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PREFACE

The work described in this report was performed by the Astrionics

Division under the auspices of the Electronics Component Screening and

Qualification Development Project of the Jet Propulsion Laboratory.
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ABSTRACT

This report gives the results of irradiation of

several low power circuit elements by Co

gamma radiation, low and high energy electrons

(i.e. 1. 5 MeV and 28-85 MeV) and neutrons. The

bipolar circuits used were the SE480Q NAND gate

and a micropower frequency divider used in elec-

tronic wrist watches, designated ICB-9002. The

MOS device used was a dual p-Channel MOSFET

designated 2N4067.
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I. INTRODUCTION

Radiation tolerant electronic components of low power consumption are

one of the major requirements for outer planet and other space missions of long

duration. We have made a preliminary investigation of the radiation tolerance

of several representative device types and present the results in this report.
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II. RADIATION SOURCES

The radiation sources used -were the following:

(1) 500 curie Co source at JPL

(2) 4000 curie Co source at JPL

(3) 1.5 MeV Van der Graaf electron source at Goddard Space

Flight Center

(4) Triga neutron source at Northrup Corp. , Hawthorne, Calif.

(5) 28 to 85 MeV LJNAC electron source at Naval Post Graduate

School, Monterey, California
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III. DESCRIPTION OF CIRCUITS

A. Micropower Frequency Divider (ICB-9002, Intersil)

This is a bipolar digital microcircu.it of extremely low power consump-
14

tion. It divides the frequency by a factor of 2 and has input and output stages.

Its supply voltage is approximately one volt and the total supply current during

operation is approximately five microamperes or a total power consumption of

five microwatts.

B. Dual p-Channel MOSFET (2N4067-Teledyne)

These devices are dual p-channel MOS field effect transistors designed

primarily for low-power chopper or switching applications. Two types were

used, glass passivated and unpassivated devices. This was done to investigate

surface effects including those produced by low temperature glass passivation

methods.

C. Monolithic TTL Element (SE 480Q, Signetics)

These circuits are bipolar quadruple two-input NAND gates. They are

low power TTL elements with power consumption of approximately 3. 5 milli-

watts per gate. The results are compared with those for the SN54LOO and the

RSN54LOO TTL, elements, both bipolar quadruple two-input NAND gates, the

latter being circuit hardened for radiation pulses. Both of these have a power

consumption per gate of approximately one milliwatt.
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IV. DISCUSSIONS OF RESULTS AND CONCLUSIONS (Ref. 1)

A. Micropower Circuits

The micropower digital circuit ICB-9002 frequency divider -was very

resistant to ionizing radiation considering its very low current densities and

power consumption (Ref. 2). The pulse heights do not degrade to fluences of
c /

10 rads (silicon) and they are still operable after a fluence of 10 rads (silicon)

(Fig. 1). The power consumption per gate is estimated at about 100 nanowatts

with corresponding low currents and high impedances, conditions under -which

the lifetime of minority carriers and thus the gain of the transistor are vulner-

able to radiation.

B. TTL Elements

The bipolar digital circuit SE480Q TTL NAND gate with a power con-

sumption per gate of 3. 5 milliwatts is more resistant to ionizing radiation than

the SN54LOO and RSN54LOO TTL NAND gates with power consumption per gate

of approximately 1 milliwatt. The RSN54LOO is more resistant to radiation

than the SN54LOO. The circuits differ in their diffusion depths and base widths

(Table 1). Bipolar circuits are vulnerable to radiation through surface ioniza-

tion effects as well as to displacement damage in the base. The relative impor-

tance of surface effects becomes greater as device geometries become smaller

and closer to the surface (Ref. 3). Thus the fact that the base width of the

RSN54LOO is narrower than that of the SN54LOO (Table 1) may be why it is

more radiation resistant whereas low current densities and the relatively

greater importance of surface effects made the 54L's more vulnerable than the

SE480Q (Fig. 10).

C. SN4067 MOSFET

All shifts in threshold voltage were in the negative direction consistent

with a net positive space charge build-up in the oxide. Also, gates unbiased

during irradiation showed greater shift in threshold voltage than those biased

negatively, consistent with a movement of the space charge with voltage (Ref. 4).
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No passivation effects were observed (Figs. 3 and 4). This is believed to be

due to shielding of the active region by overlapping gate electrodes. It i-s

believed that shielding -will be less and fringe fields will become important as

device geometries become smaller thus making requirements on passivation

materials more stringent (Ref. 5). There was also no evidence of saturation

in the threshold voltage shift to the highest fluence levels used, i. e. 10 rads

(silicon) Co gamma and 10 electrons/cm at 85 MeV (Ref. 4).

