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ABSTRACT ' a v

\

The paper presents conditions which guarantee that the control S & :
: X\

strategies adopted by N players constitute an efficient solution, an

equilibrium, or a core solution. The system dynamics are described

L gt i R ER

by an Ito equation, and all players have perfect information. When

the set of insﬁantaneous joint costs and velocity vectors is convex

the conditions are necessary.
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§1. INTRODUCTION

N playexs are simultaneously controlling the evolution of a system
aescribed‘by the Ito equation

l N .
dzt = f(t,z,ut,...,ut) at + dBt' t e [0,1] (1)

viere (zt) is the state process, (BLE is Brownian motion.and (ut) is the
. control of the ith player. Player i chooses this control so as to mini-

mize the cost

. B R . . ) . .
atw =©elS cl(t,z,ui)dt + Y (2) ], ~ , (2)
, o :
where U = (ut) = (utl,...,uﬁ).

Different solution concepts of the resulting game are studied.
Sufficient conditions are given which guarantee that u* = (utt...,ui*)
is é (Nash) equilibrium, a (Pareto) efficient solution, or a nember of
the core. When the set of admissible cost-drift vectors (cl,..g,cN,f)
possesses a certain convexity property, these sufficient conditions becoms
necessary. |

The next section gives a precise model of fhe game. The convexity
property is stated, and its main implications are drawn out in section 3;

. . : . - ‘g i
The main results are given in section 4. A priori conditions on the ¢

and f which imply the convexity property are exzamined in section 5.
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§2. THE MODEL

2f1: Admissible Contréls

The sample paths of the state process (zt) are evidently continuous,
hence wembers of thgyBanach space C of all continuous functions w: [0,1]+RP;
let Et be the evaluation functional on C, that is, &t(w)=w(t). Let Ft be the
o-field of subsets of C gsznerated by {ESIQ§;;§;}. Let F=F1.

For each i U, is a compact metric space, the set of actions

. available to i. A function u}: [0,1] x C+Ui is an (admissible) controi for iif

(i) u’ is jointly measurable,
(ii) ut = u}(t,') is Ft- measurable for all t.
Ui denotes the set of controls for i. .
Denote U = U.x%...xU_ with elements u = {(u,,....,0) and u-= alx...xUN
1 N 170ty
, 1 N .
with elements u = (4 ,...,4 ). For uey, veU and 1 € {lp...,m} denote
(uT,vi) = (ul""'ui—l'vi'ui+1""'“N)' More generally, for Sc:{l,...,N}

1 .
denote (u_,vs) to be the N-tuple obtained from u upon replacing w, by vy
S - -

for each i€S. In exactly the same way one defines (u},vl) and (us,us) when

t and v are in U.

2.2 Dynamics
The function £: {0,1) x C X U*Rp in (1) satisfies the following conditions:
(i) £ is jointly measurable,
(ii) £(t,” ,u) is Ft- measurable for all t,u and f£(t,w,”) is con-
tinuous for all t,w,
(iii) There is a constant k such that If(t,w,u)|§3(1+‘|m||)
fox AII t,w,u.
Let P denote Wiener measure on (C,F). Let (zt) be the family of eval-

uation functionals on C so that (zt,Ft,P) is a n-dimensional, standard, .
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Brownian motion. For uell define the drift (¢u,Ft, P) by

0y = £(t,z, ult,z))
and the density (pu,F , P) by

tt

t t
pg =exp (f ¢LL dz_ - 1/2 f|¢u|2 ds)
0o 5 8 0 'S

Denote pu=p:'. The next result is well-known {[1,2 ].

Theorem ). (Bene$) . Ekp‘t‘) Z1. Hence Pu is a probability measure 6n (c,F)

wheré' | | |
p“(ﬁ) =f pu(z)P(dz) , FeF

. F
Furthermore, the process (wt,Ft,Pu) defined by

Ve T

t

-J (,’)LSL ds
0

is a Brownian motion.

This theorem justifies the following definitior,. 'The solution of (1)

correéponding to ucll is the process (zt,Ft,'Pu) .

