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FOREWORD

This report describes the work performed by Business and Technological Systems,

Inc. under Contract No. NAS 1-11652 with the NASA/Langley Research Center. The

work deals with the development and simulation of estimation and identification

algorithms for flexible vehicles.
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ESTIMATION AND IDENTIFICATION STUDY FOR

FLEXIBLE VEHICLES

* **
By Andrew H. Jazwinski and Thomas S. Englar, Jr.

Business and Technological Systems, Inc.

SUMMARY

This study deals with the problems of state estimation and system parameter

identification for flexible vehicles. These problems arise, for example, for a

flexible, highly variable space station, for spacecraft with large flexible append-

ages, and for high flying aircraft with long wing spans. Knowledge of the bending

states and parameters is often required for the effective control of bending or

vibrations.

Flexible body single-axis attitude dynamics are modeled by adding linear approx-

imations for the bending modes to the rigid body dynamics. A second order actuator

is also included in the model. Attitude and attitude rate measurements are utilized

for the estimation of the rigid body state, the bending states and for the identi-

fication of the model parameters.

A sequential and a batch estimator, are studied in this estimation/identification

problem. The sequential estimator tracks the rigid body and bending states very

well in the presence of model parameter errors and tracks the time-varying bending

frequencies and modal parameters, as well as the moment of inertia, less well. It

fails to track time-varying modal damping.coefficients due to lack of adequate local

observability. The batch estimator is utilized to study the observability and non-

linearities of the system. The combined estimation/identification problem is found

to be highly nonlinear. Given enough data and sufficient excitation, the system is

found to be completely observable. A sequential version of the batch estimator might

be utilized for real-time tracking and identification.

*
President

**
Staff Scientist



I. INTRODUCTION

The control of bending or vibrations of a flexible body often requires the

real-time estimation of the bending states to provide the necessary feedback in

the control loop. In addition, when .the .flexible body is variable in time, it is

also necessary to identify the varying parameters which describe the characteristics

of the flexible body, namely the bending frequencies, damping coefficients and modal

parameters. Such problems exist, for example, for a flexible, highly variable space

station. They also exist for a spacecraft with large flexible appendages, and for

aircraft flying at very high altitudes and possessing long wing spans. While the

control problem for such flexible vehicles has received some attention (Ref. 10),

the estimation and identification problems have not. In fact, the controls pro-

posed in Ref. 10 presuppose the knowledge of the rigid body and bending states and

the model parameters. ..Presumably, these must come from a real-time estimator and

identification program if the controls are to be implemented.

The present research deals with the estimation and identification problems

cited above. In particular, several estimation and identification techniques have

been developed for the problem at hand and tested via computer simulations.

Briefly, the problem simulated is cast in the following mathematical framework.

The flexible body single-axis attitude dynamics are modeled by -adding linear approx-

imations for the bending modes to the rigid body dynamics. A second order actuator

is also included in the model. Attitude and attitude rate measurements at one point

on the flexible body are simulated. The objective is to estimate the rigid body

state, bending states and model parameters from these attitude and attitude rate

signals. It is worth noting here that this combined state and parameter estimation

problem is highly nonlinear and of quite large dimension.

The simulation and estimation models utilized in this work are presented in

Sections III and IV, respectively. Sections V and VI describe the sequential and

batch estimators simulated in the study. Simulation results are outlined in Section

VII and conclusions and recommendations follow in Section VIII. Much of the mathe-

matical detail is delegated to the appendices.
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II. SYMBOLS

.English

A (4+2m ) x (4+2m ) system matrix, Eqn (ll)

b (4+2m ) x 1 control coefficient vector, Eqn (11)

b , b., b defined in Eqn (2)

C (4+2m ) x (3m +1) matrix of state and parameter e error correlations
e o o

Cf (4+2m ) x 2 matrix of state and parameter f error correlations

D diagonal matrix, Eqn (36)

e (3m +1) x 1 vector of system parameters, Eqn (12)

E (3m +1) x .(3m +1) diagonal matrix of errors in eo . o

E.. diagonal elements of E

f . 2x1 vector of measurement model errors, Eqn (11)

f , f estimator measurement model errors, Eqn (4)

A
F 2x2 diagonal matrix of errors in f

F.. diagonal elements of F
11

(N information matrix, Eqn (32)

I rigid body moment of inertia; identity matrix

I nominal inertia
o

J performance index, Eqn (28)

j time index (t.)



m xl vector of modal parameters. Eqn (12)
o

k. modal parameters

k . nominal modal parameters
01

K (4+2m ) x 2 gain matrix for state estimator
x o

K (3m +1) x 2 gain matrix for parameter e estimator

K 2x2 gain matrix for parameter f estimator

M 2 x (4+2m ) measurement coefficient matrix, Eqn (11)

m number of modes observed, m ^ m
o o s

m number of modes simulated
s

N number of (vector) measurements in a batch

n iteration counter

p parameter vector, Eqn (30)

