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INVESTIGATION OF ATOMIC OXYGEN-SURFACE INTERACTIONS RELATED

TO MEASUREMENTS WITH DUAL AIR DENSITY EXPLORER SATELLITES

Bernard J. Wood, C. M. Ablow, and Henry Wise

Stanford Research Institute

Menlo Park, California 94025

INTRODUCTION AND OBJECTIVE

The problem of quantitative evaluation of the atomic oxygen concen-

tration in the earth's upper atmosphere from data reported by satellite-

borne mass spectrometers has been amply documented by a number of indepen-

dent investigators (ref. l). To relate the actual atom number density in

the space vehicle's environment to that recorded by the onboard mass

spectrometer, one needs detailed information on the loss of oxygen atoms

due to their interaction with solid surfaces, including adsorption, chem-

ical reaction, and catalytic production of molecular oxygen.

In the Dual Air Density Explorer satellites, currently being planned,

sampled gases will come into contact with large surface areas of metal!

The geometry of each satellite is such that oxygen atoms will have the
t

opportunity for multiple collisions with the metal surfaces before passing

through the ion source of a mass spectrometer. Consequently it is of im-

portance to evaluate quantitatively the rate of loss of oxygen atoms by

adsorption and recombination on metal surfaces of interest under condi-

tions of oxygen pressure and surface temperature similar to those antici-

pated in the upper atmosphere.



The objective of this project was to examine quantitatively the

rate and mechanism of oxygen atom loss on candidate materials of con-

struction for the Dual Air Density Explorer satellites as a function of

material, surface treatment, and temperature.



EXPERIMENTAL APPROACH

Measurement of Total Atom Loss Rates

In our studies of the probability of atom loss due to surface inter-

action we employ a glass reaction vessel in which the entering flux of

oxygen atoms is held constant. Change in the mass fraction of gaseous

atoms that pass through the vessel is negligibly small, due to the inert .
•

character of the glass wall. The mass flow rate of atoms at the outlet
•*

of the vessel Q is measured with a mass spectrometer. We evaluate the

overall rate of atom loss on a metal surface by observing the reduced

mass flow rate of atoms Q that occurs when a specimen of the metal of

interest is inserted into the reactor.

Under the conditions of free molecular flow that apply throughout

the pressure range employed in our experiments, simple kinetic theory

suggests that once an atom enters the reactor it will depart through the

outlet or the inlet after suffering multiple collisions with the surface.

However, if the atom adsorbs or recombines on the surface during one of

these collisions, it will remain in the reactor or leave as a molecule.

A .detailed model has been developed (ref. 2) that describes the variation
•i

in atom flux within a cylindrical reactor containing reactive surfaces.

Computations with this model suggest that, for surfaces with modest re-

activity, the exit flux of oxygen atoms may be reasonably approximated

by a simple analysis in which the rate at which atoms enter the reactor

is balanced by the loss of atoms on the reactive surface and their de-

parture through the inlet or outlet. Hence, the average atom flux f in

the reactor is given by the equation:



in which f is the atom flux entering the reactor; A is the area identi-

fied by the subscripts i for inlet, e for exit and s for specimen; and

a, termed the loss coefficient, represents the probability that a collid-

ing atom will stick or recombine on the specimen surface. It is assumed

(and has been experimentally justified, p. 9) that steady state loss of

.oxygen atoms on the reactor wall is negligibly small. The total mass

flow rate through the reactor outlet Q is given by the product fA , so
e

'that in the presence of a reactive specimen fA = Q = f A A /[A + A 4-
e o i e i e

oA 3 , and in the absence of a reactive surface (oA =0) f*A = Q* =
s s e

f A A /[A + A ] . Thus,
o >i e i e

A + A
Q i e

A + A +
i e

or

_ _
Q* 1 + [oA /(A.+A )] 1 + ota

s i e

where a can be shown to represent the collision number of the reactor,

or the average number of collisions an atom will make on the surface

during its sojourn in the reactor. By means of Eq. (2), we evaluate a

froB measured values of Q/Q*.

Specific Pathways for Atom Loss

The entering mass flow rate of atoms into the reactor is maintained

constant. The metal specimen can be raised to an elevated temperature

in order to rapidly desorb any reversibly adsorbed oxygen, so that the

kinetics of adsorption and desorption of oxygen can be measured. The

specimen is heated by passage of an electric current, and the oxygen that

desorbs from the surface causes an increase in the mass flow rate of



molecular oxygen through the reactor outlet:

Q0 = Qa + "s V2
2

where A is the total area of the test specimen, n is the rate of de-
s s

sorption of oxygen from the specimen surface and the subscript a repre-

sents steady-state flow prior to specimen heating. By integrating Eq. (3)

over the period of heating time t required to desorb all oxygen, we obtain

an expression for the mass of gas n on the specimen surface prior to
S

heating:

ns = 2(Q0 -Qa}t/As (4)

£t

We evaluate the rate of adsorption of oxygen by measuring n following
s

exposure of the specimen to a fixed atomic oxygen flux for successively

different periods of time.

