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Summary

This report summarizes the results of a twenty-month research program to
investigate the feasibility of producing high-energy-density, high-temperature,
multilayer thin-film capacitors using a radio frequency (rf) sputtering technique.
This program is a continuation of an investigation performed by North Star
Research and Development Institute under Contract NAS 12-551. The results
of that study are presented in the final report (Reference 1).

The research efforts carried out under Contract NAS 3-14373 have re-
sulted in the development of capacitors having up to 22 active capacitor
layers; i,.e.3 22 quartz dielectric layers alternated with 23 layers of aluminum
electrodes. The electrode and dielectric thicknesses are approximately 1500
and 6000 angstroms (A), respectively. Some of the best values of electrical
characteristics for the test capacitors are as follows:

• Capacitances of nearly 0.1 microfarad for an active area
of 1.25 square centimeters;

• Energy densities of approximately 70 millijoules per cubic
centimeter of active deposited material at a working voltage
of 40 volts. Generally, these capacitors were not tested at
more than 40 volts, but had 6000 A-thick dielectric layers and
would probably operate reliably at 100 volts where their energy
densities would be 175 millijoules per cubic centimeter;



• Dissipation factors of less than 0.01 over a frequency
range of 0.5 to 100 kilohertz.

The early capacitor development efforts carried out on the previous program
(Contract No. NAS 12-551) indicated that multi-layer capacitors composed of
aluminum electrodes and quartz dielectrics that would operate well at tempera-
tures from -55°C to +300°C and at frequencies up to 100 kilohertz could be
produced. A ten-layer capacitor was deposited and indications were that with
improvements in the equipment, capacitors having up to twenty layers or more
would be possible. As a first step in upgrading the equipment, a mask- and
target-changer assembly was fabricated. However, it could not be put into use
before the program ended. This assembly was installed in the vacuum system
during the subject contract period and several modifications were made to
improve its operation. Using this mask- and target-changer, electrode-dielectric
combinations can now be deposited without breaking vacuum.

The principal problem with depositing multilayer capacitors using this
system has been the continuing presence of minor defects (shorts or low-
resistance paths through the dielectric). These defects can be healed by
applying d.c. potential to the capacitors. Modification of the system made
this healing possible in the vacuum system by having electrical connection to
each capacitor as it was being fabricated. These connections also made it
possible to check capacitance, dissipation factor, and leakage current after
each deposited capacitor layer.

The improvements in the equipment have resulted in considerable savings
in the total time required to deposit a multilayer capacitor. Of equal
importance is the good electrical performance of the devices. Detailed
descriptions of the test equipment and-procedures, along with a discussion of
the test results, are presented in the following sections of this report.



' INTRODUCTION

The National Aeronautics and Space Administration has a requirement for
capacitors with performance capabilities superior to those now available. Some
of the requirements are high capacitance per unit volume, low power dissipation,
and a high degree of electrical and mechanical stability over wide temperature
and frequency ranges. These sometimes conflicting requirements can best be
satisfied by a capacitor consisting of many stacked and parallel—interconnected
pairs of electrodes and dielectrics. All capacitors were fabricated with
aluminum electrodes of approximately 1500 A thickness and quartz dielectrics
of 3000 to 6000 A thickness.

The bulk dielectric constant for quartz is 3.75, and that for the sputter-
deposited thin films is slightly less (usually about 3.2 to 3.6). For a material
of any given dielectric constant, the capacitance per unit volume of a single-
layer capacitor can be increased by decreasing the thickness of the deposited
films. The thinner layers give lower mass and volume for a given number of
layers, and a thinner dielectric gives increased capacitance per layer. The
limit to which the thickness of the dielectric can be decreased depends on the
voltage that the capacitor must hold without breaking down. If the voltage
requirements are very low (less than approximately 25 volts) thickness becomes
limited by problems in manufacturing. As the dielectric becomes very thin,
an increasing percentage of the capacitors have shorts, and the yield decreases.
This usually occurs at dielectric thicknesses below 2000 A. The limit to which
the electrode thickness can be decreased is governed by the conductivity of the
electrode material. The sheet resistance of the electrodes must be kept very
low to have capacitors with low power dissipation.

