NASA TECHNICAL NOTE

N73-25650
NASA TN D-7327

CASE FILE
 COPY
 -

AN ALGORITHM FOR GENERATING
 ALL POSSIBLE 2^{p-q} FRACTIONAL
 FACTORIAL DESIGNS AND ITS USE
 IN SCIENTIFIC EXPERIMENTATION

by Steven M. Sidik
Lewis Research Center
Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JUNE 1973

*For sale by the National Technical Information Service, Springfield, Virginia 22151

AN ALGORITHM FOR GENERATING ALL POSSIBLE 2^{p-q} FRACTIONAL FACTORIAL DESIGNS AND ITS USE IN

SCIENTIFIC EXPERIMENTATION

by Steven M. Sidik
Lewis Research Center

SUMMARY

An algorithm and computer program are presented for generating all the distinct 2^{p-q} fractional factorial designs. Some results using group theory describe the algebraic structure of the groups of defining contrasts for 2^{p-q} fractional factorials.

A number of applications of the algorithm are discussed. Among these are (1) the construction of new tables of designs, (2) extensions of existing tables, (3) construction of designs for experiments subject to special constraints, and (4) the Bayesian design of experiments.

An appendix includes a discussion of an actual experiment subjected to special constraints. Through examination of the output of the program, it was quite easy to construct a suitable experimental design.

INTRODUCTION

The two-level factorial and fractional factorial designs are a class of designs of experiments that yield much information about the factors studied. Fisher (ref. 1), Yates (ref. 2), and Finney (ref. 3) were the principal early investigators of these designs. They were almost exclusively concerned with agricultural experimentation which required large experiments that were performed all at one time. When the industrial applications of these designs became apparent (e.g., Box and Wilson (ref. 4) and Daniel (ref. 5)), much of the emphasis changed to the consideration of experiments that could be performed sequentially in small stages. For example, Webb (ref. 6) (who considers mainly nonorthogonal designs), Addelman (ref. 7), Holms (ref. 8), and Holms and Sidik (ref. 9) (who consider orthogonal designs) have proceeded along these lines. These recent developments have required more information about the possible designs.

In this report an algorithm for the construction of all possible 2^{p-q} fractional factorial designs for any specified values of p and q is presented. The algorithm uses an isomorphism between the group of defining contrasts that define the experiments and a group defined on the set of integers from 0 to $2^{p}-1$. All subgroups of order 2^{q} may then be listed where the generators of the subgroups are in alphabetical order. A recursion relation that yields the number of subgroups for the values of p and q is also developed. Lindenberg and Gerhards (ref. 10) present a similar algorithm for use in much more general situations. They did not discover some of the results described herein, which hold only for the special groups defining 2^{p-q} experiments.

Applications of this algorithm include the generation of tables such as Addelman's (ref. '7), the construction of designs (if they exist) that meet special restrictions, and the use in the optimal design of experiments when certain prior information is available (refs. 11 and 12).

The reader is assumed to have a knowledge of two-level factorial designs such as might be found in Davies (ref. 13), Peng (ref. 14), or John (ref. 15). A more complete presentation of the fundamentals of 2^{p-q} fractional factorials than is given here can be found in reference 11.

FUNDAMENTALS OF 2^{p-q} FRACTIONAL FACTORIALS

In a full factorial experiment with p independent variables (factors) X_{A}, X_{B}, \ldots, each restricted to assuming only two values, there are 2^{p} possible distinct combinations of values. It is common practice to say the independent variables can assume either a high level (+1) or a low level (-1). Each of the 2^{p} distinct combinations of levels is called a treatment combination. From such an experiment it is possible to estimate all the $\beta^{\prime} s$ in an equation of the form

$$
\begin{array}{r}
\mathbf{Y}=\beta_{\mathbf{I}}+\beta_{\mathbf{A}} \mathbf{X}_{\mathbf{A}}+\beta_{\mathbf{B}} \mathbf{X}_{\mathbf{B}}+\beta_{\mathbf{B A}} \mathbf{X}_{\mathbf{B}} \mathbf{X}_{\mathbf{A}}+\beta_{\mathbf{C}} \mathbf{X}_{\mathbf{C}}+\beta_{\mathbf{C A}} \mathbf{X}_{\mathbf{C}} \mathbf{X}_{\mathbf{A}}+\beta_{\mathbf{C B}} \mathbf{X}_{\mathbf{C}} \mathbf{X}_{\mathbf{B}}+\beta_{\mathbf{C B A}} \mathbf{X}_{\mathbf{C}} \mathbf{X}_{\mathbf{B}} \mathbf{X}_{\mathbf{A}} \\
+\ldots+\beta_{\mathbf{B}} \ldots \mathbf{C B A} \ldots \mathbf{X}_{\mathbf{C}} \mathbf{X}_{\mathbf{B}} \mathbf{X}_{\mathbf{A}}+\delta \tag{1}
\end{array}
$$

where δ is a random variable with mean zero and finite variance and is uncorrelated from one observation to the next. (Symbols are defined in appendix A.)

As p increases, 2^{p} increases so rapidly that the number of parameters in equation (1) and the number of treatment combinations required soon become unrealistically large. The most common method of reducing these numbers is to perform a fractional replicate of the experiment. A regular fractional replicate of the full factorial experiment does not allow separate estimation of all the β. s. But certain linear combinations
(alias sets) of them can be estimated. The usual method of coping with this problem is to simply assume that all the higher order interactions (say those involving three or more factors) are negligible or zero. An alternate method requiring more complete information is given in reference 11.

The particular set of linear combinations that can be estimated depends on the particular treatments composing the fractional replicate or, equivalently, on the choice of the design of the experiment. For example, the one-half replicate of a three-factor experiment defined by the treatment combinations $\{(1), a b, a c, b c\}$ corresponding to the defining contrast $I=-\operatorname{ABC}$ would provide estimators for $\left(\beta_{\mathrm{I}}-\beta_{\mathrm{CBA}}\right),\left(\beta_{\mathrm{A}}-\beta_{\mathrm{CB}}\right)$, $\left(\beta_{\mathrm{B}}-\beta_{\mathrm{CA}}\right)$, and ($\beta_{\mathrm{BA}}-\beta_{\mathrm{C}}$).

It will be convenient at this point to introduce an alternate notation for equation (1). Let the p independent variables be denoted as X_{1}, X_{2}, . .., etc. Number the $2^{p} \beta^{\prime} s$ of equation (1) from β_{0} to $\beta_{2} p_{-1}$ and consider the following equation, which is similar
to equation (1):

$$
\begin{equation*}
\mathbf{Y}=\beta_{0}+\beta_{1} \mathbf{X}_{1}+\beta_{2} \mathbf{X}_{2}+\beta_{3} \mathbf{X}_{2} \mathbf{X}_{1}+\ldots+\beta_{2} p_{-1} \mathbf{X}_{\mathrm{p}} \cdot \ldots \mathbf{X}_{3} \mathbf{X}_{2} \mathbf{X}_{1}+\delta \tag{2}
\end{equation*}
$$

Equations (1) and (2) are both written in what is called the standard order. If the subscripts of the β^{\prime} 's are rewritten as p-digit binary numbers, it becomes quite obvious how the terms and coefficients of equation (2) are related. For example, let $p=3$ and consider the following equation:

$$
\begin{equation*}
\mathbf{Y}=\beta_{0}+\beta_{1} \mathbf{X}_{1}+\beta_{10} \mathbf{X}_{2}+\beta_{11} \mathbf{X}_{2} \mathbf{X}_{1}+\beta_{100} \mathbf{X}_{3}+\beta_{101} \mathbf{X}_{3} \mathbf{X}_{1}+\beta_{110} \mathbf{X}_{3} \mathbf{X}_{2}+\beta_{111} \mathbf{X}_{3} \mathbf{X}_{2} \mathbf{X}_{1}+\delta \tag{3}
\end{equation*}
$$

In general, a β, whose subscript in binary notation has ones in the $i_{1}, i_{2}, \ldots, \mathfrak{i}_{k}$ locations from the right, is the coefficient of the interaction of $X_{i_{1}}, X_{i_{2}}, \ldots$, and $X_{i_{k}}$.

The set of all 2^{p} contrasts, which define the estimators from a full factorial, form a group C. These contrasts are denoted here by the combinations of capital letters such as ABC and BDEG. The group operation is $*$ and is defined as the commutative multiplication of the letters with the exponents reduced modulo two. The identity element of the group is I. The defining contrasts that define various fractional replicates are subgroups of C. The aliased sets of parameters that are estimable from these fractions are given by the elements of the subgroup and the elements of the cosets of the subgroup.