P > PI • > P 9-> PV coefficients of parameter variations, Eqn (8)

P (4+2m ) x (4+2m ) state estimation error covariance matrix
o o

P.. diagonal elements of P

R measurement noise covariance matrix, Eqn (14)

r , r.. . , r,,. , r,. coefficients of parameter variations, Eqn (8)

. s step function, Eqn (9)

t (tr) initial time (final time)o r

t. measurement time instant
J

t step time, Eqn (8)
S



u . control input, Eqs (5), (6), (7)

v 2x1 measurement noise vector, Eqn (ll)

measurement noise, Eqn (3)

x (4+ 2m ) x 1 state vector, Eqn (11)
o

x.. angle of rigid body

x_ rate of x,

x, actuator output

x. rate of x~
4 -i

x, „. an&le of itn mode

x. 0. rate of x_ 0 . •4+2i 3+2i

y 2x1 measurement vector, Eqn (11)

y simulated attitude measurement

y« simulated attitude rate measurement

Y 2x2 measurement residual covariance matrix

Greek

°<. step-size control parameter, Eqn (36)

A , (3-,., p>2-' PO- coefficients of parameter variations, Eqn (8)

p (4+2m ) x 1 vector of partial derivatives, Eqn (A9)

jf. elements of P

£., . Kronecker delta
JK



A correction

6 , £„ tolerances, Eqs (37, 38)

\, control gains

-0 . S>, , "J~ . . ̂ -, . coefficients in parameter variations, Eqn (18)o l i 2 i 3 i . 1 - 1

£ m xl vector of damping coefficients, Eqn (12)

£ ' actuator damping coefficient
fa.

£. modal damping coefficients

nominal modal damping coefficients

0~n ((L) attitude (attitude rate) noise standard deviation

0" standard deviation of errors in I

CT standard deviation of errors in UX
&. ii

standard deviation of errors in ^.

OT standard deviation of errors in k.
k. ii

CTT standard deviation of errors in f.
i X

CT standard deviation of errors in x.(OlO)
Xi X

time interval, Eqn (Al)

(4+2m ) x (4+2m ) state transition matrix, Eqn (15)

elements of (j) • •

(4+2m ) x (3m +1) parameter sensitivity matrix, Eqn (15)

elements of V' •



"

(4+2m ) x 1 sensititity matrix, Eqn (15)
o

(4-t-2m ) x m sensitivity matrix, Eqn (15)

f. (4+2m ) x m sensitivity matrix, Eqn (15)

(i (4+2m ) x m sensitivity matrix, Eqn (15)

(4) ' m xl vector of bending frequencies, Eqn (12)

£) actuator frequency
a

\J). bending frequencies

l^> . nominal bending frequencies

Subscripts, Superscripts and Operators

/•v

( ) . estimated value

( ) nominal value

T
( ) vector (matrix) transpose

•

( ) time derivative

-i ' expectation (averaging) operator

(jlk) a quantity at time j, based on data up to and including time k

( ) matrix inverse

( ) matrix pseudo-inverse : •'••*:•
• •, • M.•• , - ' » ' ,

<' ^ . •. '
partial derivative with respect to v>
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III. MATHEMATICAL-SIMULATION MODEL

The flexible body single-axis attitude dynamics are modeled approximately by

adding linear approximations for the.lowest bending modes to the rigid body dyna-

mics. Actuator dynamics of second order are included in the model, providing an

approximation to such actuators as a control moment gyro. If m bending modes

are simulated, the dynamical equations of motion are

•

xl = X2

x0 = b x_2 o 3

x, = -26 u)x. - b x. + b u (1)
4 Pa a 4 a 3 a

• V
x3+2i = x4+2i

9* ,2 u • iX = ~ t c» I j} X ~ LO X ~H D X X = J_ ' HI
4+2i 7i i 4+2i i 3+2i 13' ' ' s

where u is the control input,

and the other parameters in Eqn (1) are defined in Section II. The states Cx1x9)

are the rigid body states; (x,x.) are the actuator states; and (x_ o.>x, 9.) are

the bending states.

Measured attitude and attitude rates sampled at time instants j are modeled

as

m

(3)mo

where

y2(j) = x2(j) + x4+̂ .(j) + £2(j) + v2(j)

m m
s s

.i=m
o

11



and where jv1(j)l , ^
vo^JM are Gaussian, zero-mean, stationary random sequences

with respective standard deviations <J~, , CT? and correlation CT'-io- The latter are

obtained from the independent sequences jr..(j)j, |r_(j)j , with respective stan-

I 2 2 2~~1 ̂ "
dard deviations cr - Or / <rt 2, ff^ by

vl
V2

=
0 1

rl

r2

(5)

In the above equations, m ^ m is the number of modes observed or modeled in the

estimation process (Section IV). The functions f and f» therefore represent

modeling errors in the estimation model.

