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INTRODUCTION

Maintenance of a narrow temperature range within a space

vehicle is very essential in both unmanned and manned space programs.

Control of temperature on a space vehicle is based on the exchange of

radiant energy with the vehicle's environment and, hence, on the thermal-

radiation properties of the exterior surfaces. Thermal control coatings

with the desired radiative properties are being used to maintain a pre-

determined heat balance on spacecraft. Solar absorptance, a<$, and

hemispherical emittance, e-p, of the coating are the prime characteristics

for controlling the heat balance. Design requirements often require

the use of a low a$-to-6ji ratio surface. These surfaces are generally

susceptible to damage by solar radiation, resulting in an increase in

°S'

Considerable effort during the past 12 years has been made in

developing coatings which would be stable in a space environment, be

relatively easy to apply and to maintain, and have the desired radiative

properties. The result of all work performed in developing stable

thermal control coatings has been documented in various scientific

and engineering journals and reported at various conferences. The

scatter of this essential data over such a large publication media has

hindered the efficient use of coating materials by thermal design

engineers.

To alleviate the problem of data collection and comparison for

the thermal design engineer and to provide a basic treatise on the use of

such data, the present handbook of passive thermal control surfaces

data has been compiled.

The handbook is divided into two parts. Part I consists of two

chapters. Chapter 1 is a discussion of passive temperature control

techniques and selection of control surfaces. Chapter 2 is a discussion

XI



of the space environmental damage mechanisms in passive thermal con-

trol surfaces. Part II presents pertinent data on the coatings for which

data are available, followed by a tabular summary of the available data

on passive thermal control coatings.

In selecting the data for the different thermal control coatings,

emphasis was placed on consulting only those references where the

experimental simulation of the space environment appeared to be more

appropriate. All laboratory data which were not taken in situ or in which

space environment was not properly simulated were discarded. Flight

data where the samples were not returned to Earth under vacuum were

also discarded. Reliance was given to the data obtained by the research

groups who are more familiar with the thermal control coating and space

environment problems.

Appendix A is a compilation of data that was used in making the

tabular summary and that was subsequently used to describe the thermo-

physical properties of the individual coatings.
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PART I
PHYSICS OF THERMAL CONTROL



CHAPTER 1
PASSIVE TEMPERATURE CONTROL TECHNIQUES

AND SELECTION OF CONTROL SURFACES

This chapter reviews the basic fundamental and engineering

considerations in heat transfer that are related to passive temperature

control.

Also discussed in this chapter are the sources of radiant energy,

the methods used in obtaining thermophysical design data, and the

criteria used in selecting passive thermal control surfaces.

FUNDAMENTAL AND ENGINEERING CONSIDERATIONS IN
HEAT TRANSFER

The solar absorptance and thermal emittance characteristics

of surfaces ultimately control the temperature of objects in space, and

satellite instrumentation must generally be maintained within a specified

temperature range. Temperature control is established through radiation

balancing, i.e., by arranging for the power absorbed from sunlight to

be balanced by the power radiated from the surface at a temperature

level compatible with the payload requirements. When the internal

power dissipation is low or is zero, this absorptance-emittance

balance establishes the mean temperature of the payload. The addition

of high internal power dissipation requires readjustment of surface

characteristics to achieve a new balance, but, in all cases, an important

parameter for temperature control is the ratio of solar absorptance

to thermal emittance for the external surface. If the external surface

is composed of more than one material, the effective absorptance-

emittance ratio will be determined from a properly weighted average of

the absorptance and emittance of each material.
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This type of temperature control system is called a passive

system, and the most critical factor in such a system is the ability

to prepare surfaces with reproducible and accurately known values of

absorptance and emittance.

This section reviews the interrelationship between material

properties, optical properties, and thermal properties. This review

is designed to give a practical working knowledge of the basic laws of

optics and thermodynamics as they apply to the use of coatings to con-

trol heat transfer.

Kirchhoff's Law

This law states that at a given temperature and wavelength the

ratio of the emittance and absorptance of all surfaces is the same, and

the ratio is equal to that of a blackbody. This means that there can be

no net heat transfer in a closed isothermal system and that a surface

that has low absorption must have low emission and good reflection

within the isothermal environment. To satisfy this condition:

°X T = €X, T = 1 ~ RX, T • (!)

The significance of this expression in heat transfer is best indicated by

illustrations of its limitations:

e\ T

and

Lambert's Law

This cosine law forms the basis for the view factor. The

direction of radiation from a surface is very important in calculating

the view factors for complex satellite shapes. The law holds exactly
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for blackbody radiation and almost exactly for diffusely reflecting sur-

faces. This law states that the intensity of a radiating surface is inde-

pendent of the angle of viewing. Since the apparent area

POINT OF V I E W I N G
cos 9

RADIATING SURFACE

decreases with the cosine of the angle of incidence 6, the radiant flux

is the normal intensity Jn times cos 9. The total hemispherical

emitted flux W is IT times the normal flux, i.e.,

W = TT Jn . (2)

In general, Lambert's law is a fair approximation of the radiation

pattern from a surface. If it were obeyed exactly, the radiant flux

measured at any angle to a surface could be used to calculate total

hemispherical radiation, and could also be used to measure hemispherical

emittance when compared to a blackbody cavity at the same temperature

and viewed from the same angle.

The surface condition of material has a great influence on the

emittance. As the surface roughness is increased, the emittance

approaches Lambert's law in flux distribution. Considering an infinitely

thick section of a dielectric which has a light transmission of zero, the

emittance is the internal radiation that is not reflected by the surface,

i. e.,

€ = 1 - R . (3)

1-3
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The surface reflection in the normal direction is given by

• • - • - ( J H J •
Similarly for metals,

R = 1 _ e = 1 - - . (5)
n

Thus, the index of refraction may be considered a basic parameter

controlling heat radiation. Since the index of refraction varies directly

with the density, porous, low-density surfaces are more emissive,

particularly if the pores are small compared to the wavelength of light

radiated.

Wein's Displacement Law

Planck's law, in its simplest form, can be written as

qx = T5 f( \T) (6)

It has been shown that if P,\/xS *s plotted against XT (Ref. 1) the same

curve is obtained for all values of the temperature T. From this fact,

Wein's law can be derived directly as

XT = C (7)

where C is a constant. The values of C in micron °K have been

plotted for fractions of thermal energy (at shorter wavelengths) varying

from 1 to 99 percent, and are shown in Figure 1. This plot can be used

to obtain the relative radiation intensity or the fraction of the total

energy radiated between any two wavelengths.
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The Physics of Absorption and Emission

The absorption or emission of electromagnetic radiation is the

result of physical changes within the radiating atoms or molecules.

Absorption results in excitation of the aborbing species to some higher

energy level, whereas emission is the reverse process. At the lower

end of the energy scale are the molecular rotational transitions. In

solids, these are associated with the bending of bands and absorb most

strongly in materials having a high dipole moment. Pure rotational

absorption occurs in the far infrared and microwave frequencies. The

rotational spectra are overlapped by the lattice vibrational spectra

which measure inter molecular interactions or vibrations involving a

lattice or molecules or ions. These transitions control heat absorption

and emission at very low temperatures.

At wavelengths between 2 to 50 microns, the molecular vibrations

associated with band stretching become the most important. These

transitions control heat transfer at moderate temperatures. The infrared

absorption or emittance spectra are a measure of the "allowedness"

of a vibration transition which is resonant with the respective wavelength

of light. As the temperature is increased, vibrational levels with larger

energy gaps are excited and short-wavelength light is emitted. This

causes the shift of the emission spectra toward the visible in accordance

with Wein's law.

When light at a wavelength between 0. 15 and 2.0 microns is

absorbed, it generally excites an outer-shell electron to a higher

energy level. In most cases, this electron returns to the ground state

by giving up its energy through vibrational excitation of its own molecule

or molecules which collide with the excited atom. The energy is then

dissipated as thermal energy at longer wavelengths.
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When the X-ray region is reached below 0.01 micron, inter-

shell electrons are ejected from the absorbing atom. When this vacancy

is filled by outer-shell electrons, the energy is radiated to excite

many electronic transitions in neighboring molecules. The ejected

electron may cause electronic excitation in other molecules.

At even shorter wavelengths, a gamma photon excites a cascade

of electrons when it is captured in a dense material. The bulk of the

electrons and vacancies quickly give up their electronic excitation

to vibrational modes, causing a localized overheating called a thermal

spike. A similar thermal spike is caused by the penetration of cosmic

radiation (energetic protons) into a surface.

Surface Reflection

The surface reflection of materials is related to the absorption

coefficient and the real and complex indices of refraction. The complex

index of refraction is defined as

N = n - ik (8)

where N is used in Fresnel's equation and Snell's law to determine

the surface reflection and refraction in absorbing materials, respectively.

The extinction coefficient k is related to the absorption coefficient a

in Lambert's law (I = Io e ) by the equation

a = 4 i rk /X . (9)

The absorption coefficients of good metallic conductors are

generally very high in both the visible and infrared. However, the

reflection of smooth metal surfaces is so high that the actual absorption

remains relatively low. On the other hand, when a metal such as gold
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is deposited in colloidal form at low density, the real index of refraction

is so reduced that the absorption approaches that of a blackbody.

The absorption coefficient of dielectrics is determined by the

vibrational and electronic transitions, as discussed previously. Generally,

dielectrics vary between transparency and moderate to high absorption

as the wavelength changes. Therefore, the complex index of refraction

will change erratically with wavelength for many dielectrics.

The absorption coefficient has a strong effect on the change in

reflection with the angle of incidence of the light. From Snell's law,

the angle of refraction is given by

sin 6i = N sin 6r (10)

where 6^ and 6r are the angles of incidence and refraction, respectively.

The reflection of light is then given by the relationships

sin2 ( 9j - 6r)

sin* (6i+ 6r)

tan2

for perpendicular and parallel polarized light. For unpolarized light,

these combine to give

Rx = 1/2(RX + Rx ) . (13)

This explains why the light is polarized by reflection and why

the degree of polarization varies with the absorption. Surface reflection

is a very important property of pigments used in white coatings.
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Reststrahlen Reflection

Reststrahlen reflection (or radiation) occurs at wavelengths

associated with a fundamental resonant vibration of the lattice in a

glassy material and of the polymer backbone in a resinous material. At

the resonant frequency, the bonding electrons are free to oscillate in

harmony with the electromagnetic radiation and act the same as conductive

electrons in a metal. This causes a strong metallic reflection for a

narrow band of wavelengths near the resonant frequency. The reflection

considerably reduces the spectral emittance of the dielectric material.

Therefore, one of the requirements for maximum emittance is to avoid

materials with strong Reststrahlen reflection in the wavelengths of

interest or to reduce the strong resonant lattice vibrations by diluting

the material.

Light Scattering by White Coatings

Within limited spectral ranges, white coatings can reflect light

with equal or higher efficiencies than polished metals. The high

reflectivity is achieved by a scattering process. This reflection is of

the Fresnel type, i.e., it occurs because the index of refraction of

the pigment is greater than the binder. When the pigment has a

diameter of less than one-tenth the wavelength of the incident light,

the light is dispersed in accordance with the Rayleigh scattering law.

Rayleigh scattering varies rapidly with the particle size and wavelength

of incident light. It is evident that the thermal control technique using

Rayleigh criteria should be very inefficient. For larger particles,

these criteria break down and the light reflection goes through a peak

at a certain particle size and then decreases again to a constant value

for a larger size. The particle diameter for maximum reflection is

given by (Ref. 2)
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Equation 14 is quite satisfactory for calculating the optimum

particle size of pigment where a low concentration of spherical, or

nearly spherical, particles are used. However, in an actual coating,

the pigment particles are packed tightly together, and smaller particle

sizes have been found to be more effective (Ref. 3).

Surfaces in Close Proximity

When two surfaces are brought into close proximity, there are

two new phenomena that affect the rate of heat transfer. These are

optical interference and "tunneling" radiation, the latter begin

the interaction of the internal radiation within a body, with the second

body in close proximity.

The interference effect is maximum at about 0. 05 \nax> which

is the peak of the blackbody distribution (Ref. 4). The tunneling effect

is the transfer of energy that is normally internally reflected by the

metal. The range of radiation tunneling extends to about 0.25 ^max-

These distances are affected by the complex index of refraction and

require separation in the range of Xmax to ensure freedom from these

effects.

Heat Transfer Between Parallel Plates

A number of mathematical relationships have been developed

for calculating heat transfer between parallel plates. One of the

earliest equations is

q = Ao- €(T,4 - Tj) . (15)
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Equation 15 is accurate only when € is approximately 1; therefore,

there is little or no reflected radiation. An improved relationship which

also considers the reflection is (Ref. 5)

q =

where the subscripts "1" and "0" apply to the hot and cold surfaces,

respectively. This relation was described in Reference 6 as an emittance

factor Fe, defined as follows:

(17)

eo

This formula is valid for concentric spheres, a coaxial cylinder, or

an equatorial plane wibhin a sphere (Ref. 7). It is also accurate for

two parallel plates, where the separation distance is much smaller

than the dimensions of the plate.

Where one of the surfaces is discontinuous or the separation

distance is not small as compared to the surface area, a view factor

Fa is combined into Equation 17, as follows:

q = o- Fa Fe (T,4 - T4) . (18)

The view factor also depends on conformance to Lambert's law, and

the existence of an exposed edge or interface makes it improbable that

either surface is isothermal. Thus, any calculation using Equation 18

must be considered as being approximate.

I-11
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On the other hand, it should be remembered that when the

parallel plates are packed too closely (in the order of the wavelength

of radiation) the rate of heat transfer increases markedly because of

the interference and tunneling effects, as discussed previously.

The simplest heat transfer is between plates with equal emittance

and involves a cryogenic surface at temperature T0 receiving heat q

from high-temerature surface Tj . Assuming Fa = 1, the rate of heat

flow is

q = o- Fe (T4 - T4.) . (19)

If Tj > 3 T0, then

q = o- Fe T4 . (20)

Now, if the surface at temperature Tj receives heat from another parallel

plate with the same Fe at temperature T2 , the heat transfer will be

q = o- Fe (T4 - T,4) . (21)

Under steady-state conditions, the heat lost is only to the cryogenic

surface, eliminating Tj :

2q = o- Fe T4 . (22)

Therefore, generalizing for n parallel plates:

4
or Fe Tn

q = —— . (23)
n

1-12



When Tj < 3 T0, the same relationship holds, and

q = — . (24)

These two equations neglect the temperature drop through each plate

and alternate methods of heat transfer such as conduction or convection.

The "Equivalent Black-Plate" Concept

Since the rate of heat transfer varies inversely with the number

of plates, a single plate with an emittance factor of 0. 1 is equivalent

to 10 plates, with each of them having an emittance of 1.0. Thus, any

coating combination can be represented by a number of "equivalent

black plates", defined as the sum of the reciprocal emittance factors

F_, as follows:
6

Nb =y ^- =y nb (25)
£-, * e ^

where

Nbq = o- (T,J - TO) . (26)

This equation permits the calculation of heat transfer where the parallel

plates have a multiplicity of different coatings.

Insulators and Parallel Plates in Series

The temperature drop across an insulator is given by

AT = qx/k (27)

where x is the thickness of the insulator.
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When the insulator is part of, or in series with, the parallel

plates, the heat flux must be the same across each interface. However,

the effect of the insulator on the heat-transfer rate varies with the loca-

tion of the insulator relative to the heat source.

SOURCES OF RADIANT ENERGY

An Earth satellite is heated by three external energy sources,

i.e., sunlight, albedo, and Earth radiation. Figure 2 shows the spectral

distribution of energy from the above heat sources, neglecting the reduction

in intensity caused by the distance from the Earth (Refs. 8 and 9).

Albedo is sunlight reflected from terrain, water, and clouds.

Also, some light in the blue end of the spectrum is backscattered from

the atmosphere by dust and haze. Reflection varies from about 80 to

90 percent from clouds and snow and 10 percent or less from water

and certain types of terrain. The average albedo of the Earth is

reported as 39 to 40 percent (Ref. 10); however, large variations should

be expected.

When a satellite is placed in an orbit just above the atmosphere

reflecting layers, the Earth is a good approximation of an infinite

flat plane blocking out one hemisphere of view. The albedo would be

isotropically radiated from this plane, and the intercepted flux would

vary only with the intensity of solar energy incident on the plane.