SOME PRELIMINARY NOTATION AND RESULTS

So far we have adopted the usual notation involving the use of capital Roman letters to denote the contrasts. In what follows and for purposes of computer programming, it will be more convenient to use a numerical notation. The defining contrast group with p factors is isomorphic to a group on the integers from 0 to $2^{p}-1$. The integers are expressed in binary as ($i_{p} i_{p-1} . . i_{1}$) where the i_{k} are zeros or ones. The isomorphism from the group in letter notation to the group of integers in binary representation is defined by the mapping

$$
A^{i_{1}} B^{i_{2}} C^{i_{3}} \ldots\left(i_{p} i_{p-1} \ldots i_{1}\right)
$$

The group product is still $*$, but it is defined similarly as

$$
\left(i_{p} \cdot \cdot i_{1}\right) *\left(j_{p} \cdot \cdots j_{1}\right)=\left(k_{p} \cdot \cdots k_{1}\right)
$$

where $k_{n}=\left(i_{n}+j_{n}\right)(\bmod 2)$.
For example, suppose $p=4$. Then we have

$$
\mathrm{CBA} \rightarrow\left(\begin{array}{llll}
0 & 1 & 1 & 1
\end{array}\right)
$$

and

$$
\mathrm{DCB} \rightarrow\left(\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right)
$$

Then,

$$
\mathrm{CBA} * \mathrm{DCB}=\mathrm{DA}
$$

and

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 1
\end{array}\right) *\left(\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)
$$

where $D A \rightarrow\left(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right)$. The identity element of the group in binary representation is (0).

Let $S(p, q)$ be the set of all subgroups of order 2^{q} from the full group of order 2^{p}. Let $K(p, q)$ be the number of such subgroups. Let a group \mathscr{G} be an element of $S(p, q)$. There are 2^{q} elements in \mathscr{G}, which we denote as $\left\{w_{i}: i=0, \ldots, 2^{q}-1\right\}$. A subset of q elements from $\mathscr{G},\left\{\widetilde{w}_{1}, \widetilde{w}_{2}, \ldots, \widetilde{w}_{q}\right\}$, are called independent if, for any set of
$i_{1}, i_{2}, \ldots, i_{q}$, where i_{j} is either zero or one and $\sum_{j=1}^{q} i_{j}>0$,

$$
\begin{equation*}
\left(\widetilde{w}_{1}\right)^{i_{1}} *\left(\widetilde{w}_{2}\right)^{i_{2}} * \ldots *\left(\widetilde{w}_{q}\right)^{i_{q}} \neq(0) \tag{4}
\end{equation*}
$$

where (0) is the identity element of the group. It can be shown that, for any q elements of \mathscr{G} which are independent, any other element of the group can be generated by computing the appropriate product of the independent elements. Thus the q independent elements can be called generators of the group. The specification of a group by its generators is not unique, however. That is, if q generators, which yield a group, are given and a different set of generators is given, it does not follow that the resulting groups are different. In developing the algorithm for generating all the groups, it will be convenient to develop a method of uniquely relating a group to a set of generators.

As the first step in deriving a unique relation between a group and its generators, we will assume that for each $\mathscr{G} \in \mathrm{S}(\mathrm{p}, \mathrm{q})$, the elements are arranged in numerically increasing order so that

$$
\mathscr{G}=\left\{w_{0}, w_{1}, \ldots, w_{2^{-1}}\right\}
$$

where

$$
0=w_{0}<w_{1}<w_{2}<\ldots<w_{2} q_{-1}
$$

For any \mathscr{G} whose elements are so ordered, let us define the sets of integers P_{n} and Q_{n} as

$$
\begin{equation*}
P_{n}=\left\{w_{0}, \ldots, w_{2^{n}-1}\right\} \quad n=0, \ldots ., q \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}=\left\{w_{2^{n-1}}, \cdots, w_{2^{n}-1}\right\} \quad n=1, \ldots, q \tag{6}
\end{equation*}
$$

Let us also define the set of integers from 2^{n-1} through $2^{n}-1$ by I_{n}; that is,

$$
\begin{equation*}
I_{n}=\left[2^{n-1}, \ldots, 2^{n}-1\right] \tag{7}
\end{equation*}
$$

There are 2^{n-1} elements in I_{n}. Thus graphically we have P_{n} and Q_{n} related as follows:

We may also represent the sets I_{n} graphically as follows:

Integers (base 10) Integers (base 2) Integers (base 10) Integers (base 2)

0	0	8	$1000)$
1	1) I_{1}	9	1001
		10	1010
2	$10{ }^{11}$ [I_{2}	11	1011
3	11	12	1100
4	1007	13	1101
5	101	14	1110
6	110	15	1111
7	111		

An example of the relations between I_{n}, P_{n}, and Q_{n} is as follows: Let $p=4$ and $q=3$ and

$$
\begin{aligned}
\mathscr{G} & =\{0,1,10,11,1000,1001,1010,1011\} \\
& =\{\mathrm{I}, \mathrm{~A}, \mathrm{~B}, \mathrm{BA}, \mathrm{D}, \mathrm{DA}, \mathrm{DB}, \mathrm{DBA}\}
\end{aligned}
$$

Thus

We note that w_{1}, w_{2}, and w_{4} may be used to generate the group \mathscr{G}. We also note that $Q_{1} \subset I_{1}, Q_{2} \subset I_{2}$, and $Q_{3} \subset I_{4}$, and that

$$
P_{i}=\left\{w_{0}\right\} \cup Q_{1} \cup \cdots \cup Q_{i}
$$

We formalize these relations in the following lemmas. The understanding of the lemmas and their proofs will aid in, but are not necessary to, the understanding of the algorithm. Thus the uninterested reader may turn directly to the description of the computer algorithm.

Lemma 1: For any set $\left\{\tilde{w}_{i}: i=1, \ldots, j\right\}$ such that $\tilde{w}_{i} \in I_{n_{i}}$ where $1 \leq n_{1}<\ldots<n_{j}<p$, the \tilde{w}_{i} are independent.

Proof: Consider that for any $w \in I_{n}$ we have the binary representation of w as

$$
\mathrm{w}=\left(\begin{array}{cccccc}
\mathrm{p} & & \mathrm{n}+1 & \mathrm{n} & \mathrm{n}-1 & \\
0 & \ldots & 1 & \mathrm{X} & \ldots & \mathrm{X}
\end{array}\right)
$$

That is, all digits to the left of the $n^{\text {th }}$ position are zeros, the $n^{\text {th }}$ digit is a 1 , and the digits to the right of the $\mathrm{n}^{\text {th }}$ position are either zeros or ones. Consider any set of indices $\left\{i_{k}: k=1, \ldots, j\right\}$ where the i_{k} are either zeros or ones but not all may be zero. Let m be the subscript of the last i_{k} in the sequence that is not zero. We note
$\tilde{w}_{\mathrm{i}}^{0}=(0)$, the identity element. It is clear that, since $\widetilde{\mathrm{w}}_{\mathrm{m}}$ has a one as the $\mathrm{n}_{\mathrm{m}}^{\text {th }}$ digit and $\tilde{w}_{1}, . ., \tilde{w}_{m-1}$ do not, the product

$$
\tilde{w}_{1}^{i_{1}} * \tilde{\mathrm{w}}_{2}^{\mathrm{i}_{2}} * \ldots * \tilde{\mathrm{w}}_{\mathrm{m}}^{\mathrm{i}}{ }^{\mathrm{m}} * \ldots * \tilde{\mathrm{w}}_{\mathrm{j}}^{\mathrm{j}}=\tilde{\mathrm{w}}_{1}^{\mathrm{i}} 1 * \widetilde{\mathrm{w}}_{2}^{\mathrm{i}_{2}} * \ldots * \widetilde{\mathrm{w}}_{\mathrm{m}} \neq(0)
$$

Hence by definition, the $\widetilde{\mathrm{w}}_{1}, \ldots, \widetilde{\mathrm{w}}_{\mathrm{j}}$ are independent.
Lemma 2: For any $\left\{\tilde{w}_{i}: i=1, \ldots, k\right\}$ such that $\tilde{w}_{i} \in I_{n_{i}}$ where $1 \leq n_{1}<\ldots .<n_{k}$, consider the sets P_{i} defined recursively by

$$
\begin{gathered}
P_{0}=\left\{w_{0}=(0)\right\} \\
P_{i}=\left\{\tilde{w}_{i} * P_{i-1}\right\} \cup P_{i-1} \quad i>0
\end{gathered}
$$

Each of the P_{i} is a group.
Proof: The notation $\widetilde{w}_{i} * P_{i-1}$ indicates the set of all elements defined by computing the product of \tilde{w}_{i} and each element of P_{i-1}. From lemma 1 the \tilde{w}_{i} are independent. Thus they may serve as generators for groups, and the lemma follows immediately.

