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Abstract

It is shown that the physical mechanism for the

"anomalous" propagation of electromagnetic waves at fre-

quencies below the plasma frequency, noted by several

authors, is due to the deflection of particles thermal

motion by the wave magnetic field, leading to a density

perturbation which can be large when enhanced by some reso-

nance. In presence of an external magnetic field, Bo,

cyclotron resonance provides the enhancement for ordinary

waves (E |1 B o ) When B = 0, a wave-particle resonance

can occur, again giving rise to "anomalous" propagation,

if the velocity distribution is anisotropic with respect

to the wave vector k, which allows "slow" electromagnetic

waves, with phase velocity less than the velocity of light.

The Weibel instability, which also occurs with such a dis-

tribution function, relies upon the same physical mechanism.
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It is well known that electromagnetic waves cannot

propagate through a cold, unmagnetized plasma if the fre-

quency lies below the plasma frequency, the linear disper-

sion relation being

(kc) = 2 _ 2 . (1)
P

For a "hot" plasma, i.e., one for which a Vlasov equation

treatment is valid, (1) takes the form

(kc)2 = w2 _ w 2 [1 + Z' (w/ka)/21 ; (2)
P

if we assume the unperturbed velocity distribution function

to be an isotropic Maxwellian, with a2 = 2T/m, Z is the

usual plasma dispersion function. For small values of the

thermal velocity, we can use the asymptotic form of Z, and

(2) gives

(kc)2 = (W 2 - W 2 )/(l + W 2 a 2/2w 2c2) (3)
p p

so that, just as in the cold plasma case, a wave with fre-

quency w < p will be evanescent (k2 < 0).

In presence of a magnetic field,Bo, one might expect

similar results to obtain for ordinary electromagnetic waves,

i.e., those polarized with electric field along B . However,

Minami2 has shown recently that this is not the case, and

that, in fact, propagation is possible at frequencies u well

below w provided w is sufficiently near the cyclotron fre-
P

- 2 -



quency, wc, the range of values of wc - w which give pro-

pagation increasing with (w a/wc) 2 .
p

In this note we explain the physical reason for this

unexpected propagation: magnetic deflection of the thermal

motion of electrons by the wave magnetic field produces a

first order velocity component along k and hence a first

order density perturbation, something which cannot happen in

the cold plasma limit. Since this effect is proportional

to the thermal energy, we would expect to see no qualitative

changes in the limit of small a, unless some kind of wave-

particle resonance occurs. In the non-magnetic case, we

see from (2) that the phase velocity always exceeds c (since

Z' > -2), so no resonance is possible and the cut-off at w
p

remains. (This statement no longer holds if the velocity

distribution is anisotropic, as explained below.) In the

magnetic case, however, cyclotron resonance can make this

density perturbation so large that it reverses the sign of

2
k even for w < wp, resulting in a propagation pass-band.

Of course, this follows in a formal fashion from the dis-

persion relation, as shown by Minami, but we sketch here an

elementary, particle-oriented derivation to illuminate the

physical mechanism.

We choose a very simple velocity distribution, in which

all particles have the same thermal velocity, a, with an

isotropic distribution in direction. For those particles

with unperturbed (i.e., "thermal") velocity v , the per-

turbations in velocity, v1' and density, nl, obey the usual

equations of continuity and momentum balance,
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anl/at + V-(noVl + nlVo) = O01~ AO

Wvl /at + v .VvI = (q/m)[El + vl x B + v x B1] (5)

where n denotes the unperturbed density of these particles
o

and we use units with c (velocity of light) = 1. For plane

waves, exp [i(k.x - wt) , we have

nl = n k'vl/w

vl = (i/w) [F + iF x Q/w - QF Q/w 2
] (1 - Q2/w2)-i

where w = w - k v , Q = qB /m, and

F = (q/m)[El + v x B 1]ON rV . O .-

(7)

= (q/m) [wEL + kv -E1]/W
O &A wo

The first order current is

j = jq(n v 1 + n 1v )
a,- 0 A0-o

(8)

where we sum over the isotropic distribution of directions

for v . This must be substituted in Maxwell's equations,
e#1o

k x (k x E) + iw(47j - iwE) = 0
W , _Al Af- 0%A

(9)

- 4 -

(6)

(4)



For electromagnetic waves (E'k = 0) we need only the compo-.

nent of (9) perpendicular to k, and hence only the perpen-

dicular component of j. Computing this from (6), (7) and

(8), and assuming "ordinary" wave polarization (E. A B ),

we find

ji = uE

a = (iW2 /4Wr)[1 + k2 a2 /6(W2 _ Q2)] (10)
p

where the first term in the square bracket of (10) comes

from the novl part of (8) and the second term, with the

resonant denominator, comes from the nlvo part. (In summing

over the direction of v we have neglected the v dependence

in w.) From (9) and (10), we find the dispersion equation

(kc)2 = (w2 _ W2 )/[1 - (W a/wc)2 V 2 /6(1 - V 2 )] (11)

where v = w/Q.

