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FOREWORD

This is the final report for the project entitled "Analysis of Temperature and Pressure Distri-

bution of Containers for Nuclear Waste Material Disposal in Space. " The work was performed

under NASA Contract NAS 3-16819.

The Program Manager for Westinghouse was Mr. A. R. Jones. The contributors to this study

included Messrs. W. G. Parker, L E. VanBibber and B. S. Preble.
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• SUMMARY . . : . - • • .

A multi-dimensional transient heat transfer analysis computer program (ESATA - Executive

Subroutines for Afterheat Temperature Analysis) was adapted to analyze the temperature and

pressure response of a radioactive nuclear waste disposal container following impact on the

earth. The ESATA program consides (in addition to standard modes of heat transfer) component

melting, LiH dissociation, the transport property variation, pressure response and container

creep stress buildup. This program was tailored to analyze both undeformed and deformed

waste disposal containers with varying degrees of ground burial from zero to deep burial with

minimum input requirements.

For this study, a general waste disposal container design was considered consisting of concentric

spherical layers of nuclear wastes, tungsten shielding, LiH shielding and SS-316 container,

twenty-one cases were analyzed for post impact periods of up to 23 days. Variations were

considered in the nuclear waste material power level ranging from 1.5 to 30 KW, radii of

materials, degree of deformation, degree of burial and soil properties. Power levels were

assumed constant during the transient and the initial internal pressure of 25 psi was based on

helium release from a emitters. Initial temperatures reflected the heat generation during

reentry. No provision was made in the analysis for methods of relieving internal pressures.

Typical results of these analyses included:

• The integrity of the waste containers was maintained for the partial burial

(up to 38% diametral) of both undeformed and deformed containers during

the transient.

• Complete burial of waste containers with more than 5 KW of radioactive

waste material resulted in creep stress rupture failures occurring 4-12 days

after impact.

• At time of rupture, container temperatures were in the range of 2500-2600 R

and the internal pressure was approximately 130 psi.



Hydrogen release from LiH dissociation was the primary cause of the

pressure response.

Temperature response of the container was sensitive to soil properties

but not depth of burial, other than partial burial.
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1 . 0 INTRODUCTION - - . - - . . . . - . -

With an increasing number of nuclear power plants going into service, ("he problem of disposal of

the radioactive waste, obtained from the reprocessing of the spent fuel elements, becomes significant.

The U. S. Atomic Energy Commission currently has the responsibility of safe handling of this nuclear

waste. Their basic requirement is to either store or dispose the waste in such a manner that it will

neither endanger those people closely involved nor the general public. Furthermore, it must be

managed in such a way that it will not have an adverse impact on man's environment.

The A EC has considered several concepts, for the disposal or storage of the radioactive nuc.lear

waste. 'One of these concepts is to dispose the waste into space. The National Aeronautics

arid Space Administration has been assigned the task of determining the feasibility of such a.

method. In this feasibility study, many areas of safety must be studied and evaluated. One

of these areas involves the safety of the package on an aborted flight, or trajectory resulting

in the package returning and impacting on the earth. At impact, the package must withstand

the impact forces and contain the radioactive waste material. After impact, the heat due to the

decaying waste material must be dissipated to prevent the container from failing. This require-

ment becomes difficult when the package either partially or completely buries itself in the

ground. Therefore, for this portion of the safety analysis, Westinghouse Electric Corporation,

Astronuclear Laboratory, under contract NAS3-16819, has provided analytical assistance to

NASA - Lewis Research Center.

The analysis of the system subsequent to impact is quite complex. In addition to the standard

modes of heat transfer, conduction, convection and radiation, other phenomena must be

considered in the analysis. Melting of the fuel, shielding containment system and soil may

occur; therefore, the heat of fusion of these components must-be, included in the analysis. If

a shielding material such as LiH is used, dissociation must also be considered. The containment

system will have an initial internal pressure which will increase during the transient due to

heating of helium released from a emitters and due to the dissociation of hydride materials.

The containment vessel will, therefore, be subjected to both heating and pressure loading.

The creep rupture characteristics of the material selected for the containment vessel must be



evaluated in assessing the survival probability of the system.

The complexity of the analysis of the post impacted system is further compounded by the

consideration of variable soil conditions, burial depths and deformation of the waste and con-

tainment system. Since the analysis of the post impact event is not straightforward and is

difficult to describe by simple analytical models, a computer program developed for the post

impact analysis of a reactor/containment system was used. This program called Executive

Subroutines for the Afterheat Temperature Analysis (ESATA) was developed by Westinghouse

under a NASA contract NAS3-I44052 and an Air Force Contract F29601-72-C-00353 to

analyze the transient dfterheat temperatures and pressure response of a reactor/containment

system following impact. This program is a multi-dimensional transient heat transfer analysis

program that was expanded to include such phenomena that is pertinent to this program such as

the following:

'• System component melting

• Melting of the soil which surrounds the system

• Li H dissociation

• Internal pressure buildup due to LiH dissociation and presence of helium

• " Containment vessel creep rupture analysis

The program was also changed to provide:

• Internally generated models of deformed and undeformed containment
system configurations

• Variable degree of soil burial

The objectives of this study were to adapt the ESATA code to evaluate the waste disposal con-

tainment system during the post impact period and to perform heat transfer calculations of various

waste container designs under varying impact conditions. A three task program was implemented

to accomplish the study objectives which include:

• Task I - Adaption of the ESATA Code

• Task II - Heat Transfer Calculations

• Task III - Reporting
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Task I consisted of adapting the ESATA computer program to evaluate nuclear waste container

designs. This effort included the modification of the internally stored nodal models to better

represent the containment system and to expand the capability of analyzing variable soil burial

conditions. A description of the ESATA program with adaptions is presented in Section 2.

For Task II, 21 cases were analyzed under transient post impact conditions. These cases con-

sidered variations in decay energy level, waste material composition, waste and containment,

system dimensions, degree of deformation, degree of burial and soil properties. Section 3

describes the results of these calculations. Conclusions obtained from this study are presented

in Section 3. Operating instructions for using the ESATA code are presented in Appendix A.

Appendices B and C contain the property data used for these analyses and symbols used in the

computer code.



. 2.0 TASK I. - , ADAPTION .OF THE ESATA CODE

The ESATA program was'modified to analyze the thermal safety aspects of post-impacted radio-

active nuclear waste containment systems. Specifically, the program calculates the transient

temperature and pressure response of a containment system (Figure 2-1) after impact. The analysis

considers a system containing helium released from a emitters and radioactive decay energy. The

decay heat must be dissipated by conduction through the containment material to the environment.

The pressure from the helium and hydrogen generation must be contained while the heat is being

dissipated. '•; •

The main components of these systems include:

• Waste Material Composite of:

Lithium Hydride
Aluminum
Copper
Spent Fuel

• Inner Shell (Tungsten)

• Shielding (LiH)

• Outer Container (SS-316)

The following phenomena are simulated in the analysis:

• Melting of each constituent in the composite waste material.

• Melting of containment material, shielding and soil.

• Lithium hydride dissociation.

• Pressure buildup inside the containment vessel due to increased temperatures

of the helium released from a emitters and hydrogen released from hydride

dissociation.

• Creep rupture analysis of the containment vessel.
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The program was originally developed to analyze mobile nuclear power plants. For this study,

the internally developed nodal models were modified to provide for simulation of spherical waste

containment systems with or without deformation. Flexibility was built into the program to

consider variable constituent weights and power levels for the waste material. Flexibility was

provided for variable dimensions, temperatures and materials for the waste container and en-

vironment. The treatment of burial conditions was expanded to consider variable soil-to-

vessel interface conditions and to consider variable burial positions from "zero" to fully buried

conditions for the undeformed and deformed configurations. Furthermore, the undeformed con-

figuration could be analyzed for varying depths below the surface of the soil.

This program was originally developed using the TAP-A computer program as a nucleus. The

TAP-A computer program, developed by Westinghouse, solves problems involving transient and

steady-state heat transfer in multi-dimensional systems having arbitrary geometric configurations,

boundary conditions, initial conditions and physical properties. The capabilities of TAP-A

have been maintained in the ESATA program.

2. 1 PROGRAM DESCRIPTION

2.1.1 General Description of Code

Figure 2-2 presents a schematic flow chart of the ESATA code package. " Each of the subroutines

contained in the ESATA code are identified in the figure including the general sequence in

which they are executed by the program.

2. 1.2 Calculational Procedure of Code •

Step 1 Input data is read by the main program routine ESATA and by subroutines INPUTT

and HTMGEN.

Step 2 The input data are processed and nodal structure representations for the waste con-

tainer are set up in subroutine HTMGEN.

8
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Figure 2-2. ESATA Code Package Schematic Flow Chart



Step 3 Parameters are initialized in INTHYD for the simulation of hydride dissociation.

Step 4 The total heat generation rate is distributed among those nodes representing heat

sources in subroutine HEAT. •

Step 5 The input data/ the geometry setup, the initial heating rate distribution, and initial

temperatures are output by subroutine INOUT.

Step 6 Time is incremented by a predefined amount.

Step 7 Heat source distributions due to hydride dissociation are established for the time

interval in DISHYD.

Step 8 Temperature dependent material properties (such as thermal conductances and

capacitance) to be held constant during the time interval are established by

subroutine POWER. Note that subroutine POWER calls subroutines as indicated

in Figure 2-2 during the process of establishing these data.

Step 9 Temperatures for all system components are computed in subroutines CONDO

and STCALC.

Step 10 Melting of all component represented are established in subroutine TMPCAL

based on the computed temperatures.

Step 11 Internal pressure buildup and the corresponding containment vessel stress level

is computed in subroutine PRESUR.

Step 12 Temperature distributions, pressure, heat source, distributions and the fraction of

melting of each component is printed by subroutine OUTPUT.

Step 13 All common block data is stored on an auxiliary tape at predefined intervals for

restart capability in RESTART.

Step 14 Time is again incremented and steps 7-13 repeated. The calculation is terminated

when the run time is exceeded.

