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ABSTRACT

of

"ON SIGNAL DESIGN BY THE

R  CRITERION FOR NON-WHITE

GAUSSIAN NOISE CHANNELS"

by

Dennis Lee Bordelon

The use of the R 0 criterion for modulation system design is

investigated for channels with non-white Gaussian noise. A sig-

nal space representation of the waveform channel is developed,

1M
	 and the cut-off rate R O for vector channels with ad3itive non--

w"-ite Gaussian noise and unquantized demodulation is derived.

When the signal input to the channel is a continuous random vec-

tor, maximization of R D with constrained average signal energy

leads to a water.-filling interpretation of optimal energy distri-

bution in signal space. The necessary condition for a finite

signal set to maximize R  with constrained energy and an equally

likely probability assignment of signal vectors is presented,

and an algorithm is outlined for numerically computing the optimum

signal set. A necessary condition on a constrained energy, finite

signal set is found which maximizes a Taylor series approxima-

tion of RO . This signal set and the finite signal set which has

the water-filling average energy distribution are compared for

some specific examples along with the computed optimum.
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CHAPTER I

INTRODUCTION

A. Background

In the design of a data communication system, the engineer

can employ several methods to enhance the efficiency and

effectiveness of information transfer over noisy channels. Con-

sider the block diagram of a coded digital communication system

given in figure 1. The encoder emits a codeword whose n symbols

x l , x 2 ,	
x 
	 are each selected from an alphabet {a l , a 2 , " "

a q ) of q letters. The q-ary modulator selects a signal waveform

according to the symbol input to the modulator. Thus s(t) is

selected in each signaling interval from a set of q waveforms.

While propogating through the waveform channel, the signal is

corrupted by an additive random noise process. The demodulator

acts upon the received waveform r(t) according to some specified

decision rule and emits a symbol selected from an alphabet

{b l , b2 ,	 bq,) of q'	 letters. In general, q'>q. It is

assumed that, in each signaling interval, the demodulator output

symbol is dependent only on t:,e modulator input symbol and on

the noise in that signaling interval. Thus the modulator., wave-

forin channel, and the demodulator present to the coding and

decoding system a discrete memoryless channel (DMC) with the

q-ary input digit X and the q'-ary output digit Y. The
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Figure 1. A coded digital communication system.



channel is completely described by the transition probabili-

ties fYIX (b
i
lak ) defined for each letter a 	 in the input

alphabet and each letter b. in the output alphabet.
7

The modulation design problem reduces to selection of the

modulator and demodulator to enhance the usefulness of the

resulting DMC to the encoder and decoder. Wozencraft and

Kennedy [1), and later Massey [2), proposed the "R0 criterion"

as a sensible design criterion for digital modulation systems.

For a given average signal energy over the signaling interval,

the "best" DMC which the modulator and demodulator can create

is according to this criterion that which maximizes the cut-

off rate R 0 of the DMC. Mathematically, R D is given by

R0 = -log 2 { min I [ I Q(x)	 fYIX (y x) ) 2 }	 (1.1)
Q y x

where the minimization is over all probability assignments

Q(x) for the q input letters. Supporting this choice of cri-

terion, as Wozencraft and Kennedy pointed out, is the fact that

the union bound on average error probability for the ensemble

of random block codes of length n and rate R, the number of

information bits per encoder output symbol, i.e., per use of

the waveform channel, is

T < 2 -n(RO - R) ,	 for 
R<R0 

.	 (1.2)

This exponential bound is equal at rate Rcrit to Gallager's

(3) random coding error exponent. Moreover, Wozencraft and

3



Kennedy noted further that R  is also the rate above which the

average number of decoding steps per decoded digit becomes in-

finite for sequential decoding. More recently, it has l,een

shown [4) that, if convolutional coding techniques are used on

the DMC, then one can achieve

Pe < cR2-nRO	 for 
R<RO	

(1.3)

where c is a small constant and where n is the constraint
R

length (in channel symbols) of the convolutional code. The one

number R  then gives both a region of rates where it is possible

to operate with arbitrarily small probability of error and an

exponent of error probability (which Viterbi has shown is the

best possible exponent for rates near R0).

The R  criterion has been applied to modulation system

design for communication over channels with additive white

Gaussian noise [2]. Massey proved in this case that t}. , e simplex

signal set is optimum for the R O criterion. Also, studi,ns on

demodulator design for the white noise case have been made [G)

which demonstrate generally the superior performance of "soft-

decision" demodulation (q'>q) over "hard-decision" demodula-

tion (q' -q) .

It is the purpose of the present thesis to explore the

use of the R criterion in modulation system design for channels
0

with additive non-white Gaussian noise.

4
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B. Vector channel representation
	 ^J

To study the modulation system design problem for communica-

tion over the waveform channel as depic.tcd in figure 1, a signal

space representation of the channel, derived as in [5], is

convenient. The signal waveform s(t) is assumed to be express-

ible as a linear combination of N orthonormal waveforms, that

is,

The vector of coefficients s = [s l , s2,	
T

s N) can be con-

sidered a vector in N-dimensional Euclidean space ("signal

space"). We can project the non-white noise process n(t) onto

these same orthonormal functions in such a way that the coeffi-

cients [n l , n 2 ,	 nN]Tare in general correlated zero-mean 4LW

Gaussian random variables. Then, presuming r(t) is reduced by

the demodulator to its projection r = [r l , r 2 ,	 r  IT in

signal space (the possible )oss of optimality will be considered

later), we can model a "one shot" use of the vector channel as

shown in figure 2.

