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ABSTRACT

Electron energy-loss spectra have been obtained for N2 at 20. 6 eV
impact energy, and scattering angles of W-138°. These spectra have been
analyzec to yield the first identification of excitation to the W 30u, wIAu,

3 _	 1 -B Eu , and a' Eu states in electron impact spectroscopy, and the angular
dependence of the excitations from 10-138*. " ,The differential cross section
for excitation of the W 3 Au =state is the largest triplet-state cross section at
all scattering angles, and is the largest inelastic cross section at angles
greater than 70°.

r
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DISCUSSION

The processes associated with the interactions between molecular

nitrogen and electrons are of considerable interest because of their role in

atmospheric phenomena (1) and in the operation of the N 2 gas laser (2), For

example, cascade processes following the excitation of the E and 0 states

of N 2 by electron impact are expected (3) to play a role in determining both the

population of N 2 metastable electronic states and the character of the emitted

radiation produced. Some information about the integral cross sections for

populating a few of the electronic states of N 2 is available from "apparent"

cross section (optical excitation functions) measurements (4), and the analysis

of earlier energy-loss data (5). However, no experimental information has

yet been reported on the differential or integral cross sections for electron-

impact excitation of the W 3AwIA , B' 3 Eu, and a' 
1Eu 

states of N2 . The

only available data for the excitation of these„ states are from calculations

based on first-order perturbation models (6) for which excitation to the

E states is not permitted.

In this letter we report the first observation of the direct electron-

impact excitation, at 20, 6 eV electron energy, of the W 3 Au, w 1 Au, B'3Eu

and a' 'E_states, and the angular distributions for excitation of these states,u
The resulting cross sections differ considerably from those predicted by the

first-order theories at this incident energy.

The measurements reported here were taken with a newly-designed

high-resolution, high angular-range electron impact spectrometer. The

spectrometer is a crossed electron beam-molecular beam instrument with an

electron gun which can rotate from -30° to +138° relative to a stationary

analyzer. The electron gun and analyzer were designed using tube lenses

along the lines suggested by Kuyatt (7). In the gun half of the optics, electrons

from a hairpin tungsten filament are accelerated, collimated, decelerated,

and focused onto the entrance plane of a hemispherical electrostatic mono-

chromator. Typical electron energies within the monochromator are 1 to
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2. 5 eV. A small spatial (energy) bandwidth of the image at the exit plane is
accelerated and focused onto the molecular beam source. A variable-focus
lens placed between the accelerator and the final lens maintains a constant
image size and position at the molecular beam as the incident electron energy
is varied. The calculated electron beam diameter at the molecular beam
varies from 0.71 to 0. 76 mm as the electron energy varies from 3 to 30 eV.
The divergence half-angle of the electron beam changes from 4° to 1. 5° over
the same range of electron energies.

1

	

	 The analyzer half of the electron optics consists of a second 180°
electrostatic monochromator with an array of seven lenses between the
scattering chamber and the second monochromator. The array, starting at

`I	 the scattering chamber., consists of an energy-add lens, a two-stage variable-
focus lens, a three-element variable Einzel (field) lens, a decelerator lens,
and a field-matching element (Herzog). The energy- (spatially) dispersed
electrons at the exit plane of the second monochromator are accelerated and
focused onto an exit aperture that transmits only a small spatial bandwidth
of the image. The electrons passing through this aperture are then accelerated
and focused onto Sew front cone of a, spiraltron electron multiplier. The
operating voltages lur the composite lens system were determined with the
aid of a computer ray-tracing program (7). With this program, we derived
all variable-lens voltages as a function of energy lost by the electrons at
constant incident energy (the "energy-loss" mode); or as a function of incident
energy at a constant amount of energy lost by the electrons (the "impact-
energy" mode).