10
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2. 1.3 Internal Node Generators

Three generalized heat transfer models (HTM's) of post impacted nuclear waste containment

systems were developed and stored in the ESATA program to minimize input data requirements.

These models represent the undeformed configuration in a partial burial, the deformed configura-

tion in a partial burial, and the undeformed configuration in a shaI low-to-deep burial.

Undeformed HTM

The undeformed HTM for partial burial analysis is shown in Figure 2-3. This model contains 12

internal nodes. A total of 14 layers with 8 nodes in each layer are available to simulate the

waste container and environment. Basic modeling assumptions for this configuration are:

• Two-dimensional analysis

• No internal deformation with structure intact. >..

Representation of the containment system are limited to the first 12 layers with a layer re-

quired to represent the interface conditions between the container and the environment and at

least one layer required to represent the soil and/or air. The radii, material representation

and initial temperatures can be varied for each layer via input. Earth burial from zero to

100% can be considered through the input of nodes (0-8) circumferentially in a layer that

represents the environment external to the containment vessel.

The waste product material can be represented for all three models as a composite of the

following four components by the selection of material number 49 to represent the heat sources

(see Appendix B):

Lithium-Hydride

Aluminum

Copper

Spent Fuel

Weights of each component is specified via input. Density and specific heats are calculated

for the waste material based on the component weights. A fixed thermal conductivity of

17 Btu/Hr-Ft- F is used, and the melting of each component in the waste material is simulated.

11
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Figure 2-3. HTM-1 Undeformed Model
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Deformed HTM

Figure 2-4 describes the nodal model for representing the waste container in a deformed con-

figuration. This model contains 252 internal nodes. Modeling assumptions applicable to the

deformed model include:

• Two-dimensional analysis.

• Deformation of waste material, shielding and containment in lower half

of system only.

• Degree of deformation is variable via input of node layer thicknesses for the

deformed region.

Consistent with the undeformed model, 14 layers of nodes are provided in the spherical unde-

formed region with 4 nodes in each layer. In the cylindrical region representing the deformed

base, there are also 14 layers with 14 nodes in each layer. With this pattern, each layer in the
;

undeformed section is modeled discretely in the deformed section. For example, the third layer

in the undeformed section is represented by nodes 37 to 40. Nodes representing the third layer

in the deformed section would include nodes 41-43, plus nodes 7 and 25. Consistent with the

undeformed model, the temperatures, radii and material selection for the undeformed sections

are specified in the input. Nodes representing this layer in the deformed section are also

assigned the same material and temperature. The spherical radii in the undeformed section are

identical to the cylindrical radii in the deformed section. For the deformed model, an additional

input of thicknesses of each row of nodes is required. These thicknesses are applied to all 14

nodes in each row (for example, nodes 5, 23, 41, , 221, 239 all assigned one thickness).

The number of layers available for representing the waste containment system is limited to 12

similar to the undeformed model. The degree of burial can be varied from zero to 100%. For

zero burial, all nodes in rows below the containment vessel represent soil. Partial burials are

defined by inputting the number of nodes in each layer that represent air. For the deformed

model, this number can be varied from 0 up to a number equal to the sum of number of layers

representing the waste containment system + 4. (This defines all nodes on the side of the

containment vessel as being exposed to air. )

13
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Figure 2-4. HTM-2 - Deformed Model

14
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Undeformed HTM - Deep Burial

The third nodal model, shown in Figure 2-5, represents the undeformed model in varying

degrees of deep burial. This model is represented by 270 nodes. Basic modeling assumptions

are identical to the undeformed model. This model contains 10 spherical layers with 6 nodes in

each layer. Up to 9 of these layers can be used to represent the waste container. One layer

is required to represent the interface conditions between the waste container and the soil. The

remaining internal nodes represent the soil. The interface between the soil and air is defined in
^

this model by appropriate boundary conditions of convection and radiation applied to the surface

nodes at the top of the model (nodes 3001-3009). This is in contrast to the method of using

internal interface nodes to represent the air~to-container and air-to-soil interface.

Materials, temperatures and radii are defined via input for the spherical layers. The remaining

nodes are assigned the appropriate material number and temperature representative of the soil.

Twelve rows of cylindrical nodes are provided above the spherical section for simulating varying

burial depths. Thicknesses of each row of nodes are defined via input to provide this capability.

The radii of all cylindrical nodes and the thicknesses of cylindrical nodes in the side and base

of the model are defined internally based on the outer radius of the spherical portion of the model.

2. 1.4 Features and Limitations

The ESATA program contains the following calculafional modeling features and limitations:

• Waste container representation - Three configurations are represented by

internally generated models: An undeformed configuration in partial burial

is represented by a 112 node model. A deformed configuration in partial

burial is represented by a 252 node model. An undeformed configuration in

varying depths of burial is represented by a 270 node model.

• Waste material representation - The waste material can be represented as a

lumped representation of four constituents. Densities, specific heat and melting

are proportioned by the weight of each constituent.

15
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Figure 2-5. HTM-3 - Deep Buried Model
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Soil burial - The capability to analyze zero-to-full burial is provided for

both the undeformed and deformed configurations. The undeformed configura-

tion can also be analyzed for varying depths .of burial.

Deformation of waste container - Varying degrees of deformation can be

treated via the input of row thickness with the usage of the deformed model.

Geometry variations - Representation of the waste .container and soil can be

varied via the input of materials, temperatures and radii for,each layer.

Power level - The power level of the nuclear wastes is maintained constant

at the prescribed jnput value. The heat sources are distributed among those

nodes represented by the material fhat is designated as a heat source via input.

Soil materials - Three soils are represented by properties in permanent storage

in the code. Additional soils may be considered by the usage of normal TAP-A

input. '

Component melting - The melting of all components is simulated by represent-

ing the heat of fusion as an effective specific heat.

Component displacement - Displacement of components subsequent to melting

is not simulated.

Container to soil interface - Interface conditions of a variable contact

coefficient, radiation gap or perfect soil contact can be represented via input.

Hydride dissociation - The dissociation of LiH is treated,on an average

temperature basis. The heat of formation and increase in pressure buildup due

to hydrogen release are simulated.

Pressure response - In addition to hydrogen release from LiH dissociation, the

release of helium from a emitters is treated. The subsequent change in pressure

due to temperature changes are modeled.

17



• Stress analysis - A hoop stress and creep rupture analysis for the containment

vessel is performed.

• Properties - Temperature dependent specific heats and thermal conductivities

are stored internally for the commonly used materials. Additional properties

may be specified by normal TAP-A usage. .

• Time step accelerator - A procedure for increasing and decreasing the time

increment during the transient is provided based on the number of iterations

required for convergence at the previous time step.

• Program restart - A program restart capability is provided. A matrix contain-

ing all the parameters required to restart the ESATA program at any point in

the transient is output on tape. Computer time intervals for outputing or

updating this matrix are specified as input data.

• Normal TAP-A input is available for geometry changes, material changes and

temperature changes.

2. 1.5 Input and Output Options

The quantity of input data required for the operation of any computer program becomes parti-

cularly important whenever the program is to be employed for analysis of many different

configurations. To be effective in performing safety analysis of various post impacted nuclear

power plant configurations, the analysis tool must be easy to use and the input data minimized.

For this reason, generalized heat transfer models were developed for the ESATA program in

order to minimize the input data required and thus maximize the usefulness of the program.

The general types of input data required are as follows:

• Variable Array Size for Geometry Related Parameters

• Titles

• Initial and Final Times, Time Increment and Convergence Criteria
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• Set of Numbers to Identify Model Choice, Degree of Burial, Soil Selection

and Temperature, Soil-to-Containment System Interface Condition, Total Heat

Generation Rate, Soil Fusion Temperature, Amount of Emitting Fuel and Con-

tainment System Void Fraction

• Outer Radius, Material and Initial Temperature for Each Spherical Layer

• • For Deformed Model Thickness of Each Layer in Deformed Base

• For Deep Burial Model, Thickness of Each Soil Layer above Spherical Portion

of Model .

• The Time During the Transient Period where Output Data is Required

• The Times (Computer Operation Time or Simulated Model Time) During Transient

when all Data in Common Blocks are Placed on Restart Tape

A detailed description of the input data is presented in Appendix A. Computer output from an

ESATA calculation consists of an edit of the input data, the results from the translation of the

input data into the nodal point form required for the finite difference solution and the data

output from the calculations. A detailed tabulation of this data is presented in Appendix A.

The types of data output for each time step is presented below:

• Time Point in the Afterheat Decay Transient

• Temperatures for all System Components

• Power Level and Location of Heat Sources

• Percentage of Component Melting

• Heat Transfer from Containment Vessel to Soil and/or Air

• ' Internal Pressure, Containment Vessel Stress and Percent of Containment

Vessel Life Used

19



2.2 SUBROUTINE DESCRIPTION

A general description of each subroutine is described in this section. ' '

2.2.1 ESATA Main Program

This is the main program for the ESATA computer code. It contains the operational logic by

which all primary subroutines of the program are called in the process of analyzing the

temperature response of the reactor plant models. In addition, since ESATA is a variable

dimensional program, the sizes for most matrices used in the calculations are computed based

on the input data in this portion of the program. The titles and main program control variable

for specifying the analysis option is also read in the main program.

2.2.2 TAP-A Functional Subroutines • ' . . - • •

The following subroutines were developed originally for TAP-A program usage and extended

where necessary for usage compatible with the waste container post impact analysis option of

the ESATA program. References 2, 3 and 4 contain additional information relative to the sub-

routines described below.

Subroutine IN PUTT

These subroutines read input for performing the calculations. It consists of the input data

required for the heat transfer models (HTM) contained in the program for performing;the post

impact analysis and the standard TAP-A data input routine.

Subroutine OUTPUT

This subroutine outputs the program data.

Subroutine POWER :

This subroutine calculates internal heat generation summations and material capacitances.

