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The paper presents conditions \'1hich guarantee that the control 

strategies adopted by N players constitute an efficient solution, an 

equj,11brium, or a core solution.. The system dynamics are described 

by an Ito equation, and all players have perfect information. When 

the set of instantaneous joint costs and velocity vectors is convex 

the conditions are necessary. 
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§l. INTRODUCTION 

N players are simultaneously controlling the evolution of a system 

described by the Ito equation 

1 N dZt = f(t,z,ut, ••• ,ut ) dt + dBt' t E [0,1] (l~ 

W:lere (Zt) is the state process, i 
(B\., is Bro'~mian motion and (ut ) is the 

control of the ith ~layer. Player i chOQses this control so as to mini-

mize the cost 

1 iii 
= E[f c (t,z,ut)dt + Y (z)J, 

o 
(2) 

h () ( 1. N) were U = 1.l
t 

= ut ., ••• , u
t 

• 

Different solution cl')ncepts of the resulting game are studied. 

1* N* Sufficient conditions are given \.;hich guarantee that u* = (ut, ••• ,u
t 

) 

is a (Nash) equilibrium, a (Pareto) efficient solution, or a member of 

the core. tfuen the set of admissible cost-drift vectors (cl, ••• ,cN,f) 

possesses a certain convexity property, these sufficient conditions become 

necessary. 
'" 

The next: sec·tion gives a precise model of the game. The convexity 

property is stated, and its main irnplications are dra\'/n out in section 3. 

The main results are given in section 4. i A priori conditions on the c 

and f which imply the convexity property are ex~uined in section 5 • 



" 
-2-

§2i. 'I'HE HODEL 

2.1 Admissible Controls 

~le sample paths of the state proce5s (Zt) are evidently continuous, 

hence n>ewhers of the Banach space C of all continuous functions W: [O,l]-~Rn .• 

Let tt be the evaluation functional on C, that is, ~t(W)=w(t). Let F
t 

be the 

a-field of subsets of C generated by {l;s \0< S ~tl. Let F==f 1. 

For each i U. is a compact metric space, the set of actions 
,-

.. available to i. A function ui
: [0,1] x ~~u. is an (adwissible) control for iif 

l. 

(i) i . u l.S jointly measurable, 

(ii) i fI,i (t,. ) is f t
- measurable for all t. u

t = 

U. denotes the set of controls for i. 
l. 

Denote U = ulx ••• xUN with elements u = (ul"'.'~) and U = ulx ••• xuN 

with elements 
1 N 

U == (U , ••• ,U ,. For ue:U, ve:u and i E {l~ ••• ,N} denote 

(u ,v., = (ul '··· ,u. l'v. ,u. 1"·· 'UN'· 
":' l. l.- l. l.+ 
l. 

l-!ore generally, for S C h, ... ,N} 

denote (u_,vS) to be the N-tuple 
.5 

obtained from u upo~ replacing ~i by Vi 

for each iES. 
. i i 5 S 

In exactly the same way one def1nes (U ,V ) and (u ,V ) when 

U and V are in U. 

2.2 Dynamics 
n . 

The function f: lO,l] x C x U+R in (1) satisfies the follo~'1in9 conditions: 

(i) f is jointly measurable, 

(ii) f(t,· ,u) is f t- measurable for all t,u and f(t,w,·) is con

tinuous for all t,w, 

(iii) There is a constant k such that If(t,w,u) l~k(:J.+llwll) 

for all t,w,u. 

Let P denote \'liener measure on ec, f). Let (Zt) be the family of eval

uation functionals on C so that (zeF t'P) is a n-dimenr:;i.onal, standard, 
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Bro\'lnj.an motion. For U£.U define the drift (¢~,Ft' P) by 

U $t = f(t,z, u(t,z» 

and the density (p~,Ft' P) by 

t t 
pU = U 1/2 II ¢u12 ds] exp [/ <I> dz -t o s s o s 

u U 
Denote P =P

1
" The ne;~t result is \·/ell-kno\.;n [1,2 ]. 