We can envision three possible pathways by which oxygen atoms can

reversibly interact with a metal surface:

adsorption: 0(g) + (s) -» o(s) n = S v n (l-0)/4
s o g g

r\

recombination: 0(s) + o(s) -» O (g) + 2(s) n = k n

(adatom-adatom)

recombination: o(g) + o(s) -» 0 (g) + (s) n = k n n
(gasatom-adatom)

where 0(g) and o(s) refer to gaseous and adsorbed atomic oxygen, respec-

tively, O (g) represents gaseous molecular oxygen, (s) refers to an
A

available surface, S is the initial sticking coefficient for adsorption,

the k and k are rate constants for adatom-adatom and gasatom-adatom
£i *J

recombination, respectively, n is the number of sorption sites per unit
s

area, n is the time rate of change of sorbed atomic oxygen per unit
S



area, 9 is the fractional coverage (n /n ), n is the number density
' s s max g

of gaseous atomic oxygen, and v is the average atomic speed.
o

(if the metal forms a heat-labile oxide, another equation would

have to be included in this scheme. The amount of molecular oxygen which

chemisorbed on the materials used in our experiments was at the lower

limit of detectability. Hence, we may disregard the reverse of the above

recombination equations as a mechanism for supply of adatoms to.the sur-

face. Also, due to energy considerations, the reverse of the adsorption

reaction may be disregarded.)

At any moment the net rate of accumulation of atoms on the surface is

determined by the dynamic balance between these three processes, thus,

n = S n v (l-6)/4 - k n - k n n (5)
s o g g 2 s 3 s g

It is of interest to examine Eq. (5) under special conditions.

1) When 6=0, n = S n v / 4 . Consequently, if we measure the
s o g g

initial adsorption rate n on a clean surface in a known partial pres-
so

sure of atomic oxygen, we may evaluate the sticking coefficient S

defined as the ratio of adsorption rate over collision rate Z. From

kinetic theory Z = n v /4 . Therefore
g g

S = n /Z (6)
o so

2
2) When n = O, but n > O, n = k n . Hence, from a measure-
' g s ' s 2 s '

ment of the initial rate of desorption of oxygen from a surface with

known initial coverage n , we may evaluate k
so 2

2
3) When n =0, that is, at steady state, S n v (l-6)/4 = k n +

s J o g g' 2s
k n n . Hence, by measurement of n and n at steady state, and by use
3 s g s g
of values of S and k obtained under other conditions, we may

o 2 ;

evaluate k .



From the experimental study of the overall atom loss, the values of

01 determined at steady state represent the global loss rate of atoms on

the specimen, given by n = o/Z. For an atom removal rate n of first order

with respect to atomic oxygen, n = k n n . Thus a value of k may be
<y g s a

computed from the measured values of ot and n at steady state:
s

k = av /4n . (?)
a g s

Although k is not used to determine S , k , and k , it does describe
oi o 2 3

the overall atom loss coefficient of the specimen surface.

In summary, from our measurements of n and n , and from values of
s s

n derived from the mass spectrometer data, we are able to determine the
g
rate constant for each pathway by which oxygen atoms can interact with

the metal' surface.
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EXPERIMENTAL DETAILS

Apparatus Geometry

Two separate reactors were employed in this study. Both were con-

structed of Pyrex glass. In the first (Fig. la), which was employed

also in an earlier study (ref. 3), all components shared a common axis

of cylindrical symmetry. In the second (Figs. Ib and 2) the atom source
o

and the mass spectrometer were each turned through 90 so that they

were not in line-of-sight of the specimen in the reactor. In both cases

foil specimens in the form of long, narrow ribbons (Fig. 3) were sus-

pended from electrical leadthroughs at the upper (outlet) end of the

reactor. In reactor "b" (Figs. 1 and 2) the leadthroughs were 1/4 inch

copper rods which could be cooled by inundation with liquid nitrogen.

The large copper rods provided an efficient heat transfer path which

permitted the lowest portion of the specimen to reach temperatures as
o

low as 140 K within 10 minutes of the commencement of cooling.

Each part of each apparatus was cylindrical in shape. Consequently

the vacuum conductance F for each section could be calculated from the

established formula for molecular flow of oxygen through short pipes,

and the reciprocal of the overall conductance could be reliably estimated

by summing the reciprocals of the individual conductances (ref. 4). The

dimensions and the conductances of the two pieces of apparatus are given

in Table 1.

Generation of Oxygen Atoms

Atomic oxygen is formed by thermal dissociation of molecular oxygen

on a tungsten surface. The rate of dissociation of oxygen at subatmos-

pheric pressures on heated tungsten surfaces has been studied in detail



by Schissel and Trulson (ref. 5). On the basis of their data we chose
Q

to operate our tungsten ribbon in the temperature range 2150-2250 K,

where tungsten oxide formation is negligibly small, CO production is

within reason, and the atomic oxygen flux is satisfactory.