Heat generated at different nodes in the model are determined in subroutines HEAT and DISHYD.
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These individual heating rates are summed in this subroutine on a per node basis. Heat capaci

tances for each node in the model are also computed. If a standard TAP-A run is made, this

subroutine selects from the input data the heat generation rate for each node.

Subroutine STCALC

This subroutine calculates surface heat transfer coefficients and containment vessel surface

temperatures.

Subroutine INPUT

This subroutine prints the input data, initial conditions, geometry data generated by HTMGEN,

etc., or read in, and heat generation rates generated by HEAT.

Subroutine XLIN

This subroutine does a linear interpolation of independent and dependent variables to define

the dependent variable based on the prescribed independent variable.

Subroutine CONDO

This subroutine calculates steady state and transient temperatures for each node in the model

through solution of the finite difference equations. In addition, a procedure for varying the

time increment during the afterheat decay transient is included. The procedure consists of

monitoring the number of iterations required for solution convergence and doubling the time

increment for the next calculational step whenever the number of iterations is less than 20.

2. 2. 3 HTM Generation Subroutine

The subroutine HTMGEN sets.up the appropriate nodal geometry from the three nodal models

described in Section 2. 1. 3 based on the input data option.
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This subroutine sets-up the following arrays which define the nodal geometry, nodal materials

and initial temperatures:

VOL (i)

U 0, k)

I MAT (i)

OLDCON (i, k)

IDEMK (i, i)

SAREA (i)

US (i)

H (i)

S T ( J )

BT (i)

T( i )

volume of node i '

index of node connected to node i by connection number k

material number of node i

the length to area ratio for node i and connection number k.

define use of primary or secondary conductivity

surface area for surface to boundary connections

node jndex for internal or boundary node connected to node i

surface heat transfer coefficients

surface node temperature

boundary node temperature

internal node temperature

2. 2. 4 Heat Generation Subroutines

The general heat transfer calculation option for normal heat generation rates are supplied to the

code via input data for each node. For the waste container post impact analysis option, heat

generation rates for each node are calculated internally. There are two sources for heat genera-

tion in the ESATA program. One source is the nuclear waste decay power which is calculated

in HEAT for each heat source node based on the input of the total decay power level. The

other source is the heat generated or absorbed due to hydride dissociation which is calculated

in the subroutine DISHYD described in Section 2.2.7. A general description of the HEAT

subroutine is presented below. Energy absorption associated with phase changes are simulated

in the capacitance calculation by effective specific heats.

22



Astronuclear
^y Laboratory

Subroutine HEAT

This subroutine distributes the total heat generation rate attributed to the radioactive nuclear

materials specified via input among all nodes designated to contain these materials. The total

power level is distributed on a volume weighted basis. A material number is inputted which is

to represent the heat source. For consideration of the composite material representing the four

constituents, this number is 49. All nodes containing that material are assigned a heat genera-

tion rate. At the present time, the decay of power with time is neglected because of the

relatively short time period in which the impact analysis is performed.

2. 2. 5 Surface Heat Transfer Subroutine

The subroutine SURFQ calculates the rate of heat transfer from the waste container to the en-

vironment at time steps when the output data is printed. The heat transfer rate from the

container is broken into heat conducted to the soil, radiated to air, and convected to air. The

sum of these terms are compared to the total heat generation rate.

2.2.6 Melting Subroutine

The TMPCAL subroutine performs the function of simulating the heat of fusion when a material

melts or fuses. The heat of fusion (stored in block DATA for 20 materials) is modeled by an

effective specific heat defined over a finite temperature range.

Hp

Cn = AT
9 where AT = 50°R

P AT

After a temperature convergence is obtained in CONDO for a particular time step, the

temperatures of all nodes assigned one of the above materials are compared to their melting

point temperature plus the band of 50 R above the melting used to simulate the phase change.

The temperature of a node is corrected based upon the percent of melting, the previous calculated

temperature, and the present temperature for a node relative to the 50 R melting band.
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The fraction of melting is:

x
mel AT

where

T = the corrected temperatures

T = the melting point temperature

X . = fraction of melting
mel

When this fraction is 1. 07 melting is completed. Equations are defined to simulate the correct

value of H. irrespective of the number of time steps to go through the melting and irrespective

of the magnitude of the old and new node temperature relative to the melting band. (Typical

equations and approach presented in Appendix D of Reference 2)

In addition to the single component melting, this subroutine calculates melting of the four

constituents in the waste material composite. The composite material will go through the four

melting points in the following order based on temperature level:

Aluminum

LiH

Copper

Waste Products

2. 2. 7 Hydride Dissociation Subroutines

Subroutine DISHYD

The procedure for simulating the dissociation and recombination of lithium hydride is based on

the following assumptions:

• Pressure gradients in the system are neglected.

• Perfect gas law assumed.

• The heat of reaction is simulated.
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This subroutine first defines at any time step an average temperature of the hydride material.

The equilibrium pressure of H_ in the presence of LiH is then calculated based on the average

hydride temperature. The total number of hydrogen moles that can be released by dissociation

is then calculated based on the equilibrium pressure, average temperature and total void

volume using the perfect gas law.

The effect of dissociation on the individual hydride nodes is then considered. The number of

moles of hydrogen released from each node is calculated by the perfect gas law using the

equilibrium pressure, the local node temperature, and void volume assigned to the node. The

number of moles of HL released from a node is limited to the maximum number available for

that node. The fraction of dissociation occurring during the time step is calculated and a heat

generation rate is calculated based on this fraction of dissociation, the node mass and the heat

of reaction.

The number of moles released from each node is summed and compared to the total number

that can be released. If these two quantities do not agree (resulting from completion of

dissociation locally) the amount of dissociation for each node is corrected by the ratio of the

two totals.

Subroutine INTHYD

This subroutine initializes arrays denoting the location of hydride materials, the amount of

hydrogen available and the local void volumes.

2.2.8 Pressure and Stress Subroutine

Subroutine PRESUR

This subroutine calculates the pressure buildup inside the containment vessel, the maximum hoop

stress level of the containment vessel and the containment vessel percent life used on a creep

rupture basis. '
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Two components are considered in the pressure buildup; namely, the helium released from

a emitters and hydrogen released from hydride dissociation. This subroutine takes the vapor

masses calculated in other subroutines and calculates the partial pressures of each component

based on the perfect gas law (Appendix, E of Reference 2). The total pressure is calculated

and used to calculate a hoop stress based on the radius and thickness of the containment vessel.

The Larsen Miller parameter is calculated based on SS-316 creep rupture data and the maximum

containment vessel temperature using the following:

(60-LM)0'496 - ( L o g ) 1 * 2 = 1.2 = 0

where •

LM = Larsen-Miller parameter

= • stress level

The time to failure is computed from the standard Larsen-Miller equation

LM = (T + 460) (a+ Log1Qt) x 10"3

where

T '= temperature of the vessel in F

a = experienced constant having a value of 20

for the 316 stainless steel material

t = time to failure at the applied stress (<r) level

The percent of life used in each time step is calculated based on the time increment divided

by the time to failure (t). The percent of life used is summed to determine the total used-up

for fraction of life. When this fraction equals 1, rupture is assumed to occur.

2.2.9 Property Data Subroutines

Several subroutines and functions are used to store and calculate property data and calculate

effective property data to simulate internal interface conditions. Appendix B presents the

detailed data and equations.
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Subroutine VARK

This subroutine defines the thermal conductivity based on materials defined in Table 2-1 for

each node and calculates the thermal conductance between each node in the model. It calls

the PROTK functions described below. VARK contains the logic to calculate effective conducti-

vities for the soil to containment vessel contact coefficient, vessel to air interface of radiation

and natural convection, and air-to-air nodes. It assigns high or low conductivities for one-

dimensional heat transfer paths through materials or across interfaces. It also assigns a thermal

conductivity of 17 Btu/Hr-Ft- F for the composite waste material.

Function PROTK

This subroutine stores thermal conductivity data versus temperature for 14 materials pertinent

to the post impact of the waste container. It does a linear interpolation of this data to define

a thermal conductivity for a prescribed material and temperature.

Block DATA

This subroutine stores density, melting point temperature and the heat of fusion for 14 basic

materials.

Function PROCP

This subroutine stores specific heat data versus temperature for 14 materials. It does a linear

interpolation of this data to define a specific heat for a prescribed material and temperature.

Subroutine CPCAL

Defines effective specific heat and density for all materials (components) not defined by basic

material properties; for example, defines effective properties for the composite waste material.

The capacitance of the waste material is mass weighted based on the capacity of each con-

stituent simulated in the material and the fraction of the mass of each material over the total

mass of the component.
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TABLE 2-1

MATERIALS STORED IN ESATA

MATERIAL
NUMBER DESCRIPTION

1 Waste Products

2 Aluminum

3 Stainless Steel 316

4 Lithium Hydride

5 Tungsten

6 Graphite

7 Teflon

8 Thermal Switch Insulation

9 Lithium

10 Coastal Plains Soil

11 Granite Detrital

12 Laterite Soil

13 Water

14 Copper

21 -40 Temperature Dependent and Constant Properties that can be
Input by User via TAP-A Standard Input

41 1-d High K Axially

42 1-d High K Radially

43 2-d High K

44 Vessel-to-Soil Interface

45 Vessel-to-Air Interface

46 Air Nodes

47 Vessel-to-Water Interface

48 Dissociated LiH

49 Homogeneous Waste Product Composite
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3.0 TASK II - HEAT TRANSFER CALCULATIONS

For this study, 21 cases were analyzed. These cases considered variations in container design,

power levels, degree of burial, soil conditions and degree of deformation. A single general

waste container was defined which is described in Section 3. 1. A basic assumption was

made that all reentry protective materials were separated from the container after

impact. A description of the 21 cases is presented in Section 3.2. Three cases were selected

for detailed analysis which are described in Section 3. 3. Pertinent data from all 21 cases are

described in Section 3.4. Results are described in Section 3.5.