The Karhunen-Loeve expansion of the Gaussian noise process

can be used to yield statistically independent noise components

over the signaling interval, but the first N normalized

eigcnfunctions of the defining integral equation must then be

used do the waveform channel for the orthonormal waveforms

of (1.4). By using the fact that all the noise coefficients are
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statistically independent, and by invoking the Theorem of

Irrelevance (51, we conclude that R0 is not reduced by con-

straining the receiver to consider only the N-dimensional pro-

jection r. Thus , the demodulation system can be made optimal

for "one-;hot" communication. We are severely restricted in

this situation, however, by the requirement that signaling wave-

forms be expressible as a linear combination of the first N

eigenfunctions of the Karhuncn-Locve expansion.

Alternatively, the vector channel representation can be

achir-.red by choosing a convenier 4^ set of N signaling wave-

forms for use by the modulation system. It is evident that the

receiver which processes only the N-dimensional projection r

in this case discards relevant noise, and thus is in general

sub-optimal. The R D obtained by using this modulation system,

however, constitutes a lower bound on the performance achiev-

able with an optimal receiver. Ir, the remainder of this thesis,

we shall allow the demodulator to consider only the projection

r of r(t) in signal space, being mindful of the non-opti-

mality in doing so when an arbitrary signal set is used.

When the vector channel is used many times to transmit

codewords to the decoder, noise vectors corresponding to dif-

ferent signaling intervals may be correlated, and intersymbol

interference may be present. Thus, received signal vector com-

ponents may be correlated with other components not only

within bauds but also among many different bauds. If the memory-

less assumption of section A is to remain valid, then the con-

7

straint time of the channel memory must be much less than the Siq-
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naling interval. This can be realized by choosing a long baud

length, assuming that we are free to do so 	 or by

'	 using a sufficiently long guard space between bauds. If the

intersymbol interference is thus caused to be negligible, but

the noise memory between successive uses of the channel is sig-

nificant, we can interleave the signals at the transmitter and

deinterleave the received signals to destroy the effect of the

noise memory. However, the performance of this modulation system

is interior to one which makes use of the noise memory. In

either case, the discrete channel seen by the coding system is

memoryless, even though the waveform channel has memory because

I	 of the presence of non-white Gaussian noise therein.

C. Derivation of R 0 for vector Pon-white Gaussian noise channels

and unquantized demodulation

In the design nf the demodulator of figure 2, q' decision

regions D, are assigned which partition the received vector

space in such a way that, when the input r falls in region

D.
I
, symbol b. is emitted from the demodulator. In order to

bring the signal design problem to the surface, the demodulator

decision regions are assumed to be unquantized, that is, the

number of regions q' is infinite. It has been shown [2)

that coarser quantization (finite q) reduces R 0 so that the

cut-off rate with unquantized demodulation, denoted (RO)q' =C

overbounds that for any quantized demodulator. ' •kith this

assumption, (1.1) reduces to



(1.7)

..
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(R O ) q'=oo - -1092 [ min I	 I Q(ai)Q(ak)
Q i=1 k=1

f^	 _	 _	 (1.5)—•
	 co/pnw 
	 da j

--	 -

where pn ( ) is the probability density function of the noise

vector n	 and the integration is N-fold. It was shown in sec-

tion B that the noise components are in general correlated

Gaussian random variables with zero mean. Thus, the probabil-

ity density function for the noise vector becomes

pn ( r) _ ((2n)N/2IAI1/2 1-1 exp(-2 (ITA-la)
	

(1.6)

where A is the noise covariance matrix. Upon substitution of

(1.6) into (1.5), the term under the square root sign in (1.5)

becomes, after some rearrangement,

1(2n) N IAI) -1 exp[-aTA- la
 -2(SiA-1si

+_kA-1SO

Completing the square in the exponent and taking the square

root in (1. S) yields

pn ( a- Z i 	 ;)) . 0>.P[ -8 (s i- f-, k ))TA-1( _i - ` k ) ) .
	 (1.8)

After performing the integration in (1.5), we obtain the follow-

ing expression for the cut-off rate of the discrete memoryless

channel with uncluantized demodulation and with the signal set-

1



i	 10
(s l , 2 2 ,	 E,,) on the vector non-white Gaussian noise

channel:

q
(:t 0 ) q ,_^ _ -log2 (miniFl

e X1) (-1 (si_^
8

9

E Q(aL)Q(ak)
k=1

) T A -1 (s i Sk ) J) . (1.9)

D. Plan of the thesis

In Chapter II, we consider the limit of (1.9) when q

beco,,.es infinite, that is, when the number of signals in the

signal cet become:: infinitely large, and thus the probability

aFisi. • , ! ,rant Q for these signals, become ,--. a probability density

function. The resultant cut-off rate obtained for infinite q

and q' overbounCs that attainable with any finite q anu q'

for the same average signal energy. A necessary condition for

the input probability drnsit_ function to maximize (R.)q,q'_.,

is found. When tY - input density is Gaussian, maxiini^ation of

cut-off rate leads to a water-filling interpretation for the

optimum assignment of input energy to the components cf the

signal vectors.

In Chapter III, •.:e investigate the maximization of (1.9)

when the signal set is constrained in average energy and in

the number of signal;, and when the input probability distri-

bution is uniform. The calculus of variations is employed to

give a necessary condition on the signal vectors maximizing

cut-off rite with Q uniform. Also, an alciorithm is outlined

iF



for numerically calculating the optimum signal set in N-dimen-

sional signal space.