D, Displacement and lonization Effects

Damage due to neutrons was very small for the MOSFET SN4067

(i. e. a shift of 0. 3 volts in output saturation voltage for a neutron fluence of

1. 86 x 10 /cm ) almost accounted for by the background gamma radiation of

the neutron source, 4.7 x 10 rads (silicon) (Fig. 7, a and b). A shift of this

magnitude in threshold voltage was produced by a Co gamma radiation fluence
4

of less than 10 rads (silicon) (Fig. 3). The SE480Q NAND gate, however, was

more vulnerable to neutron irradiation. The same neutron fluence as before

produced a shift in the output saturation voltage (VO ) of seven percent (Fig. 14)
7 60 °

a change requiring 10 rads (silicon) of Co radiation to produce (Fig. 10).

Since neutrons produce primarily displacement damage while Co gamma radi-

ation produces primarily ionization damage, the MOSFET circuit is primarily

vulnerable to ionization effects -while the bipolar digital SE480Q circuit is more

vulnerable to displacement effects.

E. High and Low Energy Electrons

A comparison of the high energy (85 MeV) and low energy (1 .5 MeV)

electron irradiations of the SN4067 MOSFET circuits and the SE480Q TTL

element shows the following. The MOSFET circuit shows less damage as seen

by a shift in the threshold voltage for the high energy electrons than for the low

energy electrons (Fig. 6). However, the TTL. element shows greater damage as

seen by a shift in the output saturation voltage (VOQ) for high energy electrons

than for low energy electrons (Fig. 13). From the discussion in paragraph D

these results show that high energy electrons (i. e. ~ 85 MeV) do produce

appreciable displacement damage as well as ionization damage compared to

JPL Technical Memorandum 33-576



low energy electrons (i. e. ~ 1. 5 MeV) which produce primarily ionization

damage. Published results of radiation effects on microcircuits caused by

high energy radiation are few. More work in this area is necessary before

confidence can be placed in extrapolations and equivalences based on low

energy results.

JPL Technical Memorandum 33-576



V. RADIATION TEST RESULTS

A. Micropower Frequency Divider - (ICB 9002, Intersil)

This integrated circuit is a micropower frequency divider made for use

in electronic wrist watches. It operates with a supply voltage of approximately

one volt and draws a total dc current of approximately five microamperes

making a total power consumption of five microwatts. The circuit divides the
14frequency by a factor of 2 and has input and output stages. It is driven by a

14square wave pulse input of one half volt and a frequency of 2 Hz or approximately

16. 5 kHz. The output is approximately 0. 8 volts with a frequency of one Hz.

It is a digital bipolar integrated circuit where the currents and current

densities in the individual gate circuits are extremely low (i. e. currents of less

than 100 nanoamps) with correspondingly high impedances. The frequency of

operation is low being less than about 20 kHz.

1. Gamma Irradiation With Co

Eight circuits were exposed to Co gamma rays for radiation

fluences of 10 , 10 , 10 and 10 rads (silicon). The devices were open cir-

cuited during irradiation. An effort was made to choose those parameters that

show early indication of degradation by radiation.

The following parameters were measured after each fluence ;.

level: the output pulse height, the rise time of the output pulse and the supply

voltage threshold for operation as functions of the radiation fluence. The input

was obtained from a square wave generator operating at 16. 5 kHz with the neg-

ative portions of the wave clipped resulting in positive square wave pulses of

0. 5 volts magnitude with a duty cycle of 50 per cent. *

The supply voltage used for the pulse height and rise time mea-

surements was 0. 9 volts. This is approximately twice the threshold voltage

for circuit operation.

^Radiation measurements by D. Reed, JPL.
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2. Results

Figure 1 gives the results obtained for the threshold supply

voltage for operation, the output pulse height, and the reciprocal rise time as a

function of the radiation fluence. All of the circuits except one survived to a

radiation fluence of 10 rads (silicon) although the pulse heights and the rise

times suffered considerable degradation. All of the circuits were inoperative

after a radiation fluence of 10 rads (silicon). The rise time of the output pulse

showed the earliest indication of degradation due to radiation. The threshold

supply voltage showed the least change with radiation. When the low currents

and current densities involved are considered, these circuits are remarkably

resistant to radiation degradation. This is in accordance with the observation

that bipolar digital elements are resistant to degradation by radiation as dis-

cussed in a later section where results are given for the TTL element, SE480Q.