Theorem 1 

where' 

Ll' ,u 
P (F) = I P (z)P(dz) , FEF 

. F u u 
Furthermore, the process (wt,Ft,p ) defined by 

t 
w

U = z - I <flU ds 
. t t 0 s 

is a Brm'lnian motion. 

This theorem justifies the follo·.oling definitior;." T'ne solution of (1) 

U 
corresponding to UEU is the process (Zt,FtiP ). 

2.3 solutions of the Game 

Conditions analogous to those imposed on f are also imposed on the 

f 
. i . unctl.ons c lon (2) • h f . i F' abl d i t b T e unct~ons Y : c+R are - measur e an negra Ie 

u i i 
'olith respect to P for all Lt. In addition, the c and yare non-negative. 

The cost to player i of udt is defined to be 

~ (Lli , i 
J .. (u) = E [/ c (t,· ;ut)dt + y (-)] t 

o . 
where EU denotes e>:pectation ''lith respect to pU. 

Recall the following definitio~s" 
1* N* u* = (u , ••• u ) is 

a) all equilibrium if there is no i and no u such that 

b) efficient if there is no (L such that 

Ji (LL) < Ji (U.) for all i 
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c) in the core if there is no S and no U. such that 

i *5 S i * 
J (u. ,u.) < J (u. ) for all i£s 

To avoid confusion it should b~ pointed out that the d(~finitions b) 

and c) are not the standard ones. U3u~11y, Lt* is said to be efficient if 

there is no u. such that .1i Cu.) -!'. Ji (t~*) for all i ''lith the strict inequality 

holding for at least one i. If one adopts this definition, then the ob-

servation at the beginning of section 4.3 belo' .... needs to be modified and 

so do the subsequent results; these modifications are slight but clumsy, 

and the definition given here avoids the cl~~siness. In any case the differ-

ence is slight. The core is usually defined only for games where compari-

son of inter-personal utilities is permitted and where side 'payments are 

allo\'led. For games ,·,here such comparison is not pel.-mitted, as :i.s the nor-

'mal posture in mathematical economics, one is naturally led to the defini-

tion given here. 
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§3. TilE CONVEXITY PROPERTY 

1 N' Let g(t,z,u) = (c (t,z,u) , ••• ,c (t,z,u), f{t,z,u». 9 is an (N+n)-

dimensional vector. 

The game is said to have the conv~xity propert~ if £or all t,z 

{g(t,z,u) lur:;u} , 

is a convex set. It is said to have the Etrong convexity ~roperty if 

for all t,z,u and for all S 

. {g(t,z, (u_,vs ') Ive:u} 
S 

is a convex set. 

In [1] and [2] it is sho',in that the convexity property implies that 

the set of densities obtained by using all possible· admissible controls 

is convex. The tW(l lemmas belm .. f0110\.; readily from these results. 

LetMIa 1 Suppose the game has the convexity property. Then 

is a convex subset of ~. 

Lemma 2 Suppose the game has the strong convexity property. Let u.cU 

and.S C h, ... ,N}. Then 

N is a convex subset of R • 
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§4. nIE ~u\IN RESULTS 

4.1 A Result from Control Theory 

Suppose N=l so that the game is simply an optimal control problem. 

Dropping superscripts and subscripts, the control problem is to find 

a~£U so as to nunimize 
1 

J(u) = Ea [fc(t,· ,ut)dt + y(o'») 
o 

A minimizing control is said to be optima 1. 

The result beloi'l has been proved in (3) in a slightly more restrictive 

form than nece&sary. 

Theorem 2 a· is an optimal control if and only if there exist a constant 

J*, and processes (AV
t
), (\1\) with values in R,R

n respectively such that 

\ . 1 I 
(i) J* + ~ AVt dt + ~ VVtdZt = Y a.s. 