In Chapter IV, the necessary condition on the signal set

which maximizes a Taylor series approximation to the cut-off

rate with Q uniform is formulated, and signal sets are found

for some specific values of q and N , as a function of

average signal-to-noise ratio. Also, signal sets are found for

q and N which have the same distribution of average signal

energy among the N signal components as the water-filling set

with infinite q described in Chapter II.

Finally, in Chapter V we compare the performance of the

Taylor series and the water-filling signal sets with the

nr.mer.i.ca ]ly calculated optimum sets.

11



CHAPTER II

OPTIMUM SIGNAL DESIGN WITH LARGE SIGNAL SETS

AND CONSTRAINED ENERGY

A. R  for infinite q

The number of symbols q in the codeword symbol alpha-

bet is assumed to be arbitrarily large. This in turn requires

an equally large number q of signals in the signal set. In

Chapter I, it was shown that the expression (1.9) for R 0 with

unquantizod demodulation is a minimization over all probability

assignmem . of the q codeword symbols. For the same average

signal-to-noise ratic, (R O Q =oo increases as q increases

because of the greater Kgree of freedom in choosing the q

probabilities for the channel input symbols. Thus the value of

the cut-off rate with infinite q and q' , denoted ( R O ) q,q , _m ,

overbounds the attainable cut--off rate for any finite q and q'.

Now consider the probability assignments Q(a i ) as an

appropriate partitioning of an N-dimensional input signal

space so that, when a vector a falls in the ith partition

	

C i letter a 	 is chosen, and signal s  is transmitted. If

p(a) is a probability density function defined on the input

space for choosing signal vectors, then

	

Q(a i ) = 
	

p(a) d 	 .	 (2.1)
i
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As the number of letters q becomes large and the partitioning

becomes finer, the signal vectors become continuously distri-

buted in signal space, and the distribution is described by

the probability density function p(a). Thus

r

(R0)q,gI=oo -
 --log {min 

J	 -CO 
p ( a)p( )

P _W

• exp[-$ (a- B) TA-1 (a- R))da dB}.	 (2.2)

To illustrate the fact that the finite-q signal set is a special

case of the continuously distributed (q=co) signal set, consider

choosing in the right of (2.2)

13

It

q

p (a) _	 4 (a i ) d (a - si)
i=1

(2.3)

Then substitution of (2.3) into (2.2) yields (1.9). The average

energy of a signal vector is constrained to be

jal 2 = E = a
i	 2

2 +a 2 +... +a N 2 = E 1 2
	 N

A-E +...+E 	,	 (2.4)

where E l , E 2 , ..., E,, are the average energies of a signal. vec-

tor on each of the N coordinates.

We now investigate the conditions for which a probability

density function p(a) minimizes the double integral of (2.2),

and thus maximizes (R 0 )  Consider the one-dimensional

case in which a is a zero mean random variable, that is, the

signals (.assume values among the real numbers. Let



F[p(a)) - 
f- OD f_m p

(a) p (a) exp[-8 (a a R )I 	 Ida dB

+ a lJ p(a) da + X2J a p(a) da + X3J a 2 p(a) da
-CO_CO 	CO

(2.5)

where	 0 2 is the noise variance, and a l , x 2'	 and a 3	 are the

Lagrange multipliers for the constraints

CO1_rp (a) da = 1, j a p(a) da = 0,J a 2 p(a) da = E
W	 _CO

respectively. If the function p(a) maximizes (2.2), then

a 
F [ p (a) + ch (a)) I	 (2.6)

a£	 E=0

must be zero for all choices of h(a). Carrying out the indi-

cated differentiation in (2.6), we obtain

p(R) exp[-.
CO1 	i

8 (ae2) ) d6 + a^ + a 2 a + X , a 2 = 0	 (2.7)
_CO

as a necessary condition for p( ) to maximize (R0)g,q,_oo.

It is well known [3) that the Gaussian density function

maximizes the entropy of continuous random variables, and thus

the Gaussian random vaiiable achieves capacity when used as the

input distribution for the continuous additive Gaussian noise

channel with an average energy constraint. however, when we sub-

stitute into (2.7)

14
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P (B) _ 
3^nr: 

exp (- B^ ) ,

15

(2.8)
Aff

i
we find that, if the Gaussian density does indeed maximize

(R0) q,q'= w , then we must have, for some value of X 1 ,X 2 , and X3,

2

c 1 ec2a + a^ + a 2 a + X a 2 = 0 ,	 (2.9)

where c	 and c2
1

noise ratio. Thus we

does not in general

the maximization of

are constants depending on the signal-to-

conclude that the Gaussian density function

satisfy the necessary condition (2.7) for

(R0)q,q'=oo'

B. Water-filling interpretation of signal energy distribution

It is instructive to substitute the Gaussian density

function (2.8) into the double integral in (2.2), in order to

obtain a lower hound on (R0)q,q,_oc). The signal is the N-vector

whose component, are assumed to be statistically independent

Gaussian random variables with density function

N	 1	 a 2
P W. = B --= exp ^- --^

i=1 /27-E i	 2Ei
(2.10)

The average signal. energy is again constrained as in (2.4).