2.3 Solutions of the Game

Conditions analogous to those imposed on f are also imposed on the
functions c:‘L in (2). The functions Yi: C*R are F- measurable and integrable
‘with respect to P‘_’L for all «. 1In additioyn, the ci and Yi' are non-negative.,

The cost to player i of uell is dafined to be

S §
J.i.(u) = gt s cl(t,' ,-u't)dt + Yl(-)l i
0 .

where E% denotes espectation with respect to pl
; . s sas 1* N* .
Recall the following definitions. u* = (U ,...u ) is o

a) an equilibriumif there is no i and no u such that

R .
Jl(v. l,u;l) < J"(u*)
b) efficient if there is no U such that

Ji(‘u.) < Ji(u*) for all i

R
PN
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c) in the core if there is no S and no u such that
'S, < gty for all ies

To avoid confusion it should be pointed out that the definitions b)
and c) are not the standard ocnes. Usually, u* is said to be efficient if
there is no u such that Ji(u) ¥ Ji(u*) for all i with the strict inequality
holding for at least one i. If one adopts this definition, then the ob-
servation at the beginning of section 4.3 below needs to be modified and
so do the subsequent results; these modifications are slight but clumsy,
ané the definition given here avoids the clumsiness. 1In any case the differ-
ence is slight. The core is usually defined only for games where compari-
son of inter-personal utilities is permitted and where side payments are

allowad. For games where such comparison is not permitted, as i¢ the nox-

‘mal posture in mathematical economics, one is naturally led to the defini-

tion given here.



'§3. THE CONVEXITY PROPERTY

1 N N
Let g{t,z,u) = (c ' (t,z,v),...,c (t,z,0), £(t,z,u)). g is an (4n)-
dimensional vector.

The game is said to have the convexity property if For all t,z

{g(t,z,u)luEU} ‘

is a convex set. It is said to have the strong convexity property if
fbr all t,z,u and for all S

. {g(tlzr (u_s_l"s)) IVEU}

is a convex set.

In [1] and [2] it is shown that the convexity property implies that
the set of densities obtained by using all possible admissible controls
is convex. The twc lemmas below follow rgadiiy from these results.
Lemmg 1 Suppose the game has the convexity property. Then

J = {(Jl(u),...,JN{u)lueu}
is a convex subset of Rg.
Lemma 2 Suppose the game has the strong convexity‘property. Let uell
and.sc{1,...,N}. Then

J(ug) = f(Jl(ug,vs),..., JN(ug,vs)IvsU}

is a convex subset of RF.



§4. THE MAIN RESULTS

4.1 A Result from Control Theory
Suppose N=1 so that the game is simply an optimal control problem.
Dropping superscripts and subscripts, the control problem is to find
u*ell so as to minimize
1
. u ..
J(w = E [felt, ruddt + Y())
0 .
A minimizing control is said to be optimal.
The result below has bzen proved in [3] in 2 slightly more restrictive
form than necessary.

Theorem 2 U* is an optimal control if and only if there exist a constant

J*, and processes (Avt), (VVt) with values in R,Bp respactively such that

SO 1
. - ] _
(1) T+ J AV, at + J Vthzt Y a.s.
0 )
(ii) AV + Min {VV £(t,z,uw) + c(t,z,w)} =0,
t uey t :

. and the minimum is achieved at u*(t,z) for almost all t,z. Furthermore,

J*=J(u*) is the ninimum cost; in fact,

t t el i i '
a* + f MV as + S YV dz = tin B0 (s,2,0 048 + ¥ |F)
o ° 0o el ot ,

4.2 Conditions for Equilibrium

The controls u* = (u*l,...,u*N) constitute an equilibrium if and only

W 3 * » ., i :
if for each i u*l ninimizes Jl(u*l,ul) over the set IT. Theorem 2, there-

fore, immediately yields the next result.

Theorem 3 U* = (u*l,...,u*m) is an equilibrium if and only if for each i

there exist a constant J*l, and processes (Avt), (VV:) such that
1 1 . .
(1) g*+ S A ae e st gz =yt oaus.
0 t 0 t t



ez, wrtie,m, u) ¢ etez, ez ,u ) = 0

s i .
(i1) AV, + Hin { e

u,.e€u,
i i
and the minimum is achieved at u*l(t,z) a.s.  Furthermore, J*l=J1(u*).