Lemma 3: Let $\mathscr{G}=\left\{w_{i}: i=0, \ldots, 2^{q-1}\right\}$ where $w_{j+1}>w_{j}$ for all j and let the sets P_{j} be defined as previously. Then the following recursion relation holds true

$$
P_{j}=\left\{w_{0}\right\} \cup_{i=0}^{j-1}\left\{w_{2}^{i} * P_{i}\right\}=P_{j-1} \cup\left\{w_{2^{j-1}} * P_{j-1}\right\} \quad \text { for } j=1, \ldots, q
$$

and

$$
\left\{w_{2^{i}} * P_{i}\right\} \subset I_{n_{i+1}} \quad \text { for } 1 \leq n_{1}<\ldots<n_{j}<p
$$

Proof: The proof proceeds by induction. First consider the minimal element of $\mathscr{G}-\left\{w_{0}\right\}$. This is by definition w_{1}, and it is obvious that $P_{1}=\left\{w_{0}\right\} \cup\left\{w_{1}\right\}$ and equally obvious that $w_{1} \in I_{n_{1}}$ for some $1 \leq n_{1}<p$ so that the lemma is true for $j=1$. Now assume that it is true for j. We need to show that this implies the lemma is true for $\mathrm{j}+1$.

Choose the minimal element of $\mathscr{G}-\mathrm{P}_{\mathrm{j}}$. This is by definition $\mathrm{w}_{2}{ }_{\mathrm{j}} \notin \mathrm{P}_{\mathrm{j}}$. Since ${ }_{w_{2}}>{ }_{w_{2}{ }^{j}-1}$ we must have $w_{2} \in I_{n_{j+1}}$ where $n_{j+1} \geq n_{j}$. If $n_{j+1}=n_{j}$, then let
$w^{*}=w_{2^{j}} * w_{2^{j-1}}<w_{2}{ }_{2-1}$. Now w^{*} must be an element of $w_{2^{i}} * P_{i}$ for some $0 \leq i \leq j-1$ and hence $w^{*} \in P_{j}$ since we have presumably accounted for all elements of \mathscr{G} that are less than $w_{2}{ }^{j-1}$ with these sets. But in this case, $w^{*}=w_{2}{ }^{*} w_{2} \mathrm{j}-1$, which implies that $w_{2^{j}}=w_{2^{j-1}} * w^{*}$, which implies that $w_{2^{j}} \in P_{j}$ since w^{*} and $w_{2^{j-1}}$ are elements of P_{j}. By the induction assumption and lemma $2, P_{j}$ is a group and hence P_{j} is closed under the operation *. But this is a contradiction of the fact that $w_{2}{ }_{j} \notin P_{j}$. Thus we must have $n_{j+1}>n_{j}$ and hence $w_{2}{ }^{j} * P_{j} \subset I_{n_{j+1}}$. From lemma 1 we have w_{2} independent of all the elements of P_{j}, and hence it may be used as an additional generator to form the larger group $\mathrm{P}_{\mathrm{j}+1}=\mathrm{P}_{\mathrm{j}} \cup\left\{\mathrm{w}_{2}{ }^{\mathrm{j}} * \mathrm{P}_{\mathrm{j}}\right\}$. Thus, assuming the lemma true for j implies truth for $\mathrm{j}+1$; hence by induction, the lemma is true.

With the preceding notation and results we can now define a unique set of generators for each element of $S(p, q)$. That is, the ordering convention and the use of w_{2} as the generators permit a one-to-one mapping to be made between a group and its generators. We can also order all the elements of $S(p, q)$ in alphabetical order in the sense that the generators of the groups will be in order. As a rather trivial example, suppose $p=2$ and $q=1$. Then the full group is $\{00,01,10,11\}$ and all the possible subgroups of order 2 are easily seen to be $\{00,01\},\{00,10\}$, and $\{00,11\}$, which corresponds to the defining contrasts $I=A, I=B, I=B A$, respectively. The generators of these groups (in terms of letters) are A, B, and $B A$, respectively, and it is evident that these are in alphabetical order.

We now prove an interesting recursion relation among the numbers $K(p, q)$.
Theorem: Let $K(p, q)$ denote the number of elements of $S(p, q)$. Then

$$
\begin{equation*}
K(p, 0)=1 \quad \text { for all } p \geq 0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
K(p, q)=\sum_{n=q}^{p} 2^{n-q} K(n-1, q-1) . \quad \text { for all } p \geq q \geq 1 \tag{9}
\end{equation*}
$$

Proof: The proof of $K(p, 0)=1$ is trivial since for any group there is only the subgroup consisting of the identity which is of order 1.

For the proof of equation (9) it is convenient to introduce the sets of integers J_{n}. defined by

$$
\begin{align*}
J_{n} & =\left[1,2, \ldots, 2^{n}-1\right] \\
& =\bigcup_{j=1}^{n} I_{j} \quad \text { for } n=1, \ldots, p \tag{10}
\end{align*}
$$

Let the generators (uniquely defined for any group by the previously defined conventions) be $w_{2}{ }^{i-1}$ for $i=1$, q. Suppose we require that $w_{2 q-1} \in I_{n}$ for some fixed n such that $q \leq n \leq p\left(w_{2} q-1\right.$ cannot be an element of I_{n} for $\left.n<q\right)$. For any such choice of n and for $\mathrm{w}_{2}{ }^{\mathrm{i}-1}$ (where $\mathrm{i}=1$, ..., $q-1$) to be valid choices of generators, it must be true that ${ }_{2^{i-1}} \in J_{n-1}$ for $i=1, \ldots, q-1$. These $q-1$ generators generate a subgroup of order 2^{q-1} from a group of order 2^{n-1}; hence there are $K(n-1, q-1)$ such subgroups. For any choice of $w_{2} q_{-1} \in I_{n}$ and any choice of the other $q-1$ generators ${\underset{2}{2}}^{i-1}(i=1, \ldots, q-1)$, there are then determined $2^{q-1}-1$ other elements in I_{n}, which belong to the resulting group; that is, $P_{q} \subset I_{n}$. No other elements of I_{n} belong to this group. This choice of $w_{2}{ }^{q-1}$ thus rules out using the $2^{q-1}-1$ determined elements of I_{n} as generators. If we use the same $q-1$ first generators and use some other choice of ${ }_{2}{ }^{q-1}$ from I_{n} that is not ruled out, then again, $2^{q-1}-1$ other elements of I_{n} are determined and cannot be used as generators. Thus, proceeding in this manner, we may note that each choice of $w_{2}{ }^{i-1}(i=1, \ldots, q-1)$ generates a partitioning of I_{n} into

$$
\frac{2^{n-1}}{2^{q-1}}=2^{n-q}
$$

sets, each of which is associated with a unique group. There are, then, $2^{\mathrm{n}-\mathrm{q}}$ possible new groups. Thus there are $2^{n-q} K(n-1, q-1)$ unique subgroups of order 2^{q}, which have $w_{2}{ }^{q-1} \in I_{n}$. No group with $w_{2^{q-1}} \in I_{i}$ can be identical to any group with $w_{2} q-1 \in I_{j}$ when $j \neq i$. Hence, to find the number of subgroups of order 2^{q} from the full group of order 2^{p}, one simply sums, over the permissible range of n, the quantities $2^{n-q} K(n-1, q-1)$. This yields

$$
K(p, q)=\sum_{n=q}^{p} 2^{n-q} K(n-1, q-1)
$$

TABLE I. - VALUES OF $K(p, q)$

p	q								
	0	1	2	3	4	5	6	7	8
0	1	---	---	---	---	---	---	---	---
1	1	1	---	---	---	---	---	---	---
2	1	3	1	-	---	--	---	---	--
3	1	7	7	1	-	--	---	--	-
4	1	15	35	15	1	--	---	---	---
5	1	31	155	155.	31	1	---	---	-
6	1	63	651	1395	651	63	1	---	-
7	1	127	2667	11811	11811	2667	127	1	---
8	1	255	10795	97155	200787	97155	10795	255	1

Table I presents the numbers $K(p, q)$ for the values $p=0,8$ and $q=0, p$.
Corollary: For $p \geq q \geq 1$

$$
\begin{equation*}
K(p, q)=K(p-1, q)+2^{p-q} K(p-1, q-1) \tag{11}
\end{equation*}
$$

Proof: The proof is trivial on examination of the expansions for $K(p, q)$ and $K(p-1, q)$ given by equation (9) of the theorem.