The control input u in Eqn (l) is simulated variously as a specified control

u(t), as a linear feedback of the states

4+2m

u = ..

or as a linear feedback of the estimated states

4+ 2m

Both continuous and sample-and-hold controls are simulated.

Variations in the system parameters are simulated via the equations

1 = 1 + p s(t-t ) + r sin (S) (t-t ) +o o s o o o \ o

O . + p, .s(t-t ) +" rn . sin (^_.(t-t ) +01 li s li li o
CL . )ill

ki - k oi r2i 8in

r3i 8in

(6)

(7)

(8)

12



where s(*) is the step function

f 0 t<t
s(t-t ) = 1 S (9)

• • 1 i t>t.

This permits simulation of quite general parameter variations, including steps and

ramps.

13



IV. ESTIMATION MODEL

The estimation model for the system described in Section III contains m

modes; the functions f and f~ of Eqn. (3) are treated as unknown random forcing

functions when m < m . Then from Eqs (1) and (3), the estimation model in vector
o s

form is written as

x = Ax + bu

j) = Mx(j) +

where the matrices (vectors)in Eqn (10) are defined by

(10)

T
x =• Dxl X2 X3 " x3+2m x4+2m

A =

0 1

0 0
, •

2x2
0

i

t

i

2x2:

0

0 .. 0

b 0

0 1

-b -2£u)
___-___.!_-_*

0 0

b 0
± j

.-

1

0 0

bm 0

2x2
0

2x2
0

L__

0 1

2x2
0

2x2
0

L__ _

L

L

2x2
0

2x2
0

L — — -

2x2
0

L— ________

2x2
0

0 1

-fi£-24l£Bi_

b =

0

0

0

b,
c

0

0
(11)

T
y = Ui- D - ' [f i f 2] i '2]

2x2 J 2x2 !
0 ! I !

2x2~

15



If we further define the vectors of system parameters

T

(12)

rp

k = ... k

T ir-_ i . « , i , -.
e = I i u) .( £ i k. l — i i ^» i _l

then it is seen that A = A(e), a function of the parameters e.

The objective of the estimation (identification) is to estimate the state x

and identify the (perhaps time-varying) parameters e and f from the data |y(j)j •

The modeled estimator dynamics are given by the first of Eqs (10), while the

measurements, given by the second equation in (10), are generated from the simu-

lated dynamics. The measurement noise v is assumed to have the simulated statis-

tics

£iv(j)l = 0 , £[v(j)vT(k)j = RS", (13)

where, of course,
_ 2

R = (14)

The estimation algorithms of Sections V and VI involve certain partial deri-

vatives or sensitivities. In particular, the following matrices of partial deriva-

tives are required.

ê(j)
(15)

]
above is the state transition matrix, while *f is the parameter sensitivity

16



matrix. Both first order approximations and exact closed form expressions for

these partial derivatives are developed in Appendices A and B.

V- f\ -

17
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•V. SEQUENTIAL J -ADAPTIVE ESTIMATOR
o

2-4
The J -Adaptive estimator is designed for tracking the state and time-

varying parameters of a dynamical system. The time-varying parameters are modeled

simply as constants or low degree time polynomials between discrete measurements at

time j and j+1. However the coefficients in these polynomial models are assumed

to be uncertain and are updated by the measurements, while the uncertainties in

these coefficients are not allowed to change (decrease) due to the measurement

update. As a result, the coefficients in the polynomials are always allowed to

change to fit time variations in the tracked parameters. The parameter filters or

estimators thus in effect have a finite memory length and will track parameter vari

ations if there is sufficient local sensitivity (or observability) to the parameter

variations. The filter for the state is an extended Kalman filter , suitable for

nonlinear problems.

Details of J-Adaptive estimators are given in the references cited above and

are not repeated here. The following simple dynamical model is assumed for the

parameters in the problem at hand

The following covariance (correlation) matrices are required in the estimator

E =

F = £j[f(j).- f(jk)]

Ce(j'k) =

c£(j|k) =

where k (j|k) is the estimate of f> at time j, given all measurements up to and

including time k. The first two covariance matrices above are held at the speci-

fied values E and F, where E and F are assumed diagonal;

19



2 2 2
E . _ = o~T ; E . - . . n = O " , ^ , i = l , m ; E . n ., = or f , i = 1, m ;
11 I' n-1, i+l "J . ' ' o' i+l+m . i+l+m I . o'

i o' o ' i

2 2 (18)
E- -i o -no = c ri > i = 1, m ; F. . = CT£ , i = 1, 2i+l+ 2m , i+l+ 2m k. on f '0 0 1 i

where the cT's {standard deviations) above are specified.

