623E 06	0.9113E	07 3	8
359	3	5	14	В	1	SMON	4220303	OFF	798235	0.23245 03	0.5775E 07	0.2699E	08 10	4
0.76	,	-			· 2	015	1698173	055	37476	0.2183E 07	0.4623E 06	0.9113E	07 3	8
875	4	2	.18	А	· 2		4308532	OFF	198235	0.21248 05	0.01758 07	0.27435	08 9	4 0
885	4	21	24	۸	2	- ON	4355440	DEF	798235	0.23245 03	0.5775E 07	0.27716	01 9	4
000	4	21	64	-	2	DEE	1698173	OFE	87476	0.21996 07	0.4623E 06	0.9113E	07 3	8
891	5	•6	3	Δ	ī	0N	4395576	OFF	798235	0.2324F 03	0.5775E 07	0.2787E	08 9	4
					2	OFF	1693173	OFF	87475	0.21838 07	0.4623E 06	0.9113E	07 3	8
909	ό	10	12	4	1	0N	4497929	OFF	798235	0.23245 08	0.5775F 07	0.2838E	08 10	4
	3				2	OFF	1698173	SEE	37476	0.21998 07	0.4623E 06	0.9113E	07 3	8
924	1	9	4	Δ	1	ON	4580249	066	793235	0.2324E 08	0.5775E 07	0.2877E	08 10	4
		10		•	2	0111	1698173	066	37470	0.2183E 07	0.4523F 06	0.4113E	07 3	8
941	9	10	30	Ц	1	066	4672153	UPP GEE	143233	0.21245 05	0.46235.06	0.01125	08 10	4
955	3	ß	12	Δ	1		4749937	OFF	796235	0.23245 08	0.57758 07	0.29605	08 10	4
1))		C	12	-	2	DEE	1698173	OFE	87476	0.21835 07	0.4623E 06	0.9113E	07 3	8
970	10	· 6	57	4	ī	SWOF	4831823	OFF	799235	0.23245 08	0.5775E 07	0.2997E	08 10	9
					2	066	1698173	OFF	27475	0.21835 07	0.4523F 06	0.9113E	07 3	8
987	11	8	26	А	1	ÜEE	4831323	056	793235	0.23245 08	0.5775F 07	0.2997E	08 10	9
					2	ÛFE	1699173	065	87475	0.21838 07	0.4623E 06	0.9113E	07 3	8
1001	12	6	. 8	A	1	055	4631323	055	795235	0.23248 08	0.5775E 07	0.29978	09 10	9
					2	-91-F	10741()	urr	37476	0.21388 07	0.46236 00	0.9113E	6 10	8
					. •		GOOD RAT	10	NO.	NO.	NG. NO.	NO.	FLUX	
					вох	PLANE	SENS 1235	;/0s	2.8	1'5 2'5	315 X15	COUNTS	(COUNT	57
					:					•			CM+2 S	EC)
1013	12	23	16	ΡB	1	1	26 1.0	100 D	DATA 13	3 3	2 28	20	0.8605E	-06
					:			POIS	SON 12.93	9.03 3.16	0.74 0.15	18.17	0.7818E	-06
					1	2	47 0.3	43 [DATA 35	8 1	3 3	19	0.3290E	-05
					ъ	,	26 23	209	511N 34.99	1.0.32 1.52	0.15 0.01	13.87	U.2401E	-05
					2	L	10 0.1	2.∺ L ∋nr¢	1414 3L 1511 21 00	+ U 3760.00	0 01 0 00	4	0.1829F	-05
					2	2	52 0 0	בוני ק ח 20 ()ATA 51	0 1	0 4	7.20	0.43275	-05
					-	<i>•</i> .	76 (. .)	PUTS	SUN 51.00	0.99 0.01	0.00 0.00	1.01	0.2184E	-05

•. :.

÷.

.

each memory dump. Both the data counts from the sensors with one, two, and three counts and the Poisson values were used. The calculations were made separately for each plane of each box. The values of flux were computed for each satellite memory dump and for each meteoroid sensor plane individually. These are shown in Table 5-3.

In addition, a value of flux was obtained from the velocity timearea accumulation. Two velocity words were recorded during the mission as discussed in Ref. 1. The total accumulated time-area for both meteoroid packages was 3.91×10^7 cm²sec. This gives a flux of 5.1×10^{-8} particles per cm²sec* calculated as an omnidirectional flux.

Using the data from the analysis shown in Table 5-3, it was possible to plot the occurrence of meteoroid counts which were obtained from the Poisson analysis as a function of accumulated time-area. The resulting plots are shown for all four detector planes, as well as for the velocity counts, in Figure 5-2. The slope of the resulting curves should correspond to the meteoroid flux.