Of course even in a reactor with completely inert surfaces, the

steady-state absolute flux of atoms at the outlet must be less than that

at the inlet by the factor representative of the net transmission proba-

bility of the reactor and its apertures. Values of transmission proba-

bility for our apparatus were computed from the data of Herman (ref. 6)

for cylindrical tubes. We used these values to predict the atom flow

rate at the outlet of the empty reactor from the kinetic data of Schissel

and Trulson. (We assumed in this calculation that only the atoms gen-
2

erated on the central 0.02-cm region of the tungsten ribbon have access

to the reactor. This area represents the area of a thin-edge aperture

with the conductance of the reactor inlet and thus approximates the

clear view of the reactor interior from the tungsten surface.) A com-

parison of the calculated atom flow rates with those observed is given

in Table 2. In nearly all cases, the observed values of atom flow rate

exceed those predicted. In view of the approximate nature of (l) the

estimated reactor inlet view area of the tungsten ribbon, and (2) the

inlet conductance, the experimental results suggest there is a negligibly

small atom loss on the Pyrex wall of the reactor. These observations are

in agreement with reported (ref. 7) low values of catalytic activity of
i-*' —4

glass and quartz for oxygen atom recombination (y = 10 , i.e., only one

out of 10 collisions results in atom loss by recombination).

Mass Spectrometer Calibration

The geometry of the experimental arrangement is such that the

quadrupole mass spectrometer observes the effective mass flow rate of

species emerging from the reactor outlet. The mass specrometer was

10



calibrated for molecular oxygen by computing the net mass flow of gas

Q through the apparatus from the observed pressure difference between
O

the two identical ion gauges (P and P in Fig. l) and the net conductance
S A.

of the apparatus between the gauges (Table l):

O = F fp - P )
^O net { S A;
£

-6 -3 ,
In the range 10 < Q < 10 torr-Jfc/sec, the mass spectrometer signal

was found to be proportional to Q

2
The mass spectrometer was calibrated after each experiment to allow

corrections for variation in electron multiplier sensitivity. An elec-

tron energy of 50 V was employed in the ion source of the mass spec-

trometer. At this energy, the reported (ref. 8) ionization cross sections

for 0,O, and CO are comparable, hence we assume a common calibration
&

constant for all the major gases observed in our apparatus.

In addition we determined the cracking pattern of H O, CO, CO ,
& &

and O , all of which contribute to the mass spectrometer signal at
£

AMU 16. All of the values of Q reported in this document have been
16

corrected for the contributions of these other components according to

the cracking patterns given in Appendix A.

Estimation of n in Reactor
S

We had no direct measurement of gaseous pressure in the reactor,

hence we estimated both P and P from the mass spectrometer data and
2

the apparatus geometry. Based on the various evidences cited above, we

could assume that the steady-state mass ratio of atomic oxygen to molec-

ular oxygen was uniform throughout the empty reactor. Hence the value

of (I /I measured at the empty reactor outlet would be iden-
\ 16 / 321E

tical with the value of this ratio at the reactor inlet. When a specimen

was in the reactor, however, II /I 1 observed at the outlet would
\ 16 / 32 / S

11



have a lower value than that at the inlet. The pressure of molecular

oxygen at any point in the system would be relatively unchanged in the

two cases, since it comprised more than 90$> of the gaseous mass in the

reactor. We therefore calculated the pressure of O at the exit end and
&

the inlet end of the reactor from the measured pressure P at the mass
A

spectrometer, the mass flow rate Q, and the conductances of the outlet F

and of the reactor F :
R

P exit = (Q/F ) + P
0 e A
2

P inlet = (Q/F ) + P exit
°2 R °2

/^+ / + \Then, from the measured values of I /I \ :
' \ 16' 32)

P exit = P exit (l+ '~+

°

P inlet = P inlet

°2

The oxygen-atom pressure in the reactor employed in our computations is

taken as the arithmetical mean between these two values of P
O

Specimens

In the course of this study, we examined a variety of plain aluminum

and modified aluminum surfaces, in addition to a pure gold foil.

The aluminum and vapor deposited gold-on-aluminum specimens were

supplied by Langley Research Center. They were identified as follows:

No. 6: 1235-0 aluminum, plain, 0.005 in. thick

No. 14: 1235-0 aluminum, 0.005 in. thick, 3500 A
gold on both sides

No. 16: 1235-0 aluminum, plain, 0.005 in. thick

freon cleaned.

12



The anodized aluminum specimen was kindly provided by Mr. Richard

Smith of the Kaiser Center for Technology in Pleasanton, California. He

deposited an approximately 0.0001-in.-thick anodic coating on a piece of

the Langley No. 16 aluminum in a 15 wt $ sulfuric acid electrolyte at
o • i 2

297 K with a current density of 12 amp/ft . The specimen was subsequently

washed in flowing, distilled water for 3 hrs but was not "sealed" in

boiling water.

The SiO coatings were sputtered on both sides of specimens cut

from Langley No. 16 aluminum by Mr. William Cornelius of SRI's Electro-

magnetic Techniques Laboratory. The thickness of the SiO layer is in
X

the range 600-1000 A .

The gold specimen is the identical 0.002-in.-thick gold foil strip

employed in our earlier study (ref. 3). It is reported to be 99.99$ pure.

*

Specimens of an aluminum-mylar laminate, overcoated with SiO , were
X

also supplied by Langley Research Center. These specimens continuously

outgassed large quantities of organic vapors under the vacuum and surface

/ -8
conditions prevailing in our reactor (P, rx 10 torr, surface

background
o .

temperature 360 Kj due probably to the elevated temperature. Consequently

we were unable to carry out quantitative measurements of oxygen atom inter-

action rates on this material.

