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ANALYCIC 07 THV 0.511 MeV RADIATION AT TKE OSO-7 ?ATELUTE 

FHILIP P. DTINPHY 

Observations of the  0.511 MeV positron-annihilation gamma-ray 

by the UNH detector  on the OSO-7 s a t e l l i t e  a r e  presented along with a 

descr iot ion of the detector  i t s e l f .  Variables which a f f ec t  the  count- 

 in^ r a t e  for  t h i s  l i n e  are  discussed. Local production is sham t o  

be important and a contribution *om the Earth i s  found t o  be i n  

agreement with tha t  measured by balloon-borne detectors. An upper 

l i m i t  flux of 7.6 x photons cm-2sec-I is obtained f o r  the quiet  

Sun and a posi t ive  so la r  f l u x  o f  6.3 x (i 2.0 x lo-*) photons 

-2 -1 
cm sec is  obtained f o r  t he  3R f l a r e  of August 4 ,  1972. The width 

of t h i s  annihi la t ion l i n e  gives an upper limit temperature for  the 

6 annihi la t ion region of % 6 x 10 %. An analysis  of the l i n e  width 

and p o d t i o n  a l s o  shows t h a t  the  contribution t o  t h e  l i n e  from 

poaitronium annihi la t ion is  less than 100% a t  the  99% confidence level .  

An upper l i m i t  is a l s o  found for  an i so t rop ic  cosmic flux. This i s  
-1 -1 

8 x cme2 see sr . 



A. Astrophysics1 S imi f i cance  of the 0.511 MeV Radiation 

The pampa-ray l i n e  a t  0.511MeV i s  the charac te r i s t ic  radia- 

t ion  emitted a s  the  r e s u l t  of the  annihi la t ion of a positron and a 

free e lectron a t  r e s t  (see Appendix I). Astrophysically, t h i s  

radiat ion is re la ted  t o  positrons i n  the aame uay tha t  gamma rays 

are  re la ted  t o  energetic charged par t ic les  i n  general--they t r ave l  

v i r t ua l ly  d i r e c t l y  *om the  point of origin of the  pa r t i c l e  react ions  

without t he  intermediate magnetic f i e l d  in te rac t ions  and energy l o s s  

mechanisms of charged par t ic les .  Because the production of gamma rays 

is  s complicated process, i n  practice many mrameters of the inter-  

actions must be known or  hypothesized (fluxes, e n e r u  spectra,  ambient 

denoities,  e tc . ) .  Therefore, garmaa ray measurements do not replace 

cosmic ray  measurements but complement them i n  t he  aame way t h a t  

meagurements i n  other r e d o n e  of the e lec t rmagnet ic  spectrum do. 

A gamma ray l i n e  a t  0.51 MeV has long been observed i n  detectors 

flm beneath high a l t i t u d e  balloons. Thia has generally been a t t r i -  

buted t o  positron production i n  coamic ray  in te rac t ions  i n  the atmos*ere 

with nubsequent annihilation.  This source has a l s o  been seen a t  

a a t e l l l t e  a l t i t udes .  The following sect ion reviews these experiments 

i n  sane de t a i l .  

Of @eater  as t rophysical  i n t e r e s t  a r e  possible fluxes Prm 

the  Sun, f rm other d i sc re te  sourcea, and h.m our galaxy a s  a whole. 

The qu ie t  Sun emits a negl igible  amount of 0.511 MeV rad ia t ion  



( ~ ~ p e n d i x  I). Upwr l imi t s  fo r  t h i s  flux have been tabulated by 

Chupp (1971) ror experiments oerformed prior t o  1969. The lowest 

u p w r  l i n i t  was measured by Hnymes e t  a l .  (1968) and was 8.4 x 10-4 

nhotons cm'2sec-1; hrthermore,  there  was no evidence of any radia- 

t i on  of nuclear or igin  from the Sun a t  t ha t  time. 

Present theore t ica l  calculat ions  (Cheng, 1972) show t h a t  

measurable fluxes of annihi la t ion radiat ion from the Sun can only 

be exnectod during s o l a r  f l a r e  ac t iv i ty .  Several workers have 

calcul.ated positron production and annihi la t ion r a t e s  for  f l a r e s  a s  

discussed i n  Appendix I. Different models can predict  vast ly  d i f -  

fe ren t  time cha rac t e r i s t i c s  (Chupp, 197l). The in t ens i ty  and time 

de~endence of the f l u x  depends on the i n i t i a l  proton energy s p e c t m  

and the ambient pa r t i c l e  densi ty  and composition. The time depend- 

ence can a l s o  be affected by the  magnetic f i e l d  i n  t he  positron 

deceleration region. The width of the  0.511 MeV l i n e  can reveal the 

thermal ve loc i t i e s  o f  positrons and electrons i n  the  annihi la t ion 

reflon end the  formation of t h e  positron-electron bound s t a t e  

(positronium). Such mea8urements cmbined with measurements i n  other 

regions of t h e  electromagnetic s p e c t m  and the detection of the 

f lare-relnted charRe ~ r t i c l e s  and neutrons can give valuable knovledge 

about the  f l a r e  environment. 

Other ex t r a t e r r e s t e r i a l  d i sc re te  sources for  which upper 

limits have been given include the Crab Nebula, the  Cygnus and Virgo 

regions, and Centaums A (Chupp, 1971). A l i m i t  on an isotropic  

flux which could presumably be produced i n  our galaxy has been 



published by Metzger e t  a l .  (1964). This measurement by the Ranger 3 

s p ~ c e c r a f t  gives a l i m i t  of 1.4 x lo4 photons ~ m ~ s e c - ' .  

The hyoothetical annihi la t ion f lux produced within our galaxy 

and i t s  gignificance has been discussed by Stecker (1969) and Ramatg, 

Stacker and Hisra (1970). %maty and Lingenfelter (1966) have t reated 

cosmic ray in te rac t ions  i n  the  galaxy which y ie ld  positrons by the 
+ + + v + + e  

n scheme. These positrons have i n i t i a l  energies 

greater  than 1 0  MeV, and t h e i r  escape the galaxy i s  an  important 

consideration i n  estimating the  equilibrium positron flux. I n  

addition, the production and decay of positron-emitting nuclei  may be 

an important source of g a l a t i c  positrons i n  the  range 0.1 t o  10 MeV 

(Verma, 1969). The in tens i ty  of t he  associated annihi la t ion radia- 

t ion dewnds on parameters s imi la r  t o  those involved i n  so la r  f l a r e  

events. Positron production i s  a function of the  primary cosmic ray 

in tens i ty  and the  density and cmpoaition of t he  i n t e r s t e l l a r  gas. 

The equilibrium positron in tenqi ty  a l s o  depends on the  energy lo s s  

r a t e  of the positrons (since they annih i la te  near r e s t )  and t h e i r  

survival time against  annihilaticrn and leakage from the g a l a q .  

The resu l tan t  annihi la t ion rad ia t ion  Prom the given d i rec t ion  can then 

be calculated,  knaring the amwnt of matter i n  the  d i rec t ion  of 

observation. Posi t ive  measurements of, or l i m i t s  on, such a flux 

would add t o  knowledge of the  ga lac t ic  comic  ray  f lux and t o  the  

d i s t r ibu t ion  of matter i n  the galaxy. 



B. History of Observations of Atmospheric and 

Eosmic Annihilation Radiation 

1. Balloon Observations 

The measurement of low-energy atmospheric gamma rays began 

two decades ago a s  a r e s u l t  of attempts t o  detect  radiat ion from 

ex t r a t e r r e s t e r i a l  sources. Btperiments by Rest, Reiffe l  and %one 

(1951) and Perlow an4 Kisainger (1951) involved using Geiger-Muller 

tubes i n  anticoincidence t o  de t ec t  gam%a rays of e n e r g i e s < &  MeV and 

< 15 MeV, r e s ~ c t i v e l y .  Subsequent balloon f l i g h t s  by K. A. Anderson 

(1961) and J. I. Vette (1962) gained energy spectrum inFormation 

between 25 and 1060 keV using unshielded NaI s c i n t i l l a t i o n  detectors. 

Ihe data of Anderson extrapolated above 300 keV agreed well  with 

rocket data gathered by Northrop and Hostetlar  (1961). 

Improved s p c t r a l  da ta  was obtained by F. C. Jones (1961) 

using a balloon-borne CsI(T1) phoswitch detector surrounded by a 

4-cm thick passive lead coll imator and a 3-cm thick lead shutter. 

The energy l o s s  spectrum i n  t h i s  detector  was divided i n t o  31 bins 

between 2 0.1 t o  2.4 MeV. No evidence of 0.511 MeV radiat ion was 

detected; however, t he  presence of a la rge  amount of unshielded l e ~ d  

and the small opening angle of the  collimator made detection of the  

atmospheric spectrum d i f f i c u l t .  

N~merous experiments have been made with belloon-bone 

inorganic s c i n t i l l a t ~ r a  with charged-particle re jec t ion  and a min- 

im of massive material  i n  t he  v i c in i ty  of the detector. A 



gammR rag l i n e  a t  P.5 MeV a t t r i bu ted  t o  positron annihi la t ion was 

first found with such a de tec tor  by L.E. Peterson (1963). Detaile 

of the  measurement, a s  wel l  a s  others of a s imilar  nature, have been 

summarized h-r Kasturirangan e t  a l .  (1972). Peterson's detector 

consisted of a 5.1 cm dia. x 5.7 cm long Naf(T1) - phosvich arrange- 

ment flown i n  1961 a t  55O N geomagnetic l a t i t u d e  and an atmospheric 

depth of 6.0 g cm2. The published in t ens i ty  of the  0.51 MeV l i n e  

was C.31 + - 0.03 photons cm-2sec-1 a t  ce i l i ng  a l t i t ude .  This was 

l a t e r  revised t o  0.62 f 0.06. I n  1962 an experiment was flown by 

S o s t  e t  a l .  (1966) a t  t he  same l a t i t u d e  t o  a depth of 3.5 g cm2. 

The d e t e c t w  was a 3.4 cm x 5.4 cm Na1(Tl) s c i n t i l l a t o r  with a 

CsI(T1) collimator. The in t ens i ty  a t  a l t i t u d e  was 0.60 photons 

-2 -1 cm sec . 
Data a t  47O N has been obtained by Rocchia e t  a l .  (1965) 

during three f l i g h t s  i n  1963-196.1, t o  a ce i l i ng  of 5.0 g ~ r n - ~ .  The 

detector  was an unshielded I .4  cm x 5.1 cm ~ a I ( n )  s c i n t i l l a t o r  and 

the measured in t ens i ty  varied between 0.34 and 0.40 photons cmm2sec-l. 

A s e r i e s  of measurements have been made by Chupp e t  a l .  (1970) a t  

Q0 R with a var ie ty  of inorganic s c i n t i l l a t o r s  and shield configura- 

t ions  from 1966 t o  1968. A mean in t ens i ty  of 0.18 photons ~m-~sec' l  

was observed. Haymes e t  a l .  (1969) have flown a 10.1 cm x 5.1 cm 

~ a 1 ( T l )  detector surrounded by a thick (7.0 em) NaI(TL) ac t ive  col- 

limator. These invest igators  give an upper l imi t  t o  t he  0.511 MeV 
-7. -1 in tens i ty  of 0.2 plotons cn. set a t  42' N and 3.9 g cm2 i n  1967. 

An intermediate l a t i t u d e  measurement (27%) was made by 

Nakagawa e t  al. (197l) i n  1970 using an unshielded 15 cm3 Ce(L1) 



detector.  Thr r e s u l t  w-s an in t ens i ty  of 0.12 _+ 0.03 photons c m ~ s e c - I  

a t  7.0 g cm2. Finally, a s e r i e s  o f  balloon ? l igh ts  was done by 

K e q t u r i r s n ~ n  e t  a l .  (1972) new the equator (7.60 N) with p las t ic  

shielded N~I(TL) detsctors.  These f l i g h t s  gave a r a t e  of 0.08 0.01 

photons cm2sec'l a t  6.0 g residugl atmosphere. A l l  of the  above 

recu l t s  have been normalized t o  a common atmospheric depth (6.0 g cm4) 

by Kaaturiranaan e t  a l .  and plotted t o  give the dependence of the 

P.51 MeV in t ens i ty  on magnetic la t i tude .  

The nrasent experiment a s  well a s  other s a t e l l i t e  experiments, 

which a re  summarized below, eliminate the uncer t s in t ies  involved i n  

correct ing for  atmosnheric depth and i n  comparing the r e su l t s  from 

detectors  with d i f fe ren t  s e n s i t i v i t i ~ s  and an@ar responses. These 

d i f r i c u l t i e s  3 re  explained i n  t he  p p e r s  of Chupp and Sorrest  (1970) 

~ n d  bymes e t  a l .  (1970). 

2. S a t e l l i t e  Observations 

Gamma ray  measurements made on the Ranger 3 and Ranger 5 

srwcecraft (Metzger et  a l . ,  1964) heve given an indicat ion of 

the  gamma ray environment i n  c is lunar  space. The detector  consisted 

oP FI 2.75 inch x 2.75 in .  CsI(T1) scintillator-phoswitch combination 

cal ibrated i n  f l i g h t  with cos7 and 13g203 sources and pulse-height 

analyzedwitha32-channel analyzer with two gain modes. The detectm. 

W R J  c a p b l e  of being extended from the  s p c e c r a f t  on a 6-foot born, 

with data  taken i n  both the stowed and extended position. This pennit- 

ted evaluation of loca l  production i n  t he  spcecraPt .  The energy range 

covered was 70 keV t o  L.4 MeV. 



A small peak a t  0.51 MeV was found i n  the stowed spectra of 

both detectors  und was a t t r ibu ted  t o  secondary production. No peak 

wag observed i n  the extended position, giving sn upper l imi t  fo r  an 

i so t rop ic  f l ux  of C.014 photons cm4sec-l. These measurements were 

made a distawce of 7 x 104 km t o  4 x lo5 km hrcsa t he  Earth, making 

contributions from t h i s  source negligible. 

Measurements i n  the  0.3 t o  3.7 MeV range were made on the 

Cosmos 135 and Cosmos 163 s a t e l l i t e  during 1966 and 1967. The Earth 

o r b i t s  had 600 km apogee and 250 km perigee v l t h  an inc l ina t ion  of 

49'. These expariments used 64-channel analyzers t o  s o r t  t he  output 

of a L.0 cm x 4.0 cm NaI(Tl) scintillator-phoswitch arrangement. 

Data i n  the  0.5 MeV region has been described by Konstantinov, e t  a l .  

(1970), giving posit ive evidence of annihi la t ion rad ia t ion  a t t r ibu ted  

t o  the  Esr th 's  atmosnhere. The quoted flux varies with r i g i d i t y  

between 0.05 photons cm2sec-I and 0.2 photons cmdsec'' for  r i g i d i t i e s  

between I4  and 1 GV. No fluxes a r e  quoted f o r  other sources although 

Golenetskii et e l .  ( 1 9 n )  give upper l imi t  values for  the  gamma ray 

i n t e n s i t i e s  i n  interplanetary s p c e  of 4.0 x and 7.7 x lo4 

photons cmdsec-I Met'-' sr-I i n  the range 0.45 t o  0.65 MeV f o r  two 

d i f f e r en t  f i t s  t o  the data. 

An exmriment s imilar  t o  the  Ranger s e r i e s  was placed on the  

Apollo 1 5  and 16 space vehicles. The detectors  consisted of 7.0 cm 

dia. x 7.0 cm long NaI(T1) s c i n t i l l a t o r s  with p lae t ic  ac t ive  charged- 

p a r t i c l e  shielda.  A born was used t o  extend the detectors  up t o  

7.6 rn from the  edge of the spacecraft.  After correction f o r  apace- 

c rap t  production and loca l  absorption, there  waa a weak posit ive flux 



at 0.51 VeV of 3.0 f 1.5 x photons cmdsec'' (Wombka e t  al. 1973; 

Peterson and Ranbkn, 1973). This corresponds t o  an isotropic  flux 

of 2.1 f 1.7 x 10-3 photonscm-2sec-1sr-1. This measurement seems 

inconds t en t  with the  Ranger upper lhit and may be due t o  l oca l ly  

produced positrons or low energy positrons of s o l a r  or cosmic origin 

t h a t  annih i la te  near the  de tec tor  (Peterson and Rwbka, 1973). 



11. DESCRIPTION OF DETECTOR 

A. Physical Description 

The l iniversity of New Hampshire gamma-ray monitor on the OSO-7 

s a t e l l i t e  has been described i n  the  l i t e r a t u r e  (Higbie e t  al. ,  1972). 

The following w i l l  summarize the charac te r i s t ics  which a re  important 

i n  the  accumulatim and analysis  of data a t  0.5 MeV. The basic 

detector  is  a 7.6 cm diameter by 7.6 om high cyl indr ical  NaI(T1) 

c rys t a l  hermetically sealed i n  a th in  s t a in l e s s  s t e e l  housing and 

mounted d i r ec t ly  cm an RCA C31012 photanultiplier .  

This assembly is shielded i n  the forward d i rec t ion  by a 0.5 cm 

th ick Cs1(Na) s l ab  and i n  all other direct ions  by a CsI(Na) cup of 

2.8 cm averane thickness and 3.8 un thickness near the  detector 

(Figure 11-1). Charged-partjcle interact ions  i n  t he  shield above a 

nominal threshold of 100 keV veto coincident in te rac t ions  i n  the  

detector.  The shield a l s o  serves t o  supress the  recording of Compton 

sca t te r ing  i n  the  detector by detect ing the scat tered photon. Events 

en t a i l i ng  a 0.511 NeV escape gamma r ay  which in t e r ac t s  i n  t h e  shield  

a r e  s imi la r ly  supressed. The thickness of the shield i s  su f f i c i en t  

t o  s ign i f ican t ly  attenuate gamma rays other than those entering the 

forward aperture. A small X-ray detector  covering the range 7.5 t o  

120 keV i s  included i n  the  cwnpartment f o r  the  purpose of monitoring 

so la r  ac t iv i ty .  

The detector  i s  located i n  a segment of the  ro ta t ing  wheel 

section of the  033-7 spacearaft. The detector faces rad ia l ly  outward 

with c rys t a l  and cup axes i n  l ine .  The spin ax i s  of the s a t e l l i t e  i s  



u 
3x3" Nal (TI) integral line crystal and 

photo multiplier assembly 

Figure 11-1. Schematic diagram of the gamma-ray monitor showing the main 
detector, charged-particle shield, X-ray detector, and calibration sources. 



normal t o  the  plane of t he  wheel. Thus the  f i e l d  of view of the  de- 

t ec to r  sweeps around a great  c i r c l e  i n  the  c e l e s t i a l  sphere containing 

the wheel plane wi th  a period of about 2 seconds. 

B. Detector Character is t ics  

1. Energy range and resolut ion 

The energy range of t he  monitor i s  0.3 t o  9.1 WeV. The outpl t  

of the cen t ra l  detector  i s  pulse-height analyzed by means of a 

Quadratic Analog t o  Digital Converter ( B w t i s  e t  al. ,  1972). The 

channel n i n t o  which the  pulse i s  directed is  not re la ted  t o  the  energy 

l o s s  E i n  the  c rys t a l  i n  a l i n e a r  way but  by the  function 

E = c(n+%12, 

where c and no a r e  constants. Since the  energy resolution of the  

detector  (or  t h e  f u l l  v ld th  a t  half maximum of a s p e c t m  peak due t o  

a gamma ray l i ne )  is  proportional t o   or RJHMa 1 ntng I ) ,  

and AE = 2c (n+no) An, 

i f  AE is taken t o  be the  FWHM of a peak, its width i n  channels n is 

independent of energy. The quadratic analysis  optimizes telemetry 

and pulse height analyzer usage by giving equal widths t o  peaks 

throughout t he  energy range. Zhe pulse height analysis covers 377 

channels and the  FWHM f o r  peaks uas chosen t o  be approximately 5 

channels. The nominal energy range is 0.3 t o  9.1 MeV but the gain 

cmn be adjusted by colmnand over a 6:l range. The detector was designed 

t o  glve an enerey resolution of approximately 

a t  E E ,662 MeV where AE is  t h e  FWHH. 



2. Phot opeak sens i t i v i ty  

The t o t a l  in te rac t ion  r a t e  R i n  a detector  due t o  a pa ra l l e l  

f lux  F i n c i d e n t  on the sens i t ive  area A i s  given by 

R = F & A = F S T  

where E is the  t o t a l  eff ic iency and ST is  the t o t a l  sensi t ivi ty .  When 

a gamma-ray  hoto on i n t e r ac t s  i n  a detector it does not necessari ly 

l o s e  a l l  of i ts energy. Cmpton sca t te r ing  with subsequent escape of 

the scat tered photon or  pair  production d t h  subsequent escape of one 

or both 0.511 MeV annih i la t ion  photons deposits  only part of the  

or iqinal  photon energy i n  the  detector .  The r a t i o  of t he  in te rac t ions  

lesding t o  t o t a l  energy l o s s  t o  the  t o t a l  number of in te rac t ions  i n  

cal led the photofraction f. 