The corollary provides a simpler recursion relation for practical use. It is also inter esting to note the similarity between this relation and the recursion relation that determines the elements of Pascal's triangle.

It should also be noted that Burnside (ref. 16, p. 111) has found a different recursion relation for Abelian groups whose elements are of prime order.

THE ALGORITHM FOR GENERATING SUBGROUPS

The flow diagram of the subroutine that calculates the subgroups by this algorithm is presented in figure 1. To illustrate its operation and to provide motivation for the procedure, the calculations for $p=4$ and $q=3$ are given. Then the diagram in figure 1 is discussed. The definitions of the symbols used in figure 1 are included in table II.

The algorithm makes use of a doubly subscripted array, LIST(I, J), where $J=1, \ldots, q$ and $I=1, \ldots, 2^{p-(q-J)}-1$. The array is initially set to 0 and then used to indicate whether particular integers are eligible for use as generators. The use of LIST is indicated for $p=4$ and $q=3$ in table III. For these values there are 15 distinct contrast groups as reflected by the 15 stages numbered in the last column. The

Figure 1. - Flow diagram for subroutine DPGGEN.

TABLE II. - DEFINITIONS OF SYMBOLS USED IN THE
SUBROUTINE DPGGEN

IBAKUP(I)	Upper limit for value the Ith generator may assume. Equals 2^{p-q+I}
IDP	Temporary storage for elements of IDPG(I)
IDPG(I)	The generators of groups
IW	Temporary storage for products of elements in group
IX,XI	
$\mathrm{I} 1, \mathrm{I} 2$	Temporary storage
KB, KK, KS	
KD	Equals $2^{p}-1$
LIST(I, J)	Indicator array used to determine if integer may be used as generator
LOGDPG	Logical variable used to indicate when all sets of generators for groups have been found
MASK	Variable set to 1 , used in computing elements of group.
MAX	Maximum value for q
MIN	Minimum value for q
NFAC	
NGEN	Number of generators or current value of q

values tabulated are LIST(I, J) at each of the stages. The J values are given in the second column and correspond to the number of generators. The I values and the contrasts that each of the I values is associated with are given in the headings at the top of the table. The first two columns give the numerical and letter values of the generators at the stages.

The procedure begins with the generators A, B, and $\mathrm{C}(1,2$, and 4$)$. This is the first set of generators in the alphabetical ordering. Then $\operatorname{LIST}(1,1)$ is set to 1 to indicate that A is the first generator. $\operatorname{LIST}(2,1)$ is set to 1 because A cannot be the second generator. $\operatorname{LIST}(2,2)$ and $\operatorname{LIST}(2,3)$ are set to 1 to indicate that B is the second generator and that BA is in the group generated by A and B . Because BA is in this group, it may not be chosen as a generator. (We find that BA is in this group by computing the product of A and B by use of the IEXOR function.)

The first legitimate choice for the third generator is C. Then LIST(I, 3) for $I=5,6,7$ is set to 1 because CA, CB, and CBA are also in the group generated by A, B, and C, and hence may not be used as generators. (These elements are found by computing the product of C with the group generated by A and- B by use of the IEXOR function.) To show that 1, 2, and 4 are the generators, the 1 's at $\operatorname{LIST}(1,1)$, $\operatorname{LIST}(2,2)$, and $\operatorname{LIST}(4,3)$ are underlined.

To progress to stage 2 , $\operatorname{LIST}(\mathrm{I}, 3)$ is sequentially searched beginning at $\mathrm{I}=8$ until a zero is found. This is $\operatorname{LIST}(8,3)$ from stage 1 . The second set of generators corre-

TABLE III. - EXAMPLE OF LIST(I, J) USAGE FOR $p=4$ AND $q=3$

Stage	J	I															Generators	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Numbers	Letters
		Contrasts																
		A	B	BA	C	CA	CB	CBA	D	DA	DB	DBA	DC	DCA	DCB	DCBA		
1	${ }^{1}$		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	A
			${ }^{\text {a }}$ 1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	B
			1	1	${ }^{\text {a }} \underline{1}$	1	1	1	0	0	0	0	0	0	0	0	4	C
2	1	$\begin{array}{l\|l} 1 & \mathbf{a}_{1} \\ 2 & \frac{1}{1} \\ 3 & 1 \end{array}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	A
	2		${ }^{2} \underline{1}$	1	0	0	0	0	0	0	0	0	0	0	0	0	2	B
	3		1	1	1	1	1	1	${ }^{a_{1}}$	1	1	1	0	0	0	0	8	D
3	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	A
	2		${ }^{\text {a }}$ 1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	B
	3		1	1	1	1	1	1	1	1	1	1	a_{1}	1	1	1	12	DC
4			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	A
			1	1	${ }^{\text {a }}$	1	0	0	0	0	0	0	0	0	0	0	4	C
			0	0	0	0	0	0	$\mathrm{a}_{\underline{1}}$	1	0	0	1	1	0	0	8	D
5	$\begin{array}{c\|c} 1 & a_{1} \\ 2 & \frac{1}{1} \\ 3 & 0 \end{array}$		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	A
			1	1	${ }^{\text {a }}$	1	0	0	0	0	0	0	0	0	0	0	4	C
			0	0	0	0	0	0	1	1	${ }^{\text {a }}$	1	1	1	1	1	10	DB
6	1	$\begin{array}{c\|c} a_{1} \\ \frac{1}{1} \\ 0 \end{array}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	A
	2		1	1	1	1	${ }^{\mathrm{a}_{1}}$	1	0	0	0	0	0	0	0	0	6	CB
	3		0	0	0	0	$\overline{0}$	0	$\mathrm{a}_{\underline{1}}$	1	0	0	0	0	1	1	8	D
7	1	$\begin{array}{c\|c} 1 & a_{1} \\ 2 & \frac{1}{1} \\ 3 & 0 \end{array}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	A
	2		1	1	1	1	${ }^{\text {a }}$ 1	1	0	0	0	0	0	0	0	0	6	CB
	3		0	0	0	0	0	0	1	1	a_{1}	1	1	1	1	1	10	DB
8	1 2 3 		${ }^{a_{1}}$	0	0	0	0	0	0	0	0	0	0	0	0	0	22	B
			\bigcirc	0	${ }^{\text {a }} \underline{1}$	0	1	0	0	0	0	0	0	0	0	0	4	C
			0	0	0	0	0	0	${ }^{\text {a }}$ 1	0	1	0	1	0	1	0	8	D
9	1 2 3		${ }^{a_{1}}$	0	0	0	0	0	0	0	0		0	0	0	0	2	B
			-	0	$\mathrm{a}_{\underline{1}}$	0	1	0	0	0	0	0	0	0	0	0	4	C
			0	0	0	0	0	0	1	${ }^{\mathrm{a}} \underline{1}$	1	1	1	1	1	1	9	DA
10	1 2 3	1	${ }^{\text {a }}$	0	0	0	0	0	0	0	0	0	0	0	0	0	2	B
		0	0	0	1	${ }^{a_{1}}$	1	1	0	0	0	0	0	0	0	0	5	CA
		0	0	0	0	0	0	0	${ }^{\text {a }}$ 1	0	1	0	0	1	0	1	8	D
11	1 2 3		${ }^{a_{1}}$	0	0	0	0	0	0	0	0	0	0	0	0	0	2	B
			0	0	1	a_{1}	1	1	0	0	0	0	0	0	0	0	5	CA
			0	0	0	0	0	0	1	${ }^{\text {a }}$	1	1	1	1	1	1	9	DA
12	1 2 3 		1	${ }^{\text {a }}$ 1	0	0	0	0	0	0	0	0	0	0	0	0	3	BA
			0	0	${ }^{\text {a }}$	0	0	1	0	0	0	0	0	0	0	0	4	C
			0	0	0	0	0	0	${ }^{\text {a }}$	0	0	1	1	0	0	1	8	D
13	1	1	1	${ }^{\text {a }}$	0	0	0	0	0	0	0	0	0	0	0	0	3	BA
	2	0	0	\bigcirc	${ }^{\text {a }}$	0	0	1	0	0	0	0	0	0	0	0	4	C
	3	0	0	0	0	0	0	0	1	${ }^{a_{1}}$	1	1	1	1	1	1	9	DA
14	1	1	1	${ }^{\text {a }}$	0	0	0	0	0	0	0	0	0	0	0	0	3	BA
	2	0	0	0	1	${ }^{a_{1}}$	1	1	0	0	0	0	0	0	0	0	5	CA
	3	0	0	0	0	0	0	0	a_{1}	0	0	1	0	1	1	0	8	D
15	1	1	1	${ }^{\mathrm{a}}{ }_{1}$	0	0	0	0	0	0	0	0	0	0	0	0	3	BA
	2	0	0	0	1	${ }^{\text {a }}$ 1	1	1	0	0	0	0	0	0	0	0	5	CA
		0	0	0	0	0	0	0		a_{1}	1	1	1	1	1	1	9	DA