Specimen Pretreatment

A specimen of each material was examined initially for oxygen atom

interaction without any pretreatment. The specimens were cut with a

clean (degreased) razor blade and were handled with white gloves during

insertion into the reactor. Typically, a specimen was mounted in the

reactor on one day and the system was pumped down during the night in

preparation for experimental measurements on the following day. During

-6
this pumpdown period, the pressure in the system diminished from 10 to

13



-8
10 torr. Water was the major contaminant remaining in the system after

this procedure. Base pressures in the system could be reduced to near
-9 o

10 torr by an overnight bakeout at 550 K. This treatment reduced the

residual pressure of HO by a factor of ten while it simultaneously sub-
£t

jected the specimen to a gentle vacuum anneal. (Bakeout of the system

did not appear to affect the observed mass flow rates of atomic oxygen

from the empty reactor.)

The specimens could be vacuum annealed also by resistance heating.

A current of 12 amp was passed through the 0.005-in.-thick aluminum

specimens that were annealed in this manner. This raised the specimen

temperature (as measured by a thermocouple attached to the midpoint of
o

representative specimens) to 480 K in a glass vacuum chamber (equivalent
o

to reactor "a") and to 590 K in reactor "b" (See Fig. l). The difference

in attained temperature of an identical s.pecimen in the two environments

was attributed to the bright stainless steel tube surrounding reactor b,

which served as a radiation shield and thermal insulator. In consequence

of this shielding, the steady-state temperature of a specimen under

examination in reactor "b", heated indirectly by the tungsten atom source,
o

was measured to be 360 K. The steady-state surface temperature of a
O

specimen in reactor "a" was estimated to be 330 K, based on the observed

temperature rise of a heated specimen in a glass vacuum bottle. (Direct

temperature measurements of specimens in reactor "a" could not be made

due to the lack of a provision for insertion of a thermocouple in the

vacuum system.)

Atom loss rates were evaluated also on specimens which were heated

in the presence of atomic oxygen. In these cases, a 12-amp heating cur-

rent was employed for a duration of ten minutes or less.

The specimens were exposed to atomic oxygen for periods of 1 to 2

hrs during a typical experiment. Long duration exposures were not

14



carried out because the lifetime of the tungsten ribbon atom source was

limited to approximately 15 hrs.

The gold foil specimen was vacuum annealed for several minutes at
o

890 K preceding each experiment. In this case, the surface temperature

was measured in reactor "a" with a radiation thermomenter (Huggins in-

frascope). The 9-amp current required to attain this temperature in

reactor "a1 undoubtedly raised the surface temperature to approximately
o

1000 K when the specimen was annealed in reactor "b".

15
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EXPERIMENTAL RESULTS

The mass flow rate of atomic oxygen through the reactor outlet was

determined from the mass spectrometer-measured values of Q and the

+ / + , + 2
ratio of ion currents for AMU16 and AMU32, I /I (I corrected for

16 32 16

cracking of other components). Data were collected for each specimen

- 6 - 4
and with the empty reactor over the range 10 < Q < 10 torr-A/sec.

2
Data from typical experiments are shown in Figure 4. All of the loss

rate data obtained with various specimens in steady-state experiments

/ *
are summarized in Table 3. Mean values of Q/Q from all experimental

points are shown with their respective standard deviations. From this

data, the mean values of loss coefficient a were computed, in addition

to the values of a based in each case on the statistically lowest
#. max

values of Q/Q ,

In all experiments carried out at ambient temperature or higher,

the flow rates of three impurities, H O, CO, and CO , were comparable

in magnitude to the flow rate of oxygen atoms. In the subambient temper-

ature experiments, however, the observed flow rate of H 0 was substan-

tially reduced.

Experimental adsorption/desorption curves for various surfaces at

ambient temperature are shown in Figures 5 through 10. Initial slopes

were taken from the best-fit curves drawn through the data points. The

rate constants calculated from these data are summarized in Table 4. A

15 , 2
value of n = 1.1 x 10 atoms/cm was assumed for these calcula-

s max

tions. This number of available sites is representative of an atomically

smooth met.al crystal of .random .orientation.- Macroscopic roughness would

increase the value of this parameter possibly by as much as a factor of

two. On a nonelemental crystal, lattice atoms of different size and

chemical nature make up the surface. As a result, the effective number

15 -2
of available sites might be considerably less than 1.1 x 10 cm .

17
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DISCUSSION

The basic overall atom loss rate data, summarized iii Table 3, indi-

cate that significant variations in loss coefficient a exist between

different surfaces and between identical surfaces subjected to various

pretreatments. However, the absolute value of a for any surface does
-2

not exceed 2x10 under our steady-state conditions
o 9 3

(3x10 < n < 6x10 atoms/cm ). Thus, based on Eq. (2), in a vessel
O

with a = 100, the fraction of incoming atoms lost would not exceed 0.7

for the most active material.

It is important to note that the lowest value of atomic oxygen

number density employed in our experiments will be comparable to the

highest ambient value to be experienced by the Dual Air Density lower

satellite. Consequently, .one must consider the,probability that the

coverage of adsorbed oxygeri on the satellite surface may be substantially

lower than the saturation values observed in our experiments. The

atomic oxygen adsorption rate on the bare surface, evaluated in our

experiments, may be used to estimate the upper limit of atom loss for

the low values of coverage. Examination of the values of S in Table 4
o

shows that a sparsely covered gold surface would exhibit a considerably

greater atom loss rate than either of the aluminum surfaces or the

SiO surface.
x

The aluminum specimens exhibit some changes in activity related to

their pretreatment (see Table 3). The untreated plain aluminum and
o

anodized aluminum specimens gave consistently low values of a at 330 K.