As the orbital distance of the satellite increases, the Earth

occupies less of the satellite's view and appears to be a circular plane

extending to the horizon. This would decrease the intensity of the

albedo in proportion to the view factor (Ref. 11) and the inverse square

law. Also, since the magnitude of the solar flux varies inversely

as the square of the distance from the Sun, it is approximately constant

1-14
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for Earth satellites. Thus, the satellite has one large and two small

external sources of heat, each source having a different spectral

distribution of energy.

In addition to the albedo, the Earth radiates heat in the infrared

because of its own temperature. Earth radiation comes partly from the

atmosphere, a stable component, and partly from the Earth's surface

in clear weather. Clouds, haze, and dust reduce the ground radiation

and make the Earth appear colder from space. The cloudy sky radiates

at about 140 W/m2 , and the intensity increases to about 320 W/m2 when

weather permits strong radiation from the Earth's surface. An average

flux WE of 250 W/m2 is frequently used. The view factor and area

relationship is the same for Earth radiation and albedo. The Earth

radiation flux is relatively constant through a circular orbit, even

during the periods of darkness. For this reason, only one calculation

of Earth radiation is necessary for a stable elliptical orbit.

METHODS OF OBTAINING THERMOPHYSICAL DESIGN DATA

The optical surface parameters of interest are absorptance,

reflectance, and emittance. From these general terms, more specialized

quantities, such as solar absorptance and thermal emittance, can be

derived, which are of great importance to spacecraft. These three

fundamental parameters are linked for opaque materials by means of

Kirchhoff's law, as mentioned previously.

The thermal emittance or solar absorptance of a surface may be

determined either directly or indirectly. In particular, the reflectance

of a surface can be determined and used as an indirect method of

arriving at the desired parameter. It should be noted that the pertinent

spectral region for solar absorptance is significantly different from the

1-16



region pertinent for emittance at close to room temperature. About

97 percent of the solar flux is contained in the spectral region from

0.3 to 3.0 microns; however, the corresponding bracket for a

27° C souce is from 4.8 to 60 microns.

Reflectance Measurements

The determination of spectral reflectance data in the visible

and/or near infrared is a straightforward procedure in principle, and

is facilitated by the existence of commercially available spectrophotome-

ters. Spectrophotometer measurements are usually made with normal,

or near normal, radiation incidence; frequently, in solar absorptance

problems, the values for normal, or near normal, incidence are

adequate, so that such a measurement technique is not unduly restrictive.

The determination of a standard of reflectance required by most instru-

ments is a reason of caution in this area. Magnesium oxide is a

frequently used standard, but its spectral reflectance is subject to

variation (Ref. 12). Other standards are defined by the National Bureau

of Standards (Ref. 13).

A number of approaches avoid the requirement for a standard

of reflectance. Use of a varying number of multiple reflections from

identical specular surfaces (Ref. 14), use of an integrating sphere

reflectometer (Ref. 15), and use of a strong-type reflectometer

(Refs. 16 and 17) are some of the methods.

In principle, most of the above techniques can be used into the

far infrared wavelengths with appropriate dispersing and detecting

elements and careful attention to the necessity of rejecting short

wavelength radiation. In the infrared, however, there are other

frequently used approaches concerned with the evaluation of emittance

from reflectance data.

1-17



Although the determination of diffuse reflectance is not significant

for specular surfaces, diffuse reflection geometries are being used with

specular surfaces. The simplest type is the Coblentz reflectometer, in

which the radiation strikes the sample at a fixed angle of incidence and

the reflected radiation is focused by the hemisphere on a detector

conjugate to the sample. This system has many disadvantages (Ref. 18).

The standard integrating sphere reflectometer is unsatisfactory

at wavelengths beyond about 2. 0 microns because of the lack of an

adequate diffuse reflectance coating for the longer wavelengths. However,

the inverted approach, which uses diffuse illumination and observation

at a particular angle to the normal, is a popular one.

When the angular spectral reflectance Rx of a surface is available,

the corresponding values of a fl or e-p, for 0 = 0, may be computed from

a

IA X 6 H X d X

f

and
a

f € x WX dX

€T = -—y- (29)

J W x d X

0
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and the Kirchhoff's relation. The fundamental integrals to be evaluated,

thus, have the general form

a

I f ( X ) J dX

F = ^—5 = — I f ( X ) J ( X ) d X . (30)

J (X) dX 0

0

This integral may be conveniently evaluated in terms of another

function P(X), which is the fraction of radiation contained in wavelengths

shorter than X. Since by definition

X

J(X) dX

P(X) = (31)

then

d P = - - J (X) d X

and

1 1

F = f f (X) dP =f g(P) dP . (32)

0 0

Figure 3 illustrates a type of graph (Ref. 19) for this computation. Here,

J(X) is the extraterrestrial solar distribution H(X) , which is shown in,

Table 1. These tabulated values are essentially correct down to 0.24

micron; however, below 0.24 micron, the values are low compared to

recent measurements (Ref. 20).
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The abscissa of Figure 3 is linear in terms of P(X) and is, thus,

nonlinear in X. The corresponding X. values (Table 1) are listed on the

bottom scale, and the abscissa is graduated in terms of the X scale.

The values of f ( X ) (which is chosen to be the reflectance) are plotted

on the chart at the appropriate X positions. The chart essentially

establishes the transform f ( X ) — g ( P ) , and the area under the plotted curve

is the integral F.

PERCENTAGE OF SOLAR CONSTANT FALLING BELOW WAVELENGTH K. P(\)
10 20 30 40 5,0 60 7,0 8,0 9,0 WO

.5

.38 .30 .32 .34

.6 .7 .8 .9 I.O

WAVELENGTH, A. (microns) 30 35 40 50

FIGURE 3. DISTORTED A CHART FOR THE DETERMINATION OF EXTRATERRESTRIAL
SOLAR REFLECTANCE OR ABSORPTANCE
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A similar graph is easily constructed for a blackbody distribution

at a lower temperature, and it is useful for the computation of the normal

emittance of a material at a specified temperature. Table 2 gives P(X)

data for several low-temperature distributions (Ref. 21).

Calculation of hemispherical emittance (€T) , solar absorptance

(org), and Earth infrared absorptance (OIR) of coatings can be computed

using a numerical integration scheme programmed on a computer

(Ref. 22). In this numerical method, the equation used is

100

Xi = T^ I «m (33)

m=l

where X^ = e-j-, act or a-^, with the am and AX chosen in a special way.

Direct Determination

In addition to the determination of emittance and solar absorptance

values from reflectance data, there are more direct methods for

determining these parameters and their ratios. It is possible to determine,

with some limitations, the angular spectral emittance, angular total

emittance, and hemispherical emittance of samples by radiometric or

calorimetric methods; and to determine solar absorptance and or/€

ratios with the aid of solar simulators and calorimetric techniques.

Measurement of Emittance - Although the determination of normal

or angular emittance of a surface by the radiometric technique is a

common practice, the measurements at temperatures below several

hundred degrees centigrade are severely limited by the available radiated

power (Refs. 23 and 24).
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TABLE 2. FRACTION (PA) IN PERCENT OF TOTAL RADIATION CONTAINED
IN WAVELENGTHS BELOW THE WAVELENGTH A IN MICRONS

x(y)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

11.0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

20.0

21.0

0°C

0.02

0.08

0.26

0.64

1.29

2.28

3.64

5.36

7.43

9.79

12.41

15.22

18.17

21.21

27.39

33.48

39.31

44.76

49.78

54.37

58.52

62.27

65.64

68.87

71.39

PX(%)
27°C

0.06

0.21

0.59

1.29

2.39

3.93

5.92

8.31

11.03

14.02

17.22

20.53

23.92

27.32

34.01

40.36

46.24

51.60

56.43

60.75

64.60

68.03

71.07

73.78

76.18

50° C

0.12

0.41

1.03

2.09

3.66

5.75

8.30

11.24

14.49

17.96

21.56

25.21

28.87

32.47

39.39

45.79

51.58

56.76

61.36

65.42

68.99

72.14

74.91

77.35

79.50

100°C

0.45

1.24

2.65

4.74

7.49

10.80

14.53

18.55

22.73

29.96

31.15

35.25

39.19

42.97

49.92

56.06

61.41

66.05

70.05

73.50

76.49

79.06

81.30

83.24

84.94

My)

22.0

23.0

24.0

25.0

26.0

27.0

28.0

29.0

30.0

32.0

34.0

36.0

38.0

40.0

42.0

44.0

46.0

48.0

50.0

55.0

60.0

65.0

70.0

75.0
—

o°c

73.83

76.02

77.99

79.76

81.36

82.80

84.11

85.29

86.36

88.22

89.76

91.05

92.14

93.06

93.85

94.52

95.10

95.60

96.03

96.90

97.53

98.01

98.37

98.64

—

PX(%)
27°C

78.31

80.22

81.92

83.44

84.80

86.02

87.11

88.10

89.00

90.54

91.81

92.87

93.76

94.50

95.14

95.68

96.14

96.55

96.89

97.58

98.08

98.45

98.73

98.95

—

50°C

81.41

83.09

84.59

85.92

87.11

88.17

89.12

89.98

90.75

92.07

93.16

94.06

94.81

95.44

95.97

96.43

96.82

97.15

97.44

98.01

98.43

98.73

98.97

99.15

—

100°C

86.42

87.72

88.86

80.87

90.76

91.56

92.27

92.90

93.46

94.43

95.22

95.86

96.40

96.85

97.23

97.55

97.82

98.05

98.26

98.65

98.94

99.15

99.31

99.43

—
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The most direct approach of measuring hemispherical emittance

is the calorimetric method. In this technique, a sample is thermally

isolated so as to lose heat primarily by radiation, and the hemispherical

emittance is obtained either by measuring the power input required to

maintain the sample at a fixed temperature or by determining the time-

temperature response of the sample.

The sample is suspended in a relatively large isothermal

evacuated encloser and is provided with an internal electric heater.

The sample temperature is sensed with a thermocouple. The thermal

equation for the system is

|p = C (P+ P! - P2 - <r€ T AT4) . (34)

Pj is the power contributed to the sample by radiation from the enclosure

and by sample radiation reflected back to the sample by the enclosure,

and P2 is the power lost by conduction and convection. T is the sample

temperature, and C is the heat capacity of the sample. P is the heater

power.

The quantity Pl may be readily reduced in magnitude by cooling

the enclosure to a temperature to well below T. In addition, the

enclosure walls may be treated to provide high infrared emittance and

consequent low reflectance for sample radiation. In the common

spherical geometry, the quantity P! can then be evaluated from the

expression

P! = Aatr T + A<r T R e x ~ | 7j HT (35)

where the sample is considered to have an absorptance OQ for the wall

radiation, and the walls to have a reflectance R for the sample radiation.
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It is possible to consider a$ = e-p, but the adequacy of this assumption

must be verified; and to neglect the second term in the above equation,

depending on the ultimate accuracy desired, as well as the values of

a$, e-j" and R. For example, if #5 = €T = 0-5 and R = 0. 1, then the

error in Pj will be 5 percent if the second term is neglected.

The part of P2 which is the conduction loss via the suspension

and heater leads may be minimized by the use of small leads and

evaluated by auxiliary measurement using an extra set of dummy leads

(Ref. 25). The gas conduction loss, which is also a part of P2 , is

minimized by evacuating the chamber to about 10~5 Torr. The exact

loss in a system usually cannot be predicted, but the upper limit

may be estimated through the approximate expression

2 . 5 X 1 0 - 4 T " T° p W / c m 2 (36)
Npr7

which represents the power lost from the sample, where p is the

residual air pressure. At a pressure of 10"5 millimeters, Equation 36

predicts a loss of about 6 X 10"5 W/cm 2 for T = 273° K and T0 = 70° K.

Radiation from a sample of 0.02 emittance is equivalent to 9 X 10"4 W/cm2,

so that the overestimated gas loss is predicted to be 15 percent of the

radiative loss.

The emittance CT °f *ne sample can now be determined from

Equation 34, either by waiting for the establishment of thermal equilibrium

(dT/dt = 0) or by reducing the electrical power P to zero and determining,

from the cooling curve, the derivative dT/dt. The latter dynamic

technique has the advantage of reducing the measurement time. A

detailed discussion of the magnitude of different types of errors involved

in calorimetric methods is given in Reference 26.
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Measurement of Solar Absorptance and ag/e-p - It is also

possible to use a calorimetric technique to determine solar absorptance.

One approach is to employ essentially the same type of vacuum geometry

and techniques as that used for the calorimetric determination of

emittance. The only difference is that the input power P in this case

is the power absorbed by the surface from a light beam of known

irradiance whose spectral distribution is that of solar radiation.

If the emittance of the sample is known, an equilibrium or

dynamic technique may be used to determine the absorptance.

If the emittance is not known, the emittance can be referred to

some standard (Ref. 27). In this technique, the surface of interest is

applied to one flat side of a disk-shaped holder, and the other flat

side of it is coated with a surface of known absorptance. The sides

are then alternately exposed to the solar-equivalent radiation, and,

between exposures, the source is blocked to allow alternate heating and

cooling cycles. If an appropriate temperature cycle is established, the

heat losses may be expected to cancel each other, and the ratio of

unknown to known absorptance can be determined (Ref. 28). This

technique does not require the incident irradiance to be known,

nor, in principle, does it require a vacuum, because both radiative

and air losses cancel each other. The technique does require a surface

of known absorptance and a holder of good thermal conductivity. The

technique is not restricted to flat surfaces.

Because of the similar requirements for the calorimetric

determination of a$ or €T» the two can be simultaneously evaluated

with the aid of some appropriate solar simulation. The cooling curve

can be used to derive the sample emittance if the heat capacity is known.

Equation 34 and an equilibrium measurement with a known solar irradiance

will permit the determination of o - / e . .
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CRITERIA FOR SELECTING COATINGS

The basic method of controlling spacecraft temperature is by

using materials that exhibit the necessary thermal radiation characteristics

(ac./£ rr)' These materials cause the various surface areas of the vehicle

to emit and aborb the correct amount of energy to ensure the maintenance

of proper temperature. The four basic thermal- control surfaces are

shown in Figure 4.

The parameters that must be considered for thermal design

of a spacecraft are

• Temperature requirements
• Energy sources.

The portion of the energy which the vehicle will absorb depends on

vehicle geometry and surface thermal radiation characteristics (ag, 6-j1) •

From this information and a knowledge of the internal power dissipation,

a gross energy balance for the vehicle can be determined which will

yield a bulk temperature as a function of ag and €-j>.

The important point in equilibrium temperature control is that

any technique of insulating the vehicle from external heat fluxes will

also make internal heat rejection more difficult. The internal heat

must also be rejected to lower temperature surfaces in a multiwall

structure. Therefore, the average exterior surface temperature of a

multiwall structure must be lower than that of a single-wall structure

to permit the rejection of the same amount of internal heat. This places

increased emphasis on coatings with the lowest possible Qfg/€>j"

ideal coating should have an ag/e-p = 0.

Temperature cycling is caused by the interruption in solar

energy during passage through the shadow (Earth's or another planet's)

and by the variable albedo and infrared radiation caused by orbit
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N
orientation and eccentricity. The intensity of the solar flux also vaires

on interplanetary missions. To reduce this temperature cycling, the

effective heat capacity of the vehicle has to be increased. This can be

achieved when a multiwall structure is used. When the vehicle is

oriented toward the Sun, the heating can be reduced to zero or less

by reducing the (jg/e-p of the exterior coating to 0. 33 or less, respectively.

Where the satellite is oriented toward the Earth, the best thermal con-

trol is achieved by using a white coating on the outer surface of the

multiwall structure.

Thermal control coatings have five principal functions:

Balance energy absorption and emittance
Increase the heat capacity of a vehicle
Selectively transmit certain radiation
Reflect or absorb heat
Radiate heat.

There are numerous variations and combinations of these functions

on each new spacecraft design.

Table 3 illustrates some of the criteria and control techniques

that are being used.