(ii) A\ +l-lin {VVtf(t,z,u) + c(t,z,u)} = 0, 
uEU 

and the minimu.'U is achieved at a*(t,z) for alm'Jst all t,z. FUl:"thel"more, 

J*=J (a*) is the Il'.inimum cost; in fact, 
t t U 1 , i 

J* + / flV ds + / VV dz = Nin E ·{/eJ.(s,z,u )ds + Y 1ft} 
o s 0 s s U.EU t s 

4.2 Conditions for Equilibrium 

1 •.. (*1 *N). 'l'b" f I The contro s a = u , .•. ,a constJ.tute an equJ. ~ rJ.mn 1. and on y 

i ' .i , " i (.i i). th t Ui 
f for each 1. a ~nJ.~zes J a ,a over ese' • Theorem 2, there-

fore, immediately yields the next result. 

'l'heorem 3 i N) . 'l'b" f d 1 'f f h ' a* = (a* ~ ••• ,tl* ~s an equJ. l.. rl.\lffi l. an on y l. or eae 1. 

i i 
(VV!) such that there exis t a constant J* , and processes (AV

t
), 

1 1 
VV

i i 
(1) J* + / AV

i 
dt + / dz = y a.s. 

0 t 0 t t 
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(ii) iii i Bin {"IV f(t,z, (u* (t,z), u.» -I- c (t,z, (u* (t,z) ,u.»} - 0 
t 1. 1. 

U.£U. 
1. 1. 

and the mini.mum is achieved at u",i(t,z) 

4.3 Conditions for Efficiency 

a.s. 

1 N I Consider the set J = {J(U) == (J (u), ••• ,J Cu.)} u.e:U}, the set of attain-

able cost vectors. Suppose ther.e axis ts a non-negative vector A= 0'1 ' ..• , AN) to 

and a* such i:.hat 

AJ(u*) 2 AJ for all Je:J ( 3) 

It is then immediate that u.* is an efficient solution. It is also \-1e1l-

known that (3) is a necessary condition in the event that] is a convex 

set. This observation, in conjunction \<lith Thedrem 2 and Lemma 1, imply 

t.he lle}:t result. 

Theorem 4 a) u* is an efficient solution if there exist A>O, A~O, and 

for each i a constant J*i, and processes (AV~), (VV~) such that 

(i) 1: >... [J*i 
1 

IW! dt 
1 i 

+ J + J VVi dz
t

] == r. ) .. y a.s. 
1 

0 o t 1. 

1: A. AVi + Hin i: Ai {VV~ f(t,z,u) + ciCt,z,u)} == 0, 
1. t ue:u 

(ii) 

and the mininlUm is achieved at u*(t,z) a.s. 

b) If the gan~ has the co~vexity property, then the conditions 

above are necessa~~ for efficiency. 

From a game-theoretic viewpoint an efficient solution is of interest 

only insofar as it is also an equilibrium. The combination of the results 

above gives the first intriguing result. Its proof is given in the Appendix. 

Theorem 5 a) u* is an efficient equil:i.bt-ium if the.re exist for each i a 

constant J",i, and proc,~::<.S~5 (,J\V~), (VV~) such that 
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(i) 
. I. I. i 

J*1 + f A~ dt + fV~ dZ
t 

= y a.s. 
o 0 t 

(ii) , AV
t
i + run {\1Vi f(t,z,(u*i(t,z) ,u.» + ci(t,z,Cu*i(t,z) ,u.»} = 0, 

U.EU. t 1 l. 
1. 1. 

and the' minimum is achieved at u*i(t,z) a.s., 

(iii) there exist A>O, A~O such that 

1: ).i {Vv! f(t,z,Lt* (t, z» + c
i 

(t,z,u* (t,z» }=. Bin r \ {W! f(t,z ,u) +ci (t,z,u) }a.s. 
uEU 

b) If the game has the convexity prQperty, then the conditions 

above are also necessary. 