Vacuum annealing of these materials produced surfaces with somewhat

higher activity (greater values of a}, while heating the specimens in

19



the presence of atomic oxygen increased the activity still further.

During annealing, H O was observed to be the major component desorbed
£

from the aluminum surfaces. Exposure of an annealed, anodized aluminum

specimen to water vapor reduced the activity of the surface for oxygen

atom loss. It is apparent that the hydrated aluminum oxide has a lower

capacity for oxygen sorption or a reduced catalytic activity for atom

recombination, relative to the dehydrated form. Since the precise

chemical composition and crystalline form of the surfaces used in our

experiments are unknown, further discussion on the mechanism of the

effect of water would be purely speculative.

o

Changes in surface temperature over the range 140-360 K have little

effect on the observed values of a for the aluminum specimens (Table 3).
o

The total observed saturation coverage of anodized aluminum at 140 K was
o

about twice that at 360 K (Table 5) but even if this coverage were
13 2

attained within one minute (i.e., n initial = 5.6 x 10 atoms/cm min),s _2

the value of S would not exceed 4 x 10 . Similar considerations would
o

apply to plain aluminum and the SiO surface, both of which exhibit very
X

low saturation coverages of atomic oxygen at both temperature extremes.

Gold, on the contrary, shows a substantial diminution in a when the
o

temperature is reduced to 140 K, but in all likelihood would possess a

value of S near unity at this temperature. This can be attributed to
o

the low value of k which appears to be the atom loss rate limiting
o

process when the oxygen surface coverage is near unity. On a nearly

clean surface, however, the atom loss rate is determined mainly by the

adsorption step which is very rapid. The difference in the values of

a at the two temperature extremes suggests an activation energy for the

gasatom-surface atom recombination process (k ) of less than 1 kcal/mole.
O

Additional evidence for the great disparity in atom loss rate be-

tween a clean and an oxygen-saturated surface of gold relative to that

20



/
of the other surfaces examined is found in observations of Q/Q under

nonsteady-state conditions. The adsorption curves (Figures 5, 7, 9)

indicate that 5 to 10 minutes are required to approach saturation

/ *coverage on any of the surfaces. Consequently measured values of Q/Q

taken in the interval 0 to 5 minutes following cleaning of the surface

would be expected to be less than those observed at steady state, if

the atom loss rate on the sparsely covered surface exceeds that on the

saturated surface. The data in Table 6 indicate this to be the case

for gold, but not for the other surfaces.

It should be noted that the value of S for gold reported here ex-
o

ceeds that reported in our earlier work (ref. 3) by a factor of approxi-

mately 6. This difference resulted from a reexamination of the earlier

results in the light of our new data. The method employed to estimate P
o

described in this report gives a value of this parameter approximately

one-third that originally estimated for the earlier work. Also, an

examination of the method of atomic oxygen exposure of the specimen

following heating used in the earlier experiments leads to the conclu-

sion that the actual time of exposure was approximately 0.5 minute

shorter than originally indicated. Translation of the data points by

0.5 minute on the time coordinate gives an initial slope greater by a

factor of two than the original interpretation. The data from this

experiment are included in Figure 5 (solid circles).

The use of the atomic oxygen-surface kinetic data in assessing

the performance of the investigated materials in the Dual Air Density

Satellites is discussed-in a Special Technical Report issued on

13 January 1972. This report, with improved values of rate constants

inserted, is reproduced in full as Appendix B.
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CONCLUSION

Plain aluminum and anodized aluminum surfaces exhibit low activity

for atomic oxygen loss (a < 10 ) over the temperature range 140-360 K

but show some variability, which seems to be related to the degree of

hydration of the aluminum oxide surface layer. The initial sticking
i I

probability of oxygen atoms on these materials is also quite low

(s < 10" ). ; • i
O i I

SiOx-coated aluminum demonstrates extremely low atom loss activity

-3 —3
(a i£ 10 ) in addition to a low sticking probability (S < 10 ).

o

Gold has a much higher atom loss activity (a > 10~ ) than aluminum

and an initial sticking probability which lies between 0.25 and unity
o

in the temperature range 360-140 K.
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Table 2

SURVIVAL OF ATOMIC OXYGEN IN EMPTY REACTOR

Reactor
(Fig.l)

a

b

Transmission
Probability3

0.175

0.239

Tungsten
Ribbon

Temp
(°K)

2170

2250

P0 (calculated)**
in atom source

chamber
(torr)

7.1xlO~

4.1x10"

8.2xlO~

2.7x10*

5.5xlo"5

-7
6.1x10

2.6xlO~6

6.4xlO~6

1.5xlO~
-5

3.1x10

Q0 at Reactor Outlet
(torr 4/sec) x 107

Observed

0.99

3.3

5.1

14

27

0.63

1.3

3.8

6.4

9.0

Predicted
from data
in Ref . 5

0.45

1.3

2.0

4.1

6.6

0.57

1.6

2.9

5.4

9.1

Reference 6.