We also assume that the components of the non-white Gaussian

noise vector n are statistically independent, which can be
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achieved by rotating the axes of signal space so that the pro-

jection of the noise process onto this signal space yields un-

correlated components. 'Thus the covariance matrix A is

diagonal with diagonal elements a 1 2 , i = 1, 2, ..., N , the

noise variances oil 	 axis. Substitution of (2.1.0) into (2.2)

yields
O

(R )	 _ -log {	 m ...	
co Jl
	 1	 exp [- Ct , 2 - R12

	

0 gau_ss^n	 2 -^	 i=1 27TE i 	2Ei	 2Ei

G

(a; 2 	} da i ... daN dG1 ... dON }	 (2.11)
SQ

.

2
1

	where (RO ) q, gt=
90	denotes the cut--off rate for a continuous

gaussian

statistically independent Gaussian random variable input with

unquantized demodulation. CompleL:ing the square in the ex-.

ponent in (2.11.), and interchanging the order of integration

and product gives

2
N2Xi	 2.

r	 ( ai 
_ 
Qa 

gi)

(R0)y,q'=oo = -	 log2{ I
- f/2--7111

cxp[-	
igaussian	i=1	 J ^^ 	 2Y.i

16

where

2
1	

e}: h ^_—a. 2 _	
da i mi }	 (2.12)

	

►^irL i 	 2 i

i	
2

Y.2	
2I

____ _	 2 =
	 1X 1	 1	 1-	 ^	 .V1 	 1 -	 X.

4o i `	 1G

The result of 'the integration within the bracer, in (2.12) is

X i Y i /E i . After some manipulation, (2.12) becomes

REPRODucumm OF
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N

(R0),_^ 	 1 1/2 log 2 ( 1 + Ei/2o i 2 ).	 (2.13)
^Assian i=1

The implication of (2.13) is that, with statistically indepen-

dent zero-mean Gaussian random vector inputs, the vector channel

reduces to N parallel scalar channels, whose respective cut-

off rates are

(RO)q,q'=oo ) . = 1/2 109 2 ( 1 + I: i /2_Q i 2 )	 i=1, ... ,N	 (2.14)
gaussian

when a Gaussian random variable with variance E i is input to

the i th additive Gaussian noise channel with noise variance ail

and unquantized demodulation.

Following the method of . Gallager for achieving capacity

over parallel channels, we maximize the sum in (2.13) over the

N signal variances E,
i 

with the constraint on average energy

given by (2.4) by application of the Kuhn-Tucker conditions

with u as the Lagrange multiplier of the constraint. The

resulting necessary and sufficient conditions for the maximum

are

N	 E.
a	

(	 1 log 2 (1 +	 1 2 )l	 <	 u, i=1,...,N	 (2.15)
aEi i= 1 7_	

20 	
-

with equality if E•
i 
> 0. Performing the differentiation yields

1	 <	 ^i	 i=1,...,N ,	 (2.16)

2 (E i 4- 2oi2)

and, by choosing 1i - 1/233 , we arrive_ at the following neces--
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sary and sufficient conditions on the optimizing E 
i 

's

E. + 2a. = B for 2a.2i < B

Ei = 0 for 2a i 2 > B	 (2.17)

where B is chosen so that the constraint (2.4) is satisfied.

This has the water-filling interpretation depicted in fir3ure 3.

The N blocks of height 2a
i 

2 form the bottom of a container

into which the average signal energy is "poured." The container

is connected so that energy is distributed among each of the N

components of the signal vector in the amount of the depth E.
i

below the surface R.

It was shown by Gallager [3, Theorem 7.5.1] that capacity

is achieved on N parallel additive Gaussian noise channels

with noise vari7nces a i l , 	 by choosing the inputs to

be statistically independent, zero-mean, Gaussian random vari-

ables of variance E. with
1

E  + a 2 = B' for ci 2 <B'

E. = 0	 for a 2 >B'
1	 i —

(2.18)

where B' is chosen so that (2.4) is satisfied. The capacity

C of the parallel combination is given by

N
C =	 1 log (1 + E i ) .

i = 1 2	 2	 ail
(2.19)

Thia gives the familiar capacity-achieving water-filling inter-

s
11	 I

^I
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Figure 3. water-filling interpretation of achieving maximum

over E	 n = 1, ... ,N, of (I:0) 
9 

(I, =^
n	 gaussian



pretation of signal energy distribution. The difference between

20

the water-filling energy assignments for the

(RO)q , g 1 =00	and of capacity C is in the
gaussian	 2

noise variances 0 i , and thus in the height

forming the container.. A simple example will

maximization of

weighting of the

of the N blocks

demonstrate the

application of these water-filling analogies for signal energy

distribution and the difference between the capacity and the

cut-off rate results.

C. Example

Suppose N = 2 , 0 1 2 = 1 , 022 = 1/2 , and E = 2 .