The estimator consists of (time) prediction equations which propagate or ad-

vance the estimates and covariance matrices from one measurement time to the next;

and measurement update equations which modify the estimates and covariance matrices

when a measurement is processed. Estimates and covariance matrices carry the argu-

ments (jlk). A prediction is an advance in the first argument, that is

/ • . I . N Prediction / . , I . \ r-ia\
(jlj) - => (j+l|j) (19)

while a measurement update is an advance in the second argument, that is

fj|j--n. Measurement ̂  (.\.} (2Q)

Update

The prediction equations are

|j) + bu , t +

(21)

f(j+l|j) = f(jlj)

(22)

20



and the measurement update equations are

j-D + y J) [ y ( j > -

+ K (j> Fy (j) - M&J

(23)

where

j-D - K X ( J ) [MP(J

= C (j j-l) - K ( j )MCj j
" A

= c ( j | j -D - K (j) r
A. Jx 1

Kx( j) =

K ( J ) ' .

K f ( j ) =

j) = MP(j| j- F + R

In the prediction equations, the matrices (jj and ^ are evaluated at

in the first-order •appcox-ima-ti-ons-, and at

in the exact expressions (Appendices A and B) .

The initial conditions for the estimator equations are

x(0|0) specified

(24)

(25)

(26)

21



AT
e (0|0 = IQ; ; £ol''*'' ^omo

5 kol'"V' komo

f(0|0) =0

P..(0|0) = CT2 , i = 1,..., 4+2m ; P. .(o|o) = 0, i + j (27)11 x. ' o ' ij ' > r J

C (0|0) =0

Cf(OJO) =0

where the W 's, the standard deviations of the initial state estimation errors,

are specified.

A version of the J -Adaptive estimator is the so-called consider mode. The

consider mode estimator with the parameters e "considered" is obtained by deleting

the update equation of e; the second of Eqs (23). In this mode, statistics of

errors in the parameters e are considered in the estimator for the state in the

sense that uncertainties in e are accounted for in the state gain K , while e
X

itself is not estimated. Similarly, one obtains the consider mode estimator with

the parameters f "considered" by deleting the third of Eqs (23).

22



VI. BATCH LEAST SQUARES ESTIMATOR

An estimator for the state initial condition x(0) and parameters e from the

batch of measurements (y(j)f-, is obtained from the minimization

N
min J
x(0),e

J = [y(j) - Mx(j)]T R'1 £y(j) - Mx(jf) (28)

subject to the constraint

(29)

The (constant) parameter vector . f is not considered in this problem because f

cannot be distinguished from the rigid body initial condition; that is, a constant

f is not observable. It is assumed that the control u(t) is specified in the

time interval covered by the data batch.

Define the vector

P
T = [xT(0) (30)

Then differentiation of J and substitution of the constraint equation (29) leads

to the partial derivatives

,N-

£i
N

(31)

)XX(N)

T
5 (N)
xe

xe
(N)

) (N)
ee

(32)

23



where

(N) = T 0T(j,0)MTR~1M(5(j,0) (33)

(N) = Z. d^Cj.OMV^^j.O) (34)

(N) = Z_ /(j,0)MV1MJ?(j,0) (35)

.above is the information matrix for the data batch in question.

Now suppose that "with an assumed value of p (of x(0) and e) , x(j) is generated

by integration of the system differential equation (10). Then the gradient vector

SJ/^p and the inforamtion matrix <9(N) can be evaluated at x(j). The data iyCj)/

is of course generated via the simulation model of Section III. Then the standard

(or almost standard) Newton-Raphson or differential correction or generalized

least squares approaches ' lead to the correction Ap to p given by

AP = - ex p9(N) + p~| + JLL (36)
•— -1

In the above, o( is a step-size control parameter (0<c< < 1) and D is a diagonal

nonnegative definite matrix (specified by the analyst) which may be used to con-

dition the information matrix if required. The matrix D also effectively controls

the step-size of the correction ^p. ex and D are used to assure that the cor-

rection ^Ap is downhill; that is, that it results in a decrease in J.

The correction in Eqn (36) defines a batch lease squares iteration process for

the parameter vector p. Iteration is terminated when

n-1 n

- - =-f- ^ ̂ i (37)
..jn-l 1



and

, n .
AP.

-1 C- < £„ (38)

where n is an iteration counter and £ , £„ are specified tolerances.

Some discussion of Eqn (36) is in order. Pseudo-inversion is identical with

inversion when <S> (N) + D has maximal rank. However, when <S (N) + D is singular,

the increment computed via Eqn (36) with <X = 1 gives the shortest length solution

of the normal equation '

|~3(N) + D~I AP = •- M- • (39)
L J ^p

Pseudo-inversion attains this minimum norm property by changing .A p only in the

subspace defined by the column space of f~<S(N) + D~J . This has a physical mean-

ing for the estimation problem in terms of the observability of the system which

will be described below.

