NAS 25279

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-604

A Method for Calculating Transient Thrust and Flow-Rate Levels for Mariner Type Attitude Control Nitrogen Gas Jets

John D. Ferrera

CASE FILE COPY

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

January 1, 1972

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-604

A Method for Calculating Transient Thrust and Flow-Rate Levels for Mariner Type Attitude Control Nitrogen Gas Jets

John D. Ferrera

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

January 1, 1972

PREFACE

The work described in this report was performed by the Guidance and Control Division of the Jet Propulsion Laboratory.

• .

.

CONTENTS

I.	Intr	oduction	1
II.	Flo	w Analysis	2
III.	Dig	ital Computer Solutions	7
IV.	Con	clusions	8
Refer	ence	es	10
TABI	LES		
	1.	Summary of computer equations	11
	2.	Jet valve characteristics (computer input cards)	12
	3.	MM ' 71 jet valve parameters (fixed)	13
	4.	Computer program results	14
FIGU	RES		
	1.	MM ¹ 71 jet valve model	15
	2.	Typical valve chamber pressure profile	15
	3.	Typical valve electrical and pneumatic characteristics: (a) voltage to valve, (b) valve coil current, (c) valve chamber pressure, (d) valve orifice area	15
	4.	Computer program flow chart	16
	5.	Computer list printout of steady-state and transient thrust prediction program	17
	6.	Steady-state printout: (a) MM'71 pitch/yaw, (b) MM'71 roll, (c) MM'64 pitch/yaw, (d) MM'64 roll	22
	7.	MM'71 pitch/yaw valve parameters as a function of time: (a) chamber pressure, (b) total mass, nozzle, (c) total mass, chamber, (d) total mass, valve, (e) nozzle flow rate, (f) chamber flow rate, (g) valve flow rate, (h) total impulse, (i) chamber pressure derivative	23
	8.	MM'71 roll valve parameters as a function of time: (a) chamber pressure, (b) total mass, nozzle, (c) total mass, chamber, (d) total mass, valve, (e) nozzle flow rate, (f) chamber flow rate, (g) valve flow rate, (h) total impulse, (i) chamber pressure derivative	32

CONTENTS (contd)

FIGURES (contd)

9.	MM'64 pitch/yaw valve parameters as a function of time: (a) chamber pressure, (b) total mass, nozzle, (c) total mass, chamber, (d) total mass, valve, (e) nozzle flow rate, (f) chamber flow rate, (g) valve flow rate, (h) total impulse, (i) chamber pressure derivative
10.	MM'64 roll valve parameters as a function of time: (a) chamber pressure, (b) total mass, nozzle, (c) total mass, chamber, (d) total mass, valve, (e) nozzle flow rate, (f) chamber flow rate, (g) valve flow rate, (h) total impulse, (i) chamber pressure derivative

ABSTRACT

The purpose of this report is to define and program the transient pneumatic flow equations necessary to determine, for a given set of conditions (geometry, pressures, temperatures, valve on time, etc.), the total nitrogen impulse and mass flow per pulse for the single pulsing of a Mariner type reaction control assembly valve. The rates of opening and closing of the valves are modeled, and electrical pulse durations of from 20 to 100 ms are investigated. In developing the transient flow analysis, maximum use was made of the steady-state analysis undertaken in Ref. 1. The impulse results are also compared to an equivalent "square-wave" impulse for both the Mariner Mars 1971 (MM'71) and Mariner Mars 1964 (MM'64) systems. It is demonstrated that, whereas in the MM'64 system, the actual impulse was as much as 56% higher than an assumed impulse (which is the product of the steady-state thrust and value on time -- i.e., the square wave), in the MM'71 system, these two values were in error in the same direction by only approximately 4% because of the larger nozzle areas and shorter valve stroke used.

vii

I. INTRODUCTION

This memorandum is a supplement to Technical Report 32-1353 (Ref. 1) and is intended to be used in conjunction with it. The work presented in that report is limited to steady-state thrust and flow-rate determinations vs. varying design parameters for the Mariner type ball valve/nozzle configuration, in which a subsonic orifice is in series with a sonic nozzle throat separated by a chamber volume of approximately 0.2 cm³. Design variables investigated include inlet pressures of 6.9×10^4 to 2.1×10^5 N/m² (10 to 30 psi), ambient pressure of 1×10^{-4} N/m² (1×10^{-6} torr), inlet temperatures of -100 to 150° C, valve orifice areas of 0.32 to 2.6 mm² (5×10^{-4} to 40×10^{-4} in.²), nozzle throat diameters of 0.13 to 1.3 mm (5×10^{-3} to 50×10^{-3} in.), nozzle geometric area ratios of 25 to 275, and nozzle cone half-angles of 15 to 40 deg. The thrust levels considered are in the millinewton range, and the propellant is cold nitrogen gas. The equations used to determine nozzle losses are based on flat-plate analogies.^{*}

The work described here extends the analysis and computer program presented in Ref. 1 (using the same ranges of parameters) to include an investigation of the transient thrust and flow-rate effects for both the Mariner Mars 1964 and 1971 cases. Of particular concern was the total quantity of gas consumed in the firing of each axis of the MM'71 reaction control assembly. The results were used in the Mariner Mars 1971 program to aid in the flight analysis of total gas consumption, and tended to correlate with in-flight data. The resulting Univac 1108 program can easily be modified to investigate other valve geometrics and conditions.

^{*}The dimensions in the equations are in English units to correspond to the computer program on which they are based.

The model used to represent the MM'71 RCA jet value is shown in Fig. 1, where the subscripts 0, c, and N refer to conditions at the jet value orifice, in the plenum chamber between the jet value orifice and nozzle, and in the nozzle throat, respectively.

For this model, the weight of gas in the thrust chamber W_c at any time t is assumed to be given by the perfect gas law,

$$W_{c} = \rho_{c} V_{c} = \frac{V_{c}}{RT} P_{c}$$
(1)

where ρ is the gas density, V_c is the chamber volume, R is the gas constant, T is the gas temperature, and P_c is the chamber pressure. For an adiabatic process, the change in weight is proportional to the change in pressure, or

$$\frac{\partial W_{c}}{\partial t} = \frac{V_{c}}{RT} \frac{\partial P_{c}}{\partial t}$$
(2)

For the case to be considered in this report, at t = 0 (i.e., immediately prior to the initiation of value opening), P_0 equals the supply pressure of $1.0 \times 10^5 \text{ N/m}^2$ (15.0 psia), and the chamber pressure P_c and ambient pressure P_a equal zero (i.e., vacuum condition). Between the time the value starts to open and the time that the chamber pressure reaches a steady-state level (see Fig. 2), there is a difference in flow rates between the solenoid value orifice W_0 and the nozzle W_N . This flow-rate difference causes an accumulation of gas in the chamber, thereby building up the chamber pressure. The differential equation of the rate of gas accumulation is

$$\frac{\mathrm{d}W_{\mathrm{c}}}{\mathrm{d}t} = W_{\mathrm{0}} - W_{\mathrm{N}} \tag{3}$$

Because the local ambient is vacuum, the flow rate through the nozzle is always sonic and is given by

$$W_{N} = C_{DN} A_{N} P_{c} \left[\frac{g_{0} \gamma}{RT} \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma+1}{\gamma-1}} \right]^{\frac{1}{2}}$$
(4)

where ${\rm C}_{\rm DN}$ is the nozzle discharge coefficient, and ${\rm A}_{\rm N}$ is the nozzle cross-sectional area.

The flow rate through the value orifice W_0 is sonic initially, since $P_c/P_0 < 0.528$. During this period $(0 < P_c/P_0 \le 0.528, 0 < t < t_{rl})$, from Fig. 2), the sonic orifice flow rate is given by

$$W_{0} = C_{DV}A_{0}(t)P_{0}\left[\frac{g_{0}\gamma}{RT}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}\right]^{\frac{1}{2}}$$
(5)

where $A_0(t)$ is the value orifice area as a function of time, and C_{DV} is the value discharge coefficient. During the subsequent period, when the pressure ratio P_c/P_0 is greater than 0.528 ($t_{r1} < t < t_{r2}$), the flow rate through the orifice is subsonic and is given by the following equation:

$$W_{0} = \frac{P_{0}A_{0}(t)a^{*}}{RT} \left(\frac{P_{c}}{P_{0}}\right)^{\frac{1}{\gamma}} \left\{ \frac{2}{\gamma-1} \left[1 - \left(\frac{P_{c}}{P_{0}}\right)^{\frac{\gamma-1}{\gamma}}\right] \right\}^{\frac{1}{2}}$$
(6)

where a^{*} is the characteristic sonic velocity (equal to $\sqrt{g_0\gamma RT}$). At a time t = t_{r2}, the rate of pressure buildup in the chamber becomes zero (i. e., chamber pressure is constant), and the flow through the orifice equals the flow out of the nozzle until such time t₂ as the valve starts to close. This is the steady-state thrust case and is described in detail, along with performance losses, in Ref. 1, where

$$W_N = W_0, \qquad \frac{dP_c}{dt} = 0$$

JPL Technical Memorandum 33-604

From the time (t_2) the value starts to close until the time (t_3) when it is fully closed, the flow through the value orifice is subsonic and is given by Eq. (6). For $t \ge t_3$, the value is fully closed ($W_0 = 0$), and the gas accumulated in the chamber is discharged by an isentropic process through the nozzle ($W_N = -W_0$). The density ratio for isentropic expansion is

$$\frac{\rho}{\rho_3} = \left(\frac{P_c}{P_{c_3}}\right)^{\frac{1}{\gamma}}$$
(7)

where the subscript 3 refers to conditions at $t = t_3$ and ρ is the gas density. Using Eq. (1) for the initial weight of gas trapped in the chamber, Eq. (7) becomes

$$W_{N} = \frac{V_{c}P_{c}}{RT_{c_{3}}} \left(\frac{P_{c}}{P_{c_{3}}}\right)^{\frac{1}{\gamma}}$$
(8)

Differentiating P_c with respect to time, and substituting Eq. (4) and the equation

$$\frac{T_{c}}{T_{c_{3}}} = \left(\frac{P_{c}}{P_{c_{3}}}\right)^{\frac{\gamma-1}{\gamma}}$$
(9)

into the results and then integrating from t_3 to any time $t > t_3$ gives the following equation for decay pressure as a function of time:

$$P_{c}(t) = P_{c_{3}} \left[1 - \frac{(1 - \gamma) A_{2}(t - t_{3})}{2} \right]^{\frac{2\gamma}{1 - \gamma}}$$
(10)

where A₂ is defined in Table 1.