${ }^{\text {a }}$ Underscored 1's indicate contrasts used as the generators at each stage.
sponding to the second group in the alphabetical order is then $A, B, D(1,2,8)$. Since $D A, D B$, and DBA are elements of the resulting group and their use as the third generator would lead to the same group, $\operatorname{LIST}(\mathrm{I}, 3) \mathrm{I}=9,10,11$ are set to 1. Again, $\operatorname{LIST}(I, 3)$ is searched for the next zero beginning at $I=9$, which is at $I=12$. Thus stage 3 shows the generators to be $A, B, D C(1,2,12)$. LIST(I, 3) is set to 1 for $\mathrm{I}=12,13,14,15$ to indicate that those contrasts may not be used as generators again. At this point, LIST(I, 3) $=1$ for all I . Thus LIST(I, 2) is searched beginning at $\mathrm{I}=4$ for the first zero, which is at $I=4$. Hence, the new second generator is $C(4)$. LIST($I, 3$) is now set to zeros for $I=8$, . . ., 15. Then LIST($I, 3$) is searched beginning at $I=8$ for the first zero. This is at $I=8$. Then $\operatorname{LIST}(I, 3)$ is set to 1 for $\mathrm{I}=8,9,12$, and 13 to indicate that $\mathrm{DA}, \mathrm{DCA}$, and DC are in the group generated by A, C, D. This procedure is repeated until stage 15 . At stage $15 \operatorname{LIST}(\mathrm{I}, 3)$ is all ones from $I=8$ to $I=15$. Thus we examine $\operatorname{LIST}(I, 2)$ from $I=4$ for the first zero. This occurs at $I=8$, which is greater than $2^{4-(3-2)}-1=7$. Hence, this is not a valid choice of generator. Thus, we examine $\operatorname{LIST}(I, 1)$ from $I=2$ for the first zero. This is at $\mathrm{I}=4>2^{4-(3-1)}-1=3$. This is not a valid choice for generator. This indicates that the procedure is completed and all the subgroups have been found.

Figure 1 is the flow diagram of the subroutine DPGGEN, which appears in appendix B. This program is written in FORTRAN IV for the IBM 360/67 under TSS. The subroutine requires the following variables in COMMON:
NFAC p

NGEN q
MIN lower limit of q
MAX upper limit of q
LOGDPG logical variable set TRUE on first entry to DPGGEN. Its return value is FALSE until all subgroups of order 2^{q}, MIN $\leq q \leq$ MAX have been generated. Then the return value is TRUE

IDPG(10) contains the integer representations of the generators
The input variables are NFAC, MIN, MAX, and LOGDPG. The output variables are NGEN, LOGDPG, and IDPG. NFAC specifies the value of p. MIN and MAX denote the lower and upper limits on q. Then the generators of all subgroups of order 2^{q} for MIN $\leq q \leq$ MAX are found. The first entry to DPGGEN must have LOGDPG set to TRUE. Each time DPGGEN is called, the next set of generators in the alphabetical ordering is returned in the array IDPG. When all groups have been generated, LOGDPG is returned as TRUE. Otherwise, LOGDPG is returned as FALSE.

The subprograms GROUPS and OUTDPG are sample input and output routines that will compute and print the generators as they are found for various input values of NFAC, MIN, and MAX. Appendix B presents the program listings, sample input, and sample output. The current version is limited to handle values of $\mathrm{p} \leq 10$ and MIN and MAX are subject to the relation $0 \leq \operatorname{MIN} \leq \operatorname{MAX} \leq p$.

DISCUSSION OF APPLICATIONS

Use in Sequences of Fractional Factorial Designs

There are certain tabulations of designs which are expansible in the sense that they begin as small fractions and then blocks are added to create larger fractions (Addelman (ref. 7) and Holms (ref. 8)). These tabulations were made with different criteria in mind. Namely, Addelman used the criteria of "number of estimable effects" and/or "smaller average variance of the estimable effects." Holms considers primarily the criteria of resolution level. Holms' tables were apparently constructed by trial and error. Addelman implies that some computer programs were used to evaluate his sequences of designs but does not indicate how these sequences were generated. The algorithm presented in this report would be useful in generating new tables, using new criteria, or in checking or expanding the tables of Addelman and Holms.

uSE IN CONSTRUCTING PLANS WITH SPECIAL RESTRICTIONS

Often in practice an experiment will have certain restrictions on the manner in which it may be performed. For example, there may be limitations on the total number of changes of level permitted; some factors may not be permitted to have their level changed as often as others; or perhaps equipment restrictions require certain restraints on the manner of performance of the experiment and must be reflected in the design of the experiment. An example of the case where equipment restrictions limited the choice of design is in Holms and Sidik (ref. 9). Another example is described in appendix C. In these situations, the commonly tabulated designs may be of little or no value. Through generating all the possible defining contrast groups for a particular p and q, it may be possible to determine if a regular fractional factorial design exists that fits the restrictions and that will present all those that do. (Again see appendix C.)

Use in Bayesian Design of Experiments

Sidik and Holms (ref. 11) present a method of constructing the optimal design of two-level fractional factorial experiments when certain prior information is available. Reference 17 presents an algorithm and computer program for performing some of the calculations involved.

This program accepts a specified defining contrast group and certain prior information about the parameters and then maximizes an expected utility value over all the possible permutations of the physical variable-design variable matchings. This is an excessive amount of computing in many instances, however. For instance, if $p=6$ and $q=2$, there are $6!=720$ permutations of the matchings, but there are only 651 distinct designs (see table I). It should also be noted that the 720 permutations are evaluated for each and every input defining contrast group. Since the program also operates in the mode that evaluates only single input matchings and since it is also designed to evaluate multiply telescoping designs, the program is still of value. It might, however, be possible to modify the program to include the algorithm presented in this report.

Another example where the algorithm may be useful is given in reference 12. In that report is presented a sequential adaptive design procedure for discriminating among several linear models. The general linear model is considered, but, of course, twolevel factorial designs represent a subclass of the linear models. The criteria used to select an experiment is the expected Kullback-Leibler information function. As presented in reference 12 , the method of determining the optimal experiment is exhaustive examination of the space of possible experiments.

For 2^{p} factorial experiments there are 2^{p} unique treatment combinations. The experiment space then consists of all the possible combinations of these treatment combinations that do not exceed the maximum allowable number of observations (denoted $\mathrm{J}_{\mathrm{MAX}}$). If we include with the treatments the possibility of not taking an observation, then there are $\left(2^{p}+1\right)^{J_{M A X}}$ potential experiments. Since this set must be exhaustively searched to determine the optimal experiment, a large number of potential experiments is a drawback to the successful application of the sequential procedure. For example, for $\mathrm{p}=7$ and $\mathrm{J}_{\mathrm{MAX}}=8$, there are approximately 10^{17} experiments. We may turn to the suboptimal procedure of considering only those sets of treatment combinations that form regular fractional replicates of 2^{p} factorials. From the numbers in table I we find that there are approximately 3×10^{5} possible regular fractional replicates containing
eight or fewer observations. This number of experiments is much more reasonable to evaluate and should be within the capability of many computers.

Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio, April 3, 1973, 503-35.