Equation(2.17) becomes

E l + 2 = B

E2 + 1 = B

E l + E2 = 2

which has the solution E 1 = 1/2 , E 2 = 3/2	 being the

signal energy distribution over the two signal space coordinates

that maximizes (RO)g'(I'_QC) for this example. Equation (2.13)
gaussian

then gives

(R O ) g,q'=w = 1/2 log 2 (1 + 1/4) + 112 log 2 (1 +3/2)
gaussian

.3219	 (2.20)

Similarly, (2.16) becomes



a
n
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E 1 + 1 = B'

E2 + 1/2 = B'

E1 + E2 = 2

which has the solution E1 = 3/4 , E, 2 = 5/4 . This choice of

signal energies on the two coordinates achieves capacity on

this combination of N = 2 discrete channels. Equation (2.39)

then gives

C = 1/2 log 2 (1 + 3/4) + 1/2 log 2 (1 + 5/2) = 1.3074 . 	 (2.21)

The water-filling interpretation for this example is shown in

figure 4. It can be seen that optimum distribution for achiev-

ing capacity will divide energy more symmetrically than the

corresponding optimum distribution for maximizing
gaussian

beca • ise of the greater weighting of the noise variances in the

latter case. Another difference is in the fact that the water-

filling distribution in figure 4(b) does achieve the maximum

mutual information (capacity) over E1 and E2 for this ex-

ample, but the water-filling distribution shown in figure 4(a)

does not represent the maximum achievable cut-off rate for a

continuous random vector input with unquantized demodulation,

which is given by (2.2) with N = 2 in this example. Thus the

number given in (2.20) is only the lower bound on the value

of (2.2) with the maximizing provability density function,

rather than the Gaussian.

It is interesting to note that when the capacity-achieving

energy distribution, viz., El = 3/4, F. 2 = 5/4, is used in (2.13),

we obtain (R O )^ _^ _ .8147	 Thus for this example the
gaussian
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(a)

B' = 7/4  
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E1=3/4
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i
I

`	 (b)

Figure 4. Water-filling interpretation for (a) achieving maximum

of (R0)q (I,_00 and (b) achieving capacity over the set of N = 2
g aussinn

parallel	 channels with v 
1	 2

2 = 1, 0 2 :=1/2, and E - 2.
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difference in the cut-off rates- obtained by using the capacity-

achieving optimum signal energy distribution and the distri-

bution which maximizes (RO)g,(I,_cx) is very small.
gaussian

Y

gig

M

It

P.

4



CHAPTER III

OPTIMUM SIGNAL DESIGN WITH SMALL SIGNAL SETS

AND CONSTRAINED ENERGY

With the modulator constrained to emit only a finite number

of signals, (1.9) is the starting point for a consideration

of the optimum choice of the signal vectors used to transmit

the q letters of the modulator alphabet. To avoid the awkward

minimization in (1.9), the symmetric cut-off rate [6] is em-

ployed, which is the value of the right of (1.9) when Q is

the uniform distribution Q(a i ) = 1/q , i = 1, 2, ..., q ,

rather than the minimizing distribution. Thus, the symmetric

cut-off rrte, denoted Ro , is less than or equal to the actual

cut-off rate of the system, with equality if the uniform is

•	 indeed the minimizing distribution, as it is for many prac-

tical cases including the case q = 2 . The expression for the

symmetric cut-off rate for the Gaussian channel with unquan-

tined demodulation is

q q

(RO ) q' = cn = -log (q-lz i
I l kIl eXp[ 8 

( s i -a) TA-1 (si

(3.1)

We now seek to maximize the right side of (3.1)  or, equivzj , -..t.-

ly, to minimize the double summation by choice of the signal

set (s l , s 2 , ..., s  ) with the following constraint on signal

energy:

24
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9
E ii 

TsTs = qE .	 (3.2)
i=1 --i

where E is the average signal energy. The problem can be

stated	 minimize

q q
f(s l , s2 ,	 Eq) = l ^l k ^l exp[- 8(si-sk)TA-1(si-sk)]

.

	

	 (3.3)

subject to the constraint

q

g(s l ,	 s2 , ...,	 s	 )	 _
_q

si s i	 - qE = 0 (3.4)
i=1

In order to formulate the necessary condition for a station-

ary point cf (3.3),	 the vector gradient, defined as

' of
as

of
as -

12

0
s	

(f) _ , (3.5)
^ 1 •

of
as

IN

proves to be useful. A necessary condition for a see-. of vectors

Is	 s 2 ,	 ..., s	 to be a local minimum of	 (3.3)	 subj-.:t to the
- 
l ,

9
constraint	 (3.4) is that

. .
VS	 (f)	 + a0 s 	(g)	 = 0 ,	 i	 =	 1,	 2 1	 ...,	 q	 P (3.6)
_1 —1

RITRODUCIBIT..M '
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where a is the Lagrange multiplier corresponding to the con-

'	 straint (3.4). To evaluate the first term in (3.6), we note that

T	 T
Vx

 (e-x A x ) _ _2A x e-x A x

Thus,

q

Vs, (f) _ -	 2 11-1 (s i-sk ) exp[- 1 (s.
1
-sk)TA	 (s i-sk )] • (3.7)

—1 	 k=1	 8 —

The second term in (3.6) is just 2 as i , so we are left with,

as necessary conditions on the signal vectors {s l , s 2 ,	 sq}

to maximize (k0)q, =CD

q
X , sl 

+ kLl 

-1 (s i-sk ) expf- 8(si-sk)TA-1(si-sk)]

= 0 , i = 1, 2, ... , q (3.8)

A closed form solution of the system of equations (3.8) is

not in general practicable. However, one can use the results of

Pon-linear programming techniques to compute solutions to the

ainimization of (3.3), the non-linear objective, with the non-

linear constraint (3.4). The method employed here will be the

gradient projection method as given in Luenberger [7]. Let

Vf (S) = [V T (f) , V T (f) , ... , V T (f) ]	 (3.9)
sl	 E2

Vg (S) = [ V T (g) , V T (g) ,	 V T (g) ]	 (3.10)
s l	 s2	 sq

be the gradient vectors of f(S) and g(S) which are, in turn,

the sc	 valued functions of the q N vector

a.