B. Dual p -Channel MOSFET - (2N4067-Teledyne)

These devices are dual p-channel MOS field effect transistors designed

primarily for low-power chopper or switching applications. They have one

source with two drains. There were two types used, unpassivated and glass

passivated devices. These were obtained as engineering samples. These cir-

cuits were exposed to Co gamma, high (25-85 MeV) and low (1. 5 MeV) energy

electrons, and to neutrons. The parameter measured was the shift in threshold

voltage. Bias conditions during irradiation were also considered by irradiating

the devices with the leads shorted and with a negative bias on the gates.

1. Gamma Irradiation

Six passivated and six unpassivated dual channel MOSFETS

(2N4067) were used, for a total of twenty four devices. These were divided

into three groups of four devices each for the passivated and unpassivated

devices in the following way: controls, those with gates biased to minus

20 volts, and those with their leads shorted during irradiation.

A Co gamma source of 500 curies at JPL was used to irradiate
4 5 4the circuits to 10 and 10 rads (silicon) at a radiation fluence rate of 10 rads/

hour. The JPL ring Co gamma source of 4000 curies which produces a
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radiation fluence rate of 6. 5 x 10 r ads/hour at the center of the ring was used
6 7 *to irradiate to fluences of 10 and 10 rads (silicon).

2. Results

A block diagram of the circuit used to measure the shift in the

threshold voltage is given in Fig. 2. The threshold voltage was measured as

that value of negative bias between gate and source to produce 10 microamperes

of current between source and drain with V~~ (drain to source voltage) equal to

-15 volts. Figs. 3 and 4 give the results obtained for the passivated and

unpassivated circuits. The results are given in terms of the shift in threshold

voltage. The threshold voltages of the control devices were measured at the

time of measurement of the irradiated samples as a check on the measurement

set up. All shifts were in the negative direction and were about two volts at 10

rads (silicon). This corresponds to a shift in the threshold voltage of fifty per-

cent from the initial value which is about minus 4 volts. The negative shift in

threshold voltage is consistent with a positive charge build-up near the silicon-

silicon dioxide interface. Also, the shift in threshold voltage is greater for

the case with the leads shorted than for the case where the gate is biased nega-

tive with respect to the source. This is consistent with a migration of the

positive space charge away from the silicon-silicon dioxide interface towards

the gate electrode. There is no evidence of saturation of the threshold voltage

shift up to 10 rads (silicon), the maximum radiation fluence level attained.

The results for the passivated and unpassivated devices are similar except for

a small difference in behavior of the biased and shorted conditions of irradation.

3. 1. 5 MeV Electron Irradiation

Six unpassivated p-type channel dual gate MOSFETS (2N4067),

totaling twelve devices, were exposed to 1. 5 MeV electrons using the Van der
**

Graaf generator at the Goddard Space Flight Center. The twelve devices were
*

divided into three groups of four each as follows: those with gates biased to

*Data from R. Campbell and D. Lawson, JPL.
**Irradiated at Goddard Space Flight Center, P. Newman.
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minus twenty volts, those with leads shorted, and controls. The maximum
14 2radiation fluence to which the devices were exposed was 10 electrons /cm .

The caps of the T05 packages in which the devices were packaged were not

removed.

4. Results

The shift in threshold voltage as a function of electron fluence

was measured and is presented in Fig. 5. The measurements for the case

where the gate was biased to minus twenty volts and where the leads were

shorted are given together with the measurements taken on the control devices.

The results are similar to those obtained for the unpassivated devices exposed

to gamma radiation and discussed in the previous section.

Figure 6 gives a comparison between results obtained with 1. 5

MeV electrons and 85 MeV electrons. The low energy electron results are

those obtained with a minus 20 volt bias applied to the gate during irradiation.

In the case of the high energy electron irradiation the devices were connected

to measure the threshold voltage during irradiation and thus a bias of from

minus four to approximately minus ten volts was applied to the gate during

irradiation. Also, the sampling was small, especially for the high energy

irradiation where the results are based on measurements of only two devices.

Faraday cup dosimetry was used in both cases; however, the irradiations

were performed at two different facilities (i. e. Goddard Space Flight Center

and the Naval Post Graduate School). Although these conditions are not ideal

the data indicates that there is less shift in the threshold voltage for the high

energy irradiation (i.e. 85 MeV) than for the low energy electrons (i.e. 1.5 MeV).

5. Neutron Irradiation

Six passivated and six unpassivated dual channel MOSFETS

making a total of twenty four devices were divided into three groups of four

devices each. One group was used as control and the other two groups were

irradiated with the gates biased to minus twenty volts and with the gates shorted.