KF sputtering was used for the deposition of all dielectric films in this
program. The principal advantage of rf sputtering the bulk dielectric material
for capacitor dielectrics rather than anodizing (Reference 2), vacuum
evaporating (Reference 3), or reactively sputtering (Reference 4), is the
capability of depositing a film with the same stoichiometry as the target
material. RF sputtering also produces films of high density with good adhesion,
and allows precise control of deposit thickness.

The principal problem encountered in performance of this contract was the
presence of defects such as small shorts. Although these can be healed in a
single-layer capacitor, the problem becomes more difficult when healing
individual layers of a multilayer capacitor. The primary source of the defects
is particulate matter generated in the vacuum chamber by deposits that craze
and fall off the various surfaces on which they collect. Many modifications
were made to improve this situation while staying with the basic deposition
system. Redesign of the system would allow even greater improvement in the
deposition process.



A survey of the capabilities of various commercially available capacitors
was given in the Final Technical Report on Contract NAS 12-551 (Reference 1).
Reported in the same document are the excellent characteristics of aluminum-
quartz capacitors having only a few layers—in most cases, two. In the
present contract, capacitors of up to 22 layers have been deposited. With
further progress toward eliminating defects caused by particulate matter, it
is expected that the excellent characteristics referred to above can be
combined with the multilayer capability to produce capacitors that meet the
NASA's rigid requirements.



EXPERIMENTAL VIORK

Capacitors were made by alternate rf sputter deposition of quartz dielectric
layers and aluminum electrode layers on thin glass substrates. The sputtering
was performed in an ultrahigh vacuum system in North Star's cleanroom facility.
The aluminum electrode layers were stacked such that the even-numbered layers
were identical and electrically connected; the same was true for the odd-
numbered electrode layers. A dielectric layer separated each even- and odd-
numbered electrode, producing a parallel array of capacitors with high energy-
storage density.

Capacitors were tested for capacitance and dissipation factor as functions
of frequency and temperature and also for d.c. leakage current.

Equipment

Vacuum System

All rf sputtering was done in an Ultek 18-inch-diameter ultrahigh vacuum
system. This system utilizes cryosorption pumping for roughing and titanium
sublimation and ion pumping for high vacuum. The system is fitted with a
6-inch-high glass cylinder and a stainless steel top plate with a center hole
through which the rf electrode projects. Figure 1 shows the system in North
Star's cleanroom facility.

Figure 1. Sputtering System in North Star's Cleanroom



A consolidated Vacuum Corporation CVE-14 vacuum evaporator was used for
depositing narrow bands of aluminum to two opposite edges of each substrate.
These deposits were used for attachment of the gold connecting leads.

Sputtering Module

The rf sputtering was performed with an R.D. Mathis Company, Model SP 310,
sputtering module (refer to Figure 1). The cabinet, shown at the right, is
a 13.56 MHz, 1.0 kw transmitter designed to feed a 50-ohm load. The tuning
unit is shown atop the vacuum chamber. Its function is to tune the load to
50 ohms for maximum coupling of power into the sputtering target. Two
electromagnets, consisting of large coils of wire, are arranged concentrically
around the vertical axis of the sputtering chamber. The magnetic field
produced by the electromagnets increases the rf plasma density and keeps the
plasma contained in the immediate vicinity of the target.

Mask-and-Target Changer

A mask-and target-changer assembly had been designed and fabricated on
the previous program (NAS12-551), but it had not been tested. Figure 2
shows four capacitors on the substrate table with the mask disk in each of
its four positions. One position is a port for loading and unloading sub-
strates. The three sets of masks are for the two electrode configurations
and the dielectric. The loading-unloading port has a cover that acts as a
close-fitting shutter over the substrates during pumpdown, during target
stabilization, and while the quartz target is being moved. The aluminum
target is mounted directly on the rf electrode and is centered above the
substrate table. For quartz deposition, a flat quartz plate is moved into
place very close to the aluminum target and completely covering it.