3. 1 GENERAL DESCRIPTION OF WASTE CONTAINERS

The general configuration of the waste containers considered in this study is shown schematically

in Figure 3-1. The containers consisted of spherical layers of alternate materials. The innermost

material was the nuclear waste material. For this study, this material was analyzed as a

homogeneous composite of aluminum, LiH, copper and waste products. The waste material was

enclosed by a thin layer of tungsten shielding. LiH shielding was placed adjacent to the

tungsten and the shield and waste material package was enclosed by a SS-316 container. Re-

entry shielding materials such as graphite and teflon which were initially protecting the con-

tainer were assumed to be separated from the container for this post impact analysis.

3.2 DESCRIPTION OF CASES

Tables 3-1 and 3-2 summarizes the characteristics of the 21 cases analyzed in this study. In-

cluded in these tables are descriptions of the power level, post impact configuration, degree

of burial, geometry, soil conditions, initial temperatures, initial pressures and fuel weights.

These cases were selected to provide several comparisons including:

• The Effect of Power Level in a Single Geometry

• The Effect of Partial Burial Versus Deep Burial

• The Effect of Deformation in Partial Burial Conditions
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TABLE 3-2

WEIGHT SUMMARY (LBS)

Case

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Fuel

800

800

800

50

167

233

300

233

233

500

666

900

800

800

800

800

800

50

167

233

300

LiH

280

280

280

33.5

43.5

68.2

64.6

68.2

68.2

303

293

281

280

280

280

280

280

33.5

43.5

68.2

64.6

Copper

1650

1650

1650

201

260.6

409

388

409

409

1815

1760

1683

1650

1650

1650

1650

1650

201

260.6

409

388

Aluminum

500

500

500

60.8

78.8

124

117

124

124

549

532

509

500

500

500

500

500

60.8

60.8

78.8

124
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• The Effect of Burial Depth

• Comparison of Alternate Designs

• The Effect of Soil Property Variations

Two soils were .selected from a group of nine soils tested by the National Bureau of Standards

for Sandia Corporation for consideration in these analyses. One soil was coastal plains soil

which is typical of we 11-weathered soil representative of approximately 15% of the total land .

area of the world. In addition to being a common soil, this soil was selected based on having

a "typical" thermal conductivity in comparison to the other soils. The other soil considered was

Podzol soil which is leached organic soil of woodland regions of temperate zones of the world

which comprise about a quarter of the total land area of the world. In comparison to coastal

plains soil, this soil had a higher thermal conductivity and higher temperature level for fusing,

thus providing a trade-off in soil property variations. The coastal plains soil was used in the

first 13 cases and the podzol soil was used in the remaining 8 cases.

The first three cases were check cases for the three models (partially buried undeformed model,

deep buried undeformed model and a non-buried deformed model). A reference design, con-

sisting of a four-foot diameter container with 800 pounds of nuclear waste material producing

24 KW of power was used for these cases. These cases were analyzed in detail to determine

the operational I ity of the modified ESATA code and were compared to determine the effects

of deformation and degree of burial. Cases 4-7 compared 4 container designs ranging in

diameter from 24 inches to 35 inches and in power from 1.5 KW to 10 KW. The containers

were assumed to be undeformed and deeply buried (22-30 feet). These cases provided a

comparison of high earth orbit modules and solar escape modules. Cases 8 and 9 considered

the solar escape module (case 6 with 7 KW of nuclear wastes) in a deformed configuration with

zero and partial burial. Cases 6, 8 and 9 provided trade-offs in deformation and degree of burial.

Cases 10-12 considered the reference design (4 foot diameter container) with variations in

nuclear waste material weight and power level ranging from 15-30 KW. The container was
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assumed to be undeformed and deeply buried. Cases 2, 10, 11 and 12 provided a comparison

of power level in a single container design. Case 13 considered the reference design in a

deformed configuration and partially buried. Cases 2 and 13 provided another

comparison of degree of burial for the deformed configuration. Case 14 considered the unde-

formed reference design deeply buried in podzol soil and in comparison to case 2 indicated

the effects of soil property variation. Cases 15-17 considered the reference design

in an undeformed configured burial to varied depths to provide a trade-off of burial

depths. Cases 18-21 were a repeat of cases 4-7 deeply buried in podzol soil. This set of

cases provided an evaluation of the alternate designs exposed to deep burial in a more con-

ductive soil than cases 4-7.

3.3 DETAILED ANALYSIS OF THREE WASTE CONTAINER CONFIGURATIONS

Three cases were selected for detailed evaluation and analysis. Two of the cases represented

the undeformed reference design in partial (case 1) and deep (case 2) burial in coastal plains

soil. The third case considered the 7 KW solar escape module deeply buried in podzol (case 20).

3. 3. 1 Case 1 Results

Case 1 considered the partial burial (37.5% diametral burial) of an undeformed 4 foot diameter

24 KW waste container. The general definition of this case was shown in Tables 3-1 and 3-2.

For this case, the HTM-1 model shown in Figure 2-2 was used to perform the analysis. The nodes

were assigned the radii and materials indicated in Table 3-3. Intimate contact between the soil

and container was assumed.

Case 1 was run for a total of 2 million seconds. Figure 3-2 is a plot of the axial temperature

profile for the fuel (center), base of the tungsten shield, base of the containment shell and the

soil adjacent to the base of the containment shell.

The initial temperature of the surface of the waste container was higher than the fuel due to

the large external heating rates during reentry. After impact, the heat load is that due to the
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TABLE 3-3

CASE 1 RADII AND MATERIALS

Undeformed Model - Figure 2-2 - 37. 5% Burial (Diametrol %)

Layer Nodes Outer Radius (Inches) Material

1
2

3

4

.5

6

7

8

9

10

11

12

13

14

1-8

9-16

17-24

25-32

33-40

41-48

49-56

57-64

65-72

73-80

81-88

89-96

97-104

105-112

3.

9.

18.

19.46

20.66

21.86

23.06

24.26

25.26

26.26

32.8

52.5

85.3

131.3

Composite Fuel

Composite Fuel

Composite Fuel

Tungsten

LiH

LiH

LiH

LiH

SS-304

Air/Soil Interface

Air/Coastal Plains Soil
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waste products; therefore, the temperature gradient reversed during the transient. The con-

tainment vessel surface gradually dropped from 1660 R to 1440 R as the soil at the base heated

to 1200°R. The fuel increased from 1460°R to 1660°R in the first 15,000 seconds and then followed

the gradual cooling of the containment surface after a sufficient thermal gradient was established

in the system to conduct away the heat energy of the waste products. After 1 million seconds,

the system had reached a steady state condition. For this case, with only 37.5%, burial along

the circumference, no melting of the soil occurred.

Figure 3-3 is a plot of the temperature response radially for the fuel, tungsten shield, and con-

tainment shell in a section exposed to air. This figure also indicates the reversal of the temperature

gradient in the waste container during the transient. Because of the greater heat rejection capa-

bility to air by convection and radiation, the containment vessel cooled to a level of 1000 R

which was 300 R lower than at the bottom. Since most of the energy was being conducted to

the top, the temperature drop across the LiH radially was approximately 300 R which was much

greater than in the base. A steady state temperature profile was established after approximately

300, 000 seconds.

Figure 3-4 presents a breakdown of the heat dissipation to the environment and compares the

heat dissipation rate to the internal heat generation rate. Due to the initial temperature

conditions upon impact induced by the reentry heating, the container is cooled by the environ-

ment significantly as shown in the temperature plots. The total heat dissipation rate'from the

container is approximately 149 Btu/sec 100 seconds subsequent to impact compared fo a heat

generation rate of 22. 75 Btu/sec. The major contribution to the heat dissipation initially was

radiation to ambient (106 Btu/sec). A surface emmissivity of 0. 8 with a view factor of 1. 0

was assumed for this calculation. The contribution of natural convection to the ambient was

24 Btu/sec at 100 seconds, and the remaining 19 Btu/sec was by conduction to soil. As the

transient progressed the waste products and containment system cooled to lower steady state

temperature levels than initially due to sufficient exposure to the ambient. The heat dissipa-

tion rate therefore gradually approached the heat generation rate of the waste products. After
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300, 000 seconds, the distribution of the heat dissipation was 14. 3 Btu/sec by radiation to air,

7. 7 Btu/sec by natural convection to air and 0. 8 Btu/sec by conduction to the soil.

The internal pressure response for this case is shown in Figure 3-5. Because the system cooled

to a lower steady state condition, the internal pressure dropped from a 25 psi initial pressure

to approximately 21 psi. For this case, LiH dissociation was not considered.

Figure 3-6 is a plot of the hydrogen equilibrium pressure for LiH as a function of LiH temperature.

A peak LiH temperature of 1600 R was indicated for case 1 by the peak tungsten temperature in

Figure 3-2. As shown in Figure 3-6, the hydrogen equilibrium pressure is much less than 1 psi

thus the contribution of hydride dissociation to the pressure response is negligible for this case.

Figure 3-7 is a plot of the circumferential temperature profile in the containment vessel and

tungsten shield at steady state. Because of the low thermal conductivity of the soil, the base

of the containment vessel exposed to the soil reached a higher temperature than the upper

portion exposed to the air. Out of the 22.75 Btu/sec (24 Kw) total heat generated by the

waste products, 22 Btu/sec were being dissipated to the air and the remainder to the soil.

The higher heat load to the air resulted in a 300 F drop radially across the LiH in the top

region versus a 50 F radial drop in the base.

3.3.2 Case 2 Results

Case 2 considered the deep burial (19 feet to base of sphere) of the reference configuration

considered in Case 1. The HTM-3 model, shown in Figure 2-4, was used for this analysis. The

general conditions for this case are shown in Tables 3-1 and 3-2. The nodes were assigned

materials and radii indicated in Table 3-4.