4.3 Conditions for Efficiency

Consider the set J = {J(u) = (Jl(u),...,JN(u))luEU}, the set of attain-

able cost vectors. Suppose there exists a non—negative vector'k=(ll,...,lu)#0

and a* such that

AJ(u*) < Ag  for all JeJ | | - (3)
I£ is then iﬁmediate that U* is an efficient solution. It is also well-
known that (3) is a necessary condition in thé event that J is a convex
set. This observation, in conjunction with Theorem 2 and Lemmz 1, imply
the next result. ”
Theorem 4 a) U* is an efficient solution if there exist A>0, A#0, and
for each i a constant J*i, and processes (Avi), (VVi) such that

a g Yo o i
(i) L li[J* + é AVt at + g VVt dzt] = L AiY a.s.

i

(ii) IIAi AVt 4+ Min ilki{VVi f(t,z,u) + cl(t,z,u)} =0,

usvy
and;the mininmum is achieved at u*(t,z) a.s.

b) If the gane has the coavexity property, then the‘conditions
above are necassary for efficiency.

From a game-theoretic viewpoint an efficient solution iz of interest
only insofar as it is also ah’equilibrium. The combination of the results
above gives the first intriguing result. Its proof is given in the Appendix.
Theorem 5 a) u* is an efficient equilibrium if there exist for each ia

), (VVi) such -that

i S §
constant J* , and pxocezsesrtnvt
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Avl at + fvvt az_ = yl a.s.

(W) 9+ LAV
' 0

O~

(1) AVp + u?%ai{vvt £z, (W (t,2) u,)) + cl(t.Z.(u*i(t,Z),ui))} =0,

S . . i
and the minimum is achieved at u¥ (t,z) a.s.,

(iii) there exist A>0, A#0 such that

X Xi{VVi f(t,z,u*(t,z)) +;Ci(t,2;u*(tlz))}=_min I li{VVi f(t,z,u)+ci(t.zpu)}a.s.§

ucy

b) If the game has‘the convexity property, then the conditions
above are also necessary. | |
vRemark Dzfine the Hamilténian Hi(t,z,u) = VVi £(t,z,u) + ci(t,z,u). Condition (ii)
above says that ith Hamiltonian must be minimized along the ith “"coordinate" ~
qi. Condition (iii) says that in order that the "private" minimization (im-
piied in the equilibrium concept) also be "socizlly" efficient this private
minimization should lead to the “global” minimization of the social cost

obtained as a weighted comxbination of the private costs. The intriquing part

of the result is that these weights, the Ai' are constant, that is, they do

not depend on time t or the random state z.

4.4 Conditions for the Core

The result for the core follows in the same way as Theorem 5.
Theorem 6 a) U* is in the core if there exist for eéch i a constant J*i,
and processes (AVi), (VVi) such that

S | . X . .
(i) 4 S AVt dat + .J V?t dzt = Tl a.S.
0 0

(ii) Avi } Min {VVi f(t,z,(u*i(t,z),u.) + cl(t,z,(u*i(t,z),u,)i} = 0,
, t u.eU t i i
i i
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and the minimum is achieved at u*l(t,z) a.s.
ceen . S. . . ‘
(iii) for each S there exist constants Aizp, i£s, not all =zero,
such that

S ASIWE £t z,ur(t,2)) et (6, z,ur (e, b= min 225 (W £e,z, (0 (e,2) 0
. L 8 t - . A C S
i€S ‘ : ucl 1€S . .

+ Mo,z WS e, ,u9 ) as.
b) If the gawe has the strong ggnvexity prépggty, then the
éonditions above are also necessary.
Remark It ray appear reasonable, at first sight, to conjecture that the
weights, li, should not depend upon S. Howaver, upon further reflection,
the reader should becomes convinced that this is unlikely. Thus the weights
* associated with different players Qill vary with the coalition S in‘which

they are being considered as merbers.
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§5. PANDOMIZED STRATEGIES

Thg convexity property is eviéently quite restrictive. However,
if one permits randomized controls, then convexity is guaranteed. To see
this, define Mi as the set of all probability measures on Ui' ,Ui can then
betregarded as a subset of Mi and the function f can be extended to the

Ao ool by sstting

domain {0,1] xCle
f(t,z,ml,..;;mN) =f...f f(t,z}ui,;;.,uN)ml(dul)...m&(duN) (4)
v Y%

. i o ‘ |
The cost functions ¢ can be extended analogously. The spaces Hi can
be made compact and metrizable in a standard mannar and f(t,z,*) remains
continuous on M=Mlx...J:MN. The controls for i are now randomized controls
i . . '
that is functions m : .[0,1]lx fC+ti. The previous results continue to hold
for this "extended" game. But notice from (4) that this extended game enjoys

the convexity property and if joint randomization is allowed it also enjoys

‘the strong convexity property.