The irradiation was performed using the Northrup Triga Reactor. The total

fluence was 1.86 x 10 n / c m greater than 10 KeV. The fluence was

determined using sulfur foil dosimetry which is sensitive to neutrons of energy

10 JPL Technical Memorandum 33-576



greater than 3 MeV and this fluence was converted to neutrons greater than

10 KeV. There was a background of gamma radiation with a total fluence of
3

4. 7 x 10 rads (silicon). This fluence was obtained using a CaF-iMn dosimeter

shielded to give a flattened response.

6. Results

The shift in threshold voltage was measured before and after

irradiation. The change in threshold voltage is shown in Fig. 7A and B for the

unpassivated and passivated devices with gates biased to minus twenty volts, for

those with leaks shorted and for the control devices. The initial values of the

threshold voltages were approximately minus 4 volts. All shifts were in the

negative direction. The shifts in threshold voltages are very small compared

to those obtained with gamma radiation and electrons discussed in the previous

sections and can almost be accounted for by the gamma background (i.e.,

compare Fig. 3 on Co°0 radiation).

C. Monolithic TTL Element (SE480Q, Signetics)

These monolithic TTL elements are bipolar devices. They are quadruple

two-input NAND gates. These circuits are low power TTL elements with a

power consumption of approximately 3.5 mw/gate. They are exposed to Co"^

gamma radiation, high (25-85 MeV) and low (1.5 MeV) electrons, and to

neutrons. The parameter measured was the output saturation voltage (VOO).

This parameter is the most sensitive to degradation by radiation. Figure 8

gives the circuit used to measure the output saturation voltage (VOO). The

results are compared with those for the SN54LOO and the RSN54LOO for the case

of gamma irradiation to a fluence of 10^ rads (silicon). Fan out conditions and

bias conditions during irradiation were also considered.

*
Data on source supplied by W. E. Price, Div. 37, JPL.
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1. Gamma Irradiation

The integrated circuits were divided into four groups of ten

circuits each. The shift in the output saturation voltage (VO ) was measured
7 °at various radiation fluence levels up to 10 rads (silicon). One group was used

as control to check the measurement instrumentation. The other three groups
3 4 5

were irradiated at three fluence rates, 1 0 , 1 0 , and 6 x 1 0 rads/hour to see

if rate effects can be observed in this range of fluence rates. The JPL radiation

facilities described in a previous section were used. The results obtained are

-compared with those obtained for the SN54LOO and RSN54LOO integrated circuits

which are also quadruple two-input NAND gates, but have smaller power con-

sumption per gate. The comparison is made at a gamma ray fluence level of
5

10 rads (silicon).

2. Results

Figure 9 gives the results obtained for the change in output
3 4 5saturation voltage using radiation fluence rates of 10 , 10 , and 6 x 10 rads/

hour. Radiation fluence rate effects were not observed. Figure 10 gives the

results for the radiation fluence rate of 6 x 10 rads/hour for the SE480Q

together with the results obtained at a radiation fluence level of 10 rads for

groups of ten SN54LOO and RSN54LOO quadruple two-input NAND gates (Texas

Instruments). These results were obtained from radiation tests of electronic

parts for the Thermo-electric Outer Planets Spacecraft (TOPS)*. Table 1

gives some of the electronic and design characteristics of the three device

types. The primary difference in their electronic characteristics is in the

power consumption per gate being approximately 3. 5 mw for the SE480Q's and

about 1 mw for the 54L/'s. Their design characteristics differ in the diffusion

depths and base thicknesses (Table 1). The RSN54LOO is hardened for radiation

pulses and thus uses dielectric isolation and photo current compensation. All

of these circuits are very resistant to degradation due to radiation where the

maximum specification value of the output saturation voltage (VO ) is

0. 300 volts and the average value of the unirradiated output saturation vol-

tage is approximately 0. 18 volts, thus allowing for a large rise in output

saturation voltage.

*
Data supplied by K. Martin, JPL.
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3. Electron Irradiation

Eight circuits consisting of four devices each for a total of thirty-

two devices were used for the test. Of these, two circuits were controls. The

six circuits remaining were operated during irradiation with the following

conditions:

DEVICE # INPUT OUTPUT

1 10 (j.s Square wave 7 Fan out

2 10 I-LS Square wave 1 Fan out

3 High 7 Fan out

4 Low 7 Fan out

The shift in the saturation output voltage was measured before

and after various levels of fluence to a total fluence of 3. 16 x 10 electrons/

cm . Electrons of 1. 5 MeV from a Van der Graaf generator were used and the

fluence rate was 10 e/cm -sec to a fluence of 3. 16 x 10 e/cm and then

at 10 e/cm -sec to a fluence of 3. 16 x 10 e/cm . The fluence was measured

by integrating the current in a Faraday cup placed at the center of the devices

irradiated. The electron beam was scanned electro-magnetically so that all

the samples were uniformly irradiated.