When the  flux of a gmm-ray l i n e  causes a peak i n  the  detected 

spectrum, t he  counting r a t e  i n  the  peak is given by 

Rp = Ffc A = PS 
P 

where S is the photopeak sens i t iv i ty .  Values for  t he  t o t a l  sensi t iv-  
P 

i t y ,  photopenk sens i t i v i ty ,  efficiency, and photorraction for  a 7.6 cm 

by 7.6 ma ~ a f  (TI)  c rys t a l  e r e  given i n  Table 11-1 f o r  a para l le l  beam 

of 0.511 MeV incident energy (Heath, 1964; Neiler and Bell, 1965). I n  

practice,  the  ro t a t i on  of t he  s a t e l l i t e  during data accumulation 

modifies the  response t o  a p r a l l e l  beam. Thia response, a s  measured 

during detector cal ibrat ion,  is described below. The ac tua l  photo- 

peak sensitivity of the  de tec tor  f o r  a point source i n  the  center  of 

the f i e l d  of view of the de tec tor  a t  several energies i s  s h m  i n  

F imre  11-2 (Higbie e t  al., 1973). 



a S;l3(0392 MeV) 
8 Ci3'(Q662 MeV) 
+ zF(l.ris M ~ V I  
S Ni4(275 MeV) 

2 F i g u r e  11-2. Energy  dependence  o f  t h e  d e t e c t o r  s e n s i t i v i t y  ( e m  ) f o r  an 
a x i a l  p a r a l l e l  beam f o r  f o u r  l i n e  s o u r c e s .  



TABLE 11-1 

EFFICIENCY PARAMETERS 3OFi 7.6 cm x 7.6 mn 
NaI(T1) CRYSTAL 

~ o t a l  Sensit ivity (sT) u cm2 

Photopeak Sensitivity (S ) 
P 

25 cm2 

Efficiency (E ) 0.92 

Photofraction ( f )  0.64 

References: Heath (1964) and Neiler and B e l l  (1965). 



3. Angular Response 

A resnonse function for  the  OSO-7 detector which includes the 

var ia t ion of detection s e n s i t i v i t y  with angle of photon incidence has 

been measured experimentally f w several  energies (Higbie e t  al., 1973). 

Gamma-ray energies of 0.393, 0.662, 1.12, and 2.75 MeV were obtained 

113 cs2j7, !3nb5, and 8a2&, respec- from the radioactive isotopes  Sn 

t ive ly .  Measurement of such response functions pennit the  unfolding 

of continuum spectra and the calculat ion of average s e n s i t i v i t i e s  t o  

point sources. These f h c t i o n s  a r e  used i n  the  present analysis. The 

angular response of t he  present detector  includes the var ia t ion i n  

look d i rec t ion  due t o  ro ta t ion  of the s a t e l l i t e  (2-second period) 

while the  de tec tor  i s  accumulnting data. 3Xgu.e 11-3 i l l u s t r a t e s  the 

var ia t ion of the' s e n s i t i v i t y  f o r  a point source of energy 0.662 MeV 

( c s ' ~ ~ ) ,  vhere t he  azimuth angle is the angle i n  the  vheel plane between 

the look d i rec t ion  and the source, and the elevation angle i s  the angle 

between the source d i rec t ion  and the wheel plane. 

4. Time resolution 

There a r e  three modes of data  readout giving three possible 

accumulation times. I n  the  normal mode, data is accumulated when 

the detector  i s  pointed within f G 5 O  of the  Sun. Because of t he  

n a t e l l i t e  or ientat ion,  t h i s  so l a r  scan nluays contains the  Sun a t  i t s  

center (Flgure 114). Data i s  a l s o  accumulated s e p r a t e l y  when t h e  

detector is pointed within 5!,5O of the  an t i so l a r  direct ion.  The da ta  

accumulation thus def ines  a s o l a r  quadrant and an an t i so l a r  quadrant. 
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2 F i g u r e  11-3. V a r i a t i o n  o f  d e t e c t o r  s e n s i t i v i t y  (cm ) w i t h  
a z i m u t h  and e l e v a t i o n  f o r  a  0 .662  MeV (cs137)  p o i n t  s o u r c e .  



F i g u r e  11-4. Schemat i c  o f  050-7 wheel  s e c t i o n  st t h e  i n s t a n t  t h a t  t h e  
d e t e c t o r  a x i s  p o i n t s  a t  t h e  Sun. 



The accumulation time for  each quadrant during on0 spacecraft  ro ta t ion  

is about 0.5 seconds because of the  2-second ro t a i ion  period. Data 

f o r  each auadrant i s  a w e d  separately for  3 minutes of real time 

before being read out. 

I n  addi t ion t o  t h i s  3-minute time resolution,  f a s t  scans of 

30 seconds and intermediate scans of 61 seconds a r e  avai lable  on 

c~rnvand. These f a s t e r  scan modes a r e  permitted by lowering the  

nu7nher of nulse height channels used. With proper gain adjustment, 

the  +'a'ast scan aode reads out only channels covering l i nes  a t  0.511 and 

2.2 MeV snd ca l ib ra t ion  l i n e s  of co6' (see sect ion on cal ibrat ion) .  

The intermediate scan a l so  covers channels f o r  l i n e s  a t  4.43 and 

6.13 MeV. 

The detector  can a l s o  be svitched by connrnnd from the normal 

quadrant mode (solur-antisolar quadrants) t o  an a l t e rna t e  auadrant 

mode i n  which data i s  collected when the detector  is pointed a t  r i gh t  

anqles t o  t he  so l a r  direct ion.  The section of t h o  c e l e s t i a l  sphere 

seen i n  the  a l t e rna t e  quadrant mode depends on the so l a r  d i rec t ion  

and on the or ientat ion of t h e  spin ax is  of the sprtcecraft. 

5. Housekeeping data 

Information on the s t a t u s  of t he  experiment I s  telemetered 

Prom the s p c e c r a f t  during every scan. This information includes: 

scnn mode, quadrant mode, hiqh and low voltage, detector  and electronics  

temperature, s l ab  and cup counting ra tes ,  i n t eg ra l  counting r a t e s  f o r  

energies between 0.3 and 9.1 MeV and greater  than 9.1 MeV, automatic 

ca l ib ra t ion  mode and magnetometer reference mode. Further housekeeping 



data i s  included i n  t he  main frame cycle which i s  sen t  back every 

3 minutes. 'This includes: Day/night s ignal ,  s t a tu s  of e lectronic  

ca l ib ra t ion  and Fad i~ t iOn  source cal ibrat ion,  and l i v e  tlme and dead 

time information. 

C.  Calibration and k i n  Stabil1t;e 

When the detector i s  i n  the  ca l ib ra t ion  mode, an e n t i r e  scan 

i s  used t o  accumulate a spsct,rum from a co60 ca l ib ra t ion  source 

located next t o  the  cen t r a l  detector  (Figure 11-1). This ca l ib ra t ion  

method has been described by Forrest  e t  a l .  (1972). Briefly, it 

consis ts  of a small p l a s t i c  s c i n t i l l a t o r  button doped with co60 and 

mounted on the  end of a l i g h t  pipe viewdd by a photomultiplier tube. 

The co60 emits beta pa r t i c l e s  i n  conjunction d t h  prcmpt gamma reys,  

more than 99 ~ e r c e n t  of which a r e  cascade l i n e s  a t  1.17 and 1.33 MeV. 

I n  the ca l ib ra t ion  mode, the  pulses due t o  beta par t ic le  energy l o s s  

i n  the p las t ic  a r e  seen by the photomultiplier and a r e  used t o  gate 

on the m ~ i n  detector  and a c ~ l i b r a t i o n  s p e c t m  i s  accumulated. In  

the noncRlib?Rtion (normal) mode, the de tec tor  is gated off by these 

pulges and the  ca l ib ra t ion  interactions a r e  excluded from the data. 

Since the ef'ficiency f o r  de tec t ing  the beta pa r t i c l e s  is n o t 1 0 0  

percent, being somewhat grea te r  than 95 percent, there  is some leakage 

of the  cob' radiat ion i n t o  a l l  t he  data. A semple cal ibrat ion spect- 

i s  shown i n  Figure TI-5. 

In  the  automatic ca l ib ra t ion  mode the co60 spectra a r e  ac- 

cumulated a t  every s a t e l l i t e  day/night and night/day t rans i t ion .  

This mode can be inhibited and i n i t i a t e d  by command from the  ground. 



60 F i g u r e  11-5. Sample  Co c a l i b r a t i o n  s p e c t r u m  o b t a i n e d  i n  o r b i t .  



Amplifiers flnd thresholds a r e  a l s o  checked e lec t ron ica l ly  by the 

manual ca l ib ra t ion  cominand. 

The pain of t he  cent,ral detector i s  sdjuetable  through the 

var ia t ion of phototube high voltage which has two coarse adjustment 

atepa of 150 v o l t s  each, and 64 f i ne  adjustment s teps  within each 

coarse range. Gain control  allows f o r  correction of gain l o s s  due 

t o  phototube aging and gives t h e  option of changlng the  overall  energy 

range of t h e  detector. 

The s t a b i l i t y  of the  gain can be checked by monitoring the 

channel positions of t he  ca l ib ra t ion  peaks (1.17, 1.33, and 2.50 MeV 

sum peak). The s a t e l l i t e  dawn and dusk ca l ib ra t ion  ver i fy  t he  s t a b i l i t y  

of the  gain over the cha rac t e r i s t i c  time of an  o rb i t  period (about 93 

minutes) or longer. Gain s t a b i l i t y  for  t h e e  between cal ibrat ions  can 

only be estimated by the posit ion and width of peaks of known energy 

(such a s  the  coho leakage peaks) i n  spectra summed over those times. 

D. D e s c r i ~ t i o n  of S a t e l l i t e  Orbit.  Asmct. and On-times 

The Orbit ing Solar  Observatory (OSO-7) was launched on 

Se~tember 29, 1971. The o r b i t  had the prameters  l i s t e d  i n  Table 11-2. 

An e r ro r  i n  Delta in jec t ion  produced an anomalous eccentr ic  o rb i t  

causing a periodic var ia t ion i n  the  l a t i t u d e  of t he  apogee. The 

UMI gamma-ray monitor was turned on a t  0352UT, October 3, 197l and 

was Fully operational a t  2315 of the same day. 

It was discovered soon a f t e r  turn-on t h a t  the  detector gain 

was severely degraded during and a f t e r  psssage through the South 

Atlantic anomaly region of t h e  radiat ion bel ts .  TMs problem was 

d e a l t  v i t h  by turning off t he  detector  during o rb i t s  t h a t  passed 



TABLE 11-2 

OSO - 7 ORBIT PARAMETERS 

Inclination 

Period 

Perigee 

Apogee 

Ascending Node 

Argument of Perigee 

semi-maj or Axis 

Eccentricity 

Mean Ananaly 

Epoch time 

93.5 min 

12:00:00 UT 
29 September 1971 



through the anomaly region. Using t h i s  technique, the gain was held 

s tab le ,  though a t  a lower value than a t  the  i n i t i a l  turn-on. The 

channels containing the 0.5 MeV region remained b e l w  the detector 

thres'hold u n t i l  1006 UT A p r i l  25, 1972. A t  t h i s  time, the gain was 

ra ised u n t i l  the  threshold was a t  ~ b m t  0.3 MeV. 

* The detector  usually operated i n  the  normal quadrant mode; 

tha t  is, data  was gathered i n  the  so l a r  auadrant and an t i so l a r  (back- 

ground) auadrant. For about L hours every day the detector  was switch- 

ed t o  the a l t e rna t e  quadrant mode. dor t he  next 8 hours the detector 

was off for  p s sages  through the  anoanaly, a f t e r  which time it w ~ s  

turned on *or about 12 hours of operation i n  the  normal quadrant mode, 



111. METHOD3 O? DATA ANALPSIS 

A. Selec t ion  of Data Scans 

The main limit on the  da ta  coverage i n  the time domain i s  t h e  

reauirement t h a t  the de tec tor  be off during o r b i t s  t h a t  include passage 

through the  South Atlantic anomaly. The detector  i s  off for  t h i s  

reaqon about 25 percent of the  t h e .  Additionally, data f r m  a given 

Tource cannot be gathered continuously because of the changes of 

auadrant and aspect and ec l ip se  by the Earth. For example, d a b  from 

the Sun i s  excluded i n  the  a l t e rna t e  quadrant mode and during s a t e l l i t e  

"niqht.' The bes t  a s ~ e c t  f o r  viewing the Earth's atmosphere i s  near 

satellite "noon" and "midnightn when the detector  look direct ion i s  

along an Earth radius vector. 

The bes t  time for  measuring the  contribution t o  the  counting 

r a t e  "ran sources other than loca l  production i n  the spacecraft is 

when t h i s  l oca l  production i s  a t  a minimum. This minimum has been 

found t o  occur soon a f t e r  t he  apogee of t he  orb i t  reaches i t s  northerm- 

most excursion ( N w r e  111-1). This i s  because loca l  background i s  

n t  i t s  n e a t e s t  when the spacecraf t  msses deep i n t o  the radiat ion 

be l t s ,  which happens when the apogee is i n  the mouthern l a t i t i d e s  ( i n  

the  v i c in i ty  of the  South Atlant ic  anomaly). 

Measurement op the  atmospheric contribution s h x l d  be done 

when the contr ibut ion from t h e  Sun i s  negligible. For example, during 

the  period of so l a r  a c t i v i t y  from August 4 t o  August 11, 1972, a 

contribution from the Sun could be seen i n  the  so la r  quadrant 



F i g u r e  111-1. Long-term v a r i a t i o n s  i n  gamma-ray c o u n t i n g  
r a t e  f o r  v a r i o u s  e n e r g y  r a n g e s .  V a r i a t i o n s  a r e  c o r r e l a t e d  
w i t h  t h e  l a t i t u d e  o f  s a t e l l i t e  apogee .  



(Section IV, D), F u r t h e n o r r ,  there  ms an a u p r e n t  enhnncement of 

t he  flux from the ntmospher~ on Aumst L about 8 hours a f t e r  f l a r e  

maximum. 

I n  addi t ion t o  data 1 9 s t  f o r  the above reasons, some data must 

be re jected because of noise picked up during telemetry transmission, 

Imoroper data can he recognized by warnings i n  the data analysis  chain 

an4 by nons t a t i s t i ca l  fLuctul t ions  i n  one or more adjoining pulse- 

height channels. 

B. Selection- 

Because of the  energy ca l ib ra t ion  which i s  done twice during 

each orb i t ,  the pulse height region where the 0.511 MeV peak i s  

expected t o  occur can be l o c ~ t e d  with some confidence. The ca l ib ra t ion  

spectra contain three peaks (Pection 11, C) which a r e  used t o  calculate  

values for  c and ng i n  the  e,luation 

E = c(n+ng12. 

From t h e m  values the channe nlrmber i n  which the center of a 0.511 MeV 

peak would f a l l  can be c a l c u ~ s t e d .  

Tyoical values f o r  c i re  shown i n  Ngure 111-2, which a l s o  

ahwa the time var ia t ion of 1 : .  The value of no i s  taken t o  be 

constant throughout (n0=80.?). For t h i s  example, the center of the  

peak i s  calculated t o  vary between channel 43.8 and channel 45.6 f o r  

a 7 hour time spen on April :'7, 19R. 
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F i g u r e  111-2. T i m e  v a r i a t i o n  o f  " c "  on A p r i l  2 7 ,  1 9 7 2 .  



C. F i t t i n p  the Continuum Bgckaround beneath Peak 

1. Linear fit 

A c i r s t  attempt a t  determining the counting r a t e  due t o  a 

0.511 MeV l i n e  consis ts  of determining the excess of counts i n  the  

peak reqion above an assumed "background". Tfie qua l i ta t ive  behavior 

of the  0.511 MeV f lux  can be seen merely by assuming tha t  the back- 

ground i s  a l i n e a r  interpolat ion between regions on each side of t he  

peak. T h i s  f i t  t o  t he  data i s  sham i n  Figure 111-3. The background 

is  taken t o  be the average of 7-channel wide regions immediately above 

and below a 7-channel wide region centered on the peak. Figure 111-4 

shows the r e su l t  of such a f i t  f o r  a s e r i e s  of scans. Each point 

represents a scan f o r  which the avarage a l t i t ude ,  r i g i d i t y  and detect- 

l i v e  time i s  given. A pos i t ive  value for  the excess a t  0.5 MeV above 

the l i nea r  background implies t he  existence of a peak near t ha t  energy. 

A consistent excess i n  the  0.5 MeV region above the background exists.  

This shows t h a t  there i s  a psak a t  t h i s  energy indicated i n  the da t a ,  

even f o r  individual scans. 

2. Exponential Fi t  

Examination of a sum of many scans reveals strong l i n e s  on 

both s ides  of the  0.5 MeV reqion. This indicates  t h a t  the localized 

l i n e a r  P i t  described above i s  not the  most reasonable f i t  t o  the  

background. Figure 111-5 s b w s  a p l o t  of data  gathered while viewing 

the  Earth, lhis qpectrum i s  a summation of scans gathered over a 

l i v e  time of 1701 aeconda. i l s o  shown Is the correaponding sum 
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Figure 111-3. Sample o f  a l i n e a r  f i t  t o  t h e  b a c k g r o u n d  f o r  t h e  0 . 5  MeV region f o r  
a  single s c a n .  



F i g u r e  111-4. Excess  c o u n t s  o v e r  t h e  l i n e a r  
background  i n  t h e  0 . 5  M e V  r e g i o n  ( 7  c h a n n e l s )  f o r  
a s e r i e s  o f  i n d i v i d u a l  3 -minute  s c a n s .  Also  shown 
a r e  t h e  v a r i a t i o n s  i n  a l t i t u d e ,  r i g i d i t y ,  and  
l i v e  t i m e .  
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F i g u r e  111-5. Sum s p e c t r a  f o r  E a r t h  ( ' )  and  a n t i e a r t h  ( 0 )  
a s p e c t s ,  a l t i t u d e  < 430 km, and  r i g i d i t y  be tween  8 and  
1 2  GV.  A peak a t  0 . 5 1  M e V  i s  a p p a r e n t .  Some o t h e r  peaks  
a r e  i d e n t i f i e d  by e n e r g y  ( M ~ V ) .  Peaks a t  1 . 1 7 ,  1 . 3 3 ,  and 
2 . 5 0  a r e  c a l i b r a t i o n  s o u r c e  l e a k a  e; p e a k s  a t  1 . 4 6  and 

p e a k s  a r e  due t o  l o c a l  p r o d u c t i o n .  
f 2 . 6 2  a r e  p re sumab ly  due  t o  l o c a l  K O and Th d e c a y s ;  o t h e r  



spectrum f o r  t he  an t iear th  direction.  The data shows numerous peaks 

and a continuum which is  f i t  t o  fin exponential law of t h e  form 

R = ~ e - ~ *  c o ~ n t s - s e c - ~ ~ e ~ ' ~  

where R i s  d i f f e r e n t i a l  counting r a t e  and E i s  energy i n  MeV. 

4Ywre 111-5 shows t h i s  f i t  f o r  the  Earth aspect. The f i t t i n g  is done 

for  energies hetween .78 and 1.11 MeV where thepe appears t o  be a  

minimum contribution f r m  strong l ines .  This elergy region was a l s o  

selected because on i t s  proximity t o  the  annihi la t ion peak. An 

exponentlal which f i t s  t he  continuum well a t  a  nuch higher energy 

w i l l  not do so  i n  t h i s  region because of the en?rgy dependence of t he  

e-folding energy. The region i n  the  immediate r i c in i ty  o?' t h e  an- 

n ih i l a t i on  l i n e  cannot be used t o  fit the continuum beaause of t he  

existence of l i n e s  which can be a t t r ibu ted  t o  l x a l  production i n  t he  

s a t e l l i t e .  This a t t r i bu t ion  is  made because the s t rength of t he  l ines ,  

unlike the 0.511 MeV l ine ,  is independent of the loak d i rec t ion  of the  

detector.  Lines i n  t h i s  energy range a r e  expected due t o  s p a l l a t i o a  

in te rac t ions  i n  the  detector  and shield (Appendix I I ) ,  a s  well a s  i n  

the r e s t  of the  s p c e c r a f t .  These same in te rac t ions  a r e  a l s o  expected 

t o  give r i s e  t o  an  exponential continuum! (Fishman, Appendix 11). 

The sum spectrum shown i n  Flgure 111-5 is from the  4 4 a y  p e r i d  

25-28 April 1972 with scan9 characterized by the  detector vievlng the 

Enrth with s a t e l l i t e  a l t i t u d e  l e a s  than 430 Ion and cutoff r i g i d i t y  

+ between 8 and 12 GV. The e f f ec t s  of thene parernetera a r e  discussed 

i n  subsequent sections. The least-squares fit spectrum sham i n  the  

f igure  gives the  constants i n  t h e  exponential law t o  be 

N = 98.5 and k = 2.40 f 0.09 ( ~ e v 1 - l  



A f i t  t o  t he  corresponding da ta  obtained while lookjng away from the 

ear th  cives the vcl lnes 

L = 8 1.5 and k = 2.27 i 0.11 (M~v)-'  

The corresponding e-foldiny? energy of 0.4 MeV can be compared with 

the value of 1 MeV for  laboratory produced spe l la t ion  continua 

(Dyer and Morfill,  1971; Fishman, 1972) and the value 0.7 MeV i n  the 

post-flight analysis  of the Apollo 17  detector  (Peterson and Trcrmbka, 

1973) . 
D. Determination of Rigidi ty  Values 

A parameter which has been found t o  be important i n  the  behavior 

of the atmospheric annihi la t ion l i n e  f l u x  i s  the value of the  ver t ica l  

cutoff r i g i d i t y  P, a t  the  point of or igin  i n  the atmosphere 

( ~ q s t u r i r a n ~ a n  e t  a l . ,  1969; Golenetskii e t  al . ,  1971). The r i g i d i t y  

of a p r t i c l e  i n  v o l t s  i s  numerically equal t o  i t s  momentum i n  e ~ / c  

divided by i t s  charge number 2. The charac te r i s t ic  cutoff r i g i d i t y  of 

a point near the  Earth i s  thn smallest r i g i d i t y  which a cosmic ray 

can have, and yet  reach t h e t  point by penetrating the Earth 's  magnetic 

f ie ld .  Rigidi ty  values i n  t h i s  paper have been obtained from the 

publicat: on by Shea e t  81. (1968) where trajectory-traced PC values 

a t  the  Earth 's  surface a r e  tabulated by geographic l a t i t ude  between 

8S0N and 85% i n  increments of 5 degrees and by geographic longitude 

i n  increments of 1 5  degrees. Comparison between actual  proton cutoff 

r i g i d i t y  measurements by Bingham e t  a l .  (1967) with somewhat l e a s  

precise e a r l i e r  calculat ions  by Shea and Smart (1967) shov t h a t  

calculated values a r e  within 10  percent of' t he  measured values for 

r i g i d i t i e s  ~ e e t e r  than 2 4 GV. 