Equations (5) and (6) require that the value area as a function of time, $A_0(t)$, be known. Appendix A of Ref. 1 details the derivation of the steadystate (value full open) value orifice effective area (A_{0-ss}). This value as a function of value ball travel T_B and for a ball radius of 0.24 cm (0.094 in.) and a seat radius of 0.17 cm (0.066 in.) (MM'71 data) is (Eq. A-11 of Ref. 1)

$$A_0 = \frac{(0.2073)(T_B)(0.134 + T_B)}{\left[0.008836 + T_B(0.134 + T_B)\right]^{1/2}}$$

Since it can be demonstrated (Ref. 2) that the particular solenoid valve will open (t_1) and close $(t_3 - t_2)$ in both cases in less than 1 ms, and since the total on time t_2 is 20 ms or greater, it is a reasonable approximation that the ball opening and closing is a linear function of time. Figures 3a-c demonstrate the typical electrical and pneumatic properties of the valve under study as a function of time. Figure 3d is, therefore, the mathematical representation of the valve orifice area as a function of time as developed from Fig. 3c. With reference to Fig. 3d, the following equations for $A_0(t)$ can be developed:

$$A_{0}(t) = \frac{(A_{0})(t)}{(t_{1})} \qquad 0 < t < t_{1} \qquad (11a)$$

$$A_0(t) = A_0$$
 $t_1 < t < t_2$ (11b)

$$A_{0}(t) = \frac{(A_{0})(t_{3} - t)}{(t_{3} - t_{2})} \qquad t_{2} < t < t_{3}$$
(11c)

$$A_0(t) = 0$$
 $t > t_3$ (11d)

For this study, the values of t_1 , t_2 , t_3 which represent the MM'71 flight data are taken from Ref. 2 and tabulated in Table 2. In this table, the appropriate values for the MM'64 values are also tabulated such that the computer program results for the two flight programs can be compared.

With the value for $A_0(t)$ thus determined, the chamber pressure $P_c(t)$ and the flow rates $W_N(t)$, $W_0(t)$, and $W_c(t)$ can be calculated using the appropriate equations previously defined. With the flow rates known, the accumulated mass $(m_0, m_N, \text{ or } m_c)$ is determined by solving the integral

$$m = \int_{t} W dt \qquad (12)$$

with the appropriate flow rate equation over the appropriate time interval. The total effective impulse I is given by the integral

$$I = \int_{t=0}^{t=\infty} F_{net}(t)dt \qquad (13)$$

1

where, from Ref. 1,

$$\mathbf{F}_{\text{net}} = (1 - \text{losses}) \mathbf{P}_{c} \mathbf{A}_{t} \mathbf{C}_{\text{DN}} \left[\frac{2\gamma^{2}}{\gamma - 1} \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma + 1}{\gamma - 1}} \right]^{\frac{1}{2}}$$
(14)

and thus,

$$I = K \int_{t=0}^{t=\infty} P_{c}(t) dt$$

where

$$K = A_t C_{DN}(1 - losses) \left[\frac{2\gamma^2}{\gamma - 1} \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma + 1}{\gamma - 1}} \right]^{\frac{1}{2}}$$

The thrust losses are taken into account in Eq. (14). These losses, derived and explained in Ref. 1, are assumed here to be a constant as a function of time. It is also assumed that both the inlet pressure P_0 and the inlet temperature T_0 stay constant as a function of time. The actual specific impulse I for nitrogen at ambient temperature T_0 is

$$I_{sp}(at T_0) = \frac{I}{m_0}$$
 (15)

Reference 3 gives an estimated temperature profile for the entire MM'71 mission, including Mars occultation. If the specific impulse at any other temperature T is desired, the following equation can be used:

$$I_{sp}(at T) = I_{sp}(at T_0) \left(\frac{T}{T_0}\right)^{\frac{1}{2}}$$
(16)

However, it should be remembered that the total impulse I does not change, since I $_{sp} \propto \sqrt{T}$ and $m_0 \propto 1/\sqrt{T}$ (see Eq. 15).

For the purposes of this report, an "effective" value on time will be defined as

$$\Delta t_{e} \equiv \frac{I}{\text{steady-state thrust}}$$
(17)

Furthermore, an equivalent "tailoff" on time, t_{+0} , will be defined as

$$t_{t0} \equiv \Delta t_{e} - (actual valve on time)$$

$$t_{t0} \equiv \Delta t_{e} - t_{2}$$
(17)

The use of the two time values, Δ_{te} and t_{t0} , in the sizing of a gas system for attitude control system application is explained in Ref. 2.

III. DIGITAL COMPUTER SOLUTIONS

With all the relevant equations available, a number of methods may be used to obtain the sought after solutions. Reference 4, from which much

of the above discussion is abstracted, details a solution assuming a constant flow density. Reference 5 describes a solution that can readily be implemented on an analog computer. The solution method used in this study involves numerical differentiation and integration programmed for a Univac 1108 computer using in part the existing program for the steady-state analysis discussed in Ref. 1. The computer flowchart for the steady-state portion of this analysis is given in Ref. 1, along with a list of nomenclature. For the transient analysis, which is the principal concern here, the equations previously derived must be written in the appropriate computer format for numerical differentiation and integration. This has been done for all the equations and is summarized in Table 1. The computer flow diagram for the transient analysis is given in Fig. 4. The transient analysis is added onto the end of the steady-state analysis program and is called up at statement number 600 in the main program, as can be seen by the list-print (Fig. 5). The input to the entire program is via a single read card (the variable NZ controls the number of possible read cards) which uses a 7F10.5 format to read in the seven variables on a single horizontal line in Table 2. All other data, including those in Table 3, are fixed and already in the program for this study.

In addition to the steady-state printout shown in Fig. 6, the program is also set up to print out in tabular form, in 0.1-ms intervals, the values of the following variables: t, $A_0(t)$, $M_c(t)$, $M_0(t)$, M_N , $P_c(t)$, $\Delta P/\Delta T$, I(t), $W_c(t)$, $W_0(t)$, and $W_N(t)$. The program also plots out the last nine of these variables as a function of time (see Figs. 7-10).

IV. CONCLUSIONS

Figures 7-10 show the plots for the four cases (defined in Table 2) studied for this report. Table 4 summarizes these plots. From the table, a number of conclusions can be drawn.

(1) On the MM'64 pitch and yaw valves, the area ratio (ratio of valve seat area to nozzle throat area) was 24.5:1. As a result, the transient flow rate for a short period of time is greater than 15 times the steady-state flow, with a 56% increase in impluse per pulse for a nominal 20-ms valve on time.

The equivalent area ratios for the MM'71 pitch/yaw and roll valves are 6.24 and 2.38, respectively. With these much lower ratios, the resulting increase in impulse per pulse is only 4 and 3%, respectively, for a nominal 79.5- and 27.3-ms value on time. Note that the 4% figure would have increased only slightly had the nominal on time been closer to 20 ms.

From these test points, it is concluded that for area ratios of less than 10:1, the impulse per pulse (and gas consumed per pulse) calculated by the much simpler steady-state approach would be in error on the low side by less than 10%.

- (2) As expected, the gas vacuum specific impulse is the same (within 4%) when calculated by either the transient or steadystate approach.
- (3) All computer runs were made assuming a local ambient temperature of 25°C. No attempt was made to determine an in-flight ambient or gas temperature, although this could be done.
- (4) The shortest electrical value on time assumed was 20 ms. Since pressure and flow rate build up to their steady-state value in a short period of time (usually less than 2.0 ms), steady-state approximations for value times of somewhat less than 20 ms should be valid.
- (5) For this study, it was assumed that the discharge coefficients (losses) stay constant over the relatively short transient flow periods.