APPENDIX A

SYMBOLS

A, B, BA, etc.	contrasts
C	group of contrasts
99	group in $S(p, q)$
I	identity element of C
I_{n}	set of integers from 2^{n-1} through $2^{n}-1$
$\left(i_{p}, \ldots ., i_{1}\right)$	binary representations of integers from 0 through ' $2^{p}-1$
$J_{\text {MAX }}$	maximum number of allowable observations
J_{n}	set of integers from 1 through $2^{\text {n }}-1$
$K(p, q)$	number of elements of $S(p, q)$
LIST(I, J)	array of indicator values used in algorithm
P_{n}	set of elements ($w_{0}, \ldots, w_{2^{n}-1}$)
p	number of factors or independent variables
Q_{n}	set of elements $\left({ }_{w^{n-1}}, \cdots, w_{2^{n}}\right.$ $)$
q	$(1 / 2)^{q}$ is fraction of full replicate under consideration
$S(p, q)$	set of all distinct subgroups of order 2^{q} of full group of order 2^{p}
$\mathbf{w} * \mathbf{P}$	set of elements defined by product of w with all elements of \mathbf{P}
$\mathrm{w}_{\mathrm{i}}, \widetilde{w}_{i}$	element of \mathscr{G}
$\mathrm{X}_{\mathrm{A}}, \mathrm{X}_{\mathrm{B}}$, etc.	independent variables
Y	response variable
$\beta_{I}, \beta_{A}, \beta_{B}, \ldots$	parameters of the model eq. (1)
$\beta_{0}, \beta_{1}, \beta_{2}, \ldots$	parameters of the model eq. (2)
δ	random error variable
E	element of
ϵ	not an element of
*	group product
\subset	subset of
\cup	union of

APPENDIX B

FORTRAN LISTING OF THE PROGRAM AND SAMPLE OUTPUT

Included in this appendix are the FORTRAN listings of the subroutine DPGGEN and the sample input and output routines. Also given is a sample output.

The two function subprograms AND and IEXOR are available in the FORTRAN IV language at the Lewis Research Center and may not be available at other computer installations. What they do is therefore explained and the user can write function subprograms providing the same capabilities in a language compatible with the available computer system.
(1) $\operatorname{AND}(A, B)$. A real function of the real or integer variables A and B. Like bit positions of A and B are compared. A one is placed in those positions of the result where there are ones in both A and B, and a zero is placed in the result otherwise.
(2) $\operatorname{IEXOR}(A, B)$. An integer function of the real or integer arguments A and B. Like bit positions of A and B are compared. A one is placed in those positions of the result where exactly one of A or B is a 1 , and a zero is placed in the result otherwise.
COMHON NFAC，NGEN，HIN，HAX，LCGDPG，TDPG（10）

N

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
{ }^{\circ} \mathrm{O}
$$

$\begin{array}{r}1 \\ 1 \\ \hline\end{array}$
:0

$$
\begin{aligned}
& \text { IF (NGEN. } \\
& \text { GO TO } 20
\end{aligned}
$$

$$
\begin{aligned}
& \text { GO TO } 6600 \\
& : G O T O \quad 6700
\end{aligned}
$$

GO TO 6500

R）GO TO 6800

$$
\begin{aligned}
& \text { CALL EPGGEN } \\
& \text { IF (LOGDPG) GO TO } 10 \\
& \text { IF (AGEN. EQ.O) WRITE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IF (LOGDPG) GO TO } 10 \\
& \text { IF (AGEN. BQ. O) WRITE(6,7000) } \\
& \text { IF(NGEN.NE.O) CALL OUTDPG }
\end{aligned}
$$

읃
60 응
0.0
0.0
0
（6；TERMINATED．dax IS less than min＇）
 20

EGE

发这出
（6：TERMINATED．MaI too large＇）
aT 10

$$
180
$$

$$
\begin{aligned}
& 1 \\
& 10 \\
& 10
\end{aligned}
$$

$$
{ }^{6} 1^{6}
$$ JE．

uno K
\squareORHAT（＂TERMINATED．MAX TOO LARGE＇）

$$
y_{1}^{4}
$$

$$
20
$$6700

6701

$$
\begin{aligned}
& \begin{array}{l}
\text { NFAC, MIN,MAX } \\
\text { R.NFAC.GT.10) }
\end{array}
\end{aligned}
$$

SAMPLE OUTPUT PROGRAM

```
0000160
0000200
0cco300
0000400
00cosco
OCCO6CO
0000700
OCCO800
c0c0900
OCC1000
OC1100
00C1200
OCC1300
0001400
0001500
C001600
CCC1700
OC(180)
00C1900
00C2060
00C2100
OCC2200
OOC2300
00c2400 600
O0C2500
COC2600
```

```
SUBROUTINE OUTDEG
```

SUBROUTINE OUTDEG
COMMCN NFAC,NGEN,MAXELK,MINELK,LOGDPG,IDPG(10)
COMMCN NFAC,NGEN,MAXELK,MINELK,LOGDPG,IDPG(10)
DATA MASK/1/.BLANK/' %/
DATA MASK/1/.BLANK/' %/
LIMENSION ND(110)
LIMENSION ND(110)
DIMENSION ALPH(10)
DIMENSION ALPH(10)
LATA ALPH/'A','E','C','[', 'E','E','G','H','J','K'/
LATA ALPH/'A','E','C','[', 'E','E','G','H','J','K'/
FQOIVALENCE (KS,SK)
FQOIVALENCE (KS,SK)
I11=11
I11=11
DO 20 I=1,110
DO 20 I=1,110
HD(I) = BLANK
HD(I) = BLANK
IO 500 I=1,NGEN
IO 500 I=1,NGEN
ISTF=(I-1)*I11
ISTF=(I-1)*I11
IS=ILEG(I)
IS=ILEG(I)
DO 50 K=1,NFAC
DO 50 K=1,NFAC
SK=ANL (IS,MASK)
SK=ANL (IS,MASK)
KS=KS+1
KS=KS+1
IS=IS/2
IS=IS/2
GO TO (50.40).KS
GO TO (50.40).KS
ISTE=ISTE+1
ISTE=ISTE+1
WD(ISTR) =ALPG(X)
WD(ISTR) =ALPG(X)
CONTINOE
CONTINOE
CONTINUE
CONTINUE
NRITE(6,600) (WL(I),I=1,110)
NRITE(6,600) (WL(I),I=1,110)
FORMAT(" '110A1)
FORMAT(" '110A1)
EETUFN
EETUFN
END

```
END
```


SUBROUTINE DPGGEN

$0 C 00100$ 0000200 0000300 0000400 0 OCO 500 OCCC600 ACCO700 0 CCO 80 cocogeo 0001900 00C1100 $00 C 1200$ 0 OC1300 0 OC1400 $00 C 1500$ $00 C 1520$ 00C1540 $00(1560$ 00C1580 $00 C 1600$ 0001700 0001800 $00(1900$ $00 C 2000$ $00<2100$ $00: 2200$ DOC2300 0002400 OCC2500 0002600 U602700 $0 C C 2800$ $00 C 2900$ OCO3000 0003100 $00 C 3200$ 0003300 0003400 00 03500 OCC 360) 0003700 $00 C 3800$ OC(390) 0 CC 4000 00C4100 $00(4200$ $00<4300$ 0004400 0004500 0004600 00 CL 700 $00048 C 0$ 0CC4900 00 C5000

SUBROUTINE DPGGEN
CCMMCN NFAC, NGEN,MIN, MAX,LOGEPG,IDPG(10)
LOGICAL LOGDPG
[ATA MASK/1/
C
C

```
C
```

DIMENSION IPCN (10) IEAKOP(10)
DATA IPOH/2,4,8,16,32,64,128,256,512,1024/
DIMENSION IIST (1024, 10)
EQUIVALENCE (KS,SK), (IX,XI)
C