The molecular beam source is a bakeable stainless steel capillary
array. The diameter of each capillary is 0.051 mm, and the length of the
array is 5. 10 mm. The center of the molecular beam is 21. 6 mm from the
exit aperture of the electron gun, and 12. 7 mm from the first aperture of the
analyzer. The electron beam crosses the molecular beam at a point about
2. 54 mm above the array. Using limits defined by the angle subtended by the
analyzer entrance window at the scattering center and the extreme angle of
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acceptance of the analyzer, we calculate the angular resolution of the

instrument to be between :hl' and t3'. The solid angle of acceptance of

the analyzer is 6. 8 X 10 -4 ster.

Both the gun and analyzer halves of the electron optics are bakeable

and are differentially pumped with respect to the main chamber. A magnetic

shield reduces the residual magnetic field along the entire electron path to

<5mG. The pressure in the lens area under normal operating conditions is

about 8 X 10 -7 Torr when the main chamber is at 2 X 10 -5 Torr. The base

pressure of the main chamber is 5 X 10 -8 Torr (and dropping monthly).

Typical currents into a faraday cup located near the scattering center are

i-10 na at 8-30 eV impact energies, respectively. We have thus far taken

experimental data at 8-40 eV impact energies. The spectra reported here

were taken with resolutions of 0.035-0.050 eV(FWHM).

The energy-loss spectra were obtained with a 4096-channel scaler

The sweep voltage was generated by a digital-to-analog converter

(DAC) which sensed the channel number in the MCS and converted it to a

precise voltage reproducible to tl/2 the step size of the sweep. The same

DAC operated the ramp generators which supplied the appropriate voltages

to the variable-focus lens elements.

Each energy-loss spectrum was analyzed by an iterative least-

squares computer technique (8) from which the relative contribution of each

electronic state to the spectrum was obtained. A more detailed description

of the data evaluation procedure will be published in the near future (9). The

Franck-Condon factors of the bands were calculated by the Rydberg-Klein-

Rees method and numerical integration (10). The required spectroscopic

data for the B' and a' states were taken from Benesch et al. (11). Those for

the W state were taken from Benesch and Saum (12), and those for the w state

were derived from the measurements reported by Tanaka et al.

the computer analysis of each electron energy-loss
	

the relative

strength of each electronic transition in the spectrum was obtained

the elastic intensity was also measured in the same spectrum, ratios of the

intensities of the various inelastic transitions to that for the elastic scatter



were also obtained at each scattering angle studied. These ratios were
combined with the recent differential cross section (DCS, in arbitrary units)
for elastic scattering of 20 eV electrons by N 2 reported by Shyn et al. (14)
to obtain the relative DCS's for excitation of each electronic state present in
the spectra. The normalization of these cross sections to the absolute scale
was they, obtained by using the integral elastic cross section at 20 eV reported
by Shyn et al. , as normalized to the absolute cross section calculations of
Fisk (15) at 5 eV.

In Fig. 1 we show energy-loss spectra taken at 138° scattering
angle, in the energy-loss range 7. 4-9.4 eV (top spectrum), and spectra taken
a', 115° (middle) and 20° (bottom) in the energy-loss range 9. 1-11. 1 eV. The
upper portion of several of the strong peaks in the 20° and 115° spectra
associated with bands of the C 31I and a I II states have been removed foru	 g
clarity. Above the spectra are vertical lines which show the locations of
the vibrational bands of all the singlet and triplet electronic states in each
energy-loss region. The heights of the vertical lines are proportional to the
Franck-Condon factor of each band. The magnitudes of all the isolated bands
in the spectra would be proportional to the heights of their lines if the elec-
tronic contributions to the DCS's were the same for all the electronic states.
The advantage of this type of presentation is that by comparing the calculated
(Franck-Condon) and actual intensities of bands of different electronic states,
we can tell which electronic states are imvortant contributors to the observed
peaks. For example, in Fig. 1 (138°), in addition to the strong bands of the
A3£u and B3 g st ates, the v' = 5 peak of the W 3Au state is clearly resolved.
Strong peaks corresponding to the locations of the v' = 10 and 11 bands of the
W state, and v' = 5 and 6 bands of the B' state are also present in this same
spectrum. However, because the v' = 2 and 3 bands of the B' state at lower
energy losses appear only weakly, these strong peaks in the spectrum must be
primarily due to bands of the W state. The substantial strength of the excita-
tion to the W state is evident from a comparison of these strong bands with
bands in the A and B states.