R EF ER ENC ES

- 1. Ferrera, J. D., and McKown, P. M., <u>A Method for Calculating Steady-State Thrust and Flow-Rate Levels for Mariner IV Type Attitude Control</u> <u>Nitrogen Gas Jets</u>, Technical Report 32-1353, Jet Propulsion Laboratory, Pasadena, Calif., Dec. 1, 1968.
- 2. Edmunds, R. S., <u>Investigation of the Mariner 9 Cold Gas System and</u> <u>Associated Electronics</u> (Attachment 2 to EM 344-352), EM 344-353, Jet Propulsion Laboratory, Pasadena, Calif., July 26, 1971 (JPL internal document).
- 3. Nordwall, H., <u>Attitude Control Jet and Acquisition Sun Sensor Temperature, Solar Panel Thermal Shock Test</u>, Interoffice Memorandum, Jet Propulsion Laboratory, Pasadena, Calif., June 24, 1969 (JPL internal document).
- 4. Greer, H., <u>Analytical Investigation of Nitrogen Jet Reaction Control</u> <u>Systems</u>, TDR-469(5560-30)-1, Aerospace Corporation, El Segundo, Calif., Nov. 30, 1964.
- 5. Bouvier, H. K., <u>MC-3 Altitude Control Gas Valve Performance</u>, IOM 344-390, Jet Propulsion Laboratory, Pasadena, Calif., Feb. 2, 1965 (JPL internal document).

Table 1. Summary of computer equations^a

_	Γ	r	·		<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			· <u> </u>						<u>`</u> _			
(8)	t ≥ t ₃	0 > P > P.	٥	(I - N)4 - (N)4 70	$P_{ccc}\left\{1,\frac{(1-\gamma)A_2\left[t(N)-t_3\right]}{2}\right\}^{\frac{2}{1}}$	Same as (a)	0			(N) ^N M ⁻	Same as (a)	Same as (a)	Same as (a)	Same as (a)	Same as (a)		
0	t ₂ <t <="" t<sub="">3</t>	0. 528 ≤ P ≤ P _{C88}	$A_0 \frac{t_3 - t(N)}{t_3 - t_2}$	Same as (b)	Same as (a)	Same as (a)	Same as (b)			Same as (a)	Same as (a)	Same as (a)	Same as (a)	Same as (a)	Same as (a)		
(e)	≤ t₂	P = P css	Same as (d)	٥	Same as (c)	Same as (a)	Same as (c)			0	Same as (a) with ΔT = ΔT]	Same as (a) with $\Delta T = \Delta T l$	Same as (a)	Same as (a) with \$\$T = \$\$T1\$	Same as (a)	$\frac{1}{2} \left[\frac{1}{1+1} \right]^{\frac{1}{2}}$	
(9)	t1 2t	0. 528 ≤ P ≤ P _{cas}	0 v	Same as (b)	Same as (a)	Same as (a)	Same as (b)			Same as (s)	Same as (a)	Same as (a)	Same as (a)	Same as (a)	Same as (a)	$I = \frac{V_c}{RT_0}$; $A_5 = \begin{bmatrix} 8_0 \\ RT \end{bmatrix}$	
(c)		Pc = Pcss.	Same as (a)	0	5 5 6	- Same as (a)	(N) ^N M			0	Same as (a)	Same as (a)	Same as (a)	Same as (a)	Same ar (a)	$\frac{1}{1+1}$	
(Q	t < t1	0. 528 <u>5</u> P <u>5</u> P ₅₈	Same as (a)	$A_1A_0(N)P(N-1)^{\frac{1}{N}}\left[1-P(N-1)^{\frac{N-1}{N}}\right]^{\frac{1}{2}}$	c Same as (a)	Same as (a)	$\frac{c_{2y}P_0A^{\bullet}}{\mathbb{R}^T_0}\left(\frac{2}{\left(\frac{2}{y-1}\right)^2}A_0(N)P(N)^{\frac{1}{Y}}\right)$	$\times \left[1 - P_{1}(x)^{\frac{1}{4}}\right]^{\frac{1}{2}}$	$\frac{\left[\frac{1}{\lambda}^{(N)} - 1\right]}{\left[\frac{1}{\lambda}^{(N)} - 1\right]} = \frac{1}{\lambda}$	Same as (a)	Sarne as (a)	Same as (a)	Same as (a)	Same as (a)	Same as (a)	$\frac{1}{12}: A_2 = \frac{C_{DN}^{A} A_1}{\sqrt{c}} \left(\frac{2}{(7+1)}^{2(N-1)}; A_3 = \frac{C_{DV} A^4}{\sqrt{c}}\right)$	and $P_{ccc} = P(N - 1)$ at $t = t_3$.
(a)		0 ≤ P ≤ 0.528	A0 5[N]	A ₃ A ₀ (N) - A ₂ P(N - 1)	Ρ(Ν - 1) + ^{8Ρ} (Ν)ΔΤ	A5C _{DN} A _t P ₀ P(N)	A5CDV ^P 0A0 ^(N)			۸ <mark>4</mark> P ₀ BP (N)	$M_N(N - 1) + W_N(N)\Delta T$	M ₀ (N - 1) + W ₀ (N∆T	M _c (N - 1) + W _c (MAT	(N)4T2046+(I - N)I	P ₀ P(N)	$\frac{T_0}{V_0} \cdot \mathbf{A} - C_D \mathbf{v}^{\mathbf{A}} \cdot \frac{ Z Y}{C}$ $\text{for } \mathbf{h}_{\mathbf{V}} \cdot \left[\left(\sum_{i=1}^{2} \frac{Y_+^{\mathbf{A}}}{V} + \frac{Z}{V} \right)^{-1} \cdot \frac{Z}{V} \right]$ defined in Fig. 3.	
	t(N) ^b	Ъс	(N) ⁰ Y ' I	2 ^{BP} (N)	3 P(N)	4 W _N (N)	5 W ₀ (N)			6 W _c (N)	7 M _N (N)	8 M ₀ (N)	9 M _c (N)	(N)I 01	11 P _c (N)	a $A^{*} = \sqrt{60^{VR}}$ A ₆ = (1 - FL [*] b ₁ , t ₂ , t ₃ are	۲ ۲ ۲

Mission	Axis	P ₀ , N/m ² (psi)	т _о , °С	D _t , ^a mm (in.)	T _B , mm (in.)	t ₁ , s ^b	t ₂ , s ^b	t ₃ , s ^b
MM'71	Pitch/ yaw	1.0×10^5 (15)	25	0.513 (0.0202)	0.173 (0.0068)	0.001	0.0795	0.0805
MM'71	Roll	1.0×10^5 (15)	25	0.831 (0.0327)	0.173 (0.0068)	0.001	0.0273	0.0283
MM ' 64	Pitch/ yaw	1.0×10^5 (15)	25	0.290 (0.0114)	0.216 (0.0085)	0.001	0.020 ^c	0.021 ^c
MM164	Roll	1.0×10^5 (15)	25	0.374 (0.0147)	0.216 (0.0085)	0.001	0.020 ^c	0.021 ^c
^a Nozzle	throat	diameter.						
^b See Fi	g. 3 for	definition.						
^c Estima	ite.							

Table 2. Jet valve characteristics (computer input cards)

Parameter	Value
Nozzle discharge coefficient C _{DN}	1.0
Valve discharge coefficient C_{DV}	0.63
Ambient temperature T ₀ , °C	25
Valve ball diameter, cm (in.)	0.478 (0.188)
Valve seat diameter, cm (in.)	0.335 (0.132)
Nozzle geometric area ratio	250:1
Nozzle exit geometry half-angle, deg	25
Ratio of specific heats (nitrogen)	1.4
Nitrogen gas constant, N-m/kg K (ft-lbf/lbm °R)	2.967 \times 10 ² (55.16)
Ambient pressure, N/m ² (psi)	0
Valve inlet pressure P_0 , N/m ² (psi)	1.0×10^5 (15.0)
Valve chamber volume V_{C} , cm ² (in. ²)	7.48 \times 10 ² (0.0116)
Time differential, s (DELT)	0.0001

.

Table 3. MM'71 jet valve parameters (fixed)