The r ig id i ty  ipplied t o  ench scan i s  the value tabulated f o r  

the point on the Earth which marks the midpolnt of the 3-minute scan 

time. This average r ig id i ty  i s  interpolated where necessary from 

the values tabulated by Shea e t  a l .  (1968). 



I V .  RESULTS OF DATA ANALYSIS 

A. Plnn of Analzsis 

Previ0u.s sate l l i te-borne gamma-ray experiments have shown tha t  

t h e i r  counting r a t e s  a r e  a contribution from several  sources, namely, 

l oca l  production from p r t , i c l e  interact ions ,  the  ac t ive  Sun, a cosmic 

flux, and a f l ux  from the Earth 's  atmosphere ( fo r  a s a t e l l i t e  i n  Earth 

o r b i t ) .  'he  separation of t he  t o t a l  r a t e  i n t o  these component pr ts  can 

be done, a t  l e a s t  pa r t i a l l y ,  by invest igat ing i t s  dependence on various 

parameters. This i s  the approach taken i n  the  following analysis. 

qince the loca l  production r a t e  i s  not of d i r e c t  i n t e r e s t ,  i t  

i s  minimized (but not eliminated) by appropriate data selection. The 

important variables of aspect,  ve r t i ca l  cutoff r i g id i ty ,  a l t i tude ,  

qmma-ray continuum r a t e ,  and charged-particle r a t e  a r e  then investi-  

gated with respect to the counting r a t e  due t o  the positron annihi la t ion 

l i ne .  These lead t o  the above-mentioned separation i n t o  componente. 

Included i n  these components i s  a contribution from the Sun which 

yields  only an upper l i m i t  f l u x  f o r  the  qu ie t  Sun. During the so la r  

a c t i v i t y  of August 4 t o  August 7, 1972, however, a posit ive contribu- 

t ion  was measured. The s ignif icance of t h i s  l i n e  flux, i t s  width, and 

its energy a r e  a l so  discussed i n  the following presentation. 



R. Parameters Affectina 0.511 MeV Flux 

1. Vertical  Cutoff Rigidity 

Preliminary analysis  of the data indicated t h a t  r i g i d i t y  

(Section 111, D) i s  an important fac tor  affect ing the g m a  ray f lux  

a t  s a t e l l i t e  a l t i tudes .  This was t o  be expected from previous sa t -  

e l l i t e  and balloon measurements (Section I, B). I t  can be assumed 

pr ior1  tha t  the f lux  can a l s o  depend on various other parameters 

including: a l t i t ude ,  aspect or look direct ion,  time a f t e r  exposure t o  

the radiat ion bel t ,  exposure t o  the  Sun, and changes i n  the casmic 

ray flux, among others. The d i f f i c u l t y  i n  assessing the importance of 

various parameters l i e s  i n  holding a l l  cerameters, except the  one of 

i n t e r e s t ,  constant, while obtaining enough data t o  give a s t a t i s t i c a l l y  

s i ~ i f i c a n t  measurement. 

For an invest igat ion of the  r i g i d i t y  dependence, the  remaining 

parameters were treated a s  follows: 

1. Altitude was not constrained i n  the  analysis.  A sca t t e r  diagram 

reveals t h a t  the  average a l t i t u d e  i s  not correlated with r i g i d i t y  

over the  analysis  period o r  four days so  the r i g i d i t y  ver is t ion i s  

averaeed over a l t i t ude .  

2. Aspect was l imited t o  or ientat ions  of the  spacecraft  such t h a t  the  

in te rsec t ion  point of the center  of the  look direct ion and the surface 

of the Earth did not d i f f e r  hv more than 5O i n  a r c  distance or about 

1 GV i n  r i g i d i t y  from the value i n  r i g i d i t y  calculated a s  i n  



Section 111, D. This is l e s s  than the average change i n  r i g d i t y  

over a 3-minute scln.  
n, 

3. Oeta was l imited t o  thn t  taken2150 min. a f t e r  passage t h r o u ~ h  

*he South Atlantic ancanaly t o  minimiae the contribution from short- 

l ived spa l la t ion  rroducts which could mask the r i g i d i t y  dependence. 

Also, data wa8 only analyzed f o r  a &-day period of minlmum background; 

t ha t  is,  for  times when the apogee was i n  northern l a t i t udes  

(Section IIt, A ) .  

4. ?he quiet-time so l a r  contribution t o  the 0.511 MeV flux i s  

negliqible (Section I, B) and data obtained during periods of so l a r  

a c t i v i t y  have been omitted from the  r i g i d i t y  analysis.  

5. Larpe changes i n  the charged-particle f l ux  i n  t he  s ~ a c e c r a f t  

environment can be monitored by observation of the counting r a t e s  i n  

the  charged-particle shield  s l a b  and cup. Times when these r a t e s  

dif fered +om quiet-time r a t e s  (such a s  periods of strong so l a r  

a c t i v i t y )  were omitted from the analysis. 

After choosing the scans by the above c r i t e r i a ,  they were 

qrouped according t o  r i g i d i t y  ( 1  GV resolut ion) ,  day/night s t a tu s ,  

and solar /ant isolar  quadrant. The counting r a t e  i n  the  0.511 MeV 

peak was determined fo r  each individual scan using a l i n e a r  f i t  t o  

the  background a s  described i n  qection 111, C. I t  can be noted here 

t ha t  Golenetskii,  e t  a l .  ( 1 9 n )  used a s imilar  auproach v i th  nCosmosfl 

data,  since the background i s  apparently taken as  smoothly joining 

the spectrum on both s ides  of the  peak. 

Data combined according t o  Earth aspect, with solar/day data 

ndded t o  ant.isolar/nie;ht da ta  (an t iear th  data) and solar/night data 

added t o  antisolar/day data (Earth data!, i s  shown i n  figures I V - 1  



F i g u r e  I V - 1 .  R i g i d i t y .  dependence  o f  t h e  0 . 5 1  MeV c o u n t i n g  r a t e  f o r  a n t i -  
e a r t h  a s p e c t .  A l i n e a r  f i t  t o  t h e  background was u s e d .  E r r o r  b a r s  a r e  
s t a t i s t i c a l  l o .  
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Figure IV-2. Rigidity dependence of the 0.51 MeV counting 
rate for Earth aspect. 



and IV-2. Aeain, t h i s  p lo t  is  comparable t o  "Cosmos" data which had 

similar time (2-minute scans) and r i g i d i t y  resolution although the 

essen t ia l ly  i so t ron ic  Cosmos detectors  had no aspect c r i t e r i a .  Both 

data were a l s o  averaged over a l t i t ude ,  with an  average a l t i t u d e  of 

400 !m i n  both cases. The plotted data sunmarises the  &-day 

minimum backmound ~ e r i o d  (25 April 1972 - 28 April 1972). 

It was noted i n  Section I11 t h a t  an exponential continuum i s  

a more reasonable representation of the  spectrum continuum than a 

l i nea r  hackground. There i s  insuf f ic ien t  data t o  flt exponential 

backc~raunds t o  spectra sumred over the  4-day period f o r  s ing le  rigid- 

i t y  values. For t h i s  reason, the  sum of scans with f i t t e d  background 

discussed i n  cection T I 1  was used t o  sca le  the r i g i d i t y  dependence 

from a l i nea r  background assumption t o  an exponential background. 

The basis of the  method is i l l u s t r a t e d  i n  Figure IV-3. a i s  the count- 

ing r a t e  obtained from a l i n e a r  f i t  t o  the background i n  the  sum 

spctrum; i s  the hnckground used f o r  a l i nea r  fit; A i a  the t o t a l  

counting r a t e  under a gaussian peak r id ing  on the exponential back- 

mound s. Once the re ln t ionsh ip  between = and A is found Por the  sum 

spectrum, it can be found f o r  addit ion values of a and 4 merely by 

varying the value of and empirically determining the corresponding 

value of 2. This method is  applicable only i f  the  production peaks 

on both s ides  of the  annihi la t ion paak do not vary with r i g id i ty ,  

?or then the  v ~ l u e  of b, which contributes t o  the peak, would not 

vary l i nea r ly  with s. The correction i s  a l s o  good a s  long a s  the 

~xnonent ia l  background C does not vary rad ica l ly  i n  shape. Both of 

these qua l i f ica t ions  a r e  met i n  the present analysis.  The functional 
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F i g u r e  I V - 3 .  Method of  c o r r e c t i n g -  from l i n e a r  background f i t  t o  e x p o n e n t i a l  
background  f i t .  A i s  t h e  t o t a l  r a t e  u n d e r  t h e  peak f o r  an e x p o n e n t i a l  b a c k -  
g r o u n d ;  % i s  t h e  r a t e  f o r  s e v e n  c h a n n e l s  u s i n g  a  l i n e a r .  background ;  b i s  t h e  
background  f o r  a  l i n e a r  f i t ;  5 i s  t h e  background  f o r  an e x p o n e n t i a l  f i t .  



demndence of 1 on 5 is  A = (1.21 a + 0.26) counts-sec-I f o r  Earth 

aspect and A = (1.21 a + 0.12) counts-sec" for  an t iear th  aspect. 

Comparison of  sum spectra show t h a t  the  0.511 MeV peak is i n  

both Fgrth and an t iear th  d i rec t ions  with a considerable excess seen 

i n  the Farth d i rec t ion  ('2igure 111-5). Ihe counting r a t e  i n  the  anti-  

-1 -1 ear th  quadrant ( 0.4 sec-I or 8 x loq3 photons cm-2sec sr ) i s  

considerably greater  than l i m i t s  put on the c ~ s m i c  flux f o r  this peak 

determined by Metqer  e t  a l .  (1961). Since positron emit ters  can be 

expected kom spa l l s t ion  products i n  detector  and shield  materials 

and ~ i n c e  Metzger and others hnve seen an annihi la t ion peak associated 

with l oca l  backqround, we can ten ta t ive ly  i den t i fy  the counting r a t e  

seen i n  the an t iear th  d i rec t ion  with loca l  production. The r a t e  seen 

i n  the Earth q u a d r ~ n t  is  therefore loca l  production plus the Earth 's  

contribution. I n  the ~o l lowing  discussion however, the  detector  

s ens i t i v i t y  w i l l  be combined with counting r a t e s  obtained i n  t he  

Earth and an t i ea r th  d i rec t ions  t o  pive an equivalent f l u x  f o r  compari- 

son with other mesnrlrements, with t he  understanding t h a t  the  Earth- 

an t iear th  difference flux, i n  which loca l  e f f ec t s  cancel out, is the 

moat physically meaningful quanti ty.  

For a transformation from counting r a t e  t o  f l ux  f o r  any de- 

tector ,  the angular dependence of the f lux  must be included. The 

moat reasonablp assumption fo r  t he  cmtr ibu t ion  frcm Earth 's  atmos- 

phere i s  an iao t roo ic  f l ux  over the angle subtended by the atmosphere 

(neglecting limb ef fec t s ) .  ?he r e l a t i on  of flux to counting r a t e  i s  

then obtained f r an  

R = F f S  ( 0 ,  $ ) d o  



where R i n  the  counting r a t e ,  F i s  the f lux i n  photons cm4sr-I and 

S (  0 ,  4) i s  the  nhoto~eak sens i t i v i ty  discussed i n  qection 11, B. 

Sf 0 ,  $\ for  p.511 MeV photon3 was obtained by interpolat ing the 

excerimental values obtained a t  0.393 and 0.662 MeV and in tegra t ing  

over angle t o  give the values of S shown i n  Table IV-1. 

The equivalent Earth and an t iear th  fluxes calculated from the 

ahove method a r e  plot ted i n  Flgure IV-4. A s imilar  plot  of f luxes 

from Cosmos measurements a r e  shown i n  Figure IV-4. The or iginal  3ata 

wan plotted by the authors (Konstantinov e t  al . ,  1970) using the 

formula F = N/So E p  where is  thetransformed counting r a t e  (cm-2sec-1), 

N i s  the detector  counting r a t e ,  E i s  the  photopeak efficinncy, and 
P 

So is the r e m e t r i c  f ac to r  of t h e i r  detector for  an i so t rop ic  flux. 

;.'or comparison plrposes, t h i s  has been transformed t o  an equivalent 

f lux  by assuming the Earth t o  be an i so t rop ic  source, subtending a  

"- s o l i d  angle 61 - 1.3 n a t  t he  average a l t i t u d e  LOO km ?or t he  Cosmos 

s a t e l l i t e .  

The above stondard methd  of calculating the isotrowic sensi- 

t i v i t y  and f lux by combining the geometric *actor and the e'ficiency 

f o r  a  pa ra l l e l  flux appears t o  underestimate the flux bv up t o  50% 

a s  i s  shown i n  the work of Forrest (1969) and of Puskin (1970). The 

same method has been used i n  most of the balloon experiments, the  

r e s u l t s  of which a r e  discussed blow.  No correction for  t h i s  e*fect 

i s  included i n  e i t he r  the  Cosmos 135 r e s u l t s  i n  Figure IV-4 or  the 

balloon r e s u l t s  i n  Figure IV-5. 

."\. 



TABLE IV-1 

DETECTOR STNNSTIVITY AT 0.511 MeV ?OR VARIOUS 
ASPEc'13 

Time Aspect Source Sensit iv i ty  

Day-night Earth Earth 37 m2sr 

Day-night Earth Cosmic-Isotropic 16 c&ar 

Day-night Antiearth Earth 3 cm 2 sr 

Day-night Antiearth Cosmic-Isotropic 50 cm 2 sr 

DnY Antiearth Sun 15  cm2 

Sens i t iv i ty  t o  an isotropic f lux  not screened by the Earth i s  

2 5 1  cm sr .  



F i g u r e  I V - 4 .  E q u i v a l e n t  f l u x e s  f o r  E a r t h  and a n t i e a r t h  a s p e c t s  f o r  expo- 
n e n t i a l  background.  Also shown a r e  r e s u l t s  f rom COSDIOS 1 3 5  
(Kons . t an t inov  e t  a l .  , 1970 1. 



The r i g i d i t y  dependence and flux indicated here can be c m p r e d  

with a summary of r e s u l t s  from balloon-borne detectors  given by 

K~stur i rangan  e t  a l .  (1972). The data plotted by Kas tur i r sng~n e t  a l .  

8 s  a r u n ~ t i o n  of magnetic l a t i t u d e  i s  transformed t o  a r i ~ i d i t y  

dependence a s  shown i n  Fi~ure IV-5. Again t h i s  flux, derived +om 

balloon e x p r i n e n t s ,  i s  divided by 3 . 8 n ,  the e f fec t ive  so l id  angle 

due t o  the atmosphere a t  balloon a l t i t udes  near 1 MeV (peterson, 1967). 

This gives the  flux per u n i t  sol id  angle which i s  compared with the 

flux coming from t h e  Earth measured bv the OSO-7 detector. The OSO-7 

f lux i s  obtained by taking t h e  difference between the t o t a l  "fluxesn 

seen while looking ta ra rd  and away the Earth sham i n  Figure IV-4. 

This removes the  apparent f l u x  due t o  loca l  production. The leakage 

of a *action of the  Earth f l u x  i n t o  the an t iear th  quadrant i s  removed 

by s f i r s t  order correct ion t o  the data. This is given by the r a t i o  

of the  s e n s i t i v i t y  of the  detector  t o  an Earth flux while pointed 

away ?ram the  Earth t o  the  correspondin s e n s i t i v i t y  while pointing 

toward the Earth. This amounts t o  37 cm sr o r  8%. Also shown i n  

Figure IV-5 a r e  da ta  points for  the balloon-borne experiments from 

which Kasturirangan e t  a l .  obtained the r i g i d i t y  dependence of the  

flux. Detai ls  of these experiments are  diacussed i n  the introduction 

of the  present work. 

The agreement between the balloon measurements and the present 

experiment i n  qu i t e  good except for  the  an&i lws ly  low point a t  

4.5 CV i n  the  present experiment. The s a t e l l i t e  data a l s o  seems t o  

indicate  a weaker r i g i d i t y  dependence than the balloon data. Thia 

may be due t o  the  l a rge  opening angle of the  s a t e l l i t e  detector  



F i g u r e  I V - 5 .  Comparison of  0 . 5 1  MeV E a r t h  f l u x  s e e n  by t h e  050-7  d e t e c t o r  
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wvich sanples a l a rge r  range of r i g i d i t y  than does a balloon experiment. 

Since d e t a i l s  of eff ic iency,  angular response, and atmospheric depth 

corrections a r e  not clear-cut i n  the  compilations of balloon data, it 

appears t o  be more meaningful t o  compare the present experiment with 

a balloon experiment t ha t  is  as similar t o  t he  present experiment a s  

possible. This is  done i n  Section I V  B 3. 

2. Altitude Dependence 

Another s a t e l l i t e  p rame te r  which might be considered a p r to r i  

as  heing of importance t o  t he  detector  counting r a t e  i s  the s a t e l l i t e  

a l t i tude .  Specifically, the  counting r a t e  due t o  radiat ion from the 

Ehrth i n  a detector  with isotropic response above the Earth's atmos- 

 here should decrease a s  t he  F s r t h l s  s o l i d  angle for  isotropical ly  

produced low-energy gamma rays  (peterson, 1967). It wi l l  be show 

below tha t  t he  counting r a t e  var ia t ion  due t o  ~ l t i t u d e  changes is 

S m ~ l l  and i s  consistent with the above model. 

Figure III-5 shows a sum spectrum accumulated while looking 

toward the Earth over a period of four days with t he  s a t e l l i t e  

a l t i t u d e  l e s s  than 47r' km during each scan, a mean a l t i t u d e  of 375 Ian, 

end an average cutoff r i g i d i t y  below the s a t e l l i t e  of 10.2 GV. A 

s imilar  sum spectrum was accumulated f o r  t he  same period a t  a l t i tudes  

~ r e a t e r  than L30 b, a mean a l t i t u d e  of 472 km, and an average 

r i g i d i t y  of 10.1 GV. The difference between these spectra i s  shown 

i n  T m r e  IV-6  for 25-channel-wide energy bins. Also shown is the 

meaflured difference r a t e  f o r  t h e  0.51 MeV peak. 

The e x ~ e c t e d  or calculated r a t e  f o r  the  0.51 MeV peak i s  a l so  

shown i n  the same figure.  This was obtained by calculat ing the change 
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i n  the cwntinp; r a t e  f rm the Earth t ha t  would be caused by the 

change i n  so l id  angle i n  moving *om the lover a l t i t u d e  (775 h) t o  

the hip;her a l t i t u d e  (472 km). ' I he r~  is an expected decrease a t  0.51 

MeV of 1.2 counts/sec-MeV a s  compared t o  a measured increase of 0.4 

counts/sec-M~V. When correct ion is made f o r  the difference i n  

r i ~ i d i t y  between the  two a l t i t u d e s  however, t he  expected r a t e  becomes 

+0.1 counts/ sec-MeV which i s  within the s t a t i s t i c a l  e r ro r  of measure- 

ment. I n  8ny case, the  a l t i t u d e  dependence which is ? 3 parcent i s  

apnreciably smaller than t h e  r i g i d i t y  de~endence which causes a 

counting r a t e  var ia t ion of 7 percent p r  GV a t  10 GV and 2200 percent 

var ia t ion over the e n t i r e  r i g i d i t y  ran(3e. 

3. Aspect 

The Earth 's  atmosuhere i s  known t o  be a source of continuum 

gamms rays and an annihi la t ion l i n e  (Appendh I). As a resu l t ,  the 

look d i rec t ion  of t he  detector  v i t h  reepect t o  the  Earth i s  an 

important paramameter a f fec t ing  the counting r a t e  i n  the  0.51 MeV 

reqion. The extent of t h i s  contribution i s  analyzed i n  Par t  B of 

t h i s  section.  Only the ac t ive  Sun is an ndditional source of an- 

nihilati-on radiat ion (Section IV, D) i n  the  data analyaed for t h i s  

work. 



C. Var ia t ion  of 0.511 MeV Plux wi th  Cutoff R i g i d i t y  

I. C o r r e l ~ t i o n  wi th  Continuum Var i a t ion  

Puskin (1970) bas c a l c u l a t e d  t h a t  85 percent of t h e  c.3 t o  

l r  Well photon f l u x  a t  ba l loon  a l t i t u d e s  (3.5 mb) i s  due t o  e l e c t r o n  

h r~mss t r ah lung .  Most of t h e  remaining flux i s  due t o  t h e  C.511 MeV 

l i n e  (10%) and s c a t t e r e d  r a d i a t i o n  from t h a t  l i n e  (5%). s ince  t h e  

e l e c t r o n s  causing t h i s  r a d i a t i o n  a r e  produced i n  r e a c t i o n s  s i m i l a r  t o  

those y i e l d i n g  pos i t rons ,  we can exoect  t h e  gmma-ray continuum t o  

d e p ~ n d  on t h e  s m e  p r a m e t e r s  a s  t h e  l i n e  f lux .  