During the performance of the subject contract, many modifications were
made to the mask-and-target changer. A new substrate table was built that
incorporated eight electrical feedthroughs. This provided contacts for the
gold wires so that the healing of defects and testing could be carried out in
the vacuum system. The gold leads on the substrates also required another
modification. Earlier in the program, the mask disk had operated close to the
substrate surfaces. Use of the one-mil gold leads, plus the necessity of
maintaining a required clearance above the wires, would have caused excessive
spacing between the mask and the substrate, resulting in poorly defined deposit
edges. This problem was solved by adding a mechanism that allows the mask
table to be lifted during rotation and then lowered such that it rests on
the gold wires during deposition. This manipulation is carried out through the
use of a push-pull linear-motion feedthrough.

Mask disk rotation and movement of the quartz target are accomplished
through rotary-motion feedthroughs. In the original configuration, the



(a) (b)

(c) (d)

Figure 2. Capacitors on Substrate Table as Seen from Above
the Vacuum Chamber. The Mask Disk is in Four
Positions: (a) Loading-Unloading, (b) Electrode
Deposition, (c) Dielectric Deposition, (d) Counter-
Electrode Disposition



rotary motion for the target changing was converted to linear motion through
a system of gears. The quartz target was attached to two racks that moved
in rails as shown in Reference 1, page 11. This configuration was changed
because the mechanism collected large amounts of sputtered material and the
sliding of the racks in the rails kept loosening these deposits. All the
components of the target changer above the main support plate were removed
except for one rotary shaft that comes through the plate. The quartz target
is clamped to this shaft so it can be rotated into and out of position for
sputtering. The arrangement is shown in Figure 3. This modification greatly
reduced the density of loose particulate matter in the system.

Deposit Thickness Monitor

A Sloan Technology Corporation Model DTM-3 Deposit Thickness Monitor was
used for controlling the deposits to the desired thickness. The sensing element
is a 5 MHz quartz crystal. A variable-frequency oscillator is tuned to the
frequency of the crystal and the mass of the crystal increases during deposi-
tion. The resultant beat frequency is calibrated to deposited film thickness.
The original crystal oscillator that was supplied with the instrument was
unsatisfactory for use in a 13.56 MHz environment (the rf plasma). Sloan
developed a new sensing head for use in sputtering environments and North Star
acquired one of these during June 1971. Sloan stated that the new monitor
head could accurately measure deposited thickness only when the plasma was
turned off. Thus, it was first thought that it would be necessary to periodically
stop the sputtering and turn on the deposit thickness monitor to measure the
deposit. Then the monitor would have to be disconnected and the sputtering
resumed. Use of the system in this manner would have resulted in considerable
delay in order to avoid making the thickness measurement at the time of
greatest temperature drift in the system. However, the monitor was found to
be capable of operating during sputter deposition when properly shielded. Two
meshes were placed between the monitor head and the substrate table and spaced
apart less than the Langmuir dark space thickness. The upper mesh was in
contact with the substrate table and can be seen in the center hole of the
substrate table in all four views of Figure 2. Both meshes were electrically
grounded. These meshes reduced the sensitivity of the monitor because of
having a transmittance of approximately 50 percent. However, all films
deposited on this program were thick enough that the 50 percent loss of
material was not important and accuracy was not adversely affected by insertion
of the meshes. Other meshes were arranged around the monitor head to prevent
any plasma1* contact with the head. These precautions made continuous monitoring
during deposition possible. Figure 4 shows a typical recorder trace of
frequency change versus time as films are being deposited. The CW and CCW
refer to rotation of the mask disk feedthrough for the two different electrode
patterns. The notations, #2 and #3, refer to the capacitor layer number
completed with that aluminum deposition. Every few weeks the monitor began
to make 30 to 40 Hz shifts, apparently between two modes of oscillation. This
signaled that a new crystal was needed. The present configuration works very
well and provides film thickness control that meets or exceeds the 10 to 15
percent requirement of the contract.