4. Results

Fig. 11 gives the percent change in output saturation voltage

(VO ) as a function of electron irradiation fluence for devices where the output

was kept high during irradiation and for devices where the output was kept low

during irradiation. Figure 12 gives the corresponding results for simulated fan

outs of one and seven. In both cases there is not a significant difference in

behavior with electron irradiation. Figure 13 gives the average results for all

devices irradiated at 1. 5 MeV. The results obtained for 28 and 85 MeV elec-
*

trons are superimposed on this figure. The irradiation damage as observed

by a shift in the output saturation voltage is in approximate agreement for low

and high energy electrons at the lower fluence values, but the shift in output

o-

Data obtained at Naval Post Graduate School, Monterey, Calif. , Contract
NPS-61DY71121B, J. Dyer.
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saturation voltage is much greater for high energy electrons at the higher

fluences than for low energy electrons (i. e. 28 and 85 MeV electrons compared

with 1. 5 MeV electrons). Although these measurements were made at separate

facilities using different Faraday cup dosimetry (i. e. high energy and low

energy cups) and the sampling is small, the data shows that the degradation

in output saturation voltage is greater for high energy electrons (i.e. 28-85 MeV)

than for low energy electrons (i. e. 1. 5 MeV).

5. Neutron Irradiation

Ten SE480Q quad TTL logic elements making a total of forty

devices were used for the neutron irradiation test. Thirty two of these devices

were irradiated and eight of them were used as controls to check the measure-

ment system and were not exposed to radiation. The devices were unpowered

during irradiation. The irradiation was carried out using the Northrop Triga
13 2

Reactor. The total fluence was 1.86 x 10 n/cm greater than 10 KeV. The

fluence was determined by sulfur foil dosimetry. There was a background of

gamma radiation with a total fluence of 4. 7 x 10 rads (silicon). This fluence

was obtained using a Ca F • Mn dosimeter.

6. Results

The shift in the output saturation voltage, VO was measured

before and after irradiation. The results are given in Fig. 14 for the control

measurements and for the irradiated samples. By comparing these results

with those obtained by irradiation with Co in Fig. 10 the gamma radiation

background produced negligible effect and the major effect is due to neutrons.

The shift in output saturation voltage is small and the circuits will withstand

considerable increase in neutron fluence levels before going beyond the limits

set by the specifications (i. e. approximately 70%).

14 JPL Technical Memorandum 33-576
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ĉu
T3

cn
0 "

- -i-H —f

— — tJ d -^
-HO ™ IM 0 _,
^-^ ^ OO VM -H C

E § ^ ¥ ? s E a 3 o ^ « ' r t
c c ° ° c r ; ^ ^ c n c o ' - J
.S .S "^ ~~" -S .S O ^ft co nJ °
> > > > H H > H ^ * f q p q ^

.
• 1-1

o
in
O

o'

i— i

CU ^ —
r* i-H

•

a
•rH

0
in
o

*o
X

oo

cu X

o -^
Z •—"

C

0
in
o

o'
X

i-H

in
cu X

o \
Z 1-1

a
g
o
0

C

S
0

0 <°
X N
7\ *'""'
fU CO

CU

S
o
Jl
•rH
a

s
•H

C
•H

cC

^

T)
<U
CO

^̂
M

• H

P

T3
cu
CO
3
m<4-{
• iH

Q

cn

O
cn

CO
cu
rf

cu
>
cu

nj
O

•f-t
&0
o

r—I

O
-(-I

05
f— I

CU
TJ

rt
bo
n)

*

JPL Technical Memorandum 33-576 15



o
LlJrsi

< 1.2
o;
O

.
<t
Q-

o::D
<

O
LLJ
O

1.0

0.8

0.6

0.4

0.2

RECIPROCAL RISETIME

INITIAL 105

Co60 FLUENCE (RADS)

106 10'

Fig. 1 The effect of Co gamma irradiation on micropower
circuit, ICB-9002. Threshold, pulse height, and
reciprocal rise time vs radiation fluence.

—vw- ~HGl I

D2

O —

15

9 +

16

Note: A gate voltage is applied to produce 10 micro-
amperes between source and drain defining ¥_.

Fig. 2. Circuit used to measure threshold voltage VT.
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Fig. 4. The effect of Co gamma irradiation on
unpassivated dual p-Channel MQSFETs.
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Fig. 7. The effect of neutron irradiation on p-Channel
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