" i ~ r e  IV-7 shows t h e  v a r i a t i o n  of s a t e l l i t e  c u t o f f  r i g i d i t y ,  

an t ico inc idence  cup r a t e ,  and t h e  i n t e g r a l  gam~a-ray r a t e  (0.3 t o  1.0 

MeV\ a s  a funct ion  of t ime f o r  a  &-hour period on Apri l  26, 1972. 

Tbe da ta  nointp cover t imes  of good Ear th  a spec t  only. The i n t e g r a l  

r a t e  da t a  i s  p l g t t e d  versus  r i g i d i t y  f o r  t h i s  period i n  N g u r e  IV-8, 

u i t h  t o t h  Ear th  and a n t i e a r t h  a spec t  i nd ica t ed .  Pach da ta  point  

corresnonds t o  s i n g l e  scans  and the counting r a t e  i s  f o r  t h e  i n t e ~ r a l  . 
r a t e  over t h e  enerqy range 0.3 t o  1 .0  MeV. %is d a t a  can be compared 

w'th t h e  r i g i d i t y  denendence of t h e  c a l c u l a t e d  0.511 MeV flux shown i n  

Fipure TV-4. Comparing t h e  r i g i d i t y  dependence o f  t h e  l i n e  and t h e  

cont.in~~um i n  t h e  a n t i e a r t h  d i r e c t i o n ,  f o r  example, i n d i c a t e a  a  s t rcmger 

r i ~ i d i t y - i n d e p e n d e n t  component i n  t h e  continuum. If t h e  l i n e  r a t e  i s  

p lo t t ed  versus  the  continuum r a t e ,  t h e  r e s u l t a n t  curve can be f i t t e d  

u i t h  a  l i n e a r  r ep res s ion  p i v i n ~  a  r e s i d u a l  continuum r a t e  of 13 + 4 c t s /  

sec  f o r  zero  l i n e  flux. Th i s  r e s i d u a l  r a t e  i s  l o c a l  production r a t h e r  

than co3mic i n  o r i q i n  hecause t h e  cosmic f l u x  seen by Apollo 1 5  (Feter-  

Ron and Trombk~,  1973) would c o n t r i b u t e  2.5 c t s / sec  a t  most. The 

ex i s t ence  of  r i g i d i t y  independent l o c a l  background i s  n o t  unexpected 
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F i g u r e  IV-8. I n t e g r a l  gamma-ray r a t e s  ( 0 . 3  t o  1 . 0  M ~ V )  f o r  E a r t h  and  
a n t i e a r t h  a s p e c t s  a s  a  f u n c t i o n  o f  r i g i d i t y  ( ~ ~ r i . 1  2 6 ,  1 9 7 2 ) .  A l so  
shown a r e  r e s u l t s  o f  P e t e r s o n  ( 1 9 6 7 )  f o r  0 . 5  - 1 . 5  MeV n o r m a l i z e d  t o  
050-7' a t  8 . 3  GV.  



s ince Figure 111-1 indicates  t h a t  the long-term (and therefore r l g id i ty -  

indemndent) var ia t ion of t he  gamma-ray counting r a t e  depnds  on energy. 

The combination of such long-term production e f f ec t s  with prenpt r ig id i ty -  

dependent e f f ec t s  make the in te rpre ta t ion  of such procedures a s  extra- 

polation t o  zero r i q i d i t y  d i f f i c u l t .  

Also ~ h a v n  Por c w p r i s o n  i n  F i v e  IV-8 is the  r i g i d i t y  

dependence for  0.5 t o  1.5 MeV gamma rays f o r  the  OSO-1 detector 

(peterson, 1967). 'he OSO-1 countinf! r a t e  i s  normalized t o  equal the  

050-7 counting r a t e  a t  8.3 GV. The obviously weaker r i g i d i t y  dependence 

i n  the 050-7 probably indicates  a somewhat l a r g e r  r i g i d i t y  independent 

component i n  t he  present experiment. 

2. Correlation with Charged-particle Flux Variation, 

Flgure N-9 i s  a p lo t  of cup r a t e  versus cutoff r i g i d i t y  f o r  

the  same scans used i n  the previous plot  of the  gamma-ray continumi 

variation.  It should be noted tha t  t h i s  charged-particle shield i s  

a l so  sens i t ive  t o  gamma rays giving an energy l o s s  of 100 keV or more 

i n  the cup. 'berefore, the plot  incorporates t he  var ia t ion of l oca l ly  

produced pama rays a s  well a s  charged par t ic les .  Thia p lo t  shows a 

stronger r i g i d i t y  dependence than e i t h e r  the  annihi la t ion l i n e  or  the 

0.7 - 1.0 MeV cmtinuum. Thia is consistent r l t h  the existence of a 

substant ia l  rigidity-independent l oca l  production contribution t o  both 

the annlhi la t ion l i n e  and the  gamma-ray continuum. 

The figure a l s o  shows the calculated r i g i d i t y  dependence for 

the 070-1 detector  r a t e  on cosmic ray s ing les  events and on 0.5-1.5MeV 

gamma-rays (Peterson, 1967). Rlso included i s  the  l a t i t u d e  dependenoe 
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F i g u r e  IV-9. Cup r a t e  dependence  on rigidity ( A p r i l  2 6 ,  1972). Also  
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n e u t r o n  r i g i d i t y  dependence  of  L i n g e n f e l t e r  ( P e t e r s o n ,  1 9 6 7 ) .  



of the equilibrium albedo neutron flux calculated for so l a r  minimum 

by R. E. Lingenfeltar (Peterson, 1967). A l l  r a t e s  a r e  nanna l i zd  t o  

equal the OSO-7 cup r a t e  a t  8.3 GV. 

3. Rigidity Variation and Components of the  Flwc 

a. Contribution of Atmospheric Flux 

The measurement of d i f f e r en t  counting r a t e s  i n  t he  0.51 MeV 

region of t h e  photon spectrum h e n  looking toward and away from the  

Earth indicates  that  there  a r e  camparable contributions t o  the counting 

r a t e  frm l o c a l  production and from gamma rays  fraa the  Earth's ataos- 

phere. Section IV, B shows the  var ia t ion with r i g i d i t y  of t he  l o c a l  

production r a t e  (an t iear th  d i rec t ion)  and the sum of l o c a l  poduct ion 

.rnd the Far th 's  contribution (Earth direction).  The contribution t o  

the annihi la t ion l i n e  frm a cosmic background is expected t o  be small 

(see below). The correctness of assuming t h a t  the  difference i n  counting 

r a t e s  is indeed due t o  a contribution from t he  Far th 's  atmosphere c m  

be substantiated by ca lcu la t ing  t h i s  difference r a t e  and cauparing it 

with measurements of the  atmospheric @m@-n,y flux made v i t h  balloon- 

borne detectors. 

The difference spectrum shom i n  Figure IV-10 was obtained f r o m  

scans accumulated between April 25 and A p r i l  28, 1972, t ha t  is, it is 

the difference between the ear th  and an t iear th  spectra  s h m  i n  

Flgure 111-5. The spectra were gathered a t  cutoff  r i g i d i t i e s  between 

8 and 12 CV and a t  a l t i t u d e s  between 320 and 430 h. Orily scans f o r  

which there  was good Earth aspect  were chosen. The spectra obtained 

looking i n  t he  Earth d i rec t ion  and those obtained looking i n  t he  an t i -  

ea r th  d i rec t ion  were srmpmed separately. Ihe t o t a l  l i v e  time-for these 
sum spectra  is about 30 minutes, representing a real time of about 40 



F i g u r e  IV-10. D i f f e ~ e n c e  be tween  t h e  E a r t h  and  a n t i e a r t h  
s p e c t r a  shown i n  F i g u r e  111-5. The o n l y  s i g n i f i c a n t  
f e a t u r e  i s  a peak  a t  0 . 5 1  MeV. 



minutes. Flgure IV-10 is the  difference betwen the  Earth sum apeotnmr 

and the  an t i ea r th  sum spectrum with each point i n  the  d i f f e r en t i a l  

counting r a t e  spectrum representing an average over the number of 

pulse-height channels indicated. The difference s p e c t m  shovs a 

consis tent  excess i n  t he  Earth d i rec t ion  over the  e n t i r e  range of 

energlea. 

m e  only s ign i f ican t  fea ture  i n  the  difference spectrum is the  

peak a t  P.51 MeV. This peak i s  well f i t  by a Gaussian curve with a 

mean energy of .516 MeV and a f u l l  width a t  half  maximum ( AE ) of E- 
8.8 percent. This i s  i n  good agreement with t he  annihi la t ion l i n e  

energy of 0.511 MeV and de tec tor  resolut ion of 8.8 percent a t  t h i s  

energy. The counting r a t e  f o r  t h i s  l i n e  amounts t o  0.W + 0.06 

counta/sec and is about s i x  standard deviations above the contimnnn 

background. This implies a contribution f r an  the Earth of 0.44 f 0.06 

counts/sec when the leakage of 8 percent of t he  Earth flux i n t o  the an t i -  

ear th  quadrant is accounted f o r  (cf. Section I V  Bl.). The continuum 

can he f i t  b e l w  1 MeV by a power law of the form 

0.52E -3'1(k 0'5'counta/sec - M ~ V  

and a b w e  1 MeV by a power law of the  Pow 

0.67E -ls6(* O")counts/sec - M ~ V  

A s imilar  dif ference spectrum f o r  a l t i t u d e s  between 130 and 230 )an 

shows a power law dependence of E -*.I(& Os3)  b a l ~  1 M ~ V  ard r 1.7(f 0.2) 

above 1 MeV. 

The gcumna-ray continuum, unlike the annihi la t ion l i n e  ra te ,  

receives an appreciable contribution frm the diffuse c o d c  gsnma rays. 

In  obtaining the difference spectnnn i n  Figure IV-10, the  cowio  con- 

t r i bu t ion  is, i n  effect ,  subtraoted from Earth's contribution. I n  



order t o  obtain the actual  Earth contribution, the  e f f ec t  of t h e  cosmic 

contribution must be calculated and added on t o  the difference spectrum. 

The measurement of the cosmic flux by Apollo 1 5  (Peterson and Trombka, 

1973) has been used f o r  t h i s  calculation. The r e s u l t  is a counting r a t e  

from the Rarth of 
-2.6(+ 0.5) 

1.3 E cwnta/sec - MeV 

below 1 MeV and 

1.3 E' 1*8(f 0.2)counts/sec - MeV 

above 1 MeV. Since measurements of thecosmic flux by d i f fe ren t  floups 

d i f f e r  by aa much a fac tor  of 2 i n  t h i s  energy range, the abwe re su l t  

cannot be considered exact. 

To compare these l i n e  and continuum counting r a t e s  t o  measure- 

ments made i n  the atmosphere, it i s  eas i e s t  t o  use data from a detector 

wi th  i so t ropic  response and t h e  same s i z e  and material  a s  the UFM 

detector. The counting r a t e  f o r  such a 3" by 3" ihI s c i n t i l l a t o r  

flam i n  the atmosphere by L. Peterson has been plblished i n  the  liter- 

a tu re  (Gorenstein and Cursky, 1970). This spectrum is eimilar i n  many 

respects t o  the difference spectntm described above. It consis ts  of a 

continuum which can be described below 1 MeV by a power law of t h e  form 

0.4 E~ counts/cm2-sec-Mev 

and above 1 MeV by 

0.4 ~ ' ~ * ~ c o u n t s / & - s s o - M e ~  

The only feature is a c lear ly  resolved peak which was assumed for 

energy cal ibrat ion t o  be the  annihi la t ion peak at  0.511 MeV. The value 

given for the  counting r a t e  i n  the  peak is  0.060 + 0.003 coun ta /daec .  

Using t h e  geometric factor of t h e  i so t ropic  detector  of 67 em2, t h i s  is 



equivalent t o  

0.060 x 67 = 4.0 counta/sec 

Tn order t o  compare t h i s  t o  a measurement a t  s a t e l l i t e  a l t i t ude ,  a 

correction must be made for the d i f f e r en t  eol id  angles seen by each 

detector.  A t  balloon altitudes, the e f fec t ive  s o l i d  angle vhich the  

atmosphere subtends a t  an i so t rop ic  detector  i s  about 3.8 r ateradians 

(peternon, 1967). The e f f ec t ive  sol id  angle f o r  the  UNH detector a t  

n.51 MeV i s  about 1" s teradlans  (corresponding t o  a cone of 60' half  

angle). A fu r the r  correct ion must be made for the  ahange i n  r i g i d i t y  

betveen the halloon posit ion (4.5 GV) and t h e  average s a t e l l i t e  posi- 

t i on  (10 GV). This corresponds t o  a deorease i n  counting r a t e  of 

apprmimately a fac tor  of 2 (Figure Iv-5). There is a l s o  a emall cor- 

rec t ion  f o r  t h e  a t tenuat ion of t he  flux due t o  the  f ron t  a lab on t h e  

UNH detector.  This amounts t o  a f ac to r  of 0.8. The balloon measure- 

ment aa corrected t o  the  s a t e l l i t e  posit ion beooraes 

1 O n  4.0 coun t s /~ec  x x 3 x 0.8 = 0.4 counta/sec 

This agrees very well v l t h  the  measured value of 0 .U  f 0.06 cts/sec. 

The energy depndence of the continuum a l s o  agrede well f o r  

both measurements -- a power law dependence v l t h  a break a t 1  MeV. A 

compgrison of t he  absolute r a t e s  For t he  continuum a t  0.51 MeV gives 

11 cts/sec-MeV f o r  the corrected balloon r a t e  compared t o  a measured 

r a t e  of 6.8 cts/sec-MeV. The greater  r a t e  a t  balloon a l t i t u d e s  c m i d  

be due p r t l y  t o  a lack of t he  Compton auppreasion capabi l i ty  which 

the UNH detec tor  has. There may a l s o  ba appreciable looal  production 

i n  the  belloon experiment. 



b. Contribution of Local Production 

It w i l l  be shown i n  the aection following t h i s  one tha t  the  

0.511 VeV counting r a t e  observed while looking away from the Earth is  

much p e n t e r  than t h a t  expected ?ran the upper limit for  an iS0tropic 

cosmic flux obtained by Metseer e t  a l .  (1964). The observed r a t e  can 

therefore be iden t i f ied  with l oca l  production. If we consider the  

annihi la t ion l i n e  counting r a t e  averaged f o r  8-12 GV using the ex- 

ponential continuum background calculated i n  Section III,C, the  rate 

f o r  the  F a r t h  quadrant is 1.08 cts/sec, while the  r a t e  f o r  the an t i -  

ear th  i s  n.56 cta/sec. We can iden t i fy  t he  difference of 

0.52 f 0.10 cts/sec v l t h  the  atmospheric f lux f'rm the  Earth. This 

l a s t  value agrees f a i r l y  well  with t he  value of 0.44 2 0.06 cts /see  

obtained i n  the  previous sec t ion  by f i t t i n g  the  continuum i n  t h e  d i f -  

ference spectrum where no correct ion frm l i n e a r  background aesurnption 

t o  exponential background assumption had t o  be made. 'he agreement 

between the two methods given u s  confidence tha t  no s ign i f ican t  e r ro r s  

a r e  introduced i n  the  t r ans i t i on  t o  the  exponential background assump- 

tion. 

It should be noted t h a t  t he  l oca l  production (or  an t iear th)  

counting r a t e  var ies  with r i g id i ty .  This rigldity-dependent par t  oen 

be IdentiYied with prmpt  production. However, the  long-term var ia t ions  

seen i n  t he  data iolply a contribution t h a t  w i l l  remain essen t ia l ly  

constant over the  period of analysis.  I t  is reasonable t o  i den t i fy  

t h i s  c ontribution wlth the value obtained by extrapolating the  an t i ea r th  

counting r a t e  t o  the r a t e  which would be associated with a n u l l  chargd-  

pa r t i c l e  cup ra te .  Using a l i n e a r  extrapolation, of the  0.511 MeV mte 



vs. cup r a t e  t o  zero cup r a t e ,  we get  a value of 0.25 cts/sec f o r  t he  

rigidity-independent production background. Local production 

therefore appears t o  be d iv i s ib l e  i n t o  a rigidity-dependent portion 

associated with prompt production and a non-negligible r i g i d i t y  in- 

dependent portion probably caused by long l ived isotopes. This component 

w i l l ,  of course, depend on the epoch of s a t e l l i t e  h i s tory  i n  which the 

data i s  analyzed. 

c. Contribution of Comic Flux 

The poss ib i l i t y  of a measurable Mux of annihi la t ion radiat ion 

being produced i n  the galaxy i s  discussed i n  Appendix I. rkn i sotropic  

f lux  cannot be d i f fe ren t ia ted  from loca l  production i n  the preaent 

detector because nei ther  wl11 show a direct ional  dependence. Prompt 

production due t o  cosmic rays should show a dependence on the cutoff 

r i g i d i t y  which character izes  t he  point i n  the s a t e l l i t e  o rb i t  a t  which 

a spectrum i s  ~ c c m u l a t e d .  Long-lived isotopes produced by cosmic rays 

or  trapped pa r t i c l e s  should reach a quasi-equilibrium condition, however, 

which w i l l  be independent of t h e  short-term r i g i d i t y  changes. For this 

reason, only an upper l i m i t  can be placed on an isotropic  cosmic flux. 

Perhaps the  most conservative value f o r  an upper limit counting 

r a t e  due t o  a cosmic f lux  is t h e  r a t e  measured a t  high r i g l d i t y  when the 

detector  i s  pointed away from the  Birth. It i s  a t  t h i s  time tha t  t he  

contributions from the  Earth and from prompt production a r e  a t  a minhm. 

P o a n  t he  r i g i d i t y  var ia t ion of t he  0.511 &V counting r a t e  a s  presented 

fn  Section IV, B, the r a t e  a t  high r i g i d i t i e s  (14-17 GV) i n  t he  an t i -  

ear th  d i rec t ion  i n  about 0.4 counts/seo. The sens i t i v i ty  f o r  an 

isotropic  flux fran t he  ao l id  angle exaludlng the ear th  is 50 cm2 



steradlans.  This gives an upper l i m i t  value f o r  an i so t rop ic  cosmic 

flux of I3 x 10'3 photons se~ '~sr" .  The l i m i t  placed on t h i s  

f lux from t h e  Ranger 3 --ray detector  m e  ( ~ e t a g e r  e t  a l . ,  1964) 

0.014 photons cm-2 sec-1 or 1.1 x 10-3 photons ~ m - ~  sec'l sr-I f o r  an 

iaotropic  flux. The 050-7 l i m i t  i s  a l s o  consistent with the Apollo 1 5  

measurement of (3.0 + 1.5) x phatms oma aec-I or (2.4 f 1.2) x 

10-3 photon. cm4 unc-l ar- l  (Trmbka e t  al . ,  1973). %re we note t h a t  

the  Ranger 3 limit implies a maximum contribution t o  the  OSO-7 counting 

r a t e  of 0.055 cmnts/sec which is  small compared t o  t he  contribution 

frm t he  Far thfa  atmosphere of about 0.4 counts/sec. 

D. Solar  0.511 MeV Flux 

1. L i m i t  f o r  the  Quiet  Sun 

'he mSH detector gathers data i n  opposite quadrants v i r t ~ ~ a l l y  

e2multsneoualy. This provides t he  poss ib i l i ty  of analyzing the data 

f o r  a diCference i n  counting ra tea  i n  tha two directions.  The E ~ r t h  

proves t o  be a gamma-ray source using t h i s  method. I n  a search f o r  

other sources, the  d i f f i c u l t y  presents i t s e l f  of choosing nbackqr&n 

data  which can be subtracted from "signaln data. Typical p i r e  of scans 

contain one which views the  Earth, e i t he r  i n  the background quadrant 

during the day or i n  the  s o l a r  quadrant dur ing the  night. Any counting 

r a t e  frcm an  e x t r a t e r r e s t r i a l  source would be "washed outm i n  a diP- 

Perence spectrum by the r e l a t i v e l y  strong Earth flux i n  the  opposite 

quadrant. 

The a b w s  d i f f i c u l t y  can be overcome by choosing the wrignaln 

and wbac).mwndn data t o  be gathered w h i l e  t he  detector  is looking 

tangent t o  a surfnce concentric t o  the surfaae of t he  Earth. I n  t u g  

case, the Earthta contribution t o  the  aotmting r a t e  All be equal in 



both direct ions  a s  long a s  t he  angular raaponse of t he  detector  i s  

cy l indr ica l ly  spnmstric, which i s  a good approximation i n  the  present 

case. The r a t e  due t o  loca l  production w i l l  a l so  be eliminated i n  a 

dif ference spectrum since i t  w i l l  be equivalent i n  both directions.  

Ihe Sun i s  a good candidate f o r  analysis  by the above method. 

When the detector  i s  operating i n  its normal mode, the Sun is positioned 

i n  the  center  of the so l a r  quadrant, and the background quadrant views 

an  analogous sector  of t h e  c e l e s t i a l  sphere 180° away frm the  so l a r  

direct ion.  ?he look d i rec t ion  is  tangent t o  a sphere containing the  

o rb i t  twice every orb i t ,  and data obtained a t  these times can be 

evaluated for a s o l s r  contribution. 