8



Scale = 1/3 actual

Figure 3. Vertical View of the New Si02 Target in
Position for SiC^Deposition (Solid Line)
and for Aluminum Deposition (Dashed Line);
Crosshatch Shows the Aluminum Target



Figure A. Recorder Trace of Frequency from Thickness
Monitor versus Time during- Si09 and A.SL Depositions
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Capacitor Test Equipment

The test circuit for capacitance and dissipation factor measurement
consisted of a General Radio Type 1615A capacitance bridge and an audio
generator. The frequency capability of the system is 200 Hz to 100 kHz.
The equipment was connected directly to a junction box, which, in turn,
was connected to the substrates in the vacuum system. The test setup
was portable so it could be moved to an oven containing a test block for
supporting the capacitors during high-temperature tests.

Capacitor Fabrication

Substrate Preparation

Several substrate cleaning techniques were investigated during the course
of this program. The following cleaning schedule was selected and used for
the majority of the work:

e Ultrasonic agitation in a detergent solution for a
minimum of five minutes;

• Hot tap-water rinse;

• Ultrasonic agitation in deionized water;

• Methanol spray rinse; ,

• Ultrasonic agitation in methanol; and

o Drying in an argon jet.

After treatment the substrates were ready for the vacuum evaporation of the
aluminum strips and the bonding of the gold leads. The aluminum strips were
approximately one millimeter wide at opposite edges of the substrates. One-
by five-mil gold wires were attached to these deposits by thermocompression
bonding. Figure 5 shows a 19-mm square substrate with gold leads attached.
During the bonding operation, the substrates were handled only with tweezers
and the work was carried out in a clean bench. The substrates were then
stored in a clean container until ready for use. At that time they were
ultrasonically agitated in methanol, dried in an argon jet, and placed on the
substrate table.

11
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Figure 5. Capacitor Substrate with Gold Wires Attached

Deposition Parameters

Several attempts were made at increasing the deposition rates for both
aluminum and quartz to decrease the time required for fabrication. The
geometry of the deposition system appears to limit the deposition rate for
good aluminum films (those exhibiting specular reflection of incident light),
When the substrates are too hot, the depositing aluminum forms large
crystallites, resulting in a rough, non-specularly reflecting surface. In
the present system, the only way to limit the temperature rise is to run at
relatively low rf potential (approximately 475 volts) resulting in a deposition
rate of 25 to 30 A per minute. The deposition rate of quartz was found to
be related to the space between the quartz and the aluminum targets (see
description of system under heading "Mask-and-Target Changer" ); the rate
becomes higher as the space is reduced. Typical rates for quartz deposition
have been approximately 60 to 65 1 per minute at an rf potential of 1050 volts
when operating with a quartz-to-aluminum spacing as small as practicable.

A relatively large number of the first capacitors fabricated with the mask-
and-target changer were shorted. It appeared that one reason for this problem
was because of trying to use the maximum amount of the substrate surface. Small
amounts of aluminum (from slightly feathered edges) from the two electrode
patterns were shorted together. The two electrode patterns were also of the
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same width, so edges of the electrodes became coincident. This would probably
have given more trouble, becoming a very high stress area, when depositing
multilayer capacitors. A new mask was fabricated for one of the electrodes,
making it slightly smaller than the other electrode. This change eliminated
the shorting by mutual contact of the deposits through the two electrode masks.
Also, in later multiple layer depositions, there was no indication of failure
along the edges of the aluminum deposits. The need for modifications in the
system, such as those that have been discussed, was found by depositing many
two-, three-, and four-layer capacitors.

Although many mechanical problems were encountered during the program, one
of the most serious was warpage of the substrates, which caused them to catch
in the mask changer when it was rotated. The substrates used during the early
part of the program were 50- to 85-micron-thick glass. Alternate heating and
cooling caused these substrates to warp. Annealing greatly reduced the
warpage problem, but to reduce the warpage even further, and to allow easier
handling, thicker substrates (160 to 190 microns) were used. It was decided
that substrate mass could be reduced after solving the more pressing problem
of establishing the number of layers that could be deposited to give high
performance capacitors.