The various types of windows necessary in a spacecraft designed

for normal viewing or viewing through electronic instruments frequently

transmit harmful ultraviolet radiation, in addition to useful ultraviolet

radiation, and upset the thermal balance of the vehicle by the "greenhouse

effect". If the window can be made with a small amount of iron oxide,

it will not transmit ultraviolet light. To prevent sunburn, wavelengths

shorter than 0. 32 micron must be absorbed. A very thin film of gold

over the outside of the window glass will prevent the heating of the

interior and will prevent the temperature gradient. An interference

or antireflection coating may be used to increase the transmittance of

the glass in narrow wavelength bands. Magnesium fluoride is used for
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TABLE 3. THERMAL COATING APPLICATIONS

COATING FUNCTION CONTROL FACTORS CONTROL TECHNIQUES

Equilibrium temperature
control (without attitude
control)

Low otg/ej controlled-
reflection shields

Low ou/ey coating
on outside of
multiwall structure

Moderation of temperature
cycling with attitude
control

Heat capacity, low
heat shields

Match heat shield and
radiators with
orientation to
control the di-
rection of heat
flow

Temperature variation
within vehicle

Thermal compartmentation Various types of
heat shields;
frost

Wi ndows Ultraviolet and infrared
absorption, trans-
mission and reflection

Interference coatings;
transparent metal
coatings

High-temperature and
cryogenic insulation

Reflective versus
nonconductive
insulation;
deterioration

Mixed insulation:
diffusion barriers
and topcoats for
reflectors

Heat radiators ., EJ thermal
conductivity

Dense high e above
1000°K; low
at lower temper-
atures

Atmospheric reentry Design concept; e-r
conductivity and
oxidation of
exterior

Low conductivity heat
shield; radiation
through leading
edge

Solar-energy
conversion

Type of conversion
system and its
thermbdynamic ef-.
ficiency versus
temperature

Optimize collection
efficiency to the
thermodynamic ef-
ficiency; minimize
heat losses; special
window for photocells

Special-purpose coatings Thermal, physical, and
electrical properties

Use chemical and physical
structure to predict the
the most likely coatings
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this purpose on telescope and camera optics. Where infrared windows

are needed, it is desirable to reflect the visible light. This can be

done by an interference reflector, or by absorbing the visible light

with a low-energy-gap semiconductive coating. Radar and microwave

windows permit a wide selection of coating materials, but the metallic

materials in the coatings must be avoided. Table 4 summarizes some

of the window coating materials.

In the manned space vehicle, the ideal passive temperature-

control system would maintain a temperature of 20 to 25° C at times

when the minimum internal heat is generated and the minimum external

heat is absorbed. Then an active temperature-control system would

dissipate any excess heat by use of radiators and heat exchangers. The

heat shields that are used between space vehicles and radiators

generally have a low-emittance coating on the inside and a white,

high-emittance coating on the outside. Radiators that are used below

about 500° to 700° C will generally require white coatings (low ag/e-jO

of high emittance. Some of the common radiator coatings are listed

in Table 5.
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TABLE 4. WINDOW COATINGS

TYPE OF
WINDOW

Visible light

Visible light

Visible light

Visible light

Infrared light

Microwave

UNDESIRABLE
RADIATION

Ultraviolet

Bremsstrahlunq
(X-rays)

Thermal (infrared)

Surface reflection

Visible light

Ultraviolet,
visible, or
i nf rared

POTENTIAL COATINGS

Fe203, organic absorbers
semiconductors

Low-Z coatings-e.g., A1203

Thin transparent Sn02 or
gold coating

MgF2

Interference reflector or
semiconductor

Low-dielectric constant
insulators; thin films for
antennas

TABLE 5. RADIATOR COATINGS

TYPE

White organic

Black organic

Anodized
aluminum*

Waterglass
enamel

Porcelain
enamel

Oxidized
stainless
steel

Alumina

Refractory
enamels

MoSi2 + Cr208

V£T

0.2 to 0.3

0.9

0.12 to 0.30

0.2 to 0.3

0.25 to 0.35

0.8

0.22 to 0.4

0.5 to 0.8

0.8

eT

0.9

0.9

0.9

0.8

0.8

0.85

0.6 to 0.8

0.6

0.6

MAXIMUM TEMPERATURE °C

200 to 300

300 to 400

350

500 (depends on metal
substrate)

600 to 700

600 to 650 in vacuum

Depends on metal

1,000

1,200
*The 0.12 value is for anodized, high-purity aluminum
prior to sealing.
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CHAPTER 2
DAMAGE MECHANISMS IN PASSIVE THERMAL

CONTROL SURFACES

This chapter discusses the presently understood mechanisms by

which thermal control surfaces are degraded by the space environment.

A short description is given of the space environment to which the thermal

control surfaces are exposed, followed by descriptions of the observed

effects of the individual environments.

THE SPACE ENVIRONMENT

The space environment is the combined effect of the vacuum,

radiation, meteoroid impacts, and thermal factors related to space

travel. In the planning of a space mission, all of these factors must

be considered in their proper perspective.

The lower atmosphere or troposphere has been characterized

quite well. The composition of this layer is relatively constant, but

temperature and pressure decline with increasing altitude. The tropo-

sphere is bounded by the tropopause which contains the jet streams of

high winds (Ref. 29). The tropopause varies in height from 6 to 18

kilometers and is higher and colder at the equator. The next atmos-

phere layer, the stratosphere, is a region of constant temperature of

about -56°C (Ref. 30). At this altitude, there is a significant increase

in solar ultraviolet light and an accompanying increase in ozone con-

centration. The stratosphere is thick over the poles and thin or non-

existing in equatorial regions. The mesopause forms the atmospheric

temperature minimum near 200°K and corresponds approximately to

the level of the D layer of the ionosphere. The region above the meso-

pause increases rapidly in temperature up to about 200 kilometers and
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then increases more slowly in temperature until it reaches the extreme

temperatures of the inner Van Allen radiation belt. This region is called

the ionosphere or exosphere.

Most of the energy encountered above the atmosphere is electro-

magnetic radiation. This radiation controls the temperature of the

spacecraft. Almost 10 percent of the solar electromagnetic radiation

is near ultraviolet light (0.20 to 0.40 micron). This ultraviolet light

can cause chemical and physical changes to many materials, and it is

5 to 1, 000 times more intense than all the other ionizing radiations

combined. Typical Van Allen radiation-belt intensities are about 0.03

percent of the near ultraviolet, whereas the normal solar wind is

0. 0004 percent of the ultraviolet flux. However, the intensity of the

solar wind and the outer Van Allen radiation belts is greatly enhanced

by the solar flares and their concomitant magnetic storms.

The base of the exosphere is the maximum altitude at which

satellites can operate without encountering significant quantities of

hard radiation trapped in the Earth's magnetic field. At high altitude

in the auroral zones, both solar corpuscular and Van Allen radiations

penetrate to the ionosphere to deny a safe zone for polar orbital opera-

tion (Refs. 31 and 32). The inner belt and the outer ring current of

the Van Allen belt system (Ref. 33) are composed of high- and low-

energy protons, respectively. The crescent-shaped belt in between

contains a high density of energetic electrons, but varies a great deal

in intensity and size with its outer layers. The motion of the geomag-

netically trapped particles makes the radiation somewhat anisotropic,

with maximum flux parallel to the magnetic equator. The measured

proton and electron fluxes are > 40 MeV and >20 keV, respectively

(Refs. 34 and 35). Analysis of the loss mechanism indicates a
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substantial proton flux down to 1 MeV or less at large distances from

the Earth. It is difficult to predict the electron energy flux below

20 keV. This data is important because the lower energy corpuscular

radiation causes the most severe damage to the temperature control

surfaces of the spacecraft.

It is known that virtually all gases are ionized out to Jupiter

or beyond and, therefore, come under the influence of the solar mag-

netic field. Micrometeoroids might also be controlled by the Sun's

magnetic field resulting from a radiation-induced surface charge. The

surface charge might also cause interaction with the Earth's magnetic

field, which might cause the ring of micrometeoroids near the geo-

magnetic equator. The radial and extended dipole models of the solar

magnetic field point to higher radiation fluxes at higher heliomagnetic

latitudes above or below the plane of the ecliptic (Refs. 33, 36, and 37).

The energy and flux of the solar wind would increase slowly approaching

the Sun. The solar flares appear to be contained in a "magnetic bottle"

and are one of the greatest hazards to manned space travel.

Cosmic radiation from outside the solar system constitutes some

hazard because of the low flux level. Elliot (Ref. 38) proposed a concept

which would indicate a considerable increase in low-energy cosmic rays

near the periphery of the solar magnetic field. There is no evidence of

trapped radiation around other planets except for Jupiter. The Jovian

Van Allen type belts are apparently much more intense than the Earth's,

possibly a million times more. Jupiter has such a strong magnetic

field that is may capture a considerable amount of corpuscular radiation

from the Sun.
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DAMAGE CAUSED BY THE SPACE ENVIRONMENT

With the exception of neutrons, most of the electromagnetic

and corpuscular radiation is absorbed by interaction with the electron

shells around the atomic nucleus of a material. Very low-energy

radiation changes the rotational states of the molecules of the material,

and the energy in the near infrared will change the lattice vibrational

states to increase the temperature. This type of radiation will not

damage coating materials directly, other than thermal degradation

caused by overheating. However, high-energy radiation of ultraviolet

light will cause transition of electrons to higher energy states and may

weaken the bonds between atoms to affect the chemical reactivity of the

molecule. This will cause the formation of radicals and ions, whereby

the physical property of the material will be changed. Radiation of

higher energy causes emission of electrons from the parent nucleus

and could also result in the ionization of the molecule. The initial

absorption or decay process that occurs when electromagnetic radia-

tion interacts with matter is shown diagrammatic ally in Figure 5. The

principal modes of energy decay for high-energy radiation are

Pair production
Compton scattering
Photoelectric effect
Electronic excitation
Vibrational, or thermal, excitation.

Pair production is the formation of an electron-positron pair from a

high-energy photon. The minimum photon energy required for this
o

process is 1.02 MeV, or about 0.0122 A.

Effect of Gamma and X Radiation

High-energy gamma (y) and X radiation is lowered in energy and

eventually absorbed in a stepwise manner when it interacts with matter.

Virtually all the energy of the gamma- or X-ray photons ultimately become
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thermal energy or chemical energy. The cross section of an atom for

electron-positron pair production varies approximately as the square of

the nuclear charge Z. The electron formed in pair production decays

in energy by excitation of neighboring molecules. The position diffuses

through the material and is annihilated after a short time by collision

with an electron. This results in emission of two photons with an energy

of 0. 51 eV, if the electron is not bound (Ref. 39).

Pair production is not very important for most environmental

conditions encountered by spacecraft. However, when a nuclear power

source is used, its gamma -radiation energy can be lowered to below

1. 02 MeV by proper shields.

Compton scattering is the decay and scattering process of a

photon by collision with electrons. For a free-recoilable electron, part

of the photon momentum is transferred to the electron as kinetic energy,

and the photon may be backscattered or absorbed by the photoelectric

process. This scattering is the predominant form of photon-energy

decay for a broad spectrum of high-energy radiation from nuclear

reactors. This phenomenon is also important for the high-energy

Bremsstrahlung generated by Van Allen radiation. The interaction is

an electronic process and is, therefore, proportional to the electron

density of the absorbing material. This electron density is roughly

the same (~ 3 X 1023 g) for equal masses of materials except for

hydrogen.

In the low-energy range, when the collision is with bound elec-

trons, the scattering is coherent and the photon is scattered with no, or

little, energy change. High-Z materials have more tightly bound elec-

trons, show coherent scattering over broader energy ranges, and cause

increased backscattering of short X-rays, particularly for high-Z

dielectric coatings.
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The photoelectric effect dominates the absorption of X-rays

and far ultraviolet light. The photoelectric cross section varies as the

fourth power of nuclear charge (Z 4) and decreases rapidly with increas-

ing photon energy, E, approximately as E~3 . The high-Z materials have

a higher nuclear charge and more tightly bound electrons with higher

resonant frequency; hence, more energetic radiation can be absorbed.

Effect of Ultraviolet Light

The absorption of short wavelength ultraviolet is actually an

extension of the photoelectric effect to the outer electron shells of a

molecule. These ultraviolet photons can also arise through the decay

of high-energy radiation through fluorescence or Bremsstrahlung from

secondary electrons. The distinction between photoelectric ultraviolet

excitation is less prominent when low-Z materials are irradiated.

From, a chemical point of view, the emission of an electron by

ultraviolet light leaves a positively charged ion without necessarily excit-

ing other electrons. This is a highly unstable condition, especially for

covalent materials, and molecular rearrangement may occur. Ejection

of protons from the positively charged molecule is the more probable

reaction in organic materials.

When the vacuum or far ultraviolet light is incident on a coating

surface, it is generally absorbed within only a few angstroms of the

coating layer. This is true for most organic coatings and many inorganic

materials, particularly those containing oxygen. Oxides absorb strongly

at wavelengths of 0. 16 micron or less. Thus, far ultraviolet light from

the Sun affects only the surface of a coating, whereas gamma-rays and

Bremsstrahlung interact more uniformly throughout the coating.

The near ultraviolet light accounts for 99. 97 percent of the solar

ultraviolet flux and 9. 02 percent of the total solar constant. Therefore,
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N
this radiation is important and has a significant effect on the thermal

balance of the spacecraft.

The difference between the absorption of near ultraviolet and far

ultraviolet is that the excited electron is generally not ejected from the

material in the former case, except for some semiconductors and con-

ductors. In most cases, the energy of the excited electron is transferred

to the thermal or vibrational states of the molecule. In some materials,

the energy can also be fluoresced or stored for later phosphorescence.

In case of conductors and semiconductors, the energy transferred to the

conduction electrons is converted to thermal energy when the electron

is recaptured by the parent nucleus. Ultraviolet-excited organic mate-

rials may undergo a chemical rearrangement or reaction before the

energy can be dissipated thermally or radiatively. For most materials,

the absorption increases monotonically above the resonant frequency.

The extinction coefficient measures the probability of an electronic

transition and is governed by the nature of the chemical bond and the

degree of overlap between the excited- and ground-state orbital. The

excited electron may be transferred to another molecule by mutual

interchange with a ground-state electron. Furthermore, the forma-

tion of F and V vacancy centers by the action of high-energy radiation

can cause strong absorption of ultraviolet at some other wavelength.

These chemical changes invariably result in higher absorption

of solar energy for organic and many other nonmetallic materials, with

generally little or no effect on the etnittance. This causes an increase

in spacecraft temperature.

Effect of Electron Radiation

The electrons and protons in the Van Allen radiation belt is a

more serious corpuscular radiation source than the solar wind. As
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with high-energy gamma-rays, the energy of the corpuscular radiation

is dissipated by a series of events. This radiation differs from electro-

magnetic radiation, in that it contains atomic and subatomic particles.

The electron environment encountered in orbital and interplanetary

space flights includes a wide range of energies and densities. This radia-

tion is also partially reflected at the material surface, as with any other

type of radiation. Metals with high free-electron density show maximum

reflection, whereas dielectric materials have very little reflection except

for very low electron energies. Metallic materials are very reflective

to electrons below 1 volt, but the reflection drops very rapidly to a con-

stant value at higher energies (Ref. 40). Where Z < 30, the reflection

remains constant into the keV range, but there is a slow increase in

reflection for higher Z materials (Refs. 41 and 42). Since the number

of electrons per unit mass is relatively constant, the penetration thick-

ness of the electrons is approximately proportional to the mass of shield-

ing material. Therefore, the thickness of the shielding coating required

varies with the density of the coating material. A thickness of 6 mils

(0. 015 centimeter) of a coating with density near L 0 is required to

absorb the bulk of Van Allen radiation below 100 keV. It would require

3 centimeters of plastic to stop the 5-MeV electrons.

Effect of Proton Radiation

The interaction of protons and other positive ions with surfaces

is somewhat more complex than the electron interaction. Low-energy

secondary electrons are sometimes backscattered with fairly high yields,

or the proton may be reflected as a negative ion. These interactions

increase the positive charge on the bombarded surface. Another surface

reaction is sputtering, which is the ejection of atoms or groups of atoms

from a metallic surface by positive-ion-bombardment. Sputtering is the
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most serious radiation effect on reflective metals. The penetration of

protons into a material is controlled primarily by electrons. Coatings

with high atomic numbers are more effective on a thickness basis than

on a weight basis (Ref. 43). Although the main interaction of protons

is with electrons, elastic and inelastic collisions with atomic nuclei are

also possible. Inelastic collisions increase with proton energy and can

cause excitation and fragmentation of the bombarded nuclei, leading to

the radiation of neutrons. These neutrons are very penetrating and may

cause other nuclear reactions and atomic displacements, or they may

decay into a proton and an electron.

The estimated magnitude of the charge on the surface of the

spacecraft from low-energy corpuscular radiation bombardment varies

from tenths of a volt to thousands of volts. This kind of surface charge

can make rendezvous hazardous, if the charges on the two spacecraft

are different. This surface charge can be controlled through proper

selection and blending of coatings.