The accumulated data from Box 1 was too low to be useful. The slopes obtained from the velocity counts and the top plane of Box 1 are in reasonable agreement. The data accumulated on the bottom plane of Box 1 has, however, a curious anomaly. The data rises very smoothly during the first half of the accumulated time-area and then shows no additional counts for the last half. This strongly suggests that the sensor discharges did not result from meteoroid impacts, but instead from spurious discharges.

5.3 Evaluation of Sensor Reliabilities

Since the primary objective of the RMS meteoroid experiment was to gather information on the effects of the launch and space environment on the meteoroid sensors, a relatively extensive analysis was conducted in which failures were correlated with sensor type and location at different times during the mission. The sensor types and their respective locations on the experiment packages are given in Table 5-4. The details of the construction and composition of each

*This value does not include earth shielding or gravitational focusing.

TABLE 5-4. TYPES OF SENSORS ON RMS METEOROID EXPERIMENT PACKAGES

SENSOR TYPE	LOCATION	SUN SHIELD	SENSOR	TOTAL THICKNESS
	Box 1 D1500 1	Silicon Oxide (6000 A)	Aluminum (1000 A)	16,300 A
	All Columns	Aluminum (1000 A)	Polysulfone (4000 A)	or 345 µgm/cm ²
	Box 2 Plane 1 Columns 1-5	Polycarbonate 4 layers (4000 A)	Gold (300 A)	-
7	Box 2 Plane 1 Column 0	None	<pre>Silicon Oxide (6000 A) Aluminum (1000 A) Polysulfone - 4 layers (4000 A) Gold (300 A)</pre>	11,300 A or 270 µgm/cm ²
e	Box 2 Plane 1 Column 7	None	Aluminum (1000 A) Polycarbonate - single 1ayer (8000 A) Gold (300 A)	9300 A or 180 µgm/cm ²
4	Box 1 Plane 2 All Columns	Aluminum (1000 A) Polycarbonate - 4 layers (4000 A)	Aluminum (1000 A) Polysulfone - 4 layers (4000 A) Gold (300 A)	10,300 A or 205 µgm/cm ²
<i>v</i>	Box 2 Plane 2 All Columns			·
Controls	Box 2 Plane 1 Column 6 Rows 0,2,4,6	None	Like type 1 (intentionally shorted)	[
	Box 2 Plane 1 Column 6 Rows 1,3,5,7	Covered with .01 inch iron plate	Like type 1	1

sensor type are given in Ref. 1. The materials and their respective thicknesses are summarized here in Table 5-4. The thickness in angstrom units follows the name of the material making up each layer and the total sensor thickness is given in both angstroms and $\mu gm/cm^2$ in the last column.

The information contained in Tables 5-1, 5-3, and 5-4 were combined in an attempt to determine if environment, time, or sensor location correlations did exist. These results are summarized in Table 5-5.

Most of the items in the table are self-explanatory; however, a brief discussion of some of the entries will avoid confusion. The "total counts exclusive of successive counters" refers to all counts obtained in the first analysis as discussed in paragraph 5.1.4 above. Several of these counts were found to occur immediately following the time which a box was turned on. These and their associated time-area products were removed from the data. The remaining counts are referred to as "possible meteoroid counts" in Table 5-5. The counts for the "totals" column for the top plane of Box 2 are different from those shown in Table 5-3, since the controls were not excluded from the analysis. The values have been corrected for Table 5-5.

A number of rather striking (but not too surprising) correlations are apparent in Table 5-5:

- (a) Fewer bottom plane sensors were lost during launch than those on the top planes.
- (b) The failure rate during the orbital lifetime was greater on the top planes than on the bottom, irrespective of sensor type.
- (c) More excessive counters occurred on the top planes than on the bottom planes.
- (d) No significant differences were noted in the number of sensor shorts with respect to sensor type.
- (e) No significant differences were noted in the number of excessive counters with respect to sensor type.