Minor shorts and low-resistance paths were healed by the application of a
d.c. potential (Reference 1, page 24). After depositing three to five layers,
there were often too many shorts to heal by this technique. If defects in
layers other than the top layer did heal, the energy release was often great
enough to destroy the capacitor. This led to the conclusion that defects in
each lay_er must be healed before the next layer was deposited, as was done
before the mask- and target-changer system was used. An eight-pin electrical
feedthrough was installed to provide electrical contact to both electrodes of
all four substrates. A new substrate table was fabricated with spring-loaded
electrical contacts that accommodate 1.0 by 5.0 mil gold leads, which are
thermocompression bonded to aluminum deposits on the substrates (Figure 5).
With this arrangement, a dc potential could be applied to each substrate
after every capacitor layer had been deposited. The capacitor healing was
done under the limitation of 4.0 mA maximum current unless a certain substrate
would not heal at that current level. This current limitation reduced the
energy that was dissipated when healing took place and prevented the energy
release from damaging the capacitor.

Several multilayer capacitors were made by healing the defects under
different environmental conditions. Healing defects in vacuum and in air
differ in two important ways: 1) there is no convective cooling to carry
away the heat generated by electrical conduction through the defect during
the healing procedure; and 2) there is no oxygen available for oxidation of
the aluminum that becomes hot from conduction through the defect.

Some capacitors were made by raising the pressure to about 0.8 atmosphere
of argon to provide convective heat loss mechanisms during healing without

13



providing oxygen. There was no noticeable difference between these capacitors
and those healed in vacuum.

Some capacitors were fabricated by introducing approximately 100 Torr
of air into the system for the healing. This provided approximately 20 Torr
of oxygen, which is sufficient for oxidation of thin aluminum conducting paths
when they become hot during healing. This procedure also produced no noticeable
difference from healing in vacuum.

A further modification in the healing process reduced the chances of
damaging the capacitors even further. This entailed the charging of another
capacitor and then discharging that capacitor through each of the thin-film
capacitors. The capacitance of this capacitor and the charging potential
can be controlled for utmost protection of the deposited capacitors.

Capacitors that were fabricated by opening the vacuum system to change
sputtering targets and by removing them from the system after each capacitor
layer for healing, continued to have many defects on each successive layer
(Reference 1). Originally, it was thought that the excessive handling was
the cause of the defects. Therefore, it was anticipated that with the present
arrangement of -mask-and-target changing and in situ healing, the number of
defects to be healed would greatly diminish after the first layer or two.
However, that was not the case, indicating that the defect-producing mechanism
was present throughout a multilayer deposition. Dust generated in the system
by flaking of deposits from various surfaces was suspected as the most likely
source of the defects. This dust would drift around in the system every time
the vacuum system was evacuated and brought up to air. Even though the top
of the system was cleaned each time it was open, the large, volume below the
main support plate for the mask-and-target changer was largely inaccessible.
It appeared that the best proof that particulates in the system were the cause
of the defects was to completely clean the entire system. Then, at least
immediately after the cleaning, the defect density should be much lower.

The mask-and-target changer assembly was removed from the vacuum chamber
and completely disassembled. All surfaces that had received deposited quartz
and aluminum were thoroughly cleaned, using silicon carbide abrasive paper
and chemical etching. This was followed by methanol rinsing and blowing dry
with clean argon. The sublimated titanium inside the walls of the vacuum chamber
was also removed using abrasive paper. After reassembling, aluminum was
sputter deposited on all three mask-containing segments of the mask disk.
This was necessary because if quartz is deposited directly on any part of this
disk, the film will begin to peel off much sooner. All the capacitors with
15 to 21 active layers were deposited after this cleanup. The density of
spots where defects had been healed was noticeably lower than before and
there were no large defects as had appeared before the cleanup. Because of
limited available time, the dielectric thickness was increased to 5000A at
the same time that the cleanup was made. This was done to increase the
probability of obtaining multilayer capacitors.