q

	
I

:4
	

21

S - [sll' ..., s 1N , s21' ..., s 2N , ..., sql' ...' sqN)

(3.11)

From an initial test point S 0 which satisfies the constraint

(3.4), Vf(S) and Vg(S) as in (3.9) and (3.10), respective-
" 7

ly, are computed. The vector Vf(S) is geometrically projected
r

onto the plane tangent to the surface g(S 0 ) = 0 at the point
1

S O , producing a vector d . A step is taken along this vector,

and then the return to the constraint surface is achieved by

stepping in the direction of -Vg(S). Thus a new point

S l = SS+ a d - bVg(S o + a d )	 (3.12)

is generated, where a is a small increment and b is chosen

so that (3.4) is satisfied at S 1 . This process is repeated

until d = 0 , in which case (3.6) is satisfied and the algo-

rithm is terminated.

The above method was used to obtain computer solutions

to the maximization of (3.1), for the values q= 3, N= 2, and

for q =4, N= 2. The optimum signal sets and the values of

(R0 ) gi_co obtained, for various values of average signal-to-

noise ratio and the noise variance ratio in the two dimensions

are summarized in Tables 1 to 4 in Chapter V. These cut-off rates

for the optimum signal sets will be used to evaluate the quality

of the sub-optimal signal sets which maximize approximations to

R0 derived in Chapter IV.

i



CHAPTER IV

OPTIMUM SIGNAL DESIGN USING

APPROXIMATIONS TO R0

A.Introduction

Since an analytic solution of (3.6) for any interesting

choices of q and of N is intractable, certain approximations

will be made in order to discover a general rule-of-thumb for

"good" signal selection by the R0 criterion. Our first approach

will be to expand (R D ) q ,_,, in a Taylor series, and to find

signal sets which maximize the second order approxim;n tion. Our

second method will use the water-filling signal energy distri-

bution for the continuously distributed infinite-q signal set,

developed in Chapter II, for assigning an energy distribution

to small-q signal sets.

B. Taylor series expansion and optimum signal sets

The following expansion of the exponential term in (3.1)

will be used:

exp(- l (s i -s k ) T A -l (s i-s k )) = 1 - 1(si- sk)TA- 1(si-sk)
8

<L

+ 16 
((s i -s k ) T A -1 (s i -s k )) 2 - ...
	 (4.1)
	 -.

When the first order term only is retained in the expansion of

28
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(RO ) q =cx)	 we find only trivial solutions to the necessary

condition for a stationary point of the approximation. Interest-

ing results occur only when the second term is also used.

The necessary condition for a signal set {s	 s	 s }	 •
^1 2	 q

to maximize the second order approximation to ( R0 ) q#=O, becomes

q	 -1T -1
I ((s i- sk ) A ( s i - sk ) - 1]A (si-sk)

k-1

= 71 s
i , 

i = 1, 2, ... , q -— (4.2)

Thus, we are left with a set of equations to solve which involve

at most cubic terms in the unknown signal components.

We now apply this technique to a specific example.

C. Example

Consider q =3 and N = 2. We choose, without loss of

optimality, the signal vector constellation shown in figure 5,

where a and b are parameters to be determined. The average

signal energy constraint demands also that

2a 2 + 6b 2 = 3 .	 (4.3)

The noise is Gaussian and has statistically independent

components with variances Q
i 
2 and o 

z 
2 on the first and second

coordinates, respectively. Then (4.2) reduces to the two inde-

pendent equations

-dub" . — _ ^^

A
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Figure S. Signal constellation assumed for the q =3, N =2

signal sets considered for the example.
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^.2 + ^2 - 1= a"012

1	 2

a 2 + 9 b 2- 1= a"0 2	 (4.4)
0 12a	 2

Let

SNR =
1	 201

denote the average signal-to noise ratio on the first coordinate,

and let

•	 Y =

01

denote the ratio of noise variances which also gives an indi-

cation of the assymetry of the noise in two-dimensional signal

space. The solution to (4.4), from (4.3), is

b2 - Y-1-SNRlOy-1)

2 SNRl (2 - 3Y - 3/Y)

a2 = 2(1-2b 2 )	 (4.5)

With Y = 1, the white noise case, the solution is b = .5,

a = .866, which is the simplex set for N = 2. Massey (2) has

already shown of course that the simplex is optimal.for the R0

criterion in Gaussian white noise. Thus, the solution (4.4)

is asymptotically optimum for Y - 1. As Y 4 0, evaluation of

MEMO-
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(4.5) in the limit shows that a	 0, which is obviously an

optimal solution when there is no noise on the second coordinate.

1
o	 -

4

D. :dater - filling signal sets

It was shown in Chapter II that, for a continuously dis-

tributed, infinite-q signal set with constrained average energy,

described by an N-dimensional Gaussian density function, max-

imization of capacity C and of (RO)q,gt=9c)	 over the pos-
gaussian

sible distribution of available signal energy led to a water-

filling interpretation of these optimal distributions. We now

consider the use of this water-filling interpretation for

finite-q signal sets.

The motivation behind the application to finite-q signal

sets of the water-filling method of optimizing capacity and

•	 cut-off rate for continuous random variable inputs can be de-

scribed as follows. Although it is certainly not possible to

form a Gaussian density from a uniformly distributed impul-

sive density, as in (2.3) with Q uniform, we can match the

optimum statistics, that is, the mean and the variance of the

optimal Gaussian density function, in choosing the signal vec-

tors and the distribution of signal energy for finite-q

signal sets. Thus, we choose the signal vectors, as in figure 5,

so that the centroid is zero, and we choose the parameters a

and b to satisfy the water-filling requirement.