Remark Define the Hamiltonian Hi(t,z,u) ==> V'{ f(t,z,u) + ci(t,z,u). Condition (ii) 

above says that i.th Hall"iltonian Il1USt be minimized along the ith "coordillate" ~. 

U. • Condition (iii) says that in order that the "private" miniIJ'lization (im
.l. 

plied in the equilibrium concept) also be "socially" efficient this private 

minimization should lead to the "global" minirniz3.tion of the social cost 

obtained as a weighted co~ination of the private costs. ~intriquinq par~ 

of the result is that these "Ieights, the ).. , are constant, that is, they do 
1. 

not depend on time t or L~e random state z. 

4.4 Conditions for the Core 

The result for the core f0110\·;s in the Sarna way as Theorem 5. 

Theorem 6 a) u* is in the core if there exist for each i a consta."'tt. J*i, 

and. processes (Av!>, (V{> such that 

1 1 
( ~> J*i f ~Vi f <:7,i d i ... + II t dt + \. t Zt = Y a.s. 

o 0 

(ii) t1in {W
t
i f(t,z,(u·i(t,z) ,u.) + ciCt,z,(u.i(t,z) ,u.»} = 0, 

l. l. 
u.EU. 

l. 1 
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and the minimum is achieved at u*iCt,Z) a.s. 

(iii) for each S there exist constants ~~>o, iES, not all zero, 
~-

such that 

t~~{VVi f('t,z,u*Ct,z»+ciCt,z,u*Ct,z»}:.: Hin t~~ {\TV! f(t,Z,(u*SCt,z),us ) 
iES 1 t uEU isS ~ 

+ ci(t,z,(u*S(t,z) ,us)} a.s. 

b) If the ga~e has the strong c~nvexity prope~ty, then the 

conditions above are also necessar.f. 

Remark It IT'.ay appear reasonable, at first sight, to conjecture that the 

weights, A~, should not depend upon s. Ho\.,ever, upon further reflection, 
.1. 

the reader should become convinced that this is unlikely. Thus the \veights 

associated \"lith different players \'lill va,.ry ,-lith the coalition S in which 

they are being considered as me~ers. 
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§ 5. PJ\NOONIZED STRA'£EGIES 

The convex.i ty property is evidently quite res tricti ve • HCMever, 

if one permits randomized controls, then convexity is guaranteed. To see 

this, define H. as the set of all probability measures on U.. U. can then 
~ ~ ~ 

be regarded as a subset of H. and the function f can be extended to the 
1. 

domain [0,1) XCXL'\X'. , •• xr-~ by setting 

i The cost functions c can be extended analogously. The spaces H. can 
~ 

be made compact and roetrizable in a standard manner and f(t,z,·) rCl'itains 

continuous on N=N1X, ••• X t~N. The controls for i are nm'1 randomized controls 

. . i [ ] that ~s functl.ons m,: , 0,1 x The previous results continue to hold 

for th is "extended" game. But notice from (4) that this extended game enjoys 

the convexity prope'rty and if joint randomization is allo,'ied it also enjoys 

the strong convexity property. 
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APPENDIX 

Proof of Theorem 5 

Part a of the theorem f0110\1s iml-nedia te ly from theorem 3 and Part a 

of theorem 4. Hence it only r~mains to prove Part b •. 

By theorem 3 there exist for each i J*i, and processes (AV~), (W!> :;ouch that 

1 i 1. *i ~ i 
J + r A V tdt + f. VV t dz t = Y a. s • 

o 0 

A,1.f
t
· + l1in {VV

t
i f(t,z, (u*i(t,z) ,u.» + ci(t,z, (u.j.(t~Z) ,u.»} ;:: 0 

l. '. l. 
u.E:U. l. 1. 

and the roinim~~ is achieved at u~(t,z). On the other hand, by Part b of 
l. 

h Ath . '>0 \JO d f ' l.' v:*i, d ,,,y.i) t eorem ~ ere eXl.st A_ ' AT an or eacn ., an processes ~~dt ' 

1·. 1 
r A. [K*i+ 1 AW

t
1. dt + 1 Vwi dz

t
] = 

1. 0 0 t 

i r ) .. y 
1. 