14



Smaller-area capacitors were fabricated in an attempt to relate failure
and defect density. These capacitors had areas of approximately one-fifth
and one-eighth of the other capacitors reported here. They also had 1500
A-thick electrodes and 6000 A~thick dielectrics. The program ended before
these could be carried on to a large number of layers (eight layers maximum)
but all the capacitors of this size had excellent electrical characteristics.
The last group of four capacitors was brought to eight layers with no healing
and testing after each layer. They were removed from the system and healed.
Although there were many shorts, three of the units became excellent capacitors
after healing ; this had not been possible on the larger-size capacitors
with no healing for eight layers. Dissipation factors were well below 0.005
at all frequencies up to 20 kilohertz and less than 0.01 at all frequencies
tested and at temperatures up to 250°C. These results are very encouraging
and indicate that, if the area of deposited capacitors is limited to something
less than one square centimeter and the geometry of the deposition chamber
is designed for limiting particulate contamination, these capacitors can be
far better than those currently available.

Capacitor deposition begins by initiating a rf plasma with the mask disk
positioned such that the substrates are shielded. The system is allowed
to operate until equilibrium is reached—no further drift in the settings of
the rf tuning unit. This is basically a thermal equilibrium problem,
requiring at least ten minutes. The mask disk is rotated and lowered to begin
the first electrode deposition. This usually disturbs the equilibrium slightly
and the system must be re-tuned. The aluminum deposition process is monitored using
the quartz-crystal system (see Figure 4) until the paper thickness is achieved.
When the desired film thickness has been reached, the mask disk is raised and
rotated to again shield the substrates. The quartz target is moved into place and
the rf power tuned to the new load. The quartz has to sputter for approximately
twenty minutes to reach thermal equilibrium and to remove possible contamination
that reaches the front surface of the quartz during aluminum deposition. The
mask change is made and after the quartz deposition, the procedure is
repeated^-rmask change to shutter position, target change, re-tune, ten minute
sputtering to reach equilibrium on the aluminum, and mask change. The time
line for this sequence is shown in Figure 6a. Figure 6b shows how the sequence
is modified when each layer is healed and tested. The plasma is turned off
after each aluminum layer, beginning with the second. One hour is allowed
for the system to reach thermal equilibrium before testing. After the test,
the plasma is reignited and operated for twenty minutes before the next
quartz deposition begins.

15
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Capacitor Test Results

Many capacitors of up to four layers were fabricated early in the program.
The fact that they appeared to be limited to approximately four layers was the
basis for the many system modifications that have been discussed in the foregoing
sections of this report. Figure 7 shows the capacitance as a function of
frequency at three temperatures for a typical four-layer capacitor. The
dissipation factor as a function of the same parameters is presented in
Figure 8. These temperature-dependent electrical characteristics were
stabilized by baking the capacitors in air at temperatures of at least 300°C.
The quartz layers in these capacitors were approximately 3500 A thick and the
aluminum electrodes were 1500 A thick. Energy densities for these capacitors
were approximately 60 millijoules per cubic centimeter of deposited material.

.043
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c<a
4-1
•H
o

.042
10' 10- 10' 105

Frequency (Hz)

Figure 7. Capacitance as a Function of Frequency
for a Four-Layer Silica-Aluminum Capacitor
at Three Temperatures.
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Figure 8. Dissipation Factor as a Function of

Frequency for a Four-Layer Silica-
Aluminum Capacitor at Three Temperatures

Table 1 is included to show actual test data from a run using -In situ
healing and testing of the capacitors. This run resulted in three useful five-layer
capacitors. A contact to one of the substrates was lost before the first layer
could be tested, but the other three had test results that were typical for all
the capacitors made in this way before the complete system cleanup. The run
was terminated after five layers because resistance before healing became low,
and the healing current requirements became high.