TABLE 5-5. CORRELATIONS OF SENSOR FAILURES AND METEOROID COUNTS WITH SENSOR TYPE AND LOCATION

 2.2×10^{-2} BOTTOM PLANE 0.46x10² 1.01 4 20% ALL TYPE 29 21 64 20% 89 2 0 4 4 50% 50% 38% 50% 0 0 ĉ ω 4 t 4 I. . 1 I C (TOWARD SUN AFTER SPIN STOPPED) COVERED SHORTED ì 0 0 ł 1 I 0 ł L m] T CONTROLS ୦ 25% 25% 25% BOX 2 PLANE 0% ۱ I Ч 0 Ч ſ 0 TOP 7 43% 45% 43% 12% 18 14 40 17 ĉ Ч ł t 1 38% 50% 38% 50% 0 4 0 0 2 8 0 I I (LESS CONTROLS) 1.5×10^{-2} 2.2×10^{2} TOTALS 3.2 15%25 44% 24 43% 45% 14 0 26 25 12 ĉ 2.4x10⁻² 5.8×10^{2} BOTTOM PLANE SPIN STOPPED) 13.87 ム ALL 13% 11%TYPE (OPPOSITE 19 64 3% 20 3% ω 0 2 0.78×10^{-2} SUN AFTER BOX 1 23x10² TOP PLANE 18.17 ALL 56% 40% 44% 11%TYPE 36 20 64 52 28 22 No No No No No 2 2 3 3 POSSIBLE METEOROID α (LAST REAL TIME BOTH BOXES ON) (PARTICLES/m²sec) POISSON ANALYSIS TOTAL TIME-AREA (NOSSIOA) BEFORE LAUNCH EXCESSIVE CTRS TOTAL SENSORS o (FIRST DATA) ed (AFTER SPIN EXCLUSIVE OF ACCUMULAT ION TOTAL COUNTS COUNTS FROM HORBIT 1042 SENSOR TYPE HORBIT 206 STOPPED) (REFER TO **ORBIT 15** EXCESSIVE METEOROID COUNTERS TABLE 1) (m^zsec) COUNTS UNIT COLUMN FLUX PLANE 0

A number of plots were made from the data in Tables 5-1, 5-3, and 5-5 in an attempt to correlate the loss of sensors with the mission environments. These are shown in Figure 5-3. The parameters associated with sensor loss are the occurrences of shorts and the instances of the occurrence of the first count in a sensor which became an excessive counter. These data were taken from the complete set of data of which Figure 5-1 is a portion. These parameters were plotted individually for each sensor plane as a function of time in orbit. Also shown are the meteoroid box "on", "off" periods. The most striking feature in Figure 5-3 is the contrast in the rate of events (especially on the top planes) before and after the motion of the satellite changed from a spin with precession into an end-overend tumble.

These correlations suggest that the major cause of sensor failure was the rapid thermal stressing of the thin films due to the rotation of the satellite while it was in sunlight. As can be seen in Figure 5-3, several sensors were shorted when the first observations were made, which indicates they were broken by the lanuch environment. It is believed that others were also broken at launch and that the rapid thermal stressing of the sunlight caused these to short repeatedly and thereby produced the high occurrence of sensor discharges during the time when the satellite was rapidly rotating.

The abrupt increase of seven shorted sensors on the top plane of Box 1, seen in Figure 5-3 at a time in orbit of 45 days, is discussed in the Ref. 1 and is attributed to the dust particles. These were not recorded as flux counts, since, unfortunately, the satellite memory was off during that time period.

In summary it was known that the aerodynamic effects of the upper atmosphere would be present at the time of the Scout heat shield ejection. To remain within the guidelines of the OFO launch and orbital parameters it was not possible to eject the heat shield at

a higher altitude. Wind shields were installed in front of the meteoroid boxes, as discussed in Ref. 1; however, either the aerodynamic flow by the wind shields or the shock at the time of the ejection was apparently responsible for the breakage of some of the top plane sensors. This is evidenced by the shorts recorded in the first real-time run which was taken in Orbit 15 as shown in Table 5-5.

Test data was obtained at Goddard Space Flight Center (Ref. 7) which indicated that the sensors could survive the temperature cycling if they were undamaged. This suggests that the sensors lost were primarily those damaged during launch. The data indicates that the sensors will survive long duration space missions if they are protected to higher altitudes at launch.

5.4 Conclusions

Based on the results of the RMS meteoroid experiments, the thinfilm meteoroid sensors have been shown to yield reliable results for velocity-flux measurements; however, their usefulness as simple flux impact detectors is questionable. No actual interpretation of the data or comparisons to existing models was to be a part of this study, but a few brief associations can be made. The threshold for detection of the particles of the velocity measured by RMS (approximately 3 km/ sec) is approximately 10^{-12} grams for velocity and bottom plane flux and approximately 10^{-14} grams for top plane flux. These values are discussed in Ref. 1 and were obtained by Van de Graaff measurements. The accepted flux for 10^{-12} gram particles according to Ref. 8 is approximately 4×10^{-5} particles/m² sec at one astronomical unit. This is to be compared with the RMS velocity-flux of 5.1×10^{-4} particles/ m² sec and the unrealiable Box 1, bottom plane flux of 2.4×10^{-2} particles/m²sec. As discussed earlier, the bulk of the counts on the bottom plane of Box 1 are considered to be reliable, is nearly an order of magnitude above the expected value.

The flux value obtained from the top plane of Box 2 seems rather reliable, especially when one considers the plot in Figure 5-2. The

flux is 2.4×10^{-2} particles/m²sec.