I n  general, t he  look d i rec t ion  f o r  such scans i s  not perfect ly  
h 

tangent t o  the  orbit .  If we def ine L t o  be a un i t  vector i n  the  look 

d i rec t ion  and 6 t o  be a un i t  vector pointing f r m  the s a t e l l i t e  t o  the 

center  of the  Earth, then the angle which defines a scan t o  be tangent 

t o  a sphere containing the  o r b i t  i s  

0 = COB -1 (2 . 6 )  = 900 

This can bs cal led a "limbn scan. Since a scan i s  accumulated over a 

period of t h ree  minutea, we can guarantee t h a t  two such "limbn scans 

w i l l  be acorrmulated each orb i t  i f  the range i n  o is  taken t o  be about 

lo0. In practice,  a limb scan was defined a s  one f o r  which 84' s Q < - - 
9 6 O .  on the averme, the  Earth vill contribute equally t o  a sum of so la r  

"limbn scans and t o  a sum of background nlimbn scans i f  the  average 

value of @ for the a m  is  290~ .  

Limb apeatre were obtained for  t h e  5-day period between 14:51 UT 

on April 25, 1972 and 14:14 UT on A p r i l  29, 1972. The so l a r  and an t i -  

s o l a r  scans were s m e d  separately  and the  difference betweon these gum 



DIFFERENCE RATE 

ENERGY (MeV) 

F i g u r e  IV-11. D i f f e r e n c e  be tween s o l a r  and a n t i s o l a r  sum s p e c t r a  
c o v e r i n g  a l i v e  t i m e  o f  % 1 3 0 0  s e c  ( ~ p r i l  25-29 ,  1972). No s i g n i f i c a n t  
e x c e s s  i s  s e e n  i n  t h e  s o l a r  d i r e c t i o n .  



spectra  w a s  taken as  sham i n  Figure IV-11. lhis s h w s  the so l a r  sum 

spectrum minus the  an t i so l a r  sum spactnrm and comprises a l i v e  time of 

sec. The data i s  col lected i n t o  25-channel-wide bins and the 

e r r o r s  shown a r e  the l o  e r ro r s  due t o  counting s t a t i s t i c s .  The 

mean value of 0 for  these scans i s  89.6'. No s ign i f ican t  excess is 

seen i n  the  s o l a r  direction.  This nu l l  r e s u l t  a l l w s  an upper l i m i t  t o  

be nut on the  gamma ray  flux frm the Sun at  t h i s  time. I n  order t o  

get  an upner l i m i t  "or the 0.511 MeV l i n e  contribution *om the Sun, 

we can take a 5-channel region centered on t h i s  energy. This would 

include about 85% of the  counts f'rm a hypothetical s o l a r  l i n e  flu. 

The excess r a t e  i n  the  so l a r  d i rec t ion  i n  t h i s  energy region is 0.015 

counts per second. Using t h e  detector  s e n s i t i v i t y  of 15  c s  for a 

point source at  0.511 MeV, t h i s  gives an  excess of 1.0 x 10'3 photons/ 

2 cm sec from the Sun with a 1 o error of 3.8 x 10-3 photons/ cm2 sec. 

A simf.lar analysis oan be performed f o r  the  energy region 

centered a t  2.23 MeV, the  posit ion of a possible deuterium formation 

l i n e  +om the Sun. I n  t h i s  case an  excess flux of 2.1 x 10-3 photons/ 

cu? sec i s  seen i n  the nn t i so la r  direat ion wlth a 1 a e r ro r  of 

2 x 10-3 ohotons/ cm2 sac, These limits a r e  compered with previous 

searches f o r  l i n e  radiat ion i n  Tables IV-2 and fV-3 (chupp, 1 9 n ) .  

The l imi t s  f o r  t h i s  expariment a r e  taken t o  be t he  2 cr s t a t i s t i c a l  

e r r m  which impliee a null r e s u l t  a t  the 95% confldence level.  It can 

a l s o  he noted t h a t  t he  l i m i t s  i n  t h i s  experiment a r e  smewhat stronger, 

s ince they include both l i n e  and continuum rad ia t ion  a t  the  reepeetive 

e n e r ~ i e s .  Possible contributions from knwn q i sc re t e  ~~UIPYI ray sources, 

the  Crab Nebula and the ga lac t ic  center, a r e  negligible a t  these energies, 

being l e s s  than 1 x 10'~ photons/sea-cn2 i n  both cases. 



TABLE IV - 2 

Date 

5-2-61 

6-10-62 

11-2-67 

-68 

-68 

4-24-68 

4-72 

sOLAR UFTER LIMITS (0.511 MBV) 

Experimenters 

Petereon 

Frost et a1 

Chupp et a1 

Haymee et a1 

Wamack and Overbeok 

Chupp et a1 

Resent  work 

Reference: Chupp (197l). 



TABLE I V  - 3 

SOLAR UPPER LIMTTX (2.23 MeV) 

nux (~m-~sec'l) Experimenters 

5 x 10-3 Chupp e t  a1 

4.5 lo-? Wanack and Overbeck 

4.2 x 10-3 Present work 

Reference: Chupp (197l). 



2. The Active Sun (AugUSt 2 t o  August 11, 1972) 

On August L, 1972 a 3B solflr f l a r e  occurred while the  UNH 

detec tor  was i n  normal quadrant mode and during s a t e l l i t e  "day". The 

H f l a r e  began a t  b 6 2 1  UT, reached a maldrrmm a t  0638 UT, and ended 
a 

2 0852 FP. Gamma ray  l i n e  and continuum rad ia t ion  were obaerved i n  

the  s o l a r  quadrant between t h e  beginning of t he  f l a r e  and the p s s a g e  

of the  s a t e l l i t e  behind the Earth a t  2 0633 UT (Chupp e t  a l . ,  1973). 

Spectra i n  the 0.5 MeV region obtained p r io r  t o  t he  f l a r e  and 

a f t e r  ecl ipse  by the Farth can be compared with the flare-time spectrum 

(Oh23 t o  @632 UT) i n  Figure IV-12. A peak a t  0.5 MeV i s  evident i n  

t he  f l a r e  data along with an energy-dependent continuum. Similar 

spectra  a t  higher nnergles show a strong l i n e  a t  2.2 MeV and make r  

l i n e s  a t  4.4 MeV and 6.1 MeV. %e production of features  seen a t  t h i s  

time have been predicted t o  occur during so l a r  f l a r e s  Prm theoretical 

calculat ions  (Appendix 1,C). lhese featurea include a continuum 

produced bv elect,ron bremsstrahlung, a l i n e  a t  0.511 MeV due t o  positron 

annihi la t ion,  a l i n e  a t  2.23 MeV due t o  deuterium formation, and l i nes  

a t  v a r i m ~ e  energies due t o  i n e l a s t i c  proton sca t te r ing  on l i g h t  nuclei 

( including l i n e s  a t  4.43 MeV and 6.14 MeV from excited cl* and 016). 

Another 3B f l a r e  wcurred on August 7, 1972, cawnencing a t  

2 1500 UT during s a t e l l i t e  night. Enhancements a t  0.5 MeV (Figure IV-  

13) and 2.2 MeV were seen i n  the  s o l a r  quadrant a t  the  beginning of 

s a t e l l i t e  day (1538 UT) and l a s t ed  u n t i l  about 1547 UT. Fluxes ob- 

tained during these f l a r e  times a r e  swanariaed i n  Table IV-4. 



&. 4,1372 
050-7 - Solar Quad --- Bkg. Quad 

15 32. 35 a 15 
a ~ e l  Number 

F i g u r e  IV-12. The gamma-ray p u l s e  h e i g h t  s p e c t r u m  f o r  
t h e  e n e r g y  r e g i o n  435 - 615  keV on August  4 ,  1 9 7 2 .  
The Ha f l a r e  began  a b o u t  0621 UT a n d  t h e  s a t e l l i t e  , 
was o c c u l t e d  by t h e  E a r t h  a t  a b o u t  0633  UT. 



Aug.7. I972 
[Day 220) - Sdar Quad -*. Ouad 

0.5 MeV 

Channel Number 

F i g u r e  I V -  L3. The gamma-ray p u l s e  h e i g h t  s p e c t r u m  
f o r  t h e  e n e r g y  r e g i o n  435 - 610 keV on August 7 ,  
1972 .  The H a  f l a r e  began  a b o u t  1 5 0 0  UT d u r i n g  
s a t e l l i t e  n i g h t .  S a t e l l i t e  s u n r i s e  o c c u r r e d  a t  
1538  UT. 



MEASUR~, EHERGTES AND num OF L I ~  
AT 0.51 A N D  2.2 MeV AT 1 AU 

Time o f  Flare 
Observations Energy FLUX (photons ~ m - ~ s e c - ~ )  

Au s t  4 ,  1972 510.7 2 6.4 keV (6.3 i 2.0) x 
(0%3:49-0633:O2)Um 2.24 $ 0.02 MeV (2.80 + 0.22) x 10-I 

4ugust 7, 1972 508.1 f 5.8 keV (3.0 5 1.2) x 
(1538:20-1547:33)Wl! 2.22 f 0.02 MeV (6.9 f 1.1) x 



The posdibi l i ty  of observing thermal D 3ppler broadening i n  

gamma-ray l i n e s  pr~duced during s o l a r  Flsres h: s been discussed by 

Kuzhevskii (1969) ~ n d  Cheng (1972). The obser-ration of these l i n e s  

by the 0q0-7 s a t e l l i t e  allows R l i m i t  t o  be pu' on thermal broadening 

and, therePore, on the temperature of the  plasra i n  which these l i nes  

a r e  ~rcduced. 

Line b r o a d d n g  a t  0.511 MeV due t o  thr thermal ve loc i t ies  of 

a n t l i h i l ~ t i o n  of po-iitrons and electrons is  app~.oximately ( ~ l l a r ,  '1963; 

where k = 8.6 x eV/% i s  Boltzmann's const ant,  T is the tempera- 

t u re  of the plasma, and mc2 i s  the r e s t  energy of the electron. I n  

addit ion t o  the  Aien ing  of t he  l i n e  a t  its s a r c e ,  a fUrther broaden- 

ing  is introduced by the s t a t i s t i c a l  nature of the  detection and 

amplification process. f igure  IV-14 shows the  dependence of t he  

resolut ion on the gamma ray  l l n e  energy fo r  various radioactive 

solirces during prelaunch t e s t s .  The data a r e  f i t  by the function 

*E Y 
where (-) i a  the fill width a t  half  maximum (PWHM) of the l i n e  

data. 
E~ 

Qigure IV-14 shows t h e  FWHM of t he  l i n e s  a t  0.5 and 2.7 MeV 

observed during t h ~  Aupat  L f l a r e  a s  well a s  the  FWHM of co60 

ca l ib ra t ion  l i n e s  observed before and after the  f l a r e .  The FWHM'a 

were obtained by subtract ing the  background quadrant data  from solar  

quadrant data,  and then subtract ing a P i t t ed  continuum from the  data 
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F i g u r e  IV-14 .  The dependence  o f  e n e r g y  r e s o l u t i o n  on 
e n e r g y  f o r  t h e  UNH d e t e c t o r  a s  o b t a i n e d  from p r e l a u n c h  
e a l i b r a t  i o n  d a t a  (@I. P r e - f l a r e  ( 4  ) and p o s t - f l a r e  
( 0 )  v a l u e s  $or  r e s o l u t i o n  come from ~ 0 6 0  c a l i b r a t i o n  
s p e c t r a .  The measured  l i n e  w i d t h s  f o r  t h e  0 . 5 1  and 
2.2 MeV f l a r e  l i n e s  a r e  a l s o  shown. 



and f i t t i n g  the remaining peaks with Gaussian curves. The exact 

fo rm of the continuum was not c r i t i c a l  t o  t he  r e su l t s ,  but a power 

law below the P.5 MeV peak f i t  the data beat, The fit  t o  the f l a r e  

p.5 MeV peak with 1 C ~ u s s i a n  of width V.074 i s  shown i n  F i p e  IV-15. 

The agreement of the  inflight ca l ib ra t ion  da ta  with the prelaunch 

te.;ts indicate  t h a t  the  detector  resolut ion was normal a t  the time 

of t he  f l a r e .  Within the uncertainty of t he  l i n e  width determination 

(1 = Q.Ol,&), there i e  no addi t ional  broedening due t o  t henna1 

e f f ec t s  a t  0.5 MeV. The f a c t  t ha t  the  measured width (0.074) is 

l e s s  than the expezted width (0.088) seems t o  be consistent with the 

uncer ta inty of the measurement. 

'Je can c a l m l ~ t e  an upper l i m i t  t o  the  thermal broadening 

from the reso ' lu t io~u  which should be combined i n  quadrature. 

AE L AE L AE L - 
(3) TOTAL - ( z I T H  + (-1 DR 

L a  
4 nu l l  contribution from ( -E - )~  i s  i n d i ~ a t e d  by the data, so the 

r~pper l i m i t  t o  the temperature is obtained Ran the  above equation i f  

the maximum or upp?r l i m i t  value of ( %IMTAL is  used. A t  the 

95 p r c e n t  confidewe leve l ,  t h i s  value i e  

AE 
(-)TOTAL MAX = 0.088 + 0.028  = 0.116 

where 0.028 is  the 20 uncer ta inty i n  the  measurement. Zhe Gaussian 

f i t  t o  the data  for  t h i s  confidence leve l  i s  s h m  I n  Figure IV-15. 

A t  the 99 percent confidence leve l  

AE 
(?)TOTAL MAX = 9.088 + 0.042 = 0.130 

where 0.OU i s  the 3, uncertainty i n  the measurement. 



F i g u r e  I V - 1 5 .  The f l a r e  peak  a t  0 . 5 1  MeV and t h e  b e s t  f i t  
G a u s s i a n  c u r v e  w i t h  a FWHM o f  7.4%. Also s h o w n a r e  p e a k s  
w i t h  w i d t h s  c o r r . e s p o n d i n g  t a  t h e  d e t e ' c t o r r e s o 1 u t i o n . a n . d  
t o  t h e  ( 2 0 )  u p p e r  l i m i t  l i n e w i d t h .  



Then taking (#)DR t o  be 0.088 (with an e r ro r  uhich i s  negligible 

compred t o  0.014), (-@)@.076 a t  the 95 percent confidence leve l ,  

A ) to.n% a t  the  99 psrcent confidence level.  This gives and (7 T L  
6 upper l i m i t  temperatures i n  t h e  annihi la t ion region of 6.2 x 10 % 

and 9.9 x 10 OK. Because of the  l a rge  magnetic f i e l d s  i n  the  f lare ,  

i t  is reasonable t o  suppose t h a t  the  positrons a r e  produced and annihi- 

l a t e  i n  t he  f l a r e  r e d o n  and that the above temperatures a r e  upper l imi t s  

for  the  f l a r e  regicn. 

A s imi la r  calculat ion f o r  t h e  2.1 MeV l i n e  gives an upper 

l i m i t  temperature of % lo9 %. 'Ihe reason f o r  t h i s  much higher 

value i s  tha t  t he  e lectron mass i n  the  formula f o r  thermal broadening 

mu$t be replaced by the proton mass for  deuterium formation. No 

analysis  was done f g r  other l i n e s  seen i n  t h i s  f l a r e  o r  f o r  the  l i n e s  

seen on August 7 because of t he  poorer s t a t i s t i c s  due t o  lower fluxes. 

It should be noted tha t  the  6 x lo6 4[ upper l i m i t  i s  meaninghl 

s ince temperatures of % 108 OK have been calculated by Chubb e t  al. 

(1966) t o  account f o r  hard X-rays greater  than 30 keV from so la r  f lares .  

Thermal broadening is  not t he  only wocess which can a f f e c t  

the  annih i la t ion  l i n e  shape. Leventhal (1973) has shown t h a t  the  

measured energy of an annihi la t ion peak can be red-shifted and the 

peak can be brmdened If  i t  f s  caused by annihi la t ion through the 

positronium mode. This s h i f t  and broadening are due t o  t he  folding 

of the  three-quantum continuum and the  twoquantum peak through the 

f i n i t e  instrumental resolution.  For a detector  with t he  resolut ion of 

the  present instrument (8.8% or  45 keV) a t  5 l l  keV, t he  apparent poei- 

t ion  of such a sh i f ted  peak would be 505 keV for  annihi la t ion t o t a l l y  

through the postronium mode. A small Praction of bound-state annihilation 



woilld cailse a smaller shif't f r m  511 keV. Since the  presence of 

nositronium depends on the density and temperature of the  f p s  i n  

which the positrons annihi lnte  (Leventhal, 1973), the determination 

of t he  exact posit ion of the p e ~ k s  detected during the f l a r e s  of 

Aumst L ~ n d  August 7, 197.7 i s  of In t e r e s t .  L i m i t s  on energy s h i f t  

and broadening i n  t he  ~ r e s s n t  experiment lead t o  a l i m i t  on positronium 

formation i n  t h e  f la re .  

The good energy resolution of the gannna ray detector together 

v i t h  the  on-board ca l ib ra t ion  source allow the determination of t he  

energy of measured l i n e  radiat ion with good accuracy. It w i l l  be 

shown here t h a t  the  energy of radiat ion near 0.5 MeV can be determined 

t o  within: 1 percent. The energy of a feature  i n  the  detected 

s ~ c t r u m  i s  determined f r m  the formula 

E = c (n + no) 
2 

where n i s  the  numher of the channel i n  which the feature f a l l s  snd 

c and no a r e  constants. The constant ng was determined by f i t t i n g  

ground ca l ib ra t ion  data t o  the above quadratic formula. This gives 

a value of 80.2 for  no. The value of c is constant f o r  a given 

awctrum but cRn vary v l th  time due t o  gain changes i n  t he  detector. 

Any calculat ion of energy from t h i s  formula involves the  com- 

poi~nding of e r ro r s  of the measured quant i t i es  c and n. The s t a t i s l i -  

c a l  e r ro r  i n  determining the center channel n of a gamma-ray peak is 

tnken t o  be o $or a peak of FWHM equal t o  2.35 o the e r ro r  i n  n' P' 

determining i t s  center channel i s  given by o 
n = %/* where N is 

P 
the number of counts i n  the peak. If there  i s  a backgrouRd NB which 

must be subtracted, t h i s  formula must be multiplied by t he  factor  

fl + x/l - x, wherex =NB/(N +NB). For our purposes, the P 



random e r ro r  oc i n  determining the  dependence of energy on channel 

number for  a given spectrum i s  taken t o  be an e r ro r  i n  t he  fac tor  c 

only. T h i ~  i s  conqistent with the a b i l i t y  t o  f i t  var ia t ions  i n  gain 

with corres~onding var ia t ions  i n  c, while holding no constant. c and 

Oc can be determined f o r  any time by appromiately  f i t t i n g  the time 

var ia t ion of c. 

I n  practice,  the  value of c is determined from the posit ion 

and known energy or t he  co6' ca l ib ra t ion  peaks obtained twice every 

orb i t  while the  de+.ector i s  i n  the  ca l ib ra t ion  mode. c can be de- 

termined for  times between ca l ib ra t ions  frm the presence of leakage 

counts from the co60 i n  normal data. Calculated valuea of c for  

times around the so l a r  f l a r e s  of August 4 and August 7, 1972 a re  

shown i n  Flgures IV-16 and 'IV-17. The c value for  t he  f l a r e  times 

can be determined hy assuming a l i n e a r  var ia t ion of c with time near 

the  f l a r e  period. This y ie lds  t he  values 

c = (P. 3930 + 0.0007) x 10'~ MeV/(channel) 2 

f o r  the  4 u e s t  /+ f l a r e  and 

c = (0.3619 +, 0.0009) x 10'~ Me~/(ohannel )~  

f o r  the  August 7 f la re .  

The center channel of t he  f l a r e  psak which occurs near 0.5 MeV 

on August 4 is  determined from a l e a s t  squares f i t  t o  the  data,  Data 

obtained i n  the background quadrant i s  firs t subtracted Prom the 

s o l a r  quadrant data t o  eliminate l o c a l  effects.  Ihe remaining epectrum 

can be flt with a continuum plus a Gaussian-shaped peak using several  

models f o r  t he  cont.inuum. We center  channel does not depend strongly 

on the shape of t h ~  continuum. A s imilar  technique can be used on the 

Augvet 7 data,  exuept t h a t  t h e  continuum is  negligible. For August 4 
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F i g u r e  IV-16. The  v a r i a t i o n  of  " c "  w i t h  t i m e  a r o u n d  t h e  f l a r e  p e r i o d  o f  
August 4, 1972 .  The v a r i a t i o n  i s  f i t  w i t h  a  s t r a i g h t  l i n e .  
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F i g u r e  IV-17. The v a r i a t i o n  o f  "c" w i t h  t i m e  a round  t h e  f l a r e  p e r i o d  
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we ~ e t  the  value n = 34.8 .64 ch; end f o r  August 7 the value 

n = 39.0 + .65 ch. 

The apparent enerqies of the  f l a r e  peaks obtained using our 

values f o r  c and n a r e  

E = 29.9 + 5.8 keV f o r  August 4 

and E = 514.2 2 5.8 keV f o r  August 7. 

So f a r ,  only random e r ro r s  i n  measurements have been taken i n t o  account. 

Nonlinearites i n  the detect ion system can cause a systematic deviation 

between pulse height spectrum and ac tua l  energy l o s s  i n  the  crysta l .  