Particulate density in the vacuum system decreased many fold as a result
of the complete cleaning of everything inside the vacuum chamber. Substrates
that went through several pump-down and up-to-air cycles had essentially no
visible particulates on them. This compared to the previous condition wherein
particles were visible to the unaided eye. Visually, the defect density
immediately after the cleanup was estimated to be at least two orders of
magnitude lower than before. As stated earlier, dielectric layers were in-
creased in thickness to 5000 A at this same time.
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Table 1

Resistance Before Healing, Maximum Current During Healing,
and Dissipation Factor and Capacitance at 1.0 kHz After

Healing for One Run of Four Substrates

Capacitor
Layer
Number

1

2

3

4

5

Substrate
Number

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Resistance
(Ohms)

>109

5 x 103

4 x 106

9

short

>109

short

>109

>io9

40

>109

—

>io9

>io9

>io9

—

2.3 x 105

1 x 104

7 x 103

—

Maximum
Current
Conducted
(mA)

1 x 10~2

2 x 10'1

1 x 10~2

-4<2 x 10

2
2 x 10

3.5 x 10~2

2
3 x 10

—

4 x 10"1

3

6 x 10~2

—

1 x 10"1

8.5 x 10~2

2.5 x 10~2

—

2 x 10"1

10

3 x 10"1

—

Dissipation
Factor
After

Healing

8 x 10~3

3.5 x 10~3

4.4 x 10~3

Capacitance
After
Healing
(pF)

8,000

6,430

8,160

Not Connected

_3
3 x 10

2.3 x 10~3.
-3

2 x 10

—

1.7 x 10"1

1 x 10"2

2 x 10~3

—

1.4 x 10"1

4 x 10""1

2 x 10~3

—

2.6 x 10~3

1.9 x 10~3

3.8 x 10~3

—

16,430

13,440

17,060

—

25,910

20,100

26,130

—

30,460

27,400

31,020

—

37,420

30,470

38,910

—
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A number of mechanical problems were encountered during the early part of
the first run after cleanup, requiring that the system be opened many times.
Even so, the first two capacitors that failed on this run, failed after eight
layers. Their capacitances were 0.0466 and 0.0413 microfarads, with dissipation
factors of 0.007 and 0.36, the latter being up from 0.016 after the previous
layer. This run was terminated after the sixteenth layer when the third
failure occurred. The final values for capacitance and dissipation factor of
the sixteen-layer capacitor were 0.06 microfarads and 0.002, respectively, as
measured in the vacuum system at 1.0 kilohertz and approximately 25°C. This
capacitor was removed from the vacuum system and tested in air. Figure 9
shows its capacitance as a function of frequency at-four temperatures ranging
from 25° to 150°C. This capacitor failed during the testing so it is not known
if the temperature effects as shown are reversible. The dissipation factor

.061

,057

10

Frequency (hertz)

Figure 9. Capacitance as a Function of Frequency at Four
Temperatures for a Sixteen-Layer SiO~-Al Capacitor
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measurements indicated that the thermal effects probably were not reversible
because annealing apparently was taking place at temperatures as low as 50°C.
Figure 10 shows the dissipation factor-frequency curves. The 25°C data yielded
a smooth curve with high stability. At 50°C and at 100°C, the dissipation
factor readings were very unstable, indicating that change was taking place in

10

10
-1

o
4J
O
n)

a
o
•H
4-1
ta
Cu
•H
W
Cfl
-H
Q

10
-2

10-3

25

150°C

10" 10 10"

Frequency (hertz)

Figure 10. Dissipation Factor as a Function of Frequency at Two
Temperatures for a Sixteen Layer SiO -Al Capacitor.
The 25°C Data was Taken Before any Annealing had
Taken Place
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the capacitor (annealing). After some time at 150°C, the results stabilized
again and yielded a smooth curve with lower dissipation factor values. Direct
current leakage at the four temperatures and at 30 volts also indicated that
some changes were taking place in the capacitor. These currents were 30, 27,
50, and 35 microamperes at 25°, 50°, 100°, and 150°C, respectively. These
results indicate that annealing is a necessary step in the capacitor fabrica-
tion.