Table 4. Computer program results

\$ 104 156 103 133 , ₁ ² t_{t0} (Δt_e-t₂), 11.3 6.7 3.2 0.7 88 t2 (valve on time), 27.3 ŝ 79. 20 20 , ∆t_e, | 31.3 0 7 2 ms 28. (82. 26. . 88 72.3 71.2 68.9 70.0 ے U ی ع ч<u>і</u>х " 70.8 71.9 66.1 68.2 ŝ gp $\begin{array}{c} 0.476 \times 10^{-3} \\ (0.107 \times 10^{-3}) \end{array}$ $\begin{bmatrix} 2.32 \times 10^{-3} \\ (0.522 \times 10^{-3}) \end{bmatrix}$ $\begin{bmatrix} 0.331 \times 10^{-3} \\ (0.744 \times 10^{-3}) \end{bmatrix}$ <u>Impulse</u>, _{N-s} $\begin{array}{c|c} 4. \ 03 \\ (0. \ 889 \\ \times \ 10^{-5}) \end{array} \left[\begin{array}{c} 2. \ 80 \\ (0. \ 629 \\ \times \ 10^{-3}) \end{array} \right]$ (lb-s) $\begin{array}{c} 3.29 \times 10^{-3} \\ (0.726 \times 10^{-5}) \end{array}$ $\begin{bmatrix} 5.16 \times 10^{-2} \\ (0.113 \times 10^{-5}) \end{bmatrix}$ $(\times 10^{-2})$ Mass Pulse, g (lb) 7.12 (0.157 Parameter^a Flow rate, max Flow rate, s-s 15.1 4.0 9.3 $^{\rm b}F_{ss}$ = steady-state thrust (see column 3); W_{ss} = steady-state flow rate (see column 4). 1.7 ^aValve inlet pressure $\approx 1.0 \times 10^5$ N/m² (15.0 psi); valve inlet temperature = 25°C. $\begin{bmatrix} 1.94 \times 10^{-1} \\ (0.428 \times 10^{-3}) \end{bmatrix}$ $\times 10^{-1}$ × 10^{-3}) $\times 10^{-1}$ $\times 10^{-3}$) $\begin{array}{c} 1.94 \times 10^{-1} \\ (0.428 \times 10^{-3}) \end{array}$ Flow rate (transient), max, g/s (lb/s) 2. 42 (0. 534 2.42 (0.534 $\left| \begin{array}{c} 4.85 \times 10^{-2} \\ (0.107 \times 10^{-3}) \end{array} \right|$ $\begin{bmatrix} 11. 70 \times 10^{-2} \\ (0. 258 \times 10^{-3}) \end{bmatrix}$ $\times 10^{-2}$ 5 × 10^{-4}) $\times 10^{-2}$ Flow rate (steady-state) g/s (lb/s) 1.56 (0.345) 2.60 (0.573) (steady-state), $N \times 10^{-3}$ (mlb) 33.85 (7.61) 82.82 (18.62) 17.88 (4.02) 10.59 (2.38) Thrust $10, 33 \times 10^{4}$ (14, 98) $\begin{bmatrix} 10.31 \times 10^4 \\ (14.96) \end{bmatrix}$ $\begin{array}{c} 9.37 \times 10^{4} \\ (13.6) \end{array}$ $\begin{bmatrix} 10.20 \times 10^4 \\ (14.8) \end{bmatrix}$ pressure (steady-state), N/m2 (psi) Chamber 0.0513 (0.0202) 0.0290 (0.0114) Throat diameter, cm (in.) 0.0831 (0.0327) 0374 0147) ۰<u>و</u> MM171 pitch/yaw MM¹⁶⁴ pitch/yaw Mission MMI71 roll MM'64 roll

, t.,

Fig. 2. Typical valve chamber pressure profile

Fig. 3. Typical valve electrical and pneumatic characteristics: (a) voltage to valve, (b) valve coil current, (c) valve chamber pressure, (d) valve orifice area

Fig. 4. Computer program flow chart

.

1+ (C NET LARUST PREDICTION PROGRAM
2 *	INTEGER TEST
3+	TEST=0
4 +	N 2 = 5
5+	50 D0 175 I=1:N2
6+	READ (5+2) PO+TO+CT+TB+T1+T2+T3
7+	2 FORMAT (7F1C.3)
8 +	CDV=C.63
9*	CDN=1.C
10+	MAX1=3C.
11+	MAX 2 = 30 •
12+	MAX3=3C.
13+	EPSI=.0001
14+	EPS2=.0001
15*	EPS3=.01
17*	30=346.06773
15*	
19*	PAEU. Contentes c
20+	
22+	
23+	
24+	C V = 4 2 9 C -
25+	SIGDEG=25.
26+	GAMMA=1.4C1
27+	PCINIT=PO-C.3
29.	5 RS=DS/2.
29+	10 R3=03/2.
30.	1.L_A1=SQRI(1RB++2)-(RS++2))
31+	12 A2=A1+T3
32•	13 PHI2:AIAN (RS/A2)
33*	14 G=(RS/SIN (P412))-RB
34	15. BERB+RS/(FB+Q)
33*	
37.	
38.	13 HU-FI-KSYDI/SURI ((14*2)/((KS*6)*42))
39.	26 15 (40-40 x) 22 • 21 • 21
40+	
41+	22 PRINT 23.PG
42+	23 FCRM411141.4X16HINLEL PRESSURE =: F7.3.1X9H(LAS/IN2))
43*	24 PRINT 25,COV
44*	25 FORMAT(5x374vALVE ORIFICE DISCHARSE COEFFICIENT =+F7.4)
45*	26 PRINT 27.13
45*	27 FCRMAT(5x 13+8ALL TRAVEL = +F7.5+1X4¬(IN))
47+	23 PRINT 29.4RT3-0
48*	25 FURMATION 25 ANDZZEL SEUMETRIC ANEA RATIO - 4F0.31
434	DE PRINT SIGNOZZI E JA ELANGI E TEELLIVEJIEEGA
51+	DOTAT TALA
52+	33 FORMATISX234INLET 365 TEMPERATURE =+FE_1+1X7+19EG (1)
53*	34 PRINT 35
54+	35 FORMAT(5x19-INTROSEN PROPELLANT)
55+	36 PRINT 37.40
56 *	37 FORMAT(5x30HVALVE OR IFICE EFFECTIVE AREA =+F7.5+1x5H(IN2))
57+	39 PRINT 39.40X
58+	39 FGRMAT(5x1744ALVE SEAT AREA =+F7.5+1x5+(INZ)//)
59•	40 PRINT 41
60+	41 FORMATICS IL 4NET T-RUST HIXE 4NOZZLE + 7X5-VALVE + 9XE41 4RUST + 1CX646E 15-
6]•	[1+3X342X]1_MALTJ
¢2*	40 FRINT 44
0). Cir	TA TANATAL TA TAL REFLITAR TA TRUALEGARTERCE SURGE (AR TAUS) CONTARTAL GARALES.
554	LINCTRUTEIN/
55.	4) FORMATIZSYAJCIAMETED, 7Y44FEAD, 7Y1FJIDED PEATA, 74441 BC/FFAL
67+	
65+	45 F CRM 41 (27 X 4 + (1N) + 6 X 9 - (1 85 / IN 2) /)
63*	RI=01/2
70+	51 AT=PI+RI+6I
71+	52 AE=ARTSEQ.AT
15+	53 DE=SURT (4.+AE/PI)

Fig. 5. Computer list printout of steady-state and transient thrust prediction program

73*	54	RE=DE/2.
74 *	5 5	SIGM4=(SICDEG/360.)+2.+PI
75+	5 ē	SL=(RE-RT)+COS_USIGMA1/SIN_ISIGMA)
76+	57	FSAM=(SAMFA+1.)/(GAMMA-1.)
77+	. 59	PC=PCINIT
7÷+	5 9	CFC=((SAMMA-1,)/2,)+((AT+CON/(AO+CSV))++2,)+((Z./(SAMMA+1.))++FSAM
79+		1)
80*	6 0	INIEL
81+	61	FPC=((PC/PO)++((Z(Z_+GAMMA))/GAMMA))-((PC/PO)++((1)GAMMA)/GAMMA)
92+		1))-CPC
33+	63	DFPC=(11212.+3AMMA))/3AMMA)+(PO++(112.+3AMMA)+2.)/3AMMA))+(PC++1
84+		1(2(3.+54MMA))/SAMMA)))-(((1SAMMA)/SAMMA)+(PO++((SAMMA-1.)/SAMM
85•		24))+(PC++((1,-(2,+34MMA))/34MMA)))
86 +	E E	PCN=PC-(FPC/DFPC)
97 <u>.</u> +	57	IF(TEST +NE+1) 30 TG 71
88*	E B	PRINT 69+FPC+DFPC+PCN+INI
39+	63	FORMAT(2X5 + FPC = + 215, 3, 5X6 + DFPC = + E15, 4, 5X5 + PCN = + E15, 3, 5X10 + 11 ERC
. 90+	_	1PC) =+I4)
91+	71	IN1=IN1+1
92+	12	IF(ABS (PCN-PC)-EFS1)7E+7E+73
93*	73	PC=PCN
94+	74	IF (MAX1-IN1)75,75,E1
95+	75	PRINE / DEFENSION AND A DEFENSIONANTA AND A DEFENSION AND A DE
96+	76	FURMATIZZZANITZRATION LIMIT EXULEDED EXEMPE(UIV) FULLED)
37+	11	
35.	15	
334	/ 3	
1014	51	
101*	51	WULUI -40% UV#FU# ([FC/FU]## [1./JAMMA] #50RF ([2.%30/(R+[R])#(JAMMA/
102+		
1034		#150/-09/*/04/131/10/06/07/07/07/07/07/07/04/06/07/04/06/07/07/07/07/07/07/07/07/07/07/07/07/07/
105+	a 6	ADTED: 5 ADTECO
103-	50	
10.7.	97	
107*	26	
10.3+	33	Cl=(SAMMA+1_)/(2.+(SAMMA-1_))
110+	90	C2=(SAMMA-1,)/2.
111+	91	C3=((GAMMA+1.)/2.)++C1
112+	Э 2	FCN=C3+CN+((1.+(C2+CN+CN))++(-C1))-(1./AR)ERC)
113+	33	DFCN=C3+(2.+C2+CN+CN+(-C1)+((1.+(C2+CN+CN))++(-C1-1.))+((1.+(C2+CN
114+		1+CN))++(-C1)))
115+	35	CNN=CN-(FCN/CFCN)
116+	3 5	
117*	37	IF(TEST .NE. 1) 30 TO 100
118+	. 59	PRINT 53+FCN+DECN+CNN
119+	39	FORMAT(2X3 +FCN =+E15.3+5X6 +DFCN =+E15.3+5X5 +CNN =+E15.3)
120+	100	IF (ABS (CNN-CN)-EFS2)1C5+1C1
121+	- 101	CN=CNN
122*	102	: IFINAAC-INC/IUS/ILS/52
123*	103	- MKINI IUNGUN 1 Fremation - The Attraction (Interference Frencescover) - The Attraction
1254		CO TO 175
125+	103	SCR-CRR
1274	101	TRAT11.+((GANMA-1.)*CN/2.)
128*	101	- 10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
129+	109	PENDICI CN/101+SOPT (SAMA//(SAMA-1.) +CV+TDIL+ITDAT++//SAMA-2.)//
130+		$[GAMMA-L_{1}] \} + i (TR / TR AT) + i (A_{1} - i) (TD + i) (A_{1} - i) (TR / TR AT) + i (A_{1} - i) (A_{$
131+	110	RENOTIZ. +RENOU+SI +PC
132+	11	DELTA: 645+SL/SORT (RENG)
133+	112	IF(CN-6.5)113,115
134+		5 DELSTR=DELTA+1-, 00022+ CN++6+, 00071+CN++5-, 07610+CN++4+, 39770+CN++3
135+		130376+CN++2+.99230+CN+2.20324)
Ĩ 36.•	115	50 TO 123
137+	115	IF(CN-7.5)117+117+115
1,38,*		DELSTR=DELTA+12.6+CN-25.9)
139+	118	B 50 TO 123
140+	<u>11</u>	E_IF(CN-5.0))2C+120+122
141+	1 20	3 DELSTR=DELTA+(IC.0+CN-36.4)
1920.		
143+	123	(UELSIK=UELIA+(10,3+CN-44.4)
1.4.9.4.		I NEEDTHREELEVIN