Such nonl tnear i t i es  a r e  a property of the pulse height analyzer a s  

well as of inorganic s c i n t i l l a t o r s  themselves (Heath, 1964). The de- 

termination of no by f i t t i n g  ca l ib ra t ion  data minimizes the  systematic 

e r ro r  due t o  the  nonlinearity but does not el iminate it. 'or example, 

the  apparent energy of the .511 MeV ground ca l ib ra t ion  peak i s  ,420 WV. 

A correction can be applied f o r  such a systematic e r ro r  i f  w 

use the loca l  production annihi la t ion peak as  a ca l ib ra t ion  l ine.  

Since both f l a r e s  occur while the  s a t e l l i t e  i s  i n  a region of high 

r i g l d i t y  ( > 1 3  Gv ) the  contribution t o  the  l o c a l l y  detected peak 

from the atmosphere, which may be affected by pos i t ron im production, 

can he neglected. A correction fac tor  "k" which i s  the r a t i o  of the  

apparent ~ n n i h i l a t i o n  l i n e  energy t o  the  true energy f o r  t he  loca l  

paak i s  

k = E/Et = 1.018 2 0.0057 f o r  Aupst  4 

k = 1.012 - + .0022 f o r  bugust 7. 

Using th i a  correction fac tor  on the  a p p r e n t  f l a r e  energies, 

we a e t  t he  calculated energies 

Eo = ~ / k  = 510.7 2 6.4 keV f o r  August 4 



E, = 508.1 f 5.8 keV fo r  August 7. 

where the e r r o r  is due mainly t o  uncertainty i n  the  center  channel of 

the  f l ~ r e  p a k s  because of randan counting s t a t i s t i c  errors.  This 

r e s u l t  shows t h a t  t h e  peaks detected during the flares of August 4 

and August 7, 1972 are  consistent i n  energy v i th  f r ee  annihi la t ion 

l i n e s  a t  511 keV within the experimental errora.  

As was mentioned previously, t he  positrrnium mDde a l s o  causes 

an increase i n  the  apparent l i n e  width of t he  annihi la t ion l ine .  The 

spectra  f o r  f r e e  annihi la t ion and f o r  bound annihi la t ion a r e  shown i n  

Figure IV-18.  The equivalent width of a Gaussian curve f i t t e d  t o  the 

posi t ronfm spectrum over the energy range of the data is 11.2 percent. 

Rorn the analysis  of thermal broadening we have seen tha t  

width of the  August 4 peak is  7.4 f 1.4 percent, which is t o  be can- 

pared with 8.8 percent f o r  fkee annihi la t ions  and 11.2 percent for 

band ann ih i l a t i a r .  I f  we combine the measurements of energy and 

l i n e  width, the likelihood t h a t  the apparent peak energy is a s  low 

or lower than t h a t  required by t o t a l l y  bound annihi la t ion and the  

width i s  a s  great  or greater  than t h a t  required by t o t a l l y  bound 

annihi la t ion i s?  1 percent. Although it is probably be t t e r  not t o  

canbine the  data  of two d i f f e r en t  n a r e s ,  t he  peak of August 7 show 

a s imi la r  lack of broadening and la rge  energy s h i f t ,  but a t  a lower 

confidenoe l e v e l ,  Implications Of the  positronium limit a re  given below. 

The energy l i m i t s  a l s o  put a l i m i t  on a Doppler s h i f t  of the  

l i n e  due t o  bulk motion of t h e  plasma. For a bulk veloci ty  much l ee s  

than the speed of l l ~ h t  



F i g u r e  I V - 1 8 .  Spectra f o r  f r e e  a n n i h i l a t i o n  and bound a n n i h i l a t i o n  
a f t e r  f o l d i n g  t h r o u g h  t h e  d e t e c t o r  r e s o l u t i o n  of  8 . 8 %  (45 keV) a t  
511  keV. 



where (*)mPPLW is  the f rac t iona l  energy s h i f t  due t o  the  Doppler 

e f fec t ,  Vr is the velocity along the l i n e  of s i g h t  and c is the speed 

of l i ~ h t .  A t  the  95 peraent aonfidenae leve l ,  the unaertninty i n  E i s  

AE = 20 %12 keV, 

so  Vr/ c 2 1 2  keV/511 keV = 0.02 

and Vr 2 6 x h / s e c .  

For purposes of c m p ~ r i s o n ,  the  veloci ty  of the  so l a r  wlnd near the 

Earth i s  2 5 x lo2 km/sec. 

E. Macussion of Results 

Tne UNH detector  on 050-7 has proved t o  be a useful t oo l  i n  

gamur-ray astronomy. Its primerg goal was fulfilled by the observation 

of so l a r  gamma rays during the so l a r  a c t i v i t y  of August 2 t o  August 11, 

1972. ?he wide-angle telescopic properties which made t h i s  observation 

a clear-cut one a l s o  m d e  possible a d is t inc t ion  between radiat ion 

from the Farth and Locally produced radfation. The Earth annihilation 

l i n e  flux obtained i n  t h i s  way agrees very w611 with a s imilar  Earth- 

based experiment. For a v e r t i c a l  cutoff r i g i d i t y  of 10 GV t h i s  f l ux  

is  1.0 x (_+ 0.2 x 10-2) photona-cm-2,ec-1-sr-1. 

The agreement between the annihi la t ion f lux Prom the Earth 

measured by OW-7 with t h a t  measured from balloon experiments i n  t he  

atmosphere (Flgure IV-5) encourages us that there  a r e  no large sca le  

systematic e r r o r s  i n  the present data analysis. However, we cannot 

r u l e  out systematic e r ro r s  of the  s i ~ e  of t he  e r ro r  bars i n  Figure IV-5 

on the grounds of the difference technique alone. It appeare tha t  

s m l l a t i o n  produced B+ emit ters  with half-lives l ea s  than one-half 

the  ro ta t ion  period of the s a t e l l i t e  could produce a "pseudo-Earthn 



counting r a t e  i f  the proton f lux  > 300 MeV has an anisotropy of the  

pro.rer maanitude and direction.  Because of the  thick ac t ive  shielding, 

the bulk of l o c a l  production observed i n  the  detector  is t h a t  which 

i s  nroduced i n  the  detector and i n  the  shield i t s e l f .  This i s  s u p  

ported by the analyqis of the  l i n e  contributions t o  the  sum spectra. 

As indicated i n  Appsndix 11, t h e  strong l i n e s  a r e  due t o  spal la t ion 

products i n  the shield and detector.  

A survey of the  spa l la t ion  cross-sections f o r  isotopes produced 

i n  the shield and detector shows t h a t  the  cross-sections f o r  the pro- 

duction of the  proper short-lived ( 1 0 ~  aec-1 sec)  6' emitters by 

incident protons (c.3-3 C ~ V )  a t  l e a s t  an  order of magnitude below the 
+ 

corresponding crosfi-sections f o r  the production of long ha l f - l i fe  f? 

emit ters  and the isotopes which contribute an observable r a t e  t o  the  

local  production speotrum (e.g. and 1124) (Nahman, 1972). 

Specif ical ly ,  the  product8 ~a~~ (0.4 see),  ~ e "  (1.46 sec) and Ne 17  

+ 
(CI.10 sec)  a r e  the  only important short-lived B emitters i n  the de- 

t ec to r  ~ n d  shield  materials. Their cross-sections a r e  < 10 mb canpared 

t o  Z ~ P O  mb f o r  the observed l ines .   themo ore, neglecting surface 

e f f ec t s ,  the  positrons m i t t 4  i n  such decays have a continurn k ine t ic  

energy d i s t r i bu t ion  (h, of 2.57 MeV or greater)  yielding a continuum 

of energy l o s s  i n  +,he detector  ra ther  than an annihi la t ion peak. This 

would reduce any ahprrent anisotropic  component by a t  l e a s t  another 

order of magnitude. 

Therefore, anieotropies of t h e  order of 100/1 wmild be necessary 

t o  cause the observable excess from the Earth. But even here, the  

longer l ived i s o t o p s  vould be produced a t  a r a t e  only 50% reduced, 



from the i so t rop ic  case. Therecore, the  anisotropic loca l  production 

vot~ld he: 2/ln0 or about 2% ra ther  than the 2 50% e f f e c t  seen .  

The method or measuring the difference between "limb" saectra 

has eiven an upper-limit qu i e t  Sun f lux  of 7 x lom3 photon~-crn~-sec'~.  

This compares favorably with upper limits measured btr balloon-borne 

ex~eriments.  Only the upper l i m i t  of Haymes et a l .  (1968) of 8 x 10-4 

is lower. Since the oresent l i m i t  was calculated from data taken over 

a 5-day period, a s ign i f ican t  lowering of the  OSO-7 limit can be ob- 

tained by using a l l  of the  OSO-7 data i n  which the  0.5 MeV region i s  

covered. This amounts t o  some 2401days. Since the upper limit depends 
2 

on the observation time T 0 a s  l/ T O  , there  is enwigh data avai lable  

t o  confirm the  limit of Hagmes provided t h a t  systematic errors  do not 

bncme imvortant. 

The previous arguments regarding anisotropic  l oca l  procluction 

apply t o  the  s o l a r  quiet-time l i m i t  a lso,  except the par t ic le  anisotropy 

t o  be dea l t  with i s  the East-West anisotropy of high-energy potons.  

Balloon f l i g h t s  by 'Jebber and Ormes (1967) show tha t  the  East-West 

e f f ec t  i s  of the  order of 50% or  l e s s  f o r  proton energies between 

60 and 300 MeV. 'his anisotropy appears t o  extrapolate t o  higher 

energies. 

Heckman and Nakano (1963) have found an East-West asymmetry for  

protons oP E > 57 YeV i n  the South Atlantic ancmaaly region a t  about 

4'0 h. The magnitude of t h i s  e f fec t  gives a factor  of 2.3 more 

proton3 incident from the w e ~ t  than frun the  eaat. men i f  the proton 

anisotropSl i s  t h i s  large a t  050-7, anisotropic production i s  calculated 

t o  he a b u t  an order of magnitude smaller than the e r ro r  used t o  

ce lcu la te  the  quiet-time s o l a r  upper l i m i t  a t  0.511 MeV. Analysis o f  



a l l  of the  050-7 data may reveal whether such systematic e f f ec t s  

become important, au the s t a t i s t i c a l  e r rors  a r e  decreased. The absence 

of a s ignif icant  excess o r  defect  i n  the  difference spectrum given i n  

"Igure IV-11 a l s o  argues against  the  presence of systematic e r ro r s  

as b r a e  a s  the  s t a t i s t i c a l  e r r o r s  presented. 

Upper llmits similar  t o  those given above can be put on any 

c e l e s t i a l  point  sources which a r e  positioned near the center of the  

detector f i e l d  of view during "limb" scans. Such regions sweep the 

~ k y  throuqh the  year due t o  the  apparent motion of the Sun across the  

c e l e s t i a l  sphere. quch objects a s  x-ray sources, supernovae and the  

Galactic Center a r e  l i k e l y  candidates for a search. For example, t he  

flux f r m  the Crab Nebula (Haymes e t  a l . ,  1968) should reach the 

99 percent confidence leve l  f o r  t he  f i r a t  energy interval  shown i n  

F l w e  IV-11 f o r  data taken over a period of about 2 weeks. Un- 

fortunately, the  Grab Nebula and the Galactic Center l i e  almost o p  

posite one another on the c e l e s t i a l  sphere, therefore e posit ive excess 

i n  one of the opposing quadrants might not 'Lend i t s e l f  t o  a s t ra igh t -  

fbrwerd interpreta t ion.  

The present detector i s  not well designed f o r  a measurement 

of an i so t rop ic  gamma-ray background a t  0.511 MeV. Since there  i s  no 

configuration i n  which the de tec tor  i s  screened from t h i s  source, ex- 

cept bp the  Earth, vhich is  a strong source i t s e l f ,  no difference spect- 

nun can he obtained by which the  loca l  production contribution 

(which is  considerable) can be removed. These d i f f i c u l t i e s  could be 

overcune p r t ~ i a l l y  by separation of t h e  detector  fraa the  spacecraft  

and by avoiding the trapped rad ia t ion  b e l t s  e i t he r  by low-lying orb i t s  

m- i n  c is lunar  space a s  i n  the  Ranger experiments. This would minimise 



the  magnitude of charged-particle effects .  The addit ion of en act ive 

~ h u t t e r  which could be inser ted  before and removed frm the aperture 

of n collimator waul4 allow n calcu~.ation end subseqi~ent s u b t r ~ u t i o n  

of the remaining loca l  contribution. 

With regard t o ' t h e  calculat ion of the  Doppler broadening of 

the f l a r e  annihi la t ion l i n e ,  the  upper limit temperature of 2 6  x 10' 9( 

cannot be used t o  determine the  region on the Sun i n  which solar  f l a r e s  
-4 

occur. The temperature of t he  so la r  atmosphere w r i e s  f r m  -4 4 x lo3 4[ 

a t  the  base of the chromosphere t o  lo6 % i n  the corona. Hgwever, 

high energy s o l a r  x-rays ( > 30 keV) have sometimes been explained as  

thermal bremsstrohlung of hot  plasmas a t  temperatures of lo7 OX and 

qreater  (Chubb et al . ,  1966). I n  f ac t ,  temperatures of the order of 

10" 4( would be required t o  explain the gamma ray continuum observed 

by the UNH detector  i n  the  August 4,  1972 f l a r e .  Although temperatures 

of lo7 % and higher a r e  not indicated i n  t he  present analysis, the  

existence of such high temperature regions cannot be ruled out. The 

l i n e  from positrons annihi la t ing there  would be great ly  broadened and 

co~rld be l o s t  i n  the s t a t i s t i c a l  f luctuat ions  of the  continuum. 

Analysis of the annihi la t ion l i n e  width and ensrgy shows t h a t  

the  f rac t ion  of annihi la t ions  i n  t he  bound s t a t e  i s  l e s s  than 100 percent 

a t  the  99 percent conaidence l eve l  and l e s s  than 75 percent a t  the  

95 percent confidence level.  This r e s u l t  cnn be caused by high 

temperature or  strong magnetic f i e ld s  i n  the  annihi la t ion region. 

I n  a neutral  medium, positronium is formed by energetic 

positrons via charge exchange. A t  energies above the ionization 

potent ia l ,  I ,  of the ambient gas, e l a s t i c  c o l l i ~ i w s  and Pree annihila- 

t ion  dominat,e over positronium formation albhough only a few percent or  



l e s s  of the pos: trons annih i la te  above t h i s  energy. For positron 

e n e r g e s  hetween I snd (1-6.8 eV), where 6.8 eV i s  the binding energy 

of positronium, the posit,r~niwn formation cross-Section domin~tes  the 

f r ee  annihi lnt ion cross-section by many orders of mapnitude. Below 

the energy I, nositrons annih i la te  only i n  the  f ree  s t ~ t e .  However, 

?r 
f o r  ambient dens i t i es  < 1pX5 atoms v i r tua l ly  a11 of the  positrons 

w i l l  have been l o s t  t o  positronium Formation before f a l l i n g  below tha t  

threshold (Fltecker, 1969; Leventhal, 1973). I n  media of su f f i c i en t  

density ( > 10'5 atoms ~ m - ~ )  orthopoaitronium annihi la t ion is quenched 

by co l l i s iona l  dissociation.  'his density i s  obtained approximately by 

s e t t i n g  the mean time between co l l i s ions  (A) equal t o  the  ortho- 

positronium l i f e t b e  (1.L x 10'~sec), vheren i s  the density,  a is 

the positronium ionization cross-section, and v i s  the positron velocity. 

A t  higher densi t ies  t he  r a t i o  of positronium annihi la t ion t o  a l l  an- 

n ih i la t ions  var ies  hetween 20%-50% depending on the nature of t he  

ambient gas (Green nnd Lee, 1964). 

I n  a p l ~ s n a ,  charge exchange i s  no longer important, however, 

an l  t he  postronium -rnnihilation r a t e  is determined by ionization 

an3 recombination O F  the  positronium ~ t m .  If the recombination 

coe"ficient i s  taken t o  be the sume a s  t h a t  of hydrogen, t he  recombination 

time i s  1.5 x 10910.~5/t1~ aec, where ne is the e lectron qensity and T 

i s  the temperature of the  plasma (Ramaty and Lingenfelter, 1973). 

Sinre the mean r a t e  for  f r ee  annihi la t ion is 7.5 x 10'l5 n sec-I 
e 

(Deutech, 105y1, the correrrponding mean time is  1.3 x 1014h sac. qet- 
e 

t i ng  t h i s  eoual t o  the  recoibination time we see tha t  high temperatures 

can quench annihi la t ion via positronium indepndent  of ambient density. 

The temperature a t  which the  positronium formation r a t e  equals the  f r ee  



annihi la t ion r a t e  i s  : 7 x lo5 % (Ramety and Lingenfelter, 1973). 

This mechanism could explain the present observation t h a t  ~ n d i h i l ~ t i o n  

i s  not t o t a l l y  throuoh t h ~  positronium mode. It shauld be noted, 

however, t.hat up t o  one-third of the  three-pboton deaays (those from 

the  rn=@ substates)  can be queached i n  magnetic f i e l d s  2 5 kG (Green 

and Lee, 1961). This is due t o  the  mixing of those s t a t e s  by the 

perturbing magnetic f i e ld  and the subsequent annihi la t ion i n  the  

s ing le t  s t a t e  s ince i t s  l i fe t ime (1.4 x sec) apainst  annihi la t ion 

i n  considerably shorter  than t h e  l i fe t ime i n  the  t r i p l e t  s t a t e  

(1.3 x 10-10 sec).  

The arcuracy of l i n e  width measurements such a s  the  one 

~ d a e n t e d  i n  t h i s  work i s  l imited by the counting r a t e ,  the  background, 

and the resolut ion of the  detector.  The re la t ionsh ip  between l i n e  

broadening and temperature i s  approxim~tely 

I n  the OSO-7 experiment f o r  the  0.511 MeV l i n e  seen quring t h ~  solar  

f l a r e ,  the  colibrat.ed resolut ion *or the  detector  and. the  uncertainty 

i n  t h e  width of the  measured l i n e  were 0.088 and 0.028, respectively, 

with t he  uncertainty a t  the  95 percent (20 ) confldence leve l  (i.e.,  

about 30 t o  35 percent of t he  detector  resolution).  The uncertainty 

denends on the a b i l i t y  t o  subt rac t  background and the a b i l i t y  t o  f i t  

the  remaining peak t o  a Gussian. If NB i e  the number of counts i n  

the  background and N i s  the number of counts i n  t he  peak, then the  
P 

uncerta inty i n  t he  hckground f i t  goes approximately a s  q a n d  the 

uncertainty i n  t he  p a k  fit goes apprmrFmately as -where Np is  the 

number of counts i n  the  peak. For our f l a r e  data the  e r ro r s  due t o  



both sources were  bout equal and of the order of 0.01, or about 

1C percent of the resolution of the detector. 

I t  i s  in te res t ing  t o  calculate  t he  improvement made by using 

a dr tec tor  of superior resolution such a s  a sol id-s ta te  detector. 

such detectors  qenerally have lover s e n s i t i v i t y  than the inorganic 

sc in t i l l a+ .or  used on the OSO-7, however. FOr a so l id-s ta te  detector,  

l e t  us  take n resolution a fac tor  of ten l e s s  than @O-7 (i.e., 1 percent 

a t  .5 MeV, or 5 keV). Let us a l s o  suppose t h a t  the  s ens i t i v i t y  i s  a 

f ac to r  of ton down. 

Por the sol id-s ta te  detector the  channels must be packed 10 

times a s  densely a s  the  0q0-7 analyzer 60 tha t  there  a r e  still about 

5 channels under the peak. The factor  of 10  change i n  resolution 

l a  halanced by the  factor  of 1 0  decrease i n  the s e n s i t i v i t y  so  the 

counts per channel i n  the  peak a r e  the  same. However, the continuum 

has decreased by a factor  of l P .  Therefore, the  e r ro r  i n  f i t t i n g  the 

continurn is down by a fac tor  of 3 (i.e.,  r'Ng/rO ra ther  than fiB) 

which makes i t  smaller than the Gaussian f i t t i n g  e r ro r  which should s t i l l  

be ahout 10 percent of width due t o  the i n t r i n s i c  resolution of the  

detector.  This i s  t rue  because the counts per channel i n  the  peak 

a r e  the  same as  i n  the  or iginal  case. 'o i f  an upper l i m i t  were cal- 

cu la ted . for  t h i s  solid-state detector  i n  the same way as f o r  the  050-7, 

Gmhining the  components of l i n e  wldth i n  quadrature a s  i n  Section I V ,  D, 

for the  u p w r  l i m i t  t o  WITH 
AE 2 AE, 2 AE 2 

< (- - (-) 
'E) TH - E TOTAL E DR 



and T '" - < 7 x 10-3/3 x = 233 and T - < 5 x lo4 O K  

In t h i s  cam., thermal broadening should certainly  be seen. A l l  

or t h i s  denends on 'he assumption that  beckground e f f e c t s ,  shieldirig, 

pointing, anpular response, e t c .  are the same or equivalent. 



GEORATION OF .WNIHILATION RADIATION 

A. General Theoqy 

The existence of a posi t ively charged pa r t i c l e  of mass equal t o  

t h a t  of an electron w n s  first postulated theoreticfl l lg by P. A. M. Dirac 

a s  the  physical in te rpre ta t ion  of the  negative energy solution of the 

Dirac equation (Dirac, 192%; mrac ,  1928b). Tracks of the positron 

were discovered i n  cloud chamber ~410togrsphs by C. D. Anderson i n  1932 

(Anderson, 1932; Anderson, 1933). 