Figure 3-8 shows the temperature response of the fuel center, tungsten, containment vessel,

and the soil one inch below the container. This temperature response represents a slice in the

system from the fuel center vertically downward to below the base of the containment system.
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TABLE 3-4 , -

CASE 2 RADII THICKNESSES AND MATERIALS

Deep Burial Model (Figure 2-4)

A. Spherical Section

Layer

1

2

3

;. 4
5

6

7

8

9

10

B. Upper Cylinder

Row

1

2

3

4

5

6

7

8

9

10

11

12

Nodes

109,128,
146,163,
180,198

110-199

111-200

112-201

1 13-202

114-203

1 15-204

1 16-205

117-206

118-207

Outer Radius (Inches)

9

18

19.46

21.06

22.66

24,26

25.26

26.26

27.26

28.26

Material

Fuel

Fuel

Tungsten

LiH

LiH

LiH

SS-304

Coastal Plains

ii ii

n M

Section (All coastal plains soil)

Nodes

1-9

10-18

19-27

28-36

37-45

46-54

55-63

64-72

72-81

82-90

91-99

100-108

Thicknesses (In.) Layer

18. 1

18. 2

18. . 3

18. 4

18. 5

18. 6

18. 7

18. 8

15. 9

12.

6.

3.

Nodes

1,10,19— ,100

2,— ,101

3,— ,102

4,— ,103

5,— ,104

6,— ,105

7,— ,106

8, — ,107

9,— ,108

Soil
M

II

Outer
Radii(|n.)

14.1

24.5

28.5

32.5

42.2

61.3

98.

171.5

325.9
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TABLE 3-4 (Continued)

C. Center Cylindrical Section (All Coastal Plains Soil)

Row Nodes

1

2

3

4

5

6

D; Bottom

i
2

3

4

5

6

119-127

138-145

156-162

173-179

190-197

208-216

Cylindrical Section

217-225

226-234

235-243

244-252

253-261

262-270

Thicknesses (In.)

3.8

10.3

14.1

14.1

10.3

3.8

(All Coastal Plains

4.2

9.8

. 19.0

36.8

73.5

154.3

Layer

4

5

6

7

8

9

Soil)

1

2

3

4

5

6

7

8

9

Nodes

122, 140,--72 11

123, ,212

124, — ,213

125, — ,214

126, — ,215

127, ,216

217,226, — ,262

218, — ,263

219, — ,264

220, — ,265

221, — ,266

222, — ,267

223, — ,268

224, — ,269

225, — ,270

Outer Radii (In.)

32.5

42.2

61.3

98.

171.5

325.9

14.1

24.5

28.5

32.5

42.2

61.3

98.

171.5 '

325.9
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Because of the relative low thermal conductivity of the coastal plains soil considered for

this case, the waste products and containment system rose to temperatures in excess of 3500 R.

During the initial period of the transient, the temperature gradient in the waste container was

reversed as evidenced in Case 1. This was due to the initial temperature drop from the contain-

ment vessel to the soil being sufficiently large to result in heat dissipation rates much greater than

the heat generation rate. The surface of the containment system and the soil surface converged

in temperature, therefore, delayed the heating of the waste products. After approximately

30, 000 seconds, the aluminum and LiH mixed in the waste products and the LiH between the

tungsten and containment vessel started to melt further delaying the response of the system.

After 150, 000 seconds, all the LiH was molten and the system started to heat at a faster rate.

During the subsequent period of time, the LiH started to dissociate in sufficient quantity to

influence the pressure response. At 400, 000 seconds (4. 6 days) the containment vessel was

predicted to have a stress rupture failure. At this point in time, the peak containment vessel

temperature was 2500 R, and the internal pressure was 120 psi.

The waste container was buried to a sufficient depth such that the earth's surface did not

influence the flow of heat in the container and all heat flow was in the radial direction.

This is illustrated in Figure 3-9, which is a plot of the circumferential temperature profile in

the fuel, tungsten and containment vessel after 2 million seconds. A plot of the model

centerline temperature profile from the surface of the earth to the base of the waste container

is shown in Figure 3-10 at 2 million seconds into the transient. This figure indicated that

the soil temperatures were at ambient conditions over the first 10 feet below the surface.

At greater depths, a temperature gradient was established in the soil. This result indicated

that significantly less burial depths would not alter the response of the waste container to any

significant degree.
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The internal pressure response is shown in Figure 3-11. This response is shown for Case 2 with

and without considering the effects of LiH dissociation. The effect of LiH dissociation is seen

to be negligible for the first 200,000 seconds. At that point, the melting of LiH has been

completed and the temperature level of the LiH is rising to levels such that a significant amount

of dissociation is occurring to accelerate the internal pressure response. After 400,000 seconds,

the containment vessel ruptured with a peak temperature of 2560 R and an internal pressure of

120 psi.

Figure 3-12 is a comparison of heat dissipation to the soil with the heat generation rate. Initially,

the heat dissipation rate to the soil was 62 Btu/sec as compared to the 22. 75 Btu/sec heat

generation rate due to high initial reentry temperatures of the container. During the first 25, 000

seconds the surface of the waste container and the soil in contact with the container converged

in temperatures such that the heat flow rates converged. During the subsequent period to

200,000 seconds the container and soil temperatures started to rise due to the internal heat

generation. Since part of the heat generated was being absorbed by the heating of the con-

tainer, the heat dissipation rate dropped to a minimum of 4 Btu/sec. During the 200, 000

to the 600,000 second period, the system was rising in temperature after all melting of the LiH

was completed; however, the fraction of energy being absorbed was declining as indicated in

the rise of the heat dissipation rate. After 1 million seconds, the temperatures and heat flow

are seen to converge in Figure 3-12 as well as Figure 3-8.

3. 3. 3 Case 20 Results

Case 20 considered the deep burial of the solar escape module in podzol soil. This module

was a 3 foot diameter waste container with a 7 K watts power level for the nuclear wastes,

as shown in Tables 3-1 and 3-2. For this deep burial analysis the HTM-3 model in Figure 2-4

was used as with case 2. The nodes were assigned materials and radii indicated in Table 3-5.

Figure 3-13 shows the temperature response of the fuel center, tungsten, containment vessel

and the soil one inch below the container axial ly from, the center to the base of the container.
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..-, • • ' TABLE 3-5 . . .

CAS,E20 RADII THICKNESSES AND MATERIALS

Deep Burial Model (Figure 2-4)

A. Spherical Section

Layer

1

2

3

4

5

6

7

8

9

10

Upper Cylinder

Row

1

2

3

4

5

6

7

8

9

Nodes

109, 128,
146, 163,
180, 198

110-199

111-200

1 12-201

113-202

114-203

115-204

1 16-205

1 17-206

1 18-207

Section (All

Nodes

1-9

10-18

19-27

28-36

37-45

46-54 .

55-63

64-72

72-81

Outer Radius (Inches)

5.

11.27

12.67
: 14.

15.4

16.67

17.67

18.67

19.67

20.67

Coastal Plains Soil)

Thicknesses (In. ) Layer

32. 1

-, 32. 2

32. 3

32. 4

32. 5

32. 6

•32. 7

32. 8

24. 9

Material

Composite Fuel

Composite Fuel

Tungsten

LiH

LiH

LiH

SS-316

Podzol

Podzol

Podzol

Outer
Nodes Radii '(In.)

1,10,1,9, 10.34
— , 100

2,— ,101 17.9

3, — ,102 20.67

4,— -,103 23.77

5, — ,104 30..90

6,— ,105 44.81

7,— -,106 71.. 69

8,— ,107 125.46

9,— ,108 238.38
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TABLE 3-5 (Continued)

B. Upper Cylinder Section (All Coastal Plains Soil) - Continued

Row

10

11

12

Nodes

82-90

91-99

100-108

C. Center Cylindrical Section

Row Nodes

1

2

3

4

5

6

119-127

138-145

156-162

173-179

190-197

208-216

D. Bottom Cylindrical Section

1

2

3

4

5

6

217-225

226-234

235-243

244-252

253-261

262-270

Thicknesses (In. )

20.

16.

6-

(All Coastal Plains

Thicknesses (In. )

2. 77

7.37

10.34

10.34

7.57

2.77

(All Coastal Plains

3.1

7. 13

13,91

26.88

53.77

112.92

Layer

Soil)

Layer

4

5

6

7

8

9

Soil)

1

2

3

4

5

6
7
8
9

'Nodes

'

Nodes

122, 140,
—,211

123,—,
212

124,—,
213

125,—,
214

126,—,
215

127,—,
216 .

217,226,
— , 262

218,—,
263

219£. 1 7, ,

264

220,— ,
265

221£.£. 1, ,

266

222, , 267
223, — , 268
224, — , 269
225, , 270

Outer
Radii (In. )

Outer
Radii (In.)

23. 77

30.9

44.81

71.69

125.46

238. 38

10.34

17.9

20.67

23.77

30.9

44.81
71.69

125.46
238. 38
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During the 2 million seconds that this case was run, the waste products rose to a level of 3000 R.

As evidenced in the previous cases, the temperature gradient in the waste container was reversed

during the initial period. Similar trends were observed for this transient as in case 2; however,

the times for these trends to occur were longer due to the lower power level. For example,

melting the LiH did not occur until 100,000 seconds versus approximately 30,000 seconds for

case 2. Melting of the LiH was completed after 300,000 seconds versus ;150, 000 seconds for

case 2. During the subsequent period, the system rose at a faster rate and dissociation of LiH

occurred in sufficient quantity to increase the pressure response. A stress rupture failure occurred

in the container after 870, 000 seconds (10 days). At this point in time, the peak containment -

vessel temperature was 2500 R and the internal pressure was 130 psi. For case 2, failure occurred

after 400,000 seconds (4.6 days); therefore, the lower power density package essentially doubled

the containment lifetime after impact.

The circumferential temperature profile in the container was constant after 2 million seconds.

This was the same trend as in case 2, indicating that the burial depth was sufficient that all

heat flow was radial. Figure 3-14 is a plot of the model centerline temperature profile from

the surface of the earth to the base of the waste container after 2 million seconds. No gradient

was established in the soil over the first 20 feet of burial. As with case 2, the results indicate

that burial depths of less than 10 feet would be required to influence the soil temperature re-

sponse and potentially the container response.