At very low signal-to-noise ratios, the water-filling

results obtained by maximizing capacity and (RO)	 ^-1 are
^a^ssian

AML^_
	.- -	 -; j:r

j- ,



6

l^

33

identical since all the signal energy must be assigned along

the low-noise coordinate. The value of (R 0 )	 ,_^	 is half
5^^ssian

of capacity, as inspection of (2.15) and (2.19) show, when one

of the E i 's is non-zero and E i/a i 2 << 1. Since the Gaussian

density function maximizes capacity, we expect that the water-

filling signal set will be asymptotically optimum for small

signal-to-noise ratios.

We now apply the water-filling results found in Chapter II,

given by (2.17) and (2.18), to some specific examples.

E. Examples ,

Consider again q = 3, and N = 2. The signal vectors

are shown in figure 5 and constraint (4.3) holds. Then (2.17)

together with (4.3) gives the solution

a 2 . .75 + 
3(Y - 1)	 1,2 = . 25 - 

Y - 1

4 SNRl	4 SNRl
(4.6)

as the optimum parameters for maximizing ( R O ) q,q , =qo	 by the
gaussian

water- p illing method.

Using (2.18) with (4.3) gives

	

a2 = .75 + 3(Y -
 1)	 b2 = .25 - —Ll

	

8 SNR 1	8 SNRl
(4.7)

as the optimum parameters for maximizing capacity by the water-

filling method. We can use either of the sets of parameters
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(4.6) or (4.7) in (2.13), which for this example gives

(RO )q , gt =m	 1/2 109 2 (1 + 2 a 2 SNRJ)
gaussian

+ 1/2 109 2 (1 + 6 b 2 SNRl /Y)	 (4.8)

As a second example, let q = 4, and N = 2. The signal vec-

tor constellation of 	 figure 6 is assumed. The energy con-

straint requires also that

4a 2 + 4b 2 = 4 .	 (4.9)

i	 d	 i

F)

Again the noise is assumed to be statistically independent

and Gaussian with variances a 2 and a 2. Then (2.17) together
1	 2

with (4.9) gives the solution

a2 = • 5 +

	

	
0

	

b2	 .5
	 8 SNR	

(4.10)
8 SNR1	 1

as the water-filling parameters for maximizing ( RO )	 '_"
$Assian

Using (2.18) with (4.9) gives

a2 = 
•5 + 16 SNR1	 f 

b2	
•5	

(4.11)
15SNR1 

as the water-filling parameters for maximizing capacity for

this example. Then (2.13) reduces to

(RO1q,q, =co = 1/2 log  (1 + 4 a 2 SNR1)
gaussian

+ 1/2 log  (1 + 4 b 2 SNRl/Y)	 - (4.12)

In the next chapter, we compute and tabulate R  for the sig-

nal sets found in this chapter.

r--r
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CHAPTER V

•	 RESULTS AND CONCLUSIONS

In this chapter, the following signal sets are tabulated:

(1) the signal set which maximizes the Taylor series approx-

imation of (1k 0 ) q 1 =oD found in section IV C, equation (4.5);

(2) the signal sets which use the water-filling distribution

of signal energy for maximizing (RO)q,q,=(^0 	 found in section
gaussian

IV E, for q = 3, N = 2 (4.6), and for q = 4 	 N = 2 (4.10);

(3) the signal sets which use the water-filling distribution

of signal energy for maximizing the capacity of parallel

channels, for q = 3, N = 2 (4.7), and q = 4 , N = 2 (4.11);

and (4) the optimum signal sets computed numerically using the

results of Chapter III for maximizing (A O ) q . =cn with q = 3,

N = 2 , and q = 4, N = 2. These results are given in Table 1,

which lists signal sets (1), (2), (3), and (4) for q = 3,

N = 2, and in Table 2, which lists signal sets (2), (3), and

(4) for q = 4, N = 2, for various values of the noise asym-

met:y ratio and average signal-to-noise ratio.

Also presented are tables which show the performance of

the various signal sets. The performance measure for the q = 3

and q = 4 signal sets is the symmetric cut-off rate with un-

quantized demodulation, (A 0 ) g 9 =Co . Thus, the value of

(A0 ) q ,_ aC) was computed using (3.1) with the appropriate values

for the signal vectcrs in the signal sets, and the results are

tabulated in Tables 3 and 4 for the siqnal sets in Tables 1 and

36
1,
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Table 1. Approximately optimal and optimal signal sets fu- q =3

and N =2. The values for the parameters a and b refer to the

signal constellation of figure 4.
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_

(RO)q,q$_QD
gaussian

water-fil.linq
Capacity

water- illing
(0)q'-oa
Optimal

v SNR1 a2 b2 ^2 b2 a2 b2

1.0 1.0 .5 .5 .5 .5 .5 .5

1.1 1.0 .5125 .4875 .5063 . y '''.'; .5571 .4429

1.5 1.0 .5625 .4175 .5313 .46:7 .7967 .203'

2.0 1.0 .6250 .3750 .5625 .4375 1.0000 0

Ir

Table 2. Approximately optimum and optimum signal sets for q =4

and N =2. The values for the parameters a and b refer to the

t,lgnal constellation of figure 5.