The cross-section f o r  electron-positron two-photon annihilation 

was first deduced by Dirac (1930), while the  cross-section f o r  pair 

creat ion by gamma rays i n  the  v i c in i ty  of a nucleus was calculated by 

Hei t le r  and Sauter (1933) and by Bethe and Hei t le r  (1934). M d e n ~  

presentations of t he  theory a r e  given by Hei t le r  (1980) ead by Bjorken 

and Drel l  (I%&). 

1. Annihilation Mechanisms 

The d i f f e r en t i a l  cross-section fo r  two-photon annihilation is 

d v e n  by (Heitler ,  1960) 
2 2 2  2 4 2 4 Eoipoip,sin o 2p sin o 

do = 0 

- ( ~ ~ - p ~ c o s ~ ~ )  2 .  
2 ~ ~ i n ~  do a$ 

i n  the  center-ofmomentum frame fo r  unpolarized quanta and particles,  

where is the electron momentum i n  the c.m. f'rme, Eo is  the electron 

energy i n  t he  c.m. frame, ,@is the angel between and the direct ion 

of one photon, and 4 i s  the azimuth of' t he  d i rec t ion  of that photon. 



Transforming t o  t he  l a b  frame i n  which the electron is a t  r e s t ,  

and integrat ing over both angles, the  cross-section for  t he  annihi la t ion 

of a oositron of energy E+ is  

2 where y= ~ + / m c ~  and ro=e2/mc . 
An a~praot inate  form f o r  y* 1 ("non-relativist ic" case) valid 

2 for  oositron k ine t ic  energies such that e2/hc <i T+ s<mc is 

where v+ i s  the positron veloci ty  and T+ is the positron k ine t ic  energy. 

An approximate form f o r y  >>l  (extreme r e l a t i v i s t i c  case) i s  

Althouqh two-photon annihi la t ion i s  the predominant channel for  free 

positron decay, there a r e  several  competing processes. Single-photon 

annihi la t ion can take place when the  e lectron is  strongly bound t o  a 

nucleus of charge Ze. (The nucleus Is necessary t o  conserve energy 

and momentum). However, t he  cross-section f o r  single-photon annihilation 

is, a t  most, about 20 percent t h a t  of two-photon annihi la t ion even f o r  

the  heaviest nuclei  (Hei t ler ,  1960). For example (Hayakawe, 1969), ' 

f o r  y > > l  5 4 
"1 % 

42 cr - % " 3 In (2y 1-1 
whersUl/U2 i s  the r a t i o  of single-photon t o  two-photon cross-sections, 

a =e2/1-,c = I/IY, find f o r  B > > I  

5 4 2  22 4 / 3  z a 
v+ a 2  

'J1 where but z 5  , < 1  so - <<1. 
a 7 - 

Another possible process i s  one i n  which no photons a r e  emitted 

end the energy of annihi la t ion i s  given off t o  a second electron i n  t h e  



v ic in i ty  of the  co l l i s ion .  The cross-section f o r  t h i s  process is 

s m n l l  (Hnl t ler ,  196P). 

Three-photon decay w i l l  occur when twoquan'run annihi la t ion 

i s  by se lec t ion  ru l e s  which a r e  applicable. For an unbound 

$ s t a t e ,  the r n t i o  of t he  cross-section f o r  three-quantum decay t o  

t ha t  for  two-quantum decay is (Ore and Powell. 1949) 
A 1 - - 

a 2  = 372 ' 
For s t a t e s  of g r e ~ t e r  flngular momentum, the cross-sections 

decrease. The positron and electron can form a bound s t a t e  (posi- 

tronium) i n  whfch the  three-photon decay mode becomes important. 

3 For example, i f  R = 0, the formation of the t r i p l e t  Sl s t a t e  

( ~ r t h o ~ o s i t r o n i u m )  i s  3 timesmore probable than the formation of the  

s ing le t  s t a t e  (parapositronium). Since the decay of positronium 

oheys the se lec t ion  ru l e  (Stecker, 1969) 

(-1) (-1) S + l ( - l )  c= (-1) 

where p, i s  the o rb i t a l  angular manenturn quantum number, S i s  the spin 

ql7antm number, and 5 i s  the number of photons i n  the f i n a l  s t a t* ,  

three-quarters of the  positronium decays go t o  three photons and me- 

quar ter  go t o  two photms. The decay rotes  f o r  s t a t e s  % = 0 a r e  

negl ie iblo compared t o  the P. = 0 r a t e  (Deutsch, 1953). Ihe ast ro-  

physical conditions under which posi t ronim formation i s  important 

have been discussed by Stecker and by Leventhal (1973). Stecker 

shows t h a t  under i n t e r s t e l l a r  conditions positronsgenerated by coamic 

ray in te rac t ions  annih i la te  from r e s t  v i a  positronium formation over 

95 oarcent a" t he  time. In  most gases near atmospheric pressure, 

p o ~ i t r o n s  wil l  annih i la te  through the positronium mode between 21 



percent (nitrogen) 7nd 50 percent (oxygen) of the  t i m e  (Green and Lee, 

19641. hven tha l  c ~ l c u l a t e s  t h a t  t he  positronium b or mat ion f rac t ion  

can approach 100 percent f o r  n t m i c  hydrogen as t h e  density f a l l s  

below 1015 atoms ~ r n ' ~ .  A t  high enough dens i t i e s  or temperatures, 

hcwever, t r i p l e t  decay and positronium formation can be supressed by 

co l l i s ions .  f i r t hemore ,  high magnetic f i e l d s  ( ? 5kG) can decrease 

t r i p l e t  decay by one-third (Green and Lee, 1964). I n  sol ids ,  three 

photon annihi la t ion is  negligible.  

2. Generation of Positrons 

There a r e  three modes of positron production which dmina te  

i n  in te rac t ions  of astrophysical  imrortance; these are: 1. pa i r  

production, 2. posit ive pion decay, and 3. decay of positron-emitting 

nuclei. 

Pair  production i s  the  conversion of an energetic photon 

2 (E >2mc ) i n t o  a positron-electr'on pair. Energy and momentum cop- 

servation requires t ha t  another pa r t i c l e  be present. The cross-sections 

for  t h i s  in te rac t ion  were first calculated by Hei t ler  and Pauter (19331 

and by Bethe and Hei t le r  (1934). For pair creat ion i n  the  v i c i n i t y  of 

a nucleus of charge Ze the cross-section is  ( ~ e i t l e r ,  1960) 
2 

aE+  dE+ = ;; P+P- 4 P,~+P- + 
F dE+ { -  5 - 2E+E- - 

P + ~ P -  
E+E- E+E- E+E- 

+ ( r n ~ ~ ) ~ ( -  +. - - - 
P- 

) + L lk2 C E + ~ E _ ~ + P + ~ ~  2,  - 
p t P+P, P+ >P- " - 

where k is the momentum of t h e  photon, E+(-) is  the t o t a l  energy of 

the  positron !electron),  p+(-) is the maenturn of the positron 



(e lectron) ,  ~ + = 2 ~ . n  u+tp+' ~1.211n CE+E_tp+p,+ h c 2  1 r 
- mc -xFT--- 

and o = ~ ~ r ~ ~ / 1 3 7  

Thia formuln i$ val id  under the conditions of the Florn a p  

proxhiation, assuming tha t  t he  screening of the nuclear Coulomb f i e l d '  

by the outer e lec t rons  is negligible. By integrat ing t h i s  expression 

over E+, a t o t a l  p i r - c r e a t i o n  cross-section can be obtained. ?or the 

case i n  which a l l  energies a r e  large compared with mc2, 

I n  general, t he  pir production cross-section for  an electron r i s e s  

from a negl igible  value (compared t o  the Compton cross-section) belou 

1 MeV and l e v e l s  onf t o  a weak dependence on photon energy above 

100 YeV. 

Another mechanism important is astrophysics i s  the decay of 

the  posit ive pion. The n o w 1  pion decays a r e  (sew&, I%&) 

' +  + 
no + 2y (T 2 2 x s e c ) ,  n +p +vp 

- - -  
and n '1-1 +V (Tt 2.55 x 10-'sec) 

v - 
Down i n  p rab ib i l i t v  by a f ac to r  of 10-4 i s  

+ 
Tr * e + + v  e ' 

D m  i n  probabi l i ty  by a fac tor  of i s  
n+ + TrO + ef + Ve '  

Free muons obtained from the pions demy by the scheme 

p + - + e t + v  + ;  LT ~ 2 . 2 x 1 0 - ~  sec) 
The mean energy of t he  r e su l t i ng  elec&on i k  rou#hly one-qusrter the  

energy of the  or ig ina l  pion (Cheng, 1972). 

Negative muon8 r eac t  w e ~ k l y  with nuclei  (e.g., p + p; n + ,), 

+ + +  but u+decays Crresly a s  indicated above. The chain n - +  +e is  



important because nions a r e  produced by cosmic r ay  in te rac t ions  i n  

i n t e r s t e l l a r  s p c e  by  reaction^ such a s  (Ramaty and Clngenfelter, 1966) + 
pCp+A+B+an +b [II++T-) + c r O  

and p+~,~+~+~+~+ar'+b (-nf +rml i cl1° 
where A, B, and C Rre nuclei  and nucleons and a ,  b, and c a r e  zero or 

posi t ive  integers .  Abwt 30 percent of the  incident k ine t ic  energy 

of the protons goeri t o  pion energy (Cheng, 1972). Most of the  

ga lac t ic  pions a r e  produced by cosmic rays of energy 500 MeV or  greater. 

The contribution from cosmic ray a-par t ic le  in te rac t ions  with 804 and 

proton in te rac t ions  withheavier nuclei  can be neglected because of 

low r e l a t i v e  i n t ens i ty  and density. The contribution from kson pro- 

duction and decay csn be neglected because the  kaon production cross- 

sect ion i s  10-2096 of the  pion cross-section and kaons carry a smaller 

f ract ion of the  t o t a l  energy. Similarly,  the  positron contribution 

from other strange par t ic les  i s  negligible.  

Another source of positrons (of energies below 20 MeV) is  the 

decay of 8 + emitt ing isotopea (e.g., C1*, c", N ' ~ ,  016, 015). These 

radionuclides can be formed i n  t h e  cosmic ray s p l l a t i o n  interact ions  

between protons and el2, N ' ~ ,  and 016 nuclei ,  a s  well a s  i n  s imilar  

in te rac t ions  i n  the atmospheres of t h e  Earth and the Sun. The r o l e  of 

t h i s  mechanism i n  the production of positrons i n  the galaxy has been 

investigated by Stecker (1969) and Ramaty, Stecker, and Kisra (1970) 

using cross-sections published by Audouze e t  a l .  (1967). 

Less important modes of pa i r  production include the following: 

1. Creati0.1 of pairs  i n  the  c o l l i s i m  of two heavy particlea. 
r 

Here, o 2 o (mc2) 212z22 2 M - Z  jy 
M2CLT2 

C 1 . 2  2 
M1 where p a r t i c l e  1 is  i n i t i a l l y  a t  rest and T2 l a  t he  k ine t ic  energy of 



pa r t i c l e  2 (assuming T2s 5 %c2) (Heitler ,  1960). 

2. Creation of mirs  by a f a s t  electron i n  the  f i e l d  of a 
r 222 
0 nucleus. Here, 0 2 -255T 28 27n Cln ~,/rnc 1 

* 
and the  e lectron energy Eo >zmcL. 

3. Creation by c o l l i s i o n  between two electrons.  

4 .  Creation hy the  annihi la t ion of two l i g h t  quanta (inverse 

pair  annihi la t ion) .  

5. Conversion of a y quantum emitted by a nucleus i n t o  a 

pair  i n  the  f i e l d  of t h a t  nucleus. A l l  of these l a t t e r  processes 

a r e  negl igible  canpared t o  t h e  first three. 

B. Production i n  the  Earth 's  Atmosphere 

1. Cosmic Ray Interactions 

Cosmic rays vhich a r e  incident on the Earth's atmosphere 

generate c3ntinum and l i n e  gamma radiation,  which have been measured 

by balloon-borne de tec tors  (Jones, 1961; Peterson, 1963; Haymew et al., 

1969; Chupp e t  al., 1967). %e channels i n t o  which the energy of t he  

cosmic rays goes is sham i n  the  following t ab l e  (Hayakam, 1969): 

Process 

Ionizat ion i n  t h e  atmosphere 

Residual energy a t  sea  l eve l  

Nilclear d i s in tegra t ion  

Neutrinos 

TOTAL 

Energy d i s s i p a t i o q  
(~e~-crn~-sec'~-sr '  ) 



where the numbers hold l a t i t u d e  50'. The incident and d i s s i p t e d  

energiea can a l s o  11e analysed i n t o  the species by which they a r e  

carrfed (Hayakawa, 1969): 

Species Incident Ener 
(MeV-cmcl-secg-sr-l) 

Protons 889i 25 

He - nuclei  200t 4 

L - elements 

M - elements 

H - elements 

TOTAL 

where L, M,  and H r e f e r  t o  l i gh t ,  medium, and heavy cosmic ray nuclei. 

Smoles  M s s i p t e d  Energy 

Proton Ionizat ion 1 oss 129t  3 

4 as-+ 14 

0 
ll 2652 24 

Nuclear d i s in tegra t ion  

rnAL  

where the estimates have been made fo r  a geomagnetic l a t i t ude  of 55'. 

The above t ab l e s  i l l u s t r a t e  the  importance of pions i n  cosmfc ray 

i n t e r a c t i ~ n s  i n  the  atmosphere. 

Cosraic ray  components can a l s o  be characterized by t h e i r  

a b i l i t y  t o  penetrate matter. , Tbe so-called so f t  component i s  cauposed 

of e lectrons and photons ( the  e lectronic  or E-cornponent). Near sea- 

l e v e l  the  charged pions have la rge ly  decayed i n t o  p mesons ( the  

penetrating cunponent) which i n t e r a c t  with matter even l ea s  strongly 

than the  N-cmponent. The genetic re la t ionehips  among the  comic  raj 



secondaries a r e  i l l u s t r a t e d  by Hayakawa (1969) i n  t he  following 

diagrams : 

E 

LOW N N 
Energy 

1-I 

v 

V 

no ,Y > E  

High N N 
Energy 

V 

Although these diagrams a r e  only rough schematics, they indicate  t ha t  

the  main contribution t o  the  e lec t ron ic  component (and, hence, t o  

the  positron annihi la t ion rad ia t ion  and the gamma-ray continuum) is 

r0 production. This can be seen quant i ta t ive ly  i n  the  graphs of the  

i n t ens i ty  versuff atmospheric depth i n  Flgure 4-1 and Pipe A-2 

(Hayakaua, 1969) where the e lec t ron  (positon plus negaton) f luxes  

frm n o  in te rac t ions  and from p decays a r e  compared. Only a t  large 

2 depths (>  600g/cm ) does the  ]I+ e souroe becme Important. Since 

balloon-borne gamaa-ray de tec tor  measureolents have shovn that the flux 

of annih i la t ion  radiat ion inoreases r l th  decreasing atmospheric depth 



ATMOSPHERIC DEPTH (a mi'.) 

F i g u r e  A - 1 .  V e r t i c a l  i n t e n s i t i e s  v e r s u s  
a t m o s p h e r i c  d e p t h  o f  t h e  s o f t  component (s) and i t s  
subcomponen t s ;  S = e  + s p  + s p ,  e  ( e l e c t r o n s ]  = 
N -+ e  ( e l e c t r o n s  f rom n o )  + p + e  ( e l e c t r o n s  from 
t h e  knock-on and  d e c a y  processes o f  m u o n s ) , ( ~ a y a k a w a ,  
1969  1. 



F i g u r e  A - 2 .  I n t e n s i t i e s  Of e l e c t r o n s  ( e l  and 
gamma r a y s  C y )  o f  e n e r g i e s  above 100 MeY r e r s u s  
a t m o s p h e r i c  d e p t h ,  i n  u n i t s  o f  t h e  n u c l e o n  a t t e n u -  
a t i o n  l e n g t h ,  1 1 0  g- ~ m - ~ .  The c o n t r i b u t i g n s  o f  
n o  - 2y d e c a y s  ( y n ~ ,  e , ~ )  and  n - ?A - e  decays  
(y e  ) t o  gamma r a y s  and  e l e c t r o n s  a r e  shown 
s e # i r a t e l y .  (Hayakawa, 1969 1. 



i n  n manner s imilar  t o  the E-ccmponent (~as tu r i r angan ,  19721, we can 

conclude t h a t  t he  positrons which produas t h i s  radiat ion a w e  mainly 

from the  channel 
0 .+ 4- N+n +y+e 

where the  poaitron is  produced by pir production and loses  energy by 

bremsstrahlung radiat ion (Ee > 1OOMaV) and ionizing co l l i s ions  

(E, <100MeV). 

The generation of low energy gamma ray6 i n  the  atmosphere has 

been Investigated by makin  (1970). Using electron flux measurements 

of Verma (1967) and Brini e t  a l .  (19671, he bas calculated t h a t  84% 

of the photon f l u x  a t  3.5 mb residual  pressure from 0.3 t o  10 MeV can 

be explained by electron bremsstrahlung i n  the  atmosphere. Less 

important processes a r e  annih i la t ion  l i n e  and soattered radiat ion,  

nuclear de-excitation radiat ion,  and gamrm rays  d i r ec t ly  from , 0 

decay. Caloulations and observations by Kasturirangan e t  a l .  (1972) 

and Haymes e t  a l .  (1969) a l s o  show t h a t  the  low energy photons largely 

or iginate  from the  eleotronic component of t h e  secondary cosmic 

radiation.  The poaitron portion of t he  e lectronic  component a l s o  gives 

rise t o  t he  0.511. MeV radiation.  

2. Antimatter i n  Meteor Sharers 

The d i s t r i bu t ion  of ant imat ter  i n  t he  universe is a phenmenon 

i n  cosmolology t h a t  may be amenable t o  study by gamma-ray astronmy. 

Konstantinm (1966) has hypothesized the  e r l s tence  of meteor-like 

bodies exchanged between matter and ant imat ter  s t e l l a r  systems. Posi- 

t i v e  evidence f o r  t h i s  idea has been claimed through a correla t ion 

between the  in t ens i ty  of high energy gamma-ray f lux  and neutron 



measurements i n  the upper t ropopuse  with the time of en t ry  of 

individual meteors i n t o  the Earth 's  atmosphere (Konstantinov e t  el . ,  

1966; Konstantinov e t  a l . ,  1967). 

Konstantinov e t  a l .  (1970) have analysed garm~a r ay  data i n  the  

ranee C1.7 t o  2.7 MeV fiaa t h e  Cosmos-135 s a t e l l i t e  and have found an 

enhancement during meteor shovers i n  the  0.511 MeV rad ia t ion  observed 

by the i r  detector.  The obeervations were mads during t h e  Geminide, 

Urside, and Guadrantide showers of 1966-1967 and amounted t o  a 50% 

effect .  

The enhancement was not correla ted d t h  changes i n  the gamma 

ray continuum or with charged-particle e f fec t s .  According t o  the 

hypothesis, t h e  observed enhancement could be caused by about 20 mg. 

of antimatter introduced i n t o  t he  Earth 's  a tmos~here  during one day. 

The &-day psriod of 25-28 April 1972 used i n  Section IV of 

t h i s  work i n  an invest igat ion of aspect and r i g i d i t y  var ia t ion has 

a l s o  been used t o  inves t iga te  t he  time var ia t ion  o f  t he  0.511 MeV 

flux. I n  order t o  see  d a i l y  var ia t ions  which a r e  independent of 

r i g i d i t y  e f f ec t s ,  scans used t o  obtain a d a i l y  average must be char- 

acter ized by the same r i g i d i t y  Prom day t o  day; t ha t  is, i f  two scans 

a t  4-5 GV and three scans a t  10-11 GV a r e  used t o  obtain an average 

r a t e  on 26 April, equivalent scans must be used t o  obtain the average 

r a t e  for 27 April i f  a va l id  time dependence i a  t o  be seen. Other 

parameters need not be considered s ince they do not a f f e c t  the  r a t e  

by the fac tor  of' 50% seen by Konstantinov e t  a l .  

The var ia t ion of the average da i ly  r a t e  i s  s h a m  i n  Figure A-3. 

The e r ro r  bars shown a r e  due only t o  counting statistics but include 



Doily Average Rate 

Antlearth Quadrant 

~ i g u r e  A - 3 .  D a i l y  v a r i a t i o n  i n  t h e  0.51 M e V  c o u n t i n g  r a t e  f o r  a 
l i n e a r  f i t  t o  t h e  background .  Each p o i n t  i s  an a v e r a g e  of  22  a c a n s .  



the uncertainty i n  subtract ing n l i nea r  beckpound from beneath the  

psak. Each point i s  an average of 27 aoans. The 1 0 e r r o r  tars a r e  

a b w t l 5 b  of the  average r a t e  i n  length. A consistent increase i n  t he  

r a t e  of 5C$ o r  more over a period of several  days i n  coincidence with 

a meteor sharer, as  was seen by Konstantinov e t  a l . ,  ahould be apparent 

i n  t h i s  type of analysis.  

A t  the time of the  present work, only I* days of data were 

avai lable  for  complter analysis .  I n  t he  future ,  however, data  covering 

April t o  December 1972 a11 be available. This span of time includes 

such large shovers a s  Aquaride, Perseid and Orionide. If the  0.511 MeV 

enhancement i s  a general property of meteor showers a s  the  work of 

Konstantinw e t  a l .  implies, it should be confirmed i n  the OSO-7 data. 