The step size parameter, c< , is required in all nonlinear problems because the

linear approximation may call for a correction so large that the higher order terms

cause the performance index to increase. That is, the minimum point predicted on

a linear basis may correspond to a higher value of J when the full nonlinear

function is evaluated. To avaid this, some search procedure along the vector

f S(N) + D~I
 + Ji '• (40)L_ _j . a

8
is commonly used to achieve a satisfactory value for oc

Use of the matrix D also has the effect of limiting the step-size; however,

the mathematical basis is slightly different. Use of D corresponds to the mini-

mization of

J + ApTD^p (41)

25



which is equivalent to minimizing the estimation error of Ap with a priori variance

D . Generally, when Eqn (36) is iterated to convergence, the solution will be in-

dependent of D, although the number of iteration required to reach convergence

depends strongly upon D. As an ad hoc procedure, I) can be used to guarantee that

(N) + D~j is nonsingular, thus avoiding the use of a pseudo-inverse.

The observability of the extended state p may be evaluated by an analysis of

the matrix <3(N). If £>(N) is invertible, then all components of p can be

determined from the N observations and the uncertainty in the estimate of p is

given by its covariance matrix, i5 (N) . If p is not completely observable,

then *d(N) does not have maximal rank, indicating that the extended state space

in which p lies contains a subspace about which the observations tell nothing.

That is, there exists at least one vector, arbitrary multipler of which can be added

to the state without affecting the observations (in the linear approximation). In
9

such a case the recommended procedure is to use a pseudo-inverse ,

li (42)
c)P

or to precondition the matrix by adding D before inversion. In general the pseudo-
9

inverse procedure is preferred , since it guarantees that the state will not be

modified in the unobservable subspace.

26



VII. SIMULATION RESULTS

Sequential J -Adaptive Estimator

A number of simulations of the sequential estimator were performed with the

first order (approximate) state transition matrix and parameter sensitivity matrix.

In all cases these simulations were unsatisfactory and in some cases divergence of

the estimator was observed. Apparently the system is significantly nonlinear. Sub-

sequently, all simulations employed the exact expressions for the transition and

parameter sensitivity matrices given in Appendices A and B.

- Figures 1-4 describe a simulation of a three mode case (m = m =3). Parameter
. s o

variations consist of a 107» step in all parameters at time zero. Initial state

estimate errors are of the order of the measurement noise and the initial state

estimation error covariance matrix (P) is consistent with these errors. The

standard deviations of parameter errors in the estimator (matrix E) are 25% of the

parameter variations.

Figure 1 shows the tracking (dashed lines) of the inertia and the parameters

associated with the first mode. The tracking of the parameters associated with

modes two and three are similar. While the tracking of inertia I, frequencies u).

and modal parameters k. is reasonably good, tracking of the damping coefficients

£. is very poor. Apparently there is insufficient local sensitivity (observability)

to track the damping coefficients. The memory length of the J -Adaptive estimator

is necessarily short,so that the estimator can respond to parameter variations.

Damping can only be sensed over several periods of oscillation.

Despite the poor tracking of the damping coefficients, it can be seen in

Figures 2-4 that the J -Adaptive estimator tracks the system states quite well.

The gain K of the state filter reflects the parameter uncertainties and, if
X

sufficient measurements are available (sufficiently high data rates) so that several

measurements are available per cycle of the highest frequency, the filter will track

the states.

27



In view of the simulation results described above, simulations were performed

in the "consider" mode described in Section V. Figures 5-7 describe such a simu-

lation for' m = m =5. Parameter variations consist of a 5% step in all parameters
s o

at time zero; standard deviations of parameter errors in the .estimator (matrix E)

are 100% of the parameter variations. The parameters themselves are not estimated

but are set at the erroneous values.

It is seen in Figures 5-7 that the estimator tracks the system states despite

the parameter errors. Thus if the system parameters can be estimated approximately

by some other means, the present "consider" estimator can be used for real-time

tracking of the system states.

In summary, simulations indicate that the sequential J -Adaptive estimator

cannot track variations in damping coefficients due to insufficient local observa-

bility of these coefficients. The estimator tracks other system parameters relative-

ly well, although not extremely well. It tracks the states of the system quite

well despite existing parameter errors. If approximate parameter estimates (par-

ticularly the damping coefficients) could be estimated some other way, the J -Adap-

tive estimator could be used to improve those estimates in real time (with the

exception of the damping coefficients) , while simultaneously tracking the system

states. Or, in the consider mode, the sequential estimator will track the system

states despite existing parameter errors.

Batch Estimator

In order to gain a better understanding of the system, a set of batch estima-

tor runs was made to explore the system observability and the effects of system

nonlinearities^ These runs were made using the exact transition and parameter sensi-

tivity matrices given in Appendices A and B to form the information matrix and gra-

dient given in Section VI. No step size-control was initially utilized in the iter-

ations. Standard conditions for these runs consisted of exciting the system initially

with a large, short-time control pulse and running the batch estimator over the

subsequent time period during which the control system drove the state to zero.