Effect of Neutron Radiation

The density of neutrons which are generated by cosmic radiation

is quite low and decreases with increasing distance from the Earth.

A collision rate in the order of 1 n/cm2-sec has been estimated. The

penetration of neutrons is measured in centimeters or tenths of centi-

meters, so it is not a coating problem. However, the nuclear reactions

of neutrons must be considered in selecting coating materials for use

near nuclear reactors.

Effect of Space Vacuum

The Earth's atmosphere at an altitude of 200 miles above the

Earth contains about 109 particles/cm3 at solar maximum. The particles

consist of approximately 75 percent atomic oxygen, 18 percent molecular
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nitrogen, and the remainder, molecular oxygen, helium, and atomic

nitrogen. This corresponds to a pressure of about 10"7 millimeters

of mercury. The mean free path at this pressure is large; therefore,

the particles leaving a surface have no chance of returning. Therefore,

volatilization can be a potential problem.

Volatilization of metals at modest temperatures, other than zinc,

cadmium, and tin, is not an expected thermal design problem. Dielec-

tric materials have some history of degradation in vacuum. Organic

materials are generally less stable in vacuum than are inorganic materials.

Organic resins are oxidized by ultraviolet light to low-molecular-weight

aldehydes, acids, etc., through "free radical" formation. In vacuum,

these free radicals cannot oxidize because of the lack of oxygen, so

they generally "cross-link". As the polymer becomes more lightly

cross-linked, hydrogen may diffuse and escape, leading to unsaturation

and conjugation. Inorganic oxides, such as zinc oxide and titanium

dioxide, may reduce because of ultraviolet radiation under vacuum.

Under atmospheric pressure, the oxygen ion vacancy that is created

in zinc oxide because of ultraviolet becomes somewhat neutralized and

the effect is reversible. However, under vacuum this reaction is severe

and the reaction is mostly irreversible.

For thermal control surfaces operating at elevated temperature,

e.g., nuclear reactor radiators operating between 600 to 1400°F, the

volatilization may be a problem of great concern.
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PART 11
THERMOPHYSICAL PROPERTIES

II



The purpose of a thermal control coating, as is evident, is to

provide a surface with known and desirable properties. Coatings are

used to obtain favorable values of solar absorptance (ac) and hemi-
w

spherical emittance (E ) for a system to maintain thermal balance.

Coatings used on different spacecraft have ranged from very

simple (as - received metallic surface) to very complex ( e . g . , optical

solar reflector). Many paints, chemically furnished surfaces, front

and second surface mirrors, etc., have been used.

Table 6 indicates methods of obtaining specific ac and t values
S T

in a general sense and only indicates different ranges of values

obtainable.

It is advantageous to group certain properties of the coatings

to gain a general idea about them. This is done in Table 7 which shows

the temperature limit for various coating groups. Cost and weight

data are shown in the same manner in Table 8. It should be noted

that these figures are not exact.

Series emittance tapes can exhibit a widea-0/e range depending
O i.

on overcoat thickness.

The degradation of coatings with low initial values of o- /e „, is
o L

of prime interest to thermal design engineers. These coatings are

generally used on space radiators which reject vehicle heat. Increases

in ac with time, caused by space radiation, raises the temperature of
o

the vehicle and can lead to equipment failure. Figures 6 and 7 show

the range of some available thermal-control surfaces for missions in

space not exceeding 1 year and 5 years, respectively. These figures

are adapted from the paper entitled "Recent Advances in Spacecraft

Thermal-Control Materials Research", presented at the 20th IAF
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Congress, Mar del Plata, Argentina, October 10, 1969, by D.W,

Gates, G.A. Zerlaut, andW.F. Carroll,
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TABLE 7. MAXIMUM TEMPERATURES FOR COATING GROUPS

DESCRIPTION T Max. (°F)

Bare metal

Paint

Urethane vehicle

Epoxy vehicle

Silicone-alkyd vehicle

Silicone vehicle

Chemical surface finish

Alodine (conversion coating)

Anodize

Flame, plasma spray

Tapes

Aluminized mylar

Series emittance

Optical solar reflector (OSR)

N/A

150

300

650

800

400

1,000

1,000

200

800

600
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TABLE 8. RELATIVE COST AND WEIGHT FOR COATINGS

DESCRIPTION

Bare metal

Paints

Chemical surface finishes

Tapes

Aluminized teflon

Series emittance

Optical solar reflector (OSR)

WEIGHT (lb/ft2)

0

0.04

0.03 to 0.06

0.06

0.06

0.09

COST (dollars/ft2)

0

1 to 3

1 to 3

4

4 to 5

500
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SILVER-COATED OPTICAL SOLAR REFLECTOR (OSR)

Composition; Vapor-deposited silver on Corning 7940 fused silica
with an overcoating of vapor-deposited inconel. \

Density; 2.2 gm/cm3

Recommended Thickness: Recommended standard size is approximately
1 by 1 by 0. 008 inches thick. No variation in

org after the metal film is opaque. No varia-
tion in frp for fused silica thicker than 0. 008
inch. Thickness less than this is very fragile.
1000 A. of silver overcoated with 500 A inconel.

Maximum Temperature; 260°C

Substrate; Aluminum alloys

Adhesion; Has passed the sinusoidal and random vibration tests using
GE-SS 4120 primer and RTV-615 adhesive. Another excel-
lent adhesive is DC 92-024.

Thermophysical Properties;

Initial Solar Absorptance, CXQ - 0.050
Initial Hemispherical Emittance, e -j- = 0.810

Initial O-S/CT = °* °^2

Solar Absorptance after 1000 ESH of UV = 0.050
Solar Absorptance after 1000 EWH of protons = 0.050
Solar Absorptance after 6 X 1014 e/cm2 = 0.050

Contamination Susceptibility; Surface contamination, including finger
prints, oil, dust, and atmospheric weather-
ing, does not cause permanent degradation
after application and can be removed by
sample cleaning.

Outgassing Characteristics; The RTV-615 silicone adhesive, used to
apply the mirrors to the substrate, requires
a minimum cure of 14 days at room tempera-
ture to minimize outgassing during ascent.
The steady-state weight loss is 0. 041%/cm2/hr
at 100° C. The constituents of the outgassing
product are now known.

\I
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SILVER-COATED OPTICAL SOLAR REFLECTOR (OSR) - Concluded

Refurbishment Capability; OSRs are fragile. Temporary contamination
must be removed prior to launch. Damaged
parts may be removed and new ones applied.
Difficult to apply on curved surfaces.

Source and Cost: The present source is Optical Coatings Laboratory,
Inc., (707) 545-6440. Large quantity price is
approximately $2.QO/in2. Lockheed contact: Mr.
L. Haslim, (415)493-4411.

State of Development; Seems to be complete. Lockheed work on this
coating was mostly performed under Contract
Nos. AF 04(647)-787, AF 33 (615)-5066, and
NAS2-3063.
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ALUMINUM- COATED
OPTICAL SOLAR REFLECTOR (OSR)

Composition: Vapor-deposited aluminum on Corning 7940 fused silica
with an overcoating of vapor-deposited silicon monoxide.

Density; Approximately 2.2 gm/cm3

Recommended Thickness: 1000 A of aluminum overcoated with 500 A
of silicon monoxide. Recommended standard
size is 1 by 1 by 0. 008 inches thick. No varia-
tion in e-j, for silica thicker than this. Thick-
ness less than this is very fragile. No variation
ino>g for opaque metal film.

Maximum Temperature; 260°C

Substrate; Aluminum alloy

Adhesion; Has passed the sinusoidal and random vibration tests using
GE-SS 4120 primer and RTV-615 adhesive. Another excel-
lent adhesive is DC 92-024.

Thermophysical Properties;

Initial Solar Absorptance, ac = 0. 100
Initial Hemispherical Emittance, £^ = 0. 810
Initial ffg/e-p = 0. 123
Solar Absorptance after 1000 ESH of UV = 0. 100
Solar Absorptance after 1000 EWH of protons = 0.100

Contamination Susceptibility;

Outgassing Characteristics;

Surface contamination including finger-
prints, oil, dust, and atmospheric weather-
ing does not cause permanent damage after
application and can be removed by sample
cleaning.

The RTV-615 adhesive used to apply the
OSR to the substrate requires a minimum
cure of 14 days at room temperature to
minimize outgassing during ascent. The
steady-state weight loss is 0.04%/cm2/hr
at 100°C. The constituent of the outgassing
product is not known.
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ALUMINUM-COATED
OPTICAL SOLAR REFLECTOR (OSR) - Concluded

ff
Refurbishment Capability: Temporary contamination must be removed

prior to launch. Damaged parts can be
removed and new ones applied. Difficult
to apply on curved surfaces.

Source and Cost: The present source is Optical Coatings Laboratory,
Inc. , (707) 545-6440. Large quantity price is
approximately $2. OO/in2 . Lockheed contact: Mr. L. FT
Haslim, (415) 493-4411.

State of Development; Seems to be complete.

I

\I
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SILVER-COATED FEP TEFLON

Composition; Vapor-deposited silver on FEP Teflon sheet with an over-
coating of vapor-deposited inconel.

Density; No data available.

Recommended Thickness; Emissivity depends on the thickness of Teflon.
2-mil, 5-tnil, and 10-mil thick Teflon has been
used.

Maximum Temperature; Approximately 250°F. Limited by the difference
in expansion of Teflon and silver.

Substrate; Grit blasted. Aluminum alloy or other rigid surfaces depend-
ing on adhesive used. Adhesive promoters are used.

Adhesion; Good, depends on temperature and the adhesive used. Dif-
ferent adhesives are used for different range of temperatures.

Thermophysical Properties;

Initial Solar Absorptance, a$ = °- 059 to 0. 090
Initial Hemispherical Emittance, e^ = 0.680 to 0.820
Initial ag/eT = 0.086 to 0.109
Solar Absorptance after 4600 ESH = 0.109
Solar Absorptance after 10, 000 EWH of protons = 0. 720

Contamination Susceptibility; At present, unknown.

Outgassing Characteristics; The steady-state weight loss of Teflon at
100°C is less than or equal to 0. 04%/cm2 /hr.
The outgassing of adhesive is dependent on
the adhesive used.

Refurbishment Capability; Can be cleaned if no scrubbing is used. Best
to use cotton soaked in organic solvent if care
is taken not to run the solvent to the adhesive
through the edges.

Source and Cost: G. T. Schjeldahl Corporation, (507)645-5635.
$65. 00/ft? . Langley Research Center contact: Mr.
W. S. Slemp, (703) 827-3041.
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SILVER-COATED FEP TEFLON - Concluded

i
State of Development; Development is continuing to find better adhesive

and other polymers. Aeromatic heterocycling
type polymers may be a replacement for FEP
Teflon.

If
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ALUMINUM-COATED FEP TEFLON

Composition; Vapor-deposited aluminum on FEP Teflon sheet with an
overcoating of vapor-deposited inconel.

Density; No data available .

Recommended Thickness; Emissivity depends on the thickness of Teflon.
1-tnil, 2-mil, 5-mil, and 10-mil thick Teflon
has been used.

Maximum Temperature; Approximately 250°F. Limited by the difference
in thermal expansion of the two materials.

Substrate; Grit blasted. Aluminum alloy or other substrates depending
on adhesive used. Adhesive promoters are employed.

Adhesion; Good, depends on adhesive used and temperature. Different
adhesives are needed for different temperature ranges of use.

Thermophysical Properties;

Initial Solar Absorptance, ag = 0. 130 to 0.210
Initial Hemispherical Emittance, eT = 0. 550 to 0. 890
Initial, «s/€T = 0-236 to 0.194
Solar Absorptance after 4000 ESH = 0. 170
Solar Absorptance after 1. 0 EWH of protons = 0. 149

Contamination Susceptibility; No data available.

Outgassing Characteristics; The steady-state weight loss of Teflon at
100°C is less than or equal to 0. 06%/cm2 /hr.
The outgassing of the adhesive depends on
the kind used.

Refurbishment Capability; Can be cleaned. No scrubbing permitted.
Best to use organic-solvent-soaked cotton.
Solvent should not run through the edges.

Source and Cost: G. T. Schjeldahl Corporation, (507)645-5635.
Approximately $60. 00/ft2 . Langley Research Center
contact: Mr. W. S. Slemp, (703) 827-3041.

State of Development; Development in progress to find better adhesive
for wide temperature range application, and better
polymer to replace FEP Teflon.
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SiOz-COATED VAPOR-DEPOSITED ALUMINUM

Composition; Vapor-deposited aluminum with a dielectric coating of
silicon dioxide.

Density; No data available.

Recommended Thickness; Solar absorptance controlled by choice of
metal film; emittance determined by thick-
ness of dielectric layer.

Maximum Temperature; Approximately 260°C

Substrate; Any clean rigid substrate. Lowest solar absorptance requires
polished metal or glass substrate.

Adhesion; Good

Thermophysical Properties;

Initial Solar Absorptance, as = 0. 140
Initial Hemispherical Emittance, £.p = 0.420
Initial aS/CT = 0.334
Solar Absorptance after 1000 ESH of UV = 0. 170

Contamination Susceptibility; The surface is hard and abrasion-resistant.
May be cleaned by conventional techniques
without deterioration of optical properties.

Outgassing Characteristics; The steady-state weight loss at 100°C is
less than or equal to 0. 04%/cm2 /hr.

Refurbishment Capability; Cleanable

Source and Cost: The source appears to be G. T. Schjeldahl Corporation,
(507) 645-5635.

State of Development: No further development is reported.
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A12O3-COATED VAPOR-DEPOSITED ALUMINUM

Composition; Vapor-deposited aluminum with a dielectric coating of
aluminum.

Density; No data available.

Recommended Thickness; Solar absorptance controlled by choice of
metal film; emittance determined by thick-
ness of dielectric layer.

Maximum Temperature; Approximately 260°C

Substrate; Any clean rigid substrate. Lowest solar absorptance requires
polished metal or glass substrate.

Adhesion; Good

Thermophysical Properties;

Initial Solar Absorptance, org = 0. 140
Initial Hemispherical Emittance, C-p = 0.450
Initial o-s/€T = 0.311
Solar Absorptance after 2000 ESH = 0.21

Contamination Susceptibility; The surface is hard and abrasion-resistant.
May be cleaned by conventional techniques
without deterioration of optical properties.

Outgassing Characteristics; No data available.

Refurbishment Capability; C loanable

Source and Cost; Goddard Space Flight Center, (301) 982-5115.

State of Development; No further development reported.
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ZINC OXIDE IN METHYL SILICONS (S-13)

Composition; New Jersey Zinc Company SP-500 zinc oxide, General Electric
RTV-602 and USP toluene, each parts by weight of 240, 100,
and 170, respectively. Ball milled. One part of catalyst
SRC-05 is added in 20 parts of toluene per 670 parts of
S-13 just before painting.

Density; No data available .

Recommended Thickness! 3.5 to 5.5 mils

Maximum Temperature; 250° F

Substrate; Any surface to which GE SS-4044 primer can be applied.

Adhesion; Adhesive failed at butt pressure of 9 psi at 70°F.

Thermophysical Properties;

Initial Solar Absorptance, as = 0.210
Initial Hemispherical Emittance, e-p = 0.880
Initial as/CT = °«238

Solar Absorptance after 2000 ESH of UV = 0.350
Solar Absorptance after 2x 106 EWH of protons = 0.28

Contamination Susceptibility; No data available. Susceptible to
c ontamination.

Outgassing Characteristics; The steady-state weight loss is 2. 8 X 10"*
g/cm2, and the time to reach the steady
state is 44 hours.

Refurbishment Capability; Soiled or damaged areas can be recoated.
Soiled areas must be cleaned thoroughly with
detergent and water and dried. Damaged or
gouged areas can be recoated with a paste of
the paint.

Source and Cost; The source is IITRI and was developed in collaboration
with NASA, MSFC under Contract No. NAS8-5379,
(312) 225-9630, Ext. 5074.

State of Development: This coating is no longer available and is replaced
by S-13G.
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ZINC OXIDE IN METHYL SILICONS (S-13G)

If
Composition; PS7-treated New Jersey Zinc Company SP-500 zinc oxide,

General Electric RTV-602, and USP toluene, each parts
by weight of 240, 100, and 175, respectively. Ball milled. \
One part of SRC-05 catalyst is added in 10 parts of toluene
to 1030 parts of S-13G just before painting. A catalyst
concentration of 0.4% based upon RTV-602 provides
optimum stability without greatly sacrificing thermal-
cure properties. IJ

Density; Coating weight is 0. 006 Ib/ft2 .