145+ 124	IF(REEFF)129+125
14E+ 125	ARITER=IREEFF=REEFF)/(RT+ST)
147+ 126	IF(435 (ARTERC-4RITER)-EPS3)133+133+127
148	15.(MAX3-IN3)131+131+12=
149+ 129	IN 3 = IN 3 + 1
150+	ARJERC = LARIERO+ARILERI/2
151+ 130	30 10 33
1529 151	FRINI ISZARI VER
153* 132	CONTRACTIONALIUN LIMIT EXCEPENDERISARIERO(UIV) =+E15.8)
1554 133	G GARAFEAN IDTEEISI I
1564 131	PEECOLETTING (ALL SAMMA - 1.)/2.) acracki) as $I = SAMMA/ISAMMA - 1.)$
157+ 135	TETR/TRAT
158+ 138	CE=SGRT (3C+SAMMA+R+12)
-159+ 137	VE=CE+CN
160+ 138	VEF=VE/12.
161+ 139	CFP=PE+ARITER+30+AT/(W030T+VE)
162+ 140	FP=(15+(1.+COS (SIGEFF)))/(1.+CFP)
163+ 141	FDEL=2. + (R = -(DELTA/2.)) + DELTA/((RE-DELSTR) + (RE-DELSTR))
164* 142	- FMAX = F L+ A I + S G H I - [2 .+ 3A MMA + 3A MMA + [2 ./ (5A MMA + [.]) + +F G A M)/[3A MMA -] .]
165+	1) 65-5061 (112) - 5000 A 5000 A 51450 A 514 5 415 415 A 5000 A 51 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
167.	UT - 304 1 - 1112 - 346 M - 346 M - 7 (346 M - 7 (37 M - 127 M - 122 M - 134 M - 137 M - 147 M
167+ 166	
169# 147	FNICE HAX - FTHECRIVEMAX
170+ 145	FLT01=1((1FP)+(1FDEL)+(1FN))
171+ 149	FLT0TP=FLT0T+19C.
172+ 150	FNET=FMAX+(1FLTCT)
173+ 151	PRINT 152+FNET+DELP+FLTOTP+WODOT+CN
174+ 152	FORMAT(2X+215,0+7X+F5,5+5X+F7,4+0X+F6,2+6X+E15,0+6X+F6,3)
175*	
176+ 100	FORMAT (141)
177* 150	DDINT ISS STORE IN SUCCESSION
179 155	
180+ 156	PRINT 157 + ARTERO + ARITER + IN3
191+ 157	FORMAT(2X1344E/AI(INIT) =. E15.3.5X1344E/AJ(ILER) =. E15.9.5X104ITER
182+	1(8L) =•I4)
193* 159	PRINT 160, PC, PE, TE, CE, VEF
194+ 160	FCRMAT(2X44PC =+E15.6+5X44PE =+E15.6+5X44TE =+E15.6+5X44CE =+E15.8
1.8.5.*.	
1964 162	PRINT 16301RATOUGARNOUGARNO FORMATIZYCHTAAT - STE 0.591 MUTON - STE 0.5910 JOENOTMUN - STE 0.59
197.4	FURNELL ZAR TURALLAR LITZZIGA LIMMINI, PILIJA BIALUTRENULMUL PLIJA BIALI.
199+ 165	PRINT 166 JELIA, DEL SIR, REEFE
190+ 166	FCRMAT(2x7+DELTA =+E 15.0+ 5x13+DELTA(STAR) =+E15.8+5x7+REEFF =+E1
191+	15.3)
195+ 155	PRINT 163+FTHEOR+FMAX
193+ 163	FORMAT(2X3 +FI +EOR. 2, 215.9.5X6 +FMAX. 2, 215.3)
194+ 176	PRINT I/I + FP + FUEL + FN + FLTO T
1954 1/1	FORMAIL (XX HLP. HERLIG
1974 500	DIMENSION P(350).0001(350).70(350).70(850).70(850).20(350).20(450).00(450)
198*	1) + #N(85G) +PCC(85D) +T (85C) +X (85C) + Y (85C) + F MF(85G)
199+	M=5
200+	PCSS=FC/PC
201+	DELT=0.0001
202+	
203+	P(1)-52
205+	
206+	N:2
20.7 +	20(1)=0.
2 C.8 •	20(1)=C.
,2C 9 +	ZN(1)=Q
210+	EMP(1)=0.
211+	VC=0.C115339
2124	AND TAKE SUK TESETAN AAKATATA TETA ANA ANA ANA ANA ANA ANA ANA ANA ANA A
41,3▼,, 214#	AI-COTTADJERTLOURILCECIONMENTLEJEJEV
215.	A3=CDV+ASTAR/(VC+C3)
216+	44=VC/(R+TR)

217+	A5=SQRT(30+SAMMA/(R+TR))/C3
218+	A5=(1FLTOT)+AT+SAMPA/(C3+SGRT(C2))
21 3+	50C T(N)=T(N-1)+GELT
220+	IF (T(N). SE.T1) CO TO 505
221*	A0T=40+TIN //TI
222*	30 TC 515
22.3+	505 IF(T(N).5T.12) GO TC 51C
224	
225*	
220*	
2214	
2234	
230+	
231+	
232+	P(N) = P(N-1) + BPBT(N) + BFTT
233+	WC(N)=44+CPDT(N)+PO
234 *	WC(N)=45+C3V+ACT+PC
235+	WN(N)=45+CDN+4T+P(N)+P0
236+	<u>30 TC 550</u>
237+ -	520_DPDT(N)=A1+A0T+(P(N-1)++(1,/GAMMA))+SQRT(1,-P(N-1)++((GAMMA-1,)/GA
239+	[MMA])-A2+F(N-1)
233*	P(N) = P(N-1) + OPO(1) + OELT
246+	IF (ABS(P(N)-P))-LELEL(DUS) SO IG 525
241+	
2424	
2434	NOTHING AND
245+	
246+	GO TC 550
247+	525 WC(N)=C.
248+	P(N)=PCSS
249+	DPOT(N)=0.
2.50.	
251+	WO(N) = WN(N)
252*	IF (K. 5E. 5.) GC 10. 527
253*	
255.	527 DELTITZTAN
255+	
257+	ZO(N)=ZO(N-1)+WO(N)+DELT1
2.58+	2N(N) = 2N(N-1) + WN(N) + CE(T)
259+	EMP(N) = EMP(N-1) + AE + P(N) + PO + DELTI
2,60,+	PCC(N)= <u>P(N)+PC</u>
261+	T(N)=T2
262+	
203*	530 UPJ1[N]-41*401*[P(N+1]**[]./SAMMAJ]*53R[[]*P(N+1]**([SAMM4-1.]/GA
265+	
266+	WC(N)=A4+CPDT(N)+F0
267+	WO(N)=COV+ 401+PO+(P (x)++(1./SAMMA))+SORT(2.+SC+SAMMA+(1P(N)++(13
2 6 8 +	14PH4-1.1/24MH4))/(R+134MH4-1.1))
269+	WN(N)=A5+C0N+AT+P(N)+PC
270+	SC 10 550
271+	535 IF(M.GE.10) 50 TO 540
272+	
273*	A = PT I U S = U = D = C P T + (1 - (1 - SANWA) + AZA (T INI - T 3) AZ (N = (2 - SANWA) (1 - SANWA))
275+	
276+	ACTEL.
277+	WG(N)=G.
278+	WN (N) = 45 + CDN + 4T + P (N) + PC
273+	WC(N) =- WN(N)
280+	IF(P(N).LE.D.CIC) 30 TO 174
231+	550 ZC(N) = ZC(N - 1) + WC(N) + D ELT
282*	2 GIN JE 20IN-11+WCIN J+ JELI 2N/AN/E 2N/AN-11A (N/AN) - 201 F
255*	ZNINJ - ZNIN - LJ+ WNINJ + U2L I E WD (N) - EWG (N., 1) NA 6 - G (N) - D (- D (-))
295.	C RETURN-EMPTRESEND TO STATUTE UCLA DOCTASTE (N 1400
286+	551 PRINT 1000+++T(N) +ACT+70(N)+70(N)+7N(A++ 2001)+200T(N)+2001)+++C(
287+	
286+	1000 FORMAT (2X+14+11011.5)