The internal pressure response is shown in Figure 3-15. Essentially, no pressure response was

indicated until after the LiH was molten and significant LiH dissociation had started which was

400,000 seconds after impact. During the subsequent period, the pressure response rose rapidly

resulting in container rupture after 870, 000 seconds.

Figure 3-16 is a comparison of heat dissipation to the soil with heat generation rate. Similar

trends were observed for case 20 as with case 2. Temperatures and heat flow were essentially

converged after 1.5 million seconds.
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The resulfs of case 20 were similar to case 2 with the notable conclusion that the container

lifetime was doubled due to the combined effect of property variation and power level. Other

comparisons described below are required to separate these effects.

3.4 PERTINENT DATA FROM 21 WASTE CONTAINER CONFIGURATIONS

For this study, analysis of the other 18 cases was limited to inspection and comparison of key

results. For the purpose of these comparisons, Table 3-6 summarizes important assumptions and

results. Assumptions in this table include the model, degree of burial, power level, container

radius, waste material weight and soil material. Results shown in this table include maximum

waste and container temperatures, approximate soil temperature, internal pressure, integrity

of container and time that results are reported. If the container ruptured, the results are shown

at the time of rupture. If no rupture occurred, the results are shown at the end of the transient.

3.4. 1 Summary of HTM-1 Undeformed Container Results

Only one case was run for consideration of the undeformed configuration in a partial burial

situation using the HTM-1 model. This case was case 1 described in Section 3.3. 1. Key

results were that internal temperatures and pressures dropped from initial levels due to sufficient

exposure to air. The container integrity was maintained during the 23 day transient calculation.

3. 4. 2 Summary of HTM-2 Deformed Container Results

Cases 3, 8, 9 and 13 considered the waste container with significant deformation and in zero

or partially buried situations. Case 3 considered'the reference 4 foot diameter 24 K watt con-

tainer with deformation of the container to the point of solidifying the void areas in the base of the

container. Zero burial (resting on top of ground) was assumed. Due also to sufficient air

exposure, the temperature levels in the container dropped to levels of 1300 R in the waste

material and 900-1200 R in the container. The internal pressure dropped also and the container

remained intact based on the premise that the container was intact initially after impact.

Case 13 also considered the 24 K watt reference waste container but with approximately 25%

burial in coastal plains soil. With 25% burial, the temperature levels dropped in the container
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to levels approximately 100 R higher than for zero burial. The integrity of the container was

maintained.

Cases 8 and 9 considered the solar escape module in a deformed configuration with zero and

25% burial also. Both cases dropped to levels of 100Q°R in the waste material and 800-1000

in the container. The internal pressure dropped to 15 psi. Both cases survived the 23 day

transient. For the solar escape modules, zero versus 25% burial resulted in 15-35 R variations

in container temperatures.

3.4.3 Summary of HTM-3 Deep Burial Container Results

The remaining 16 cases considered the deep burial of various containers with the HTM-3 model

utilized. All cases resulted in significant increases in container temperatures ultimately re-

sulting in container stress rupture except for the low power (1.5 K watt) solar escape module.

For the cases considered, time to failure ranged from 3.6 days for a 30 K watt container buried

in coastal plains soil to 12.2 days for a 5 K watt solar escape module buried in podzol. Con-

tainer temperatures were approximately 2500-2600 R and internal pressures were approximately

110-140 psi at the time that rupture occurred for all the cases. The .1. 5 K watt powered

containers (cases 4 and 18) reached a level of 2100 R in coastal plains soil and 1700 R in

podzol. Internal pressures were 40 and 30 psi respectively for burial in coastal plains soil

and podzol soil.

3.5 DISCUSSION OF RESULTS

Referring to Table 3-6, several comparisons were made between cases.

3. 5. 1 Effect of Impact Conditions on 24 K watt Reference Design

Cases 1, 2, 3 and 13 were analyses of the 24 K watt reference container impacting coastal

plains soil with and without deformation. Cases 1 and 2 provided a comparison of partial burial

of an undeformed container to deep burial. Whereas for the partial burial case (37.5% burial),

the temperature level dropped to sufficiently low levels to insure safe containment, a deep

62



Astronuclear
Laboratory

burial (19 feet) resulted in significant heating causing a rise in internal pressure and ultimately

a creep rupture failure after 4. 5 days. Case 3 considered a deformed container sitting on the

surface of the ground. This case resulted in the temperature levels in the container of approxi-

mately 180 R lower than case 1 (1420 R for case 3 versus 1340 R for case 1 for the maximum con-

tainer temperature). As with case 1, the container remained intact during the transient. The lower

temperatures were achieved because of the greater surface area of the deformed container exposed

to air. A comparison of case 13 (deformed container with 25% burial) to case 3 indicated an in-

crease in container temperatures of approximately 90 R for the partially buried case 13; however,

the container remained intact.

3.5.2 Comparison of Alternate Container Designs Buried in Coastal Plains Soil

Cases 4-7 considered four alternate waste container designs ranging in power from 1.5 to 10

K watts and ranging in outer radius from 12 to 18 inches. These cases considered deep burial

in coastal plains soil. The low power module (1.5 K watts in a 12 inch outer radius) reached

a container temperature level of 2100 R and an internal pressure of 40 psi after 23 days. At

these conditions, the integrity of the container was maintained. Cases 5, 6 and 7, which

considered modules with 5, 7 and 10 K watts of nuclear wasts, rose to sufficient temperature

and pressure levels to result in container stress rupture. Obviously, the time to rupture

varied inversely with the power level (7, 6.7 and 4.3 days from impact to rupture versus 5, 7

and 10 K watts). The limited variation in geometry and capacitance of the container was

secondary to the changes in power level in terms of their effect on response time. Comparison

of cases 7 and 2 indicated that the higher powered 24 K watt container with the larger capaci-

tance of a 25 inch radius container resulted in the same time to rupture (4.5 days versus 4.3 days)

as the lower powered 10 K watt module enclosed in a lighter 18 inch radius container. Thus,

higher power levels can be achieved at the expense of additional thermal capacitance and, thus,

weight.
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3. 5. 3 Effect of Deformation and Partial Burial on Solar Escape Module

Cases 6, 8 and 9 provided a comparison of container deformation for the 7 K watt solar escape

module. Gase 8 assumed the container to be deformed and setting on top the ground. Case 9

considered a 25% burial of the.deformed container. Due to the exposure to air, cases 8 and 9

reached low values of peak container temperatures (98 R and 1020 R, respectively) such that

rupture of the container did not occur. A-hard impact with only partially burial is less severe

in thermal response effects than burial in soft soil if the container survives impact.

3.5.4 Effect of Power Variation in 25 Inch Radius Container

Cases 2, 10, 11 and 12 provided a comparison of the effects of power level on containers of

approximately the same capacitance. All four cases considered the container as deeply buried

and all four cases resulted in a stress rupture of the container due to excessive temperatures and

pressures. The 15 K watt container survived 70 7 days before a rupture occurred. The 20, 24

and 30 K watt containers failed after 5.5, 4.5 and 3.6 days respectively. :A comparison of

cases 5 and 10 indicated that approximately the same container lifetime for 15 K watts of nuclear

material in a 25 inch container as for 5 K watts of power in a 15 inch container.

3.5.5 Comparison of Soil Property Variation for the 24 K Watt Container

Cases 14-17 considered burial depths varying from 6 feet to the base of the container to 33feet

to the base of the container for the 24 K watt 4 foot diameter containers. All 4 cases failed

at the same point in time (5.4 days in podzol soil). For the shallow burial of 6 feet, the surface

rose to a maximum of 70 F above ambient at the time of failure. The combined heat transfer
- . . . ' • o

coefficient for convection and radiation at the surface was approximately 1.5 Btu/hr-ft - R.

The heat loss from the surface, therefore, did not significantly alter the response of the waste

container. A moderately shallow burial, therefore, still resulted in a container rupture.

3.5.6 Comparison of Burial Depth for the 24 Kwatt Container

Cases 14-17 considered burial depths varying from 6 feet to the base of the container to 33 feet to

the base of the container for the 24 K watt, 4 foot diameter containers. All four cases failed at
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the same point in time (5.4 days in podzol soil). For the shallow burial of 6 feet, the surface rose

to a maximum of 70 F above ambient at the time of failure. The combined heat transfer coefficient

for convection and radiation at the surface was approximately 1.5 Bru/rir-ft -°R. The heat loss

from the surface, therefore, did not significantly alter the response of the waste container. A

moderately shallow burial, therefore, still resulted in a container rupture.

3. 5. 7 Comparison of Soil Property Variation for Alternate Waste Container Configurations

Cases 18-21 were repeats of cases 4-7 with the soil changed from coastal plains soil to podzol

soil. Comparison of cases 4 and 18 indicated that the container reached a level of 1700°R

for deep burial in podzol which was 400 R lower than for burial in coastal plains soil. Both

5 KW containers resulted in a stress rupture failure; however, the post impact lifetime was

increased by 75%. For the 7 KW and 10 KW system, the increase in lifetime was 50% and 20%

respectively. The effect of burial in a more conductive soil; therefore, was an increase in the

lifetime; however, the improvement dropped with increase in power level.

3.5.8 General Discussion

For those cases of deep buried containers where rupture occurred, the container temperature

and internal pressure levels were 2550 R and 130 psi respectively. The rise in temperature

induced the rise in pressure due to the dissociation of LiH. For the higher powered systems, the

ultimate temperature level of the container was 3000-3500 R due to the soil characteristics.