Recommended Thickness; 5.0 to 8.0 mil

Maximum Temperature; 250° F

Substrate; Any surface to which GE SS-4044 primer can be applied.

Adhesion; Thermal shock-resistant if primer is not too thick.

Thermophysical Properties;

Initial Solar Absorptance, a<$ = 0. 190
Initial Hemispherical Emittance, €x = 0.880
Initial #5/CT = 0.216
Solar Absorptance after 1000 ESH of UV = 0.230
Solar Absorptance after 10,000 EWH of protons = Severe

Contamination Susceptibility; The change in a- due to engine plume is
between 10 to 250 % depending on the
position and time of exposure.

Outgassing Characteristics; The steady-state weight loss at 100°C is
equal to or less than 0. 04 %/cm2 /hr.

Refurbishment Capability; Soiled areas must be cleaned thoroughly
with detergent and water and dried before
application of additional S-13G. Damaged
or gouged areas can be recoated with a paste
of the paint.
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ZINC OXIDE IN ME THYL SILICONS (S-13 G) - Concluded

Source and Cost: The source is IITRI and was developed in collaboration
with NASA, MSFC under Contract No. NAS8-5379,
(31Z) 225-9630, Ext. 5074. The cost is $75/pint (8
or more pints).

State of Development: This coating is in the process of being replaced
by A-429M. This new paint is essentially S-13G
pigment in Owing, Illinois 650 binder.
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ZINC OXIDE IN POTASSIUM SILICATE (Z-93)

Composition; The pigment is New Jersey Zinc Company SP-500 zinc
oxide plasma calcined at 600 to 700°C for 16 hours.
Balled milled with Sylvania's PS7 potassium silicate and
distilled water. Pigment-to-binder ratio is 4.3:1
by weight. Should be prepared just before use. The
shelf life is less than 24 hours.

Density; No data available.

Recommended Thickness; 4.5 to 6.0 mils

Maximum Temperature; 495°F

Substrate; Most metals except noble, aluminum preferred. Aluminum
or plastic substrates should be abraded and thoroughly washed
with detergent and water.

Adhesion; The butt tensile adhesion test shows that approximately 50
percent of paint structure failed at butt pressures of 1220 psi
and 590 psi at temperatures of -270°F and 70°F, respectively.

Thermophysical Properties;

Initial Solar Absorptance, 05 = 0.184
Initial Hemispherical Emittance, e-j. = 0.880
Initial <yS/€T = 0.209
Solar Absorptance after 2000 ESH of UV = 0. 184
Solar Absorptance after 10,000 EWH of protons = 0.324

Contamination Susceptibility; The change in a due to engine plume is
between 5 to 80 percent depending on the
position and time of exposure.

Outgassing Characteristics; The steady-state weight loss is 5 X 10~n

g/cm2 and the time to reach steady state
is 20 hours.

Refurbishment Capability; Contaminated areas should be scrupulously
cleaned with detergent and water before repaint-
ing. Cleaning of the paint itself is extremely
difficult; repainting needed in general.
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ZINC OXIDE IN POTASSIUM SILICATE (Z-93) - Concluded

Source and Cost: The source is IITRI, (312) 225-9630, Ext. 5074. The
coating was developed in collaboration with JPL. The
cost is $320/gallon ($150 minimum order).

State of Development; No further development of this particular coating
is anticipated.

General Information; Shelf life of this paint is less than 24 hours and
preparation of the paint just before use is recom-
mended. The formulation is applied by spraying
from a distance of 6 to 12 inches until a reflection
due to the liquid is apparent. This is followed by
air-drying, at which time the spraying-drying cycle
is repeated. The carrier gas for spraying should
be clean. Prepurified nitrogen is a good source.
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ZIRCONIUM SILICATE WITH POTASSIUM SILICATE f LP 10 A]

Composition; Acid leached and calcined 1000 W grade "Ultrox" Zicronium
Silicate of Metals and Thermit Corporation in potassium
silicate binder. The pigment-to-binder ratio is 3. 5:1
by weight.

Density; 4.0 g/cm3

Recommended Thickness: 3. 0 to 5. 0 mils

Maximum Temperature; 495°K

Substrate; Aluminum alloy

Adhesion; Good. Base coat reacts with substrate and acts as primer.

Thermophysical Properties;

Initial Solar Absorptance, a$ = 0.240
Initial Hemispherical Emittance, CT = 0.870
Initial as/^T = ^.276
Solar Absorptance after 7000 ESH of UV = 0.530
Solar Absorptance after 1016 e/cm2 = 0.260

Contamination Susceptibility; Very susceptible

Outgassing Characteristics; Weight loss in vacuum is less than 5%.

Refurbishment Capability; Not repairable; repainting required.

Source and Cost; The source is Lockheed Missile and Space Company.
The cost is $740/gallon. Lockheed contact: Mr. L.
Haslim, (415) 493-4411.

State of Development; Development to improve the UV stability is in
progress. Parallel effort• is continuing to replace
this paint with a better one.
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THERMATROL 2A-100 f TIP?/METHYL SILICONEl

Composition; Calcined titanox RA-NC rutile TiC»2 of Titanium Pigment
Corporation in DC 92007 methyl silicone binder. The
pigment-to-binder ratio is 1:1 by weight. The paint is
applied by spray technique and needs 24 hours of curing
time.

Density; 1.5 g/cm3

Recommended Thickness; Total dry film thickness of 3. 5 to 5. 0 mils
including primer.

Maximum Temperature; 650°F

Substrate; Any clean substrate.

Adhesion; Good with Dow Corning A-4094 or equivalent primer,
approximately 0.2-mil thick.

Thermophysical Properties;

Initial Solar Absorptance, ac = 0. 170
Initial Hemispherical Emittance, e-p = 0.860
Initial o-s/eT = 0.197
Solar Absorptance after 500 ESH of UV = 0. 310
Solar Absorptance after 6 X 104 EWH of protons = 0.590

Contamination Susceptibility; Quantitative data unknown. Requires
protection against contamination.

Outgassing Characteristics; Low after coating has been fully cured.

Refurbishment Capability; Easy to repair; cleanable with detergent.

Source and Cost; The source is Lockheed Missile and Space Company,
The cost is $60/gallon. Lockheed contact; Mr. L.
Haslim, (415) 493-4411.

State of Development; No further development is going on at the present
time.
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TINTED WHITE KEMACRYL

Composition; TiC>2 pigmented acrylic flat paint. Only tinted white
M49WC17 variety is approved for thermal control use.

Density; No data available.

Recommended Thickness; For external surfaces, the minimum thickness
for opacity is 5. 0 mils, and for internal applica-
tions, a minimum thickness of 1. 0 mil should
be maintained.

Maximum Temperature; Less than 450°F if alteration in surface finish
and solar absorptance due to bubbling can be
tolerated. If not, then the maximum tempera-
ture is less than 200°F.

Substrate; Any clean rigid substrate

Adhesion; Successfully survived 385 temperature cycles between 150°F
and 70° F with a 12- to 15-minute cycling period in a vacuum,
of 10~5 millimeters of mercury. P415 primer required.

Thermophysical Properties;

Initial Solar Absorptance, as = 0-240
Initial Hemispherical Emittance, CT = °« 860
Initial o-s/CT = °-279
Solar Absorptance after 485 ESH of UV = 0.360
Solar Absorptance after 1016 e/cm2 = 0. 300

Contamination Susceptibility; The surface is porous and requires protec-
tion against contamination.

Outgassing Characteristics; Requires a minimum of 14 days of room-
temperature curing to remove volatile materials
sufficiently.

Refurbishment Capability; No information available.

Source and Cost: The source is Sherwin-Williams Company, (216)
861-7000.

State of Development; No further development reported.
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FITLLER GLOSS WHITE

Composition; TiO2 pigment in silicone-modified alkyd vehicle. Identi-
fication number S17-W-1.

Density; No data available.

Recommended Thickness; The minimum thickness for external use is
5.0 mils and that for internal use is 1.0 mil.

Maximum Temperature; 650°F

Substrate; Any clean rigid substrate capable of withstanding cure tempera-
ture of 465°F.

Adhesion; Cracking and loss of adhesion due to thermal cycling between
-240° F and 70°F. Not recommended for use in locations
reaching temperatures above 650°F.

Thermophysical Properties;

Initial Solar Absorptance, as - 0.290
Initial Hemispherical Emittance, £.p = 0.900
Initial org/e-p = 0.322
Solar Absorptance after 1000 ESH of UV = 0.380
Solar Absorptance after 1015 e/cm2 = 0.300

Contamination Susceptibility; The surface must be protected from con-
tamination. No quantitative data available.

Outgassing Characteristics; No data available .

Refurbishment Capability; No data available .

Source and Cost: W. P. Fuller Paint Company. Telephone number is
unavailable.

State of Development: No further development of this particular
coating is reported.

11-34



WHITE SKYSPAR

Composition; TiC^-pigmented epoxy-base paint.

Density; No data available.

Recommended Thickness; For internal use, the minimum thickness is
1. 0 mil and for external use it is 4. 0 mils.

Maximum Temperature; 450°F

Substrate; Any rigid substrate

Adhesion; No data available.

Thermophysical Properties;

Initial Solar Absorptance, as - 0.250
Initial Hemispherical Emittance, ej = 0. 910
Initial as/€i1 = 0.274
Solar Absorptance after 2000 ESH of UV = 0.600
Solar Absorptance after 2X 10* EWH of protons = 0.370

Contamination Susceptibility; Must be protected from contamination.
No qualitative or quantitative data available.

Outgassing Characteristics; No data available.

Refurbishment Capability; No data available.

Source and Cost; The source is Andrew Brown Company, Paint Number
A423, Color 5A9185. Telephone number is unavailable.
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ROKIDE A

g
Composition: Aluminum oxide flame-sprayed on substrate.

Density; No data available.

Recommended Thickness; No data available.

Maximum Temperature; No data available.

r
Substrate; Any metallic substrate. l£

Adhesion; Good

Thermophysical Properties;

Initial Solar Absorptance, ag = 0.270
Initial Hemispherical Emittance, eT = 0-750
Initial as/eT = 0.360
Solar Absorptance after 1000 ESH of UV = 0.270

Contamination Susceptibility; No information available.

Outgassing Characteristics; Practically none.

Refurbishment Capability; No information available. £_

Source and Cost; Flame-sprayed on any metallic substrate by Norton
Abrasive Company, (617) 853-1000.

State of Development; No further development is reported.

II
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HUGHES INORGANIG WHITE H-2

Composition; Titanium dioxide in Sylvania PS-7 potassium silicate
binder. Pigment-to-binder ratio is 4.4:1 by weight.

Density; No data available.

Recommended Thickness; 6.0 to 8.0 mils after curing

Substrate; Aluminum alloy

Adhesion; No data available.

Thermophysical Properties;

Initial Solar Absorptance, a$ = 0. 180
Initial Hemispherical Emittance, e T = 0. 880
Initial «S/€T = 0-203
Solar Absorptance after 1300 ESH of UV = 0.320

Contamination Susceptibility; No information available.

Outgassing Characteristics; Weight loss of 0. 02 percent when exposed
to vacuum at 250°F. The weight loss is
water vapor.

Refurbishment Capability; Extremely difficult to clean.

Source and Cost: The source is Hughes Aircraft Company, (213) 391-0711,
Ext. 4428.

General Information; The coating is applied in three coats, each coat
being baked for 1 hour at 225° F and the final
coating baked for 1 hour at 260° F. An air brush
is used for painting.
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ANODIZED ALUMINUM

Composition: 1199 aluminum alloy chemically brightened and electro-
polished in a solution of fluoboric acid. Anodized in a
solution of ammonium tart rate.

Density; No data available.

Recommended Thickness; Film thickness proportional to voltage,
13. 4 A/V. Mostly films prepared at 300 volts
were tested.

Maximum Temperature; Approximately 900° F

Substrate; 1199 aluminum alloy

Adhesion; Good

Thermophysical Properties;

Initial Solar Absorptance, as = 0'» 120
Initial Hemispherical Emittance, eT = 0. 380 (at 300°K)
Initial <*s/€x = 0.316
Solar Absorptance after 1580 ESH = 0.120

Contamination Susceptibility; Contamination will degrade the coating.

Outgassing Characteristics; The steady-state weight loss is equal to
or less than 0. 04%/cm2 /hr.

Refurbishment Capability; No information available.

Source and Cost; The Boeing Company, (206) 656-2121.

State of Development; No further development is reported.
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CAT-A-LAC BLACK

Composition; Carbon black pigment in epoxy vehicle.

Density: No data available.

Recommended Thickness; Minimum thickness for opacity is 1. 0 mil.

Maximum Temperature: Approximately 250°F

Substrate: Aluminum alloy

Adhesion: Good

Thermophysical Properties:

Initial Solar Absorptance, org = 0.940
Initial Hemispherical Emittance, £rp = 0. 940
Initial <*s/€T = 1.000
Solar Absorptance after 2,400 flight hours = 0.910

Contamination Susceptibility: No data available.

Outgassing Characteristics: The rate of weight loss during temperature
cycling from 25°C to 100°C is less than
0. 2%/cmz /hr when heated at a rate of
2°C/min in a vacuum of 10~6 torr. The
steady-state weight loss at 100°C is less
than 0. 04%/cm2/hr.

Refurbishment Capability: Repairable

Source and Cost: The source for this paint is Finch Paint and
Chemical Company. Telephone number is unavailable.

State of Development; No further development of this paint is reported.

General Information; The paint takes 1 day to cure at room temperature
and 48 hours at 150°F.
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BLACK KEMACRYL,

Composition: Commerically available black acrylic flat paint.

Density: No data available.

Recommended Thickness: The minimum thickness is 1. 5 mils for both
external and internal applications.

Maximum Temperature: 450°F

Substrate: Any clean rigid substrate

Adhesion: Successfully survived 385 temperature cycles between -150°F
and 70°F with cycling periods from 12 to 18 minutes in a
vacuum of 10~ 5 millimeters of mercury.

Thermophysical Properties:

Initial Solar Absorptance, Og = 0.930
Initial Hemispherical Emittance, eT = 0. 880
Initial as/eT = 1. 057
Solar Absorptance after 600 ESH of UV = 0.980

Contamination Susceptibility: The surface is porous and requires pro-
tection against contamination.

Outgassing Characteristics: Adhesive outgases and produces blisters
on the paint surface at temperatures above
450°F.

Refurbishment Capability: No information available.

Source and Cost: This paint is a commercial product of Sherwin-
Williams and is identified by the number M49BC12,
(216) 861-7000.

State of Development: No further development of this paint is reported.
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FULLER BLACK

Composition; Lamp black pigment in silicone vehicle. Identification
Number 517-B-2.

Density: No data available.

Recommended Thickness: For both external and internal applications,
the minimum thickness for opacity is 1.0 mil.

Maximum Temperature: 1,070°F

Substrate: Any rigid substrate capable of withstanding the cure cycle
of 465°F.

Adhesion: Cracking and loss of adhesion after 170 cycles between
240 and 70°F.

Thermophysical Properties:

Initial Solar Absorptance, GO = 0. 890
Initial Hemispherical Emittance, e-p = 0.880

Initial <*s/€T = 1>011

Solar Absorptance after 600 ESH of UV = 0. 940

Contamination Susceptibility: No information available.

Outgassing Characteristics: No information available.

Refurbishment Capability: No information available.

Source and Cost; W. P. Fuller Paint Company. Telephone number is
unavailable .

State of Development: No further development is reported.

If
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ROKIDE C

Composition: Essentially chromic oxide (85%

Density: No data available.

Recommended Thickness: No data available.

Maximum Temperature: 1,660°F

Substrate: Rene' 41 with a 2. 0-mil coating of nichrome

Adhesion: No coating failure resulted due to thermal shock for the
Rene 41 -nichrome-Rokide C system. To use Rokide C
on other metallic substrate, however, thermal shock
stability should always be checked. Since the bonding is
mechanical, all substrates must be grit-blasted.

Thermophysical Properties:

Initial Solar Absorptance, QC - 0. 900
Initial Hemispherical Emittance, e— = 0.850

Initial #s/€T = 1<059
Solar Absorptance after 1, 000 ESH of UV = 0. 900

Contamination Susceptibility: Surface contamination can be easily
removed by sample cleaning. No data
on the effect of contamination on the
thermophysical properties are available.