APPENDLX

Proof of Theorem 5
Part a of the theorem follows immediately from theorem 3 and Part a

of theorem 4. Hence it only remains to prove Part b..

By theorem 3 there exist for each i J*l, and procésseé (Avt),(VVi) such that

*i liv i 1 n i
gt + /AN g+ S VYV az =¥ . a.s.
ot o t t

A 4 win {9V £(e,2, (ede,2) u)) + et e,z (0 (e,2) u)) ) = 0

u.eu,
i i

and the minimum is achieved at u;(t,z). On the other hand, by Part b of
theorem 4 there exist A>0, A#0 and for each i K*l, and processes Q\Wi),

(sz) such that

R R 1. . j,
: -l' nl 1 = h l e
X Ai [K*+ f‘Awt at + [ th dzt] r liy _a.s.
) (o
S . i | i _
IIAiAht + Min L Ai {th f(t,z,n) +c (t,z,0)} f'O

weu

and the minimum is achieved at u*(t,z) a.s.

Comparison of these two sets of conditions reveals that it is enough

to show that whenever (Al) and (A2) are both satisfied, then (Aé) is also

satisfied by choosing —

K- = g%, Awt

i
=
W]
=
ol
=

i
<
<

Now, by the last part of theorem 2,

e -
J‘i + f‘AV1 ds + VW oaz
ot t “%s

Ot

g P D § e e e AR e T

(A1) -

(a2)
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1 . T . .
. "
Min E {f cl(s,zs,(u;l, u:) ds + YlIFt}
ued t

1 ,
u* i i
E {£ c s,z Uf) + Y th}

and similarly,

.ot t
#t 3 2 a
T Ailx + (f)/\ws ds + g Vus dg ]

W 1 i )
= B {2)\-1[ {:‘ c (sl‘zsiu*t) +Y ]'FI—_}

Hence,

A t . .t T
P EAMM + AV  as + SV Az 1 = DA XY + S AW, as + f VWt az ]
x - kR ’ 0 S 0 =3 S by 0 s 0 s S

setting t=0, gives I AiJ*l = illix*l and so

t . . t T .
FEAVE - sawhas = JZAWE - TA,V)ds
0 1L S L S 0 1 S 1 s S

i
;
]
:
@

But, under the measure P (zt) is a Brownian motion so that the term on the
right is a continuous martingale whereas the term on the left is a process
with integrable variation. It follows that both terms must vanish so that

; ZA‘.V]' = )\.Wl and L )‘.VV:L = ¥ AW and the result follows.
Bt A - 22 i's i'’'s

LT e I e s s
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§6. .CONCLUSIONS ) "
These remarks are mainly suggestions for further research. 'é

It is known that for dete:ministic differential games the condition
that‘the weights Ai are constant is sufficient but not necessary even when
the game has the convexity broperty. The results presented here thgrefore
convey surprise. However, it is not évident that these results should bz
regarded as curiosities or as significant. To decide this it is necessary
to clarify the precise rOle played by the Brownian motion in (). Such
clarification should also aid.in restoring a measure of unity to the currently
disparate traditions in the literature on deterministic and stochastic differ-
ential games. In the cases of control problems and two-player zerc-sum games
this has been achieved by the important work of Fleming [4,5] and subsequent
work of Danskin [6] and Friedman [7], . but it is not clear that these
" dirvections will prove useful for the many-player games.
This paper is not addressed to the important question of existgnce of
solutions. For efficient controls, this question is immediately settled
by known results on existence of opéimal controls. A recent study {[8]
has nicely resolved the problem of existence of saddle points and value
for two-player, zaro-sum, stochastic differential games. It seeﬁs likely
that the methods used in that study combined wiﬁh the usual fixed-point

arguments will help in proving existence of equilibrium solutions and the

core.

Finally, the condition of complete information is a serious a priori
restriction on the family of games considered in this paper. It is likely :
that resulés similar to those ebtained here hold when all players have |

the same information even if it is incomplete [9]. The game is enormously
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more complicated when different players have different information. In
the context of static games many important insights are providad by the

results reported in [10,11}.

Note: Reference [9] contains several incorrect staterents.
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