Initial conditions for the estimator usually had zero estimates for the state and

28



107o errors in the parameters.

Several runs were initially made with one and two bending modes over an obser-

vation interval of about one cycle of the fundamental frequency. These runs showed

very poor observability. In particular, the rigid body position and moment of inertia

were difficult to estimate as evidenced by very poor conditioning of the information

matrix and poor results from the estimation process.

Following this, the length of the observation interval was increased to eight

seconds, encompassing over six cycles of the fundamental frequency. In this case,

satisfactory convergence was obtained for the two-mode run. Let us enlarge upon

this somewhat. The final values of the parameter estimates agree with the true

values to at least five significant figures, and the state estimates were accurate

to better than three significant figures. Observability was at all times very good;

the variances were compatible with the observed estimation errors. However, a

large number of iteration was required to converge, and convergence was not uniform

in that the estimates and the performance index, J, did not change monotonically

(see Figure 8)* Notice, however, that once the iteration reaches the vicinity of the

minimum (in the linear region of the minimum), the performance index, J, decreases

very rapidly. The above results demonstrate the strong nonlinearities in the system

and suggest that an iteration step-size control (Section VI) needs to be activated.

The three mode case was studied next. Without step-size constraints convergence

never took place; the estimates bounced around in a random fashion and bath input

parameters k. and damping coefficients ^. often assumed negative values. At

this point, the step-size parameter o< was introduced according to the following

plan. After e#ch change in the parameters which resulted in a reduction of J,

tsi" was- set—to one. —After each change—in the parameters which failed to reduce J,

the step-size (<X ) was halved^ When this was done the three mode case converged to

values with an accuracy comparable to that which was previously described for the two

mode case.

In the four mode case, terminal convergence was found to be extremely slow,

with repeated halving of the step-size parameter X . This phenomenon was accom-

panied by a noticeable loss of significance in inverting the information matrix.
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A solution to this problem was attempted "by using a pseudo-inversion routine. This

led to numerical catastrophe, however, in that inconsistent results were obtained

during the computation of the pseudo-inverse. It was finally determined that these

errors occurred because of very poor conditioning in the information matrix; an

apparently unavoidable condition caused by scaling.

To circumvent the ill-conditioning problem cited above, the matrix D was in-

troduced (Section VI) to increase the values of the diagonal elements of the informa-

tion matrix. This, however, degraded performance so that the values at convergence

were in error by large percentages. Recall that the use of the matrix D in the

iteration does not change the location of the minimum of J only if the information

matrix is nonsingular.

To eliminate this observability problem, a second control pulse was added at

about 5 sec. With this additional system excitation, excellent results were obtained

for both four and five modes with only the use of o< to control step-size. In fact

for five modes, the parameters were estimated to five significant figures even with

207o initial errors. The states were also estimated to five significant figures,

except for the rigid body initial position which is exceedingly small and does not

significantly affect the overall system trajectory. It should be noted that as more

degrees of freedom are added (more modes estimated), there is a slight tendency to

fit the noise, as evidenced by a decreasing performance index. This does not appear

to materially affect the quality of the fit. Undoubtedly, the reason for the high

quality of the estimation is the decoupling produced by the normal mode representation.

In summary, the batch estimator can successfully estimate the system states

and simultaneously identify the (constant) parameters of the system, including moment

of inertia, bending frequencies, damping coefficients and modal (input) parameters.

For the estimation to be successful, however, a sufficiently large data batch must

be utilized, spanning at least several cycles of the lowest frequency mode. In

addition, the data rates must be sufficiently high and all the bending modes being

identified must be excited by the system inputs during the observation interval. The

nonlinearity of the problem does require a relatively large number of iterations for

convergence.
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It should be noted that the present batch estimator is suitable for the identi-

fication of constant parameters. Thus in a system where parameters are varying,

such variations must be slow relative to the observability requirements described in

the previous paragraph.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

Simulations indicate that the J -Adaptive sequential estimator will not track

the modal damping coefficients due to a lack of local observability of these coeffi-

cients in the data. This sequential estimator, designed to track time-varying system

parameters, has a relatively short memory length to enable the tracking of those

varying parameters. However, the J -Adaptive sequential estimator does track the

rigid body and bending states in the presence of parameter errors quite well and

can, simultaneously, improve the estimate of the moment of inertia, bending frequen-

cies and modal parameters k.. If model parameters are to be estimated via this

sequential estimator, it is important that those modes whose parameters are being

estimated are excited during the estimation process. In summary, the J -Adaptive

sequential estimator is an effective tracker for the rigid body and bending states,

but cannot be depended upon as the primary parameter identification tool, particular-

ly as far as the damping coefficients are concerned.