Outgassing Characteristics: No data available.

Refurbishment Capability: Cleanable

Source and Cost: This coating is flame-sprayed by Norton Abrasive
Company, (617) 853-1000.

State of Development; No further development is reported.
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PLATINUM BLACK

a
Composition: This coating is essentially a deposit of finely divided ™

platinum. It is deposited from a solution of chloro-
platinic acid.

Density: 21 g/cm*

Recommended Thickness: No data available.

Maximum Temperature: 1,200°F. Above 390°F some sintering of the *>
platinum particles takes place.

Substrate: QMV beryllium

Adhesion: Good. No information on thermal cycling effects.

Thermophysical Properties:

Initial Solar Absorptance, Og = 0- 960
Initial Hemispherical Emittance, e^, = 0. 850
Initial ccs/€T = 1.106

Contamination Susceptibility: The surface is porous and must be
carefully protected from contamination.

Qutgassing Characteristics: None

Refurbishment Capability: No data available.

Source and Cost: Lockheed Missile and Space Company, (415) 493-4411.

State of Development; No further development is reported.

\I
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Bi2S3-DYEDANODlZED ALUMINUM

Composition: Anodized aluminum with repeated alternate dips of 3 to 5
minutes in solutions of bismuth nitrate and ammonium
hydrosulfide. Anodizing was accomplished in about 60
minutes in a 15 percent sulfuric acid bath with a current
density of 0.017 amp/cm2 at room temperature.

Density: No data available.

Recommended Thickness: 26 micrometers

Maximum Temperature: No data available.

Substrate: 1100 (2-S) aluminum

Adhesion: After 10 cycles between 478°K and 80°K showed no peeling
or spalling of the coating.

Thermophysical Properties:

Initial Solar Absorptance, o-g = 0. 728
Initial Hemispherical Emittance, €rp = 0.909
Initial Og/e = 0. 801
Solar Absorptance after 3, 540 ESH of UV + 1015 e/cm2 = 0.760

Contamination Susceptibility: No information available.

Outgassing Characteristics: Practically none

Refurbishment Capability: No information available.

Source and Cost: Langley Research Center, Reference NASA TN D-4116,
(703) 827-1110, Ext. 2986.

State of Development: No information available.
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PbS-DYED ANODIZED ALUMINUM

Composition: This coating is prepared by repeated alternate dips of
5-minute anodized aluminum in solutions of lead acetate
and then in ammonium hydrosulfide. Anodizing was
accomplished in about 120 minutes in a solution of 15
percent sulfuric acid with a current density of 0.017
amp/cm2 at room temperature.

Density: No data available.

Recommended Thickness: 17 micrometers

Maximum Temperature: No data available.

Substrate: 1100 (2-S) aluminum

Adhesion: Showed no peeling or spalling after 10 cycles between
478°K and 80°K.

Thermophysical Properties:

Initial Solar Absorptance, o-g = 0. 861
Initial Hemispherical Emittance, eT = 0. 912
Initial #3/CT = 0.944
Solar Absorptance after 3, 540 ESH of UV + 1015 e/cm2 = 0. 891

Contamination Susceptibility: No information available.

Outgassing Characteristics: No information available.

Refurbishment Capability: No information available.

Source and Cost: Langley Research Center, Reference NASA TN D-4116,
(703) 827-1110, Ext. 2986.

State of Development: No information available.
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NiS-DYED ANODIZED ALUMINUM

Composition: This coating is prepared by repeated alternate dips of
5 minutes each to anodized aluminum in solutions of
nickel acetate and then in ammonium hydrosulfide.
Anodizing was accomplished in about 120 minutes in
a 15 percent sulfuric acid bath at room temperature
with a current density of 0. 017 amp/cm2 .

Density: No data available .

Recommended Thickness; 23 micrometers (thickness on which
measurements are made).

Maximum Temperature: No data available.

Substrate: 1100 (2-S) aluminum

Adhesion: Showed no peeling or spalling after 10 cycles between
478°K to 80°K.

Thermophysical Properties:

Initial Solar Absorptance, org = 0. 970
Initial Hemispherical Emittance, ej, = 0. 929
Initial »S/€T = 1.044
Solar Absorptance after 3, 540 ESH of UV + 1015 e/cm2 = 0. 972

Contamination Susceptibility: No data available.

Qutgassing Characteristics: No data available.

Refurbishment Capability: No information available.

Source and Cost: Langley Research Center, Reference NASA TND-4116,
(703) 827-1110, Ext. 2986.

State of Development: No information available.
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CoS-DYED ANODIZED ALUMINUM

Composition: This coating is prepared by dipping anodized aluminum
for the first 15 minutes, in Cobalt acetate and then in
ammonium hydrosulfide for 5 to 15 minutes. Anodizing
was accomplished in 120 minutes in a 15 percent sulphuric
acid bath at room temperature with a current density of
0. 017 amp/cm2.

Density: No data available.

Recommended Thickness: 26 micrometers (thickness on which
measurements are made).

Maximum Temperature: No data available.

Substrate: 1100 (2-S) aluminum

Adhesion: Showed no peeling or spalling after 10 cycles between
478°K and 80°K.

Thermophysical Properties:

Initial Solar Absorptance, etc = 0. 957
Initial Hemispherical Emittance, Crp = 0.930
Initial og/eT = 1.029
Solar Absorptance after 3, 760 ESH of UV + 1015 e/cm2 = 0.963

Contamination Susceptibility: No information available.

Outgassing Characteristics: No information available.

Refurbishment Capability: No information available.

Source and Cost; JLangley Research Center, Reference NASA TND-4116,
(703) 827-1110, Ext. 2986.

State of Development: No information available.
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SANDOZ OA-DYED ANODIZED ALUMINUM

Composition: This coating is prepared by dipping anodized aluminum
in Sandoz black OA for 30 minutes. Anodizing was
accomplished in 60 minutes in a 15 percent sulfuric
acid bath at room temperature with a current density
of 0. 017 amp/cm2.

Density: No data available.

Recommended Thickness: 20 micrometers (thickness on which
measurements were made).

Maximum Temperature: No data available.

Substrate: 1100 (2-S) aluminum

Adhesion: Showed no peeling or spalling after 10 cycles between
478 °K and 80 °K.

Thermophysical Properties:

Initial Solar Absorptance, a>~ = 0.647
Initial Hemispherical Emittance, e^ - 0. 927
Initial tfg/erp = 0.698
Solar Absorptance after 3, 540 ESH of UV + 1015 e/cm2 = 0.684

Contamination Susceptibility: No information available.

Outgassing Characteristics: The steady-state weight loss at 100°C
is less than or equal to 0. 04%/cm2/hr.

Refurbishment Capability; No information available.

Source and Cost: Langley Research Center, Reference NASA TN D-4116,
(203) 827-1110, Ext. 2986. The dye is from Sandoz
Chemical Works, Inc.

State of Development; No information available.
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SANDOZ BK-DYED ANODIZED ALUMINUM

Composition; This coating is prepared by dipping anodized aluminum
in Sandoz black BK for 30 minutes. Anodizing was
accomplished in 60 minutes in a 15 percent sulfuric
acid bath at room temperature with a current density
of 0. 017 amp/cm2.

Density: No data available.

Recommended Thickness: 22 micrometers (thickness on which
measurements were made).

Maximum Temperature: No data available.

Substrate: 1100 (2-S) aluminum

Adhesion: Showed no peeling or spalling after 10 cycles between 478°K
and 80°K.

Thermophysical Properties:

Initial Solar Absorptance, o-g = 0. 757
Initial Hemispherical Emittance, eT = 0.962
Initial og/e-p = 0.817
Solar Absorptance after 3, 540 ESH of UV + 1015 e/cm2 = 0. 786

Contamination Susceptibility; No data available.

Outgassing Characteristics: The steady-state weight loss at 100°C is
equal to or less than 0. 04%/cm2 /hr.

Refurbishment Capability: No information available.

Source and Cost; Langley Research Center, Reference NASA TN D-4116,
(703) 827-1110, Ext. 2986. The dye is from Sandoz
Chemical Works, Inc.

State of Development: No information on further development is available.
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PYROMARK BLACK ON ALUMINUM

Composition: The exact composition of this paint is not available from
the manufacturer.

Density: No data available.

Recommended Thickness: 32 micrometers (thickness on which
measurements were made).

Maximum Temperature: No data available.

Substrate: 1100 (2-S) aluminum, grit-blasted

Adhesion: Showed no peeling or spalling after 10 cycles between
478°K and 80°K.

Thermophysical Properties:

Initial Solar Absorptance, a~ = 0. 902
Initial Hemispherical Emittance, eT = 0.830
Initial cvg/eqp = 1.086
Solar Absorptance after 3, 440 ESH of UV + 1015 e/cm2 = 0. 903

Contamination Susceptibility; No information available.

Outgassing Characteristics: The steady-state weight loss of the
silicone at 100°C is equal to or less than
0.04%/cm2/hr.

Refurbishment Capability: No information available.

Source and Cost: The source is Tempil Corporation, (201) 757-8300.

General Information: This paint is applied on the clean-grit blasted
aluminum substrate by standard paint-spraying
technique. Each successive coat was first air-
dried for 2 hours and then baked at 394°K for
2 hours. After the desired coating thickness was
obtained, the baking temperature was gradually
increased to 522°K and maintained for 1 hour.

State of Development! No information on further development is available.
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PYROMARK BLACK ON INCONEL

Composition: The exact composition of this paint is not available from the
manufacturer.

Density: No data available.

Recommended Thickness: 32 micrometers (thickness on -which
measurements were made).

Maximum Temperature: No data available.

Substrate: Inconel, grit-blasted

Adhesion: Showed no peeling or spalling after 10 cycles between 478°K
and 80°K.

Thermophysical Properties:

Initial Solar Absorptance, Og = 0. 906
Initial Hemispherical Emittance, e-r- = 0.842
Initial a^/e^ = 1-^76
Solar Absorption after 3,440 ESH of UV + 1015 e/cm2 = 0.906

Contamination Susceptibility: No information available.

Outgassing Characteristics; The steady-state weight loss of the
silicone at 100°C is equal to or less
than 0. 04%/cm2 /hr.

Refurbishment Capability; No information available.

Source and Cost; The source is Tempil Corporation, (201) 757-8300.

State of Development; No information available.

General Information: The paint is applied on the clear grit-blasted
inconel substrate using standard spraying
technique. Each successive coat is first air-
dried for 2 hours and then baked at 394°K for
2 hours. After the desired coating thickness
is reached, the baking temperature is gradually
increased to 522°K and maintained for 1 hour.
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SODIUM DICHROMATE BLACKENED INCONEL

Composition: Deposition of chromium oxide produced by chemical
reaction between molten sodium dichromate and the
substrate material.

Density: No data available.

Recommended Thickness: 9.6 micrometers (thickness on which
measurements were made).

Maximum Temperature: No data available.

Substrate: Incone-1, grit-blasted

Adhesion; Showed no peeling or spalling after 10 cycles between
478°K and 78°K.

Thermophysical Properties:

Initial Solar Absorptance, O' = 0. 951
Initial Hemispherical Emittance, e™ = 0.840
Initial ag/e-j. = 1.132
Solar Absorptance after 4, 770 ESH of UV + 1015 e/cm2 = 0. 959

Contamination Susceptibility: No information available.

Outgassing Characteristics: No information available.

Refurbishment Capability: No information available.

Source and Cost: Langley Research Center, Reference NASA TND-4116,
(703) 827-1110, Ext. 2986.

General Information: Blackening procedure consists of covering the
clean grit-blasted substrate surface with sodium
dichromate crystals and reacting in a clean
furnace at a temperature of 700°K for 30 minutes.
Most uniform coatings can be obtained by repeating
the procedure rather than doubling the reaction
time in the furnace.

State of Development: No further development is reported.
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BLACK NICKEL-PLATED ALUMINUM

Composition: Electrodeposited nickel on aluminum substrate.

Density: No data available.

Recommended Thickness: 2.8 micrometers (thickness on which
measurements were made) .

Maximum Temperature: No data available.

Substrate: 1100 (2-S) aluminum

Adhesion: Sho\ved no peeling or spalling after 10 cycles between
478°K and 80°K.

Thermophysical Properties:

Initial Solar Absorptance, ag = 0. 959
Initial Hemispherical Emittance, eT = 0 . 6 8 6
Initial <*g/€T = 1.398
Solar Absorptance after 3, 800 ESH of UV + 1015 e/cm2 = 0. 953

Contamination Susceptibility: No information available.

Outgassing Characteristics: No outgasing is expected.

Refurbishment Capability; No information available.

Source and Cost: Langley Research Center, Reference NASA TN D-4116,
(703) 827-1110, Ext. 2986.

General Information: Black plating was achieved by placing clear and
smooth substrate in a bath containing nickel
sulphate (97.4 g/liter), sodium thiocyanate
(74. 9 g/liter), zinc sulfate (45. 0 g/liter), and
lead acetate (11.3 g/liter), and sending a current
of density 10.76 to 21.53 amp/m2 at 0.75 to 1.5
volts through the substrate and a nickel anode for
20 minutes. This paint suffered a loss of 12. 9
percent in emittance due to simulated space
environment.

State of Development: No further development is reported.
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TABULATED SUMMARIES OF THERMAL
CONTROL SURFACES
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COATING

Optical Solar
Reflector
[Vapor-deposl-
ted silver on
Corning 7940
fused silica
over-coated w1tti
vapor deposited
Inconel]

Optical Solar
Reflector
[Vapor-deposi-
ted aluminum on
Corning 7g40
fused silica
overcoated with
vapor-deposited
silicon
monoxide]

Silver coated
FEP Teflon
[Series-
EmHUnce]
2 mil silver
TS-2
5 mil silver
TS-5

Aluminum coated
•EP Teflon
'Ser1es-Emit-
tance]
2 mil Al, TA-2

5 mil Al. TA-5

10 mil Al.
TA-10
1 nil Al.TA-1

Lanthanum
Oxide In
Potassium
Silicate

INITIAL THERMOPHYSICAL
PROPERTIES

"S

0.050

0.100

0.059

0.090

0.130

0.170

0.210

0.130

0.083

CT

0.810

0.810

0.680

0.820

0.670

0.830

0.890

0.5SO

"5/ET

0.062

0.123

0.086

0.109

0.194

0.205

0.23S

0.235

ULTRAVIOLET RADIATION
DAMME

0°S
1000 ESH

0.00

0.00

to,;

2000 ESH
to,

3000 ESH

PROTON DAMAGE

DOSE
EUH

1,000

1,000

10,000

10,000

10.000

10,000

10,000

200

to;

0.00

0.00

0.04

0.04

0.06

0.06

0.05

0.007

ELECTRON DAMAGE

DOSE
e/crt2

6 <• 10"

10"

10"

10"

to.

0.00

Signifi-
cant
Signifi-
cant
Signifi-
cant

SYNERSISTIC DAMAGE

""S

0.005 1n 1580 ESH.
Uncertainty of measured
change 1n a. Is 0.5 a,.
Flight dataTJSO-III

0.000 for 4600 ESH. Flight
data OGO-VI

0.04 for 4000 ESH. Flight
data Mariner V

0.160 for 270 ESH of
UV » 5000 EWH of Proton

u
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CONTAMINANT DEGRADATION
AND EFFECTS

Surface contamination does
not cause permanent degra-
dation. However these
should be removed prior to
launch

OUTGASSING PROPERTIES

The adhesive used to bind
the OSRs to the substrate
will outgas. A minimum of
14 days curing is required
to minimize outgassing dur-
ing ascent.
The steady state weight

loss of RTV-615 at 100°C is
greater than 0.04 percent/
cmVhr.

same as above

No data available. Depends
on the adhesive used. The
steady state weight loss of
Teflon 100°C is less than
0.04 percent/cm'/hr.

same as above

ALLOWABLE
TEMPERATURE
LIMITS

•c
MAX.
260

KIN.

MAX.
260

MIN.

MAX.

KIN.

MAX.

HIM.

MAX.
696

MIN.

-190

•F

MAX.
500

MIN.

MAX.
500

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.
1284. 8

MIK.

-130

APPLICATION AND ADHERENCE

SUBSTRATES
USED

These mirrors are
applied to the sub
strtte with RTV-
615 silicone, and
has passed the
sinusoidal and
random-vibration
tests.

same as above

The formulation is
applied by spray
painting. The
coating thickness
is not known.