From this result, which is qualitatively similar to

Minami's, it is clear that propagation at frequencies below

up can occur provided

(wc/wpa)[6(1 - v 2 )]1/2/ < 1 (12)

More to the point, from the derivation we see that

although vl appears from (6) to have resonant terms, in fact

there are none in vjl± after we average over the directions
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of v . The only resonant term is in nl, so that for (1 - v)

small it dominates and, for v < 1, has a phase corresponding

to propagation rather than evanescence.

We note that there is a close connection between this

effect and the instability associated with an anisotropic

distribution for an unmagnetized plasma, first pointed out

by Weibel. If the velocity distribution of the plasma is

anisotropic, for example, Maxwellian but with different

temperatures parallel and perpendicular to k, then the dis-

persion relation (2) is replaced by

(kc) 2 = W2 _ w 2 L1 + (R/2)Z'(w/ka)] (13)

where R = T±/TI! is the ratio of perpendicular and parallel

temperatures. If R is larger than 1, then it is possible

for the phase velocity of the waves to be less than c, and,

again, a resonance can occur, this time between the wave

and particles travelling with the phase velocity of the wave.

Unlike the magnetic case, where the field prevents particles

from travelling with the wave across the magnetic field, we

have not pure propagation, but rather propagation with weak

Landau damping.

This is most easily seen from (13) by looking for solu-

tions with Iw/kal << 1 so that the small argument form of Z'

is appropriate,

Z'(s) = -2[1 + irl/ 2 s + ...] (14)
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Then

(kc)2 = W2 + 2 [R - 1 + il/2R/katl] (15)

and iteration gives a propagating solution with small

damping:

k = k (l + ia) (16)

where

k °= [ 2 (R - 1) +.w2]1/2
o p

(17)

a= /2(wC/w au)R[R - 1 + 2/W2]-3/2
p p

The condition

= (Wc/pa) (R -1 )-1/2 .<< 1 (18)

which is the analogue of (12), provides a posterior jus-

tification for the expansion (14), and (17) then shows

that under these conditions the damping per cycle is of

order c/(R - 1).

Here, as in the magnetic case treated above, it is

.the deflection of the thermal motion by-the wave magnetic

field, together with a wave-particle resonance, which

accounts for the anomalous propagation. This same physical

effect is responsible for the Weibel.instability4; if we

write '(15) in the form- --
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D(w) = W2 + iTl/2Rw2w/kafl + (R - 1)w2 - (kc) 2 = 0p i P

(19)

then there is an instability (i.e., D has a root with Imw

> 0) provided

kc < w (R - 1)
1
/2 (20)

P

This is not surprising, since the anisotropic distribution

function provides a source of free energy to drive the

instability. It would, however, be disturbing if there were

a similar instability in the magnetic case, where we have

assumed an isotropic, and therefore stable, Maxwellian. In

fact, it can readily be seen that solving (11) for w with

k real gives only real roots.

In summary, propagation of electromagnetic waves below

the plasma frequency can occur in two cases: 1) in a mag-

netized plasma, when the wave polarization corresponds to

an ordinary wave and the condition (11) is satisfied; 2) in

an unmagnetized plasma, with an anisotropic velocity distri-

bution, when the condition (18) is satisfied. In both cases,

the physical mechanism responsible is the deflection of the

thermal motion of particles in the wave magnetic field,

together with the existence of a wave-particle resonance

which makes the resulting density perturbation the dominant

term in the perturbed current density. In the first case,

the propagation can be undamped (k purely real) and the

plasma is, as expected, stable. In the second case, there
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is a small Landau damping and, for certain ranges of k, the

plasma will be unstable against growth of the wave in ques-

tion.

I am indebted to Professor K. Minami for informing me

of his interesting results, and to Mr. J. Van Dam for help-

ful discussions. This work was done while on sabbatical

leave from the University of California, Los Angeles, at

the Japan Institute of Plasma Physics, Nagoya. The author

gratefully acknowledges the hospitality and support of

Professor K. Husimi and the J.I.P.P..
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