I
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In Fig. 1 (20°) peaks associated with transitions to v' =6 and 7 of

the w1Au 
state can be clearly seen. At smaller energy losses, vibrational

bands of the w and a' states are nearly coincident, and could not be resolved.

However, peaks due to transitionz to v' = 4 and 5 of the w state, and to

V' = 7 and 8 of the a' state are also .clearly seen between the strong bands of

the a i I9 state. Figure 1 (115°) is a spectrum in which transitions to the

V' = 10, 11, and 12 levels of the B' state can be clearly seen. Mary partially-

resolved or unresolved bands of the B' , a' and w stales can also be seen in

this spectrum. A comparison of the spectra at 115 ° and ZO O is particularly

useful in determining qualitativelv the strong dependence on scattering angle

of the excitation cross sections for the various electronic states in this energy-

loss region.

The DOS's for excitation by 20. 6 eV electrons of the A and Z states

(obtained with the aid of our unfolding techniques (8) (9)) are shown in Fig. 2.

The DOS's and integral cross sections for the remaining electronic states

will be presented later (9). Smooth curves have been drawn through the data

points shown in Fig. 2. The error bars indicate the one-sigma confidence

limits in the cross sections as determined from the unfolding analysis. The

errors do not contain any estimate of the errors due to the normalization to

the absolute scale, which includes extrapolation errors in the elastic differ-

ential and integral cross section of Shyn et al. ( 14). The confidence limit is

usually large at a scattering angle for which a particular electronic state is

weak and/or strongly blended. Where no error bar is * shown, it is too small

to be plotted. The dashed portion of each curve represents an extrapolation

of the curve to 180'.

The r_aost surprising result of the DCS's shown in Fig. 2 is the

magnitude of the cross section for excitation to the W 3 A u state. As mentioned

above, some indication that excitation to the W state has a relatively large

cross section can be found by comparing the relative peak heights in the spectra

of Fig. 1. The results of the detailed analysis (9) shown in Fig. 2 indicate

that for scattering angles greater than 70% the DCS for excitation of the W

state is larger than that for excitation of any other electronic state. This
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DCS for excitation of the W state also leads to an integral cross section
which is substantially larger than that predicted by first-order theories (6).

The magnitudes and shapes of the DCS's for excitation of the E
states are also of particular interest for two reasons. First, these are the
only experimental data available on the excitation cross sections of these
states for which the available theoretical results predict zero excitation cross
sections (6). From Fig. 2 we see that the cross sections for excitation of the
E and willu states are comparable to one another, and only about one-fifth
that for excitation to the W 3 A u state. Second, it has been shown that the DCS
for a E+,y E transition produced by electron impact must vanish at 0° and
180° scattering angles (16). The present measurements extend to small
enough scattering angles to give clear indication that the DCS's for excitation
Of she B 3E and a' 1 E states do indeed follow this predicted behavior nearu	 u
0°, but do not extend to large enough scattering angles to observe the predicted
fall-off near 180'

Tt is interesting to note that the DCS of the a' state is similar to that
for the B' state for scattering angles greater thar. about 70', but differs con-
siderably at smaller scattering angles. The group theoretical considerations
(16) also lead to the qualitative prediction that the DCS for a Z ++,--, E transitionu
would be weaker at all scattering angles than that for a transition to an elec-
tronic state of the same orbital configuration, but of different symmetry.
The B' and a' states arise from a Tr3 ir outer-electron configuration from

U
which the A 3Eu, W, w, and b' 1 Eu states are also formed. The results pre-
sented here include DCS's for excitation to the A states and show that, except
for the w I Au state at scattering angles greater than 70% these qualitative
expections are realized. However, the DCS's for excitation at 20. 6 eV to
both the B' and a' states are greater than that for excitation to the w state
for scattering angles greater than about 70°. We note that the group theoretical
arguments are based entirely on symmetry properties, and therefore contain
no dynamical effects which could be important at this incident energy.
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