PROPERTIES

COMMENTS

Reconnended standard mirror
size approximately 1 « 1 *
0.008 Inch thick. The OSRs
are fragile.
Coating thickness: 1000A
of silver plus 500* Inconel
overcoat.

same as above
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COATING

Al umi num
Oxide In
Potassium
Silicate

C»t-A-Uc
white |»1nt .

Si Ox coated
vapor-deposited
Aluminum

Si02 coated
vapor-deposited
aluminum

A120, coated
vapor-deposited
aluminum

INITIAL THERMOPHYSICAL
PROPERTIES

"5

0.110

0.120

0.128

0.140

0.140

T

0.820

0.530
dependent
on the
thickness
of S10x
film

0.430
dependent
on the
thickness
of S102

0.450
dependent
on the
thickness
of Al,0,

OS/CT

0.334

0.311

ULTRAVIOLET RADIATION
DAMAGE

bar

1000 ESH

0.09
after
Z hrs. of
UV

0.03
for ap-
prox. lp
thick
film

4os
2000 ESH

o.os

'°s
3000 ESH

PROTON DAMAGE

DOSE
EHH "s

atCTRON DAMAGE

OOSE
e/cn2

5.8x10' '

to;

O.Off

SYNERGISTIC DAMAGE
tos

0.06 after 48-hour. Flight
ATS-I

The Initial OJ/CT Has 0.48
and changed to 0.66 after
2000 ESH. Flight data
ATS-1. Explorer XXIII
data over a 3 1/2 yr.
period showed no signifi-
cant degradation.

0.06 after 1500 ESH.
Flight data ATS-3

0.075 after 200 ESH for a
In thick. film of Al,0,.
Flight data ATS-3
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CONTAMINANT DEGRADATION
AND EFFECTS OUTGASSING PROPERTIES

The steady state weight loss
at 100°C is less than
0.04 percent/cm'/hr.

The steady state weight loss
at 100°C is less than or
equal to 0.04 percent/cm2/
hr.

ALLOWABLE
TEMPERATURE

LIMITS

•c
MAX.

HIM.

MAX.

HIN.

MAX.
260

MIN.

MAX.
260

MIN.

MAX.
260

MIN.

•f

MAX.

MIN.

MAX.

MIN.

MAX.
500

MIN.

MAX.
500

MIN.
30
30

MAX.
500

MIN.

30

APPLICATION AND ADHERENCE
SUBSTRATES

USED

1 day cure at
room temperature

Any clean rigid
substrate. No
curing needed.

Any clean rigid
substrate. No
curing needed.

Any clean rigid
substrate. No
curing needed.

PROPERTIES

No blistering.
No failure after
thermal cycling
between 30 to
500'F.

No blistering.
No failure after
thermal cycling
between 30 to
500°F.

No blistering.
No failure after
thermal cycling
between 30 to
500'F.

COMMENTS

Lowest solar absorptance
requires polished metal
or glass substrate.

Lowest solar absorptance
requires polished metal
or glass substrate.

Lowest solar absorptance
requires polished metal
or glass substrate
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COATING

Alunrinized
Mylar

Hughes Organic
H-10

Alzak

Lithafrax

Synthetic
Li/Al/SfO,,

INITIAL THERMOPHYSICAL
PROPERTIES

°S

0.130

0.150

0.150

0.150

0.160

•r

0.860

0.77

0.670

0.870

°S/eT

0.174

0.195

0.172

0.184

ULTRAVIOLET RADIATION
DAMAGE

Adp

1000 ESH

o.oe
(600 ESH

0.09
(485 ESH)

line
2000 ESH

bar
3000 ISH

PROTON DAMAGE

DOSE
EMH

10,000

^

0.00

aECTRON DAMAGE

DOSE
EUH

io's

10

""S

0.09

0.11

SYNERGISTIC DAMAGE

^S

tac = 0.12 after 1000 ESH.
Flight data Lunar OrbUer
V.

Ads • 0.09 after 2000 ESH.
Flight data ATS-3

H
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CONTAMINANT DEGRADATION
AND EFFECTS

The change in a- due to RCS
engine plume was between
2 to 70 percent depending
on the position and time
of exposure.

OUTGASSING PROPERTIES

The steady state weight
loss at 100°C is less
than 0.04 percent/cm2/hr.

ALLOWABLE
TEMPERATURE

LIMITS

•c

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

•F

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

APPLICATION AND ADHERENCE

SUBSTRATES
USED PROPERTIES

No failure at
-240°F but
failure at 70°F.

No failure at
-260°F but
failure at 70°F.

COMMENTS
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COATING

Thermatrol
2A-100

Hughes
Inorganic
white H-2

Z-93

Douglas
White

S-13G

INITIAL THERMOPH1SICAL
PROPERTIES

°S

0.170

0.178

0.184

0.184

0.190

°r

0.860

0.876

0.880

0.880

0.880

as/.:T

0.203

0.209

0.209

0.216

ULTRAVIOLET RADIATION
DAMAGE

1000 ESH

0.14
(500 ESH)

0.14

O.M

MS
2000 ESH

Not
measur-
able

tos

3000 ESN

PROTON DAMAGE

DOSE
EUH

60,000

10,000

10,000

*S

0.42

0.14

Severe

ELECTRON DAMAGE

DOSE
EHH

10"

10"

to;

Severe

0.11

SVNERBISTIC DAMAGE
tos

tos • 0.089 after 1000
ESH. Flight data Lunar
Orblter IV.

toe • 0.066 after 2000 ESH
Flight data Lunar
Orblter V.

/toe • 0.063 after 1000 ESH
Flight data Mariner IV.

tos <= 0.1SO after 6 » 10'
mission hrs. Flight data
SERT-II

to; = 0.08 after 2000 ESH.
Flight data Lunar
Orblter V.

toe = 0.128 after 1000 ESH
Flight data Lunar
Orblter IV.

oac • 0.14 after 1000 ESH.
Flight data Mariner V.

IT
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CONTAMINANT DEGRADATION
A.NO EFFECTS

Requires protection against

The change in as due to RCS
engine plume was between
SO to 80 percent depending
on the position and time of
exposures. Similarly, the
change in EJ was between
3 to 10 percent, tvc =
0.05 to 0.08, ACT • 0.00
Flight data Apollo 9.

The change in as due to RCS
engine plume was between
10 to 250 percent depending
on the position and time
of exposure.

OUTGASSIHG PROPERTIES

For 3-day and 25-day room

outgassing is high beyond
140°F.

The initial weight loss is
8 « 10- s gm/cm2, and the
steady state loss is
5 « 10-" gm/cm!. The time
to reach steady state is
20 hrs.

The steady state weight
loss at 100°C is equal to
or less than 0.04 percent/
ra'/hr.

ALLOWABLE
TEMPERATURE

LIMITS

•c

MAX.

343.33

MIN.

MAX.

MIN.

HAX.

MIN.

MAX.

MIN.

MM.

MIN

•F

MAX.

650

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN

APPLICATION AND ADHERENCE

SUBSTRATES
USED

Iny clean sub-

•equired. Room
:emperature
:uring.

Aluminum or plastic
substrates should
>e abraded and
thoroughly cleaned.
Applied by spray-
ing, cured by air
irying. Improved
nardness by heat-
curing at 745°R.

Any surface to
rtlich GE SS-4044
jrimer can be
applied. Thorough
cleaning of the
surface is needed.
Applied by spray-
ing and air-cured.

PROPERTIES

Hard, porous,
brittle. Retains
dirt and stains.
Repairable.

Soft, rubbery.
Thermal shock
resistant if
primer is not too
thick. Cleanable
repairable.

COMMENTS

Surface is soft and rubbery.

24 hr. cure at room tempera-
ture required. A minimum
thickness of 35 to 50 mils
required for external use
and 1.0 mil for internal
application.

4.5 to 6.0 mil coating thick-
ness is required.

5 to 8 mil thickness is
recommended. 16 hrs. of
air-curing is needed.
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COATING

B-1060

Si li cone
(RTV-602)

over Aluminum

Butvar over
Aluminum

S-13

B-1056

INITIAL THERMOPHYSICAL
PROPERTIES

°S

0.109

0.200

0.200

0.210

0.210

CT

O.B80

0.800

O.B60

0.880

0.880

VT

0.216

0.250

0.232

0.238

0.238

ULTRAVIOLET RADIATION
DAMAGE

4as

1000 ESH

0.02B
(125 ESH)

0.012

0.00
(250 ESH)

flag
2000 ESH

0.140

3000ESH

PROTON DAMAGE

ODSE
EMH

2 x 10l

*«S

0.07

ELECTRON DAMAGE

DOSE
EUH

10"

tos

0.007

SVNERGISTIC DAMAGE
tos

fas * 0-091 after 1000
ESH. Flight data Lunar
Orbiter IV.

toj • 0.13 after 1500
ESH. Flight data Lunar
Orbiter V.

la* * 0.25 after 70 ESH
ana 20.000 EHH of protons.

to* * °-1M after 150° ESH-
night data Pegasus I
ind OSO-II.-III

tos • 0.225 after 2000 ESH.
Flight data Mariner V.

tas = 0.186 after 2000 ESH.
Flight data Pegasus I.

us • 0.155 after 1000 ESH.
light data Lunar Orbiter I.

u
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CONTAMINANT DEGRADATION
AND EFFECTS OUTCASSINS PROPERTIES

The Initial weight loss is
1.2 » 10-' gm/cm1 and the
steady state loss is
2.8 « 10-' gm/cra2. The
time to reach steady state
Is 44 hrs.

ALLOWABLE
TEMPERATURE

LIMITS

•:

MAX.

MIN.

MAX.

MIN.

MM.

MIN.

MAX.

MIN.

MAX.

KIN.

•f

MAX.

MIN.

MAX. "•

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

APPLICATION AND ADHERENCE

SUBSTRATES
USED

Any surface to
which GE SS-4044
primer can be
applied. Standard
cleaning of the
surface needed.
Spray-applied and
air-cured.

PROPERTIES

Cleanable,
repairable

COMMENTS

3.5 to 5.5 nil coating
thickness recommended.
16 hrs. of air-curing
needed.
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COATING

PV-100

Rutlle TiOj
in OC • R6-3488
Methyl Si 11 cone

Lockheed
ZrSIOj/KiSIO,
LP-10-A

TfO; in
Sil 1cone

Tinted White
Kemacryl

INITIAL THERMOPHYSICAL
PROPERTIES

US

0.220

0.230

0.240

0.240

0.240

*T

0.870

0.850

0.870

0.860

0.860

"S/ET

0.253

0.270

0.276

0.279

0.279

ULTRAVIOLET RADIATION
DAMAGE

AU£
1000 ESN

0.170
(162 ESN)

0.040

0.120
(485 ESH)

tos

2000 ESH
tos

3000 tSH

0.290
(7000
ESH)

PROTON DAMAGE

DOSE
EMH

3000

""S

0.03

ELECTRON DAMAGE

DOSE
e/OD2

10"

10"

toj

0.02

0.06

SYNERGISTIC DAMAGE

tos

ioj - 0.18 after 1.3 years

Flight data Pegasus

Aa; = 0.044 after 500 ESH.
Flight data OSO-II.

Aoj = 0.16 after 73 hrs.

Flight data Apollo 9.

do, « 0.20 after 485 ESH
ot UV + 10" e/cm!

II
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CONTAMINANT DEGRADATION
AND EFFECTS

Aa$ due to launch was be-
tween 0.10 and 0.16 depend-
ing on location. Coating
retrieved after 73 tirs.
Similarly 4c, was between
0.01 and 0.02. Flight data
Apollo 9.

Requires protection against
contamination. No data
available.

OUTGASS1NG PROPERTIES

Appreciable outgassing
beyond 130*F after room
temperature cure.

Weight loss during vacuum
is about S.O percent.

For a 2-day room temperatun
curing period, the out-
gassing is high for temper-
atures 150°F and above.
For an 18-day cure «t room
temperature, the out-
gassing Is low.

ALLOWABLE
TEMPERATURE

LIMITS

•c

MAX.

MIN.

MAX.

HIN.

MAX.

MIN.

MAX.

MIN

MAX.
232.2

MIN.

•F

MAX.

MIN.

MAX.

MIN.

MAX.
960° R

MIN.

MAX.

MAX.
450

MIN.

APPLICATION AND ADHERENCE

SUBSTRATES
USED

Standard spray gun
technique is used.
Base coat reacts
tfith substrate and
serves as primer.
toom temperature
:ure is appro*.
12 hrs.

4ny clean rigid
surface. Primer
•equired. Room
temperature cured.

PROPERTIES

No failure after
385 thermal cycles
between 150 to
70°F

COMMENTS

The electron bombardment was
rot done in situ.
3.0 to 5.0 mil coating
thickness required.

The samples were not brought
>ack to Earth under vacuum.

1 minimum of 5-mil dry film
thickness required for
sxternal application. 14-day
•ootn temperature cure
•equlred to minimize
>listering during ascent
leating.

11-69



COATING

Leafing
Aluminum In
Slltcone

White Skyspar
in RTV-60
Sillcone

R-960 T102
in RTV-602
Si 11 cone

Rokide A

Fuller Gloss
White

INITIAL THERMOPHYSICAL
PROPERTIES

"s

0.250

0.250

0.270

0.270 •

0.290

<T

0.260

0.910

0.760

0.750

0.900

V'T

0.961

0.274

0.355

0.360

0.322

ULTRAVIOLET RADIATION
DAMAGE

UUJ

1000 ESH

0.00

0.09

2000 ESH

0.350

3000 ESH

PROTON DAMAGE

DOSE
EWH

2 » 10'

*S

0.12

ELECTRON DAMAGE

DOSE
e/cm!

8 x 10"

10"

10"

10"

""S

0.00

0.07

Severe

0.01

SVNERGISTIC DAMAGE

Aas * 0.00 after 1.5 years.
Flight data OSO-I
to, <• 0.00 after 2.2 years.
Flight data Mariner IV

Aas = 0.39 after 1000 ESH.
Flight data OSO-I I

Aac • 0.13 after 1.5 years.
Flight data OSO-I

Aac • 0.10 after 485 ESH of
UV t 10" e/cn*

\

F.

11-70



CONTAMINANT DEGRADATION
AND EFFECTS

&uc due to engine plume was
between 0.07 and 0.42
depending on the position
and tioie of exposure.

OUTGASSING PROPERTIES

». reoab'e out a sin
beyond 130°F after room
temperature cure

ALLOWABLE
TEMPERATURE

LIMITS

•c

MAX.

MAX.

232.2

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

343.33

MIN.

•F

MAX.

MIN.

MAX.

450

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

650

MIN.

APPLICATION AND ADHERENCE

SUBSTRATES
USED

Any rigid
substrate. Room
temperature cured.

Any metallic
substrate

Any clean rigid
substrate capable
of withstanding
cure cycle. Cured
by baking at
465°F.

PROPERTIES

Cracking and loss
of adhesion after
170 cycles between
-240 and 70"F.

COMMENTS

For internal application,
1.0 mil minimum thickness.
For external application,
4.0 mil minimum.

A minimum of 5-mil dry film
thickness required for
external application and a
minimum of 1.0 mil for
internal application.
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COATING

Kapton-H film
on Aluminum

Sandoz
OA-Oyed
anodized
Aluminum

Chromic acid
anodized
Aluminum

Bi,S, Dyed
anodized
Aluminum

Sandoz
BK-Oyed
anodized
Aluminum

INITIAL THERMOPHVSICAL
PROPERTIES

°S

0.320

0.647

0.700

0.728

0.757

'T

0.750

0.927

0.730

0.909

0.926

•VT
0.427

0.698

0.959

0.801

0.817

ULTRAVIOLET RADIATION
DAMAGE

1000 ESH 2000 ESH

0.105

3000 ESH

PROTON DAMAGE

DOSE
EUH "*

ELECTRON DAMAGE

DOSE
e/cm'

10"

*S

Severe

SYNERGISTIC DAMAGE

Aoj = 0.037 after 3540 ESH
of UV + 10' s e/cm!

Auc B O.u3 after 73 nrs.
Flight data Apollo 9.

io, • 0.032 after 3540 ESH
of UV + 10" e/cm!

Aas • 0.029 after 3540 ESH
of UV t 10" e/cma

If
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CONTAMINANT DEGRADATION
AND EFFECTS

Contamination will degrade
the it* value.

OUT6ASSING PROPERTIES

The steady state weight loss
at 100°C is equal to or less
than 0.04 percent/on'/hr.

The steady state weight loss
at 100°C H equal to or less
than 0.04 percent/cm'/tir.