In fact, the melting point of coastal plains soil is reported at 3400 R and for podzol soil is

3000 R. In these cases, the heat of fusion and change in soil conductance could not be utilized

to flatten the response of the container prior to stress rupture. To fully utilize the soil property

changes requires raising the temperature level capability of the container, One means of

accomplishing this is to consider alternate container materials. Another means is to relieve

the internal pressure response. Potential mechanisms for performing the latter function are

venting of the gas and providing a getter for the hydrogen released from the LiH. These

pressure relieving devices were not considered in the present study.
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Another area of consideration is the adequacy of Hie soil properties. The thermal conductance

of common soils have been extensively arid accurately defined (Reference 5, for example);

however, data is lacking or specific heat and heats of fusion. The adequacy of the present

analysis in describing the response of the container and soil at temperatures above 2500 R

might, therefore, be questionable to a degree.
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4.0 CONCLUSIONS

As part of this program, the ESATA computer program was successfully adapted to the problem

of analyzing the post impact thermal behavior of partially and deep buried radioactive nuclear

waste material containers. A general type of container consisting of spherical layers of waste

material tungsten shielding, LiH shielding and SS-316 container wall was considered in this

analysis. Twenty-one cases were studied which included variations in container geometry,

power level, degree of deformation, degree of burial and soil properties. Three of the cases

were analyzed in detail and the remaining 18 were compared for overall results. Conclusions

obtained from this study are:

1. Zero and partial burial (up to 37.5% diametral) of undeformed and

deformed containers resulted in a decline in container temperature from

a 1660°R initial level induced by renetry heating to 1000-1400°R levels.

2. The container integrity was maintained (assuming no rupture due to impact)

for the zero and partial burial of the undeformed and deformed containers

for the 23 day transients (2 million seconds).

3. The deep burial (in excess of 10 feet) of the 24 KW, 2 foot radius waste

containers resulted in container temperatures in excess of 3000 R for both

coastal plains soil and podzol soil.

4. The deep burial of all waste container designs considered with 5 KW or more

of power (5 KW to 30 KW in containers of 12 inch to 25 inch outer radii)

resulted in stress rupture of the container. The post impact lifetime of these <

containers varied from 3.6 days for a 30 KW, 25 inch radius container to

12. 2 days for a 5 KW, 15 inch radius container.

5. The 15 KW, 12 inch radius containers stabilized at sufficiently low temperatures

to insure the integrity of the container for the transient period analyzed of

23 days.
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6. For those cases in which stress rupture occurred, the container temperature

level was 2500-2600°R and the internal pressure was 120-130 psi.

7. The main component to the pressure response was hydrogen released from

LiH dissociation.

8. The container temperature level at rupture was less than the'estimated melting

point of the soils considered.

9. Variation in burial depths from the soil surface to the base of the containers

of 6 feet to 30 feet did not significantly affect the container temperature

response.

10. Soil surface temperatures were at ambient temperature for deep burial cases

and rose to 70 R above ambient for burial depths as small as 6 feet.

11. Consideration of the better conducting podzol soil increased the container

post impact rupture lifetime by 20-75% dependent on power level.
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A. 1 INPUT DATA •

The quantity of input data required for the operation of any computer program becomes parti-

cularly important whenever the program is to be employed for analysis of many different

configurations. To be effective in performing safety analysis of various post impacted nuclear

waste disposal container configurations, the analysis tool must be easy to use and the,input

data minimized. For this reason, generalized heat transfer models were developed for the

ESATA program in order to minimize the input data required and thus maximize the usefulness

of the program.

The general types of input data required are as follows:

• Variable array size for geometry related parameters.

• Title

• Initial and final times for the calculation, time increment and convergence

criteria.

• Set of numbers to identify model choice, degree of burial, soil selection

and temperature, spil-to-containment system interface condition, total

heat generation rate, soil fusion temperature, amount of emitting fuel

and containment system void fraction.

• Outer radius, material and initial temperature for each spherical layer.

• For deformed model, thickness of each layer in deformed base.

• For deep burial model, thickness of each soil layer above spherical portion

of model.

• The time during the transient period where output data is required.

• The times during transient when all data in common blocks are placed on

the restart tape.
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The specific input data required by the user in order to operate the afterheat temperature analysis

option of the ESATA program is given in Table A-l.

The ESATA program contains specific heat transfer models, as previously mentioned, to

minimize input data requirements. However, since the ESATA program was formed from the

TAP-A program, the general TAP-A input data options can be used to "override" or "modify"

certain features of the HTM's contained in ESATA. The following types of modifications are

possible using t h e standard TAP-A input data options. • ' • . - . • •

• Initial temperature distribution (as opposed to uniform component

temperatures) for the power plant configurations can be input.

• Node volumes (thickness) and materials can be varied.

• Boundary conditions can be varied.

A. 2 OUTPUT DATA

Computer output from an ESATA program calculation consists of an edit of the input data, the

results from translation of the input data into the nodal point form required for the finite

difference solution, and the data output from the calculations. The following units apply to

all the output data:

Temperature - F

Heat Flow - Btu/sec
2

Heat Flux - Btu/sec-in ,

Power - Btu/sec
. . . . . . . . . . . 2 ' , ;

Film Coefficients - Btu/sec-in

Conductivities - Btu/sec-in- R

Specific Heat - Btu/lb-°R

.. Volumes - in ,, > .

Area - in

Admittances - Btu/sec- R

Weights - pounds
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Time - seconds

Dimensions - inch

Pressure - psi

Stress - psi

The following sections describe in detail each form of output:

A. 2.1 Input Dato Edit

The first part of the printed output is an edit of the input data. The following quantities are

printed out in the sequence indicated.

1) Computer storage requirements for the problem. (Summary output of Card 1

of the input data.)

2) The decimal starting locations of all variable size matrices in the program.

3) The problem title (defined by Card 2 of the input data).

4) An identification of the model type to be analyzed and initial container

and environment conditions. (Card 4 in the input data)

5) Spherical layer input data including initial temperatures, inner radii and

material numbers. (Card 5 in the input data.)

6) List of material number designations including weights of fuel components.

(Card 6 in the input data.)

7) For deformed model, the compacted layer input including initial temperature,

thickness and material number or for deep burial shell and layer dimensions.

(Cards 7 and 8 in the input data.)

8) Initial core temperature, environmental temperatures and internal pressure.

9) A reproduction of any of the standard TAP-A input cards including cards

identifying printout times. (Card 16A through 16N and the N cards of the

input data.)
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A. 2.2 Translation of Input Data • . v

The next portion of the output data consists of the results from the translation of the input data

into the nodal point form required for finite difference solution. The following data are printed

out in the sequence indicated:

1) The problem title (as defined by Card 2 of the input data).

2) Initial and final times for the problem including the initial time increment and

the convergence criteria (as defined by Card 3 of the input data).

3) If applicable, a listing of the boundary temperature tables.

4) If materials are identified which are not contained in the program, then

property data for these materials are output.

5) A matrix identifying for each node, the volume, heat generation rate, initial

temperature and capacitance.

6) A matrix identifying the admittances and neighboring nodes for each node in

the model. . -

7) If a table of film coefficients is output, if different than those contained in

, t h e program. . . .

8) A matrix of surface to boundary node connectors including initial temperatures,

heat transfer mechanism, surface area, film coefficients and admittance.

9) The specified times for printing data are tabulated.

10) The final portion of this type of output is a listing of any volume weighted

internal on area weighted surface averages.

A. 2.3 Calculation Output

The remainder of the printed output contains quantities calculated by ESATA. For each time

increment, the following is printed:

1) The number of iterations required for program convergence-
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2) CRIC - The value for the temperature convergence criteria needed in order

to satisfy the heat flow convergence criteria (CRIT) input on Card 4.

3) Time increment.

4) Time of time step.

5) Cycle time for time step.

For each specified printout time and for the final time, the following data are output:

1) The problem title (as defined on Card 2 of the input data).

2) The printout time.

3) A matrix identifying the temperature of each internal node.

4) A matrix identifying surface node temperatures, film coefficients and surface

heat flux.

5) A matrix identifying temperatures of each boundary node.

6) The total heat generated in the system, the heat transferred from the surfaces

and the heat stored in the system.

7) A matrix identifying the heat generated in each node due to radioactive waste

material.

8) A matrix identifying the heat generated in each node due to hydride dissociation.

9) A matrix identifying the material number (IMAT) and for each node fraction of

the node (XMEL) that has melted.

10) A matrix identifying the fraction of dissociation for each hydride node.

11) The output of the maximum containment vessel temperature, the internal pressure,

the stress level, and the fraction of the creep rupture life of the containment

vessel consumed completes the data printout.
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12) Should the number of iterations to achieve convergence exceed that specific

or input data Card 4 (ERFC),. then a statement is printed indicating an "Anoma-

lous Problem" is printed.

13) Identification of the heat transfer rates from the waste container.

14) After the final output, a statement indicating "This problem completed" is

printed.
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APPENDIX 8

PROPERTY DATA SUBROUTINES



B. 1 PROPERTY DATA USAGE

Property data used for the thermal transient calculations include thermal conductivity, specific

heat, density and heat of fusion. The VARK subroutine is used to define the thermal conducti-

vity for each node and calculates the thermal conductance between each node in the model.

Thermal conductivity data is stored in the PROTK subroutine for materials 1-20. Data is read

in for materials 21-40 for ESATA and normal TAP-A usage. Effective thermal conductivities

are calculated in VARK for ESATA usage of materials 41-49.

The POWER subroutine is used to calculate the capacitance of each node. Specific heat data

for materials 1-20 are stored in the PROCP subroutine and densities for materials 1-20 are

stored in the DATA block. For materials 21-40, specific heat and density are read in.

Effective specific heats and densities are calculated in CPCAL for materials 41-49. Heat of

fusion data is provided for materials 1-20. in the DATA blocks and can be read in for materials

21-40. The TMPCAL subroutine used the heat of fusion data for materials 1-40 to consider the

melting of any component plus the fuel (material 49).