C
IF(.NCT. IOGDPG) GO TO $5 C C$
IF (NFAC.GT. 10. OR.NFAC.IT.O) EETUFN
IF (MIN.LT. O) RETORN
IF (NAX.GT.NFAC) GETURN
IF (MAX.LT.MIN) RETURN
LOGLEG=.FALSE.
NGEN = MAX
IF\{NGEN.IE.O) EETURN
MNGEN=MIN
KL=2**NFAC-1
DO $5 \mathrm{~J}=1$, NGEN
IEAKUP (J) $=2 * *(N F A C-N G E N+J)$
5 CONTINUE
C
C
10 IF (NGEN) 540.540 .15
15 DO $20 \mathrm{~K}=1$, NGEN
$\operatorname{IDPG}(K)=2 * *(K-1)$
20 CONIINUE
IF (NGEN.GE.NFAC) RETORN
DO $3 \mathrm{C} \quad \mathrm{J}=1$, NGEN
LO $30 \mathrm{~K}=1 . \mathrm{KD}$
$\operatorname{LIST}(K, J)=0$
30 CCNTINUE
DO ε © $\mathrm{J}=1$. NGEN
I2 $2=2 * *-1$
DO $80 \quad K=1$, I2
$\operatorname{LIST}(K, J)=1$
80 CONTINUE
FETURN
C

C
100 NGEN = NGEN-1
DO $105 \mathrm{~J}=1$, NGEN
IEAKOP $(J)=2 * *(N F A C-N G E N+J)$
1 C5 CONTINDE
IF (NGEN-MIN) $540,10,10$
C

20C5100 0005200 $0 C C 5300$ 0005400 $00 C 5500$ 00 O 5600 $0 \subset C 5700$ $00 c 5800$ 00C5900 CCC6000 0CC6100 OCC6200 $00 C 6300$ $00 C 6400$ OOC650.0 JOCE600 0006700 0006800 0006900 coc70co 0007100 úC $C 200$ $00 C 7300$ 0007400 0007500 $00 C 7600$ 6007700 ccc7800 0007900 $00<8000$ $00 C 8100$ $0 \mathrm{OC8} 200$ $06 C 8300$ $00 c 8400$ $00 C 8500$ occe6cu 0008700 0008800 $00<8900$ $00 C 9000$ 00C9100 0 CC9200 0009300 50C9400 0009500 0009600 0069700 DCC98C0 $00 C 9900$ 0017000 0010100 0010200 0010300 00104 CO

```
C
```

 500 CONTINUE
 IP (NGEN.EQ.NFAC) GO TC 10 ?
 IF(NGEN-1) 540.520 .58 C
 520 IDPG(1) \(=\) IDPG(1)+1
 IF (IDPG (1) - IBAKUP(1)) \(2500,530.530\)
 53 C NGEN=0
 FETURN
 540 LOGEPG = .TRUE.
 FETURN
 C
C
$580 \mathrm{I}=\mathrm{NGEN}$
590 IF (I.EQ.0) GOTC 100
592 ILPG(I) $=\operatorname{IDPG}(I)+1$
IF(IDPG(I)-IBAKOF (I)) 690.595 .595
595 CONTINUE
C
C
DO $620 \mathrm{R}=1, \mathrm{KD}$
$\operatorname{IIST}(K, I)=0$
620 CONTINUE
$625 \mathrm{I}=\mathrm{I}-1$
GO TO 590
C
690 IDP $=$ IDPG(I)
IF(LIST(IDP,I)) 695,695,592
695 IIST (IDP, I) $=1$
IF(I.EQ.1) GO TO 835
$\mathrm{I} 1=\mathrm{I}-1$
$I 2=2 * * I 1-1$
LO $830 \mathrm{~K}=1$. I 2
$K S=K$
$I T=0$
DO $730 \mathrm{KK}=1 . \mathrm{I} 1$
$X I=A N D(K S$, MASK)
IX $=I X+1$
$K S=K S / 2$
GO TO (730.725).IX
$725 \mathrm{IW}=\mathrm{LEXCR}(\mathrm{IH}, \mathrm{IEPG}(\mathrm{KK}))$
730 CONTINOE
IW = LEXOR (IW, ILPG(I))
$\operatorname{LIST}(I H, I)=1$
830 CONTINUE
$835 \mathrm{I}=\mathrm{I}+1$
IF(I-NGEN) $840,840,2500$
$840 \mathrm{I}=\mathrm{I}=1$
$K B=I E F G(I 1)$
DO $\varepsilon 45 \mathrm{~K}=1$, NFAC
$\mathrm{KR}=\mathrm{K}$
$R P=K B / I P O W(K)$

OC10500 0015600 0. 10700 $0 C 19800$ 0010900 0011000 0011100 0011200 $00113 C 0$ 0011400 0011500 0011600 0011700 0011800 0011900

TF(RE) 950.850 .845
845 CONTINOE
CALL EXIT
STOE
85J KL=2**KK
LO $865 \mathrm{R}=\mathrm{KL}, \mathrm{KD}$
$\operatorname{LIST}(\mathrm{R}, \mathrm{I})=0$
865 CONTINUE
$\operatorname{IDPG}(I)=R I$
GO TO 690
C
C**
2500 RETURN
END

SAMPLE OUTPUT FOR NFAC $=4$,

$$
M A X=3, \operatorname{AND} M I N=2
$$

APPENDIX C

EXAMPLE OF APPLICATION

In this appendix we discuss an actual experiment being planned at Lewis which required a nonstandard design. A knowledge of the technique of doubly telescoping designs is presupposed. This is discussed in Holms (ref. 8), Holms and Sidik (ref. 9), and Holms (ref. 18). A different version of this particular experiment is discussed in Holms (ref. 18).

The purpose of the experiment is to study the amount of corrosion by liquid lithium on sealed metal capsules at high temperatures. The six two-level variables considered are
$\mathrm{X}_{\mathrm{A}} \quad$ time (500 and 2000 hr)
X_{B} temperature (1300 and 1500 K)
amount of oxygen in the capsule alloy (40 and 200 ppm)
X_{D} amount of nitrogen in the capsule alloy (20 and 200 ppm) presence of the alloy TZM in the system (absent, present) X_{F} amount of nitrogen in the liquid lithium (5 and 500 ppm)

There are thus 64 combinations of the levels. The assembled capsules are to be tested in a near vacuum, at the indicated temperature levels and time levels. The available equipment is such that there are four electrically heated furnaces, each of which can accommodate four capsules, in a single vacuum chamber. Each furnace has one temperature control system and is insulated from the other furnaces within the vacuum chamber. Once the vacuum chamber is loaded and the test begun, it may not be opened again until the tests are completed.

Thus, all four capsules within a furnace must be tested at the same temperature, and all 16 capsules within a chamber loading must be tested for the same time duration. If the experiment is designed as a doubly telescoping experiment, where the two sources of block effects are furnaces and chamber loadings, then the defining contrasts for the experiment consisting of one block of four treatments must contain the main effects A and B.

The program presented in appendix B was used to generate all the designs for $p=6$ and $q=4$. From this list all the groups containing A and B, but no other single letters, were found and are given in table IV. Certain of these groups are equivalent to certain of the others if the appropriate permutations of the letters are made. The three unique groups are 1,3 , and 4 . The others are equivalent to one of these, as is indi-

TABLE IV. - GENERATORS OF GROUPS CONTAINING
A AND B BUT NO OTHER MAIN EFFECTS

Set	Generators	Equivalence	Permutation
1	A B CD CE	*	
2	A B CD CF	1	$\mathrm{E} \rightarrow \mathrm{F}, \mathrm{F} \rightarrow \mathrm{E}$
3	A B CD EF	*	
4	A B CD CEF	*	
5	A B CE CF	1	$\mathrm{D} \rightarrow \mathrm{F}, \mathrm{F} \rightarrow \mathrm{D}$
6	A B CE DF	3	$\mathrm{D} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow \mathrm{D}$
7	A B CE CDF	4	$\mathrm{D} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow \mathrm{D}$
8	A B DE CF	3	$\mathrm{D} \rightarrow \mathrm{F}, \mathrm{F} \rightarrow \mathrm{D}$
9	A B DE DF	1	$\mathrm{C} \rightarrow \mathrm{F}, \mathrm{F} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{C}$
10	A B DE CDF	4	$\mathrm{C} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{C}$
11	A B CDE DF	4	$\mathrm{D} \rightarrow \mathrm{F}, \mathrm{F} \rightarrow \mathrm{D}$
12	A B CDE DF	4	$\mathrm{C} \rightarrow \mathrm{F}, \mathrm{F}-\mathrm{D}, \mathrm{D} \rightarrow \mathrm{C}$
13	A B CDE CDF	4	$C \rightarrow E, E \rightarrow C, D \rightarrow F, F \rightarrow D$