4



 I TOO
^gaussianTaylor Capacity

series 'cater- water- q = 3 q = co
optimal filling filling optimal upper bound

Y SNRl (RO ) q^=-ao 0 q = (R0 ) q'=OD 0 q -oo gaussian

.5 .3373 .3373 .3373 .3373 .8074
1.0 .6254 .6254 .6254 .6254 1.3219

1.0 1.5 .8631 .8631 .8631 .8631 1.7004
2.0 1.0526 1.0526 1.0526 1.0526 2.0000

.5 .3224 .3236 .3233 .3243 .7792

1.1 1.0 .`,989 .6015 .6013 .6018 1.2818
1.5 .8279 .8335 .8334 .8335 1.6536
2.0 1.0166 1.0211 1.0211 1.0211 1.9491

.5 .2783 .2965 .2906 .3098 .7076
1.0 .5022 .5411 .5371 .5488 1.1669

1.5
1.5 .6946 .7509 .7484 .7544 1.5148
2.0 .8571 .9270 .9256 .9287 1.7950

.5 .2491 .2951 .2771 .3098 .6699
1.0 .4199 .504 .4972 .5387 1.0850

2.0 1.5 .5689 .6978 .6885 .7158 1.4068
2.0 .6976 .8585 .8524 .8680 1.6699

.5 .2258 .3098 .2850 .3098 .6610

3.0 1.0 .3373 .5095 .4728 .5387 1.0148
1.5 .4358 .6658 .6377 .7131 1.2950
2.0 .5228 .8025 .7812 .8512 1.5295

39

Table 3. Symmetric cut-off rates for the q= 3, N= 2 signal sfAs

of Table 1, and the infinite-q, Gaussian density upper bound,

using the water-filling signal energy distribution.
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n

4	 ,

(Rdga ssian Capacity

water - water- q = 4 Q = vo

filling fillinq optimal upper bound

Y ^ (RO) .^ (RO) -^ (R0 )	 ' :=m gau
J= co
ssian

1.0 1.0 .6321 .6321 .6321 1.5850

1.1 1.0 .6074 .6072 .6080 1.5401

1.5 1.0 .5455 .5412 .5576 1.4080

-.0 1.0 .5104 .4986 ._S481 1.3074

40

• 0"

Table 4. Symmetric cut-off rates for the q= 4, N= 2 signal sets

of Table 2, and the infinite-q, Gaussian density upper bound,

using the water-filling signal energy distribution.
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2 respectively. Also tabulated is the value of (RO ) ,q, =,
^aussian

the cut-off rate with an infinite number of signals, and thus

is an upper bound on the performance of the finite-q signal

sets. This value was computed using ( 4.8) and the optimum

water-filling energy distribution maximizing this cut-off rate

for N = 2.

It would be useful at this point to recapitulate the intro-

duction of the various cut-off rates employeL _ in this work, and

to relate these to the results of this chapter. It was shown

that, for constrained average signal energy, a large signal set

obtains a large value of (R O ) g l =W . Thus, (2.2) gives, upon

substitution of the optimum density function, the theoretically

largest cut-off rate attainable for a given energy and dimen-

	

sionality, which we denote (RO )	 although this optimum
^pgtimal

density was not found, it was shown that, when a Gaussian den-

sity was used, a simple expression resulted for the cut-off

rate for infinite q, denoted (RO ) q,q . =Q , which is a lower
gaussian

bound on the optimal cut-off rate. Then, when we constrained

the number of signals and assigned them equally likely probabil-

ities, we sought to maximize the symmetric cut-off rate (RO)g9=Co.

An algorithm was presented for computing optimum signal sets and

the maximum achievable symmetric cut-off rate, which we denote

(ko)g o =co . Thus, from theoretical considerations, we have
optimal

(RO%2 != 1 > (RO) U^ g;-^ > ( ^^ ) ^ t ti°Dinalp I	 a ssian	 p

For selected values of q and N , the optimal signal sets

I i a

.•,

J

L
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were computed, along with the varioas sub-optimal signal sets

considered in Chapter IV. In order to obtain these approximately

optimum signal sets, the locus of signal vectors in signal

space was constrained, as given in figures 5 and 6. Since the

optimum signal vectors did have this same assumed constella-

tion, the performance of the approximately optimum signal sets

was close to the maximum for the exFmples investigated. It can

41	 be seen from the data in Tables l through 4 that, among the

I	 sub-optimal sets, the water-fill.in , signal sets display better

performance than the Taylor series approximation set, and that

i	
the signal set with signal energy distribution maximizing

(RO)q , gl=oD	is better than chat which achieves capacity.
gaussian

Also evident is the fact that the sub-optimum signal sets are

indeed optimum when the noise is white, which is a c-)nsequence

of choosing signal vectors so that maximum R  is achieved for

white noise, that is, so that signal energy is equally divided

among the N coordinates. As the noise assymetry increases,

the water-filling signal sets do not depart appreciably from the

Optimum ( R O ) q $ =CD , despite the fact that the optimum signal

set distributes energy less symmetrically. This is seen in the

entries where b =0 for the optimum with large Y and small

SNR1 , whereas the sub-optimal sets retain energy on the first

coordinate as well. This did not cause a very large difference

in the cut-off rates. It can be concluded that, for small values

of a and N, the R  water-filling distribution of signal energy 	 ti

is a convenient and nearly cotimal rule-of-thumb for modulation

system design with non-white Gaussian noise channels.
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