The next run was made with 6000 A-thick dielectrics and resulted in two
capacitors of twenty-two layers each. One capacitor failed during deposition
of the 22 layer and the other failed at eight layers. The capacitances averaged
0.026 microfarads after seven layers and the dissipation factors were 0.003,
0.004, 0.003, and 0.005 at one kilohertz and approximately 25°C. After
22 layers the dissipation factor of one of the remaining two capacitors had
increased sharply so the run was terminated. The other capacitor had capaci-
tance and dissipation factor of 0.092 microfarads and 0.003, respectively, at
one kilohertz and approximately 25°C. Figure 11 shows capacitance and dissipa-
tion factor for this 22 layer capacitor as functions of frequency. This
capacitor was delivered to the NASA without testing its thermal stability.
The lowest dissipation factor of 0.005 in air is good. However, this would
probably decrease with some thermal conditioning, and the frequency range over
which the dissipation factor is less than one percent would probably broaden.
This would make the power dissipation of this 22 layer capacitor compare
favorably with the two- and four-layer capacitors reported in Reference 4.

The energy density for the 22 layer capacitor at 40 volts was 42 milli-
joules per cubic centimeter of deposited material and 67 millijoules per cubic
centimeter of active deposit. No capacitors were subjected to more than 100
volts dc. However, many 3000 A-thick dielectric layers can hold 100 volts so
the 6000 A-thick dielectrics could easily have working voltages of 100 volts dc.

Test results for typical eight-layer capacitors of the smallest size studied
are presented in Figures 12 and 13. Figure 12 shows the capacitance as a
function of frequency and temperature. The curves for all other temperatures
tested (50°, 100°, 150°, and 200°C) fall between the two curves shown. Note
that the greatest effect of frequency on capacitance is 2.5 percent at 250°C.
Figure 13 shows the dissipation factor as a function of frequency and tempera-
ture. Dissipation factors of less than one percent at all tested frequencies
and temperatures show that these capacitors have excellent power dissipation
characteristics. The energy density for these capacitors was 65 to 70 milli-
joules per cubic centimeter of active deposit at 40 volts.
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APPENDIX A

Effects of Electrode Delamination
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APPENDIX A

Effects of Electrode Del ami nation

One task of the subject contract was to investigate the feasibility
of decreasing the power dissipation of the capacitors by decreasing eddy
current losses in the electrodes. It was suggested that eddy currents could
be curtailed by replacing solid electrodes with laminated electrodes. These
laminates would be fabricated by depositing thin islands of insulating
material (quartz) periodically during the course of a conductor deposition.
This would require some complex masking arrangements and increase deposition
times considerably. Therefore, the chances of success were evaluated before
proceeding with the experimental work. There was a high probability that
side effects such as the increased resistance of thinner conductors would
overshadow any gain from decreased eddy currents.

Assume that a 1500 A-thick aluminum conductor would be replaced by three
500 A-thick aluminum layers separated by thin quartz layers. Although both
cases have 1500 A conducting thicknesses, there is more resistance in the
laminate. When film thickness (d) is greater than the mean free path (l-i)
of conduction electrons, the equation relating film resistivity (p)to bulk
resistivity (po) is:

p/p^ = 1 + 3/8k

where k = d/l̂ . Assigning a value of 380 A as the mean free path in aluminum
(Reference 5) at room temperature yields results for 1500 A- and 500 A-thick
aluminum as follows:

1500 A .aluminum: p/p<j = 1.095

500 A aluminum: p/p^ = 1.285

Thus, the resistivity of 500 A-thick aluminum films of 1.285/1.095, or 1.17
times greater than that of 1500 A thick aluminum films. The resistance of
three 500 A thick aluminum films separated by insulating layers would be
17 percent higher than the resistance of one 1500 A thick aluminum film
assuming films with planar surfaces. In fact, deposited films have micro-
scopically rough surfaces. On a multilayer capacitor, this roughness
increases with the number of layers and becomes significant, compared to the
total film thickness, especially for 500 A-thick films. At that point, the
resistance of three 500A-thick aluminum layers in a laminate becomes even
greater compared to one 1500 A-thick layer. This increased resistance in
laminated electrodes will cause an increased dissipation factor at high
frequency, opposing and probably overshadowing, any improvement caused by
decreasing eddy current losses. These factors indicate that laminating the
electrodes is probably not a feasible way of decreasing the dissipation
factor. It has questionable value technically and it is very expensive.
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