2 source
= (°-

PA where 1/F = 1/F. + + 1/T.
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Table 3

SUMMARY OF ATOM LOSS RATE DATA

Surface

Plain Al 6

Plain Al 16

Anodized Al 16

Au-clad Al 14

SiOx. clad Al 16

Gold foil

Tempd

(°K)

330
330
330
330
330

330
330
360
140

.330
330
330
330
330
330
360
360
140
360
360

360
360

360
360
140

360
140
330

P re treatment
(see text)

None
Bake but

None
Vac anneal

Heated in O+O
2

None
Heated in O+O

2
Vac anneal
Vac anneal

None
Heated in O+O
Heated in O+O

HO exposure b
£» C

Addl. HO exposure

Vac anneal
Bake out

None
None

In vac. 19 days
Heated in O+O • 50°C

2

None
Heated in O+O

2

None
Heated in O+O
Heated in O+O

2

Vac anneal
Vac anneal
Vac anneal

Q°/Q*
^ 0

1.34+0.48
0.98±0.16
1.32+0.23
1.05±0.20
0.81+0.10

1.09+0.37
0.54±0.16
0.94±0.085
0.88+0.087

1.02±0.18
0.56±0.16
0.48±0.049

0.80±0.16
0.88+0.18
0.70±0.087
0.53±0.28
0.75±0.24
0.54±0.15
0.70±0.16
0.38+0.067

0.83±0.13
0.51±0.25

0.98±0.14

1.1810.22
0.99±0.19

0.47+0.14
0.97±0.25
0.21

a 3
"max xl°

0.74
1.1

0
0.80
1.8

1.8
7.3
0.9
1.4

0.9
6.7
6.0

2.5
1.9
2.0

17
5.1
8.4
4.6

12.

1.9
13

1.0
0.22
1.3

11.
2.1

20.

a xlO3

mean

0
0.1

0
0

1.2

0
3.9
0.4
0.7

0
3.5
5.0

1.2
0.6
1.9
4.8
1.8
4.8
2.3
8.8

1.4
4.9

0.1
0

0.1

3.0
0.1

20

Computed from statistically lowest value, of Q/Q .
b -3
Exposure: 1.6x10 torr'min.

Exposure: 0.2 torr'min.

Temperature: 330 K corresponds to apparatus "a"; 360°K and 140°K
correspond to apparatus "b".
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Table 5

OBSERVED SATURATION COVERAGES OF OXYGEN ATOMS

(n
g max

9 3
2: 6x10 atoms/cm )

Surface

Gold

Plain Al

Anodized Al

SiOx on Al

2 -15
n (atoms/cm ) x 10
s

T=360°K

0.65

0.0065

0.039

0.0003

T=330°Ka

1.0

0.025

0.052

t=140bk

1.0

01037

0.056

0.0004

Estimated temperature.
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Table 6

STEADY-STATE AND NONSTEADY-STATE VALUES OF Q/Q

Surface

Gold

Gold on Al

Plain Al

Anodized al

SiO on Al
X

Time interval
from initial exposure

of clean surface
to atomic oxygen

(min)

4

2

2
3

2
2 .5

4

Q/Q*
observed at

indicated
time

0.17

0

0.82
0.69

0.18
0.63

0.95

Q/Q*
observed at
steady state

(average values)

0.47 ± 0.14

0.51 ± 0.25

0.81 ± 0.10

0.56 ± 0.16

1.2 ± 0.22
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PUMPS

-REACTOR OUTLET

-SPECIMEN

REACTOR INLET

t

(a) AMBIENT TEMPERATURE

TUNGSTEN RIBBON

ATOM SOURCE

(b) SUB-AMBIENT TEMPERATURES

FIGURE 1 SCHEMATIC DIAGRAMS OF APPARATUS FOR EXPERIMENTS
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ION GAGE P, PUMP
COOLANT CUP

SPECIMEN
=-ELECTRICAL

LEADS

REACTOR
CHAMBER

_O2 INLET

TUBE

QUAD. M.S.

CHAMBER

ATOM SOURCE

CHAMBER
ION GAGE P_

FIGURE 2 PHOTOGRAPH OF APPARATUS FOR SUB AMBIENT

TEMPERATURES (FIGURE 1B)
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0.5 cm • 0.5 cm

FIGURE 3 SPECIMEN CONFIGURATIONS. The foil strips were
approximately 22 cm in total length. The geometric
surface area was 22 cm2.
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10°

• (M
CO

D Empty Reactor
• Plain Aluminum (No. 16), Baked And Annealed
f Anodized Aluminum, No Pretreatment

-• Anodized Aluminum, Baked And Heated In O + O_

CM
o

10"

10,-2

io-5

QQ — (torr.I/sec)

10"

FIGURE 4 TYPICAL EXPERIMENTAL DATA. T = 330°K
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1.65 x 109 atoms/cm , T

n = 0.538 x 10' atoms/cm , T
a

10

TIME — minutes

FIGURE 5 ADSORPTION OF ATOMIC OXYGEN ON GOLD FOIL
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FIGURE 6 DESORPTION OF OXYGEN FROM GOLD. ng = 0. T = 330 K.
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0.03

0.02 -

UJ

i
a:

0.01

TIME — minutes

FIGURE 7 ADSORPTION OF ATOMIC OXYGEN ON PLAIN ALUMINUM (SPECIMEN NO; 6).
n. = 1.5 x 109 atoms/cm3. T = 330° K.
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FIGURE 8 DESORPTION OF OXYGEN FROM PLAIN ALUMINUM. ng = 0. T = 330 K.
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FIGURE 9 ADSORPTION OF ATOMIC OXYGEN ON ANODIZED ALUMINUM
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FIGURE 10 DESORPTION OF OXYGEN FROM ANODIZED ALUMINUM. ng = 0. T = 330°K.
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APPENDIX A

DETERMINATION OF ATOMIC OXYGEN FROM OBSERVED ION CURRENTS

The intensity of any peak in a mass spectrum represents the sum of

contributions of all substance which give fragments at that mass number.

Thus

I+ = HEP m
h n h,n

where I is the ion current at AMU h, P is the pressure of component n.
h

m is the fraction of component n appearing at AMU h (the cracking factor),

and H is the pressure calibration coefficient for the mass spectrometer,

assumed to be identical for each component. For the case of atomic

oxygen (h=16), components which appear at AMU 18 (H2O), AMU 28 (CO),

AMU 32 (O2) and AMU 44 (C02) contribute significantly to I16 . The

cracking factors for these substances, determined in our apparatus with

a fixed ionizing current (0.5 ma) -and electron energy (50 v), are

tabulated below: •

m!6,16 = 1

mi6,18 = °-023

mie,28 = °-013

mi6,32 = °'112

m16 44 = 0.048

m28,44 = °-128
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These values are precise to within ±10$. In the case of m16 32, a 10$

variation represents an unacceptably large uncertainty in the correction.

Consequently, this cracking factor was re-evaluated with each experiment

over a broad range of oxygen pressures,- to attain a precisipn of ±3$.

A set of simultaneous equations may thus be written for the com-

ponents of interest:

lie = H tV1 + PH0-m^>i* + V*"," + 1"16'32 + "116'441

1 = HP44 C02

Solving these equations for the corrected value of ion current at AMU 16

(•that fraction of the observed ion current contributed by atomic oxygen)

we obtain:

HPQ = I*6 - 0.023Ij8 - 0.013I28 - 0.112I3
H
2 - 0.0461̂  .
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APPENDIX B

ATOMIC OXYGEN SAMPLING BY A SPHERICAL SATELLITE-

A MATHEMATICAL MODEL

Introduction

The basic objective of this project is to evaluate the kinetics

and mechanism of surface interaction of oxygen atoms with candidate

materials for the Dual Air Density Explorer Satellites. We have ob-

tained room-temperature data for plain and anodized aluminum and for

gold, which provide considerable insight into the mechanism of atomic

oxygen reactions at the surfaces of these metals. These results have

been reported in our regular monthly progress letters.

There is a need, however, to translate our kinetic data to the

dynamic situation of the satellites themselves. To meet this need,

we have carried out a direct analysis which includes surface chemical

kinetics in addition to gas dynamics for the orbiting satellites. This

analysis is of immediate interest, yet it is separate from our princi-

pal experimental work. Hence, we shall describe and discuss it in

this Special Technical Report.

Statement of the Problem

The Dual Air Density Explorer Satellites will be constructed as

hollow spheres with uniformly perforated surfaces. Ambient gaseous

oxygen atoms will enter the spheres through these perforations. Once

inside, the atoms may adsorb and recombine on the interior surface.

It will be important to know the relationship between the ambient atom

number density and the atom number density within the sphere. Conse-

quently, we have formulated for this purpose a mathematical model of

such a spherical satellite.

B-l



The model is based on a dynamic balance between the rate of influx

of atoms and the rate of atom loss by surface adsorption and reaction.

Numerical calculations, using values of reaction rate constants and

sticking coefficients evaluated in our laboratory experiments, provide

a basis for predicting the performance of aluminum and of gold as sur-

face materials. Since data on the temperature coefficient of the dif-

ferent surface processes are not yet available, the effect of surface

temperature variation could not be included in the current analysis.

The Model

A hollow spherical satellite of radius R(cm), whose surface has

hole fraction h, has concentration n(atoms/cm3) of oxygen atoms in its

interior and concentration n (atoms/cm2) on its inner surface while
s

passing through an atmosphere with concentration n (atoms/cm3). The
n*

free atom speed is v (cm/sec) and satellite speed v(cm/sec). Conserva-
&

tion equations for volume and surface atoms read

- TTR3 — = 4TTR2h(v /4)(n -n) + TTR2hfvn
3 dt g A A

- 4TTR2(l - h) n [S (v /4)(l - n /n ) + k,n ]
o g s' s max 3 s

dn
4nR2(l - h) ̂  = 4TTR2(1 - h)[Son(vg/4)(l - n^ ^J^iyi - k^2]

where S is the fraction that stick of the (nv /4)(atoms/cm2 sec) ap-
o

proaching the surface, k2 and k3 are rate coefficients for heterogen-

eous oxygen atom recombination into molecules on the surface, f is the

fraction that remain of the atoms swept up by the satellite holes, and

•concentration n (atoms/cm2) is the value of n for a complete
s max ' s

monolayer.