C. Production i n  t he  Solar  AtmosFlhere 

1. Quie t  Sun 

Although the high energy thermonuclear reactions i n  t he  Sun's 

core produce x- and gamma-radiation, these photons a r e  degraded i n  

energy i n  t h e i r  p s s a g e  through the  so l a r  material  t o  t h e  surface. The 

temperature of the  surface of the  photosphere i s  ?45000K, and the  Sun's 

spectral d i s t r i bu t ion  can be approximated by a black body a t  about 

w%. This d i s t r i bu t ion  peaks a t  about 50008 and v i r t u a l l y  a l l  of t he  
D 

energy of the  Sun's radiat ion i s  below 20008   ree en and W g s t t ,  1965). 
6 

The temperature of t he  c o r m  i s  about 10 %, and i t  r ad ia t e s  l i k e  a 

' g a g  bodyu with a d i s t r i bu t ion  peaked a t  2911 (0.43 keV). However, 

t h i s  m i s s i o n  r a r e ly  exceeds 10-3 of the so l a r  constant (Green and 

Watt, l%5). 



The average k ine t i c  energy of gas par t ic le  is: 

f o r  a hxwell-Boltzmann d is t r ibu t ion ,  where 0 i s  the  k ine t ic  tanonper- 

a tu re  and k i s  Boltamam's constant (8.6 x low5 el'/%). For a tempera- 

tu re  of 6 x T = 0.7'7 eV; and f o r  lo6%,? = 130 eV. The threshold 

for  positron aoducing  mechanisms a r e  much greater than these values. 

For example, the  threshold f o r  the  production of @ +  emitters i n  nuclew- 

nucleon co l l i s ions  i n  the s o l a r  atmosphere is 5 MeV or  higher (Dolan 

+ 
and Fsaio, 1965; Cheng, 1972). The thresholds for , poduction i n  p-p . 
and p - a react ions  a r e  290 MeV and 172 HeY, respectively. Finally,  

the contribution t o  the annih i la t ion  gamma ray flux f r m  the thermo- 

nuclear react ion 

H' +H' + + e+  + " 
i s  expected t o  be small even fo r  the  hot corona and coronal condensation 

a s  compred with a f lare-rela ted contribution (Cheng, 1972). 

Because of the  above considerations, t he  gamma radiat ion 

emitted by t h e  qu ie t  Sun i s  negl igible  c m p r e d  with emission during 

so l a r  f l a r e s  (Dolan and Fgaio, 1965). No positive measurements of 

quiet-sun gamm rays have been made t o  date; a summary of upper l i m i t s  

for the  gamma r a y  continuum has been presented by Cheng (1972) and a 

eimilar aurrmary for t he  0.51 MeV radiat ion has been given by Chupp 

( l97 l ) .  The l i s t i n g  of Chupp i s  reproduced here a8 Table 4-1. 



TABLE A-1 

EXTRATEFCG%STRIAL UPPER LIMITS (0.51 MeV) 

Source 

Sun (Crab) 

Cosmos 

Sun 

Sun 

Crab (Sun) 

Gym= 

Virgo 

Cent A 

Sun 

Date 

5-2-61 

1-62 

6-10-62 

11-2-67 

-68 

-68 

-68 

-68 

Photons cm2sec-I 

1 x 10-I 

1.4 x 10 
-2 

1.3 x 

(7.5-26) x loe3 

8.4 x 10'~ 

1.24 x 10-3 

2.1 10-3 

1.8 x 10-3 

Experimenters 

Peterson (1963) 

Metsger st a l .  (1964) 

k o s t  e t  a l .  (1966) 

Chupp e t  a l .  (1968) 

Hsymes e t  al .  (lq68) 

Haymes e t  al .  (1%8) 

Hagmes e t  a l .  (1968) 

Haymes e t  a l .  (1968) 

Womack and Overbeck 
(1968) 

Sun 4-25-68 (1.1-4.8) x lo4 Chupp e t  a l .  (1970) 

Sun 7-7-66 Null result Cline e t  al .  (1968) 

8-28-66 OCO-I11 

5-23-67 

Reference: Chupp (197l) 



2. Solar  Flares 

A review o r  theore t icu l  f l a r e  me~hanisms has been penented by 

"vent (19691. 'lhese model4 inclurle the  a c c e l e r ~ t i o n  oC f a s t  nuclei 

which a r e  sonotimes detected d i r e c t l y  and which must be present f o r  

the production of annihi la t ion radiation.  I n  fac t ,  hiqh energy protons 

have been thought t o  be produced predominantly 1 )  before the f l a r e  

(H. E l l i o t ) ,  ?) during the explosive phase (K. Sakurai), and 3) during 

the decay s tage  (C. de ~ a ~ e r )  (Sweet, 1969). A review of f l a r e  models 

an re la ted t o  camma ray Rnd neutron ~ roduc t ion  has been done by Chupp 

( 1 4 n ) .  Here the m ~ d e l s  and f lux  estimates a r e  dif ferent ia ted ac- 

cording t o  t h e i r  geometries: A )  tbe directed p r t i c l e  geometry 

( 5 .  I. Syrovatski i ) ,  B) i so t rop ic  thin  ta rge t  geometry (R. E. Lingen- 

f e l t e r  and R .  Rmaty, accelerat ion phase), C) i sotropic  thick tnrget  

geometry (Lingenfelter and Ramaty, slow down phase), and D) magnetic 

b o t t l e  geometry (H. E l l i o t  and E. Schatzman) (Chupp, 19'7l). 

The r a t e  of generation of annihilqtion radiat ion during so la r  

Flares has been calculated bv several  workers. The main sources of 

po3itrons a r e  t,he decay of nt  mesona produced i n  p-p reactions an1 
t 

the  6 decay of s p l l a t i o n  products. Dolsn and Fasio (1965) have 

calculated the time-averaged annihi la t ion l i n e  f lux assuming a 

r i g i d i t y  demndent oroton spectrum 

Lingenfelter and Ramaty (1967) have calculated the flux f o r  a positron 

production r a t e  per &m2 of f l a r e  proton range averaged over the  



pa r t i c l e  accelerat ion time ( g e a e t r y  B, above). The range of the nc- 

celerated protons i s  generally taken t o  be % 1 g/cm2. A f lux can 

a l s o  be produced during the slowing d o n  of those pa r t i c l e s  which do 

not escape the Sun. For t h i s  geometry (C), the  authors have assumed 

tha t  1/2 the f l a r e  p r t i c l e s  a r e  directed toward the Sun where they 

in t e r ac t  and s l o w  down. Assuming the  same rigidity-dependent spectrum 

a s  Dolan and Wzio, the  mean gamma r ay  flux per un i t  time at  Earth 

during accelerat ion is  

- N~ X1 (O,cc) 
@ =r X 

acc 1 1 

where NT i s  the number of accelerated par t ic les  >3O MeV, 3 is  the 
- 

2 range (g/cm ) of these pa r t i c l e s  during acceleration,  tl is the  ao- 

celerat ion time, and @acc/xl i s  tabulated by Lingenfelter and Ramaty. 

The flux during slowdam i s  given by 

where E is  the f ract ion of pa r t i c l e s  which in t e r ac t  a f t e r  acceleration,  

sd 
i s  the t i m e  over which in te rac t ion  takes place, and Q i s  tabulated. 

ad 
Cheng (1972) has taken i n t o  account the  time-dependent energy 

losses  of the  flare-acceleration of par t ic lee  f o l l w e d  by energy loss  

through various mechanisms, They may remain trapped i n  the  f l a r e  

r e ~ i o n  or a l a rge  f ract ion may eocape and in t e r ac t  on the  (high density) 

so l a r  surface. The fluxes a r e  calculated both f o r  a parer law i n  

i n i t i a l  p a r t i c l e  k ine t i c  energy 



and for  an exponential law i n  r i g i d i t y  

+ 
Then the i n i t i a l  maximum annih i la t ion  flux at Earth due t o  p 

prortuction is 

J = 7 . 1  x (nHKV) Q T  ,+ photons cmc2sec-I 
~ I Y  

where nH is  t h e  ambient proton density, V i s  the gannna-ray emitting 

volume (Kv=N/RO, where N is t h e  t o t a l  number of acceleratsd protons), 

and Q i s  t he  positron production r a t e  tabulated by Cheng. The time 
5 + 

dependence of t he  flux goes as exp I -(t-  %,)/TI f o r  t > T,, where T is - 
the  "decavn time f o r  ir + production (due t o  proton energy losses),  

and gn is  the mean time f o r  positron prbduction t o  annihilation.  The 

i n i t i a l  f l u x  due t o  8+ - decay positrons i s  

J ~ , Y  
= 7 . 1  x lo-2a qBKV photons c<2sec-l 

where q is the positron production r a t e  which i s  graphed by Cheng a s  B 
a hlnction of time 'or various nH and Ro. There is a fixed delay of 

' 

an between positron production and annihi la t ion where 120 sec < - 
< 1.2 sec for  e lectron dens i t ies  between 1012 CUI'~ and c,'3 . a n -  

The f l u e s  obtained by these models can be capared  f o r  a f l a r e  

with mrameters 



Model 0.51 MeV f lux  a t  ee r th  

+ t 
decay decay Total 

* 
Dolan an6 Fanio 4 . 2 ~ 1 0 ' ~  2 . 1 ~ 1 0 " ~  4 . 1 ~ 1 0 ' ~  

* 
Lingenfelter & Ramsty -- --- 3 x 10-I 

* * 
Cheng 1 . 2 ~ 1 0 ' ~  1 . 4 x 1 0 - ~  1 . 2 ~ 1 0 ' ~  

* a v e m p  f l u  over 100 seconds 

** in i t i a l  maximum flux 

D. Cosmic Sourceg 

Stecker (1969) has calculated tha t  there  may be a detectable  

flux of annihi la t ion gamma rays frm the ga lac t ic  disk. As i n  so la r  

f l a r e s ,  t he  two main possible positron production modes a r e  f rm the 

formation of .+ mesons and positron emitt ing radionuclides. Stecker ls  

argument shows tha t  an  annihi la t ion gamma ray f lux  w i l l  be due mainly 

12 t o  8+ decay of products of p - C , p - N", and p - 016 apal la t ion 
+ 

in te rac t ions  ra ther  than n formation. This is because positrons 

+ 
from 8 decay have a l ~ w e r  i n i t i a l  energy ( l e s s  than a few NeV) than 

positrons which r e s u l t  from react ions  producing n + mesons (greater  

than a few MeV). The l a t t e r  positrons have a much greater  probabil i ty 

of escaping the ga l am before annihilating.  

+ 
For the  71 decay mode, the  positron spectnrm can be calculated 

from knowledge of the  ga lac t ic  cosmic ray spectrum (aasumad t o  be the 

same a s  t h a t  measured above 500 MeV near the  Earth),  The positron 

energy logs r a t e  (v i a  ionization,  bremsstrahlune, synchrotron radiation,  

and Compton c o l l i s i ~ n s )  and trapping t h e  i n  the galaxy a l s o  determines 



the  shape of t he  annihilation gamma ray spectrum. Bscause of the  high 

veloci ty  a t  which annihi la t ion takes place, Doppler sh i f t i ng  is Im- 

portant i n  t h i s  mode and the cha rac t e r i s t i c  peak is smeared between 

250 and 500 keV. Only 12% of these positrons annih i la te  near res t .  

The second important source of ga lac t ic  positrons i s  spal la t ion 

interact ions .  Stecker (1969) uses the list of in te rac t ions  of Audouze 

st a l .  (1967) and t h e  ouiet-sun cosmic-ray spectrum between 20 and 

1090 MeV/nucleon of Cornstock et  a l .  (1966) t o  estimate the positron 

production f r an  8 3  emitters. Most of these positrons a r e  emitted 

with energies l e s s  than 5 MeV and over 95 percent of them annihi la te  

near r e s t  i n  the galaxy. Stecker 's  calculat ions  indicate  t ha t  almost 

a l l  of theae positrons form poaitronium, 25 percent of which decays 

i n t o  0.51 MeV gama rays and 75 wrcen t  of which decays i n  a continuum 

of energy l e s s  than 0.51 MeV (see appendix on General Theory of An- 

n ih i l a t i on ) .  The most optimistic estimate of the  annihilation l i n e  

flux which comes out of this analysis  i s  about 10'3 Notons cm-2sec-1 

sr-I frm the  ga lac t ic  disk,  with more conservative values being 

4 x 10" crndsec-lsr-l or  l eas .  

A l a t e r  analysis by Ramaty, "tecker, and Miera (1970) concludes 

t h a t  the flux f o r  a homogeneous d i sk  model of the  galaxy would be 

44  -1 -1 amaller than the beckground continuum ( 27 x 10 m4sec sr ) unless 

the mean cosmic ray energy dens i ty  is muoh la rger  than seems probable 

from the general dynamics of the i n t e r s t e l l a r  medium. Thus t he  hypo- 

t h e t i c a l  f lux would be very d i f f i c u l t  t o  detect. However theee authors 

so  on t o  argue tha t  physical conditions i n  the ga lac t ic  center could 

modify the  energy density argument and eo i t  might be a detectable 

source of 0.51 MeV gamma rays. 



Johnson e t  nl. (1972) have detected a grtmma-ray continuum and 

a peak n t  L76 f 30 keV from the ga lac t ic  center region. This rneaaurement 

haa received ~ e v e r ~ l  interpreta t ions .  The moat i n t e r e s t i ng  one, i n  

the  nresent csntext ,  is due t o  Leventhal (1973). He suggests t ha t  a 

line-plus-continuum spectrum, which is  emitted f r m  the ga lac t ic  

center  by annihi la t ing positronium, i s  folded through the 86 keV energy 

resolution of t he  detecting instrument. This resolution causes the  

apoarent energy of the maximum of the peak t o  be sh i f t ed  d m  t o  190 keV. 

-2 -1 The observed flux f =r t h i s  fea ture  i s  1.8 + 0.5 x photons cm see - 
-2 -1 -1 f o r  .a point source (o r  about 3 x photons cm sec sr f o r  source 

extended over t h e  2.4' angular opening of the  detector) .  It shrruld be 

mentioned here t h a t  b t z g e r  e t  a l .  (1964) have put an upper l i m i t  of 

1.1 x 10'~ photons ~ r n ~ s e c - ~ s r - ~  for  an i so t rop ic  cosmic flux. Trmbka 

et  a l .  (1973) have a positive, though weak, indicat ion of an annihila- 

t i on  radiat ion of cosmic origin,  although other sources cannot be 

completely ruled out. 'Their measurement indicates  a flux of 

2.4 ?; 1.2 x loa3 photons ~ m - ~ e e c - ~ a r - ~ .  



APPENDIX I1 

LOCAL PRODUCTION I N  THE SATELLITE 

It  i s  reasonable t o  expact t h a t  charged-particle interact ions  

with the s p c e c r a f t  material would produce l o w  energy gamma rays. 

 satellite^ a r e  always exposed t o  cosmic rays and those i n  Earth orb i t  

can be exnosed regular ly  t o  trapped par t ic les .  The gamma ray experiment 

abmrd the Ranger 3 S p c e c r a f t  indicated the significance of cosmic 

ray e f f e c t s  (Metzger e t  al. ,  1964). Spectra i n  the  range 70 keV 

4.4 MeV were measured with an i so t rop ic  detector  both stowed on the 

smcecrapt  and extended on a 6-foot born. C m p r i s o n  of the spectra 

showed a decrease i n  counting r a t e  of about a fac tor  of 2 i n  the 

extended posit ion a s  compred t o  the  stowed position. The difference, 

due t o  secondary pro3uction i n  t he  spacecraft ,  included a peak a t  

0.51 MeV. T h i s  backpound was apparently caused by cosmic rays. 

An analysis  of the  background produced i n  the  OSO-1 s a t e l l i t e  

by Peterson (1967) indicated t h a t  about 50 percent of the counting 

r a t e  i n  the  energy range 1.5 t o  4.5 MeV was caused by secondary 

production i n  t he  spacecraft ,  about LO percent was due t o  atmospheric 

gamma ray8 and 10 percent t o  cosmic gamma rays. Additional background 

was seen a f t e r  exposure t o  trapped protons encountered i n  t he  500 h 

orbi t .  'Phe mechanism was indicated a s  being due t o  t he  decay of 

25-minute a c t i v i t y  induced i n  the  NaI c rys t a l  by secondary 

neutrons produced by trapped protons (Peterson, 1965). 

More recent 7nalysis tends t o  ind ica te  t ha t  spal la t ion r e a c t i m s  

i n  the detectm- and spilcecraft a r e  more important gamma ray sources 



than neutron c a p t u r ~ .  Flshman (1972) has calculated the spal la t ion 

y ie lds  for  100 MeV protons in te rac t ing  with N ~ I  s c i n t i l l a t o r  material. 

These ca1:ulations were checked experimentally by i r r ad i a t ing  NaI with 

600 VeV protons and observing the spectre of the  decay products as a 

function of time. The analysis  indicated numerous l i nes  i n  the spectra 

due t o  the decay by electron capture or i n t e rna l  t rans i t ion  of isotope8 

of iodine, tel lurium, and antimony. An exponential continuum due t o  

beta emit ters  and unresolved l i n e s  was a l s o  found. 

Dyer and Morfil l  (19n) have obtained s imilar  r e s u l t s  for  the 

i r rnd ia t ion  of C8I(Tl) with 155 MeV protons. These r e s u l t s  were used 

t o  predict  production i n  t h i s  material by cosmic rays and trapped 

protons. 

The recent Apollo f l i g h t s  have enabled Peterson and Trombka 

(1973) t o  measure the ac t iva t ion  i n  a NnI s c i n t i l l a t o r  direct ly .  

A 7.0 cm x 7.0 cm NaI c rys t a l  was stowed i n  the  Apollo 1 7  Couunand 

Module f o r  some 300 hours and passed through the Van Allen belts twice 

before it was examined on the  ground about 1 1 / 2  hours a f t e r  re-entry 

i n t o  the atmosphere. The c rys t a l  was examined by viewing it d t h  a 

photomultiplier tube and by exposing it t o  C e ( ~ 1 )  detectors and a large 

4 n r c i n t i l l a t i o n  counter. Radioactive nuclides i n  t he  cryatal  were 

iden t i f ied  by the  charac te r i s t ic  energies of the gamma rays emitted by 

them and by t h e i r  half  l ives .  Qua l i t a t i ve  iden t i f ica t ion  was obtained 

for the following nuelidea: Na22 (2.6 grs), ~a~~ (15 h r s ) ,  (13 hrs),  
124 

I (4  days), days), 1128(25 min) and ~ e ~ ~ ~ ( 3 4  days). The 

~a~~ and 112' fire evidently produced from neutron capture by ~a~~ and 

I ~ ~ ~ ,  respectively. Na2* i s  produced by spa l la t ion  Prm ~ a ~ ~ ,  and the 



other oroducts r e s u l t  rrm t h e  s p l l a t i o n  of I 127. 'he  l i n e s  a t  

1.&6 MeV and 2.62 MeV due t o  ~4~ end Th were a l so  observed. 

Several of 1,he l i nes  seen bv the UNH detector  a r e  consistent 

with these sources. I n  Flgure 111-5 we see a  peak near 0.40 MeV and 

a  broad feature  betxeen 0.59 and 0.78 MeV. The feature a t  0.40 MeV 

may he due t o  the  0.39 MeV l i n e  from 112'!' together vi th  the 0.44 MeV 

l i n e  from I ~ ~ ~ .  A feature  s imilar  t o  t he  one between 0.59 and 0.78 MeV 

was seen by Peterson and Trombka. This was caused by the following 

l ines :  0.60 MeV (112'!'), 0.67 t4eV ( I ' ~ ~ ) ,  0.72 MeV (I 123) and 0.75 MeV 
126 

( I  1. 

The 13cal source of annihi la t ion radiat ion i s  a  l a rge  number of 

positron emit ters  thf l t  can be produced by spal la t ion.  When these 

radionuclides a r e  produced i n  the  s c i n t i l l s t o r  i b se l f ,  they produce 

an energy l.oss continuum spectrum ra ther  than an annihilation l ine .  

This i s  because the positrons re lease energy by ionization losses  as  

thev slw down i n  the r c i n t i l l a t o r ,  pr ior  t o  annihilation.  The C s I  

shield ,  however, should be an important source of 0.51 MeV gamma rays  

because of i t s  massiveness and because i t  surrounds the cen t ra l  detector. 

The theore t ica l  and laboratory analysis  of Dyer and M o r f i l l  

( 1 9 n )  indicate  t ha t  numerous positron emit ters  can be produced 

by s p l l a t i o n  i n  C s I .  The most Important are:  cs130(30 min), 

122 121 
min) , ~ ~ ' ~ ~ ( 1 . 6  min) , ~ e ' ~ ~ ( 1 2 0  min) , I (4 min) , I (96 min) , 
sbm 11*(3.5 min) and ~b' '~(15 min). Positron emitters produced i n  the  

photcmultiplier tube and i n  the  r e s t  of the  s p c e c r a f t  may a l s o  con- 

t r i b u t e  t o  t he  detected background. 'he mul t ip l ic i ty  of positron 

emitters makes the analysis  of the  background r a t e  i n t o  various 



contributors prohibitively d i f f i c u l t  in  th i s  experiment. Instead, the 

telescopic propertips of the detector are used t o  distinguish local  pro- 

duction from e x t e r n ~ l  sources. 
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