The curve in Ref. 8 must be extrapolated to the 10^{-14} gram threshold of the sensors on the top plane. This extrapolated flux value is approximately 10^{-4} particles/m² sec. The resulting difference at 10^{-12} grams is a factor of 12 while that at 10^{-14} grams is 240. The velocity-flux error could result from simple statistical uncertainties, in that only two counts were recorded; however, the top plane flux number is based on 20 counts which is statistically significatn; thus, if the extrapolated value from Ref. 8 is in disagreement with the RMS data.

In support of the RMS data, the results of a recent investigation given in a report by Hemmingway et. al (Ref. 9) entitled "Stardust" predicts a high flux of particles from noctlucent cloud studies. The findings in this report are in general agreement with RMS data. The origina of the particles is considered to be the sun and the distribution over the earth suggests that the particles are charged and controlled by the geomagnetic field. A very brief analysis indicates the particles would be given an easterly velocity due to their positive charge which could also explain the low velocities measured in RMS. These results are, of course, very tentative, but they suggest that a more detailed correlation would be of value.

VI. 'EVALUATION OF MISSION SUCCESS

An actual evaluation in terms of the percent success of a mission is virturally impossible. However, one may list the objectives and relate these to the resulting accomplishments and features associated with the mission. Then the reader may easily draw his own conclusions. This approach is taken here.

6.1 Meteoroid Experiment

Even though the satellite apparently sustained damage during launch, the meteoroid experiment functioned properly. Its primary and secondary objectives (to evaluate thin-film meteoroid sensors and measure meteoroid flux and velocity) were fulfilled. Due to a cell failure in the battery pack, the total time-area accumulations were less than anticipated; however, the objectives were met and the experiment was a full success.

6.2 Radiation Experiment

The malfunctions of the radiation experiment have been attributed to the launch anomaly. This is by no means a proven fact, but the evidence is rather strong. A portion of each objective was accomplished; however, the full intents were not met.

The primary objective of the radiation experiment which was discussed in Ref. 1, was basically to determine the feasibility and accuracy of the spectrum to dose conversion concept and, thus, establish its usefulness in space missions. The proton data at high energies were in error and the unshielded ionization chamber malfunctioned. The failures prevented a direct comparison of the two dose measuring technques. The accuracy of the spectrum-to-dose conversion concept had been shown earlier, Ref. 4. The more important aspect of this objective was, thus, demonstrated: the design, construction, and operation of a system which could perform the dose conversion function in the space environment.

With respect to the secondary objective, that of obtaining data for

spectral and dose maps, most of the desired data were obtained. However, the very important high energy proton data was lost. An assessment of the value of the experiment must consider the valuable electron spectra which shows clearly the remaining effects of the high altitude nuclear test in 1962 called "Starfish". Also the low energy proton data offers a valuable comparison to the AP6 Vette model.

The information is, thus, presented in a manner which will enable the reader to assign a figure of merit according to any criteria required of him,
REFERENCES

- 1. <u>Radiation and Meteoroid Satellite</u>, Final Report Contract NAS9-9195, Report No. B-95000/ICR-11, Advanced Technology Center, Inc., Dallas, Texas, March 1971.
- 2. <u>Support Instrumentation Requirements Document</u>, Goddard Space Flight Center, Greenbelt, Maryland, December 1969.
- 3. <u>Models of the Trapped Radiation Environment</u>, Vette, James E., <u>et al.</u>, NASA SP-3024 (seven volumes), National Aeronautics and Space Administration, Washington, D. C., published 1966 through 1971.
- 4. <u>Study to Determine the Utility of Spectrum-to-Dose Conversion</u>, Farmer, B. J. and Rainwater, W. J., Report No. 0-71100/9R-5, Advanced Technology Center, Inc., Dallas, Texas, April 1968.
- 5. <u>OFO A Mission Performance</u>, Report No. 1333-032, Space General Company, El Monte, California, December 1970.
- 6. <u>Radiation and Meteoroid Satellite Quality Documentation Logbook</u> No. N105-00000-01, LTV Research Center, Dallas, Texas, June 1970.
- 7. <u>Solar Vacuum Test Results for Thin-Film Meteoroid Sensors</u>, LEC Document No. OF2013, Lockheed Electronics Co., Houston, Texas, September 1970.
- 8. <u>Meteoroid Environmental Model, Interplanetary and Planetary</u>, NASA SP-8038, National Aeronautics Space Administration, Washington, D. C., June 1970.
- 9. <u>Stardust</u>, Hemenway, C. L., Hallgren, D. S., and Schmalberger, D. C., Dudley Observatory and State University of New York at Albany, February 1972.