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1.0 Introduction

Recent experiments performed in the UCLA double plasma

(DP) device have verified the existence of electrostatic ion

acoustic laminar shocks. These shocks were first predicted
2theoretically by Moiseev and Sagdeev from the cold ion-Boltzmann

electron steady state fluid equations. In order to obtain a
2

shock-like transition rather than solitons, Moiseev and Sagdeev

argued that a small number of reflected ions was required.
3Montgomery and Joyce later showed that shock-like transitions

were also possible if a distribution of electrons trapped in

the shock potential was assumed. However, in the DP experi-

ments there exists a third possibility for explaining the for-

mation of laminar shocks, i.e., that the method of shock excitation,

the piston, determines the resultant shock structure. In..this

paper we investigate the influence of the piston on the shock

structure by modeling the DP device and by numerically solving

the temporal and spatial evolution of the shock. In order to

isolate piston effects, as opposed to kinetic theory effects

such as reflected ions and trapped electrons, we model the DP

plasma as a cold ion fluid with isothermal Boltzmann electrons.

We show that on the time scale of the experiments laminar shock

transitions with structure agreeing with DP shock experiments

can be exci ted.



2.0 Model of DP Device

The DP device consists of two plasmas separated by a nega-

tively biased grid whose potential greatly exceeds the elec-

tron thermal potential Te/e; T is the electron temperature
* V

in energy units and e is the electronic charge. Since the elec-

tron distribution functions are essentially Maxwellian, the

grid serves to electrically isolate the two plasmas so that

the potential of each plasma can be varied independently. Shock

excitation consists of raising the potential in one plasma (driving

chamber) as a linear (ramp) function of time u n t i l a fixed po-

tential height is achieved; after this time the potential is

held constant. Ions flow into the second (target) plasma, and

the resulting charge neutralization by electrons excites a large

amplitude ion acoustic wave which propagates into the target

plasma and steepens into a shock.

Since the physics of the sheath around the separation grid in-

volves kinetic theory effects which we wish to avoid, we model the

OP plasma using a modified Boltzmann electron equation of st£te

ne = no exp
,cp(x,t) -. q>j(x,t),

T (D

where cp(x,t) is the potential. <pj(x,t) simulates the DP grid

by having different values in the two halves of the machine.

For the purpose of numerical stability, the discontinuity in

cp from its value, p(t) at the wall of the driving chamber (x/z«-1)



to the value cp = 0 at the target chamber wall (x/z » 1 ) was

spread out over several Debye scale lengths, k~Q = T Ikrr n e

giving a cpj which is continuous and has continuous derivatives

cp^x.t) = ̂ pkl - tanh(x/z)l. (2)

Here p(t) has the temporal form of a truncated ramp (cf. Figure 1a)

and z is the effective width of the sheath, chosen to be seve-

ral kg . In the target chamber and outside the sheath (x/z»1),

<P] -0 so that in the region of shock propagation a Boltzmann

ansatz, n <* expfecp/Tej for the electrons is appropriate. Compu-

tations run with different sheath sizes (z) were not appreciably

different, so our neglect of the exact sheath dynamics prob-

ably does not seriously affect the shock structure.

The ion equations of motion are

dt (3)VJ'

where spatial distance x is measured in units of kj and time

n e
is in units of the ion plasma frequency ui °m.

1

,1, „ ̂ P (x 11). and n is tne jon density normalized to nQ. The
e

electrons, ions, and the potential are coupled through the Poisson



equat ion

2.
. e -n CO

All plasma motions are confined to the x-direction, and the

plasma is assumed uniform in transverse directions.

In the numerical analysis, the Poisson equation was solved

by iterated Fourier transforms. In order to avoid difficulties

associated with the Gibbs phenomenon, we introduce the function

A(x,t) = *(x,t) - ̂(x.t) (5)

so that A(a,t) = A(b, t ) = 0 where x = a(x = b) is the wal 1 of

the driving (target) chamber. A(x,t) then satisfies the dif-

ferential equation

d-4- A = U(A)
dx

A 1U(A) . e- A- n -- *- (6)
dx

where U(a) = U(b) = 0. After obtaining the solution to the

Poisson equation, the electric field E(x,t) is calculated, and

is used to step the position, velocity and density ahead in

time along the Newtonian characteristics of the differential equation



x =

v(x,t+A) = v(x,'t) + E(x?t )A

n(x) = n(x') (7)

where A is the time step. The procedure is then iterated.

To avoid numerical instabilities, the spatial grid size is chosen

to be compatible with A. Numerical diffusion speeds can be

shown to be negligible compared with wave propagation speeds.