29.24		
290+	GC IC 5CD	
291+ 174	4 L_=N-1	
292+	DIMENSION TITLE(14) + XN AME (14) + YNAM1(10) + YNAM2(10 110 - YNAM5(10) - YNAM5(10) - YNAM7(10) - YNAM8(10) - YNAM	3 + YNAM3(1[]+ YNAM4()
294*	REAL RCw2(1)	
295.	DATA TITLE /!	
296+	• • • • • • • • • • • • • • • • • • •	TTHE MIN TEECONDE
298+	• •/	
239*	DATA YNAMI / CHAMBER PRESSURE	<u>-PSIA</u>
300+		Fall B
302+	• */	<u></u>
303+	DATA YNAM3 /* TOTAL MASS-CHAMB	EB-L3
305+	DATA YNAM4 /* TOTAL MASS-VALVE	-L3
3CE+	• • /	
307+	DATA YNAM3 / FLOWRATE-NOZZLE-	LJ/SEC
30 9 •	DATA YNAME / FLOHRATE-CHAMBER	-LB/SEC
316+	• •/	2.202
312+	LATA YNAM/ /* FLOURATE-VALVE-L	3/560
31 3+	DATA YNAMB / TOTAL IMPULSE-LB	<u>SEC</u>
314+		TU A T TU T
316+		(144)195
31.7+	DATA ROWI /* */	· · · · · · · · · · · · · · · · · · ·
318+	DATA RCW2 / C./	
320+	CC SCU N=I+L	
321+	X(N)=T(N)+1000.	
322*	Y (N) - PCC(N) R CONTINUE	
324*	CALL EZPLCT (X + Y +L +INTERP +TITLE +XNAME +YNAMI+RO	W 1+ROW2+C 1
325+		
327+ 901	I CONTINUE	
328+	CALL EZPLCT (X +Y +L +INTERP + TITLE + XNAME + YNAM2 + ROW	II.ROWZ.CI
329*	UU BUZ N=I+L Y(N)=ZC(N)	
331* 302	CONTINUE	
332*	CALL EZPLCT (X +Y +L +INTERP +TITLE +XNAME + YNAM3 + ROW	1 . ROW 2 . G)
334+	Y (N) = ZC (N)	
335+ 903	3 CONTINUE	
337*	CALL _ZPLCI (X +Y +L +INTERP +TITLE +XNAME +YNAM4 + ROW D0 904 N=1 +1	(1.RC.2.C.)
338+	Y (N) = WN (N)	
339+ 304	CONTINUE	
341+	DO BUS N=1+L	IIIRUWZIUJ
3,42+	Y (N) =WC (N)	
343≉ 305 344	5 CONTINUE CALL F2PLCT (X . V .) TNTEEP.TTTLE.YNAME.YNAME.OOM	1.00-2.01
345+	DC 805 N=1+L	
346+	Y (N) = KC (N)	
348+	CALL EZFLCT (X +X +I +INTESP +TITLF +XNAMF +YNAM7+ROW	(1.ROK2.0)
349+	00 807 N=1+L	
350*	Y (N) = EMP(N) 2 CONTINUE	
352+	CALL EZPLOT (X +Y_+L+INTERP+TITLE+XNAME+YNAM9+ROM	1 + R0 + 2 + C 1
353+	DC 903 N=1+L	
354.	Y (N)=DFDT (N) 3 CONTINUE	····· ·· ··
356+	CALL EZPLET (X +Y +L +INTERP +TITLE +XNAME + YNAME + ROW	L+ROWZ+C }
357+ 175	5 CONTINUE	
, <u>3,5,6 *</u> , , ,	L NU	
END OF COMPILE	LATION: <u>NO CIAGNOSTICS.</u>	