ALLOWABLE
TEMPERATURE

LIMITS

•c

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

•F

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

APPLICATION AND ADHERENCE

SUBSTRATES
USED PROPERTIES

CCMtENTS
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COATING

PbS-Dyed
anodlzed
aluminum

Fuller Black

Rokfde C

Pyromark
Black on
aluminum

Pyromark
Black on
Inconel

INITIAL THERMOPHYSICAL
PROPERTIES

"S

0.661

0.890

0.900

0.902

0.906

[T

0.912

0.880

0.850

0.830

0.842

"S/rT

0.944

1.011

1.059

1.086

1.076

ULTRAVIOLET RADIATION
DAMAGE

in;
1000 ESH

0.05
(600
ESH)

0.00

Anc
2000 ESN 3000 ESH

PROTON DAMAGE

DOSE
EWH

fio.

ELECTRON DAMAGE

DOSE
e/cm2

405

SYNERGISTIC DAMAGE

6us

'a, • 0.030 after 3540 ESH
oruv » 10" e/cm'

Sa, « 0.001 after 3440 ESH
oruv + 10' s e/cm!

60, • 0.00 after 3440 ESH
ofTJV * 10" e/cn2
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CONTAMINANT DEGRADATION
AND EFFECTS OUTGASSINS PROPERTIES

The steady state weight loss
of the sllicone at 100°C
Is equal to or less than
0.04 percent/crrVhr.

ALLOWABLE
TEMPERATURE

LIMITS

•c

MAX.

MIN.

MAX.

576.6

KIN.

MAX.

904.3

MIN.

MAX.

MIN.

MAX.

MIN.

•F

MAX.

MIN.

MAX.

1070

MIN.

MAX.

1660

MIN.

MAX.

MIN.

MAX.

MIN.

APPLICATION AND ADHERENCE

SUBSTRATES
USED

Any rigid sub-
strate capable of
withstanding cure
cycle. Cured by
baking at 465°F.

Rene' 41 with a
2-mil coating of
Nichrome. Flame
sprayed .

PROPERTIES

Cracking and loss
of adhesion after
170 cycles be-
tween -240 and
70'F.

No failure after
thermal cycling
between 1600 to
70'F.

COMMENTS

1-mil dry film thickness
is minimum for both external
and internal applications.

The bonding with substrate
is mechanical and thermal
shock can be a problem.
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COATING

Black
Kemacryl

Pyromark
Black

Cat-A-Lac
Black

PUt (nun
Black on

OMV Beryllium

Sodium
Dlchromate

Blackened
Inconel

INITIAL THERMOPHlfSICAL
PROPERTIES

*S

0.930

0.920

0.940

0.940

0.951

CT

0.880

0.870

0.940

0.850

0.840

•S/'T

1.057

1.057

1.00

1.106

1.132

ULTRAVIOLET RADIATION
DAMAGE

1000 ESH

0.05
(600 ESH)

Aus
2000 ESH

4is
3000 ESH

PROTON DAMAGE

DOSE
EHH

tos

ELECTRON DAMAGE

DOSE
e/cm2

tos

SYNERGISTIC DAMAGE

ft°S

-0.03 for 2400 flight tirs.
Flight data Mariner V.
This bleaching Is unex-
plained.

Ao, • 0.008 after 4770 ESH
of UV t 10" e/cm2

E

IT
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CONTAMINANT DEGRADATION
AND EFFECTS

Requires protection against
contamination. No data
available.

Must be carefully protected
from contamination

OUTGASSING PROPERTIES

The weight loss at 100°C is
less than 0.04 percent/cm2/
hr.

ALLOWABLE
TEMPERATURE

LIMITS

•c

MAX.
232.2

MIX.

MAX.

HIN.

MAX.

HIN.

MAX.

648.8

MIN.

MAX.

MIN.

•F

MAX.
4SO

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

1200

MIN.

MAX.

MIN.

APPLICATION AND ADHERENCE

SUBSTRATES
USED

Any clean rigid

required. Room
temperature cured
in a minimum of
14 days.

Any clear, rigid
substrate.

QHV Beryllium
applied by
spraying.

PROPERTIES

No failure after
385 thermal cycles
between -150 and
70°F.

No information
on thermal cycling
effects.

COMMENTS

1.5 mil dry film thickness
is minimum for both
external and internal
applications.
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COAT INS

Ou-Ute-3-D
on type 304
SS

Cos Dyed
anodlzed

Aluminum

Black Ni-plated
Aluminum

Sodium
01 chroma te

Blackened
Inconel

3M Black
Velvet

INITIAL THERMOPHYSICAL
PROPERTIES

"S

0.952

0.9S7

0.959

0.963

0.968

CT

0.653

0.930

0.686

0.806

0.923

"S/'T

1.458

1.029

1.398

1.195

1.048

ULTRAVIOLET RADIATION
DAMAGE

a's
1000 ESH

0.00
(100 ESH)

ia*
2000 ESH

iaj

3000 ESH

PROTON DAMAGE

DOSE
EWH

Aas

ELECTRON DAMAGE

DOSE
e/m2

AOr

SrNERGISTIC DAMAGE

40S

«aj • 0.007 after 3800 ESH

of UV * 10" e/cm2

tas • 0.006 after 3760 ESH

of UV t 10" e/cm2

4as • -0.006 after 3800 ESH

of UV + 10" e/cm1

AOJ = 0.003 after 2560 ESH

of UV + 10" e/cm2

l(
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CONTAMINANT DEGRADATION
AND EFFECTS OUT6ASSING PROPERTIES

The steady state weight loss
at 100°C 1s equal to or less
than 0.04 percent/cn'/hr.

ALLOWABLE
TEMPERATURE

LIMITS

•c
MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

•F

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIX.

APPLICATION AND ADHERENCE
SUBSTRATES

USED

1 hour cure at
room temperature

PROPERTIES

COMMENTS

12.9 percent change in if
was observed.
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COATING

NIS-Dyed
anodizeci
aluminum

INITIAL THERMDPKVSICAL
PROPERTIES

°S

0.970

rT

0.929

"S/CT

1.044

ULTRAVIOLET RADIATIW
DAMAGE

*S
1000 ESH

*S
2000 ESH

toj
3000 ESH

PROTON DAMAGE

DOSE
EUH

^S

atCTRON DAMAGE

DOSE
e/af

to;

SYNER6ISTIC DAMASE
tos

4o, • 0.002 after 3540 ESH
of UV * 10" e/cm2
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CONTAMINANT DEGRADATION
ANO EFFECTS OUTGASSING PROPERTIES

ALLOWABLE
TEMPERATURE
LIMITS

•c
MAX.

MIN.

MAX.

HIN.

MAX.

HIN.

MAX.

MIN.

MAX.

MIN.

•r
MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

MIN.

APPLICATION AND ADHERENCE
SUBSTRATES

USED PROPERTIES

COMMENTS

Slight change tn CT Is noted.
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îcn at

^
|

CL

5

L.
ID
UJ

to
a>

3
t/l
<a

0
O)

c.
CO

o

co m
CM CO

0*0*
a u

j»j-
g

5S

li-
h- at 4-»§*o

E
^ -^ at
3^1—oc «*— *

^

1
§
o

c
3
-J

cn
o

«c

s
LU

ro

2.o'

-̂10
CM CO

o'o
a u
to I—

O (J

Ol

T
10

2/
s1

l1
co

ne
 w

h
p
a
in

t IT

A-2



T3
(U
•o

o
o
o

oo
CO

o:
o

3
C

C

g
»—

a
«

2

l-
<

C

C

c.
«
Q
U

U
C

LJ
t.

u

to

: to

iS
) oc
4 UJ

1 U-

i ,

Q

5 UJ
cr

•̂  UJ
- H-

51
?S
C Z

UJ

0

J h-
c <c
u c_j
•> o

— 1

5
j «t
J h-

|S

1

3;

UJ

0
o
o
CM

a:
CO
UJ

0
o
o

to
UJ

g
*~

-J
£
£

~

C3
2£

I—
5
s

«jm

•0 T>
m cu
c c

-Q -Q

o 5

L. 1_

_J -J

1 1
OO
_J -J

^ t̂—

to

O »J"»
CM »—

0*0"

*"*-
u
CO

1— *

r
o"

in 10
— CO

0*0*
II It

a u
U

>i C

>»Jz §,
* U fc.

*O irt OJ

"5*3i;

"o flj **~ **
O) C CM
c o o

•r— O lO

15^ i— T
<_> i/l <X X

0,

>
<u

g

-o-k 1
»— (J «r-

X 0) E

CO (->

^_

Ol
«-• ez

x» o ^

-J O E

Tc
S S

ai in CM
C i— CM

o o o
o o

o • •
2= 00

in UD
CM CM

o'o"
II II

to t—a (j

0)
c

ci^

E (/i

)O (U
0) -C
_J 0.

in vo

T3 -O
OJ <U
c c

E E
O O
u o

c c
— 1 _l

1 1
oo
_l _]

3?
to
Ul

o
g
—<n

0

^_^

J-
to

ro o
o o

"3-
^5.
10
in
CM

o*

O 0
CM CO

O*O*

tl H

to t—

^^

N§o c

"I
> QC rtj

(U E CT»
C 3 ̂ ~
O C r-

to <o o

CM «n o CM CM

ID (J

B tO u
•o -X

-x, ro CU

O O 2» O ="

<O (O «J <O (O
—1 -J _J _1 _ 1

(U
at
c
JZ
(J

o

3? 3?

UJ U. UJ
o

in o in
«3- U. ro*3- u.

O O
O vo at i— <o UD
•~^ 000

o" o 0*0*

CM
o
o*

ato
CM at
o'o"

u u
LO h-a (j

ojT
•r- 1

<u j= rx.
•f- in

J QJ T> 4-»

« 0-*-^ifl U f— (O
rO •*- <O Q.

Ol*r- T3 (y
« 0» C

(D CM1*- (J
•— O -f- t-

r^£^'*~

^ ^- in

01

- S
E "-».

0)

^£ in

00

J3 JO

-J _l

ô"
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ô iT

S
10

x-
co

at
ed

 v
ac

uu
m

de
po

si
te

d 
on

 a
lu

m
in

um

ro

"a
01

o>

o
oo

(O

O

1 1
CO .Q CO

"T-
U Ol

coo
a f

•«— in
lo'5»o

* QJ *
ozo

(1—<ll

h-(J
CO

in
to o
o o

7*
•̂*
o
10
c>

*8.
oo
tl U

A
l2

03
~c

oa
te

d 
va

po
r

de
po

si
te

d 
on

 a
lu

m
in

um

CM

to

O

X

CMM

•̂ v
> Q.

^«
CO
UJ

Q
r̂ .

in
CM

o

s §*s
•r- Wl
tCU -P V)

f- C tft
4J 0) CU
L.-O C &_o cu c ^ (dp o. <u u >

5 2 QI !c ^
.c o."O *̂  co

o to
CM 00

oo
II p

co ^—a u

B
ut

va
r 

o
ve

r 
al

um
in

um
(s

e
ri

e
s-

e
m

itt
a

n
ce

)

oo «o«— »-
**> ^«

C M

C W
fc. O •*-»
<d •*-» u
r- p OJ

> o C P—
O CO Ot. UJ

H
i

oooooooo
oooo

o
a
f-T
"— '

O CO

o

in vo

o o
n d

S
ilv

e
r 

on
 f

us
ed

s
il
ic

a
 o

ve
rc

oa
te

d 
w

it
h

In
co

ne
l 

(o
p
tic

a
l 

so
la

r
re

fl
e

c
to

r)
 

(C
or

ni
ng

79
40

 f
us

ed
 s

il
ic

a
)

ro f-

I s
X M p

i- 04-»
« •*-» U

*— o a>

§888
» * • *

OOOO

25
o'o'

Jff

A
lu

m
in

um
 o

n 
s
il
ic

a
ov

er
co

at
ed

 w
ith

s
ili

c
o

n
 o

xi
d

e 
(o

p
tic

a
l

so
la

r 
re

fl
e

c
to

r)
(C

or
ni

ng
 7

94
0 

fu
se

d
s
il
ic

a
)

E

A-6



<cs
o
UJ

fit
_l
_1
LU

oo

>
3
C

I
CC

CC

z
c
1-
<

c
c

u
l_
4
0
I/

u
c
u
(_
c
=c
V

a"
°

to
LU

cc
UJ

UJ
ce

' UJ
i at.
* UJ

i O

" UJ

J t— <
> I—

t O
> o

>
J <t' t—
* «£1 O

1

3:
co
UJ

o

rsj

3:
to
UJ

i
O

UJ

o
o

_J
«£

M

'-'

z
1—

ot
ro

o
OJ

,rt

o

4-

5

J3
to
_j

o
£

*-•*

01 *•"•
in 3:
O* CO

• UJ
o

in «a-
Ol 00
o o
II U

(T.r

S
od

iu
m

 d
ic

hr
om

at
e

bl
ac

ke
ne

d 
in

co
n
e
l

S

u
o>

m
o

•*•

=

.0
(0

-J

O
«J3

<u in
JD C\J

CT

(U • LU
Z O

Ot CO

00

II II
to *—

O LJ

X

S
od

iu
m

 d
ic

hr
om

at
e

bl
ac

ke
ne

d 
In

co
ne

l

$

\
(U

in

o

-t-

rs

^3
(0

O

S
c.
O "~»

• UJ
0

£g
O O

U II

a"\r

01 in
ISl 1

•*- CM

||

If

CO "fO <

0.

1
0)

.rt
0
*~
+

5

ja

5

o
U3
t-.

ro
* —

Ot to
• UJ

o

m ro

o o
II 11
to t—
0 u

,-*

C
oS

-d
ye

d 
an

od
iz

ed
al

um
in

um
 [

1
1

0
0

(2
-

A
l]

Ot

1
"oT
^
"o
r—

*
5

_g

J3

0

S
ro
^— '

OJ —
r*. 3:Ot tO

• UJ
0

r-N. esj
Ot Ot

o o
II II
(O h-

£J U

in

N
1S

-d
ye

d 
an

od
iz

ed
al

um
in

um
 [

1
1

0
0

(2
-

A
l]

Ol
CO

J5
V

«i

O
r~"

+
5

-O

*

0

in

—
Ot X
00 CO

• UJ
0

U) .—
CO Ot

00

U II

CS û"
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APPENDIX B. CONVERSION FACTORS
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CONVERSION FACTORS

METRIC ENGLISH ENGLISH METRIC

DISTANCE
1 km
1 cm
ly (lO'-cm)
1A (10-8cm)

0.62137 mi
0.3937 in.
0.3937 mil
3.937 x lo-9 in.

1-mi
1 in.
1 mil

1.60935 km
2.54001 cm
25.4001 y

AREA
1 m2
1 cm2

10.7639 ft2
0.1550 in.2

1 ft2

1 in.2
0.09290 m2

6.4516 cm2

VOLUME
1 m3
1 cm3

35.3144 ft3
0.061023 in.3

1 ft3

1 in.3
0.028317 m3

16.3872 cm3

WEIGHT
1 9 0.0022046 Ib av. 1 Ib av. 453.592 g

WORK AND ENERGY
1 g-cal (mean) = 0.0011628 watt-hr = 4.186 joules (abs)

= 0.0039685 Btu (mean)

1 Btu (mean) = 251.98 g-cal (mean) = 1054.8 joules (abs)
= 0.2930 watt-hr

1 joule (abs) = 107 ergs = 0.23889 g-cal (mean) = 2.778 x 10-** watt-hr
= 9.4805 x 10-* Btu (mean)

POWER
1 watt = 0.001341 horse power = 14.33 g-cal/min

= 1 joule/sec = 0.056896 Btu (mean)/min

TEMPERATURE
Degrees Kelvin (°K) = 1.8°R = °C + 273.16 = (°F + 459.69)/1.8
Degrees Centigrade (°C) = °K - 273.16 = °R/1.8 - 273.16 = (°F - 32J/T.8
Degrees Rankin (°R) = °F + 459.69 = 1 .8 °K = 1 .8 °C + 491.69
Degrees Fahrenheit (°F) = °R - 459.69 = 1.8°K - 459.69 = 1.8°C + 32

APPROXIMATE SOLAR CONSTANT
1350 watts/m2

125 watts/ft2

2 g-cal/cm2-min
0.12 Btu/ft2-sec

WAVELENGTH-ENERGY
1 micron (lO^A) = 1.24 eV
wavelength X (A) = 1.24 x

10,000 cm-1
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