3.0 Simulation of DP Shocks

To excite large amplitude ion waves in the target chamber,

the potential p(t) on the driving chamber's wall is raised

to various levels as a linear ramp in a time comparable to uj .
PJ

A compressional ion acoustic wave propagates into the target

chamber and steepens into a laminar shock; a rarefaction ion

acoustic wave propagates into the driving chamber. Figure 1b

shows the spatial profile of the potential for the steepening

ion wave at various times after the start of excitation. By

time 459 ID , the wave front has propagated a distance of 567 k" 1
Pj D

into the target chamber and has reached a quasi-steady spatial

structure with a sharp leading edge of the order of 10 kp thick

and a tra i l i n g wave train of slightly longer oscillation length.



The shock structure remained essentially unchanged for the rest

of the run. The final Mach number (M) of the shock was M = 1.25

and the potential jump A* to the first maximum was &% = O.U6.

Included in Figure 1 is an experimental OP shock from Taylor

e it a 1 . with a Mach number M = 1.15 and an electron-to-ion , tem-

perature ratio of 30, chosen so as to minimize the number of

reflected ions. The computed shock reproduces the essential

features of the spatial structure of the experimental shocks.

By varying the height of the driving chamber potential

p(t), shocks with different Mach numbers and potential jurrps

can be launched. Figure 2 shows A* vs. ramp height ep/T for

Mach numbers 1.06- I.U. In Figure 3 the Mach number is plotted

against at . The solid points are from the computations; the

lower solid curve is the theoretical M vs. Aty relation calcu-

lated by Moiseev and Sagdeev for a steady state shock

zM

The good agreement seen in Figure 3 indicates that the computed

shocks did achieve a quasi-steady state shock flow. They are,

of course, not completely steady, owing to propagation of the

rarefaction wave into the driving chamber. Furthermore, this

agreement indicates that our modified Boltzmann electron equation

of state used to model the OP grid does not significantly af-

fect the quasi-steady shock structure. Also shown in Figure 3



are two points (open circles) which were calculated using, in-

stead of the Boltzmann arisatz for electrons, the trapped elec-

^tron equation of state discussed by Forslund and Shonk and

Forslund and Freiberg . i The two differ only for electrons
2 / 2 /with kinetic energy mv / 2 < mvQ/2 « ecp(x ). The Boltzmann ansatz

assumes a distribution function f(x,v) = ffx.VQJ explm^Vg-v J/2T I
c / • \ •

whereas Forslund and Freiberg assume f(x,v) = f(x»vrJ*y Their

M vs. AO relationship is

2 - LF- IT2

F . + e erfc(/*?)+(Ailr) (9)

and the computed shocks again agree with theoretical predictions.

Finally, the dashed curve in Figure 3 is the experimental M

vs. Aty relation, M = 1.0+0.6A*, obtained by Means et al .

in the DP device. Means et al. have shown that the experi-

mental M vs. Aid relation can be explained by a combination of

trapped electrons and a reflected ion distribution function

which has been flattened because of unstable ion acoustic tur-

bulence driven by the reflected ions. Since in our computations

the ions were assumed cold, we do not expect to reproduce this

experimental M vs. A* relation.

In conclusion, we have shown that the spatial profile of

the shock structure observed in experiments is probably a con-

sequence of the DP ramp method of shock excitation, since quasi -

steady laminar shock transitions can be formed even in the ab-

sence of reflected ions or trapped electrons. The importance



8

of considering the piston's influence on shock structure is

further emphasized by recalling that the steady state fl u i d
2

theory of Moiseev and Sagdeev predicted only soli tons, and

not shock transitions. Finally, the agreement between piston-

excited and steady state theoretical M vs. A* relations indi-

cates that both Mach number and shock potential jump are rela-

tively insensitive to the method of shock excitation.
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FIGURE CAPTIONS

Figure 1. a) Ramp voltage signal p(t) applied to the wall

of the driving chamber; b) The propagation and

steepening of an ion acoustic pulse and the for-

mation of an ion acoustic shock; c) Experimental

DP shock electron density profile from Taylor et al. .

Figure 2. The final, quasi-steady shock potential jump Aty

as a function of the maximum ramp driving potental

ep/Te.

Figure 3. The final, quasi-steady shock Mach number M vs. the

shock potential^ jump Mt. The points are from the

numerical computations (solid circles for Boltzmann

equation of state, open circles for trapped electron

equation of state). The solid curves are the theoreti

cal relations for the Boltzmann and trapped electron
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