(a) ^{,, _, ,}	<u> </u>	<u> </u>		·····	<u>-</u> :
TNIET PRESSURE =	15.000 (LBS/I	N2)			
VALVE ORIFICE DIS	CHARGE COEFFI	CIENT = .6300]		
BALL TRAVEL = .00	68G (IN)				
NOZZIE GEOMETRIC	AREA RATIO =	250.000			
NOZZIE HALE-ANGLE	= 25-0 (DEG)	2000000			
TNIFT GAS TEMPERA	THRE = 25.0	IDES C)			
NTTONER PROPELLA	KT LULL				
VALVE OPTETCE FEE	FETTUE AREA :	-00200 (IN2)		· · · · · · · · · · · · · · · · · · ·	
HALVE ORIGICE CON	CIIVE HILL - CIIVE (IN2)				
VALVE SET, ARE -	•••••••••••••••••••••••••••••••••••••••			· · · · · · · · · · · · · · · · · · ·	
NET THRUST	NCZZLE	VALVE	THRUST	WEISHT	EXIT MACH
fiRS)	THROAT	PRESSURE	1.05555	FIONPATE	NUMAED
(23)	DTAMETER	n RO P	(DED CENT)	LIPS/SFC1	
	ITNI	(1 8 5/ IN 2)			
	* # 13 *	••••••••••••••••••••••••••••••••••••••			
- 76137258-02	- 02020	-2235	11.19	-10652035-03	F.978
••••••••					
A.\				·	
(b)					
INLET PRESSURE = 1	5.000 (L35/1	N 2 I			
VALVE ORIFICE DISC	CHARGE CCEFFI	CIENT = .6300			
BALL TRAVEL = .000	590 (IN)				
NOZZLE GEOMETRIC	AREA RATIC =	250.000			
NOZZLE HALF-ANGLE	= 25.0 (DES)				
INLET GAS TEMPERA	TURE = 25.0	(DEG C)			
NITROGEN PROPELLAN	4 T				
VALVE ORIFICE EFFE	ECTIVE AREA =	.0C20C (IN2)			
VALVE SEAT AREA =	.01359 (IN2)				
NET THRUST	NOZZLE	VALVE	THRUST	WEIGHT	EXIT MACH
(LBS)	THROAT	PRESSURE	LCSSES	FLOWRATE	NUMBER
• • • • • • • • • • • • • • • • • • • •	DIAMETER	DR OP	(PER CENT)	(LBS/SEC)	
	(IN)	(LBS/IN2)	•• =		
.19618040-01	.03270	1.4196	9.83	25751027-03	7.085
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •				
(c)					
(c)	-		<u></u>		
(c) INLET PRESSURE = 1	15.CCL (LBS/IN	12)			
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC	15.CCL (LBS/IN HARGE COEFFIC	12) IENT = .6300	<u>.</u>		
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .005	IS.ELL (LBS/IN HARGE COEFFIC B5C (IN)	12) IENT = .6300	······		
(C) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .000 NOZZLE GEOMETRIC A	IS.CCL (LBS/IN HARGE COEFFIC BSC (IN) REA RATIO = 2	12) 1ENT = .6300 250.000			
(C) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE	IS.ECL (LBS/IN HARGE COEFFIC BSC (IN) AREA RATIO = 2 25.0 (DEG)	12) 1ENT = .6300 250.000			
(c) INLEI PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .005 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLEI GAS TEMPERAT	15.CLL (LBS/IN HARGE COEFFIC 15C (IN) REA RATIO = 2 25.0 (DEG) URE = 25.0 (12) SIENT = .6300 250.000 DEG C)			
(C) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .000 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN	15.CCL (LBS/IN HARGE COEFFIC B5C (IN) HREA RATIO = 2 = 25.0 (DEG) URE = 25.0 (12) 1ENT = .6300 250.000 DES C)			
(C) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .009 NOZZLE GEOMETRIC A NCZLE HALF-ANGLE INLET GAS IEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE	IS.ECL (LBS/IN HARGE COEFFIC BSC (IN) REA RATIO = 2 = 25.0 (DES) URE = 25.0 (INE CTIVE AREA =	.00250 (IN2)			
(C) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .009 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA =	15.ECL (LBS/IN HARGE COEFFIC B5C (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (VI CTIVE AREA = .CI368 (IN2)	12) 1ENT = .6300 250.000 DEG C) .00250 (IN2)			
(C) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .005 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA =	15.EEL (LBS/IN HARGE COEFFIC 55C (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (N CTIVE AREA = +C136B (IN2)	12) 1ENT = .6300 250.000 DEG C) .00250 (IN2)			
(C) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = 0.00 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA =	15.CCL (LBS/IN HARGE COEFFIC B5C (IN) HREA RAIO = 2 = 25.0 (DEG) URE = 25.0 (M CTIVE AREA = .CI368 (IN2)	12) 1ENT = .6300 250.000 DES C) .00250 (IN2)		-	
(C) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .009 NOZZLE GEOMETRIC A NCZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST	15.ECL (LBS/IN HARGE COEFFIC S5C (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (T CTIVE AREA = .CI368 (IN2)	12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE	T TRUST	WEIGHT	EXIT MACH
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .009 NOZZLE GEOMETRIC A NCZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS)	15.ECL (LBS/IN HARGE COEFFIC B5C (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (URE = 25.0 (CTIVE AREA = .C1368 (IN2) NO2ZLE THROAT	12) 1ENT = .6300 250.000 0EG C) .00250 (IN2) VALVE PRESSURE	T +RUST LOSSES	WEIGHT FLOWRATE	EXIT MACH NUMBER
(C) INLEI PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLEI GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS)	15.CLL (LBS/IN HARGÉ COEFFIC 55C (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (N CLIVE AREA = .CLI368 (IN2) NO2ZLE T+ROAT DIAMETER	VALVE PRESSURE	T-RUST LOSSES (PER CENT)	₩EIG⊣T FLOWRATE (L85/SEC)	EXIT MACH NUMBER
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS)	IS.ELL (LBS/IN HARGE COEFFIC BSC (IN) DREA RATIO = 2 = 25.0 (DEG) URE = 25.0 (I CTIVE AREA = .CI368 (IN2) NO2ZLE THROAT DIAMETER (IN)	12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DRCP (L35/IN2)	T TRUST LOSSES (PER CENT)	₩EIGHT FLOWRATE (LBS/SEC)	EXIT MACH NUMBER
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .00! NOZZLE GEOMETRIC A NCZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS)	15.ECL (LBS/IN HARGE COEFFIG 55C (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (T CTIVE AREA = .CI368 (IN2) NO2ZLE THROAT DIAMETER (IN)	12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DRCP (L3S/IN2)	T TRUST LOSSES (PER CENT)	WEIGHT FLOWRATE (LBS/SEC)	EXIT MACH NUMBER
(c) INLET PRESSURE = H VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2	15.ECL (LBS/IN HARGE COEFFIC B5C (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (T CTIVE AREA = .C1368 (IN2) NO2ZLE T+ROAT DI AMETER (IN) .C1140	V2) 1ENT = .6300 250.000 DEG C) .00250 (IN2) VALVE PRESSURE DECP (L3S/IN2) .0147	T -RUST LOSSES (PER CENT) 14.19	₩EIG⊣T FLOWRATE (L95/5EC) .34534640-04	EXIT MACH NUMBER E.565
(c) INLEI PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC & NOZZLE HALF-ANGLE INLEI GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .237E1739-C2	15.ELL (LBS/IN HARGÉ COEFFIC B5C (IN) AREA RATIO = 2 25.0 (DEG) URE = 25.0 (IN CTIVE AREA = .C136B (IN2) NO2ZLE T+ROAT DIAMETER (IN) .C1140	N2) IENT = .6300 250.000 DEG C) .00250 (IN2) VALVE PRESSURE DRCP (L3S/IN2) .0147	T -RUST LOSSES (PER CENT) 14.19	₩EIG+T FLOWRATE (L95/SEC) .3453484C-04	EXIT MACH NUMBER E.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .00! NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d)	15.CCL (LBS/IN HARGE COEFFIC BSC (IN) HREA RATIO = 2 = 25.0 (DEG) URE = 25.0 (I CTIVE AREA = .CI368 (IN2) NO2ZLE THROAT DIAMETER (IN) .CI140	12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DRCP (L35/IN2) .0147	T +RUS T LOSSES (PER CENT) 14.19	₩ E I G - I T F L OW RATE (L BS/SEC) .34 534640-04	Ex11 MAC4 NUMBER E.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1	15.CCL (LBS/IN HARGE COEFFIC BSC (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (M CTIVE AREA = .CI368 (IN2) NO2ZLE I HOAT DIAMETER (IN) .CI140	12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DRCP (L3S/IN2) .0147 N2)	T +RUST LOSSES (PER CENT) 14.19	₩ E I S + 1 F L OW R A T E (L B S / S E C J . 34 5 34 8 4 C - C 4	EXIT MACH NUMBER E.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC 4 NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC	15.CCL (LBS/IN HARGE COEFFIC 55C (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (CI CIIVE AREA = .CI368 (IN2) NOZZLE THROAT DIAMETER (IN) .CI140 15.CCL (LBS/IN HARGE COEFFIC	12) 1ENT = .6300 250.000 DEG C) .00250 (IN2) VALVE PRESSURE DRCP (L3S/IN2) .0147 .0147 .0147 .0147	T -RUST LOSSES (PER CENT) 14.19	WEIG47 FLOWRATE (LBS/SEC) .3453484C-04	EXIT MAC4 NUMJER E.S65
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC & NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .237E1739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .000	15.CCL (LBS/IN HARGÉ COEFFIC B5C (IN) REA RATIO = 2 25.0 (DEG) URE = 25.0 (URE = 25.0 (IN CTIVE AREA = .C136B (IN2) NO2ZLE I+ROAT CINHETER (IN) .C1140 IS.CCL (LBS/IN HARGE COEFFIC 35D (IN)	12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DRCP (L35/IN2) .0147 .0147 .0147	T +RUST LOSSES (PER CENT) 14.19	₩EIGHT FLOWRATE (L95/SEC) .3453484C-04	EXIT MACY NUMBER E.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .008 NOZZLE GEOMETRICA	15.CCL (LBS/IN HARGE COEFFIC BSC (IN) HREA RATIO = 2 = 25.0 (DEG) URE = 25.0 (I CTIVE AREA = .C1368 (IN2) NO2ZLE THROAT CIAMETER (IN) .C1140 IS.CCL (LBS/IN HARGE COEFFIC BSC (IN) REA RATIO = 2	12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DRCP (L35/IN2) .0147 .0147 .0147 .0147 .0147	T +RUST LOSSES (PER CENT) 14.19	₩ E I G - I T F L OW RATE (L BS/SEC) .34 534840-04	Ex11 MAC4 NUMBER E.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .000 NOZZLE GEOMETRIC A NCZLE HALF-ANSLE	15.CCL (LBS/IN HARGE COEFFIC BSC (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (I CTIVE AREA = .CI368 (IN2) NO2ZLE I HOAT CIAMETER (IN) .CI140 IS.CCL (LBS/IN HARGE COEFFIC BSC (IN) REA RATIO = 2 = 25.0 (DEG)	12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DRCP (L3S/IN2) .0147 .0147 .0147 .0147 .0147 .0147	T +RUST LOSSES (PER CENT) 14.19	₩ E I S + T F L OW R A T E (L B S / S E C J . 34 5 34 8 4 C - C 4	Exit MAC4 NUMJER €.565
(c) INLET PRESSURE = H VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC 4 NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .00E NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT	15.CCL (LBS/IN HARGÉ COEFFIC B5C (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (I CTIVE AREA = .C1368 (IN2) NO2ZLE T+ROAT DIAMETER (IN) .C1140 S.CCL (LBS/IN HARGE COEFFIC B50 (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (DEG)	N2) IENT = .6300 250.000 DEG C) .00250 (IN2) VALVE PRESSURE DRCP (L3S/IN2) .0147 N2) IENT = .6300 250.000 IDEG C)	T-RUST LOSSES (PER CENT) 14.19	₩ E I G - I T F L OW R A T E (L 85/SEC) .34 534 84 C - C 4	EXIT MAC4 NUMBER E.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = DOI NOZZLE GEOMETRIC & NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .00E NOZZLE GEOMETRIC A NCZLE HALF-ANSLE INLET GAS TEMPERAT NITROGEN PROPELLAN	15.CCL (LBS/IN HARGE COEFFIC B5C (IN) HARA RATIO = 2 = 25.0 (DEG) URE = 25.0 (OEG) URE = 25.0 (OEG) URE = 25.0 (IN) NO2ZLE T+ROAT DIAMETER (IN) .C1140 IS.CCL (LBS/IN) HARGE COEFFIC B5C (IN) HARGE COEFFIC B5C (IN) HARA RATIO = 2 = 25.0 (DEG) URE = 25.0 (12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DECP (L35/IN2) .0147 .0147 .2) .1ENT = .6300 250.000 (DES C)	T HRUST LOSSES (PER CENT) 14.19	WEIGHT FLOWRATE (LBS/SEC) .3453464(-04	Ex 11 MAC4 NUMBER 6.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .00E NOZZLE GEOMETRICA NCZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE	15.CCL (LBS/IN HARGE COEFFIC BSC (IN) DREA RATIO = 2 = 25.0 (DEG) URE = 25.0 (T CTIVE AREA = .CI368 (IN2) NO2ZLE T 4ROAT CI368 (IN2) .CI140 IS.CCL (LBS/IN .CI140 IS.CCL (LBS/I	12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DRCP (L35/IN2) .0147 .0	T +RUST LOSSES (PER CENT) 14.19	₩ E I G - I T F L OW RATE (L BS/SEC) . 34 5 34 64 C - 04	Ex 11 MAC4 NUMBER E.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC 4 NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .000 NOZZLE GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SFAT AREA	IS.CLL (LBS/IN HARGE COEFFIC BSC (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (I CTIVE AREA = .C1368 (IN2) NOZZLE THROAT DIAMETER (IN) .C1140 NS.CLL (LBS/IN HARGE COEFFIC BSC (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 I INT CTIVE AREA = DIAFR (IN2)	12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DRCP (L35/IN2) .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .00250 (IN2)	T +RUST LOSSES (PER CENT) 14.19	WEIG47 FLOWRATE (LBS/SEC) .3453464C-04	EXIT MAC4 NUMJER E.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC & NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .237E1739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .000 NOZZLE GAOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA =	15.CCL (LBS/IN HARGÉ COEFFIC B5C (IN) REA RATIO = 2 25.0 (DEG) URE = 25.0 (IN CTIVE AREA = .C1368 (IN2) NO2ZLE T+ROAT DIAMETER (IN) .C1140 E5.CCL (LBS/IN HARGE COEFFIC B50 (IN) NREA RATIO = 2 5.0 (DEG) URE = 25.0 (IN CTIVE AREA = .C1368 (IN2)	12) 1ENT = .6300 250.000 DEG C) .00250 (IN2) VALVE PRESSURE DRCP (L35/IN2) .0147 .007	T -RUST LOSSES (PER CENT) 14.19	₩ E I G + T F L OW R A TE (L 85/SEC) .34 5 34 8 4 C - C 4	EXIT MAC4 NUMBER E.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = DOI NOZZLE GEOMETRIC & NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .00E NOZZLE GEOMETRIC A NCZLE HALF-ANSLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA =	15.CCL (LBS/IN HARGE COEFFIC B5C (IN) HARA RATIO = 2 = 25.0 (DEG) URE = 25.0 (OEG) URE = 25.0 (OEG) URE = 25.0 (OEG) NO2ZLE T+ROAT CI368 (IN2) HARGE COEFFIC B5C (IN) HARGE COEFFIC B5	12) 1ENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DECP (L35/IN2) .0147 .0	T +RUS T LOSSES (PER CENT) 14.19	WEIGHT FLOWRATE (LBS/SEC) .3453464(-04	Exit MAC4 NUMBER 6.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .008 NOZZLE GEOMETRICA NCZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PPOPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA =	15.CCL (LBS/IN HARGE COEFFIC BSC (IN) HREA RATIO = 2 = 25.0 (DEG) URE = 25.0 (C T CTIVE AREA = .C1368 (IN2) NO2ZLE T HROAT DIAMETER (IN) .C1140 IS.CCL (LBS/IN HARGE COEFFIC BSC (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (N T CTIVE AREA = .C1368 (IN2)	A2) IENT = .6300 250.000 DES C) .00250 (IN2) VALVE PRESSURE DRCP (L35/IN2) .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .0147 .00250 (IN2)	T +RUST LOSSES (PER CENT) 14.19	₩ E I G - I T F L OW RATE (L BS/SEC) .34 53484[-04	Ex 11 MAC4 NUMBER E.565
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC 4 NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .00E NOZZLE GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (185)	15.CCL (LBS/IN HARGÉ COEFFIC B5C (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (CIIVE AREA = .CI368 (IN2) NOZZLE T+ROAT DIAMETER (IN) .CIIVO HARGE COEFFIC B5C (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (DEG) URE = 25.0 (DEG) URE = 25.0 (DEG) URE = 25.0 (DEG)	VALVE PRESSURE DEG C) VALVE PRESSURE DECP (L3S/IN2) .0147 VALVE 250.000 (DEG C) .00250 (IN2) VALVE PRESSURE	T-RUST LOSSES (PER CENT) 14.19 14.19	WEIGHT FLOWRATE (LBS/SEC) .3453484C-04 WEIGHT CLOURATE	ExIT MACH
<pre>(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC & NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .237E1739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .000 NOZZLE GEOMETRIC A NOZZLE GEOMETRIC A NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS)</pre>	15.CCL (LBS/IN HARGÉ COEFFIC B5C (IN) REA RATIO = 2 25.0 (DEG) URE = 25.0 (IURE = 25.0 (IN) .C1140 IS.CCL (LBS/IN) .C1140 IS.CCL (LBS/IN) .C1140 	VALVE PRESSURE 00250 (IN2) VALVE PRESSURE 0FCP (L35/IN2) .0147 VALVE 250.000 (DES C) .00250 (IN2) VALVE PRESSURE ECOP	T-RUST LOSSES (PER CENT) 14.19 T-RUST LOSSES CEED CENT1	WEIGHT FLOWRATE (L95/SEC) .3453484C-04 WEIGHT FLOWRATE 'L9 C C C	EXIT MACH NUMBER EXIT MACH NUMBER
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = DOI NOZZLE GEOMETRIC & NOZZLE HALF-ANCLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) NET TRAVEL = DOE NOZZLE GEOMETRIC A NCZLE HALF-ANSLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE DISC BALL TRAVEL = DOE NOZZLE GEOMETRIC A NCZLE HALF-ANSLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS)	15.CCL (LBS/IN HARGE COEFFIC BSC (IN) HARA RATIO = 2 = 25.0 (DEG) URE = 25.0 (OEG) URE = 25.0 (OEG) URE = 25.0 (OEG) NO2ZLE T + ROAT CI368 (IN2) HARGE COEFFIC BSC (IN) HARGE COEFFIC HARGE COEF	VALVE PRESSURE 00250 (IN2) VALVE PRESSURE 0FCP (L3S/IN2) .0147 VALVE PRESSURE 0600 (DES C) .00250 (IN2) VALVE PRESSURE DROP	T-RUST LOSSES (PER CENT) 14.19 T-RUST LOSSES (PER CENT)	WEIGHT FLOWRATE (LBS/SEC) .3453484C-04 WEIGHT FLOWRATE (LBS/SEC)	Ex 11 MAC4 NUMBER E. 565 Ex 11 MAC4 NUMBER
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC 4 NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .006 NOZZLE GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS)	15.CCL (LBS/IN HARGE COEFFIC BSC (IN) HREA RATIO = 2 = 25.0 (DEG) URE = 25.0 (CEG) URE = 25.0 (CEG) URE = 25.0 (CEG) CTIVE AREA = .CI368 (IN2) .CI140 IS.CCL (LBS/IN .CI140 IS.CCL (LBS/IN .CI140 IS.C	VALVE PRESSURE 0147 000250 (1027) 000250 (1027) 0007 0	T +RUST LOSSES (PER CENT) 14.19 T-RUST LOSSES (PER CENT)	WEIGHT FLOWRATE (LBS/SEC) .3453484C-04 WEIGHT FLOWRATE (LBS/SEC)	EXIT MAC4 NUMBER E.565 E.565 EXIT MAC4 NUMBER
(c) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .001 NOZZLE GEOMETRIC 4 NOZZLE HALF-ANGLE INLET GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS) .23761739-C2 (d) INLET PRESSURE = 1 VALVE ORIFICE DISC BALL TRAVEL = .005 NOZZLE GAS TEMPERAT NITROGEN PROPELLAN VALVE ORIFICE EFFE VALVE SEAT AREA = NET THRUST (LBS)	IS.CCL (LBS/IN HARGÉ COEFFIC BSC (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (I CTIVE AREA = .C1368 (IN2) NOZZLE T+ROAT DIAMETER (IN) .C1140 IS.CCL (LBS/IN HARGE COEFFIC BSC (IN) REA RATIO = 2 = 25.0 (DEG) URE = 25.0 (I CTIVE AREA = .01368 (IN2) NCZZLE T+ROAT DIAMETER (IN) CCZLE	A2) IENT = .6300 250.000 DEG C) .00250 (IN2) VALVE PRESSURE DRCP (L35/IN2) .00250 (IN2) VALVE PRESSURE DR0P (L35/IN2) .000	T-RUST LOSSES (PER CENT) 14.19 14.19 T-RUST LOSSES (PER CENT)	WEIGHT FLOWRATE (LBS/SEC) .3453484C-04 WEIGHT FLOWRATE (LBS/SEC) E333838_F4	ExIT MAC4 NUMBER E.565 ExIT MAC4 NUMBER