TABLE V. - THE FULL GROUPS FOR THE
STARRED GENERATORS OF TABLE IV

1	3	4	1	3	4
I	I	I	CE	EF	CEF
A	A	A	ACE	AEF	ACEF
B	B	B	BCE	BEF	BCEF
AB	AB	AB	ABCE	ABEF	ABCEF
$C D$	CD	CD	DE	CDEF	DEF
ACD	ACD	ACD	ADE	ACDEF	ADEF
BCD	BCD	BCD	BDE	BCDEF	BDEF
ABCD	ABCD	ABCD	ABDE	ABCDEF	ABDEF

cated by the sixth column when the permutations indicated in column seven are made. The full groups corresponding to 1,3 , and 4 are given in table V. Group 3 was chosen to be used since it is the only group that has a six-letter word in it. This has the following advantages. First, the contrast $I=A B C D E F$ may be used to define a resolution six half replicate after two chamber loadings. Second, experimenting may start with the first chamber loading planned for 500 hours. Then the second chamber loading may be planned for 2000 hours. It would be possible, however, in the event of budgetary problems, further information, etc., to only run the second loading 500 hours also. This

TABLE VI. - DETAILS OF THE EXPERIMENT IN APPENDIX C

i	j	Loading	Furnace				i	j	Loading	Furnace			
			1	2	3	4				1	2	3	4
			k							k			
			-1		+1					-1		+1	
			l							l			
			-1	+1	-1	+1				-1	+1	-1	+1
-1	-1	1	(1) (1) cd ef ef cdef 	b e cde f cdf	b d c def cef	(1) de ce df cf		-1	3	(1)	b	b	(1)
										ce	c	cde	cd
										a de	d	e	(1)
										cf	cef	cdf	cdef
							1			df	def	f	ef
	1	2	$\begin{array}{cc} & \text { b } \\ & \\ & \text { ce } \\ & \text { de } \\ & \text { def } \\ & \text { cf } \\ & \text { df }\end{array}$	(1)$c$$d$cefdef	(1) cde e cdf f	b cd (1) cdef ef		1	4	b	(1)	(1)	b
										(1)	e	d	de
										(1) cd	cde	c	ce
										(1) ef	f	def	df
										caief	cdf	cef	cf

TABLE VII. - BLOCK CONFOUNDING RESULTING FROM DESIGN
USED IN TABLE VI FOR CORROSION EXPERIMENT

Block vari- able	Loadings completed			Block variable	Loadings completed		
	4	2	1		4	2	1
m	I	I ABCDEF	I A BCDEF ABCDEF	j	BCDEF	A BCDEF	--
				jk	ABEF	CD ABEF	--
k	ACD	$\begin{aligned} & \mathrm{ACD} \\ & \mathrm{BEF} \end{aligned}$	CD ACD BEF ABEF	jl	ABCD	EF ABCD	--
				jkl	B	B ACDEF	--
l	AEF	$\begin{aligned} & \mathrm{AEF} \\ & \mathrm{BCD} \end{aligned}$	EF AEF BCD ABCD	i ik il	$\begin{aligned} & \mathrm{ABCDEF} \\ & \mathrm{BEF} \\ & \mathrm{BCD} \end{aligned}$	-------------	--
$\mathrm{k} l$	CDEF	$A B$ CDEF	B AB CDEF ACDEF	ij ijk ijl ijkl	A CD EF ACDEF	--------------------	--

would cause time to be suppressed as a variable and would result in a full replicate on the remaining five variables.

Table VI presents the details of the experiment plan. The block variables i and j denote the loading block effects. The block variables k and l denote the furnace block effects.

Table VII presents the defining contrasts and the contrasts that are confounded with block effects on completion of loadings 1,2 , or 4.

An experiment design is not complete until the method to be used for analyzing the results is also described. In this experiment there are two potential methods of analysis. Which method is used depends on the assumptions made about the furnace and loading block effects. Previous work concerning telescoping and multiply telescoping designs has assumed that the block effects can be classified as crossed. In the current experiment this permits the experimenter to identify which contrasts are confounded with which block effects. If the block effects are assumed to be additive, then those contrasts confounded with interactions between i, j and k, l effects are zero. Thus at the half replicate for example, $A C D=B E F, A E F=B C D$, and $A B=C D E F$ are confounded with furnace block effects; $A=B C D E F$ is confounded with the loading block effect. However, $C D=A B E F, E F=A B C D$, and $B=A C D E F$ are estimable contracts since the corresponding block effect interactions they are confounded with may be assumed to be zero.

If the block effects are assumed to be random variables, however, the experiment falls within the class of split-plot or hierarchical types. In that event, the estimation of effects is made in the usual manner. Significance tests, however, must be made with the error structure of the experiment in mind. For example, consider the full replicate experiment. The parameter estimates of $A, B C D E F$, and ABCDEF are all confounded with loading block effects and balanced with respect to all others. Thus, one could use the mean squares due to the effects BCDEF and ABCDEF as the error term for testing the A effect. Likewise, the contrasts, $B, A B, C D, E F, A C D, A E F, B E F, B C D$, $A B C D, A B E F, C D E F$, and $A C D E F$ are confounded with furnace block and furnace \times loading block effects. Thus, one could use the mean squares due to the three factor and higher order interactions in this list as the error term for testing $B, A B, C D$, and $E F$.

The remainder of the contrasts are balanced with respect to all block effects and hence all have the same error structure. These may then be tested in the usual manner.

REFERENCES

1. Fisher, R. A.: The Arrangement of Field Experiments. J. Ministry Agriculture, vol. 23, 1926, pp. 503-513.
2. Yates, F.: The Principles of Orthogonality and Confounding in Replicated Experiments. J. Agricultural Sci., vol. 23, 1933, pp. 108-145.
3. Finney, D. J.: The Fractional Replication of Factorial Arrangements. Annals of Eugenics, vol. 12, 1945, pp. 291-301.
4. Box, G. E. P.; and Wilson, K. B.: On the Statistical Attainment of Optimum Conditions. J. Roy. Stat. Soc., Ser. B, vol. 13, 1951, pp. 1-45.
5. Daniel, Cuthbert: Fractional Replication in Industrial Research. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Vol. 5. Univ. California Press, 1956, pp. 87-98.
6. Webb, Steve R. : Saturated Sequential Factorial Designs. Technometrics, vol. 10, no. 3, Aug. 1968, pp. 535-550.
7. Addelman, Sidney: Sequences of Two-Level Fractional Factorial Plans. Technometrics, vol. 11, no. 3, Aug. 1969, pp. 477-509.
8. Holms, Arthur G.: Designs of Experiments as Telescoping Sequences of Blocks for Optimum Seeking (As Intended for Alloy Development). NASA TN D-4100, 1967.
9. Holms, Arthur G.; and Sidik, Steven M.: Design of Experiments as 'Doubly Telescoping' Sequences of Blocks with Application to a Nuclear Reactor Experiment. Technometrics, vol. 13, no. 3, Aug. 1971, pp. 559-574.
10. Lindenberg, W.; and Gerhards, L.: Combinatorial Construction by Computer of the Set of All Subgroups of a Finite Group by Composition of Partial Sets of Its Subgroups. Computational Problems in Abstract Algebra. John Leech, ed., Pergamon Press, 1970, pp. 75-82.
11. Sidik, Steven M. ; and Holms, Arthur G.: Optimal Design Procedure for Two-Level Fractional Factorial Experiments Given Prior Information About Parameters. NASA TN D-6527, 1971.
12. Sidik, Steven M.: Kullback-Leibler Information Function and the Sequential Selection of Experiments to Discriminate Among Several Linear Models. Ph.D. Thesis, Case-Western Reserve Univ., 1972.
13. Davies, Owen L., ed.: The Design and Analysis of Industrial Experiments. Second ed., Hafner Publ. Co., 1960.
14. Peng, K. C.: The Design and Analysis of Scientific Experiments. AddisonWesley Publ. Co., 1967.
15. John, Peter W. M. : Statistical Design and Analysis of Experiments. Macmillan Co., 1971.
16. Burnside, William: Theory of Groups of Finite Order. Second ed., Dover Publications, 1955.
17. Sidik, Steven M. : NAMER - A FORTRAN IV Program for Use in Optimizing Designs of Two-Level Factorial Experiments Given Partial Prior Information. NASA TN D-6545, 1972.
18. Holms, Arthur G.: Design of Experiments as "Multiply Telescoping" Sequences of Blocks with Application to Corrosion by Liquid Metals. NASA TN D-6452, 1971.

Page Intentionally Left Blank

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.
CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

> SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