The properties and equations for the calculation of effective properties for the various materials

are documented below:

B. 1. 1 Thermal Conductivities for Materials 1-20

Material Thermal Conductivity
Number Material Temperature, R Btu/(sec in R)

1 Ac tin ides 720 .001792

1440 .001585

2160 .001417

2880 .001288

3600 .001204

4320 .001148

5040 .001120
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Material
Number Material Temperature, R

2 Uranium 855
Oxide 1391

1640

2291

2474

3019

3494

3 SS-316 540

720

1080

1440

1800

2160

4 LiH 720

900

1080

1260

1440

5 Tungsten 540

720

1440

2160

2880

Thermal Conductivity
Btu/(sec in °R)

. 700 x 10"4

.527x 10"4

.465x 10"4

. 364 x 10"4

,318x 10"4

,265x 10"4

,258x 10"4

1.34x 10~4

1.57x 10"4

2.07x 10"4

2.55x 10"4

3.05x 10~4

3.70xlO"4

l . ?7x 10~4

1.04 x 10"4

0.84x 10~4

0. 73 x 10"4

0. 67 x 10"4

0. 00269

0.0021

0.00174

0.00154

0.00143
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Material
Number Material , Tempera rure, R

Tungsten
(Continued)

6 SS-316

7 . Water

' - • ••. .

• *

8 Mink 2020

3600

4320

5580

540

720

1080

1440

1800

2160

492

564

636

708

816

888

960

1032

1460

660

1060

1260

1460

1660

1860

2060

- ' . Thermal Conductivity
Brg/(sec in °R)

. .. . r- .

0.00132

0.00129

0.00120

1.34x 10"4

1.57x 10~4

2.07x 10"4

2.55x 10"4

: 3.05x 10~4.

3. 70 x 10"4

7.38x 10"6

8,4x 10~6

8.94x 10"6

9.17xlO"6

9. 03 x 10"6

1 8.73x 10"6;

8. 17 x 10"6

7.22X 10"6

6. 94 x 10~6

3.28x 10"7

.. 4.05x 10"7

4.5 x 10"7

5.02X 10"7

5.54x 10"7

6, 18 x 10"7

6.85x 10"7
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Material
Number Material Temperature, R

Thermal Conductivity
Btu/(sec in OR)

9 Lithium 800

1000

1200

1400

1600

1800

2000

2200 '

16 Coastal 671
Plains Soil OC1oD 1

1211

1571

1931

2291

2651

2831

3011

3191

3371

3461

11 Granite 671
Detrital ,„,
Soil

1931

2291

2651

2831

3011

3191

3371

_3
0. 579 x 10

_3
0.635x 10

-3
0.685x 10

_3
0. 73 x 10

_3
0.768x 10

_3
O.SOx 10

_3
0.826x 10

_3
0.846x 10

3. 75 x 10~6

4.01 x 10"6

4.55x 10"6

5. 35 x 10"6

6.29x 10~6

7.49x 10"6

10. Ox 10"6

12.84x 10"6

18. 5 x 10"6

29. 4 x 10"6

49. 5 x 10"6

64.2 x 10~6

0.99x 10"5

0.99 x 10~5

l . O x 10~5

1.097x 10~5

1.40 x 10"5

1.93 x 10"5

3.35x 10"5

6.96x 10~5

20.1 x 10"5
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Material
Number Material Temperature, R

12 Laterite ,71

Soil
1931

2291

2651

2831

3011

3191

3371

3461

3551

13 Water 492

464

636

708

816

888

960

1032

1462

14 Copper 720

1080

1170

1260

1440

1800

, . , 2160

2520

2700

Thermal Conductivity
Btu/(sec in °R)

0. 174-x-lO"5

0. 174x 10"5

0.401 x 10"5

_5
1. 14 x 10

1.85xlO"5

_5
2. 94 x 10

4.41 x 10"5

6.55x I0"5

7.89x 10"5

20. 1 x 10"5

, 7.38x 10~6

8.4x 10~6

8.94x 10~6

9. 17 x 10~6

9.03x 10"6

8.73x 10"6

8. 17xlO~6

7.22x 10"6

6.94x 10~6

.91 x 10"3

.722xlO"3

_3
.733x 10

.744x 10"3

.76x 10"3-

.821 x 10~3

.888x 10"3

.966x 10"3

1.01 x 10"3
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B. 1.2 Specific Heat for Materials 1-20

Material
Number Material Temperature/ R

1 Actinides 535

660

960

2460

2 Aluminum 560

760

960

1160

3 SS-316 540

900

1080

1440

1880

2169

2520

2880

2949

2950

.3000

3001

Specific Heat
Btu/lb°R

.06

.063

.07

.08

.2

.2

.2

.2

0.140

0. 142

0. 149

0.162

0.175

0.110

0.148

0.170

0.170

2.5

2.5

0.17
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Material
Number Material Temperature, R

4 Lithium 540 "'•
Hydride 72Q

900

1080

1260

1440

. 1620

1699

1700

1750

1751

5 Tungsten ' 540

i , 720

1440

•• • 2160

2880

3600

4320

5580

6549

6550

6600

6601

- Specific Heat
Btu/lb °R

^ - '0.84

1.04

1.19

1.33

1.48

1.62

' 1.76

1.76

31.6

31.6

1.76

0.0315

0.032

0.034

0.036

0. 0375

0.039

0.041

0.044

0.044

1.49

1.49

0.044
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Material
Number Material Temperature, R

6 SS-416 540

720

1080

1440

1800

2160

2759

2760

2810

2811

7 Water 492

1165

1 165. 1

2000

8 Mink 2020 1260

2460

3259

3260

3310

3311

9 Lithium 500

1500

3000

10 Coastal 671
Plains Soil 229Q

3099

3100

3150

3151

Specific Heat
Btu/lb°R =

. 0. 11

0.115

0. 12

0. 13

0.15

0. 18

0.18

2.66

2.66

0. 18

1.0

1.0

0.5

0.5

0.246

0.279

0.279

0.279

0. 279

0.279

0.996

0.996

0.996

0.2

0.2

0.2

0.2

0.2

0.2
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12

13

Granite
Detrital Soil

\_aterite
Soil

U
Copper

670

3099

3100

3150

3151

492

1165

1165.1

.2000

540

900

1620

3160

0.2

0.2

0.2

0.2

0.2

1.0

1.0

0.5

0.5

0.092

0.092

0.092

0.092
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B. 1. 3 Density and Heat1 of Fusion for Materials 1-20

Material
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Material

Actinides

Aluminum

SS-316

Lithium
Hydride

Tungsten

Graphite

Teflon

Mink 2020

Lithium

Coastal
Plains

Granite
Detrital

Laterite

Water

Marinite

Density
lb/inJ

.355

.098

.297

.0245

.697

.093

.079

.016

.017

.0484

.0694

.0539

.079

.0376

Melting Point
Temperature, °R

5444

1660

2760

1720

6550

7060

1070

3260
'

3390

2760

3950

-
_

Heat of Fusion
Ib/in3

64.5

170.

127.5

1580.

74.5

8.

12. 5

14.

49.8

10.

10.

10.

-

18.5

B. 1.4 Effective Thermal Conductivity, Specific Heat, Density and Heat of Fusion

Material
Number

41

Description and Defining Equations and Assemptions

High Thermal Conductivity Axially in Cylinder Nodes
and Circumferenrially in Spherical Nodes

If IDEMK = 1

If IDEMK = 0

K = 1.0 Bhj/sec inch R

K = 0. 000001 Btu/sec inch °R

Cp = 1.242 Btu/lb R

P = 0.000001 Ib/in3



Material '*'.'\ '• ,•'••_. ,
Number Description and Defining Equations and Assemptions

41 High Thermal Conductivity Radially in Cylindrical and
Spherical Nodes

If IDEMK = 0 K = 1.0 Btu/sec inch °R

If IDEMK •- 1 K - 0.000001 Btu/sec inch °R

Cp = 1.242 Btu/lb°R

. P = 0.000001 Ib/in3

42 High Thermal Conductivity in Both Directions

K = 1.0 Btu/sec in°R

Cp = 1.242 Btu/lb°R

ft = 0.000001 Ib/in3

43 High Thermal Conductivity in Both Directions

K = 1.0 Btu/sec in°R

Cp = 1.242 Btu/lb°R

* = 0.000001 Ib/in3

44 Vessel to Soil Interface '
fy

- If IDEMK. =. 0,0 HT = 0.00193 Btu/sec in °R

IDEMK = 1.0 HT = 0.00000193

K = HT 6 ,layer

Cp - CPcoasta| plains

P ~ coastal plains
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Material
Number Description and Defining Equations and Assemptions

45 Vessel to Air Interface

T, = adjacent vessel node 'temperature

TV = ambient temperature

* = 0.8

F = 1.0

H = € F 3.33 x 10" (T + T T + T t + 1) Btu/sec in °R3"15 (T,3 + Tj2 T2 + T, T2
2 - T 3^ -• '— '-2 °r

He = 0.3667x 10"6 (T, - T2)°'
333 Btu/sec in2 °R

HT = H + H
T c r

K = HT *.
T layer

where 5 Is the layer thicknesslayer '

Cp = 0. 24 Btu/lb °R

P - 0.02297/T . lb/1n3

air

46 Air Nodes

K - 1.0

If connection is between air and soil

HT = 0.424x 10"6 (T . -T ..)°-333

air soil

where 6. is distance from surface to air node center
layer

Cp - 0.24 Btu/lb °R

P - 0.02297/T . Ib/in3

air
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Material
Number : Description and Defining Equations and Assumptions

47 Vessel to Wafer Interface

HT = I.929x 10"4.Bfu/sec in °R ..

K = HT 6.
layer , .

Cp = 1.0 Btu/lb °R

P = "H2°

48 Dissociated L?H

K = KL.

cP = CPL;H

P = PLiH

49 Homogeneous Wast Product Composite

WA1 + Wf , + Wr + W..uf. Al fuel Cu LiH
r - Vol

c

- WAI C"AI + Wfuel C"fuel + WCu C"Cu + WLiH

' ~ WAI + Wfuel +WCu + WLiH

K - 17Btu/(hr-ft-°R)
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APPENDIX C

DESCRIPTION OF ESATA PROGRAM VARIABLES
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