Fig. 6. Steady-state printout: (a) MM'71 pitch/yaw, (b) MM'71 roll, (c) MM'64 pitch/yaw, (d) MM'64 roll

Fig. 7. MM'71 pitch/yaw valve parameters as a function of time: (a) chamber pressure, (b) total mass, nozzle, (c) total mass, chamber, (d) total mass, valve, (e) nozzle flow rate, (f) chamber flow rate, (g) valve flow rate, (h) total impulse, (i) chamber pressure derivative

Fig. 7 (contd)

24

•

Fig. 7 (contd)

JPL Technical Memorandum 33-604

4

•

(i)

800 .

CISEBUR PRUSSORUIPS-S

Fig. 8. MM¹⁷¹ roll valve parameters as a function of time: (a) chamber pressure, (b) total mass, nozzle, (c) total mass, chamber, (d) total mass, valve, (e) nozzle flow rate, (f) chamber flow rate, (g) valve flow rate, (h) total impulse, (i) chamber pressure derivative

Fig. 8 (contd)

JPL Technical Memorandum 33-604

Fig. 8 (contd)

Fig. 8 (contd)

.

Fig. 8 (contd)

UISEBUR PRUSSORE DUR-SET-SE

TOTAL MASSINONLEILB

•

•

Fig. 9 (contd)

Fig. 9 (contd)

Fig. 9 (contd)

Fig. 9 (contd)

Fig. 10. MM'64 roll valve parameters as a function of time: (a) chamber pressure, (b) total mass, nozzle, (c) total mass, chamber, (d) total mass, valve, (e) nozzle flow rate, (f) chamber flow rate, (g) valve flow rate, (h) total impulse, (i) chamber pressure derivative

Fig. 10 (contd)

.

•

Fig. 10 (contd)

54

Fig. 10 (contd)

Fig. 10 (contd)

Fig. 10 (contd)

UTATBUR PRUMMURU DUR-VAT-VE

Fig. 10 (contd)