Much was learned from simulations of the batch estimator. First, the combined

state and parameter estimation problem is highly nonlinear, requiring a relatively

large number of iterations for convergence. Second, provided data rates are suffi-

ciently high and the measurements cover a sufficiently long interval (containing

several cycles of the lowest frequency mode), and provided all system modes are

excited during the entire observation interval, then the system is completely obser-

vable. It is then possible to identify the moment of inertia, all bending frequen-

cies, all damping coefficients, and all modal (input) parameters with very high

accuracy. The batch estimator is of course suitable only for the identification

of constant parameters. Therefore, in case the system parameters are.time-varying

such variations must be slow relative to the observability criteria noted above.

The above conclusions are of necessity qualitative in nature. Specific quanti-

tative conclusions can only be drawn with reference to a well defined physical

problem. For example, estimation accuracy depends on the attitude and attitude rate

measurement noise statistics. Whether or not the J -Adaptive sequential estimator

tracking of the parameters is adequate depends upon the utilization of the estimates

of these parameters, as, for example the required accuracy in these parameters for

adequate controller performance. The data rates required for adequate identification
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and tracking (sequential or batch) may or may not be feasible for a given real-time

operation.

Certain aspects of this estimation/identification problem were not exhausted

in the present study, and it is recommended that these be pursued further.

1.. The difficulties in the pseudo-inverse application which, it is believed,

stem ̂ rom poor scaling in the problem, should be pursued. Possibly, the

problem might be re-scaled. This is of more than academic importance since

it i& not known a priori whether or not all system modes are in fact being

excited and thus are observable. Attempts at identification of unobserva-

ble modes leads to overall poor estimator performance. The use of the

pseudo-inverse should reduce this problem since unobservable parameters are

automatically eliminated from the parameter set via the pseudo-inverse.

2. It would be worthwhile to recast the batch estimator into a sequential one.

This would probably reduce computing time because of the step-wise relinear-

ization inherent in the extended sequential estimator. It is usually agreed

that sequential estimators are more suitable for nonlinear problems and

for real-time operation. . Such a sequential estimator could be re-initial-

ized to handle parameter variations.

3. A study of the estimation process in the presence of model errors provided

for through the function f (see Eqn (4)) should be pursued further. As

presently modeled in the sequential estimator, the function f cannot be

distinguished from the rigid body initial condition. A more appropriate

model for f is a harmonic oscillator forced by noise, with fixed fre-

quency which is higher than the frequencies of the modeled modes.

Finally, it is _recommenAed_tha,t_.the._technlq.ue.s_and_ex.pe.r.lence—gained in this

study be applied to a concrete aeronautical or astronautical system. The estima-

tion/identification problem studied here is relevant for spacecraft with flexible

appendages and for high altitude aircraft, as well as for a flexible space station.
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Appendix A

State Transition Matrix

A first order approximation ,to the .dynamics in Eqn (10) is given by

x(j + l) = x(j) + A(e)x(j)r + but , T= t. , - t. (Al)

From Eqn (Al) , a first order approximation to the state transition matrix of Eqn (15)

is available as

l,j) = I + A(e)r (A2)

However, an exact state transition matrix can be constructed for Eqn (10), as

given below.

The 2x2 diagonal blocks of Q are easily obtained. For the rigid body,

For the actuator,

£33 - e
a.

.£

sn •J
where

a a
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34
. .sin V 7;

a

^

(A4)

34

^ =44

The modal terms of course have the same form as the actuator; thus for i=l,..., m

we have

where

2i+3,2i+3
= e cos \>.7r +• — • sin 9-'

• ,sin -p. 7; (A5)

^2i+4,2i+3 ~ ̂ i ^2i-t-3,2it-4

2̂i+4,2i+4 = #2i+3,2i+3 ~ 2/î 2i+3,2i+4

Because the normal modes are decoupled, all other elements of the transition

matrix are zero except for the third.and..fourth column, which describe the effects

of the actuator. For the rigid body,
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(A6)

b
c

!«.. "

b

For the modal terms, the expressions are more complicated, requiring several auxili-

ary definitions. Let

.U 10. - £.10(SL i c'l a

2 2
B = flT - to

i a

C = 2(6. &. - ̂  iD )( i i ^a a
? (A7)

-A = AC - B

Then,

0 - - 0 0 -BE)21+3,4

- - • < - BD + AE>

(A8)

This completes the definition of the transition matrix

In order to generate the parameter sensitivity matrix $ in Appendix B, it is

convenient to have the vector

.. (A9)
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which gives the effect of control on the state. For all k we have

It follows then that

2v , b
1 °2" Y13V

/3 » 1 -

For the modal terms we use the facts that

P = f\ $ -

(when A exists) and that the system is decoupled, to compute

a

for i = 1,... , tn

48
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Appendix B

Parameter Sensitivity Matrix

First order approximations to the parameter sensitivities (partial derivatives)

of Eqn (15) are obtained by explicitly differentiating Eqn (Al) . These are

(Bl)Y = C

—

A
*i
2x1
0

•

2x1
o

I -X t/I^

k

2x1
0

2

(2+ 2m )xl "1
o °

i-xm
0 °

2x1
0

•^ m

(B2)

where

2x1

(B3)
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where

4xm

m —i

(B4)

where

2x1
• <?= (B5)

4xm

" 1

(B6)

2x1 0

(B7)
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The exact expressions for (f are obtained by differentiation of the solution

x(t. _) = o5(r)x(t.) + P(r)u(t.)-' J J

with respect to the parameters of the system. This leads easily to

:BS)

?2i+3,4
x4/ki + *2i+3u/ki

i + *2i+4u/ki
(B9)

and with somewhat more difficulty to the formulae which follow.