The equations are simplified by introducing 6, the fraction of

surface coverage.
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6 = n /n
s s max

=n[S(l - 9) -

where

2

p = (l - h)/h, V = fv/v , K2 = 4k2 n /v , K = 4k,n /v
' ' g s max' g 3 3 s max' g

Solution of the Equations

The differential equations for n and 9 are nonlinear and. not

likely to have a simple solution. The coefficient of n in the first

equation is a linear function of 9 which varies between (l + pS )
o

and (l + pK3) as 9 varies from 0 to 1. Bounds on the unsteady solution

for n are obtained if this coefficient is given one of these values.

For any fixed initial condition, the solution n to
' B

dn

g

is seen to be an upper bound to true values of n if B is the smaller

of its two values or a lower bound if B is the larger.

One finds

-bt , , , ft. , . -b(t - T)
l + V) n(T) 6

where

b = 3Bhv /4R
g

and n is the value of n at t = O.
B-3



For a satellite, (l + v)n is a periodic function of time with
A

the satellite period T. The function has a Fourier expansion

CO

(l + V) n (t) = Z n cos(2TTmt/T) .
A m=0 Am

Carrying through the integrations gives

-bt
n - = n -e
B BO

+ (b/B) S nA [b cos (2-nmt/T) + (2TTm/T) sin(2nmt/T)]Am

-h [b2 + (2TTm/T)2]

. For large t the transient term is negligible. If t is an integral

multiple of T one has

(l + V) n = Z n
A Am

n = (b2/B) S n /[b2 + (2m/T)2]
B Am

so that the higher frequency Fourier components of n have decreased
A

importance for n and the true n.
B

Numerical Computations

Based on values of satellite parameters supplied by Langley Re-

search Center, we computed the maximum and minimum values of velocities

of the two satellites.

Orbit Data;

r = distance from center of earth

(3 = angle in orbit

a = semimajor axis of elliptical orbit

e = eccentricity of orbit ellipse

r = a(l - e2)/(l + e cos p)



Radius of earth = 6378 km

Period T = 108 min

a(l + e) •= 7878 km (apogee value of r)

Two cases:

Upper satellite: Lower satellite:

a(l - e) = 7078 km • a(l - e) = 6778 km (perigee)

e = 0.0535 e = 0.0751

a = 7478 km a = 7328 km

D = 365 cm D = 76.2 cm

h = 0.01

From r2fe = K, a constant, find T = J'2" —

and then
2TTA2

K - T J (1 - e2)

v2 = r2 + r2 p2 = [K2/a2(l - e2)2](l + e2 + 2e cos 0)

a / 1 + e
• • v ~ 2TT •— I

max T J 1 - e

= * " e .
min 1 + e max

Upper satellite: Lower satellite;

v 456 km/min 456 km/min
max '

v 410 396
min

For v = 456 km/min. v = 38.4 km/min. h = 0.01. and f = (l - h),
max g

we computed the values of the constants p = 100 and V = 11.85.
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Surface Interaction Data:

Values of sticking probability and surface recombination rate

constants obtained from our experimental measurements together with

the value n = 1015 atom/cm,2 were used to compute the remaining
s max ' '

derived constants. These values are tabulated below.

Anodized Aluminum Gold

6.7 x 10
-3

kgCatoms/cm2)"1 min 1

k3(atoms/cm3)"1 min"1

1.9 x 10

1.9 x 10"

-16

-10

8

0.30

1.5 x 10
-17

1.6 x 10
-11

K2(

K3

B '

b(i

'atoms /cm3)

fs - i
1.6 - 0

»ln->)[Upper

flower
V

2.0 x 10

0.20

21
t

1.7

157 B

754 B

1.6 x 10

0.18

19.2
31

157 B

754 B

Since

V = 11.85

n . = 0
A mm

n
A max

' 4.0 x 105 upper

6.3 x 107 lower

one has approximately

(1 + V)n = 6.42 n

Amax
n = 6.42

B B
f + cos

1 [i +

+ cos(2n/T)] = n + n cos(2TTt/T)

2TT(t/T -
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2TT
where tan cp = —

2TT 2TT . '
Since — < 108 x 157 x 5.0 = 7.4 x 10'

5 in all cases, phase lag cp is

negligibly small. Thus n and n itself are determined by the current

value of n :

Since n lies between the 'two values of n .
B'

0.20 < - < 7.7 for anodized aluminum
"A

and

0.42 < - < 0.67 for gold.

A time scale for transients in coverage 6 is

5 min for anodized aluminum
4 n /K v =

s max 2 g (65 min for gold.

Conclusions

It is found that n, the atom concentration in the sphere, is

proportional to n , the ambient concentration. For a gold surface,
A

the constant of proportionality is nearly independent of 9, the sur-

face coverage. For an anodized aluminum surface, the proportionality

can vary over wide limits as 9 varies, so that the relation between n

and n can be obtained only by integration of the differential equa-
A

tions. It is important to note, however, that if n has a lower
s max

value, as may well be the case for aluminum oxide, the span in values

of n/n will be reduced.
' A

The time scale of 9 is of the order of minutes. Hence 9 is nearly

constant for shorter time intervals, and the fractional time rates of

change of n and of n over short times will be equal.
A
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