Bin L \ {V~-l~ f(t,z,u) + ci(t,z,u)} = 0 
uE:U 

and the minimum is achieved at u*(t,z) a.s. 

Comparison of these t,~·o sets of conditions reveals that it is enough 

to show that ,,,henever (Al) and (A2) are bot..'-1 satisfied, then (A2) is also 

satisfied by choosing .. --.-... ~ .... 

K. i = J*i, AVl
i A~' and ;:: 

t 
'Y.,i 
'~t = V· i V

t 

No .. ', by the last part of theorem 2, 

j"i 
t 

AVi t V{ + 1 ds + 1 dz 
0 t 0 

s 

(AI) 

(A2) 
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1 
-.tin EIt{f i ( ( A-i = I.' C S,Z, Ll' , 
u£U t 5 5 

1 
= EU*{f i il } c (5'Z5,tl.~) + Y . Ft t 

and similarly, 

. t. t. 
I A [K *l. + ! ~ wl. ds + f "Vr.l dcr 1 

i 0 J~ 5 0 5 ~~5 

Hence, 
. t. t. . t. t, 

. I A. [J*;l. + ! A ~ d5 + ! VVl. dz ] = I A. [K*l. + f AWl. ds + ! V~-:l. dz ] 
;t. 0 S 0 5 S 1 0 S 0 S 5 

Setting t:=O, gives I A.J*i 
1 

t . i 
f (I A. V1 - I A .l'7 ) ds o 1 S 1 S 

- I A.:K*i and 50 
1 

But, under the measure P (Zt) is a Bro','mian motion so that the term on the 

right is a continuous martingale whereas the term on the left is a process 

with integrable variation. It fo110"';5 that both tern's must vanish so that 

I,\.; = 
]. S 

I A.W
i 

and I A. vI 
15 1 S 

= r A. Vr;l and the result follot·ls. ;l. 5 
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§ 6. ,CONCLUSIO;:.lS 

These remarks are mainly suggestions for further researC!1. 

It is knO'Nn that for deterministic differential games the condition 

that the weights A. are constant is sufficient but no'\:: necessary even \.,.hen 
1. 

the game has the convexity property. The results presented here therefore 

convey surprise. HOltleVer, it is not evident that these results should bg 

regarded as curiosities or as significant. To deciee this it is necessary 

to clarify the precise role played by the Brm'1nian motion in (1). Such 

clarification should also aid ,in restoring a measure of uni ty to the currently 

disparate traditions in the literature on deterministic and stochastic differ-

ential games. In the cases of control problems al'ld bolO-player Zel.,,:-Stm games 

this has been achieved by the important \'lOrk of Fleming [4,5] and subsequent 

work of Danskin [6] and Friedman [7], but it is not clear that these 

directions will prove useful for the many-player games. 

This paper is not add:r..·essed to the iIl'flortant qu.estion of existence of 

solutions. For efficient controls, this question is iwmediatcly settled 

by known results on existence of optimal controls. 1~ recent study [8] 

has nicely resolved the problem of existence of saddle points and value 

for tw~-playerr zero-sum, stclchustic differential games. It seems likely 

that the methods used in that study co~hined with the usual fixed-point 

arg\ments will help in proving existence of equilibrium solutions and the 

core. 

Finally, the condition of complete information is a serious !. erior1 

restriction on the family of games considered in this paper. It is likely 

that results similar to those obtained here hold ,.,hen all players have 

the ~ information even if it is incomplete [9). The game is enormously I 
i 
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more complicated when different players have different information. In 

the context of sta-tic games many impC;lrtant lnsights are provid~d by the 

results reported in [10,111. 

Note: Reference [9) contains several incorrect statoments. 
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