- x- x2i+3

,3 ^a a
2J+3.4

u
u>. (BIO)

i

u >b
.
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where

s''2i+3.2i+3 = _,
>,.,
" ' i

^21+3,21+4 _
-- — 2i+3,2i+4

(BID

A

. ( .

_ _ ( B

A
, P

and

A = 2o o. ( ? LO.-I. u) )
a i <*a i 'i a

2 2
B = W. - LO

i a

and therefore
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•D =

E "
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- 2£~

(B13)

S A + C
'

2D
_ b 2̂1+3.21+3

and

2E - b>u\ o>_. i

In addition,

2i+4,4

(B14)

2J+4.4

Finally, we have

2i+4

v?/.

u (B15)

~ t\X2i+3
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and

where,

54

^21+3.21+3

^21+3.21+4 . ,,2 ^21+3.4
^

21+4.4

ub

where

y2i+3.2i+3 _ e

(B16)

21+3,21+4 .t5. 7: cos v>. 7: + s n

21+3.4 ^21+3.4
A

_B

21+4,4 ^21+4.4 -±- ( -B
A

(B17)

a i

= o



I
*a

^£zii^£
' *Ji



Page Intentionally Left Blank



Appendix C

Model Characteristics

The parameters of the simulation model are given below:

I = 3.0xl06 slug-ft

= 15.0 rad/sec = 0.4

uol

Uo2 =

w.^ =

"o4 "

Uo5 =

-06 =

f)o? -.

u)og =

Qo9 =

^olO =

A

A2 -

A3 =

/4 =

5.00 rad/sec

8.61 rad/sec

15.00 rad/sec

26.04 rad/sec

45.00 rad/sec

50.50 rad/sec

56.65 rad/sec

63.56 rad/sec

71.32 rad/sec

80.02 rad/sec

- O.lxlO7

- 0.235094xl07

- 0.300177

_i
- 0.209141x10 x

A . = 0 , i>14

/ol = °-°°5 kol «

/o2 - °-01

/o3 - °-01

£o4 = o.oi

fo5 = 0.01

<6 = o.oi

^o7 = o.oi

<og = o.oi

;o9 = o.oi

<olo = o.oi

/^5 = "o.

•^6 = " °*

7^7 = 0.
*

*8 • -°-

ko2 -

ko3 -
k . =o4
k . =o5
k c. =00

k 7 =o7

ko8 =

ko9 -

kolO =

48 24 7 2x10 5

272896xl06

706988xl06

f.
194223x10

0.66667xlO"7 rad/ft-lb

0.44965xlO"7 rad/ft-lb

0.19259xlO~7 rad/ft-lb

0.34411xlO"7 rad/ft-lb

0.13169xlO"7 rad/ft-lb

0.124l7xlO"7 rad/ft-lb

0.12464xlO"7 rad/ft-lb

0.10726xlO"7 rad/ft-lb

0.10484xlO"7 rad/ft-lb

0.11453xlO~7 rad/ft-lb

A9 = 0.259 7 71x10 '

>1Q = - 0.52l888xl05

•Xu = 0.338741xl67

g
^12 = 0.121428x10

*.- = O.l25113xl07

0.737513xl0
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-9 -8
cr = 1.0x10 rad <7I = 2.0x10 rad/sec ff! = 0.0

The system is set into motion by a control pulse at t , and is further excited in

some simulations by control pulses at intermediate times t.. Sample-and-hold con-

trol is used in all the simulations. Estimated state feedback (Eqn (7)) is used

in simulations involving the sequential estimator, while a specified control u(t)

is used in batch estimator simulations. Various parameter variations (Eqn (8)) are

utilized (see Section Vll). The system equations are integrated via a fourth order

Runge-Kutta routine at a fixed step of 0.0078125 sec. Measurements are sampled at

each integration step.
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ABSTRACT

Techniques are studied for the estimation of rigid body and bending states and

the identification of model parameters associated with the single-axis attitude

dynamics of a flexible vehicle. This problem is highly nonlinear but completely

observable provided sufficient attitude and attitude rate data is available and

provided all system bending modes are excited in the observation interval. A

sequential estimator tracks the system states in the presence of model parameter

errors. A batch estimator identifies all model parameters with high accuracy.


